

Svelte: A Beginner's Guide
Copyright © 2022 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-48-6

Author: Simon Holthausen-Kircher
Series Editor: Oliver Lindberg
Product Manager: Simon Mackie
Ignatius Bagus: Tim Boronczyk
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of
the information herein. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors and
SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described
herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such,
this book uses the names only in an editorial fashion and to the benefit of

the trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

10-12 Gwynne St, Richmond, VIC, 3121
Australia
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit http://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

About the Author
Simon is passionate about web frontends. He has expert knowledge in
Angular and Svelte and is also proficient in other frameworks, leading
several projects to success. He is also part of the Svelte maintainer team, his
most significant contribution being the VS Code extension.

http://www.sitepoint.com/

Preface
Who Should Read This Book?
This book is for developers with experience of JavaScript. If you’ve already
used a JavaScript framework such as React, you’ll find this book an easy
read, but it’s also suitable for readers with no prior experience of such
frameworks.

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.

</p>

You’ll notice that we’ve used certain layout styles throughout this book to
signify different types of information. Look out for the following items.

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at
hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help
on any tricky problems.
books@sitepoint.com is our email address, should you need to
contact us to report a problem, or for any other reason.

https://www.sitepoint.com/community/

Chapter 1: Getting Started with
Svelte
Svelte is a relatively new JavaScript frontend framework for developing
websites and web apps.

The praise that Svelte has received over the last two years is testament to it
not being “just another frontend framework”. It won “breakthrough of the
year” on the State of JS survey 2019, followed by topping the satisfaction
rating in 2020. It was also voted the most loved web framework in the Stack
Overflow 2021 survey.

Svelte appeals to developers with its combination of a small bundle size,
very good performance, and ease of use. At the same time, it comes packed
with a lot of goodies. A simple state management solution to build upon is
already provided, as well as ready-to-use transitions and animations. This
introductory tutorial will shed light on how does Svelte achieves this. The
following tutorials in the series will go into more detail on how to implement
applications with Svelte using the various possibilities Svelte provides.

The Svelte Backstory
But first, a little back story on Svelte. Though it only entered the mainstream
in the early 2020s, Svelte has been around for much longer.

The first commit to GitHub was in late 2016. Its creator is Rich Harris, an
open-source wizard whose most prominent other invention is Rollup, a
modern bundler. Rich Harris worked at the news magazine The Guardian as
a graphics editor at the time. His daily routine was to create interactive
visualizations for the website, and he wanted to have a tool that easily let
him write these without compromising on bundle size or speed. At the same
time, he wanted something approachable so other less tech-savvy colleagues
would be able to create visualizations fast.

Out of these needs, Svelte was born. Starting from the news room, Svelte
quickly gathered a small following in the open-source community. But it
wasn’t until April 2019 where Svelte really got known to the world. This
date marked the release of version 3, which was a complete rewrite with a
focus on developer experience and approachability. Since then, Svelte’s
popularity has risen a lot, more maintainers have joined the team, and Rich
Harris has even joined Vercel to work on Svelte full-time.

Building a Simple Book List
Let’s dive into Svelte! We’ll build a small book list that allows us to add and
remove books from our reading list. The final result will look something like
the image below.

We’ll start by scaffolding our project from a project template. We’ll use the
official Svelte template. Alternatives would be to use a Vite-powered
template or to use SvelteKit, a framework on top of Svelte for building full-
fledged apps with built-in routing—but we’ll keep it as barebones as
possible for this tutorial.

After downloading the template, switch to its folder and run npm install,
which downloads all packages we need to get going. Then we’ll switch to
App.svelte, where we’ll replace the contents with an HTML-only version to
lay out the visuals we want:

<h4>Add Book</h4>

<input type="text" />

<h4>My Books</h4>

 A book

https://github.com/sveltejs/template/
https://github.com/vitejs/vite/tree/main/packages/create-vite/template-svelte
https://kit.svelte.dev/

We can write the above code directly at the top level of the Svelte file; we
don’t need to add any wrapper elements. Svelte’s syntax is a superset of
HTML, so anything that is valid inside an HTML file is valid inside a Svelte
file.

The question now is how to get the dynamic parts in there. We’ll start by
adding a static list to the script and render that through a loop:

<script>

 let books = ['Learning Svelte', 'The Zen of Cooking Tea'];

</script>

<label>

 <h4>Add Book</h4>

 <input type="text" />

</label>

<h4>My Books</h4>

 {#each books as book}

 {book}

 {/each}

We added a script tag in which we put our JavaScript logic related to the
component. That logic is executed each time the component mounts. We also
enhance the HTML with special Svelte syntax to create a loop and print the
title of each book. As you can see, Svelte has distinct syntax for control flow
blocks, unlike Vue or Angular, which add such functionality in the form of
special attributes. This makes the code more readable, as you can more
easily spot it. It also makes it unnecessary to create wrapper elements if you
want to contain more than one top-level item within the control flow block.

The title of a book is outputted by surrounding the variable with curly
braces. In general, whenever you encounter a curly brace within the
template, you know you are entering something Svelte-related. We’ll look
into the template syntax in more detail in Part 2 of this tutorial series.

Reacting to User Input
We can now render an arbitrary list of book titles, defined by our books
variable. What about adding a new book? To do this, we need to enhance our

logic in the <script> tag and connect it to the <input> element:

<script>

 let books = ['Learning Svelte', 'The Zen of Cooking Tea'];

 let newBook = '';

 function addBook(evt) {

 if (evt.key === 'Enter') {

 books = [...books, newBook];

 newBook = '';

 }

 }

</script>

<label>

 <h4>Add Book</h4>

 <input type="text" bind:value={newBook} on:keydown={addBook}

/>

</label>

<h4>My Books</h4>

 {#each books as book}

 {book}

 {/each}

We added a new variable called newBook, which should mirror the input
value. To do that, we bind it to the <input> by writing bind:value=
{newBook}. This establishes a two-way binding, so every time the user enters
text into the <input>, newBook updates, and if newBook is updated in the
<script> tag, the display value of <input> changes. We could have done the
same with simple dynamic attributes, but this way saves us some code—a
thought pattern you’ll come across often in Svelte.

When the user presses enter, we want to add the new book title to the list.
To do this, we add a DOM event listener. To tell Svelte to hook into the
event, we just add a colon between on and the rest of the event name—so in
this case it’s on:keydown. After that, we use the curly braces and place the
name of the function inside. The function is called each time the event fires
off. More on this template syntax can be found in Part 2 of this tutorial
series.

The function to call in this case is addBook, in which we check the keyboard
event, and if the user indeed pressed enter, we update the books variable.
Notice the lack of a this context like we find in Angular or Vue 2, or the
lack of special value objects like in Vue 3, or the lack of setState in React.
Svelte doesn’t need extra syntax in this case to know that the variable has
updated. This might feel like magic, but also like “just plain simple
JavaScript” at the same time.

To understand how Svelte achieves this, we need to look under the hood.
What does Svelte actually do with a .svelte file, and when does it process
it? The answer: Svelte is actually a compiler! It does most of the work before
your code is even loaded in the browser. Svelte parses the code and
transforms it into regular JavaScript. During parsing, it’s able to see that
variables like newBook are used in the template, so assignments to it will
cause rerenders. The compilation output will therefore wrap these
assignments with calls to a $$invalidate function, which will schedule a
rerender of this exact component for the next browser paint. This is the
secret to Svelte’s great performance: it knows in advance which parts could
trigger rerenders and then only needs to do work in these exact places,
surgically updating the DOM. It’s also the reason why the bundle sizes of
Svelte applications are so small: everything that’s not needed just won’t be
part of the output, so Svelte can leave out every part of its tiny runtime that
isn’t needed. A Svelte Hello World! app has a bundle size of just 2.5KB!

The only thing to watch out for is that Svelte does only look for assignments.
That’s why we need to do books = [...books, newBook]; or
books.push(newBook); books = books;. Otherwise, Svelte wouldn’t know
that books has updated.

Finishing Touches
We did it! We can now view and add books to our list! It doesn’t look that
pretty, though, so let’s put some finishing touches to our UI. First, we’ll add
some CSS to style our elements:

<!-- script and html code... -->

<style>

 input {

 padding: 5px 10px;

 }

 li {

 list-style: none;

 }

 ul {

 padding: 5px 0;

 }

</style>

As you can see, we just add a <style> tag to our .svelte file and continue
to write regular CSS in it. If you’re fearing that the code above will style all
<input>, or tags in the entire application, be assured that it won’t.
Svelte scopes styles by default, so they only apply to the component they’re
defined in. If you want to define something globally, wrap the selector with
the :global function. If, for example, you’d like to style all <input>s in the
application, the code would be :global(input) { padding: 5px 10px; }.

The styling is better now. Let’s finish it off with a transition for better UX:
we want new list elements to fade in. To do that, we just need to reach for
one of Svelte’s built-in transitions and animations and apply them:

<script>

 import { fade } from 'svelte/transition';

 // ..

</script>

<!-- input ... -->

<h4>My Books</h4>

 {#each books as book}

 <li transition:fade>{book}

 {/each}

<!-- styling ... -->

And that’s it! Just by importing one of the built-in transitions and applying it
by adding transition:fade to the element, we get that smooth fade-in
transition. Our mini app is now finished. This doesn’t contain the topbar and
the background gradient yet, but it should be easy now for you to add this as
well. This is the end result:

<script>

 import { fade } from 'svelte/transition';

 let books = ['Learning Svelte', 'The Zen of Cooking Tea'];

 let newBook = '';

 function addBook(evt) {

 if (evt.key === 'Enter') {

 books = [...books, newBook];

 newBook = '';

 }

 }

</script>

<label>

 <h4>Add Book</h4>

 <input type="text" bind:value={newBook} on:keydown={addBook}

/>

</label>

<h4>My Books</h4>

 {#each books as book}

 <li transition:fade>{book}

 {/each}

<style>

 input {

 padding: 5px 10px;

 }

 li {

 list-style: none;

 }

 ul {

 padding: 5px 0;

 }

</style>

Architectural Considerations
We’ve seen how to write a little app in Svelte with just 32 lines of code.
We’ve only scratched the surface, of course. A full-blown app needs some
kind of state management, multiple components, and ways to integrate these
components with each other.

For example, it would make sense to split out the display of one to-do item
into a separate component, as we’ll add features like editing the name in-
place or marking it as done. Having this all in one component would become
hard to maintain over time. Luckily, using other components is as easy as
importing it as a default import from another Svelte file and interacting with
it in a similar way to what we’ve already seen with regular DOM elements.
We’ll look into component interaction in more detail in Part 5 of this series.

Another example would be the management of to-dos. Right now, they’re
handled inside the component and there’s no connection to a backend. If we
were to add API calls, we would mix UI logic with backend interaction,
which is generally better handled outside of components for better separation
of concerns. We can use Svelte stores for this, which we’ll look at in Part 4.

As you can see, Svelte has solutions to all of our requirements, and we’ll
look at them over the course of this series.

Ready, Set … Svelte?
So, is it safe to use Svelte for your next project? Your manager might ask if
Svelte will be around in the years to come or burn out like previous frontend
framework stars. There isn’t one big company backing Svelte’s entire
development as there is for Angular and React, but Vue has already shown
that this isn’t a problem. Moreover, as stated at the beginning, Rich Harris,
the creator of Svelte, is now working on it full-time. With Svelte’s
continuous rise in popularity, there’s no sign of it going anywhere in the
years to come.

Another aspect of choosing a framework is the ecosystem and its tooling.
The ecosystem is still small compared to React, but new libraries are coming
out every day, and there are already a handful of very good component
libraries. At the same time, since Svelte is so close to vanilla HTML and
JavaScript, it’s very easy to integrate any existing regular HTML/JavaScript
library into your codebase, with no need for wrapper libraries.

Regarding tooling, Svelte is looking pretty good. There’s an official VS
Code extension that’s actively maintained, as well as an underlying language
server that can be used by many other IDEs to integrate Intellisense. IntelliJ
also has a plugin for Svelte and recently hired the creator behind it to work
at JetBrains. There are also various tools for integrating Svelte with various
bundlers. And yes, you can also use TypeScript with Svelte.

If you’re looking to build a full-blown website or web app, you might also
be interested in checking out SvelteKit. It provides a stellar development
experience and comes with a flexible filesystem-based router. It also enables
you to deploy to many different platforms like Vercel, Netlify, your own
Node server, or just a good old static file server, depending on the features
and needs of your application.

Svelte Sumamry

In brief, here are the important points to remember about Svelte:

it has a full-time maintainer

https://kit.svelte.dev/

it has good tooling
its features are stable
its ecosystem is growing
SvelteKit is available for building apps fast

To summarize: Svelte is definitely ready to use for your next project! If you
want to give it a try and you want to learn more, this tutorial series has you
covered. In Chapter 2, we’ll take a close look at the template syntax. In
Chapter 3, we’ll look at reactive statements and how they help us react to
variable changes or derive computed variables. In Chapter 4, we’ll look at
stores, which will help us with logic outside and across Svelte files, and
which we can also use for state management. In Chapter 5, we’ll look at
various component interaction concepts. Finally, in Chapter 6, we’ll look
into testing Svelte apps.

We hope to have sparked your interest in Svelte!

Chapter 2: Template Syntax
In the first chapter, we got introduced to the history of Svelte and made our
first little steps at writing a simple component. In this and the following
chapters, we’ll have a closer look at specific aspects of writing Svelte code.
In the end, you’ll be able to create applications in Svelte that scale. We’ll
start with taking a deep dive into Svelte’s template syntax.

Similar to Angular or Vue, Svelte enhances the HTML syntax with several
features for expressing dynamic properties, loops, and more. We’ll take a
look at each of them and see how they help you write readable code. One of
the nice things about Svelte is that you can start with “just HTML” and
gradually enhance your markup with dynamic features. You do so by using
special syntax—called HTMLx in Svelte—that acts as an enhancement of
HTML. We’ll use this syntax to gradually enhance the following code,
which represents the initial draft of a to-do app:

<label>

 New To-Do

 <!-- To implement: make this update the list -->

 <input type="text" />

</label>

<!-- To implement: only show this if we don't have a to-do yet -

->

<p>What do you want to work on?</p>

 <!-- To implement: make this a dynamic list -->

 An item

The snippet above shows what we want to accomplish with our little app: to
be able to enter new to-do items and show them in a list. Other things like
marking them as done is out of scope for now, but you are of course free to
add them yourself after having finished reading this tutorial.

The final app will look something like the image below.

Control Flow Syntax
To start, we want to make the list dynamic and render an array of text entries
as our to-do list. To achieve that, we’ll need to add a <script> block to be
able to put our list of to-dos in a variable. We’ve seen in the first chapter that
we’re able to write regular JavaScript code into the contents of a <script>
tag, and its variables and functions are then available in the template. We
then reach for the #each block—one of currently four control flow blocks in
Svelte—to loop over the list of to-dos in the template:

<script>

 let todos = ['Learn Svelte', 'Create great things'];

</script>

<!-- ... -->

 <!-- syntax: {#each <arrayname> as <entry>} loop content

{/each} -->

 {#each todos as todo}

 {todo}

 {/each}

As you can see, Svelte chooses a different approach to its template syntax
compared to Vue or Angular. While the latter two add control flow syntax
such as loops in the form of special attributes, Svelte creates distinct syntax
for it. This makes the code more readable, as you can more easily spot it. It

also makes it unnecessary to create wrapper elements if you want to contain
more than one top-level item within the control flow block.

The text of one to-do item is outputted by surrounding the variable with
curly braces. In general, whenever you encounter a curly brace within the
template, you know you’re entering something Svelte-related.

Look for Braces!

Any time you’re looking through the markup and see braces, you
immediately know that you’re getting into Svelte’s territory.

Let’s use another control flow block to solve the second task of showing a
message if we have no to-dos yet. We’ll use an #if block for that:

<script>

 let todos = ['Learn Svelte', 'Create great things'];

</script>

<!-- ... -->

{#if todos.length === 0}

 <p>What do you want to work on?</p>

{:else}

 {#each todos as todo}

 {todo}

 {/each}

{/if}

The if block reads very much like a regular JavaScript if block. The block
starts with {#if ..}, and can have multiple {:else if ..} branches as well
as one final {:else} branch. Just as with regular if blocks, the latter two are
optional. The block is closed by writing {/if}. In general, the control flow
syntax is {#<name> ..} .. {:<possibly something>} .. {/<name>}. The
hash marks the start of a block, the colon marks optional other branches
where the text behind the colon depends on the control flow block, and the
slash marks the end of a block.

#if and #each are probably what you’ll reach out for the most, but there are
two more control flow blocks that also come in handy from time to time.

The first one is the #await block, which lets you use promises inside the
markup:

{#await somePromise}

 Loading..

{:then result}

 The result is {result}

{:catch error}

 Oh no! An error occurred: {error}

{/await}

As shown above, it’s possible to handle all states of a promise, from loading
the result to catching errors. Just like we’ve seen with #if, the syntax and
semantics closely match that of using promises in regular JavaScript: you
#await the promise, {:then ...} is very similar to the .then(..) function
of a promise object, and {:catch ...} is very similar to the corresponding
.catch(..) function of a promise object. The branches are all optional, and
you can also skip showing the loading branch by doing {#await
somePromise then result}..{/await}.

The last control flow block is #key, which was added more recently. It
destroys and recreates everything inside it if the value passed to it changes:

{#key someValue}

 I get destroyed and recreated every time someValue changes

{/key}

This is useful mainly in two scenarios. The first scenario is when you have
component where it’s easier to recreate its state and contents from scratch
rather than updating it—for example, when you wrap a third-party library
inside that doesn’t provide a good update mechanism. The second scenario is
when you want to replay a transition. A transition is a kind of animation
that’s only triggered when an element is created or destroyed.

Let’s get back to our example, which now looks like this:

<script>

 let todos = ['Learn Svelte', 'Create great things'];

</script>

<label>

 New To-Do

 <!-- To implement: make this update the list -->

 <input type="text" />

</label>

{#if todos.length === 0}

 <p>What do you want to work on?</p>

{:else}

 {#each todos as todo}

 {todo}

 {/each}

{/if}

We’re now able to differentiate between having an empty list and having to-
dos, and we can render each of them into a list. Awesome!

Adding New To-dos Using Events and
Bindings
What’s left is to be able to add new to-do items to the list. When we type
into the text box and press enter, we want to add that text as a new item to
the list. A first version looks like this:

<script>

 let todos = ['Learn Svelte', 'Create great things'];

 let newTodo = '';

 function handleKeyup(evt) {

 if (evt.key === 'Enter') {

 todos = [...todos, newTodo];

 newTodo = '';

 }

 newTodo = evt.target.value;

 }

</script>

<label>

 New To-Do

 <input type="text" value={newTodo} on:keyup={handleKeyup} />

</label>

<!-- ... -->

There are a few things going on here, let’s go through them one by one.

First, we set the value attribute of the input by assigning it to the value of
newTodo. Whenever newTodo is updated, the input text will also be updated.
If we had given the variable the same name as the attribute, we could have
written {value}, which is the shorthand of value={value}. These
shorthands can be used whenever the variable and attribute name are the
same.

Next, we listen to the keyup event of the input. There are numerous DOM
events, all starting with on—in this case onkeyup. To tell Svelte to hook into
the event, we just add a colon between on and the rest of the event name—so
in this case it’s on:keyup. After that, we use the curly braces and place the
name of the function inside. The function is called each time the event fires
off. You could also place an anonymous function in there, if you like.

Inside handleKeyup, we then listen to the keyup event and act accordingly.
We update newTodo whenever we enter a character, and when we press
enter, we add the text to the list of to-dos and then reset the input value.
Notice how we didn’t need any extra function like setState to tell Svelte to
rerender in reaction to a variable change. Svelte knows when to rerender by
looking for assignment operators, so it knows which variable is dirty. When
compiling a Svelte component, it will wrap these assignments with a
function call that tells the runtime to rerender on the next browser paint. Be
careful, though, as this means that only doing todos.push(newTodo) won’t
work: Svelte will only mark variables dirty that were updated through
assignments. Writing todos.push(newTodo); todos = todos; would
therefore be okay.

The code above works, but we can do a little better. Instead of manually
keeping newTodo in sync with the input value by listening to the keyup event,
we can also use a binding. The result looks like this:

<script>

 let todos = ['Learn Svelte', 'Create great things'];

 let newTodo = '';

 function handleKeyup(evt) {

 if (evt.key === 'Enter') {

 todos = [...todos, newTodo];

 newTodo = '';

 }

 }

</script>

<label>

 New To-Do

 <input type="text" bind:value={newTodo} on:keyup=

{handleKeyup} />

</label>

<!-- ... -->

Notice the bind: that we prepended to the value attribute. This establishes a
two-way-binding between the value of the input and the variable newTodo.
We can change it from the outside, but it’s also automatically updated
whenever the user types something into the input. Similar to the shorthand
for attribute inputs, there’s a shorthand if the name of the variable we bind
and the attribute we bind it to are the same. So in this case, if the variable
name was value, we could just write bind:value. Svelte allows a limited set
of these bindings on DOM elements, mostly around input elements. This
makes interacting with forms really easy. It’s also possible to bind to
properties of components (you’ll learn more about component interaction in
Part 5 of this series). If you were to write <Component bind:property />,
this would mean that Component would rerender every time you changed
property from the outside, and it would also propagate back changes to
property it made on the inside. But beware: too many two-way bindings
might get confusing to reason about, so use them with caution.

You may have noticed by now that code inside control blocks or curly braces
is regular JavaScript—and indeed, you can use all the JavaScript features
you like inside them. This relieves you from learning any extra template
syntax aside from what we’ve seen above.

It’s Just JavaScript!

Everything inside curly braces and control flow blocks in markup is just
JavaScript.

Wrapping Up
In this second Svelte tutorial, we learned the Svelte template syntax. We
learned how to output dynamic content by putting variables in {brackets}.
We got to know the four control flow blocks, of which #if and #each are
probably what you’ll reach for most of the time. We learned how to read and
write attributes and how to listen to events. Finally, we learned that we can
use two-way bindings in some situations to make our lives easier.

The final code—after adding all the syntax elements we learned about above
—looks like this:

<script>

 let todos = ['Learn Svelte', 'Create great things'];

 let newTodo = '';

 function handleKeyup(evt) {

 if (evt.key === 'Enter') {

 todos = [...todos, newTodo];

 newTodo = '';

 }

 }

</script>

<label>

 New To-Do

 <input type="text" bind:value={newTodo} on:keyup=

{handleKeyup} />

</label>

{#if todos.length === 0}

 <p>What do you want to work on?</p>

{:else}

 {#each todos as todo}

 {todo}

 {/each}

{/if}

Notice how close we are to vanilla JavaScript and simple HTML. Svelte
doesn’t distort but enhances existing code. The following colorization
visualizes this. Everything that’s blue is regular JavaScript, everything that’s
green is regular HTML, and everything that’s orange is Svelte syntax.

With these tools at your disposal, you’re now ready to enrich your HTML
with dynamic content and behavior! In the next chapter, we’ll look into
reactive statements and how they can help us derive computed variables or
react to variable changes, and how Svelte again uses its unique advantage—

being a compiler—to make the developer experience of writing these as
good as possible.

Chapter 3: Reactive Statements
So far, we've learned that Svelte is able to compile regular variable
assignments inside components into something that will automatically
update the view. Whenever you assign something to a variable, Svelte will
notice that and schedule a rerender for the next browser paint. We then had a
closer look at the component syntax to see how to add dynamic behavior to
our HTML code. In this chapter, we’ll focus on the contents of the <script>
tag and take a look at how we can run other code in reaction to a variable
change.

Have you ever needed to react to a variable change? Probably every day, in
some form or the other. Svelte already reacts nicely to changes of variables
by rerendering the view. But what if we need to explicitly react to a variable
change inside our <script> tag? Doubling a count, fetching a new object
from the backend when an ID changes—there are many use cases. This is
where reactive statements come in. They look something like this:

<script>

 // reactive declaration

 $: foo = bar;

 // reactive statement

 $: {

 something = somethingElse;

 }

</script>

Syntactically, the reactive statement is expressed by using the dollar sign
followed by a colon—$:. This is actually valid JavaScript syntax. Originally,
it expresses a labelled statement—labelname : statement—to which you
can tell JavaScript to jump when using continue or break. But since no one
uses that, Svelte has filled the void to syntactically express its reactive
statement. This means you can’t use labelled statements of the name $ inside
Svelte files, but as you’re most likely not using labelled statements of any
kind anyway, this won’t make a difference.

With the syntax out of the way, let’s look at the semantic meaning of reactive
statements, which come in two forms: reactive declarations and reactive
statements.

Reactive Declarations
A reactive declaration defines a variable whose value is dependent on other
variables. A simple reactive declaration may look like this:

<script>

 let count = 0;

 $: doubled = count * 2;

</script>

<p>Count: {count}</p>

<p>Doubled: {doubled}</p>

<button on:click={() => count += 1}>Increase count</button>

This reactive declaration declares the variable doubled, which is expressed
as being the double of the variable count. Whenever count changes, Svelte
knows to also compute the new value of doubled. Think of reactive
declarations like a formula of an Excel cell: you declaratively define what
the result is, and Svelte takes care of the rest—but note the caveats that we’ll
get to later. Reactive declarations can also depend on other reactive
declarations, so you could write $: quadrupled = doubled * 2.

Reactive Statements
A reactive statement doesn’t define a computed variable. Instead, defines a
block that should be rerun whenever its dependencies change. Every variable
that appears inside the block of a reactive statement and is read (not written
to)—in order to compute the outcome—is a dependency. A reactive
statement looks like this:

<script>

 let count = 0;

 let prevCount = 0;

 let countWentUp = false;

 // Simple statement

 $: console.log('Count is' + count);

 // Block statement

 $: {

 countWentUp = prevCount < count;

 prevCount = count;

 }

</script>

<p>Count: {count}</p>

<p>Count went {countWentUp ? 'up' : 'down'}</p>

<button on:click={() => count += 1}>Increase count</button>

<button on:click={() => count -= 1}>Decrease count</button>

As you can see, a reactive statement is essentially an arbitrary bit of code
that should be rerun at certain times. In the above example, the console.log
statement is rerun every time the count changes. Inside the block statement,
we update two variables in reaction to a count change. First, we compare the
previous count with the current count to determine whether the count went
up or down, and then we store the current count as the new previous count
for the next run. You can use reactive statements to express side effects or
run computations that don’t fit into a simple declaration statement, or which
touch more than one variable. Essentially, reactive statements are a superset
of reactive declarations: you could rewrite every reactive declaration as a
reactive statement. The following code is identical from a semantic point of
view:

<script>

 let something = 'something';

 // This ...

 $: declaration = something;

 // Is the same as this

 let statement;

 $: {

 statement = something;

 }

</script>

Order of Execution
You might ask now in which order these reactive statements are run.
Intuitively, it makes sense that it’s somehow ordered in relation to the things
they use, but how exactly? The answer is simple: at compile time, Svelte
looks at the direct code of the reactive statements and checks each variable

that’s read. These are the dependencies we already touched on briefly in the
previous section. From these dependencies, Svelte determines the order of
the statements. That means you could write $: quadrupled = doubled * 2
before writing $: doubled = count * 2 and Svelte would execute the
doubled declaration first.

Mathematically speaking, this is called topological ordering with respect to
the variables. If Svelte isn’t able to determine an ordering that way—for
example, because the statements have no dependencies between them—
they’re executed in the order you’ve written them down. In the following
code example, doubled and quadrupled can be reordered correctly, because
Svelte sees the dependency between them. The console.log statement at the
end stays untouched and runs last, because it has no dependency to doubled
or quadrupled or something that needs to run before they run:

<script>

 let count = 0;

 $: quadrupled = doubled * 2; // runs 2nd

 $: doubled = count * 2; // runs 1st

 $: console.log(quadrupled); // runs 3rd

 $: console.log(count); // runs last

</script>

There may be situations where we want to hide a variable from the
dependencies. In the following somewhat arbitrary (but simple) example, we
want multiplied to only update when we increase count, but not when we
change multiplyBy. We do this by hiding the variable multiplyBy from the
direct dependencies, by moving it into a function:

<script>

 let count = 0;

 let multiplyBy = 2;

 $: multiplied = multiply(count);

 function multiply(value) {

 return value * multiplyBy;

 }

</script>

Now multiplied will only change if count changes, but not when
multiplyBy changes. This works because Svelte only looks at the direct

code of the reactive statement; it doesn’t follow function calls.

The inverse might be true, too: we may want to retrigger a reactive statement
even if a variable changes that doesn’t directly contribute to the result. In
this case, we can just add the variable in question by making it appear within
the reactive statement:

<script>

 // ...

 $: variableWhichShouldTriggerRecalculation,

retriggerCalculation();

 // ...

</script>

The above shows one possible way to do this by using the comma operator.
Another way would be to make it part of the function parameters but never
use it in the function itself. How exactly you make the variable appear is up
to you. Anything that’s valid JavaScript is allowed.

Since reactive statements are regular JavaScript, you can also use if-blocks
to have more control over when a statement is rerun by only executing its
body when a certain condition is met:

<script>

 // ...

 $: if (someVariable < 100) {

 // ...

 }

 // ...

</script>

The above code executes whenever someVariable or anything inside the
reactive statement is updated, but will only go into the body of the statement
when the if condition is met. You can use this as an alternative to hiding
variables from the statement, and also use it to rerun the statement when a
variable not used in the body changes by placing it as a dummy condition in
the if statement.

Most of the time, you don’t need to care about the dependencies. This is a
relief in comparison to React, where you need to be very explicit about the
dependencies in the context of hooks. In Svelte, most of the time it “just

works” like you expect it to, and if you need to fine-tune execution behavior,
you can easily adapt your code by using one of the techniques shown above.

Let’s summarize these findings by looking at one more example. The
screenshot below shows in which order the reactive statements are run. The
arrows show the dependency on other reactive statements. multiplied runs
first because it depends on count. doubleMultiplied runs second because it
depends on multiplied. refreshDetails() runs third because it depends on
doubleMultiplied. console.log(count) runs last because it’s written after
all other reactive statements and none of the other statements needs it to run
first. None of the statements rerun when multiplyBy changes because none
of them has a direct dependency on it.

Reactive Statements Are Run Once

One thing that didn’t become clear from the previous sections but which
might become important is the execution timing of reactive statements. If a
regular variable is reassigned, Svelte will schedule an update for the next
browser paint. Between this scheduling and the paint is the time where
reactive statements are executed—but they’re only executed once. This
means that, if a reactive statement writes to a variable which a previously
run reactive statement is reading, that reactive statement will not be rerun.
This prevents endless loops, performance issues, and also makes certain
reactive statements possible to write. Let’s have a look at the reactive
statement from above again:

<script>

 let count = 0;

 let prevCount = 0;

 let countWentUp = false;

 $: {

 countWentUp = prevCount < count;

 prevCount = count;

 }

</script>

This reactive statement reads prevCount, but it also writes to prevCount. If
the statement were to run more than once, this would mean it would get
invalidated immediately again, resulting in an infinite loop, and would also
always assign false to countWentUp in the end, which defeats its purpose.
Just like with the dependencies, most of the time this is nothing to care
about, because reactive statements feel very natural to write. But it’s good to
keep in mind once you get into more complex use cases.

Wrapping Up
This tutorial introduced reactive statements. We can use them to react to
assignments of other variables to execute side effects or create computed
variables. Reactive statements are ordered in Svelte by looking at direct
dependencies, and then scheduled to run after a variable assignment. If an
order can’t be determined, they’re run in the order they’re declared. We can
use this to our advantage to hide variables from the dependencies by moving
them into functions or by adding additional variables to the statement to
retrigger the execution of that statement. Reactive statements won’t be rerun
if a reactive statement executed later during the same run updates a variable
they depend on. With that in mind, you’re now prepared to react to all the
things!

This marks the end of us solely focusing on the insides of one component. In
the first chapter, we learned that Svelte is a compiler offering some unique
advantages, which we also saw in this chapter, too. In the second chapter, we
had a closer look at the component syntax to see how to add dynamic
behavior to our HTML code. The next chapters will look at what we can do
to integrate components with each other. We’ll start by looking at Svelte
stores, which provide us with a simple yet powerful API for handling cross-
component state in our application.

Chapter 4: Stores
Svelte’s reactivity inside Svelte components is intuitive and easy. Because
Svelte is a compiler, it can transform regular variable assignments into
something the UI will rerender when it changes (as we saw in Chapter 2).
Reactive assignments make derived or computed variables very easy (as we
saw in Chapter3).

Outside of Svelte components, we have a different mental model, there’s no
inherently connected UI layer to our code, and the Svelte compiler won’t
touch code outside of Svelte files. But what if we also want the goodies of
reactivity outside of Svelte components? What if we have global state that
lives inside a JavaScript file that many components should react to when it
changes? This is where Svelte stores come in. In this chapter, we’ll have a
close look at the store API, how to use it to build neatly encapsulated
modules, and how to easily use them inside Svelte components.

As a practical example throughout this tutorial, let’s pick something that’s
probably globally available in almost all applications: user state. In this
example, this state will consist of whether or not the user is logged in, and, if
they are logged in, their username. There’s an area of the page that’s only
visible to authenticated users, and if they’re logged in, their username is
visible in the top bar at all times.

The app surely won’t win us any design awards, but it helps us showcase the
problem we have with global state in this application. The root of the
application looks like this:

<script>

 import Topbar from './Topbar.svelte';

 import AuthOnly from './AuthOnly.svelte';

</script>

<Topbar />

<div>

 <p>

 This part of the page is always visible

 </p>

</div>

<div>

 <p>

 This part is only visible to logged in users

 </p>

 <AuthOnly />

</div>

<style>

 div {

 border: 1px solid blue;

 padding: 5px 10px

 }

</style>

That component uses other components. To do so, we import them as a
default import in the <script> tag. We can then use them by the same name
as the default import in the template. (We’ll look into component interaction
more deeply in Part 5 of this series.)

Topbar.svelte looks like this:

<div>

 How to get the username in here?

</div>

<style>

 div {

 background: lightgrey;

 padding: 5px 10px;

 text-align: right;

 }

</style>

And AuthOnly.svelte looks like this:

<script>

 let authenticated = false;

</script>

{#if authenticated}

 <p>

 Super secret stuff!

 </p>

{:else}

 <button on:click={() => authenticated = true}>Log

In</button>

{/if}

The components Topbar and AuthOnly both need access to the user state;
passing it via properties is not an option. In this simple example, we only
need to pass the user state down one component, but in reality this will
almost never be the case. So we need some other place to share the state.
Additionally, AuthOnly needs to update the state to log in the user. Where do
we put the state now? It’s probably best to put it inside a JavaScript file that
exports the state so everyone can access it. Let’s try that!

A First Attempt
We create a user.js with the following content:

export let user = { loggedIn: false };

export function login() {

 user = { loggedIn: true, name: "Dr. Svelte" };

}

We also import the user state in Topbar.svelte:

<script>

 import { user } from './user';

</script>

<div>

 {user.name || 'Not logged in'}

</div>

<!-- style... -->

We do the same in AuthOnly.svelte, where we also call the login function:

<script>

 import { user, login } from './user';

 let authenticated = user.loggedIn;

</script>

{#if authenticated}

 <p>

 Super secret stuff!

 </p>

{:else}

 <button on:click={() => login()}>Log In</button>

{/if}

This will correctly show a logged-out state in the beginning, but we
somehow can’t get the login to propagate back to the components. Why?
After all, doesn’t this work the same inside Svelte files? The reason is that
the Svelte compiler only looks at Svelte files to do its transformation.
JavaScript files are left as they are. Furthermore, the semantics inside a
JavaScript file are different; there’s no direct connection to a view layer.
Therefore, we somehow need to explicitly express the state as an object that
can change over time, which Svelte components can react to. This is where
Svelte stores come in.

Introducing Writable Stores
Svelte provides a very simple API for initializing and updating a store. A
store is something that stores (hence the name) a value (also called state) to
which others can subscribe, and get notified about updates to the value of
that store.

At the heart of Svelte’s store API is the writable function, which provides
this functionality. The writable function is called with the initial state and
returns and object with set, update and subscribe methods. set is called
with the new desired state. update is called with a function that gets the
current state and is expected to return the next state. subscribe is called
with a callback function that’s invoked every time the state changes, and
returns a function that can be called to unsubscribe:

import { writable } from "svelte/store";

const store = writable("initial value");

const unsubscribe = store.subscribe((value) =>

 console.log("the current value is " + value)

);

store.set("new value");

store.update((value) => value + " 2");

unsubscribe();

store.set("another value");

In the code snippet above, the value is "initial value" first, then "new
value", then "new value 2. All these strings are logged, because the
subscribe callback function is called each time and logs them out. The
subscribe function returns an unsubscribe function. After it’s called,
updates to the store—in this case, "another value"—are no longer logged.
If you know RxJS, this API may look familiar to you, and indeed, the API
closely follows the principle of observables.

Let’s apply the writable to our use case:

import { writable } from "svelte/store";

export let user = writable({ loggedIn: false });

export function login() {

 user.set({ loggedIn: true, name: "Dr. Svelte" });

}

We change the code in our JavaScript file and wrap the state with the
writable. This means we need to adjust our Svelte components to subscribe
to the state. Here’s a first attempt in Topbar.svelte:

<script>

 import { user } from './user';

 import { onDestroy } from 'svelte';

 let _user;

 const unsubscribe = user.subscribe(u => _user = u);

 onDestroy(unsubscribe);

</script>

<div>

 {_user.name || 'Not logged in'}

</div>

<!-- style... -->

This works! If we press login inside AuthOnly.svelte, we’ll see the name
“Dr. Svelte” appear in the top bar. The solution is a little boilerplate-y,
though: we have to subscribe to the store, assign it to a local variable, and
remember to unsubscribe when the component is destroyed. Can we do
better? This is where Svelte’s big advantage comes in again: the fact that it’s
a compiler. Since the compiler will transform Svelte files to JavaScript files
anyway, it also can do transformations to get rid of the subscription
boilerplate. All we have to do is to put a dollar sign in front of the store and
Svelte will take care of the rest:

<script>

 import { user } from './user';

</script>

<div>

 {$user.name || 'Not logged in'}

</div>

<!-- style... -->

Just like with reactive statements (which we covered in Part 3), the dollar
sign is used for some reactive Svelte magic. Declaring (not using) variable
names with a dollar sign in front is prohibited in Svelte files. Instead, they’re
a sign to the compiler to generate all the subscription boilerplate for us that
we previously wrote by hand. This even works for updating the store. If we
were to write $user.name = "Dr. Dollarsign or $user = { loggedIn:
false } inside a Svelte component, this would be transformed to a store
update by the Svelte compiler. Neat! But note that it’s not possible to use the
$ syntax to subscribe to stores that aren’t created at the top level (imports are
top level, so that works). We also can’t subscribe to a store that’s nested
inside an object: we first need to extract it into a top-level variable. These
limitations are worth keeping in mind, but you’ll probably only rarely
encounter them.

Subscribing to a store through the dollar sign syntax doesn’t only work for
Svelte stores. Every object that satisfies the store contract (in other words,
providing a subscribe method) can be used that way. If you prefer to use
RxJS, for example, you could use the exact same $user syntax to subscribe
to the observable. We can use this to our advantage to create our own
encapsulated user API. Right now, everyone is able to update the user state
directly, because we expose the whole writable. To ensure everyone using
the user state has to go through the API to update the state, we can create our
own store like this:

import { writable } from "svelte/store";

let _user = writable({ loggedIn: false });

function login() {

 _user.set({ loggedIn: true, name: "Dr. Svelte" });

}

export const user = {

 subscribe: _user.subscribe,

 login,

};

We then need to adjust our AuthOnly.svelte component like this:

<script>

 import { user } from './user';

 $: authenticated = $user.loggedIn;

</script>

{#if authenticated}

 <p>

 Super secret stuff!

 </p>

{:else}

 <button on:click={() => user.login()}>Log In</button>

{/if}

We can keep using the $user syntax, and update the state through a method
on that object. Doing something like $user.loggedIn = true or
user.set({ loggedIn: true }) is no longer possible, because the set
method of the writable is no longer exposed. Also note how we can use

$user inside the script tag and within reactive statements. It’s just a
variable that we can use anywhere in the component.

The following screenshot visualizes the state flow of our example app.

Readable Stores
Sometimes we may want to create a store that’s not updatable from the
outside at all. One use case is to make sure that no one (not even within the
same file) updates the store from the outside, because it should be self
contained—for example, a clock that updates every second and that can’t be
reset or adjusted from the outside. In this case, we can reach for readable:

import { readable } from "svelte/store";

const time = readable(null, (set) => {

 set(new Date());

 const interval = setInterval(() => {

 set(new Date());

 }, 1000);

 return () => clearInterval(interval);

});

The code above creates a store that doesn’t have a set or update method,
but only a subscribe method. We can’t set the state from the outside. The
initial state of the readable is set through the first parameter; the second
parameter is a function that’s called every time the subscriber count goes
from zero to one. It’s handed a set function that we can use to update the
state from the inside—in this case, the current time each second. We can
return a function that’s called when the subscriber count goes from one to
zero. In this case, we clean up our interval.

Derived Stores
Once we start using stores, we may also want to combine some of them or
just derive a different value from a store. In this case, we can reach for
derived. Let’s suppose our username is split into surname and lastname, but
we want to show the combined name in various places of the app. In order
not to repeat ourselves, we use a derived store to put them together:

import { derived } from "svelte/store";

import { user } from "./user";

export const username = derived(

 user,

 (_user) => _user.surname + " " + _user.lastname

);

In its simplest form, derived accepts a store or an array of stores as the first
argument and a function that gets the current value of this or these stores as
the second argument. For more complex use cases, the function also
provides a second parameter—set—which we can use to update the
derived state when appropriate. In this case, the return value can be a
function that’s called when the subscriber count goes from one to zero. We
can also pass a third argument to derived in this case, which marks the
initial value.

Here’s an example:

import { derived } from "svelte/store";

// ...

export const itemDetails = derived(

 itemId,

 (_itemId, set) => {

 getItemDetails(_itemId).then((details) => set(details));

 },

 "Loading..."

);

The code above creates a derived store that retrieves details about an item
from its ID every time that ID changes, and shows "Loading..." initially.

Wrapping Up
That’s it! In this fourth tutorial of the series, we took a deep dive into Svelte
stores. We learned that we can use writable to make our state available for
use across Svelte components, which then can react to updates by just
appending a dollar sign to the variable name.

We saw that it doesn’t have to be a Svelte store. Instead, every object that
implements the subscribe contract can be used like that in a Svelte
component. This allows us to use other libraries like RxJS or create custom
objects. Svelte stores help us manage state, providing the primitives for a
robust state management solution.

We also took a look at readable stores, which help us to create state that’s
not changeable from the outside, and derived stores, which provide options
for creating a derived state from incoming stores. The core of the Svelte
store API is dead simple to understand, but scales for more complex use
cases.

You’re now ready to create stores to handle state that’s shared across
different components! In the next chapter, we’ll look at more component
interactions apart from using stores to create robust applications.

Chapter 5: Component
Interaction Concepts
Components are at the core of frontend frameworks like Svelte. They are the
primary unit for organizing and implementing your view layer. Components
encapsulate a specific UI and/or behavior—such as the look of a button, a
list containing arbitrary elements, or a specific section of a page.

In the first half of this book, we focused on the ins and outs of one
component. We looked at template syntax in Chapter 2, and at reactive
statements in Chapter 3. In Chapter 4, we looked at Svelte stores, which
provide a handy API for implementing state management and which do
cross-component updates. There are, of course, more ways to integrate
components with each other—and we’ll look into them in this tutorial. After
reading through this chapter, you’ll be able to use the right component API
for the right job.

Using Other Components
The key part to organizing your code is to put each part in the most
appropriate location. This means writing and reusing components. We can
use another component by importing it as a default import and then use it
like a regular element tag inside the template:

<script>

 import SomeOtherComponent from

"../somewhere/else/SomeOtherComponent.svelte";

</script>

<SomeOtherComponent></SomeOtherComponent>

<!-- if the component has no children, you can also selfclose

it: -->

<SomeOtherComponent />

Naming Imports

Since you import the component through its default export, you can name
the import any way you want. It doesn’t have to the same as the file name,
but it’s best practice to do so.

Passing Stuff to Components through
Properties
Many components receive some kind of input that they need in order to
function. Consider a list that should show text entries below each other and
which you want to use in various places. The list then would be a component
property, or in other words an input. In Svelte, these properties are defined
through export let <propertyName>, as seen here:

<script>

 export let items;

</script>

 {#each items as item}

 {item}

 {/each}

At first, this may take some getting used to, since export is normally used to
make something importable somewhere else, but it will soon feel like second
nature.

Properties without an initializer are treated as mandatory. Optional properties
have an initializer. Let’s say we want to optionally add support for reloading
the list through the click of a button, but only if the component user
explicitly turns it on. With an optional property, it would look like this:

<script>

 export let items;

 export let showReload = false;

</script>

{#if showReload}

 <button>Reload list</button>

{/if}

 {#each items as item}

 {item}

 {/each}

The usage would look like this:

<script>

 import List from "./List.svelte";

</script>

<List items={['Learn Svelte', 'Create great things']}

showReload={true} />

Reacting to Component Events
We now have a list with an optional reload button. The logic for reloading
the list should be part of the consuming component. We therefore need to
somehow react to a click event of the button.

The first option would be to use callback props like you’d use in React—
passing a function as input:

<script>

 export let items;

 export let showReload = false;

 export let reload = undefined;

</script>

{#if showReload}

 <button on:click={reload}>Reload list</button>

{/if}

 {#each items as item}

 {item}

 {/each}

The second option is to create an event dispatcher and dispatch a custom
event from it. For this, we import createEventDispatcher from svelte and
call the resulting function where appropriate:

<script>

 import { createEventDispatcher } from "svelte";

 export let items;

 export let showReload = false;

 const dispatch = createEventDispatcher();

</script>

{#if showReload}

 <button on:click={() => dispatch("reload")}>Reload

list</button>

{/if}

 {#each items as item}

 {item}

 {/each}

The first argument to the dispatch function is the event name. The second
(optional) argument is the payload. Listening to this event is similar to
listening to DOM events; we add on: in front of the event name:

<script>

 import List from "./List.svelte";

 let list = ['Learn Svelte', 'Create great things'];

 function reloadList() {

 // ...

 }

</script>

<List items={list} showReload={true} on:reload={reloadList} />

The last option—in this case—is to just bubble the click event of the
button. An event is bubbled if you write on:<eventName> without handling
the event:

<script>

 export let items;

 export let showReload = false;

 export let reload = undefined;

</script>

{#if showReload}

 <button on:click>Reload list</button>

{/if}

 {#each items as item}

 {item}

 {/each}

You then would listen to on:click on the List component in the parent.
While this works, in this case it’s better to use one of the first two options, as
an event name like reload better communicates what was clicked and what
should happen in response to it. Whether you use callback props or custom
events comes down to personal preference.

Composing the UI with Slots
The list is now displayed and we can reload it, but the look of a list entry is
fixed; we can’t change it from the outside. To change that, we use slots. A
slot is like a placeholder where its content is determined by the parent. Let’s
first define our slot in our list component:

<script>

 // ...

</script>

{#if showReload}

 <button on:click>Reload list</button>

{/if}

 {#each items as item}

 <slot {item}>

 {item}

 </slot>

 {/each}

The <slot> tag marks the section as the destination for the parent’s content.
The {item} property means that the parent is able to use the item when
providing the UI. Otherwise, we would have no way to output the item’s text
in the parent. The content inside the <slot> is its fallback content, in case
the parent component doesn’t provide its own UI. The fallback content is
optional; you don’t need to provide it.

Let’s use the component slot in the parent component:

<script>

 import List from "./List.svelte";

 // ...

</script>

<List items={list} showReload={true} on:reload={reloadList}

let:item>

 {item}

</List>

We chose to simply put the item’s text into a tag, making it bold. The UI
for the slot is inside the component’s tag. We can use the item property
passed into the slot by writing let:item. If we wanted to rename the
property, we would write let:item={anotherVariableName}.

The slot above is the default slot. We can also use named slots to provide
more than one of them, which can appear in different areas. Giving the slot a
name is as easy as writing <slot name="desiredName" />, and using it is
just as easy by adding a slot="desiredName attribute to the parent’s
element, which should go into a specific slot. If there was an “empty list
placeholder” slot, it could look like this:

<!-- ... -->

<List items={list} showReload={true} on:reload={reloadList}

let:item>

 {item}

 <!-- you can use let:xx on the named slot as well if the

component passes slot properties -->

 <p slot="empty">List is empty</p>

</List>

The following screenshot visualizes the slot feature.

Using the Module Script to Manage Instances
of the Same Component
The reload feature of the list is a big success—so big, indeed, that the boss
now asks for a “Reload all” button somewhere at the top of the page. For
situations like this—where we need to manage and/or coordinate multiple
component instances of the same type, or just run code outside of the
component lifecycle but colocate it with the component—we can use the
module script tag. This is another script tag with an additional
context="module" attribute on it. The code inside this script tag runs only
once and right away. Think of it as a separate JavaScript file, but colocated
with the Svelte component. Let’s use this to implement the “Reload all”
behavior:

<script context="module">

 let reloads = new Set();

 export function reloadAll() {

 reloads.forEach((reload) => reload());

 }

</script>

<script>

 import { createEventDispatcher, onMount } from "svelte";

 export let items;

 export let showReload = false;

 const dispatch = createEventDispatcher();

 onMount(() => {

 const reload = () => dispatch("reload");

 reloads.add(reload);

 return () => reloads.delete(reload);

 });

</script>

<!-- ... -->

We create a Set that contains all “reload” dispatch functions. Every time a
list instance is created, we encapsulate our dispatch function and add it to
the Set. When the component instance is destroyed, we remove it. What’s
left to do now is to use the exported reloadAll function where the “Reload
all” button is implemented:

<script>

 import { reloadAll } from "../somewhere/List.svelte";

</script>

<button on:click={reloadAll}>Reload all</button>

The default import of a Svelte component is the component constructor
itself. Named imports are those that are exported from the module script.
That way, we can easily import reloadAll and call it when appropriate.

You’ll need module scripts only occasionally, but when you do, they’ll come
in very handy to allow imperative interaction with your component(s) or for
managing and coordinating multiple instances of the same type. Another
example—from Svelte’s own tutorial—deals with having an audio player
component rendered multiple times, but only allowing one of them to play at
the same time. This is also easily done with module scripts.

Using Context to Provide State to Component
Trees
One day after the “Reload all” feature goes live, the boss comes to realize
that it’s probably not a good idea to actually reload all lists, but rather just
specific ones. The calculation whether or not a certain area of the page with
lists in it should support reloading is done near the root of these page areas,
but the lists themselves are deep children of these components. What now?
Should we add a new property to the list component to specify if it should be
part of the reload party? This would mean we need to pass down that
property through many unrelated components that only need to know about
that property in order to pass it down to the next component. This is called
property drilling. For situations like this, providing context to child
component comes in handy. This is what it looks like:

<!-- somewhere in a parent component -->

<script>

 import { setContext } from 'svelte';

 setContext('partOfReloadAll',

someFancyComputationThatReturnsABoolean());

 // ...

</script>

<!-- in List.svelte -->

<script>

 import { getContext, onMount } from 'svelte';

 // ...

 const isPartOfReloadAll = getContext('partOfReloadAll');

 onMount(() => {

 if (!isPartOfReloadAll) {

 return;

 }

 const reload = () => dispatch("reload");

 reloads.add(reload);

 return () => reloads.delete(reload);

 });

These two functions—setContext and getContext—allow us to provide
specific things to all children of the component where that thing is provided.
This is similar to useContext in React, provide/inject in Vue, or a service
provided on a component in Angular. Note that you need to call these
functions during component initialization. You can’t call them later on in the
life cycle or asynchronously.

In the example above, we passed a string as the key, but you could also use a
Symbol or something else that’s guaranteed to be unique. The value can be
anything you want. In this case, it’s a simple Boolean, but it could also be a
function or a store. The combination of context and stores is a nice way of
providing a value that can change over time and to which the children should
be able to react. Here’s an example:

<!-- somewhere in a parent component -->

<script>

 import { setContext } from 'svelte';

 import { writable } from 'svelte/store';

 const count = writable(1);

 setContext('count', count);

 // ...

 function updateCount() {

 count.update(c => c + 1);

 }

</script>

<!-- somewhere in a child component -->

<script>

 import { getContext } from 'svelte';

 const count = getContext('count');

</script>

<p>The count is {$count}</p>

If you have state that’s available globally, you can of course skip using
context and instead just import that state from a central location. This is what
we did in the previous part of the application using stores.

Wrapping Up
This was a long one! We’ve seen quite a few component interaction concepts
in this tutorial. To summarize:

Use component properties and events to implement basic component
interaction.
Use slots when you need to provide a custom UI from the parent at a
certain place in the child.
Use the <script context="module"> tag when you need to manage or
coordinate multiple instances of the same component or export
imperative logic related to them.
Use setContext and getContext when you need to provide certain
values for a certain sub part of the app and you want to avoid property
drilling.

With all these tools at your disposal, you’re now ready to structure and
organize your components in the best way possible.

You’re now ready to write full-blown applications in Svelte. In the last
chapter, we’ll look into testing these applications. We’ll look into the
different levels at which we can test, as well as what it means to make your
apps testable.

Chapter 6: Testing Applications
We’ve come quite a long way. We started by looking at Svelte’s history, as
well as the first steps of writing an application with it. The tools for building
such an application were then introduced in more detail. We took a deep dive
into the template syntax of Svelte, which is an extension of HTML. We saw
how to use reactive statements to react to variable changes—for example, in
order to create computed variables. We then looked at Svelte stores, which
can be used to share state across multiple components, and we learned about
various ways to integrate components with each other.

All this empowers us to create Svelte applications that scale. But how do we
test those applications? This is what we’ll look at in this final chapter.

The Testing Pyramid
Before we jump into the technical details, let’s first take a step back and
think about the ways we can test an application. As it turns out, there’s not
one true way to do this. Rather, there are different layers of testing. There’s
actually a name for this, which you may have come across already: “the
testing pyramid”.

The testing pyramid helps us classify our various ways of testing.

At the bottom, there are unit tests, which look only at a tiny part of our
application at a time—such as testing a specific function in isolation.

Above these are integration tests, which test a small to medium part of our
application in combination. While unit tests are great for testing things like
whether or not a function returns the right thing, they don’t tell you whether
that function is actually used in the right way. All your unit tests could pass,
but the interaction of the parts with each other you tested might be wrong.
Integration tests help surface these bugs.

The top-most layer in the pyramid are end-to-end tests (abbreviated with
E2E), which take the integration tests one step further by not only running
parts of the application, but also running the whole application and testing
through the eyes of the end user. The challenge is to get the whole
application running under test conditions. The advantage is that you need to
mock less: only the backend, or if you want, even that can run as part of an
E2E test.

It’s named the “testing pyramid” and not just “testing levels” because the
idea is that there should be more tests at the lower level than the higher level.
Some people say you should strive for 60% unit tests, 30% integration tests
and 10% E2E tests. There’s no single right way to do this, however, and for
testing the frontend especially there are people who even challenge the
pyramid completely, saying that E2E tests are the easiest and most robust
way—especially with respect to implementation changes—to test web apps,
so you should focus on these the most.

In the end, how to organize your tests is up to you, and we’ll focus on giving
an example for each layer in the rest of this tutorial.

Test Setup
We’ll be using Jest for unit and integration tests. Jest is currently the most
popular testing library for frontend code. If you’re using SvelteKit, you can
set up and install all the required dependencies for testing with Jest via
svelte-add-jest, by running the following in the root of your SvelteKit
project:

npx apply rossyman/svelte-add-jest

npm install @testing-library/svelte -D

The first command does all the installation of the minimum required
dependencies for you, as well as creating the required config. We only need
to install one more package to use after that.

If you aren’t using SvelteKit, there are some more manual steps to take.
First, install all the required dependencies. If you’re using JavaScript, these
are as follows:

npm install jest svelte-jester @babel/core @babel/preset-env

babel-jest @testing-library/svelte -D

jest is the core testing framework and svelte-jester is the corresponding
plugin in order to support Svelte. Babel is needed in order to transform
newer ES module code. The testing-library package will help us write
more robust tests, as we’ll see later on. Then create a jest.config.js with
the following contents in order to tell Jest to handle Svelte files correctly:

https://jestjs.io/
https://github.com/rossyman/svelte-add-jest

module.exports = {

 testEnvironment: "jsdom",

 transform: {

 "^.+\\.svelte$": "svelte-jester",

 },

 moduleFileExtensions: ["js", "svelte"],

};

Then create a .babelrc and add the following code, which is needed for
transpiling more recent JavaScript syntax into something that Jest
understands:

{

 "presets": [["@babel/preset-env", { "targets": { "node":

"current" } }]]

}

These are the steps for creating the test setup when using JavaScript. If
you’re using TypeScript, the setup looks a little different. First, you need to
install the following packages:

npm install typescript svelte-preprocess jest ts-jest svelte-

jester @testing-library/svelte -D`

You probably already have installed typescript and svelte-preprocess, as
these are needed for developing Svelte applications in TypeScript. The Babel
dependencies are replaced with ts-jest, which takes care of transpiling the
code correctly. After that, add the following config files to the root of your
project:

In svelte.config.js, add this:

const sveltePreprocess = require("svelte-preprocess");

module.exports = {

 preprocess: sveltePreprocess(),

};

In jest.config.js, add this:

module.exports = {

 testEnvironment: "jsdom",

 transform: {

 "^.+\\.svelte$": [

 "svelte-jester",

 {

 preprocess: true,

 },

],

 "^.+\\.ts$": "ts-jest",

 },

 moduleFileExtensions: ["js", "ts", "svelte"],

};

These files ensure that Jest knows how to preprocess TypeScript and Svelte
files correctly before running the tests. The svelte.config.js tells various
tools how to preprocess Svelte files before handing them off to the compiler,
and the Jest config tells Jest how to transform Svelte and TypeScript files.
Again, if you’re already using TypeScript, you already might have a
svelte.config.js.

Writing Your First Test
With all that setup out of the way, let’s get into writing our first test! The
application we’ll be testing is our very simple book list you already know
from Chapter 1. As a reminder, the image below shows what it looks like.

And this is the code behind it:

<script>

 import { fade } from 'svelte/transition';

 let books = ['Learning Svelte', 'The Zen of cooking Tea'];

 let newBook = '';

 function addBook(evt) {

 if (evt.key === 'Enter') {

 books = [...books, newBook];

 newBook = '';

 }

 }

</script>

<h2>

 My Little Book App

</h2>

<div>

 <label>

 <h4>Add Book</h4>

 <input type="text" bind:value={newBook} on:keydown=

{addBook} />

 </label>

 <h4>My Books</h4>

 {#each books as book}

 <li transition:fade>{book}

 {/each}

</div>

<style>

 div {

 display: inline-block;

 margin-left: auto;

 margin-right: auto;

 }

 h2 {

 background: rgb(9,111,121);

 padding: 5px 10px;

 text-align: center;

 color:white;

 font-weight: bold;

 margin:0;

 }

 input {

 padding: 5px 10px;

 }

 li {

 list-style: none;

 }

 ul {

 padding: 5px 0;

 }

 :global(body){

 background: rgb(9,111,121);

 background: linear-gradient(180deg, rgba(9,111,121,1)

0%, rgba(255,241,242,1) 60%, rgba(255,241,242,1) 100%);

 display:flex;

 flex-direction: column;

 }

</style>

We want to test that adding a book works correctly. This means ensuring that
the typed text appears as an item in the list, and that the input is cleared after
adding the book.

How to approach this? The first idea might be to somehow access the
compiled version of the component and then update and invoke the needed
variables and functions. This is very brittle, however, since we’re closely
tied to the implementation details of our component. It would be better if we
could test this one abstraction level higher, through the rendered HTML.
This means that we simulate interactions with the HTML and then check if it
was updated correctly.

In our case, this means we want to simulate typing into the input, press
enter, and then check the updated HTML for a new book entry. @testing-
library/svelte will help us with this. It’s a wrapper around the Testing
Library API, which provides an opinionated set of utilities for interacting
with the HTML. If you already have written tests with other wrappers
around this library—for example, using React or Vue—the following code
snippet will look familiar to you:

import { render, fireEvent } from "@testing-library/svelte";

import App from "./App.svelte";

describe("Book App", () => {

 test("can add book", async () => {

 // Instantiate and render component

 const app = render(App);

 // Check that there are no list items at first

 expect(() => app.getAllByRole("listitem")).toThrow();

 // Simulate user input

 const input = await app.findByLabelText("Add Book");

 await fireEvent.input(input, {

 target: { value: "Writing Svelte Tests" },

 });

 await fireEvent.keyDown(input, { key: "Enter" });

 // Check that there is one list item now

 expect(app.getAllByRole("listitem").length).toBe(1);

 expect(app.getByText("Writing Svelte Tests")).toBeDefined();

 });

});

We first instantiate the component using the provided utility function named
render. After checking that the list is empty initially, we simulate user input,
and then test that the new book was added after pressing the enter key.
These methods return promises that resolve as soon as the Svelte compiler
has rerendered, which happens asynchronously. As you can see, we don’t do
that by looking up specific HTML tags or classes (though we could fall back
to that if needed). Instead, we’ve chosen a more semantic approach and
access the HTML by looking up (for example) specific text or a specific
role. This makes our tests more robust to changes in the Svelte template.

The example above is a test for a rather simple component. Testing can get
more complex when the component in question is connected to context or
global state or has many components below it. If you only want to test that
specific component, you need to mock away all unwanted dependencies,
which can be easy to hard depending on what needs to be mocked.

If it’s very hard to mock things away or to test in general, this hints at your
code maybe being too wired with all its dependencies. You may need to split
up and modularize or reorganize some of the code. For example, if you need
to create a complex test setup because you want to test specific business
logic, it may be beneficial to split the computation out into a function in a
separate JavaScript file that’s independent of components, which makes
testing that function much easier.

Preparing your code for better testability will often lead to cleaner code
overall, so a feel-good vibe when testing will mostly go hand in hand with a
well-structured app. If it doesn’t, it might be that the code is just hard to test

because it’s very high up the component tree or because the logic you want
to test inherently needs many dependencies. In this case, it’s often easier to
use E2E testing tools, which we’ll look at next.

Writing your First E2E Test
We’ll write our E2E tests using Cypress. Alternatives would be Selenium or
Playwright, the most recent addition by Microsoft.

Fortunately, the Cypress setup is rather easy. Just run npm install cypress
-D and wait a few minutes until everything is set up. This will create a new
cypress folder at the root of your project, which contains a configuration
file we don’t need to look at for now, as well as an example test suite. Next,
run npx cypress open and wait for Cypress to start up. You’ll be greeted
with the screen pictured below, and you can look around and run the
example tests if you like.

https://www.cypress.io/
https://www.selenium.dev/
https://playwright.dev/

If you want, you can delete the example tests; we’ll be creating our own test
now. Cypress expects the application to run at a specific location, so we’ll
start up our dev server in a separate terminal and then access the app—for
example, at http://localhost:3000. We now generate a new .spec.js file
within cypress/integration and proceed to write the same test we just
wrote using Jest, this time using Cypress:

/// <reference types="cypress" />

describe("Books App", () => {

 beforeEach(() => {

 // Open app

 cy.visit("http://localhost:3000");

 });

 it("can add book", () => {

 // Check that there are no list items at first

 cy.get("li").should("have.length", 0);

 // Simulate user input

 cy.get("input").type("Writing Svelte Tests{enter}");

 // Check that there is one list item now

 cy.get("li")

 .should("have.length", 1)

 .last()

 .should("contain.text", "Writing Svelte Tests");

 });

});

As you can see, the test reads quite similarly to the Jest test we wrote earlier.
We open the app first, check if there are no items in the list, then add one
through user input simulation, and then check that there’s the expected item.

Writing the test is more focussed around the HTML tags right now, which
you might find better or worse in comparison to the Jest tests above,
depending on your preference. If you want to use the same style of retrieving
the HTML elements, the Testing Library has you covered. Just install
@testing-library/cypress and you’ll be able to use the same queries you
already know!

Regardless of how you decide to proceed, you can see that the abstraction
level is much higher when writing E2E tests. You don’t mock anything
within your app. In fact, you run it like you normally would during
development. If you want, you can mock backend calls. Cypress has handy
utilities for making this possible—or you just set up your own simple mock
server. Because this frees you from many mocking headaches, some people
prefer to write more tests this way. This is especially helpful if you plan on
rewriting parts of your app and want to ensure the behavior stays the same.

Wrapping Up
That’s all for testing Svelte apps right now! We saw how to create a proper
test setup using Jest for unit and integration tests and Cypress for E2E tests,
and we wrote simple tests using each of them. We learned about the testing
pyramid, which showcases the different levels of abstraction when testing,
and we saw the difference firsthand using the two testing tools. We also

learned that good tests and good code often influence each other, and that
tests that are brittle and/or hard to write may hint at your code needing some
refactoring.

This is the end of the book! We’ve come quite a long way. We learned the
ins and outs of template syntax and how to add dynamic behavior to our
HTML. We learned about reactive statements that help us compute derived
values or react to other variables changes, and how easy it is to write them.
We saw the same when using Svelte stores, how easy it is to subscribe to
them, and how to create a robust state management solution built upon them.
We also learned about the different component interaction concepts that help
you organize and scale your app. Finally, in this chapter, we saw how to test
Svelte apps.

With all this new information, you’re now ready to build Svelte apps that
scale. Good luck, and have fun!

	Svelte: A Beginner's Guide
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Chapter 1: Getting Started with Svelte
	The Svelte Backstory
	Building a Simple Book List
	Reacting to User Input
	Finishing Touches
	Architectural Considerations
	Ready, Set … Svelte?

	Chapter 2: Template Syntax
	Control Flow Syntax
	Adding New To-dos Using Events and Bindings
	Wrapping Up

	Chapter 3: Reactive Statements
	Reactive Declarations
	Reactive Statements
	Order of Execution
	Reactive Statements Are Run Once
	Wrapping Up

	Chapter 4: Stores
	A First Attempt
	Introducing Writable Stores
	Readable Stores
	Derived Stores
	Wrapping Up

	Chapter 5: Component Interaction Concepts
	Using Other Components
	Passing Stuff to Components through Properties
	Reacting to Component Events
	Composing the UI with Slots
	Using the Module Script to Manage Instances of the Same Component
	Using Context to Provide State to Component Trees
	Wrapping Up

	Chapter 6: Testing Applications
	The Testing Pyramid
	Test Setup
	Writing Your First Test
	Writing your First E2E Test
	Wrapping Up

