
I

CAUTION
Computer Disk Inside

Do NOT Demagnetize 5 1 DISK

I I
i

Take full control of

Windows 3.1 with this

unprecedented collection

of techniques and insights

from PC/Computing's

senior editor and Windows

expert Paul Bonner. You

will quickly learn to

customize Windows 3.1,

customize existing

Windows applications, and

write your own programs

in the Windows 3.1

environment.

Includes a disk with

source code and compiled

o
code for use with leading

applications like Microsoft

Excel, Ami Pro, Norton

Desktop for Windows,

Visual BASIC, DynaComm,

and more.

Pie EdU Code Run Window Help

Microsoft VUuaI Basic [run]

OocMan
pie Window

Repot beiote tb>

The Sectet Lid
The Petenrwol 5

Find I iniM,

i

Ttoubte to, S(m
He no erne T<

bones, and a t

bwrfl

.,1 t

\

Owmm

Dele

CIA

Dogt
eagle i

ezpanimn
l.iid|M|.iiitti(l.i

MMriJhodJ
ghoilt

GUIs
Hoslai
Atte britiy

iryt

aJbowwi

[>« Fwtdi

Qpon

frrA

QefcoU

tio

ILIJfill-l 1

.
1

,
1

kin
Sort by Hon

[*l il Paul Bonner
<wnttr. Ron wi-wii.

UJELLC, Linda top St windows API call
< Cooper , Charles Howeaber Invoice
<CoejMjnlcatlons. Al .--ii.-h.-i

<runtollllo. Steve Eual copy of new f I * i

r

Second winners ballot
U laslc price
Hew Corel Book
query
chapter « I 1t
Quail tat

<Wilt*. Ron
<Uhltr, Ron
<Dlcknan. Chris
<Faust , Haureen
<Hudson , Cindy
<Cowjwjnlcat Ions
<Seynour. Jla

ml cat Ions
ml cat Ions

<far on, Peter

;""1
, .

•*•••» DciHefj

f itr Qlib yirw ConflAurr Ioolt Appt Window Help

' '

Start print)oo at: IhlrM

(Enter tlwe In 7* hour foraat as Mt:o». or twpe

HDW to oeoln teavAlately)

1 » < IBWJKI 1

3

vjf>y WJi
I K #I»IA|t

3 1833 02118 5688

005.43 W72bo
Bonner, Pau 1

.

PC/Computing customizing
Windows 3.1

DO NOT REMOVE
CARDS FROM POCKET

ALLEN COUNTY PUBLIC LIBRARY

FORT WAYNE, INDIANA 48802

You may return this book to any agency, branch,

or bookmobile of the Allen County Public Library.

OEMCU

NOTICE:
Warning of Copyright

Restrictions
The Copyright law of the United States

(Title 17, United States Code) governs the

reproduction, distribution, adaptation,

public performance, and public display of

copyrighted material.

Under certain conditions of the law, non-

profit libraries are authorized to lend, lease,

or rent copies of computer programs to

patrons on a nonprofit basis and for non-

profit purposes. Any person who makes an

unauthorized copy or adaptation of the

computer program, or redistributes the loan

copy, or publicly performs or displays the

computer program, except as permitted by
Title 17 of the United States Code, may be

liable for copyright infringement.

This institution reserves the right to refuse

to fulfill a loan request if, in its judgment,

fulfillment of the request would lead to

violation of the copyright law.

PC/Computing

Customizing

Windows 3,1

PLEASE NOTE—USE OF THE DISK(S) AND THE PROGRAMS INCLUDED ON THE DISK(S) PACKAGED WITH THIS BOOK AND
THE PROGRAM LISTINGS INCLUDED IN THIS BOOK IS SUBJECT TO AN END-USER LICENSE AGREEMENT (THE

"AGREEMENT") FOUND AT THE BACK OF THE BOOK PLEASE READ THE AGREEMENT CAREFULLY BEFORE MAKING
YOUR PURCHASE DECISION PURCHASE OF THE BOOK AND USE OF THE DISKS. PROGRAMS. AND PROGRAM LISTINGS

WILL CONSTITUTE ACCEPTANCE OF THE AGREEMENT.

Digitized by the Internet Archive

in 2012

http://www.archive.org/details/pccomputingcustoOObonn

®

Computing

C/Computing

Customizing

Windows 3.1

Paul Bonner

Ziff-Davis Press

Emeryville, California

Editor Leslie Tilley

Technical Reviewer Neil Rubenking

Project Coordinator Ami Knox
Proofreader Aidan Wylde

Cover Design Mike Yapp, Ken Roberts

Book Design Laura Lamar/MAX, San Francisco; Stephen Bradshaw

Technical Illustration Cherie Plumlee Computer Graphics & Illustration

Word Processing Howard Blechman, Cat Haglund, Kim Haglund

Page Layout Adrian Severynen and Anna L. Marks

Indexer Valerie Robbins

This book was produced on a Macintosh Ilfx, with the following applications: FrameMaker , Microsoft

Word. MacLink®P/i«, Aldus® FreeHand™, Adobe Photoshop™, and Collage Plus™.

Ziff-Davis Press

5903 Christie Avenue

Emeryville, CA 94608

Copyright © 1992 by Paul Bonner. All rights reserved.

PC/Computing is a registered trademark of Ziff Communications Company. Ziff-Davis Press and ZD
Press are trademarks of Ziff Communications Company.

All other product names and services identified throughout this book are trademarks or registered trade-

marks of their respective companies. They are used throughout this book in editorial fashion only and for

the benefit of such companies. No such uses, or the use of any trade name, is intended to convey endorse-

ment or other affiliation with the book.

No part of this publication may be reproduced in any form, or stored in a database or retrieval system, or

transmitted or distributed in any form by any means, electronic, mechanical photocopying, recording, or

otherwise, without the prior written permission of Ziff-Davis Press, except as permitted by the Copyright

Act of 1 976 and the End-User License Agreement at the back of this book and except that program listings

may be entered, stored, and executed in a computer system.

EXCEPT FOR THE LIMITED WARRANTY COVERING THE PHYSICAL DISK(S) PACKAGED
WITH THIS BOOK AS PROVIDED IN THE END-USER LICENSE AGREEMENT AT THE BACK
OF THIS BOOK, THE INFORMATION AND MATERIAL CONTAINED IN THIS BOOK ARE
PROVIDED "AS IS," WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING WITHOUT LIMITATION ANY WARRANTY CONCERNING THE ACCURACY, ADEQUA-
CY, OR COMPLETENESS OF SUCH INFORMATION OR MATERIAL OR THE RESULTS TO BE
OBTAINED FROM USING SUCH INFORMATION OR MATERIAL. NEITHER ZIFF-DAVIS

PRESS NOR THE AUTHOR SHALL BE RESPONSIBLE FOR ANY CLAIMS ATTRIBUTABLE TO
ERRORS, OMISSIONS, OR OTHER INACCURACIES IN THE INFORMATION OR MATERIAL
CONTAINED IN THIS BOOK, AND IN NO EVENT SHALL ZIFF-DAVIS PRESS OR THE AU-
THOR BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF SUCH INFORMATION OR MATERIAL.

ISBN 1-56276-018-1

Manufactured in the United States of America

10987654321

V

This book is dedicated to my

wife Betsy Woldman and my

friend Orlan Cannon.

Betsy's patience and good

humor throughout the long

months that I worked on

PC/Computing Customizing

Windows 3.1 made this

project possible, and her love

made it worth doing.

As for Orlan, since he was

responsible over a four- or

five-year span for introducing

me to Betsy, professional

writing, coffee, and

computers, there is no doubt

that this book could not have

been written without him.

CONTENTS AT A GLANCE

Introduction xix

Part 1: Application-Development Concepts and Tools

Chapter 1: Building a Great Windows Application 3

Chapter 2: Programming Basics 13

Chapter 3: Cut-and-Paste Programming 41

Chapter 4: Choosing Your Tools 55

Part 2: The Application-Development Process

Chapter 5: Principles of Application Design 97

Chapter 6: The Nuts and Bolts of Application Design 111

Chapter 7: Implementing a Windows Interface 137

Chapter 8: Prototypes, Testing, and Documentation 165

Part 3: The Projects

Chapter 9: Customizing Applications—The Ultimate Notepad 181

Chapter 10: Presenting Data—Who's Who at PC/Computing 209

Chapter 11: Automating Existing Applications—AutoPrint for

Windows 239

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Making Use of Libraries—Recycler 267

Linking Applications through DDE—Windows Broker 295

Enhancing Applications—DocMan 337

Communicating with Host Systems—M.M.M.: the MCI Mail

Manager 403

Appendix A: Commercial DLLs and Custom Controls 521

Appendix B: Companion Disk Instructions 536

Index 545

TABLE OF CONTENTS

Introduction: xix

Swimming Lessons xix

How to Avoid the Windows SDK xx

An Overview of the Chapters xxi

Part 1: Application-Development Concepts and Tools xxii

Part 2: The Application-Development Process xxii

Part 3: The Projects xxiii

What's on the Disk xxiv

Part 1: Application-Development Concepts and Tools

Chapter 1: Building a Great Windows Application 3

Multitasking under Windows 5

Interrupt Handling and Finger Knowledge 6

Multiple-Application Processes 7

Designing for Multitasking 8

Shared Processing 8

Shared Facilities 9

Shared Interface 10

Chapter 2: Programming Basics 13

The Elements of Programming 13

Commands 14

Variables 16

Functions 20

Expressions 23

Comments 27

Arrays 28

Program Control Elements 29

Decision Making 29

Loops 30

Input/Output 33

Named Subroutines 34

Error Handling 36

User Errors 37

Learning to Program 38

viii

Chapter 3: Cut-and-Paste Programming 41

Customizing Applications 43

Customizing with Macro Languages 44

Customizing with Batch Languages 46

Linking Existing Applications 48

Linking with Macro versus Batch Languages 48

Using Third Party Code 50

Incorporating Dynamic Link Libraries 51

Making Cut-and-Paste Programming Work for You 53

Chapter 4: Choosing Your Tools 55

Evaluating Tools 58

Multitasking Facilities 58

User Interface Facilities 63

File Formats 69

Windows Development Tools 69

Application Macro Languages 70

Windows Batch Languages 80

Windows BASICs 85

Pascal 90

Graphical Hypertext Products 90

Part 2: The Application-Development Process

Chapter 5: Principles of Application Design 97

Designing for the Designer 97

Designing for the User 98

Bonner's Usability Guidelines 99

Rule 1: Fit Applications into the Current Work Flow 100

Rule 2: Improve On Existing Methods 101

Rule 3: Don't Surprise the User 102

Rule 4: Try to Delight the User 104

Rule 5: Finish the Job 105

Rule 6: Make Applications Open-ended 105

Rule 7: Design for Reliability 106

Rule 8: Don't Overwhelm New Users 106

Ix

Rule 9: Don't Delay Experienced Users 107

Rule 10: Design for the User's Convenience—Not Your Own 107

Chapter 6: The Nuts and Bolts of Application Design 111

Identifying the Application's Purpose 111

Determining Application Requirements 112

Picking a Development Tool 113

Drawing a Flowchart 115

Flowchart Iterations 116

Neater Flowcharts 118

Defining Input Requirements 120

Links to Other Applications 121

AutoPrint's Data Requirements 123

Planning Data Structures 125

Defining Variables 125

Disk-Based Data Formats 129

AutoPrint's Data Structures 132

Defining Internal Processing 133

Putting It All Together 135

Chapter 7: Implementing a Windows Interface 137

Application Window Features 139

Title Bar 139

Minimize and Maximize Buttons 140

Control Menu Box 140

Menu Bar 140

Scroll Bars 143

Application Workspace 143

Document Windows 143

Standard User-Interface Controls 144

Command Buttons 144

Check Boxes 145

Radio Buttons 146

Group Boxes 147

Icons 148

Static Text 150

Edit Boxes 151

List Boxes 152

Combo Boxes and Drop-Down Lists 155

The SAA Standard 156

Common Extensions to the Standard 157

Icon Bars 157

Ribbons 157

Active Status Lines 158

The Keyboard Interface 159

Keyboard Navigation 159

Keyboard Shortcuts 160

Dialog Box Design 161

Using Common Dialog Boxes 162

Putting It All Together 163

Chapter 8: Prototypes, Testing, and Documentation 165

Prototyping 165

Iterative Prototypes 166

On-the-Job Training 167

Testing and Debugging 169

Developer Testing 169

Covering Every Base 170

User Testing 174

Documentation 175

On-Line Help 176

Shrink-Wrap Time 176

Part 3: The Projects

Chapter 9: Customizing Applications—The Ultimate Notepad 181

The Birth of a Notion 181

Selecting the Development Tool 181

Setting Objectives 182

Exploring NOTEPAD.WDF 183

Exploring NOTEPAD.WBT 185

Introductory Lines 185

The Subroutine Macros 186

xl

The Dialog Box Routines 204

Wrapping Up The Ultimate Notepad 207

Chapter 10: Presenting Data—Who's Who at PC/Computing 209

In the Beginning Was Confusion 209

Choosing the Tool 210

Application-Design Issues in Plus 211

Stacks 211

Drawing the Interface 212

Exploring the Application 215

The Opening Screen 216

The Search Button Script 220

The Floor Plan Screen 225

The Personnel Card Screen 230

The Organization Chart Screen 234

Wrapping Up the Who's Who Application 236

Chapter 11: Automating Existing Applications—AutoPrint for

Windows 239

The Impetus behind AutoPrint 239

Designing the Application 240

The Right Tool for the Job 241

How AutoPrint Works 241

The GETFILE.WBT Batch File 243

GETFILE Dissected 244

The AUTOPRN.WBT Batch File 248

AUTOPRN Dissected 249

Putting the Batch Files to Work 252

The WinBatch Version 254

Macro Files 255

The COPYMAC.WBT Batch File 255

COPYMAC Dissected 256

The AUTOPWBT Batch File 258

AUTOP Dissected 260

Chapter 12: Making Use of Libraries—Recycler 267

Basic Operations 267

xli

Capabilities and Limitations 269

Denning Functional Requirements 271

Selecting the Development Tool 271

Message Loops 272

DOS Attribute Control 274

The Application Framework 274

Exploring GLOBAL.BAS 275

Type Definitions 275

Function and Subroutine Definitions 276

Global Constant and Variable Definitions 279

Exploring FORM1.FRM 280

General Procedures 282

Event Procedures 282

Exploring DRAGDROPBAS 288

Wrapping Up Recycler 293

Chapter 13: Linking Applications through DDE—Windows Broker 295

Broker's Origin and Structure 295

Choosing the Tools 295

Application Framework 296

Exploring BROKERl.XLS 296

Worksheet Mechanics 298

Hidden Data 301

Exploring LOTS.XLS and IBM.XLS 302

Exploring the BROKER1.XLM File 304

Navigational Macros 304

Communication Macros 307

Transaction-Recording Macros 313

Exploring BROKER1.DCP 317

The Introductory Routines 318

General-Purpose Subroutines 321

Task-Specific Routines 323

Wrapping Up Windows Broker 334

Chapter 14: Enhancing Applications—DocMan 337

Opening Moves 337

xiil

Functional Requirements 338

Selecting Development Tools 338

A Tour of DocMan 339

The OpenDM Screen 339

The FindDlg Screen 340

The Ami Pro Document Description Dialog Box 342

DocMan's Skeleton 343

Exploring DCGLOBAL.BAS 343

Constant Declarations 343

External-Function Declarations 344

Data-Storage Declarations 345

Variable Declarations 346

Exploring FORM1.FRM 346

Exploring DOCMAN2.FRM 348

General and Loading Routines 348

User-Action Routines 350

Menu Item Routines 360

Exploring ACTIONS.FRM 362

Button Routines 363

Exploring FINDDLG.FRM 365

General and Loading Routines 365

Event Procedures 368

Exploring ABOUTDLG.FRM 371

Exploring GLOBCODE.BAS 372

Inside Ami Pro 393

Ami Pro Macros 393

Wrapping Up DocMan 399

Chapter 15: Communicating with Host Systems—M.M.M.: the MCI Mail

Manager 403

Improving on an Existing Model 403

Selecting the Development Tool 404

Other Possible Approaches 404

M.M.M.'s Capabilities 405

Creating and Editing Messages 405

Transmitting and Receiving Messages 406

xi V

Organizing and Managing Messages 406

How M.M.M. Works 407

The Mailboxes Screen 408

Online Options 410

Offline Options 410

Message-Handling Options 411

The Set Up Menu 412

The Phonebook Management Routine 412

Message-Composition Routines 415

Exploring the AUTOMCI.DCP Script 416

Initializing Global Settings and Variables 416

Analyzing the Main Routine 421

Mailboxes Screen Support Routines 427

The Set Up Menu Routine 429

Menu-Support Routines 433

Table-Handling Routines 442

Mailboxes Screen Action Routines 446

Message-Handling Routines 456

Welcome-Message Routines 461

Account Setup Routines 462

The Code Routine 467

Exploring TM.DCP 470

Calling the TM Module 470

Message-Creation Routines 471

Utility Routines 488

Exploring EMAIL.DCP 489

Initializing Global Variables 489

Message-Transmission Routines 490

Message-Reception Routines 501

Standard Library Routines 510

Exploring PM.DCP 511

Exploring ONLINE.DCP 515

The Terminal Routines 516

Wrapping Up M.M.M. 518

XV

Appendix A: Commercial DLLs and Custom Controls 521

Appendix B: Companion Disk Instructions 536

Index 545

ACKNOWLEDGMENTS

I

OWE A DEBT TO THE MANY FINE MAGAZINE EDITORS WHO HAVE SHAPED
my work through the years by virtue of their skill, knowledge, care, and

professionalism, especially Nora Seymour, Jim Seymour, Jean Atelsek,

Fred Paul, Preston Gralla, Carol Day, Ernie Baxter, and Mike Edel-

hart. Mike deserves a special note of thanks here for giving me the green

light to develop the Windows Project series of feature stories in PC/Comput-
ing, which acted as a catalyst for this book. I'm also beholden to Dylan

Tweney who assisted me in the research for Appendix A as my final dead-

lines approached.

I'd also like to express my sincere appreciation to all the folks at Ziff-

Davis Press who have worked on this book, especially my publisher, Cindy

Hudson, for her inexhaustible enthusiasm and only slightly exhaustible

patience; Leslie Tilley, the development editor who managed to turn much of

the book into English; and Neil J. Rubenking, for his always-brilliant and

often-combustible technical edit. Thanks are also due to Ami Knox and the

production group, to Simon Tonner and the marketing department, and to

everyone else at the press who had a hand in shaping the book.

Finally, I'd like to thank my agent, Claudette Moore, for helping to

ensure that this project was profitable as well as enjoyable.

INTRODUCTION

NOW THAT THE WRITING IS NEARLY DONE, I'VE STOPPED WORRYING
that half the people to whom I described this book told me that it

was impossible. "It's a guide to Windows programming for nonpro-

grammers" I would tell them, and they would smile and roll their

eyes and mutter something like "Good luck."

Of course, they imagined a different sort of book than the one you're

holding in your hands. I'm sure that they expected it would start off with a

long tutorial on the basics of programming in C, with a particular emphasis

on pointers and data types and the respective benefits of various memory
models.

Then too, they undoubtedly expected that at around page 1200 I would

have to lead the reader to the heart of darkness itself: the Microsoft Win-

dows Software Development Kit. Then, over the course of the middle chap-

ters (pages 2,500 to 4,800 or so), they likely envisioned me describing

Windows messages and default Windows procedures, the secrets of the GDI,

and the trickier aspects of registering new clipboard formats. And, positively

without a doubt, they foresaw me wrapping the whole thing up on page 6,000

or 6,500 by formally presenting you, the reader, with a bona fide certificate

awarding you status as a professional Windows developer.

My skeptical friends imagined this book taking that form because they

are professional Windows developers themselves, and that was the course

that they followed to learn to write Windows programs. They had studied

database theory and knew five versions of the Quicksort algorithm by heart

and could recite every word of the Systems Application Architecture Com-
mon User Access Advanced Interface Design Guide, so naturally they

expected that any book about Windows programming would have to follow

the same path.

But that's not the book I wrote, because that's not the path I followed to

become a Windows programmer.

I don't intend any disrespect to the traditional method of turning oneself

into a Windows programmer, but even those who have followed it have to

admit that it has little appeal for anyone who doesn't intend to make writing

Windows applications his or her life's work. For someone who sees Windows
programming as a means to an end—as a way to simplify or improve the effi-

ciency of other tasks—rather than as an end unto itself, the time required to

learn Windows programming that way is simply unacceptable.

Swimming Lessons

Think of it as learning to swim. If you've got the time, you can do it the tradi-

tional way, starting off at the shallow end of the pool and practicing your

kicks and learning to breath between strokes, and only gradually, over the

course of many weeks, working your way toward the deep water.

XX

But lets say you don't have the time. Your Sunny Sails cruise ship has

just run down an iceberg, and the lifeboats are nowhere in sight. With the

waters rising fast around you, the last thing you want to do is hop in the shal-

low end of the pool and ask, "Now what was that about the crawl?"

On the other hand, an accelerated course of training that simply tells

you to "Jump in, move your arms a lot, kick, and try not to forget to breath,"

though somewhat more appropriate given the circumstances, probably won't

save your life either.

But what if, as everyone around you went wild trying to hire swimming
consultants or looking for lumber to build boats, someone called you over

and said, "You realize that there are some great life jackets in this closet.

And how about a wet suit to protect you against hypothermia? And check

out this—one of those cool jet skis like James Bond uses. They're all here for

the taking. Just help yourself."

Well, I'm the help yourself guy, and this book is about all the things I've

found that will let you become a Windows programmer without ever learn-

ing the difference between GlobalAlloc and GetDC.
This book is also sort of autobiographical, because the methods it pro-

motes, the advice it offers, and the programs it describes are all the result of

my own experience learning to write Windows applications. I know that you

don't need to learn to write C code or ever crack the shrink wrap on the Win-

dows SDK in order to write custom Windows applications, because I've

never felt the need to do either one.

Of course, I've never tried to write Microsoft Excel or Aldus PageMaker

or Micrografx Designer. If those are the kinds of applications that you want

to write—big commercial applications that come in 20-pound boxes—put

this book back on the shelf and pick up Charlie Petzold's guide to program-

ming with the SDK—you're going to need it.

If you're like me, however, you're probably more interested in customiz-

ing the word processor or spreadsheet you already have to work exactly the

way that you want it to than in building a new one from scratch. Life is short,

and you've got other things to do than spend the next five years devising

table formatting algorithms.

Maybe you want to extend the capabilities of the applications that you

already have, or create links between those applications, or build custom

applications that will automate or expedite some portion of the things that

you already do with your PC or, even better, that you would like to be able

to do. If so, then you've found the right book.

How to Avoid the Windows SDK
Before you get the wrong idea, let me say that the Windows SDK is a mar-

velous tool. It provides professional developers with total access to the

xxi

extraordinary range of functions and routines that make Windows 3.1 and

Windows 3.1 applications the wonders that they are.

In fact, the SDK is so marvelous that there is almost no reason for any-

one to use it anymore. At least, not for anything short of full-scale commer-

cial development efforts. For any other kind of project, there are dozens of

better, faster, easier alternatives that have been built with the SDK so that

you don't have to use the SDK. These tools, which range from application

macro languages to standalone development tools like Visual BASIC, don't

require programming experience to use them, just the desire to create cus-

tom applications and the willingness to learn some new skills.

It's easy to develop custom Windows applications using these tools, and

it's fun. But don't be misled. It also takes a good deal of effort, so it's not for

everyone. If the off-the-shelf applications that you already have entirely fit

your needs, or if there are off-the-shelf applications available that you think

will do so, there's really no need for you to learn to program your own cus-

tom applications.

In my experience, however, off-the-shelf applications aren't enough.

They're like an off-the-rack suit. You can squeeze into one, but it probably

won't be a perfect fit. Fortunately, however, you can put the high-level devel-

opment tools discussed in this book to work like a crew of tailors to alter off-

the-shelf applications until they fit like a custom tailored suit. And, once

you've got them working for you, your crew of tailors will be only too glad to

throw in an extra pair of pants, or even make an entirely new suit for you

from scratch.

I started writing Windows applications precisely because off-the-shelf

applications no longer satisfied me. For instance, I rely daily on the MCI
Mail electronic mail service, and I grew frustrated at having to manually

instruct my modem to dial the MCI access number, navigate through its

menus, create messages online, and capture messages that were waiting for

me to a disk file. So I used the macro language capabilities of FutureSoft

Engineering's DynaComm to automate all those processes and more, result-

ing in the MCI Mail Manager application described in Chapter 15.

Since then, I've learned how to customize many other Windows applica-

tions—ranging from Notepad to Excel—and how to build custom applica-

tions from scratch using these high-level development tools. PC/Computing
Customizing Windows 3.1 tells you how you can do the same thing.

An Overview of the Chapters

PC/Computing Customizing Windows 3.1 's fifteen chapters are organized in

three parts.

XXII

Part 1: Application-Development Concepts and Tools

Part 1 consists of Chapters 1 through 4. These chapters provide an overview

of basic programming concepts, an in-depth examination of the dozens of

high-level development tools available for Windows 3.1, and some advice

about how you should approach your Windows development projects.

Chapter 1, "Building a Great Windows Application," discusses the quali-

ties which separate great Windows applications from mediocre ones: effec-

tive use of Windows multitasking facilities, smart interactions with other

Windows applications, and, most of all, an overriding concern with usability.

Chapter 2, "Programming Basics," is an overview of the basic program-

ming concepts and terminology that you'll need to understand before you

can use any Windows development tool.

Chapter 3, "Cut-and-Paste Programming," shows how you can save time

and effort by using the capabilities of the applications that you already own
or of commercially available code libraries rather than inventing them from

scratch. By applying the concepts discussed in this chapter, you can produce

a custom application in a matter of hours that might otherwise take weeks or

months to complete.

Chapter 4, "Choosing Your Tools," begins by discussing the process of

selecting a development tool and the qualities that you should look for in

evaluating a particular tool. Then it introduces the five general categories of

program development tools covered in this book: application macro lan-

guages, Windows batch languages, Windows implementation of BASIC, Pas-

cal for Windows, and graphical hypertext products. The chapter concludes

with descriptions and recommendations about the best available products in

each of those categories.

Part 2: The Application-Development Process

Part 2 includes Chapters 5 through 8, which discuss the key steps involved in

designing, writing, testing, and documenting custom applications.

Chapter 5, "Principles of Application Design," discusses the importance

of designing applications for the gratification of the user, not that of the

designer, and presents Bonner's Usability Guidelines, the ten keys to creat-

ing truly usable applications. While the distinction made in this chapter

between the designer and the user is most valid for those readers who will

be building applications for use by other people, the Usability Guidelines

are valid even for applications that no one other than the programmer will

ever see.

Chapter 6, "The Nuts and Bolts of Application Design," is a step-by-step

guide to the actual application development process: identifying the applica-

tion's purpose, determining its functional requirements, selecting a develop-

ment tool, drawing a flowchart, determining the application's data

XXIII

requirements, planning any links to other applications that it might need, cre-

ating its data structures, and finally writing the code that puts it all together.

Chapter 7, 'implementing a Windows Interface," elaborates on the pro-

cess of planning the user interface for your application and making effective

use of Windows 3.1's powerful interface elements and conventions.

Chapter 8, "Prototypes, Testing, and Documentation," discusses the pro-

cess of building iterative prototypes of your application, testing their usabil-

ity and reliability until you arrive at a solid finished program, and providing

documentation for the programs you produce.

Part 3: The Projects

Part 3 puts all the advice and theory from Parts 1 and 2 to work by present-

ing seven complete programming projects, ranging from simple customiza-

tion of existing applications to complete standalone programs. In each

project chapter, I discuss how the project originated, how I determined what

features it needed, how I selected a development tool with which to build it,

and then examine the complete source code for the project. (The source

code is also available on the accompanying disk.)

Chapter 9, "Customizing Applications: The Ultimate Notepad." uses

WinBatch, a shareware batch language, to customize the Windows 3.1 Note-

pad application. You'll create a variety of new features, including a search-

and-replace function, the ability to save selected text and to merge a text file

into the open file, and a word-count facility.

Chapter 10, "Presenting Data: Who's Who at PC/Computing?," uses a

graphical hypertext product called Plus to build a custom employee informa-

tion system.

Chapter 1 1 ,
" AutoPrint for Windows," presents two versions of a print

queue utility that automatically prints files created by nearly any Windows
application at a time that you specify. One version of AutoPrint uses the

batch language and other facilities of Norton Desktop for Windows, and the

other uses WinBatch.

Chapter 12, "Making Use of Libraries: Recycler." is a recycling bin for

files. Files dragged from the Windows 3.1 File Manager onto this Visual

BASIC application seem to disappear, but they can be restored at any time.

Chapter 13, "Linking Applications through DDL: Windows Broker,"

is a portfolio analysis and stock-trading program built using Microsoft

Excel and FutureSoft Engineer's asynchronous communications program
DynaComm.

Chapter 14, "Enhancing Applications—DocMan," is a document man-

ager built in Visual BASIC that provides Lotus Development Corporation's

Ami Pro word processor with the ability to access files using long file names
or through keyword searches.

XXIV

Chapter 15, "Communicating with Host Systems—M.M.M.: the MCI
Mail Manager," is a complete electronic mail access and management system

for MCI Mail built using DynaComm.
PC/Computing Customizing Windows 3.1 also includes two appendices.

The first presents a guide to third-party code libraries and custom controls

that can be incorporated into your applications, and the second presents

instructions for using the accompanying disk.

What's on the Disk

The disk that accompanies this book contains the source code for the

projects presented in the text, as well as other programs that will be useful as

you write your applications. Included are

CW Install, a Windows-based installation program

Compiled EXE versions of the DocMan and Recycler projects

A set of Visual BASIC files to use with the functions in the Recycler

project

WinBatch 3.1, for use with the AutoPrint and The Ultimate Notepad

projects

You can exchange the 5 'A-inch disk for a 3 V2-inch disk; see the disk

exchange offer at the back of the book for details.

Learning to customize or create Windows applications isn't effortless,

but it may be the best way to increase the benefits you gain from Windows.

Once you've learned to use one or more of the development tools discussed

in PC/Computing Customizing Windows 3.1, and have started to apply the

advice it offers, the sky is the limit. Nothing will stand in the way of your

making your Windows 3.1 environment and applications work exactly the

way you want them to.

Building a Great Windows Application

Programming Basics

Cut-and-Paste Programming

Choosing Your Tools

Application-

Development

Concepts and Tools

CHAPTER

Building a Great

Windows
Application

Multitasking under

Windows

Designing for
Multitasking

Building a Great Windows Application 3

WAY BACK IN 1983, DAN BRICKLIN TAUGHT ME—AND A CONFERENCE
room full of other people—how to build great Windows
applications. Of course, at the time we weren't learning about

Windows, per se.

The setting was Applefest Boston, a then-annual computer conference.

If you remember back that far, you'll recall that the Apple II was still king of

the hill as far as personal computers for business users went. The IBM PC
was the new kid on the block, selling fast but not yet the certified leader, and

Windows was but a glint in Bill Gates's eye.

Dan was the featured speaker at the show, and I was a kid reporter

attending my first computer conference. A guy named Mitch Kapor was also

at the conference, showing off a new application called 1-2-3 that his com-

pany, Lotus Development Corporation, had recently introduced for the IBM
PC. But Dan was the star of the show. He'd achieved legendary status in per-

sonal computing circles because he was the first person to actually find a use

for personal computers that would capture the hearts and minds (and wal-

lets) of American business: Dan was the principal designer of VisiCalc, the

first electronic spreadsheet—and the first certified hit software.

In those days, the people who came to computer conferences weren't

interested in debating the relative merits of Windows and OS/2, nor in hear-

ing about GUIs, pen interfaces, connectivity, or RISC architecture, as are

audiences today. Instead, they were there to find out what these new things

called personal computers were all about and how they differed from the

Goliath mainframes that until then were the only computers many of them

had ever seen.

Two Boxes
Dan answered those questions by drawing two sets of boxes on a whiteboard.

The first set Consisted of a tiny box labeled "User Interface" and a giant

box labeled "Processing Power." That set of boxes defined the mainframe: a

hugely powerful, hugely unfriendly computing device. As Dan explained,

mainframe processor cycles were simply too expensive to waste on the job

of supporting a friendly user interface. Instead, they relied on simple dumb-
terminal interfaces, which provided access to a great many users, but com-

fort to none.

Dan's second set of boxes consisted of a giant box labeled "User Inter-

face," and a tiny box labeled "Processing Power." That set defined the

nascent personal computer: pitifully weak compared to the mainframe in

terms of processing power, but vastly superior in terms of user friendliness.

His point was this: Even though mainframes could run circles around

personal computers at crunching numbers and sorting databases, personal

computers were inherently superior at the job of interacting with human
beings. When the user presses a key on a personal computer, the PC's soft-

ware reacts, guiding him or her on to the next step in the process. The entire

BUILDING A GREAT WINDOWS APPLICATION

system—processor, screen, and software—is there to serve the user. In con-

trast, on mainframe computers it's the user who serves the system—supply-

ing the raw data the system needs to do its job, and distracting the system

from that task as little as possible.

The State of the Art

A lot has changed in the nearly ten years since that conference. The IBM PC
took over the world, Mitch Kapor became a much better draw than Dan
Bricklin, and most importantly, personal computers became a lot more pow-

erful. As I write this, Intel is about to release a new version of the 80486 that

performs 40 million instructions per second. Within a year, you'll probably

be able to buy a PC built around that chip for about the same $4,000 that

would buy you a complete Apple II system in 1983.

Moreover, in retrospect the "enormously friendly" user interfaces that

Dan spoke about that day look pretty darned curmudgeonly. VisiCalc's menu
system, for instance, consisted of a single line of one-letter command abbrevi-

ations, which popped up at the bottom of the screen when you pressed the

slash key. Put that original version of VisiCalc next to a graphical spread-

sheet such as Microsoft Excel for Windows, and you'll be apt to ask "What
user interface?"

Nevertheless, Dan Bricklin's speech that day captured the essence of

what had already made personal computers stand out in 1982, and of what

makes state-of-the-art Windows applications stand out today: an overriding

concern with the human-computer interaction.

Keeping the User in Mind
In any but the smallest Windows development projects, there are many
things you'll have to think about. You have to be concerned with how your

application will interact with Windows' multitasking environment. And
you've got to consider how dynamic data exchange (DDE) and other meth-

ods of interaction between applications can benefit the application you're

building.

You also have to outline the process you're trying to automate within

Windows, and translate that outline to program or macro code in an efficient

and accurate manner. You've got to think about learning new programming

languages and face the challenge of writing, testing, and debugging your

applications.

With all that to worry about, it would be easy to overlook the simple fact

that your program will be used by human beings. The routines, algorithms,

and functions you'll build into your application are enormously important to

the system: They are what make Windows and your application perform the

tasks you want performed. Because of that it would be very easy to scrimp

on user-interface design.

Don't make that mistake.

Multitasking under Windows

Windows has many wonderful things going for it: multitasking, communi-

cations between applications, advanced memory management functions. But

the most immediate and important aspect of every Windows application is its

user interface, because Windows and Windows applications are there to sup-

port the user. If you don't invest the time, energy, and processor cycles neces-

sary for a great user interface, no one will ever find out what wonderful

things your application can do. So, of course, you should try to make that

box labeled "Processing Power" as big as possible in the Windows applica-

tions you build. But you should absolutely make sure the box labeled "User

Interface" stays even bigger.

Thanks, Dan.

Multitasking under Windows
First-generation PC programs, such as VisiCalc, and second-generation pro-

grams, like Lotus 1-2-3, were universes unto themselves. From the time the

user typed the command to start those applications, the application owned
the PC. It could send data to the screen with impunity because there was no

possibility that another application might be using the screen at the same

time. It could use the disk with the same nonchalance. It could also assume

that data would be input only from the keyboard or from its own files, and it

could insist that the user do things in exactly the manner it specified.

That kind of application was fine as long as PC users only needed to use

a single application program. Millions of PCs were purchased to run Lotus

1-2-3 or WordPerfect or dBASE, and by and large they did a great job of

doing so.

Eventually, however, PC users grew more ambitious. The spreadsheet

user wanted to be able to dial into a remote electronic mail (e-mail) service.

The word processing user wanted to include charts and graphs in documents.

The database designer wanted to use a project management program. And
so on.

At that point, the fundamental weakness of those first- and second-gen-

eration applications, and of DOS itself, began to grow apparent: Intended to

own the PC and all of its resources, they proved poor at the art of sharing.

You couldn't use more than one application at a time, because DOS was

a single-tasking operating system. You couldn't keep two applications in

memory and switch back and forth easily, because DOS couldn't address

enough memory. You could try to supplement your primary application with

terminate-and-stay-resident (TSR) utilities, but all too often they proved

both unreliable and functionally shallow.

For a long time the best solution to these problems was to use a multi-

tasking shell for DOS, such as Quarterdeck's DESQview. which would move
programs in and out of memory as needed and, given sufficient RAM,

6 BUILDING A GREAT WINDOWS APPLICATION

would even keep several applications running at once on an 80386-based

PC. But in solving those problems, DESQview and its competitors exposed

another: the incompatibility in both structure and user interface of standard

DOS applications.

For example, let's say you were a whiz at Lotus 1-2-3. You could write

1-2-3 macros, build an amortization schedule, and play what-if with your

company's finances with the best of them. Then one bright day, somebody
handed you a copy of WordPerfect or dBASE or Crosstalk Mk.4. How much
did all your 1-2-3 knowledge benefit you then?

Not one iota. No matter how good you were at any of those programs,

you'd be lucky even to be able to find a help screen in another program with-

out investing significant time in learning the new application.

Obviously the fault there was not yours. But—and this is a critical

point—it really wasn't the fault of the applications either. Each had been

designed to provide as direct an interface as possible between the task it set

out to do and the user. One might argue quite convincingly that Lotus 1-2-3

was a near-perfect model for the PC user who was interested in spreadsheets

and spreadsheets alone. But it, like any DOS application, was completely

ignorant of every other DOS application, and hence inadequate for any user

who wanted to do more than just run numbers all day long.

Obviously the situation had to change. We needed to start over from

scratch with a new computing environment that would address the limita-

tions of both DOS and standard DOS applications.

Windows is that environment.

Interrupt Handling and Finger Knowledge

When you first look at Windows 3.1, it's easy to be dazzled by its colorful

icons, impressed by its TrueType WYSIWYG (what-you-see-is-what-you-

get) fonts, and amused by its Accessory applications. Those are certainly all

important factors in its success, but the most important aspect of Windows

3.1 is that both the Windows environment itself and the applications that run

under it are designed for multitasking.

The term multitasking means a lot of different things. There's the classic

example of a user recalculating a spreadsheet in the background while read-

ing her e-mail and writing a letter. Windows can help you do that if you

really want to, but in practice that capability doesn't prove to be all that valu-

able. People don't switch contexts as fast as computers. Usually when people

hit the "recalc" key it's because they want to know the results of the recalcu-

lation as fast as possible, so they stick around to see it happen.

That's not to say that background processes aren't at all useful. They're

ideal for some tasks, such as an application that checks your electronic mail

box regularly and alerts you when incoming messages are retrieved. In fact,

background mailbox checks are one of the key features of the application

Multitasking under Windows

project called M.M.M.: The MCI Mail Manager, which is presented in

Chapter 15.

For most users, however, the most important benefits of using Windows
applications designed for multitasking come in three areas: interrupt han-

dling, finger knowledge, and multiple-application processes.

By interrupt handling I don't mean the process by which the PC BIOS
interacts with the keyboard and communications ports. Rather, I mean the

way human beings handle interruptions. Say you're in the middle of writing a

memo in your word processor and your boss calls demanding the latest num-

bers from your sales report spreadsheet. No problem. A few clicks of the

mouse will bring your spreadsheet to the fore, while your memo waits in the

background for you to finish handling the interruption.

Finger knowledge refers to the knowledge one acquires about the opera-

tions of an application. In Lotus 1-2-3 your fingers know that typing /FR will

present you with a list of available worksheet files. In Excel the same thing

can be achieved by pressing Alt-F O. So far the two programs seem about

even—three keys each. But load WordPerfect for DOS and type /FR and

you'll see "/FR" appear in your document. In contrast, load Word for Win-

dows, or almost any other Windows application, and pressing ALT-F O
causes the File Open dialog box to appear, just as it does in Excel.

In Windows, finger knowledge is transportable. The user who learns

to use one Windows application well should at least be able to navigate

through any other Windows application. He or she will already know how
to start and quit the program; open, save, and close files; move the cursor

around the screen; copy and paste data; and how to get help when it is

needed. This standardization of basic processes—standardization of finger

knowledge—drastically simplifies the process of learning to use more
than one major application. You'll find attempts to take advantage of this

finger knowledge throughout all the application-building projects pre-

sented in Chapters 9 through 15.

Multiple-Application Processes

Finally, multitasking under Windows allows you to build and use real-world

applications that cut across and incorporate the functions of several applica-

tion programs. A time-billing system for a law firm, for instance, might

incorporate a diverse set of functions, some of which are found in a word

processor, some in a spreadsheet, some in a calendar program, and some in

a database. If you so desire, you can build that application from scratch, fig-

uring out how to program the various spreadsheet, database, word process-

ing, and calendar functions that you need. If you're lucky, and start young

enough, you might even live long enough to finish the job.

Under Windows, however, you can build the same application in a mat-

ter of days or weeks simply by writing a modicum of code that ties together

8 BUILDING A GREAT WINDOWS APPLICATION

existing spreadsheet, database, calendar, and word processing programs into

an integrated system—and it will function every bit as well as the mammoth
programming project you've chosen to avoid. The DocMan project pre-

sented in Chapter 13 and the Windows Broker project in Chapter 14 are

examples of linking existing programs to create new applications.

Designing for Multitasking

To design a great Windows application, you have to teach it to work and play

well with others. The world of Windows is one of sharing: shared processing,

shared facilities, shared interface. If you don't want your application to have

to share, don't design it for Windows.

The high-level development tools used as examples in this book make
it fairly easy to write a well-behaved Windows application that cooperates

with others and reflects a concern for Windows' standard user-interface

protocols. But they also make it possible to ignore those concerns when
necessary, because there are times when it is necessary to break the rules.

The trick in designing good Windows applications is to break the rules as

seldom as possible.

Shared Processing

Consider the following example of shared processing. In the old days, when
programmers were designing a standard DOS application that included a

time-consuming routine which would occupy the PC for several seconds or

minutes, they could simply put a "Please Wait" message on the screen. Then,

when the routine finished, everything unaffected by that routine would be

just as it was when it began since nothing else could occur in the interim.

That's not so in Windows. Even while an application is in the foreground

receiving keystrokes and filling the entire screen, Windows and other Win-

dows applications might be very active in the background: printing files, mon-

itoring the keyboard and screen for commands regarding the application's

window, sending data back and forth with DDE, or communicating with a

network or a remote device.

By the time an application finishes a lengthy routine, another application

entirely might control the screen. For instance, the user might be busy typing

data into a spreadsheet or word processor.

Because of the way Windows is structured, this functionality is not com-

pletely automatic. Instead, Windows hands control of the system in turn to

each application that is running, and then waits for the application to return

control. This process can occur many times per second—usually while an

application is waiting for keystrokes or other user input. As application A
waits for a keystroke, Windows hands control to B, which executes whatever

Designing for Multitasking

instructions it has waiting and then hands control back to Windows, which

then repeats the process with application C or D, checking each time control

is passed to ensure that the foreground application isn't waiting for control.

This all takes place so fast that, in most cases, neither the applications nor

the user is aware of it.

There are times, however, when you need to ensure that your applica-

tion has sole control over the PC. For instance, some communications rou-

tines might be very time-critical—if your application doesn't respond to a

command from the device with which it is communicating fast enough, the

routine will fail. So you can't take the chance that application D in the back-

ground will hog the processor for a few too many milliseconds. For that rea-

son, many of the development tools described in this book allow you to

essentially put everything else on hold while a routine executes, by not hand-

ing control back to Windows.

In building Windows applications, you might be tempted to use this capa-

bility frequently. After all, the more your application has sole control of the

system, the faster it will execute.

This is a temptation that you should avoid, simply because in most cases

there is no justification for it. Usually applications in the background are not

doing anything particularly processor-consuming. Instead, they're waiting for

keystrokes too, or sending characters to the printer or sending data over a

modem—processes which, in terms of a computer's sense of time, are incredi-

bly slow and easy to maintain while still providing your application with what

appears to be instantaneous response. So, at best, your application will gener-

ally only perform a few percentage points faster by hogging the system.

Meanwhile, you're losing most of the benefits of developing for Win-

dows. Any background processes that are under way will be halted, and your

users will be unable to switch to another application. The more proficient

your users are with Windows, the more they'll resent your application as a

result. That's too high a price to pay for a few percentage points of perfor-

mance, except in the most critical situations.

Shared Facilities

Sharing the processor is an "under-the-covers" function—one that isn't

immediately apparent to the user except when you don't do it. Your applica-

tion's ability to share basic Windows facilities, however, is something that

users will notice and appreciate immediately.

Windows 3.1 provides a set of standardized facilities that can be utilized

by any Windows application. These include the Clipboard, which allows the

user to cut, copy, and paste data; high-quality screen output; and facilities

for creating links between applications using DDE or object linking and

embedding.

10 BUILDING A GREAT WINDOWS APPLICATION

In planning and building Windows applications you should look for ways

to exploit these capabilities. Don't assume, for instance, that the only way
that the user will want to enter data into your application is from the key-

board. Instead, put a Paste command on your application's menu so that the

user can move data easily from another application into it. And include a

Copy command there too, even if you don't perceive an immediate use for it.

Your users will find uses for it.

Similarly, don't just dump ASCII text to the printer in the default font

when you're building a facility for creating printed reports. There's no need

for every application to have the page layout capabilities of PageMaker, but

you should at least give the user some control over the appearance of the

report by providing a choice of typefaces and sizes.

The benefits of providing Clipboard support and high-quality printing are

immediately obvious. Support for DDE and object linking and embedding

require a little more thought. These are complex protocols unlike anything

found in the world of standard DOS applications. Their use can provide your

application with a functional richness far beyond its apparent means. What
appears to be a simple little forms-entry program, for instance, might through

the use of DDE have all the analytic and functional resources of a product like

Microsoft Excel at its beck and call. In planning your Windows applications,

you should think long and hard about ways in which your application might

benefit from these facilities. (Chapter 3,
u
Cut-and-Paste Programming," fea-

tures an extended discussion of these considerations.)

Shared Interface

The most important form of sharing your application can offer the user is the

shared Windows interface. Every time you implement a function in your

application according to Windows' standard interface guidelines, you're mak-

ing life easier for those users who know other Windows-based programs.

And every time you choose to ignore those guidelines and get overly creative

(or lazy) with your interface design, you're making life more difficult for

those people.

Using the standardized Windows interface elements will also make your

life easier as a developer of Windows applications. For instance, Windows 3.1

includes a dynamic link library that contains standard dialog boxes for func-

tions such as opening and saving files. You can access those facilities from

any of the many high-level languages that support dynamic link libraries

—

thus both eliminating the need for you to write dozens of lines of code to

build your own dialog boxes and ensuring that the user will recognize and

know how to use those dialog boxes whenever they appear.

There are other obvious ways to take advantage of the user's knowledge

of the environment. For instance, say you're building the routine from

which the user will exit your application. You could add a menu item to

Designing for Multitasking 11

your application and label it "Quit" or "Leave" or any number of other

alternatives, and you could conceivably incorporate that menu item in any

of the menus your application includes, but the standard way of leaving an

application in Windows is by selecting the item labeled "Exit" from the File

menu. Nearly every Windows application uses that convention, so nearly

every Windows user knows that's how one quits an application. Unless

you've got a very good reason—and personal preference really isn't good

enough—follow the convention. It's one less thing for your user to learn and

one less decision that you have to make during the design process.

Originality Versus Standards

A lot of developers want to resist interface standardization because they fear

it will make their application indistinguishable from any other Windows
application. "Where's the room for originality?" they ask, "Where's the

opportunity to make my application do something that others don't?"

That's a valid concern. Or rather, it would be if the kind of standardiza-

tion we're talking about actually affected any functions that would enable

your application to distinguish itself. But it doesn't. Instead, the brief guide-

lines discussed here, and the more extensive ones discussed in Chapter 7, sim-

ply govern those functions that are common to almost all applications.

Every application has to open, save, and close files and provide a way to

exit the application. There's nothing original about these functions, so it is to

your benefit, and that of the users of your application, to provide standard

ways of handling them. That enables you to devote your creativity to the

original things that your application does—its core functions and the tasks

you hope to achieve through it—rather than reinventing the wheel for some-

thing as simple as closing a file. Standardizing these common functions sim-

ply saves you time as a developer, and helps make sure that the big user-

interface box that Dan Bricklin talked about is as friendly as possible.

CHAPTER

Programming

Basics
The Elements of
Programming

Program Control

Elements

Error Handling

Learning to Program

The Elements of Programming 13

B
EFORE GOING ANY FURTHER DOWN THE PATH OF WINDOWS APPLICATION

development, let's examine some of the basic concepts and termi-

nology intrinsic to any programming language. Since this material

will be introductory in nature, experienced programmers may wish

to skim this chapter, or skip it entirely.

It isn't possible in a single book, let alone a single chapter, to cover every

aspect of every programming language used in Windows development

tools—nor is it particularly necessary. Once you actually start to work with a

high-level application-development tool, the manuals and tutorials that

accompany it should be your first source of information about the language.

The purpose of this chapter is to provide enough general background

information that the most absolute newcomer to programming can under-

stand and gain from the material in subsequent chapters and to illuminate

some of the processes that go into any application-development project.

With the help of the information in this chapter, any reader should be able to

understand the discussions of programming techniques in the application-

building chapters (9 through 15), and understand how each of the commands
in those projects is used.

To that purpose, this chapter will examine the basic concepts common to

all programming languages and examine how the various components of a

programming language are used to build applications.

In addition, this chapter will look at the process of learning to program,

examining how one makes the leap from merely following another program-

mer's code to generating original code, and suggesting ways to speed that

progression.

The Elements of Programming
Like a language spoken by human beings, a programming language is com-

posed of a series of elements, each of which plays a particular role in the

composition of a program. For instance, human languages are composed of

nouns, verbs, and prepositions, along with other parts of speech. Similarly,

computer programming languages are composed of commands, functions,

and variables, along with other such expressions.

Moreover, just as in a human language you must construct sentences

from multiple parts of speech in order to encapsulate a complete thought, so

too in a programming language you must organize into statements the vari-

ous commands and functions that you want the computer to perform in

order for the computer to understand them. Some statements, like some sen-

tences, consist of only a single word, whereas others may consist of do/ens of

words. The statement, composed ol commands, functions, variables, and

other programming language elements, is thus the basic building block of a

computer program.

14 PROGRAMMING BASICS

Statements can be very concise. For instance, the line

PRINT 52

is a complete statement in the BASIC language. It would instruct the com-

puter to print the value 52 on the screen (or the currently selected output

device).

However, computer language statements can also grow considerably

more complex, as in the following example:

If ASC(RIGHT$(Edi tf i 1 e, D) < 33 Or ASC(RIGHT$(edi tf i 1 e,

D) > 122 THEN SET Edi tf i 1 e = LEFT$(Edi tf i 1 e , 1)

This statement, taken from a Visual BASIC program, is more complex,

mixing a variety of language elements, including commands, functions, vari-

ables, constants, and expressions. You'll need to understand how each of

these elements is used before the meaning of even a moderately complex

statement like this one is clear.

Note that most of the programming examples and descriptions of com-

mands and functions throughout this chapter are generic: They are intended

primarily to explain the general concepts common to most high-level Win-

dows development tools. Consequently, they don't reflect the exact syntax of

any one programming language, and would therefore require some transla-

tion before they could be used in actual programs.

Commands
A command is just what would you think it is: a way of ordering the com-

puter to perform a specified action.

Each executable statement in a computer program will generally include

one command. For instance, the first example statement above contains the

command Print. The second example contains the command Set, which is

used to redefine the contents of variables (see the following section).

Most programming language commands accept parameters. These are

used to make the point of the command more specific. When a mother wants

her child to buy some milk, she doesn't just say "Go." Instead, she tells the

child, "Go to the store and get some milk." Similarly, a program can't simply

tell the computer to print. Unless the intent is to print a blank line, the pro-

gram must include a parameter with the command that tells the computer

what it is to print, as in:

PRINT 5

Depending on the command being used, the parameter may consist of a

number, a text string, a variable, a subroutine name, or several other possibil-

ities, all of which will be discussed in the following pages.

The Elements of Programming 15

Most computer languages include a wide variety of types of commands.
Some of these are common to many languages. Their syntax and implemen-

tation may vary from language to language, but their general purpose is

achievable in a similar fashion in nearly every language. Other commands
are very specific to the needs and purposes of a particular language. Thus it

may be difficult to find equivalents to them in any other language.

Nearly every computer language includes a variety of commands used

to control the flow of program execution, that is, which program state-

ment's command will be executed next by the computer. Execution-control

commands are needed because it is a rare situation indeed when you'll

want a program to always execute its commands in exactly the same order

every time the program is run. Certainly, any program that interacts with a

user must be able to adapt the order in which it executes commands to the

user's wishes.

Consider, for instance, the simple text editor called Notepad that accom-

panies Windows 3.1. When you run Notepad from the Program Manager, the

program loads into memory and executes a series of instructions that first

open up a blank file for editing, then draw Notepad's menus on the screen

and put a flashing cursor at the point in the file where text will be inserted if

you start typing. It then pauses to see what you'll do next. If you start typing.

Notepad displays the characters you type and inserts them into the memory
buffers it is maintaining for the unnamed text file. But, if you instead use the

keyboard or mouse to activate Notepad's menus, it must carry out a different

set of instructions. For example, if you select File Open it has to display a list

of other files you can edit, whereas if you select Edit Search it has to open up

a dialog box asking you to identify the text that you want to find. If you press

Fl it has to display its help file.

Thus, once it has completed loading into memory and doing a little pre-

liminary startup work. Notepad must have a block of code that employs logic

on the order of the following:

Wait for something to happen

Then

If user is typing, execute the typing commands

If user opens File menu, execute the File menu commands

II user opens Edit menu, execute the Edit menu commands

If user presses Fl , open the Help file

etc.

Execution control commands, therefore, are the traffic cops of program-

ming. They ensure that the program's commands are executed in accordance

with the wishes of the user and the programmer.

Most programming languages also include a set of input/output com-

mands, which are used to read and write files, to display information on the

16 PROGRAMMING BASICS

screen, and to send data to a printer. In Windows applications, some of these

commands will make use of user-interface elements such as dialog boxes. For

instance, most high-level Windows development tools have one-line com-

mands for putting a simple yes-or-no message on screen, as in

MSGBOX ("Okay to delete all files on Drive C:? (Y/N) ")

Unfortunately, both the syntax of these commands and their specific

capabilities differ from language to language. But their general capabilities

are similar enough that, having learned how to read and write files or how to

display information on the screen using one programming tool, the process

of learning to do the same thing in another language will be much easier.

Finally, many languages have a set of commands that are wholly unique,

without equivalents in other languages. This is most obvious in application

macro languages, which offer commands geared to the specific capabilities of

their underlying applications. For instance, Excel's macro language has a

RECALCULATE command, reflecting the fact that Excel is at heart a spread-

sheet. DynaComm's macro language, similarly, has a variety of commands that

make sense only in a language designed for use with a communications program,

including WAIT QUIET, which delays program execution until the communica-

tions line has been silent for a user-specified period, and COPY BUFFER,
which copies the current terminal session buffer to the Windows Clipboard.

Variables

Variables are defined as temporary storage locations for information. By
assigning a value to a variable such as Delay% or Time$, you are telling the

programming language to substitute that value whenever it encounters the

variable name in the course of carrying out a command.
For instance, consider the following example of a simple two-line program:

X%=5

PRINT U
The first line tells the computer that the value 5 should be substituted for

the variable named X% whenever it appears in a command statement. The
second line tells the computer to print X%. Following the instruction from

the first line, the computer will respond to line two by printing "5".

Most programming languages support the following basic types of vari-

ables, which are distinguished from one another by the kind of data they can

contain:

String variables

Integer variables

Real variables

The Elements of Programming 17

String Variables

The first type, string variables, can be used to contain any assortment of

alphanumeric characters, plus nonprintable control characters. For instance,

if you were a My Fair Lady fan you could assign the sentence "The rain in

Spain stays mainly in the plain" to a variable called Rain$. Then, whenever

your program encountered Rain$ in the course of carrying out a command,
it would substitute "The rain in Spain stays mainly in the plain."

Thus, the command

PRINT Rain$

would print Eliza Doolittle's famous tongue twister.

In many programming languages, a string variable is designated by a dol-

lar sign, either at the beginning of its name ($Rain) or at the end (Rain$),

depending upon the variable-naming convention used by the language.

Integer Variables

The second standard type of variable is an integer variable. As its name sug-

gests, this variable is used for storing integers (nonfractional numbers). The
numbers 6, 5, 302, and -256 are all valid integers. Frequently, integer vari-

ables are further limited to handling values ranging from -32,768 to 32,768,

although some languages also offer a long-integer form of variable that

extends the range of valid integers to several billion numbers (from

-2,147,483,648 to 2,147,483,647.

Integer variables are often designated by a percentage sign, either at the

beginning (%X) or the end (X%) of the variable name, again depending

upon the language s convention for naming variables.

The primary reasons for using integer variables are speed and economy
of memory usage. Integer variables generally occupy only two to four bytes

of memory (as opposed to the four to ten bytes occupied by noninteger

numeric variables), making it very easy and fast for the computer to look up

their value whenever it needs to, and helping to conserve memory.

Real Variables

The final standard variable type is the real variable, which can be used to

store both nonfractional and fractional values. Thus, 3.1415927, 6.3, and

-99.9394949 are all valid values for a real variable. Real variables occupy

four to ten bytes of RAM. They should be used whenever fractional num-

bers will be assigned to the variable.

Some languages allow you to determine the precision and memory
usage of a real variable. For instance. Visual BASIC offers both single-

and double-precision real variables, which occupy four and eight bytes of

memory, respectively. Single-precision variables can hold values ranging

from ± 1 .5E-45 to 13.37E+38 (with 7 to 8 digits of precision), whereas

18 PROGRAMMING BASICS

double-precision variables can hold values ranging from ±5.0E-324 to

±1.67E+308 (with 15- to 16-digit precision).

There is no standard naming convention for real variables. Some lan-

guages use a number sign (#) preceding or following the variable name, oth-

ers an exclamation point (!), and others no indicator at all.

Initializing Variables

Different high-level programming languages handle the initialization of vari-

ables (the setting of initial values for them) in different ways. Some require

you to list all the variables your program will use at the beginning of the pro-

gram, stating the type of each variable, as follows:

DEF Midwords AS STRING

DEF Wordlength AS INTEGER

and so on. The exact syntax for making these declarations differs from lan-

guage to language.

Other languages allow you to make implicit declarations of variables,

simply by using them and assigning them the correct suffix or prefix. For

instance, you could issue a simple command such as

Mi dwords$=" Early one morning"

to initialize a new string variable called Midwords$, and assign the string

"Early one morning" to it.

You can even use the contents of other variables to define a new vari-

able, for instance

X%=4

Y%=5

Z%=X%+Y%

would define Z% as the sum of X% and Y%, or 9. Once defined in this man-

ner, Z% would remain equal to 9 no matter how the values of X% and Y%
change, until you explicitly redefine Z% again.

So, if the next lines in the program read

X%=8

Y%=14

Z% would remain equal to 9. However, if you followed those with the line

Z%=X%+Y%

Z% would be redefined to equal the sum of the current values of X% and

Y%,or22.

The Elements of Programming 19

Regardless of how your programming language initializes variables, it is

important that you always assign the correct form of data to them. Never

assign string data to a real variable, or a real number to an integer variable.

Doing so will cause an error that will probably halt the compiling or execu-

tion of your program. This kind of error is commonly referred to as a type

mismatch error.

Why Use Variables?

There are two basic reasons for using a variable in writing a program rather

than the actual contents of the variable. The first is to conserve space. A
string variable, for instance, might be hundreds of characters long. If you're

going to refer to that string dozens of times in your program, it makes much
more sense to use a variable name—which is stored in the program as a four-

byte address—than it does to use the entire string each time.

The other, and actually more frequent reason for using variables in lieu

of actual values, is that at the time you write the program, you often don't

know what the actual value will be. For instance, let's say you have a simple

program that uses a dialog box to ask the user to enter an integer between 1

and 10. Then, once the user has entered the number, the program multiplies

it by 10 and prints the result.

That's a simple enough program, but at the time you write it you have no

idea which of ten possible values the user will enter. So how do you tell your

program to multiply the number that is entered and then display the result?

With variables, it's easy. You simply assign the number the user entered to an

integer variable—call it User%—and then manipulate it with a couple of

lines of code, something like this:

New_num%=User%*10

Print New_num%

If you didn't have access to variables in which to store the number the user

entered, however, it would be difficult, if not impossible, to carry out these

operations on it.

Often, too, your program will contain commands that set variables to val-

ues that you could not know at the time that you wrote the program. For

instance, a program that repeatedly prints the current time and compares it

to a predefined starting time would continually be assigning new values to

the variable in which the current time is stored.

In addition, the use of variables allows you to make use of a variety of

program control devices, one of which is called a loop. A loop is a way of

using the same programming code repeatedly, rather than repeating the code

in your program. For instance, if you wanted to print a list of the numbers 1

to 1,000, you could go about the problem in two ways. You could cither issue

20 PROGRAMMING BASICS

the Print command 1,000 times, followed each time by the actual number to

be printed:

PRINT 1

PRINT 2

PRINT 3

and so on, or you could use a variable to represent the number to be printed

and simply increment the variable's value each time the Print statement is

executed. To do so, you'll use a FOR-NEXT loop, as follows:

FOR X%=1 TO 1000

PRINT XX

NEXT XX'0

This simple device, (which saves you 997 lines of program code!) works

like this: The statement FOR X%=1 TO 1000 tells the program to repeat the

lines between that statement and the statement NEXT X% once for each

integer, starting with 1 and ending with 1,000. Moreover, each time through

the loop the value of X% is reset to the number of the current repetition, so

the first time through X%=1, the second time X%=2, the third time X%=3,
and so on. (Loops are covered in more detail later in the chapter.)

Functions

Functions are executable statements that return a value to your program by

modifying the contents of a variable. For instance, the statement

Sub$=MIDSTRING$("This morning", 6,4)

utilizes the MIDSTRING$ function, a common function in BASIC and

BASIC-like languages. MIDSTRING$ accepts three parameters. These

parameters, enclosed in parentheses and separated by commas, consist of: a

string to analyze, a starting position, and a length, respectively. The first

MIDSTRING$ parameter must be in the form of either a string or a string

variable. The second and third parameters must be in the form of either num-

bers or integer or real variables. Thus, the same command could be written as

Sub$=MIDSTRING$(Morning$,Start%,Length%)

assuming that you or your program had already assigned the string "This

morning" to Morning$ and the values 6 to Start% and 4 to Length%.

The MIDSTRING$ function is used to extract a part of the original

string, starting at the starting position you specify and continuing for the

number of characters specified in the length parameter. Thus, MID-
STRING$("This morning", 6,4) would start at the sixth character of "This

The Elements of Programming 21

morning" and continue on for four characters. The result of the function,

therefore, would be "morn".

In the example above, the MIDSTRING$ function returns the value

"morn" to the program, which then assigns it to the specified variable. In this

case, the variable to be modified is called Sub$, so after this statement has

been executed, the variable Sub$ will contain the string "morn".

Predefined Functions

Functions perform most of the actual data-crunching work that goes on in a

program. When you want to obtain an average of five numbers, determine

the current date, or the cosine of an angle, or convert a real number to an

integer, you'll use a function. As you might expect, every programming lan-

guage offers a different set of functions. The number and power of the func-

tions offered by a programming language goes a long way toward

determining its power and usefulness.

Like the functions in a spreadsheet program, those in a programming

language can be classified into a number of broad categories. These include

mathematical functions, string functions, and type-conversion functions.

Math Functions
Common mathematical functions include functions that perform binary arith-

metic (BAND, BOR, BNOT, for example), and those that round off real

numbers to a specified number of places, such as ROUND. For instance,

X=R0UND(3.25233,2)

PRINT X

would round off 3.25233 to 3.25, assign that value to A\ and print it.

String Functions
The string functions you'll encounter in many programming languages

include functions such as MIDSTRING$, which is used to extract part of an

existing string; LEN, used to determine the length of a string; and UPPERS,
which converts all the characters in a string to uppercase. Thus

$First="The early bird gets the worm."

$Second=MIDSTRING$($First. 4,5)

Length_var=LEN($ Second)

$Third=UPPER$($Second)

PRINT SSecond

PRINT Length_var

PRINT $Third

22 PROGRAMMING BASICS

would print the following:

early The characters extracted from $first with the MIDSTRING$()
function

5 The length of the extracted character string

EARLY The extracted character string after conversion to uppercase

Type-Conversion Functions
These functions are used to convert one type of variable to another. Among
the more common variants of these are STR$, which converts a number to a

string; INT, which converts a real number to an integer; and VAL, which con-

verts a string to a number. Thus,

A$=STR$(4-2) would assign the character 2 to A$.

B%=INT(2

.

535353) would assign the value 2 to B%.

C=VAL("6.2") would assign the value 6.2 to C.

The exact syntax and usage of these commands will, of course, differ from

language to language.

Other Function Types
In many languages you'll also encounter functions that perform statistical

manipulations on groups of numbers (finding the average, maximum, or min-

imum value in a group, for instance) or that perform file-related duties (such

as finding the length of a file or determining whether a file exists).

User-Defined Functions

The presence of a function geared specifically to the task you're trying to

accomplish certainly speeds the development process, but the lack of one

doesn't mean that you can't achieve the results that you want. For instance,

imagine that you want your application to determine whether the file

MYDATA.DAT exists in the \DATA subdirectory. If the language you're

using includes a function to determine a file's existence, the task is simple.

You'll simply include a line such as

YesNo%-EXISTS("\DATA\MYDATA.DAT")

If the EXISTS function returns a 1 when it finds a file and a when it

doesn't, the value of YesNo% would be 1 if the file existed and if it wasn't

found.

But what if the language with which you're working, like many, lacks a

function that performs this task? You can build up the function yourself out

of the functions that are available in the language.

For instance, many languages include an ERROR function, which can

be used to determine if an error occurs while executing the program. The

implementation of this function varies from language to language, but for

The Elements of Programming 23

the purposes of this discussion lets take a case where the ERROR function

reports whether an error occurred in executing the previous statement in the

program. With that in mind, one could duplicate the EXISTS function with a

couple of lines of code like these:

F

I

LEOPENC "\DATA\MYDATA.DAT")

%YesNo=ERROR(

)

If an error occurred, indicating that the file wasn't found, % YesNo
would be equal to a number between I and 255 that would correspond to the

BASIC error code for that error. Otherwise it would be equal to 0.

Some languages allow you to define new functions and assign names to

them, so that these user-defined functions can then be used later in your pro-

gram simply by referring to the names you've assigned them. For instance,

you might define an EXISTS function for a language that lacks one, and

then call it simply by using its name and passing it the name of the file to

check, as in:

YesNo%=EXISTS("\DATA\MYDATA\DAT")

Windows-Specific Functions

High-Level Windows programming languages frequently include an addi-

tional set of functions related to the Windows environment. These may
include functions for manipulating the Clipboard or an application's window
and for interacting with other applications.

For instance, WinBatch includes a number of clipboard-oriented func-

tions, including CLIPGET, CLIPPUT, and CLIPAPPEND. CLIPGET is

used to obtain the current contents of the Clipboard and assign them to a

string. CLIPPUT copies a string to the Clipboard. CLIPAPPEND is used to

append the contents of a string to the current contents of the Clipboard.

Similarly, various high-level Windows programming languages include

commands to determine the size of an application's window and whether it

has been iconized, to reposition or resize any window, and to send key-

strokes to another application.

Expressions

Expressions are essentially formulas that use functions and operators to

manipulate the contents of variables. For instance.

5+2

is a simple expression that adds the values 5 and 2 using the addition

operator, +.

24 PROGRAMMING BASICS

There are three basic varieties of expressions you'll find in most pro-

gramming languages:

Numeric expressions

String expressions

Boolean expressions

Numeric Expressions

Numeric expressions, as their name implies, operate on numeric variables

—

often using numeric operators. Table 2.1 demonstrates the usage of common
numeric operators.

Table 2.1 Common Numeric Operators

Operator Usage Description

+ 5+2 Adds two numbers

- 5-2 Subtracts the second number from the first

* 5*2 Multiples the numbers on each side

/ 5/2 Divides the first number by the second

MOD 5 MOD 2 Rounds the two numbers to integers, then divides the first

number by the second and returns the remainder

String Expressions

String expressions operate on string variables, chiefly by applying functions

such as those described in "String Functions," above. For instance,

MIDSTRING$(B$, 12,18)

is a string expression.

In addition to providing functions for converting strings to upper- and

lowercase, obtaining a specified number of characters from a specified posi-

tion within a string, and for converting strings into values, most languages

also allow you to combine strings through a process known as concatenation.

In Visual BASIC, for instance, you could use code such as the following

to concatenate two strings:

A$=" It's raining "

The Elements of Programming 25

B$="cats and dogs."

C$=A$+B$

When this code is executed, C$ would be set to read "It's raining cats and

dogs."

The operator used for string concatenation differs from language to lan-

guage. In DynaComm's macro language, for instance, the vertical bar (I) is

used in place of the + sign to concatenate strings, as follows:

C$=A$|B$

The result of the operation is the same, however. After execution of that

statement, C$ would contain the string "It's raining cats and dogs."

Boolean Expressions

Since string expressions are used to manipulate strings, and numeric expres-

sions are used to manipulate numbers, you might think that Boolean expres-

sions are used to manipulate "Booleans"—whatever those are. Actually,

however, Boolean expressions are those that apply Boolean logic, or Bool-

ean algebra, to strings and values. Named for the English mathematician

George Boole, Boolean algebra is used to determine the truth or falseness of

an expression, rather than to calculate values.

The Boolean operators are shown in Table 2.2. All Boolean expressions

evaluate to a result of either TRUE (which may be represented by a value of

TRUE, 1, or -1, depending on the language being used) or FALSE (which

may be represented by a value of either FALSE or 0).

For instance, executing the Boolean expression

PRINT 5=2

would print either or FALSE, whereas executing

PRINT 2=(4/2)

would print either -1, 1, or TRUE depending on the language being used.

Boolean expressions are generally used to compare variables. The most

common Boolean operators are =, <>, <, and >. These operators can be

applied to both numeric variables and string variables. For instance, the

expression

PRINT "cat"<>"dog"

would evaluate as true since the two strings are not identical, and would thus

print either -1, 1, or TRUE.
It's evident how you might use greater than and less than comparisons

with numeric variables, but you can also do so with string variables. In that

case, the program compares the ASCII value of the first character in each

26 PROGRAMMING BASICS

Table 2.2 Boolean Operators

Operator Usage

IFX=Y

> IFX>Y

< IF X<Y

<>

AND

OR

NOT

IFXoY

X<Y AND Y>Z

X<Y OR Z<Y

Y=Z

Description

Returns TRUE if the two values are equal; otherwise

returns FALSE

Returns TRUE if the first value is greater than the sec-

ond; otherwise returns FALSE

Returns TRUE if the first value is less than the second;

otherwise returns FALSE

Returns TRUE if the two values are not equal; otherwise

returns FALSE

Returns TRUE if both statements are true; otherwise

returns FALSE

Returns TRUE if either statement is true; otherwise

returns FALSE

Returns the reverse of what would normally be returned:

if Y were equal to Z, NOT would return FALSE; if Y didn't

equal Z, NOT would return TRUE

string to determine which is "greater" or "less" than the other (and the

ASCII values of the second characters if the first characters are equal, and so

on). Thus, the expression

PRINT "cat">"dog"

would evaluate as FALSE, since the ASCII value of the letter "c" (99) is less

than that of the letter "d" (100). (Cat lovers, however, may disagree with this

result.)

There are three additional Boolean operators of note: AND, OR, and

NOT. The first two are used to derive a single Boolean result from multiple

Boolean evaluations, whereas the third is used to reverse the truth or falsity

of an expression.

The AND operator requires that both the expressions it links be true in

order for the Boolean result to be TRUE. By contrast, the OR operator

requires that only one expression be true. Thus if X% has the value 6

V/o <30 AND r/ >3

would evaluate to TRUE, since both expressions are true. But

U <30 AND X% <3

The Elements of Programming 27

would evaluate to FALSE, since one of the expressions is false. However, if

you changed the AND in the second statement to an OR

U <30 OR X% <3

the result would be TRUE, since one of the two expressions is true.

X% >30 OR U <3

would, however, evaluate to FALSE, since neither expression is true.

The NOT operator is simply used to reverse the result of a BOOLEAN
expression. Therefore, since the expression

25>100

evaluates to FALSE, the expression

NOT (25>100)

would evaluate to TRUE.

Comments

Comments are nonexecutable statements that are placed in a program to

explain the purpose or logic of the surrounding executable statements. For

instance, in the following example, the line preceded by a single quotation

mark is a comment:

'Print original value of string, then convert string

'to uppercase and print it again

PRINT X$

X$=UPPER$(X$)

PRINT X$

Different languages use different mechanisms to identify comments. In

some languages, comments are preceded by a single quotation mark, as

above. In others, a semicolon (;) or the abbreviation REM is used to identify

a comment.

The presence or absence of comments in program code does not alter

the performance of your programs at all. but it does greatly add to their

readability and decipherability. As you write a complex program, the logic

of the programs various routines may seem self-evident. However, if you go

back to that program six months later, without the benefit of explanatory

comments, you may find it all but impossible to determine even the general

purpose of a routine, let alone to understand all of its elements. And any-

one else who examines your program code will almost assuredly find it

incomprehensible.

28 PROGRAMMING BASICS

Liberal use of comments can greatly alleviate this problem. It doesn't

take long to comment a program, and you'll thank yourself later for doing so.

Arrays

Arrays provide a way to refer to a series of variables with a single name,

using an index number to differentiate between members of the series. This

enables you to group variables in an organized fashion.

For instance, consider a series of variables containing the names of vari-

ous animals. You could define the series with a set of statements, such as

Dog$="Dog"

Cat$="Cat"

Elephant$="Elephant"

Monkey$="Monkey"

and so on. But this method is inefficient because it requires you to reenter

each variable name every time you want to deal with the entire series of

animals.

Using an array, however, you could deal with the same variables as

follows:

Animal$(l)="Dog"

Animal$(2)="Cat"

Animal$(3)="Elephant"

Animal$(4)="Monkey"

This approach enables you to deal with the elements of the series either

individually or as a group. Thus, to print just "Dog", you would simply issue

the command

PRINT Animal$(l)

But if you wanted to print the name of every animal in the array, you could

do so quite easily by using a simple loop:

FOR X=l TO 4

PRINT Animal$(X)

NEXT X

Multidimensional Arrays

The preceding example was of an array with only one dimension—that is,

only one set of index numbers. But you can also construct arrays with two

or more dimensions. For instance, imagine you wanted to expand your ani-

mal array to include the names of different breeds of each animal. You

could do so with a two-dimensional array The first dimension would hold

Program Control Elements 29

the species name, and the second would hold the name of the individual

breed, for example.

Animal $(1

,

l)="Basset hound"

Animal$(l,2)="Poodle"

Animal$(l,3)="Great Dane"

Animal$(2,l)="Siamese"

Animal$(2,2)="Persian"

and so on. All dogs would have 1 as their first index number, whereas all cats

would have 2 in the first index location.

Program Control Elements

In addition to the fundamental building blocks discussed above, such as vari-

ables and functions, computer programs incorporate a variety of control ele-

ments, including the aforementioned loops, and numerous ways to

determine the order and conditions under which the program statements are

executed. The most fundamental of these are decision-making structures

such as the IF-THEN statement.

Decision Making

The strength of most good computer programs is their ability to make deci-

sions about what to do next, based on user input or other data such as mes-

sages from other applications or from a modem.
The primary method that programs use to make decisions is the IF-THEN

statement. This takes the form of

IF it is raining THEN wear your galoshes

or, in "computerese"

IF Weather%=Rain% THEN Galoshes%=l

The ELSE command is an adjunct to the standard IF-THEN statement.

It is used to provide an alternate choice:

IF Weather%=Rain% THEN Galoshes%=l . ELSE Sneakers%=l

Some high-level languages also allow you to chain a series of IF-THEN-
ELSE statements together, as follows:

IF Weather%=Rain%

THEN Galoshes%=l

ELSEIF Weather%=Sunny%

THEN Sneakers%=l

30 PROGRAMMING BASICS

ELSEIF Weather%=Snow%

THEN Snowshoes%=l

ELSE Barefoot%=l

END IF

The statement ELSE Barefoot%=l tells the program that if none of

the other conditions are true, the user should go barefoot. The final END
IF statement tells the program that the block of IF statements has come to

an end.

Select Case Statement
Another way of evaluating variables in order to make a decision is the

SELECT CASE statement, which is supported by some, but not all, high-

level programming languages.

A SELECT CASE statement tests an expression and selects a command
to perform based on the result. This process is more easily shown than

described. For instance, the IF-THEN-ELSE routine described above could

be rewritten as the following SELECT CASE statement:

SELECT CASE Weather%

CASE Rain%

Gal oshes%=l

CASE Snow%

Snowshoes%=l

CASE Sunny%

Sneakers%=l

CASE ELSE

Barefoot%=l

END SELECT

This routine would yield exactly the same results as the more complex

IF-THEN-ELSE routine. One advantage this has is that the SELECT CASE
statement is easier to follow because it is immediately apparent that all the

decision possibilities in the loop depend on the contents of the variable

Weather%. In addition, depending on how the SELECT CASE function has

been implemented in a language, this version of the routine may execute

more quickly than the complex IF-THEN-ELSE version.

Loops

The concept of loops was briefly touched on earlier. There the most simple

form of this device, the FOR-NEXT loop, was described. As stated earlier,

loops enable you to repeat a series of instructions without having to rewrite

their code for every repetition.

Program Control Elements 31

One advantage of loops is that they enable you to use the computer's

ability to simply grind away at a problem until it arrives at the correct

answer. For instance, say you wanted to determine the square root of

467,856, and all that you knew was that the result was an integer between 1

and 1 ,000. If you were trying to find the answer on paper, you'd know right

off that you could skip low numbers such as 1, 10, and even 100, because

without even multiplying them out you know that their squares are not any-

where close to 467,856.

Computers don't have that kind of common sense, but they compensate

for it by being blindingly fast. You could try to program the computer to fol-

low the same reasoning that you would apply to solve the problem, but doing

so would be a complex programming process because the computer doesn't

know 1 x 1 doesn't equal 467,856 until it does the calculation. The alternative

is to use a loop that simply muscles its way through, squaring every number
between 1 and 1,000 until it gets the correct answer. This might add a second

or two to the processing time for the loop, but it could save you hours of pro-

gramming time.

Here's the loop:

FOR X=l TO 1000

IF X*X=467856 THEN Answer=X

NEXT X

The problem with this method is that it is doubly inefficient. In addition

to testing values that are absurdly low. it also continues to test even after it

has arrived at the correct answer (684), because there is no mechanism for

ending the loop once it has arrived at the correct answer.

Some languages provide a back door to FOR-NEXT loops in the form

of a command called EXIT FOR. Using that command, you'd rewrite the

loop as follows:

FOR X=l TO 1000

IF X*X=467856 THEN EXIT FOR

NEXT X

Answer=X

WHILE-WEND Loops
There are also a variety of other looping methods that can be used to solve

the above problem. One is the WHILE-WEND loop, which continues to exe-

cute a loop as long as the specified condition is true. Using WHILE-WEND.
the loop above could be rewritten as follows:

X=l

WHILE X*X<467856

32 PROGRAMMING BASICS

INCREMENT X

WEND

This loop uses the INCREMENT command to add 1 to the current

value of X each time the WHILE loop is executed, and continues to execute

the loop until X*X is equal to the target number. It automatically stops exe-

cution of the loop when the target figure is reached, without the awkward-

ness of an EXIT FOR command.
As stated, a WHILE-WEND loop will continue to execute as long as its

initial condition is true. If the condition is false the first time it is tested, none

of the instructions in the loop will be executed.

In general, FOR-NEXT loops are more useful when you know in

advance how many times you want the loop to repeat, whereas WHILE-
WEND loops are more useful when the number of repetitions is not known
in advance.

DO-LOOP
Another variety of loop is the DO-LOOP, which has many of the advantages

of the WHILE-WEND loop, but is even more flexible.

The DO-LOOP can be set to either repeat itself as long as its initial con-

dition is true (like a WHILE-WEND loop) or until that condition becomes

true. Moreover, the condition upon which the loop operates can, in many lan-

guages, be specified at either the beginning or the end of the loop. Placing

the condition at the end of the loop ensures that the loop will execute at

least once, no matter whether the condition is true or false.

The square root problem would be rewritten using a DO-LOOP as

follows:

DO UNTIL X*X=467856

INCREMENT X

LOOP

As written, this will continue to increment X until X squared is equal to

467,856. But if the initial value of X is 684, the condition will be satisfied

immediately, and thus the X will never be incremented.

The loop could also be written like this:

DO

INCREMENT X

LOOP UNTIL X*X=467856

Since the condition is placed at the end of the loop, this ensures that X will

be incremented at least once.

Program Control Elements 33

Endless Loops
Did you ever work with a buggy program that would start flashing a busy sig-

nal at you and never stop? Of course you have, every PC user has had that

misfortune. You just sit there watching the busy indicator flashing and won-

dering why the program is acting the way it is.

One strong possibility is that the program has gone into an endless loop.

That is, it is executing a loop that has a condition for exiting that can never

be reached. How is such a thing possible? Consider the DO-LOOP just

described:

DO

INCREMENT X

LOOP UNTIL X*X=467856

This loop will work well under most conditions. However, it rests upon

one big assumption: that the initial value of X will be less than 684. If it isn't,

however, X*X will always be bigger than 467,856, no matter how many times

the program increments X. As long as the program is written in such a way

as to ensure that X is always less than or equal to 684 at the beginning of this

loop, it will execute flawlessly. But if the value of X is ever greater than 684

at the beginning of the loop, the program will never find the answer it is

seeking.

The bottom line: Loops are invaluable devices, but you should use them

carefully in order to ensure that the conditions they are dependent on are

realistic.

Input/Output

There is a tremendous variety in the file read/write capabilities of high-level

Windows development tools. Some, such as application macro languages,

have a native file format that they rely on. Some are also able to read and

write files created by such popular programs as dBASE, Lotus 1-2-3, and

Excel. But in addition, nearly every high-level language-development tool

for Windows makes it possible for programs written using the tool to create,

read, and write text-format files.

Text-format files are the simplest and most universal file type. In these

files, data is stored in the form of plain ASCII characters, rather than being

encoded into a binary file. After being displayed or printed, text files can be

read by humans, and they can be exchanged with nearly any kind of com-

puter system. Binary files, in contrast, can only be read by a computer and

can only be deciphered by a program that knows the method that was used

to encode them.

Text-format files can generally be categorized as either sequential-access

or random-access files. With the former, data is accessed by reading through

the entire file until the desired data is obtained, whereas with the latter, data

34 PROGRAMMING BASICS

is organized into records—a program can read a specified record directly

without having to search sequentially from the start of the file.

Sequential-access files are generally more useful for storing data records

that will all be used at once—such as a stored list of setup options that is

read as a program initializes. Random-access files, by contrast, are more use-

ful for working with data that will be accessed on a record-by-record basis.

Random access offers less flexibility in terms of individual record structure,

but it allows individual records to be rewritten, updated, or deleted without

rewriting the entire file.

Generally a file's type is specified at the time it is created. In Visual

BASIC, for instance, you could open for random access a file called

TESTFILE.DAT with 256-character records using the following com-
mand:

OPEN "TESTFILE.DAT" AS 1 FOR RANDOM LEN=256

The phrase "AS 1" is used to assign a file number to the file; it is

required by Visual BASIC.
Sequential files in Visual BASIC must be opened for either input or out-

put, not for both at once. To open the file for sequential output the com-

mand would be:

OPEN "TESTFILE.DAT" AS 1 FOR OUTPUT

Named Subroutines

Earlier in this chapter I talked about execution-control commands. These

commands typically work in conjunction with named subroutines—groups of

program statements that have been assigned a name.

The simplest form of named subroutine is the GOSUB statement, found

in BASIC and some other languages. It is used to divert program execution

to a named subroutine. The last statement in the named subroutine should

be RETURN, which diverts program execution back to the original routine

at the statement immediately following the GOSUB routine, for example:

X=4

GOSUB PRINT_IT

X=8

GOSUB PRINT IT

*PRINT.. IT

PRINT X

RETURN

Program Control Elements 35

The asterisk preceding PRINT_IT indicates that PRINT_IT is the name
of a subroutine. As the program executes, the PRINT_IT routine is executed

each time a GOSUB PRINT_IT statement occurs.

A more sophisticated form of accessing named subroutines is the PER-
FORM statement, which, in many languages, allows you to pass a variable to

the subroutine as you call it.

For example, imagine that you wanted the PRINT_IT routine to print

not the value you passed to it, but rather its square. You could use the PER-
FORM command as follows to implement this:

X=4

PERFORM PRINT^IT(X)

X=8

PERFORM PRINT_IT(X)

*PRINT_IT (Y)

Y=Y*Y

PRINT Y

RETURN

The advantage of this construction is that although you're passing the

contents of the variable X to the PRINT_IT subroutine, X itself is

unchanged by the subroutine. Instead, it assigns the value that has been

passed to it to a variable called Y. It then squares Y and prints the result.

Variable X remains unchanged.

Variable Scoping Rules

This introduces a touchy subject called variable scoping—one that is made
more difficult by the fact that the rules governing it vary greatly from one

programming language to the next. In general, however, the point of variable

scoping is that all variables are not created equal. Instead, each variable is

assigned a scope at the time it is created.

Some variables are considered global in scope, in which case they can be

used anywhere in a program, and their contents can be changed at any time.

Other variables are considered local—they exist and are usable only in the

subroutine that created them.

Other variables follow a downward hierarchy. They are valid in the rou-

tine that created them and any routines that routine calls, but are not valid in

the routine that called the routine in which they were created.

Why do languages enforce variable scoping rules? There are two good

reasons. One is that variables eat up a lot of memory, and if all variables

were considered global (meaning that your program had to keep track of

each variable that you create for as long as the program runs), you'd run out

of memory much faster.

36 PROGRAMMING BASICS

The second reason for having variable scoping rules is that they help

make programs more simple and more understandable by eliminating the

need to keep track of dozens of variables that may only have been used

once. Consider, for example, the variable Y in the second PRINTJT subrou-

tine above. It was created only so that we could square it and then print it.

Once it has been printed, the program has no further use for the variable,

and hence it is of no consequence if the variable ceases to exist as soon as the

RETURN statement in the PRINTJT subroutine is executed.

In fact, you could improve the readability of the program by renaming

the variable Y as Temp, and then using the name Temp whenever you cre-

ated a local variable that was doomed to a quick extinction, for instance:

*PRINT_IT (Temp)

Temp=Temp*Temp

PRINT Temp

RETURN

*HALVE_IT (Temp)

Temp=Temp/2

PRINT Temp

RETURN

It would take only a few seconds of perusing a program containing sev-

eral subroutines written this way to realize that "Temp" was always used

to name a local variable that was to be discarded almost as soon as it was

created.

Error Handling

Error handling might be better called the prevention and cure of runtime

errors (errors that arise at the time your program is executed).

There are two basic causes of runtime errors: The first is that your pro-

gram doesn't work the way you think it does; the second is that the user

doesn't work with your program the way you think he or she will.

As an example of the first type of error, consider one of the DO-LOOPs
listed above, where the test condition was placed at the beginning of the loop:

DO UNTIL X*X=467856

INCREMENT X

LOOP

Now let's suppose that for some reason you were really counting on X
always being incremented—or perhaps that another command that you've

added to the loop would always be executed—whenever the program came

to that loop. In fact, you're counting on it so much that your program won't

Error Handling 37

work if it doesn't happen. Well, that's a problem because, as demonstrated

above, if the initial value of X is 684, the loop will not execute, and thus X
will not be incremented. In other words, your program won't work the way

you thought it would.

This kind of problem is easy to overlook at design time and difficult to

track down when it occurs. But if you want your program to be bulletproof,

you have to anticipate it and find a solution to it—either by ensuring that X
is never equal to 684 when the loop is called or by adding a statement some-

where else in your program that decrements X if it happens to be equal to

684 prior to calling the loop.

User Errors

The second major cause of runtime errors occurs when users don't respond

the way you thought they would to your program. For instance, let's say

you've got a routine that requests that the user input the current date, and

then assigns the date the user enters to a string variable called Date$. If the

user enters 08/24/56, you could parse (break up) the date into separate

strings for the month, day, and year as follows:

Month$=SUBSTR$(Date$,l,2)

Day$=SUBSTR$(Date$,4,2)

Year$=SUBSTR$(Date$,7,2)

Those statements will work quite well, as long as the user responds

exactly as you expect. But what if the user types 8/24/56, August 24,

1956, or 24.8.56? Any of those variants will result in confusion, at best,

since your Month$ variable would then be assigned to hold "8/", or "Au", or

"24", and your Day$ and Year$ variables become equally mis-set.

The thing that makes user-introduced errors so difficult to prevent is that

you might test that routine yourself a dozen times and never have it occur to

you to enter anything at the prompt other than 08/24/56. Similarly, you

might test a dialog box hundreds of times, and never once hit the OK button

before filling out the dialog boxes' edit fields (because it's obvious to you

that no one would ever do that). But if you don't plan for it, perhaps by hav-

ing a routine that immediately redraws the dialog box if the necessary edit

fields aren't completed, sooner or later someone will do the unthinkable. He
or she will hit the button that no one would ever hit, or enter a date in a for-

mat that no one would ever use, and crash your program in the process.

The only way to avoid these errors is to plan for every possible eventual-

ity, and then when you think you've got every possible base covered, test

your program on some real users. They're sure to find plenty of errors you

would never uncover yourself, no matter how long you tested the program.

38 PROGRAMMING BASICS

Learning to Program
That concludes this chapter's tour of the basic concepts of programming. The
information covered here should enable you to understand the discussions of

the programming techniques and the example programs in the chapters that

follow, and it might even give you a head start when it's time for you to mas-

ter one or more Windows high-level programming languages.

It's one thing to be able to follow along with the examples in this book,

or to complete the tutorial chapters in some programming language's user

manual. It's another thing entirely to know how to program, and that is some-

thing that can't be taught.

Oh, I know there are thousands of students sitting right now in program-

ming courses learning the ins and outs of relational database theory and

indexed sequential-access files and the fastest sort routines for all occasions

—

and certainly those are all valuable pieces of information. But just because

someone is the master of those concepts doesn't mean that he or she is a real

programmer.

Learning to program involves two tightly intertwined processes: You
must learn how to see what is possible, and you must learn how to turn the

possible into the real.

Before you can write a single line of code, you have to decide what it is

that you want to achieve with your program. In order to do that, you've got

to thoroughly understand both the capabilities of the Windows 3.1 environ-

ment and those of the development tools at your disposal. Then you have to

be able to see where those capabilities and the possibilities they offer inter-

sect with your needs as a computer user. In other words, the first part of pro-

gramming, the conceptual part, is a creative process. You have to make a

cognitive leap from the reality of the current capabilities of Windows and

your Windows applications to the possibilities that you might achieve

through careful wielding of high-level language-development tools.

Once you've made that leap, you have to use your knowledge of these

development tools to actually write the program code that will turn the possi-

ble into the real. In the process of doing so, you'll undoubtedly encounter

complications that need solving, and see new possibilities that need explor-

ing. But if your fundamental premise for the application is sound, once

you've gotten to the code-writing stage you should be able to turn your ideas

into reality.

So how do you learn to recognize what is possible? And once that's

achieved, how do you learn to use high-level language-development tools

well enough to turn raw ideas—no matter how conceptually brilliant—into

reliable, useful programs?

The answer is experimentation. You can study all the example programs

in the world, and type every line of sample code you can find into your PC,

Learning to Program 39

but unless you're willing to experiment with programming you'll never be

more than a typist inputting someone else's ideas.

As you work through the examples in this book, or the examples in the

manuals for any development tools you might happen to have, don't settle

for simply typing in each example as it comes about. Change the values of

variables, change the names assigned to buttons, change the size of other

user-interface elements, rearrange the order of items on the screen. And
more than anything else, just play a little bit with everything you do. That's

the best way to discover the capabilities and limitations of your development

tools, and the best way to catch a glimpse of what is really possible.

Of course, beyond the experimentation, learning to use a computer lan-

guage is similar in many ways to learning a new spoken language. There are

vocabularies to master and syntactical rules to learn. Whatever time you

spend memorizing those vocabularies and rules will be well spent. But

remember, that isn't the sum of learning to program. Vocabulary lessons will

prepare you to ace a midterm exam, but it's experimentation with the lan-

guage that will let you rave all night in a smoky cafe. Both experiences are

necessary for the budding programmer.

This learning process can be both easier and more difficult than learning

a human language. It's easier because you have a smaller vocabulary to work

with, and because there are absolute rules upon which you can rely. But

learning a programming language can also be more difficult than a human
language, because computers are less forgiving than people. You have to say

precisely what you mean, or your program won't perform in the way that you

expect. There are no irregular verbs in BASIC, but there isn't any equivalent

for "Uh, you know what I mean," either.

CHAPTER

Cut-and-Paste

Programming
Customizing

Applications

Linking Existing

Applications

Using Third Party Code

Making Cut-and-Paste

Programming
Work for You

Cut-and-Paste Programming 41

AS YOU SET OUT ON ANY WINDOWS DEVELOPMENT PROJECT YOU HAVE
two choices: You can write the entire application from scratch, or

you can stitch together existing applications and commercial code

libraries to build your application, using as little custom code as

possible. Although both options have their merits, I've found that most non-

commercial Windows development projects proceed more quickly, more effi-

ciently, and more reliably using the second method, which I call cut-and-

paste programming.

This method obviously isn't appropriate to all development projects. For

instance, if you're intent on building an application that rethinks the entire

process of word processing or that revolves around an entirely new species

of multidimensional databases—and you plan on selling five million copies

of it—then yes, perhaps you had better sit down and write that application

from scratch.

But if, as is more likely, the applications you want to build are a little less

extraordinary, and slightly more modest in scope than that, then cut-and-

paste programming could save you hundreds or even thousands of hours of

development time.

Don't Reinvent the Wheel
The idea of cut-and-paste programming is simple: rather than wasting count-

less hours recreating and debugging routines that other developers have

already perfected, you should look for ways to incorporate those existing

routines into your custom applications.

For example, most business applications tend to revolve around a fairly

small set of basic activities. Perhaps you want your application to gather a lit-

tle data and maybe perform a little analytical magic on it or compare it to

data found in a departmental database. Maybe you'd like the application to

be able to print a good-looking report or create some interesting analytical

graphics. Perhaps the application has to be able to communicate with a

remote mainframe.

Sound familiar? It should. This broad set of functions pretty much cov-

ers the basic ingredients of almost every business application. Of course,

there are countless variations on each one of those ingredients—word pro-

cessors, spreadsheets, and drawing programs all gather data, for instance, but

they do so in markedly different ways. However, the point is that almost all

business applications consist of combinations of those variations, and as a

result, it is often possible to find existing program code or applications that

perform the functions your custom application needs to perform.

42 CUT-AND-PASTE PROGRAMMING

The Windows environment makes it remarkably easy to integrate those

functions. You can realize the benefits of cut-and-paste programming in the

following ways:

By taking advantage of such Windows 3.1 facilities as dynamic data

exchange and object linking and embedding (OLE)

By using application macro languages to customize existing applications

By exploring the application-linking capabilities of Windows batch

languages

By incorporating third-party dynamic link libraries into your custom

applications

Cost and Performance
It is only fair to point out, however, that there is some cost in terms of effi-

ciency resulting from following the cut-and-paste programming method. A
custom application that links two or three existing applications, for instance,

will take up more disk space and operate more slowly than one written from

scratch incorporating only the functions it actually needs. A cut-and-paste

application will also require a larger out-of-pocket investment than one writ-

ten from scratch.

But the expense and disk-space considerations can be at least partially

mitigated if you're able to make use of applications you already own. And
you might also consider the potentially huge time-savings that accrue from

using the cut-and-paste method as justifying a relatively small additional out-

of-pocket expense.

But what of the performance question? Well, although an application

that relies on a macro language or DDE links will perform more slowly than

one written from scratch (in a high-performance Windows development tool

such as C, for example) it won't be as slow as you might think. Indeed, well-

written applications that utilize macro languages (such as those found in

Excel or DynaComm) for the tasks they're designed for, can certainly outper-

form poorly written C applications.

Of course, if you try to use Excel's macro language to build a word pro-

cessor or DynaComm's to build a graphics program, your application's per-

formance will be abysmal. However, if you stay within the limitations of the

macro language and make use of those things that it does well (financial cal-

culations in the case of Excel or telecommunications links in the case of

DynaComm), you can achieve perfectly acceptable performance, as several

of the example applications found in the later chapters illustrate.

Customizing Applications 43

Customizing Applications

The most basic form of Windows development project is one that customizes

an existing Windows application. Customization of this sort is done for one

of two reasons: to add new functions or capabilities to an existing application;

or to transform a general-purpose tool, such as a spreadsheet, into a special-

purpose one, such as a bond-ratings analysis program.

Several of the projects discussed later in this book are examples of cus-

tomizing a single existing Windows application. These include the first exam-

ple project, The Ultimate Notepad, and the book's final project, M.M.M.:

The MCI Mail Manager.

Adding Functions—The Ultimate Notepad
When using Windows' Notepad feature, I was constantly frustrated by its

lack of basic text-editing functions such as search-and-replace and the ability

to merge text files. But I didn't have the time, or desire, to write a new text-

editing program from scratch.

Instead, I used Wilson WindowWare's WinBatch to customize the exist-

ing Notepad program, using WinBatch macros to combine Notepad's core

functions and WinBatch's own functions to give Notepad the capabilities I

needed. For instance, I used a combination of Notepad's existing search func-

tion and some of the clipboard and string-handling functions of WinBatch to

create a search-and-replace capability that functions as smoothly as Note-

pad's original search function.

The resulting application. The Ultimate Notepad, is described in more

depth, and its complete source code is presented, in Chapter 9.

Creating a Special-Purpose Tool—M.M.M.: The MCI Mail Manager
The M.M.M. project had its origin in my desire to duplicate under Windows

the functionality of a DOS application called Lotus Express. Express is a

TSR program that logs on to the MCI Mail service regularly throughout the

day, sending any messages in its "outbox" and retrieving any messages that

are waiting on line. It also provides a series of user-definable "mailboxes" for

storing and organizing mail messages, and a text editor for reading and com-

posing messages.

I could have set out to create a Windows version of Express from

scratch, but it would have been a Herculean task, including writing all the

communications routines needed by the program (modem, serial port, ter-

minal-emulation control functions, and so on), defining and creating a file

management system for messages, and writing a text editor so that I could

read and compose messages. In fact, I would have had to do so much work

to write the program that it simply would not have been worth the time or

effort.

44 CUT-AND-PASTE PROGRAMMING

As it turned out, of course, there was no need to do so. I was able to

build the application to my exact specifications—even adding additional

"bells and whistles" such as an off-line address directory—using Dyna-

Comm's script language. In other words, I used a general-purpose tool, Dyna-

Comm, to create a special-purpose one, M.M.M.
Creating M.M.M. still wasn't a trivial task—the resulting application con-

sists of thousands of lines of code. But by using DynaComm's native func-

tions and the capabilities of its script language, I avoided having to write tens

of thousands of additional lines. For example, incorporating DynaComm's
memo editor saved me the work of writing the code for a text editor; its

structured record format saved me having to create database-search, -sort,

and -indexing routines; and its communications functions saved me the effort

of writing terminal-emulation and modem-control routines.

From the point of view of the user, M.M.M. is a stand-alone application.

Every menu, dialog box, and icon displayed by M.M.M. is tailored specifi-

cally for use by M.M.M.—the user never has to navigate through a Dyna-

Comm dialog box or menu in order to use the script. In short, the user need

know nothing about DynaComm, despite the fact that the application is built

entirely in DynaComm macro code.

You'll find a complete description of the M.M.M. project, as well as its

complete source code, in Chapter 15.

Customizing with Macro Languages

Usually the simplest way to customize an existing Windows application is

through use of the application's own macro or script language. In the Win-

dows applications with the most robust macro languages (Microsoft Word
for Windows, Microsoft Excel, Ami Professional, and DynaComm are good

examples), you can use the macro language to completely transform the

application, replacing its standard menus, dialog boxes, and functions with

customized versions tailored to your liking.

Of course, some Windows applications have less robust macro lan-

guages, and others have none at all. In those cases, you can use a batch lan-

guage, or possibly a DDE link with another, more easily customized

application, to customize the application.

The more robust application macro languages provide you with a range

of capabilities extending from simple modifications of the application's

menus or appearance to the opportunity to create complete new programs

that, like M.M.M., utilize the capability of the underlying application while

completely hiding that application from the user.

As an example of a simple modification, let's say you wanted to add a

command to the File menu in Word for Windows. This command would

load the DOS command processor so that you could issue commands at the

DOS command line. In other words, it would perform the same function as

Customizing Applications 45

double-clicking on the DOS Prompt icon in the Program Manager. You
could add this command by creating the following three-line WordBASIC
program:

Sub MAIN

SHELL "C:\C0MMAND.C0M"

End Sub

This simple macro uses the WordBASIC SHELL command (used to

launch another application) to load the DOS command processor, COM-
MAND.COM. (It assumes you're using the standard DOS command proces-

sor, located in the root directory of drive C.)

Once you've created the macro in Word for Windows' macro editor, and

saved it with a name such as ShellToDOS, you can use the Assign to Menu
option on the program's Macro menu to assign the macro to one of the stan-

dard WordBASIC menus. I've added this useful little macro to the File menu
in my copy of Word for Windows, as shown in Figure 3.1. (Word for Win-

dows automatically parses the macro name when suggesting a name for its

menu item, so that "ShellToDOS" becomes "Shell To DOS".)

Figure 3.1
The ShellToDOS

macro added to

Word for Windows'

standard File menu

Microsoft Word
Edit View Insert Format Utilities Macro Window 03:53 PM 08/27/91 Help

New...

Open...

Close

Save

Save As...

Save All

Find...

Ctrl + F12

Shift+F12

F12

Print... Ctrl+Shift+FI 2

Prin» Preview

Print Merge...

Printer Setup...

Exit AU+F4

Choose Directory

Print Envelope H PI I

Select File to Open

Shell To DOS

Pts: \? Hzr 3. .¥. £

J2_
3 RHR HH1 lZllEI] bL

13. , , i ... 1 4 15

MtM.R).

macro you want to run, or select a name from the list in the

eate a macro that automatically sets formatting properties for

w, switch to draft view or normal editing view,

t displayed, choose View Status Bar (Alt,V,S).

d (AltM.C).

Name box. type PageSetup to name the macro.

i

1TECHREF.DOC
2 GTOOLS.DOC
3 DOCS\CW\CWCHAP4 DOC Context option is selected. This means the macro can be

4 DOCS\CW\C40UTL.DOC ll you open
:

x,

—

unmuu u . u—™-»—Appears on the right side of the status bar. indicating that

S Command Processor

u.

46 CUT-AND-PASTE PROGRAMMING

From this kind of humble beginning it really isn't a very great leap to cre-

ating a completely customized "application within an application," a la

M.M.M., using application macro languages. In fact, small beginnings like

this often evolve into more intricate applications. You start with a small idea,

and that sparks a bigger idea, which sparks a still bigger idea, and before you

know it you've got a completely customized application.

One thing you should remember before you get too carried away with

any application macro language is that such a language is only as good as its

underlying application. Most macro languages add a varied set of window-

and application-control features to the basic functions of their underlying

applications, along with the ability to generate user-interface elements such

as dialog boxes and messages. But beyond those extensions, application

macro languages depend on the functional capabilities of the underlying

application. So it is simply common sense that the performance of custom

applications written in an application macro language will largely reflect the

underlying application's ability to perform the tasks of the custom application.

The point is that you shouldn't try to build a spreadsheet application in

WordBASIC, or a relational database application in DynaComm. Although

each of these languages is strong enough that it has some capabilities beyond

the core functions of its underlying application, you should use them with

caution, knowing that you risk having your custom application's perfor-

mance suffer every time you attempt to make it do something its underlying

application wasn't designed for.

Does that mean you should never, for instance, attempt to have Dyna-

Comm perform any file-manipulation tasks or Word for Windows execute

mathematical functions? Of course not. It simply means that you shouldn't

attempt to make functions that are peripheral to the main task of the under-

lying application the central activity of your custom application—at least,

not if its speed is important.

Customizing with Batch Languages

Windows batch languages, such as WinBatch and others (see Chapter 4), can

be of great value when you want to customize the operation of a Windows

application that lacks its own macro language.

The degree of customization that's possible through the use of a batch lan-

guage is as much dependent on the capabilities of the original application as

on those of the batch language. Batch languages bring a valuable set of tools

to the fray, including the ability to interact with the user via dialog boxes and

message boxes, and to send an application keystrokes and manipulate its win-

dows. However, these languages are still limited by the capabilities of the

applications with which they interact. In short, you can extend those capabili-

ties with a batch language program, but you generally can't create new capa-

bilities if the building blocks for them aren't already present in the application.

Customizing Applications 47

For instance, in The Ultimate Notepad I was able to add a search-and-

replace function to Notepad by taking advantage of WinBatch's ability to cre-

ate dialog boxes and Notepads existing search function and support for Win-

dows Clipboard functions such as copying and pasting. The search-and-

replace batch program simply creates a dialog box into which the user enters

the original and replacement strings. Then the program uses Notepad's

search function to find the original string, and the Clipboard paste function

inserts the replacement string in its place.

Thus, I was able to implement the search-and-replace function, because

all the functional building blocks were present in Notepad. In contrast, no

matter how long someone labored at it, it wouldn't be possible to add, for

instance, the ability to display TIFF graphics files to Notepad using a batch

language, because the program lacks the requisite building block—it can't

display graphic images. No amount of batch language programming is going

to change that.

But even working within the limitations of the least powerful Windows
application, you can achieve pretty impressive results using a batch language.

Even though Notepad is an extremely limited program, using WinBatch I

was able to add a customized file-open routine, the abilities to insert a file

into the current document and to save selected text to disk, a function for

automatically indenting program code, routines to convert selected text to

upper- or lowercase, and word- and character-count routines, in addition to

the search-and-replace capability.

Of course, the more powerful the underlying application, the greater the

possibility for customization with a batch language. Applications such as the

Microsoft Powerpoint presentation graphics program or the Polaris PackRat

personal information manager, which offer tremendous functional richness

but lack macro languages, are great candidates for customization with a

batch language. The ability to automate the operation of applications such as

these, and to build interactive front ends for them, provides you with the raw

material for building a thousand great custom applications.

In addition, there may be times when a batch language comes in handy

even for customizing a Windows application that does have its own macro

language. For instance, consider an application such as 1-2-3 for Windows,

which has a macro language that can automate any spreadsheet operation,

but lacks the ability to create standard Windows dialog boxes under macro

language control. (The user-interface-modification functions in the 1-2-3 for

Windows macro language are limited to modifying the 1-2-3 Classic menu
bar.) You can build a powerful set of macros in 1-2-3 for Windows, but if you

want to automate them through a standard Windows front end, you're out of

luck. However, with a few lines of batch language code you could create a

standard dialog box that would link your macros into a smooth custom appli-

cation with a true Windows look and feel.

48 CUT-AND-PASTE PROGRAMMING

Linking Existing Applications

So far, this discussion has focused almost entirely on the process of automat-

ing or modifying a single Windows application to solve your custom applica-

tion needs. But that capability—although unquestionably of great value—is

hardly the answer to every Windows custom programming problem.

Say for instance, that you want to build an application that will automati-

cally log on to a remote database, download stock price data, store that data

in a table, and produce graphs analyzing price trends, sales volume, and so

forth. Unless you've got a single application that offers remote communica-

tions capabilities, spreadsheet-like tables, and graphic charting functions,

you can't get by with simple customization. What you can do, however, is to

link together two or more Windows applications that, in combination, pro-

vide the capabilities you need.

The Windows Broker project, presented in Chapter 14, is an example of

linking two applications in this way. Designed to perform, among other

things, the stock-price tracking and charting functions described above, Win-

dows Broker consists of a series of Excel macros that are linked, via DDE, to

custom DynaComm communications scripts.

From the point of view of the user, Windows Broker is a single applica-

tion—one that is neither particularly Excel-like nor DynaComm-like. The
application's main screen includes a series of buttons, one of which is labeled

"Update Prices," as shown in Figure 3.2. Pressing that button causes Excel to

launch DynaComm in the background, and has it connect to an on-line infor-

mation service to obtain current price data. Then, a series of DDE
exchanges takes place, in which DynaComm sends the latest price informa-

tion to Excel, which parses it and stores it in the appropriate table.

All of this takes place without any user interaction at all. The user never

even sees DynaComm's window. Indeed, if it weren't for the minute or two

of delay while DynaComm fetches the latest price information, the user

would have no way of knowing that the price information wasn't being

retrieved from a local database.

As was true with customizing a single application, you can link multiple

Windows applications using either their built-in macro languages or a Win-

dows batch language.

Linking with Macro versus Batch Languages

The advantage of using macro languages to link multiple applications is that

they generally have access to all the data structures and capabilities of their

underlying applications. For instance, DynaComm utilizes a structured table

format, which allows you to create tables containing many records, each of

which contains multiple fields that conform to a standard definition. For

example, Field 1 might be defined as a 20-character text field, Field 2 might

Linking Existing Applications 49

be defined as an eight-character integer, and so on. By using DynaComm's
TABLE SEND command, you can transmit the entire table through DDE to

an application such as Excel. The following example would send Table 9 to

an Excel worksheet called BUDGET.XLS:

ACCESS "Excel" "BUDGET.XLS"

TABLE SEND 9

ACCESS CANCEL "Excel" "BUDGET.XLS"

Figure 3.2
The Windows

Broker main screen

Microsoft Excel - BR0KER1.XLS
File Edit Formula Format Data Options Macro Window Help

- *

Windows Broker

p
o
r

t

f

o
I

i

o Update Prices

Ready

Price Per Share

180 -r

140-
120
100-
30-

60-
40-

20 t

O+H-H-M

q { 6 I iq 8 <9 fe «5 aj » a>*0'

&*• ™ £1 P,
~* ~ ? K - * ft Z

Lotus IBM

-

In contrast, there would be no way to directly copy the table from Dyna-

Comm to Excel using a batch language such as WinBatch, since it lacks both

DDE functions and access to DynaComm's internal data formats. To move
the same table from DynaComm to Excel using WinBatch, you would have

to either have DynaComm display the entire table on screen and then copy

it to the Clipboard, or have it save the table to an ASCII file readable by

WinBatch. Then WinBatch would have to activate Excel, load the BUD-
GET.XLS file, and paste the table into it. Either way, the process would

entail many more steps, and proceed much more slowly, than it would using

DynaComm's TABLE SEND command.
On the other hand, some Windows applications don't offer macro lan-

guages of their own, or don't support DDE, or otherwise aren't up to the

50 CUT-AND-PASTE PROGRAMMING

task of moving data to another application without a helping hand. In those

cases, a batch language can be of immense value. Basically, a Windows batch

language can automate any process you can perform from the keyboard of

your computer that involves one or more applications. So if you can create a

link between two applications manually—even one so simple as highlighting

text in one application, copying it to the Clipboard, and then switching to

another application and pasting the text there—you can automate that pro-

cess using a batch language.

When you add that kind of functionality to a batch languages ability to

create dialog boxes and otherwise interact with the user, you've got the heart

of a custom application that not only links off-the-shelf products, but can

take advantage of their functional capabilities as well. That's cut-and-paste

programming at its simplest.

Using Third Party Code
Obviously the principles of cut-and-paste programming can be a giant aid to

developing custom Windows applications when it is possible to do so by cus-

tomizing one or more existing applications. But you can also apply those

principles to independent applications developed in languages such as Visual

BASIC, Turbo Pascal for Windows, and Realizer, by taking advantage of the

language's ability to access external code modules in the form of dynamic

link libraries.

Incorporating a commercially available dynamic link library into your

application can save you an immense amount of development time. In addi-

tion, it could provide a higher level of performance on time-critical func-

tions, such as file transfers, than may be achievable through a language such

as BASIC.
There are dozens of dynamic link libraries available commercially for

use by Windows developers. These offer finished, ready-to-incorporate code

that can be used with any development language that supports DLLs to

achieve a broad range of functions—everything from generating graphics to

querying remote SQL databases. You'll find an extensive list of commer-

cially available DLLs in Appendix A.

In addition, some languages, including Visual BASIC and Realizer,

include support for proprietary DLLs. In the case of Visual BASIC, these

are called custom controls, and are designed to be used only with programs

written in Visual BASIC. The advantage of these language-specific code

libraries is that they can be integrated more tightly into the language's pro-

gramming environment than is possible with a generic DLL. For instance, a

custom control—such as an animated button—can appear on the Visual

BASIC tools palette alongside standard Visual BASIC controls such as radio

buttons and list boxes, as shown in Figure 3.3.

Using Third Party Code 51

Figure 3.3
A custom control

on the Visual BASIC

tools palette

Microsoft Visual Basic [design)

File Edit Code Run Window Help

Caption

o
Q.

m

Cj

®

B

Foiml

Incorporating Dynamic Link Libraries

Let's imagine that you want to build an application to access an SQL data-

base on your network server. If you were to write the application from

scratch, the applications user interface and the functions it makes available

to the user would be the least of your worries. Instead, you'd probably be

sweating blood trying to figure out how to make your high-level develop-

ment language communicate smoothly with your network database server.

With the addition of a commercial DLL such as Pioneer Software's

Q&E Database Library, however, the whole focus of your development

effort can shift. Using that particular library, developers working with any

language that can call a DLL have access to a wide variety of database serv-

ers, including NetWare SOL and Btrieve databases, IBM's DB2 database,

OS/2 Extended Edition databases, Sybase and Microsoft SQL Server data-

bases, and Paradox, dBASE, and Oracle databases. With a few simple com-

mands, you can use the Q&E Database Library to add full database

functionality to your application, including (where supported by the data-

base server), such advanced capabilities as COMMIT and ROLLBACK, as

described below.

52 CUT-AND-PASTE PROGRAMMING

An SQL Example
SQL databases allow you to group multiple changes to a database into larger

units, called transactions. The COMMIT and ROLLBACK statements are

used to confirm or back out of all the changes made to the database during a

transaction. That is, when the COMMIT command is issued, all the changes

made during the current transaction are permanently recorded, whereas

when the ROLLBACK command is issued, all the changes made during the

current transaction are discarded.

You can add the COMMIT and ROLLBACK functions to a Visual

BASIC program by declaring them as follows:

Declare Function qeCOMMIT Lib "0ELIB.DLL" (ByVal hdbc%; As Integer

Declare Function qeROLLBACK Lib "0ELIB.DLL" (ByVal hdbc%) As Integer

These declarations tell Visual BASIC to pass calls to the functions defined as

qeCOMMIT and qeROLLBACK to the dynamic link library called QELIB-
.DLL. The integer variable hdbc% is used to identify the database link upon

which the command should operate.

In order to use the functions declared above in your Visual BASIC pro-

gram, you would first have to establish the connection to QELIB.DLL with a

statement such as this:

hdbc=qeCONNECT("DRV=QEDBF")

Then, to make use of the qeROLLBACK function, you would issue a com-

mand such as

Rollback=qeROLLBACK(Currenthdbc)

which would tell the Q&E Database Library DLL to undo the current

transaction.

Because Q&E Database Library is designed to work with any applica-

tion that can make use of DLLs, you could add the same functions to a cus-

tom application written in Excel's macro language by defining them as

follows:

func21 = REGISTER("QELIB. DLL" ,
"qeCOMMIT" ."II". "qeCOMMIT" . "hdbc")

func22=REGISTER("QELIB.DLL", "qeROLLBACK", "II". "qeROLLBACK" ,"hdbc")

In either case, the result is that you can concentrate your development

efforts on creating an attractive, useful interface to these database functions,

and on deciding how those functions can best be implemented to provide the

maximum benefit to your application's users. You can leave the down-and-

dirty work of actually writing the SQL interface to an expert in that field.

Making C ut-and-Paste Programming Work for You 53

Making Cut-and-Paste Programming Work for You

There are two primary benefits of cut-and-paste programming. The first is

that it saves you time. For a relatively small expense, you can add functions

to your applications that would take countless hours to program yourself. So,

unless you severely underestimate the value of your time, it isn't hard to jus-

tify the expense of a package such as MicroHelp Communications Library, a

$189 DLL that provides a wide variety of asynchronous communications rou-

tines, terminal emulations, and protocol file-transfer routines for use in your

applications.

Equally as important, cut-and-paste programming allows you to concen-

trate on the part of the program that will mostly directly determine its benefit

to you—its user interface and the manner in which it presents or structures

its functions. You can devote yourself to those parts of the program that you

want to have operate in a custom manner, without having to worry about the

parts that should work in a standard way.

No matter whether you're using Ami Professionals macro language,

combining Excel and DynaComm functions, or generating a custom program

in Realizer, with cut-and-paste programming you can avoid much of the

drudgery of writing original code. In all likelihood, someone else has already

done the dirty work for you. Why write a YMODEM file transfer routine

when there's a perfectly good one available in your copy of DynaComm?
Why should you create text-formatting routines when Word for Windows
can format the text for you?

And not only will cut-and-paste programming get you out of writing the

standardized parts of your application, let you concentrate on the things

that will make it unique, and save you countless hours of work, it will add

immensely to the richness and reliability of your application.

So don't waste your time reinventing any wheels.

CHAPTER

Choosing

Your Tools
Evaluating Tools

Windows
Development Tools

Choosing Your Tools 55

THE FIRST STEP IN ANY WINDOWS APPLICATION-DEVELOPMENT PROJECT IS

choosing the right development tool for the job. The tool you choose

will play a large role in determining the structure of your applica-

tion, the features you can give it, the degree to which it can be

extended to serve other purposes in the future, and the kind of performance

and results you can expect from it. Your choice here will also have a major

impact on how long it will take you to master the tool's intricacies and, ulti-

mately, how long your development project will take.

The high-level development tools available for Windows cover a huge

range in terms of their complexity and capabilities. Some, like the Windows
batch languages discussed below, are extremely simple to use. They even

have recorder features that will turn your keystrokes into batch language

program commands. Others, like the implementations of BASIC and Pascal

for Windows, are considerably more complex. However, they also allow you

to build much more complete and robust applications than do batch lan-

guages, which are suited primarily for use in building small utility programs.

Other tools, such as the macro languages built into many Windows applica-

tions, fall somewhere in the middle, mixing a powerful, but limited, range of

functions with a relatively simple command syntax.

So how do you choose one Windows development tool from among all

those available to you?

The Biggest Hammer
There are several possible strategies you might employ. One, which I'll call

the Use The Biggest Hammer You Can Find theory, is to select the most

comprehensive tool available, no matter how simple the development

project you have in mind might be.

The reasoning behind this strategy is that if you select the most powerful

and comprehensive development tool available right from the outset, it will

be capable of handling any extensions or modifications you might wish to

make to your initial project at any time in the future. It also will be capable

of handling any other Windows development project you later choose to

undertake. Because you'll be using the same tool for every project, you'll

only need to learn how to use one programming language. You might even

be able to save yourself some work on subsequent projects by reusing parts

of the applications that you've already created. In addition, you can be fairly

sure that whatever applications you write using the tool will be able to

exchange data freely, since they will all have been written using the same sel

of functions.

However, there are also several disadvantages to this approach. The big-

gest hammer isn't always the best one for the job. Il might be difficult to eon

trol when you're aiming at little nails, and using it is surely going to consume

a lot more energy than swinging a hammer sized just right for the job at

hand. For instance, il you're taking the Biggest Hammer approach, and you

56 CHOOSING YOUR TOOLS

want to produce a utility to format documents in a particular fashion, you
might end up writing thousands of lines of code and producing a program
occupying hundreds of kilobytes of disk space, when all you really needed to

do was to write a few dozen lines of macro code in a professional word pro-

cessor to achieve the same, if not better, results.

Then too, there are times when a hammer just won't do—when you

really need a screwdriver or a socket wrench. The high-level languages dis-

cussed in this chapter are all well-suited to specific tasks, but none of them is

really capable of producing useful results for every programming task that

comes down the pike. The only Windows programming tool that actually can

do that is the Microsoft Windows Software Development Kit (Windows
SDK). But the Windows SDK is so complex that it makes every Windows
programming task, no matter how trivial, into an ordeal. With the SDK, you

have to forge the hammer before you even start hunting for the nail that you

want to hit. The reason higher-level languages exist in the first place is that

the SDK is simply too complex to be cost effective for developing anything

but mass-market commercial applications.

The Smallest Hammer
That brings us to the second approach to choosing Windows development

tools, using the simplest tool possible—the Use The Smallest Hammer That

Will Do The Job theory.

The advantages of this approach are fairly obvious. By using the sim-

plest tool that is capable of handling the job you have in mind, you can take

the most direct route possible to solving your immediate problems. Simple

tools are easier to program—as long as you don't try to exceed their capabili-

ties—so your application development will proceed more quickly than with a

more complex tool. In addition, since this route will often entail using either

the macro language from a Windows application you already have or a low-

cost batch language, it might also be the most cost-effective way to develop

or customize an application.

The downside of the Smallest Hammer theory is that sometimes the nail

is a lot bigger than it first looks. Even the simplest application-development

projects often end up being a good deal more complex than they appear ini-

tially—either because of hidden difficulties that you don't discover until

you're halfway through the development process, or because once the appli-

cation is finished you or your users start coming up with a long list of ways in

which it might be enhanced or extended. You could be out of luck if the

application development tool you've chosen isn't flexible or powerful enough

to handle the changes—you'll either have to say "It can't be done" or scrap

the work you've already finished and start over with a more powerful tool.

Choosing Your Tools 57

The Right Hammer
That leads us to the third strategy for picking a Windows development tool,

which falls somewhere between the first two—and is the one followed in put-

ting together the example development projects in Chapters 9 through 15.

Let's call it the Pick The Right Tool For The Job theory.

This theory is a bit less dogmatic and, alas, a bit more amorphous than

the other two. It rests on the premise that there is no perfect tool for every

Windows development job. Instead, the savvy Windows developer must be

familiar with and willing to make use of a variety of tools, depending on the

demands of the application being developed. The selection you make of

which tool to use must reflect both the initial functional requirements of the

project at hand and its potential need for expansion in the future.

One way to classify development projects is to identify them as either

tactical or strategic. Tactical projects fill an immediate need—like sticking

your finger in a leaking dam. Strategic projects have a major long-term

impact on the way you function—like building a complete new system of

dikes and levees.

The Auto Print for Windows application (described in Chapter 1 1) is a

good example of a tactical Windows development project. Auto Print allows

the user to designate a list of files to be printed overnight to avoid tying up

the PC with lengthy print jobs during the day. Auto Print didn't need a fancy

interface, and it was unlikely the program would ever need to be extended to

handle any major new functions, so I elected to use a Windows batch lan-

guage—the fastest and easiest available development tool—for the project.

In contrast, the DocMan document management application, described

in Chapter 13, is a good example of a strategic application. Designed to log

and maintain a database of documents created by a variety of Windows appli-

cations, and to allow the user to select documents based on long file names,

descriptions, or keywords, DocMan needed to be as slick and extensible as

possible. Thus I elected to produce it in Visual BASIC, a language with good

extensibility and fine user interface design tools.

The basic guidelines followed in this book are these:

With tactical applications, choose the tool that will get you up and running

as fast as possible.

With strategic applications, make doubly sure the tool you choose is capa-

ble of handling every expansion of the original application requirements

that might be necessary in the future.

How do you determine if a Windows development tool is up to that

task? Read on.

58 CHOOSING YOUR TOOLS

Evaluating Tools

As you saw in Chapter 2, all programming languages or development tools

are built around a series of basic elements. Although they may differ in

name or implementation from language to language and tool to tool, objects

such as variables, strings, functions, procedures, and commands are found in

every development tool. Every programming language has loops or some
similar way to perform iterative processes, and every programming language

has other structures designed to control an applications flow of execution.

You can pretty much assume the presence of these basic elements when
you evaluate Windows development tools. Certainly it would be noteworthy

if someone offered a programming language for Windows that didn't include

any means to compare the values of two variables or to add together two

integers. However, I haven't seen one yet that fails to cover these bases, and

I'm fairly confident I won't see one in the future. Obviously, there are signifi-

cant differences in the way these basic elements are implemented from lan-

guage to language, and these will be examined below in the discussion of

individual tools. For the most part, however, you can count on any of the

higher-level-language development tools discussed here to meet these basic

requirements.

There are, however, some special facilities, unique to Windows program-

ming, that you need to be a little more careful about. These facilities are not

universal, but their presence and the manner in which they're implemented

will go a long way toward ensuring that the application-development tool

you choose is capable of doing everything you want it to do in the Windows
environment. These facilities fall into three main functional areas:

Those that facilitate the interaction of your application with other applica-

tions in a multitasking environment

Those that help you build the user interface for your application

Those that help you work with files created by other applications

Multitasking Facilities

Multitasking facilities allow your application to control and exchange data

with other applications, and thereby allow you to customize the operation of

those programs or to link multiple applications into an integrated system.

The most important multitasking capabilities are Clipboard support, applica-

tion control, and DDE support. In addition, there is a further adjunct to

these capabilities, DLL support, that goes a long way toward determining

the extensibility of the development tool.

Evaluating Tools 59

Clipboard Support
A Windows development tool should have the ability to copy data to the

Windows Clipboard and to retrieve data already there. Ideally you should be

able to assign the contents of the Clipboard to a string (assuming that the

clipboard holds textual, not graphic, data). This capability speeds the process

of integrating existing applications by providing a simple way to move data

between applications.

One Windows development tool that offers very good support for the

Clipboard is Wilson WindowWare's WinBatch. The WinBatch language

includes three Clipboard-related commands: CLIPAPPEND, CLIPGET,
and CLIPPUT CLIPAPPEND is used to append the contents of a string to

the Clipboard. (That is, it attaches the string to the end of anything already

on the Clipboard.) CLIPGET is used to retrieve the contents of the Clip-

board and assign them to a string. And CLIPPUT is used to copy the con-

tents of a string to the Clipboard.

Other application development tools implement Clipboard support dif-

ferently. For instance, the macro language in Lotus Ami Pro 2.0 includes

commands called Copy, Cut, and Paste, which, like their menu equivalents,

are used to copy or cut selected data from the current document and place

it onto the Clipboard, or to paste data from the Clipboard into the current

document. In addition, Ami Pro's macro language includes functions called

CLIPREAD and CLIPWRITE, which are equivalent to WinBatch's

CLIPGET and CLIPPUT.

Application Control

If the application you're building is going to have to interact with other appli-

cations, it's important that it have the ability to launch them, send them key-

strokes, and activate and deactivate them.

This kind of application control is less sophisticated than Dynamic Data

Exchange, in which your application engages in a conversation with another

Windows application and sends it explicit instructions. However, it is also

more universal since an application development tool with these facilities

should be able to control any other Windows application, not just those that

support DDE.

Example: Visual BASIC
Microsoft's Visual BASIC is an example of a development tool that offers a

fairly complete set of commands for controlling other Windows applications.

Its SHELL command can be used to launch other programs. For instance,

SHELLCEXCEL.EXE". 1)

would launch the Excel spreadsheet program (assuming that the Excel direc-

tory was in the DOS path). The numeral 1 in the command tells Visual

60 CHOOSING YOUR TOOLS

BASIC to launch Excel as a normal window that will have the input focus—
meaning that the keystrokes typed or mouse commands issued by the user

will be directed to Excel, not to your Visual BASIC program. You could also

launch it as an icon or as a maximized window, with or without the focus.

Once an application has been launched, Visual BASIC'S SENDKEYS
command can be used to send data to it in a way that makes the other appli-

cation think the user is typing that data at the keyboard. This enables your

Visual BASIC program to issue any commands to the other application that

you would be able to enter at the keyboard. Your program can even issue

menu commands in the other application or instruct it to close itself down by

sending the keystrokes necessary to issue the application's File Exit menu
command, as in

SENDKEYS "(ALT)FX"

Before you can send keystrokes to another application from your Visual

BASIC program, however, you might have to activate it, if some other appli-

cation—for instance your Visual BASIC application—has had the input

focus. To do so you would use Visual BASIC'S APPACTIVATE command,
which requires one parameter—the exact text of what appears in the applica-

tion's title bar. Thus, to activate Microsoft Word for Windows, you would

issue the APPACTIVATE command, followed by the text that appears in

the title bar, "Microsoft Word":

APPACTIVATE "Microsoft Word"

The problem with this is that you can't always predict what text is going

to appear in the title bar of a Windows application. For instance, although in

most cases the title bar for Word for Windows consists of just the text

"Microsoft Word", if you maximize the document window within Word for

Windows, the title bar changes to include the title of the current document, as

in: "Microsoft Word - CHAPTER2.DOC". If you simply issue the command

APPACTIVATE "Microsoft Word"

when the title bar contains the document title, Visual BASIC won't find the

correct window, which will generate an error message and more than likely

crash your application.

Thus you need a way to obtain a list of the exact titles of all open win-

dows so that you select the appropriate one. Unfortunately, Visual BASIC
doesn't provide a command or function to do so. Instead, you've got to call a

series of Windows API (application programming interface) functions to acti-

vate the window.

The use of Windows API functions from within Visual BASIC is dis-

cussed in detail in Chapter 12.

Evaluating Tools 61

Example: WinBatch
Other languages make it easier to control Windows applications that are

already running, and therefore may be better suited for use in controlling other

applications. For instance, WinBatch uses a command called WINACTIVATE
that performs the same function as Visual BASIC s APPACTIVATE. However,

the former is forgiving enough to require only a partial window title—just

enough to identify the application you're trying to activate. So, in the case cited

above,

WINACTIVATECMicrosoft Word")

would activate the window entitled Microsoft Word - CHAPTER2.DOC,
even though Visual BASIC was not able to.

In addition, WinBatch has several other commands that make it useful for

controlling other applications. These include WINITEMIZE, which returns a

tab-delimited list of all open windows, and WINGETACTIVE, which returns

the title of the active application's active window. This can be useful if, for

instance. Word for Windows is running and a dialog box labeled "Microsoft

Word—Error Warning" is visible on screen. In that case, the WINGETAC-
TIVE command will return the full title of the dialog box, enabling the pro-

gram to determine whether an error has occurred. Other WinBatch

commands for controlling applications include WINPLACE, WINTITLE,
WINSHOW, WINHIDE, and WINICONIZE, which are used, respectively, to

reposition, change the title of, show, hide, and iconize other applications.

DDE Support

Support for Dynamic Data Exchange is another key feature in a develop-

ment tool that will be used to build applications that will interact with other

applications.

DDE is a remarkably powerful tool that allows applications to create hot

links to data in other applications, so that the data in one application is

updated whenever the data in the other application changes. DDE also

allows applications to communicate directly with one another, issuing com-

mands through the DDE channel rather than via the keyboard.

Unfortunately, DDE is also a quagmire in which many a brave Windows
developer has been lost forever. There are no official standards for DDE,
and thus every Windows application, and every Windows development tool,

implements it differently. About the only thing the dozens of implementa-

tions of DDE I've encountered have in common is that they all are designed

to communicate first and foremost with Microsoft Excel, and then with what-

ever other applications happen to speak a reasonably similar DDE dialect.

Thus, Excels implementation of DDE has become the de facto standard

for how DDE should work. With that in mind, let's look at the way Excels

macro language implements DDE.

62 CHOOSING YOUR TOOLS

Example: Excel

DDE conversations in Excel start with an INITIATE command, which speci-

fies both what application the conversation will be held with and the topic of

the conversation. If you're creating a hot link between a worksheet and a

Word for Windows document, the command would look like this:

=INITI ATE ("Winword", "CHAPTER2.DOC")

whereas if you're creating a link that will be used to send commands to the

other application, the topic of the conversation will be the application's Sys-

tem topic, and thus the command would look like this:

= INITIATE("Winword" , "System")

In either case, this command returns a value identifying the number of the

DDE channel that has been opened.

To receive data from another application, you would use Excel's

REQUEST command, as in

=REQUEST(Channel_Num, Requested_Data

)

Similarly, you can send data or commands to another application using

Excel's POKE command.
Excel will also respond to REQUEST or POKE commands, or to

instructions addressed to its own System topic. For example, to instruct

Excel to open a worksheet called MARKUPS.XLS, an application would

send the following command through DDE to Excel's System channel:

[OPENCMARKUP.XLS")]

(The syntax for sending a command to Excel's System channel will vary

greatly from development tool to development tool.)

Finally, Excel uses a command called TERMINATE to close down a

DDE conversation once it has been completed, as follows:

=TERMINATE(Channel„Num).

Other applications and development tools may implement additional

DDE commands, including an ADVISE function, which is used to inform

another application that the data linked through the current DDE channel

has changed.

DLL Support

The ability to make use of dynamic link libraries is a critical one in a Win-

dows development tool because it provides the tool with almost infinite

extendibility. It can also eliminate hundreds of hours of coding time from a

programming project.

Evaluating Tools 63

A dynamic link library is a compiled program that is designed to be

accessed by other Windows programs—not to run by itself. Most of the func-

tions built into Windows 3.1 itself are actually stored in a series of dynamic

link libraries that are called by the Windows program. These same libraries

can also be accessed by any Windows application that can utilize DLLs.

For instance, consider Visual BASIC. The API call cited above as a way

to obtain the text of a Windows application's title bar is actually a function in

USER.EXE, a dynamic link library that contains most of Windows 3.1*s user

interface functions.

However, because Visual BASIC can address any DLL, not just those

included with Windows 3.1, there are simpler ways to achieve the same ends.

For example, you could use the GETWLST.DLL written by Todd Steinwart

(available as freeware through CompuServe—look for it in the file VBSW11-
. ZIP in library 5 of the MSBASIC forum). GETWLST simplifies the process

by providing your application with a list of the handles (the hexadecimal ref-

erences by which Windows refers to active applications) of all active applica-

tions, as well as a function for obtaining the window title text of any

application whose handle you specify.

In fact, through the addition of freeware, shareware, and commercial

DLLs, you can extend the capabilities of any Windows application-development

tool that can interface with DLLs. Using this capability, you can add capabilities

such as network support, the ability to query SQL databases, and the ability to

display graphics and charts to your applications with just a few lines of code as

was discussed earlier in Chapter 3, "Cut-and-Paste Programming."

User Interface Facilities

The other unique-to-Windows set of facilities you should look for in any

application-development tool for Windows are those facilities that will

enable you to design and control the user interface of your application.

The user interface facilities of high-level Windows development tools

vary quite a bit from tool to tool, in terms of both their capabilities and how
easy they are to exploit and in what they are designed to accomplish.

In the case of application macro languages (where the intent is to cus-

tomize an existing application) and batch languages (which help you develop

utility applications quickly), user interface tools are generally more limited

than they are in full-Hedged programming languages designed to create

stand-alone applications.

However, even the simplest macro and batch languages give you a lair

degree of control over the user interface of your application, allowing you to

create and make use of custom dialog boxes and, in most cases, custom

menus. General-purpose programming languages go considerably further,

allowing you to control ever) aspect oJ your Windows application's user

interlace.

64 CHOOSING YOUR TOOLS

Dialog Boxes
Dialog boxes and menus are the primary means by which Windows users

communicate their intentions to an application, so it is important that what-

ever Windows development tool you use provides sufficient capabilities in

these areas to support your application. At a minimum, your application will

probably need the ability to create message boxes on screen that tell users

what the application is about to do and elicit their response. Figure 4.1 shows

a simple message box, created in the script language from DynaComm,
Future Soft Engineerings asynchronous communications program.

Figure 4.1
A message box

created in

DynaComm

Delete File

Ready to delete FILE0001.DCM!

A Select OK to continue.

Cancel to skip.

OK

This particular dialog box displays a message alerting the user that a file

is going to be erased, an icon that serves to draw attention to the dialog box,

and a pair of buttons labeled "OK" and "Cancel." These simple elements

combine to create an informative and easily understood message.

Of course, many applications require dialog boxes that are considerably

more complex than a simple OK/Cancel message. For instance, Figure 4.2

shows a much more complex dialog box, also created in DynaComm, that is

used to address mail in the M.M.M.:The MCI Mail Manager application,

described in Chapter 15. This dialog box, used in the message-addressing

phase of the application, allows the user to pick names from either a public

or a private phone book and to add them to a mail message's To: or cc: field.

In addition, the user can type in a new name, fill in the message's Subject

field, assign handling options to the message, and choose to edit either phone

book, all from this single dialog box.

This dialog box takes advantage of several additional Windows user inter-

face controls, including edit fields, list boxes, and radio buttons. It also requires

a capability found in DynaComm's macro language that is missing in some

other application macro languages and batch languages—the ability to update

a dialog box on the fly in response to user input. For instance, when the user

clicks on the Public button, the public phone book is loaded into the list box so

that names can be chosen from it. Similarly, when the user clicks on the button

labeled "cc list", the list of cc: addressees for the message is displayed, and the

list of To: addressees is temporarily hidden. Meanwhile, double-clicking on

Evaluating Tools 65

any name in the list box adds that name to either the To: list or the cc: list,

depending upon which is active. Typing a new name into the Name edit field

and then pressing Enter has the same effect.

Figure 4.2
The message

addressing dialog

box

Edit Envelope

O Public <$> Private

Needle,
Nerenber
Neuhaus,
Norton

,

OMalley
Oppenhei
Passarel
Petzold,
Picarill
Plackis

,

Pompili,
Poskanze

Dauid

g , Beu
Trudy

Peter
, Chris
mer, Gari,

la, Ed
Charles

e, Lisa
Brian
Tony

r, Jef

Edit Phonebook
|

Cancel Message

Name:

<§> To list O cc list

1

Edit name
|

Subject:

Q Receipt

Q Priority Delivery

Q Mask List Members Done

These dialog boxes were both created by typing code into DynaComm's
script editor. The code used to create the Delete File dialog box shown in

Figure 4.1 looks like this:

DIALOG (72,52,126,70) "Delete File" ICON CAUTION

MESSAGE (8,11,104,10) "Ready to delete FI LE0001 . DCM!
"

MESSAGE (39,24,86,20) "Select OK to continue, Cancel to skip.

BUTTON (9,47,40,14) DEFAULT "OK" SET 0K% 1, RESUME

BUTTON (59,47,40,14) CANCEL "Cancel" SET 0K% 0, RESUME

DIALOG END

WAIT RESUME

Because this is a fairly simple dialog box, the code to create it is also

fairly simple. The first line creates the dialog box itself, using DynaComm's
unique coordinate system, and places "Delete File" onto its title bar. The

second line draws the caution icon—the exclamation point. The third line

tells the user that FILEOOOl.DCM is about to be deleted. The fourth line

tells the user how to proceed with the file deletion or how to cancel it. The

fifth and sixth lines draw the OK and Cancel buttons and tell DynaComm
what to do when each is pushed. Finally, the last two lines tell DynaComm

66 CHOOSING YOUR TOOLS

that the dialog definition has ended and that it should pause program execu-

tion until a RESUME command is issued—which will happen automatically

when the user presses either button.

Because the dialog box shown in Figure 4.2 is much more complex, the

code used to generate it is much longer. You can examine it later in Chap-

ter 15. But even a cursory glance at the code used to create the Delete File

box shows that there are some complex issues to be dealt with in even the

simplest dialog box. For instance, you have to position each user interface ele-

ment where you want it, using a complex coordinate system. That wasn't too

difficult to achieve with the little Delete File dialog box, but the message-

addressing dialog box has 20 unique user interface elements that have to be

positioned in that way. You need to calculate horizontal and vertical coordi-

nates and height and width for each element. Doing this can be a real

chore, especially when halfway through the process you realize that the dia-

log box would be more easily understood if you moved some of those ele-

ments around.

Fortunately, many Windows development tools include graphic dialog

box editors, which enable you to escape much of this drudgery. Rather than

typing in archaic horizontal, vertical, and size coordinates, you simply select

a user interface element from a menu or toolbox and draw it on the screen

wherever you want it to appear. If you later decide that it isn't positioned or

sized correctly, you simply move it by dragging it with the mouse or resize it

by stretching its corners.

A dialog editor can thus save you hours of work by letting you design

your dialog boxes quickly and effortlessly. The current version of Dyna-

Comm doesn't include one, but many Windows application macro languages

do, as do most full-featured languages and some batch languages. For

instance, Figure 4.3 shows the dialog editor that is included with Microsoft

Excel 3.0.

Menus
Along with dialog boxes, a full-featured Windows application needs menus.

Most of the high-level Windows development tools described below allow

you to create your own menus or, in the case of application macro lan-

guages, to modify the menus of the underlying application. Again, however,

the way in which this has been implemented varies from tool to tool. Some
provide menu editors that allow you to create or customize menus with a

lew clicks of the mouse. Figure 4.4 shows the menu editor from Microsoft

Visual BASIC.
Other tools require you to type the code necessary to create menus man-

ually. In either case, the important thing is that you are able to create menu
items and designate the actions that are to take place when the user selects a

particular menu item.

Evaluating Tools 67

Figure 4.3
The Excel 3.0

Dialog Editor

Screen

File Edit Item

Dialog Editor

Excel 3.0 Dialog

OK
Edit Text

r ^j
Cancel

>s-Button Type

—

OQK
OK

|

r Cancel
|

o Dption

.~heck Box!

Default

Figure 4.4
The Visual BASIC

menu editor

Menu Design Window

Caption iSave

I HM.iiiii-

Index

savelile

I I Checked

Accelerator

[] Enabled

(none)

Vmble

rrrnB*
iFile

iOpen...
&New

BREECH
Save &as

68 CHOOSING YOUR TOOLS

Screen Design

Simply being able to modify an application's menus or create dialog boxes is

fine if you're only building an automated macro that utilizes the underlying

capabilities of an existing application program, or if you're using a batch lan-

guage to construct a quick utility, but when the time comes to build a complete

stand-alone application, you need even more control over your application's

user interface. You'll want to be able to control every aspect of your applica-

tion's screen appearance.

Fortunately, most of the full-featured high-level programming languages

provide excellent tools for designing your application's screen. These allow

you to make use of the full gamut of Windows user interface controls

—

everything from buttons and list boxes to bit-mapped images and icons—in

designing your application. And they usually use the same drawing program-

like controls that a good dialog editor supplies.

Figure 4.5 shows the Visual BASIC screen editor being used to design

the main window for the DocMan application (described in Chapter 14). The
floating tools palette visible at the left side of the screen allows you to pick

the controls you want to add to your application's window and drag them to

the position where you want them to appear.

Figure 4.5
The Visual BASIC

screen editor.

File Edit Code Bun Window Help

Microsoft Visual Basic [design]

CtlName

=1

* m
A labtf

o
H ®
HI m
EH #

1*3

§ S
Q a

F.le keVl
' m

Owner KeV2

Dale: Kej>3

::: Kej>5 KeyS \

Key7 Key8

rind Djh:

Windows Development Tools 69

The user interface of any application you design in Windows will consist

of a combination of menus, dialog boxes, and windows. Thus it is important

to consider the facilities for creating these elements when selecting a high-

level language development tool for your Windows development projects.

File Formats

A final consideration that may be of great importance in selecting a Win-

dows development tool for your project is the ability of the tool to work with

files created by other applications.

You can count on any Windows development tool having the ability to

read and write ASCII-format text files, but frequently that capability is not

enough. If your application is to work in concert with other Windows or

DOS applications, it may need to be able to read files in and/or write files to

"alien" file formats. This will enable your application to exchange data with

others, or to modify the files created elsewhere to add additional information

or functionality.

The available Windows high-level language-development tools offer a

wide range of capability in this area. Probably the strongest support for alien

file formats is offered by application macro languages, which can take advan-

tage of the file import/export capabilities of their underlying applications.

For instance, an application written in the macro language for Lotus Devel-

opment Corporation s Ami Pro 2.0 automatically gains the ability to read

and write dozens of file formats, including data files from dBASE, Paradox,

DisplayWrite 4, Enable, Excel, Microsoft Word, Samna Word, WordStar,

WordPerfect, and SuperCalc, and a variety of graphic file formats including

BMP, PCX, PIC, TIFF, EPS, and CGM.
Batch languages, on the other hand, can typically only read and write

ASCII format files, whereas full-featured programming tools, such as Pascal

and BASIC, can typically read a few additional formats—although this varies

greatly from tool to tool. Visual BASIC, for instance, can only read ASCII
data files and PCX and BMP graphic files, but another Windows BASIC,
Realizer (from Within Technologies, Inc.), can read Excel, Lotus 1-2-3, and

dBASE data files and BMP graphic files. You can, however, overcome some
of the limitations of these products by purchasing dynamic link libraries that

provide access to additional file formats, as described in Chapter 3.

Windows Development Tools

Now that we've covered some of the factors that you need to consider in

selecting Windows development tools, it's time to examine the best tools cur-

rently available for high-level programming in Windows.

70 CHOOSING YOUR TOOLS

These tools fall into five broad categories:

Application macro languages

Windows batch languages

Windows implementations of BASIC

Pascal for Windows

Graphical hypertext products

There is some overlap among these categories, and quite a bit of duplica-

tion in the capabilities of the tools in a given category. But much benefit can be

gained from looking at the tools in terms of categories because each category

has a basic set of characteristics which can be used to evaluate its members.

The basic cost of each high-level development tool is included in the

descriptions that follow. In comparing these costs, however, you should also

consider the cost of distributing the applications you build. For instance, a

program built using an application macro language—say WordBASIC—can

only be used in the presence of the application that language is specific to,

which would be Microsoft Word for Windows in this case.

Some development tools can compile programs written using them to

stand-alone .EXE files, which can be distributed without a copy of the devel-

opment tool. Others require that programs written using the tool be used in

conjunction with a special runtime version of the tool. In some cases (noted

below), there is a separate charge for a license to distribute the runtime ver-

sion of the tool.

Finally, a few of the tools described below are distributed as shareware.

These programs are distributed via electronic bulletin boards and by user

groups or other organizations on an honor-system basis. You don't pay to

acquire a shareware application or tool, but if you continue to use it beyond

a brief trial period you are legally obligated to pay a specified license fee to

its author.

Application Macro Languages

The first thing that may come to mind when you think of an application

macro language is something on the order of the macro language incorpo-

rated in Lotus 1-2-3 from version 1.1 on. That language allowed you to auto-

mate repetitive procedures, such as inserting a column into a worksheet, by

storing the keystrokes you would use to perform that operation manually, and

then recalling them when you issued the hotkey command assigned to that

macro. It also allowed you to construct menus that could be used to link multi-

ple macros of that sort into more complex systems. For instance, you could

create an entire accounting system in 1-2-3 by using macros to move the cur-

sor around the screen, get user input, and process the data appropriately.

Windows Development Tools 71

The basic principle behind a Windows application macro language is the

same as that behind 1-2-3's: The macro language allows you to automate pro-

cesses that make use of the underlying application's core functions. Like the

macro languages found in DOS applications, the macro languages of major

Windows applications allow you to either automate repetitive tasks or to

build complete custom applications.

However, the results you can achieve with a Windows application macro

language are often considerably more spectacular than those obtainable with

one built into a DOS application, if only because Windows applications tend

to have a functional richness that greatly exceeds that of any DOS-based
application.

Moreover, the strongest Windows application macro languages give you

an unprecedented ability to customize the appearance and operation of the

underlying application. You can, for instance, build an application in

Microsoft Excel that so completely insulates users from the underlying appli-

cation that they never see anything that looks like a spreadsheet cell—as

illustrated in the Windows Broker application discussed in Chapter 13. Or
you could use DynaComm to build an automated electronic mail system that

completely hides the on-line session from the user—as illustrated in M.M.M.:

The MCI Mail Manager application discussed in Chapter 15.

And no matter how much you alter the appearance or operation of a Win-

dows application, you can take full advantage of its underlying capabilities. So

even though a Windows Broker user never sees a spreadsheet cell, the appli-

cation takes full advantage of Excels ability to perform financial calculations.

Of course, Windows application macro languages are also extremely use-

ful for less ambitious projects. You might, for instance, simply want to build

an automated telephone messaging system in Word for Windows or Ami Pro

so that users can simply select a menu item labeled "New Message" to create

and then store a new phone message. That kind of function is very simple to

write using the macro languages built into these applications because most of

the difficult parts of building such an application—providing editing func-

tions for messages, deciding on file formats, figuring out how to print mes-

sages—have already been written for you. You can simply take advantage of

the underlying application's editing, filing, and printing functions with macro

commands as simple as File Save and Print.

To simplify the task of macro programming even further, most Windows
application macro languages offer the ability to record keystrokes and then

translate them into macro code. So you "write" much of the code for a repeti-

tive function simply by executing it once with the language's recording fea-

ture turned on. Then all you have to do is incorporate the code that the

recorder creates into your application.

There are, of course, limitations to what you can do with an applica-

tion macro language—although I venture to say that the limitations are far

less restrictive than many users imagine. You are limited to exploiting the

72 CHOOSING YOUR TOOLS

capabilities of the application whose macro language you're using. Those

can be extended quite a bit through DDE links to other applications or

through dynamic link libraries, but you still have to know what the applica-

tion you're working with can do well and what it can't—and there you have

to use your judgment. For instance, the macro language in Word for Win-

dows provides nearly as wide a range of statistical and financial functions

as the average spreadsheet program, but heavy duty math isn't what Word
for Windows was designed to do best. So even though those capabilities

are there, it would be a poor choice for building an application that

requires extensive math. Your application might work, but it would too

slow to be of much real use.

In general, you won't get the same speed from an application that you

build in a Windows application macro language that you would from one

you write from scratch in BASIC or Pascal or some other language. But if

you plan your application well and don't try to get too ambitious with it, you

can obtain a more-than-acceptable performance in most cases.

A more serious limitation of application macro languages is that there is

no standardization of these languages. Even among vendors offering several

macro language-equipped products, such as Microsoft's Excel and Word for

Windows, the application macro languages of each product bear little resem-

blance to one another. That's all right if you're going to write all your pro-

grams in one application's macro language, but if you intend to write several

applications in different macro languages—or if you attempt to write an

application that utilizes DDE to link macros written in several applications

—

you'll have to learn a new macro language for each new application you use.

That's not an impossible task by any means, but it is an annoyance and can

slow down your development project.

The following sections detail the strongest macro programming lan-

guages for Windows applications.

Ami Pro

Ami Pro is a professional-level word processor that includes a spelling

checker and thesaurus; drawing, charting, and image-processing modules;

and a method of dealing with text and graphics frames that allows tremen-

dous control of page formatting and layout. It also offers the ability to

import and export a wide variety of file types and a feature called revision

marking, a document information facility that can be used to assign descrip-

tions and keywords to each document.

The Ami Pro macro language is a full-fledged development environment

that allows you to completely customize every aspect of Ami Pro's opera-

tion—including its menus, dialog boxes, and basic functions. For instance,

the DocMan application described in Chapter 14 employs an Ami Pro macro

to modify the application's File New and File Save commands so that they

automatically interact with the DocMan document management system.

Windows Development Tools 73

The Ami Pro macro language includes a rich set of string, numeric, and

file input/output functions, and offers support for DDE and for calling func-

tions in external dynamic link libraries. The Lotus Dialog Editor, which is

included in the Ami Pro package, simplifies the task of creating custom dia-

log boxes. And the program's macro recording feature can be used to turn

keystrokes into macro code.

Macros are created and edited in Ami Pro using its standard editing

tools, as shown in Figure 4.6, and then saved with an .SMM extension. The

file is compiled as you save it. Ami Pro identifies any syntax errors in the file

as you save it, and brings them to your attention at that time.

Figure 4.6
Macro editing in

Ami Pro

m

Ami Pro

File Edit View Text Style Page Frame Tools Window Help

' ~

AUTONEW.S

M-"-i- 1

1
'

i

"
' i '*{"" 4

|..M..,,...p.
fe |

1:

22

3-

tunction autonew()

icascadewindow

:box=dialogbox("Docdes. dig" , "DocDes"

)

switch box

case -1

message ("dialog not found")

iexit function

case

fileclose ()

BodyT>>;t 1? C VAMIPROSMACROS

Most Ami Pro macro applications tend to execute quickly, but their exe-

cution speed still lags behind that of stand-alone applications. This macro

language is best suited for developing applications that require automatic

production and logging of documents or for customizing Ami Pro's menus
and appearance.

Ami Pro for Windows Release 2.0

Lotus Development Corporation

55 Cambridge Parkway

Cambridge, MA 02142

(617)577-8500

$495

74 CHOOSING YOUR TOOLS

Crosstalk for Windows
Crosstalk for Windows is an asynchronous communications program that

offers a wide range of terminal emulation and file transfer options.

The Crosstalk for Windows macro language is a subset of the powerful

Crosstalk Application Script Language (CASL) from Crosstalk Mk.4 for

DOS. CASL macros built for the DOS version can generally be brought into

the Windows version, but because some CASL features are not available in

that version, a fair amount of translation is necessary to get complex CASL
scripts to run in the Windows version.

Despite compatibility problems with the DOS version, the Crosstalk

for Windows implementation of CASL offers a rich set of functions for

automating communications processes. The program includes a macro

record feature, which simplifies this process. It falls down, however, in the

area of user interface design facilities. You can create simple dialog boxes

using Crosstalk for Windows, but you cannot create custom menus or utilize

icons or list boxes in dialog boxes. This makes it difficult to create full appli-

cations in Crosstalk for Windows. You can, however, use the program's

strong DDE support to link CASL scripts to a front-end application built

using a product that offers more robust user interface development features,

such as Visual BASIC or Toolbook from Asymmetrix.

Crosstalk for Windows 1.2

Digital Communications Associates

1000 Alderman Drive

Alpharetta, GA 30202

(800) 348-3221

$195

dbFast/Win
dbFast/Win is a dBASE-compatible database language and compiler that has

been extended to offer support for Windows features such as dialog boxes

and buttons.

Because the dbFast/Win language is compatible with the dBASE lan-

guage, it can be used to recompile existing dBASE applications for use in

Windows, or to write entirely new applications in dBASE code.

This compatibility with the thousands upon thousands of existing

dBASE applications is the product's strong point. Experienced dBASE pro-

grammers will be able to add Windows-specific features to their existing

applications with only a modicum of effort. These features include support

for DDE and external dynamic link libraries.

dbFast/Win is less suited for original development of Windows applica-

tions since it supports only a subset of Windows' user interface features. The

program offers decent support for using multiple fonts and colors, building cus-

tom menus, and creating applications that utilize multiple windows. However,

its dialog box creation capabilities are limited to list boxes, text messages, and

Windows Development Tools 75

a variety of buttons. Advanced features such as icons and combo boxes are

missing, and there is no dialog editor to simplify screen layout tasks.

dbFast/Win 1.55

Computer Associates International, Inc.

711 Stewart Avenue

Garden City, NY 11530

(800) 645-3003

$199

DynaComm
DynaComm is a Windows asynchronous communications program that

offers a full range of terminal emulations and file transfer protocols. Addi-

tional versions of DynaComm offering support for the Macintosh and for

synchronous communications are also available.

DynaComms macro language is among the richest available for any Win-

dows application. It includes strong support for creating menus and dialog

boxes, using script language commands like those in Figure 4.7. Dyna-

Comms macro language also excels at utilizing Dynamic Data Exchange and

external DLLs, creating random- and sequential-access text files, and auto-

mating the communications process. Its recorder function can be used to

turn recorded keystrokes into macro code.

Figure 4.7
Macro editing in

DynaComm

DynaComm - AUTOMCI.DCP
File Edit Search Settings Phone Transfers Script Help

•main
if iconic() goto main
dialog (,4,306,176)
Message (4,4,,) " Account: "

|
$account

listbox (2,24,258,112) %table %i

message (82,4,,) "Sort by:"
listbox (110,4,50,44) 11 combobox set %sort listbox(2), if *sort>0 perform

message (172,4,,) "Uiew:"
listbox (192,4,50,78) 10 %table combobox set Stable listbox(3), perform dialo

IMfMiHUMTI (2,140,129,16) Default "tRead Message" dialog cancel, set %i
widebutton (131,140,129,16) "6New Message" dialog cancel, set %init 0,

button (1,156,43,16) "fcAnswer" dialog cancel, set %i listbox(), set %an
button (44,156,44,16) "fcMoue" set *i listbox(), record read Stable at %
button (88,156,43,16) "fcExport" dialog cancel, set %i listbox(), perfor
button (131,156,43,16) "ftforward" dialog cancel, set %i listbox(), set
button (174,156,43,16) "RDelete" set %i listbox(), perform delete, if t
button (217,156,43,16) "fcPrint" dialog cancel, set %i listbox(), perfor

button (263,24,40,16) "Send/Rec6o" dialog cancel, set 0s8 str(-1), set
button (263,40,40,16) "fifcutoMCl" dialog cancel, set @s8 str(0), set %in
button (263,56,40,16) "(".Terminal" set iinit 0, set @s7 ""

, perform saue
button (263,72,40,16) "6Set up" set %i listbox(1

)

.dialog cancel, set %u
button (263,88,40,16) "PRhonebook" set %i listbox(1), dialog cancel, se
button (263,104,40,16) "Statistics" set Xi listbox(1), dialog cancel.

76 CHOOSING YOUR TOOLS

The biggest limitation in designing applications in DynaComm is its lack

ot a dialog editor. The DynaComm language supports almost every Windows
user interface control (multiple selection list boxes are the only notable

exception), but creating complex dialog boxes without the help of a dialog

box editor can be trying. Fortunately, a public-domain dialog box editor is

available for DynaComm (DCDLGED.EXE) through the Future Soft Engi-

neering forum on CompuServe, and the company is working on a dialog box

editor for inclusion in future versions of the program.

DynaComm does include a script editor and a compiler, and applications

created using them execute quickly. The DynaComm language is well suited

for automating any communications task.

DynaComm 3.0

Future Soft Engineering, Inc.

1001 South Dairy Ashford, Suite 101

Houston, TX 77077

(713) 496-9400

$295

Lotus 1-2-3 for Windows
As its name suggests, Lotus 1-2-3 for Windows is the Windows version of

Lotus 1-2-3, the perennially best-selling spreadsheet for DOS computers. It

makes good use of the Windows environment while providing the full range

of functions and capabilities users of the DOS version have come to expect,

including the ability to work with multiple worksheets at once, solver capabil-

ities, and integrated graphics and database functions.

1-2-3 for Windows's macro language, unfortunately, is not nearly so

close to the state of the art. It duplicates all the capabilities of the DOS
product's macro language and adds a smattering of Windows-specific func-

tions, including support for DDE and for the Windows Clipboard. However,

it fails to include any specific user-interface facilities, and there is no way to

create dialog boxes using the 1-2-3 for Windows's macro language. The only

way to create custom menus is in the 1-2-3 Classic menu bar—a holdover

from the DOS version that fails to follow standard Windows conventions.

Beyond its user-interface design limitations, 1-2-3 for Windows's macro

language suffers from the program's insistence that macros be stored within

the active worksheet. 1-2-3 doesn't recognize the concept of global macros

—

macros stored on disk for use with every worksheet.

Despite these drawbacks, the 1-2-3 for Windows's macro language is a

powerful tool for automating spreadsheet functions and reducing repetitive

tasks to a single keystroke.

1-2-3 for Windows
Lotus Development Corporation

55 Cambridge, MA 02142

(617)577-8500

$595

Windows Development Tools 77

Microsoft Excel

Microsoft Excel is a powerful spreadsheet with integral graphics and data-

base functions. It allows you to open multiple worksheets at once and embed
graphics and command buttons on your worksheet. It includes strong sup-

port for Dynamic Data Exchange and external DLLs.

The Excel macro language provides the ability to completely automate

and customize any spreadsheet function. It supports user-defined menus and

dialog boxes, and allows macro programmers to completely mask the under-

lying spreadsheet by eliminating row and column headings, grid lines, and

the formula bar. The program's macro recorder can be used to turn key-

strokes into macro code.

Excel macros are stored in special macro sheets, which look much like a

standard worksheet and can be edited using the programs standard formula

editing commands. (A macro sheet is shown in Figure 4.8.)

Figure 4.8
A macro sheet in

Excel

Microsoft Excel - BR0KER1 .XLM

File Edit Formula Format Data Options Macro Window Help

JQOJjOTS

^H=HSCROLL(15,TRUE)

9

10

11
12

13

14

15

lb

17

18

19

20

21

22

23

24

iHome

!=HSCROLL(i,TRUE)

»VSCROLL(1,TRUE) [=VSCROLL(l JRUE)

-FORMULACLOTS '.'R2C1') =RETURN()

=SELECT(!$SS12,!$S$12)

=FORMULA('=0')
! CLEANUP

=pEFINE.NAME('buytarget\SELECTION())

=DEFINE.NAME('transtarget',!$PS11)

=MESS*GE(TRUE, 'Formatting latest stock data

=SELECT('R26C1 R26C1')

»IF('C:\BROKER 1 XLSItransBfget-'Unreoordsd') =PaRSE('[LOTUS DEV CORP COM][379(

=QOTO(Updaip) =SE LE C T(' R26C3: R2SC7
'

)

"l=FORMAT.NUMBER('C»nerar i

=SELECT('R27C3')=RETURN()

Chart2l

°VSCROLL(23,TRUE)

=RETURN()

ChartPrce

=VSCROLL(52,TRUEi

.RETURNO

'.(i.irtv. ,i

=VSCROLL(63,TRUE)

RETURNO

=SELECT('R26C6:R2flC7')

=CLEAR(3)

=SELECT('R25C2:R28C2')

?UI<).
=SELECT('R25C6')

=PA£TE()

=SELECT('R25C3:R26C6')

=CUT()

=SELECT('R25C2')

=PASTE()

AU ULATIONJ3)

Ready

=SELECTfR26C2R26C5')

This method of creating and storing code has the benefit of being famil-

iar to those who are comfortable with spreadsheets, but it is still awkward
compared to a standard full-screen editor such as DynaComm. And it

becomes even more so when you're editing menus or dialog boxes, although

the latter task is simplified by the program's dialog editor.

78 CHOOSING YOUR TOOLS

Overall, however, Excel's macro language is well suited to automating

any spreadsheet task and for building applications that require its strong cal-

culating, graphics, and database functions.

Excel

Microsoft Corporation

1 Microsoft Way
Redmond, WA 98052

(800) 426-9400

$495

Microsoft Word for Windows
Microsoft Word for Windows is a powerful, professional-level word processor

that includes spelling and grammar checkers, a thesaurus, revision marking,

drawing, charting and image-processing modules, strong mail merge capabili-

ties, the ability to embed command buttons in documents, DDE and DLL
access, and a host of other advanced features.

WordBASIC, the Word for Windows macro language, utilizes a BASIC-
like syntax to provide the macro programmer access to customization capa-

bilities. The language can access any of Word for Windows' functions, and

allows customization of the program's menus, dialog boxes, and basic func-

tions. A macro recorder can be used to turn repetitive keystrokes into

simple macros.

WordBASIC macros are edited within Word for Windows, which pro-

vides a set of special-purpose tools for stepping through and debugging mac-

ros. The editing screen is shown in Figure 4.9.

The WordBASIC dialog editor, new in version 2.0 of the program, sim-

plifies the task of creating dialog boxes in WordBASIC. WordBASIC is well

suited to any task requiring automated document production, or for custom-

izing Word for Windows.

Word for Windows 2.0

Microsoft Corporation

1 Microsoft Way
Redmond, WA 98052

(800) 426-9400

$495

Object Vision 2.0

Object Vision is a unique cross between a forms automation package, an

expert system development tool, and an object-oriented database language.

It provides a powerful set of graphic tools that enable even novice program-

mers to turn out finished applications quickly.

Object Vision can read and write to files created by Paradox, dBASE and

Btrieve, and can interact with dynamic link libraries. It also supports DDE.

Windows Development Tools 79

Figure 4.9
A macro in Word

for Windows

Microsoft Word - Global: AUTOEXEC
File Edit View [nsert Format Utilities Macro Window 01:34 AM 07/30/91

Help

Step Step SUBs

Disablelnput

Begin Dialog UserDialog 320, 160

GroupBox 8, 6, 186, 142, " Directory
"

OptionGroup Directory

OphonButton 16, 20, 160, 24, "Last File"

)phonButton 16, 37, 160, 24, DirD$(2)

B31BSBBl!!l6, 52, 160, 24, DirD$(3)

OphonButton 16, 67, 160, 24, DirD$(4)

OphonButton 16, 82, 160, 24, DirD$(5)

OphonButton 16, 97, 160, 24, DirD$(6)

OphonButton 16, 112, 160, 24, DirD$(7)

OphonButton 16, 127, 90, 24, DirD$(l)

OptionGroup Extension

OphonButton 235, 95, 60, 15, "DOC"
OphonButton 235, 110, 60, 15, "DOT"
OphonButton 235, 125, 60, 15, "TXT"
OKButton236, 35, 68,21

CancelButton 236, 62, 68, 21

End Dialog

Dim dig As UserDialog

On Error Goto Bye

Dialog dig

On Error Goto bye

Trace Global: AUTOEXEC

Object Vision doesn't provide an actual programming language. Instead,

the process of developing an application in Object Vision starts with designing

a screen form using a set of graphic screen-design tools. Then formulas are

entered to define the values of each field on the form, using a combination of a

graphic decision tree and spreadsheet-like @ functions. Similar methods are

used to specify the actions to be taken (such as a dialog box opening or

another form being loaded) when a button is pushed or a form is closed.

Object Vision is pretty much limited to producing forms-based database

applications, and its lack of a programming language further limits its cus-

tomizability. Nevertheless, the speed and ease with which you can create a

database application in Object Vision make it a winner.

Object Vision 2.0

Borland International, Inc.

1800 Green Hills Road
Scotts Valley, CA 95066

(408) 438-5300

$495

SuperBase 4

SuperBase 4 is a full-featured relational database management system that

includes strong support for graphics. DLLs. DDE. telecommunications, and

80 CHOOSING YOUR TOOLS

SQL (structured query language) queries. The program utilizes a unique

visual design tool for defining relational links between data files, plus an

overly cute but surprisingly effective series of VCR-like buttons for maneu-
vering through databases. The program can read and write dBASE files and

can interact with a variety of SQL servers, including Oracle, Microsoft SQL
Server, and SQLBase.

DML, the SuperBase 4 macro language, is a rich development tool for

developing database applications. It includes good support for designing data

input screens and reports and for automating any database management func-

tion. Using DML you can create multiple-window applications complete with

text and graphics fields, multiple fonts and colors, and formatted reports.

Overall, SuperBase 4 is a powerful environment for building relational

database applications that take full advantage of the Windows user interface.

SuperBase 4

Precision Software Inc.

c/o Software Publishing Corporation

3165 Kifer Road
Santa Clara, CA 95051

(800) 562-9909

$695

Windows Batch Languages

The term Windows batch languages is a bit of a misnomer. It comes from the

resemblance of the syntax of these languages to that of the DOS batch lan-

guage and from their suitability for the same kind of "quick and dirty" pro-

gramming. But, given the differences between programming for DOS and

for Windows, the similarities are actually fairly superficial.

Like their DOS counterpart, these languages utilize a relatively simple

syntax, making it easy to develop applications. But whereas the DOS batch

language is best suited for simple tasks such as automating the loading of

several TSRs prior to loading an application program, Windows batch lan-

guages are designed to automate processes involving multiple Windows
applications and to build utility applications or front ends for DOS utilities.

These languages excel at manipulating other Windows applications by

resizing, hiding, or showing their windows; sending them keystrokes; and cut-

ting, copying, and pasting their data. Such languages also offer the ability to

build dialog boxes to accept user input and to launch DOS applications with

user-specified command line parameters. (However, with the exception of

Bridge Toolkit, they cannot interact with DOS applications once the DOS
application has been launched.)

Windows batch languages also all offer the ability to record keystrokes

and then translate those keystrokes to macro code, thus simplifying the pro-

cess of developing applications.

Windows Development Tools 81

The strongest points about these languages are the speed with which you

can build small applications or application prototypes and their ability to

link multiple Windows applications. Their weakest point is their lack of func-

tional depth—you wouldn't want to call on any of them to perform extensive

calculations or manipulate large data files.

You'll quickly run into the limits of these languages if you try to develop

full-scale applications with them. But if you confine your use of them to the

tasks to which they are best suited, you'll discover that they are invaluable

tools for producing simple applications quickly and with minimum effort.

Ideal uses for these applications include building Windows front ends for

DOS utilities such as file compression/decompression programs and creating

menu systems that automatically set up your Windows workspace, loading

sets of programs with a single command. They can also be used to automate

processes in Windows applications that lack internal macro languages and to

automate time-consuming or repetitive tasks.

Bridge Batch

Bridge Batch is a remarkably full-featured development tool that includes a

powerful language, support for DDE and dynamic link libraries, and excel-

lent dialog box and program editors.

The Bridge Batch language is geared toward- automating processes

involving other Windows applications. It includes a full complement of com-

mands for launching, controlling, and exchanging data with other applica-

tions, plus a strong set of user interface design tools that allow you to build

menu systems or dialog boxes for controlling those processes; an example is

shown in Figure 4.10. It doesn't offer the data processing power necessary

for stand-alone application development, but it has tremendous capability as

a tool for linking multiple Windows applications into integrated systems.

The Bridge Batch macro recorder is a well-designed complement to the

language. It can record both mouse and keystroke commands. Mouse com-

mands recorded in this fashion cannot be converted to macro code or edited,

but they can be assigned to hotkeys or called from macro programs.

Bridge Batch

Softbridge, Inc.

125 Cambridge Park Drive

Cambridge, MA 02140

(617)576-2257

$179

Bridge Toolkit

Bridge Toolkit is a superset of Bridge Batch that incorporates several addi-

tional capabilities, including the ability to interact with DOS applications

running in 386 enhanced mode and to communicate across a local area net-

work (LAN) with other Bridge Toolkit applications.

82 CHOOSING YOUR TOOLS

Figure 4.10
The Bridge Batch

editor

BrEd (DIALOG! -APP10.BR

dialog define DES SVS
begin

at H6 80
size 204 92
caption nomenu "Describe System"
text at 17 6 "Cache:"|
editbox at i*2 4 width 36 required Ves result Cache

Edit Control Options

text atfT~

editbox jr
oriifhnv H

Describe System

editbox
pushbut
text at

end
CLS
dialog load
echo Testin
echo Configi
Array appeni

Array appen

Cache:

System description:

I
Store results in:

x=time()
x1=%x%
Start= "Starting Tine:
Array append Test_Data %Start%
echo %Start%

select PROGMHN; put "%%miS{ Left >{ Left >"

Bridge Toolkit's ability to interact with DOS applications is unique

among Windows development tools. To make use of it you must load a small

TSR before loading Windows. Bridge Toolkit utilizes this TSR to monitor

the activity of DOS applications and send them keystrokes. For instance,

you might have a Bridge Toolkit program that interacts with Lotus 1-2-3,

sending it first the command to load a file and then a series of commands to

manipulate that file, waiting after each command for 1-2-3 to indicate that it

is ready to receive another command string.

The network capabilities of Bridge Toolkit are also unique. Using this

capability, you can easily build a LAN-based messaging system, or automate

tasks that are to take place on multiple workstations around the network.

A runtime version of Bridge Toolkit is available on a per user basis for

distribution with Bridge Toolkit applications.

Bridge Toolkit

Softbridge, Inc.

125 Cambridge Park Drive

Cambridge, MA 02140

(617)576-2257

$695

Windows Development Tools 83

Norton Desktop for Windows
Norton Desktop for Windows is a powerful collection of utilities for Windows

that offer the user a tremendous range of tools for customizing the appearance

and operation of the Windows environment itself. It includes replacements for

Program Manager and File Manager, an enhanced drag-and-drop desktop

interface, and a variety of utility programs including a backup program, data-

recovery utilities, a scheduler, and file-searching and viewing capabilities.

In addition, Norton Desktop includes a version of WinBatch (see below)

that offers a powerful tool for automating repetitive activities or customizing

Windows applications. Included with this is a useful editor for creating batch

files, complete with a drop-down reference to all the commands and func-

tions in the batch language.

The batch language can be used in conjunction with Norton Desktop's

scheduler to create automated routines that run at regularly scheduled

intervals.

Norton Desktop for Windows
Symantec Corporation

10201 Torre Avenue

Cupertino, CA 95014

(408) 253-9600

$149

PubTech BatchWorks
PubTech BatchWorks is the commercial version of Wilson WindoWare's Win-

Batch (described below). Both products offer a macro recorder, the ability to

attach new menu items linked to macros to the Control menu of any Win-

dows application (the menu that appears when you click the gray box at the

upper-left corner of any window), and strong capabilities for interacting with

Windows applications.

The ability to add new functions to the Control menu of other Windows

applications gives BatchWorks unique strength as a tool for customizing other

applications.

BatchWorks also offers the unique ability to read the titles of dialog

boxes displayed by other Windows applications. (In contrast, other Win-

dows development tools are generally limited to reading the title of the

main window of another application.) This enables you to build a higher

level of error checking and control into batch programs that automate other

applications because you can check whether the application has displayed

an error message in a dialog box in response to previous commands you

have sent it through the batch program.

Unfortunately, BatchWorks falls short in the area of user interface

design. It includes neither a program editor nor a dialog editor, although a

program editor is available in the BatchWorks SDK. a companion product.

Any ASCII editor (such as Notepad) can be used to create batch programs,

84 CHOOSING YOUR TOOLS

but the lack of a dialog editor is a serious shortcoming. In addition, its dialog

boxes can utilize only a brief subset of the standard Windows controls. They
are limited to displaying list boxes, buttons, check boxes, text messages, and

radio buttons.

Other shortcomings of the product include the inability to create new
drop-down menus (although this is obviated somewhat by the ability to add

items to the Control menu) and the product's lack of support for DDE. Nev-

ertheless, BatchWorks is a valuable tool for building quick utilities or front

ends for DOS utilities and for controlling the operation of, or customizing,

other Windows applications.

PubTech also offers the $99.95 BatchWorks SDK, which can compile

batch files into stand-alone .EXE programs or encrypt and password protect

them to prevent unauthorized alterations. Encrypted or password-protected

batch files can be used with the $20 runtime version of BatchWorks. The
BatchWorks SDK includes the PubTech Text Editor, a Windows-based pro-

gram and ASCII file editor.

PubTech BatchWorks 2.0

Publishing Technologies, Inc.

7719 Wood Hollow Drive, Suite 260

Austin, TX 78731

(800) 782-8324

$99.95

WinBatch
WinBatch is a shareware version of PubTech BatchWorks. The primary dif-

ference between the two products is the difference in their price—which

might be reason enough to opt for the less expensive shareware version.

WinBatch was used to produce two of the projects in this book: The
Ultimate Notepad project in Chapter 9 and the AutoPrint project in Chapter

1 1. We've included the latest version of WinBatch on the program examples

disk that accompanies the book, to enable you to test these projects right

away. You are, however, obligated to register WinBatch with Wilson Win-

dowWare and pay its shareware fee if you continue to use the program

beyond a short trial period.

In addition Wilson WindoWare offers a compiler for WinBatch that can

be used to turn batch programs into stand-alone .EXE files, so that the Win-

Batch program is no longer required to execute them.

WinBatch

Wilson WindoWare
2701 California Avenue S.W., Suite 212

Seattle, WA 98116

(800) 762-8383

$60.95

Windows Development Tools 85

Windows BASICS

Not long ago, BASIC was considered as dead as Latin. It might have been

the first programming language most DOS users learned, but it was the last

they would ever want to use for serious application development. Then a

funny thing happened on the way to Windows: BASIC grew up.

The implementations of BASIC for Windows don't have very much in

common with the ugly language you may remember. BASIC'S line numbers

have been replaced with named subroutines, and its GOTOs and GOSUBS
have abdicated to a rich set of program control structures. Moreover, most

implementations of BASIC for Windows allow you to compile your program

to an .EXE file that, as long as you have the language's runtime DLL avail-

able on your system, can be used without the BASIC development system or

interpreter. This means that you can create small, speedy .EXE files. Of
course, the runtime DLLs tend to be rather large (about 260k in the case of

Visual BASIC), but the same runtime DLL is used by every .EXE file you

create. So although the first program you create might require 300k of disk

space, including the DLL, each additional one might only occupy 10 to 50k,

depending on the complexity of the program.

Gone too are the ugly teletype screens produced by most BASIC pro-

grams. In their place, the Windows implementations of BASIC offer you

access to the full set of Windows controls for creating attractive, easy-to-use

user interfaces.

The strongest point about these implementations of BASIC is that

BASIC remains an easy programming language to learn. Compared to C, or

even Pascal, BASIC code is almost readable, and given sufficient documenta-

tion, one can follow the flow of a BASIC program's logic relatively easily.

However, compared to an application macro language, these are still

fairly low-level programming languages. If your application needs a sort rou-

tine or a text-search routine, you'll have to write it yourself; you can't simply

call the application's sort or search function as you could with Ami Pro or

Excel or another application macro language. So considerably more pro-

gramming effort may be required to achieve the same result, compared with

a macro language. On the other hand, these languages allow you to create

applications that aren't dependent on the limitations of another program.

They can also be distributed without also having to distribute the huge appli-

cation programs upon which application macro languages are based.

GFA BASIC for Windows
GFA-BASIC for Windows is a structured implementation of BASIC that pro-

vides the unique benefit of allowing cross-systems development of applications

for both DOS and Windows. Applications written in the Windows version o[

GFA-BASK ' can be recompiled in the DOS version of the language. The DOS
version will retain the basic windowed appearance o\ your application and

86 CHOOSING YOUR TOOLS

duplicate all but its most Windows-specific features (such as Clipboard support

and DDE) for use under DOS. In addition, the manufacturer is promising to

deliver OS/2 Presentation Manager and UNIX versions of the language in the

near future, and claims that these will offer the same degree of compatibility.

One might expect that this cross-systems development capability would

come at the expense of the language's ability to fully exploit the Windows
environment. However, GFA-BASIC for Windows boasts a huge command
set that provides access to every Windows function and takes full advantage

of Windows' memory management capabilities. Thus you can, for instance,

create arrays that occupy up to 20Mb of RAM.
The GFA-BASIC editing environment is less graphic than those of the

other Windows BASICs. Most code is written in a traditional editor,

although a graphic editor is provided for creating dialog boxes.

GFA-BASIC applications can be compiled to an .EXE file, or can be

used with the program's royalty-free runtime package. The language offers

support for the Windows multiple-document interface, and can access DLLs
and DDE functions.

GFA-BASIC for Windows
GFA Software Technologies, Inc.

27 Congress Street

Salem, MA 01970

(508) 744-0201

$295

ObjectScript

ObjectScript is built around a screen editor that works like a drawing pro-

gram. You place user interface controls (buttons, list boxes, and so forth) on

the screen by dragging them with the mouse. Then you write the code that

will be executed when the user selects the item using ObjectScript 's imple-

mentation of BASIC. Figure 4.11 shows the process of defining a table. This

makes it simple to create attractive user interfaces for your application. The

language supports DDE and use of external dynamic link libraries and has

the ability to read and write dBASE, ASCII, and PCX-format files.

ObjectScript Professional is an enhanced version of the product. It fea-

tures improved printer support, support for more external databases (includ-

ing Novell's BTRIEVE), advanced keyboard-handling functions, time and

date functions, and support for additional user interface controls and messages.

The ObjectScript runtime can be distributed without charge, but a one-

time $495 fee is required for the ObjectScript Professional runtime.

ObjectScript is useful for building graphical front ends to dBASE files

and for building small utilities. For more ambitious projects you'll need the

additional functions and capabilities of ObjectScript Professional.

Windows Development Tools 87

Figure 4.11
The ObjectScnpt

editor

ObjectScript - C:\SCRIP^SAMPLESVU^MANVAPPMAN.OBV 31
File Edit Objects Window Arrange Pattern Line Text Help

LiL

Table ID

Number of Columns:

Number ol Rows:

Row Height:

Show Grid

Show Row Numbers

Show Column Titles

Column Title:

Name

Column Width:

Column Color:

123

Appl.cut.on "
Dele-

Horz ScrollBar

Veil ScrollBar

Name
Type
Command
Param 1

Param 2

Method >>

ObjectScript and ObjectScript Professional

Matesys Corporation

900 Larkspur Landing Circle, Suite 175

Larkspur, CA 94939

(415) 925-2900

$150 and $495

ObjectView

ObjectView is a superset of ObjectScript Professional that adds a set of high-

level SQL functions for interacting with Microsoft's SQL Server and Gupta

Technologies' SQL Base and Oracle and DB2 databases. It can be used to

develop SQL applications with remarkable speed and ease.

ObjectView

Matesys Corporation

900 Larkspur Landing Circle, Suite 175

(415)925-2900

$899

88 CHOOSING YOUR TOOLS

Realizer

Realizer is a highly structured superset of BASIC that combines a visual

screen-design tool with a powerful language. It includes a set of high-level

objects—including spreadsheet, charting, and text editing windows—that

speed the development process by allowing you to include a spreadsheet,

chart, or text editor in your application with a single line of code.

Realizer produces fast, efficient applications, and includes support for

the multiple-document interface, DDE, dynamic link libraries, and user-

defined custom controls, and the ability to read and write Lotus 1-2-3,

dBASE, and Excel as user-defined file formats. Registered users can distrib-

ute the Realizer runtime DLL free of charge.

Realizer's screen-design tool, called FormDev, is somewhat clumsy to

use, but provides access to the full range of Windows controls, as shown in

Figure 4.12.

Realizer produces fast, efficient code, and its complement of high-level

objects speeds the development process.

Realizer

Within Technologies

8000 Midlantic Drive, Suite 201 South

Mt. Laurel, NJ 08054

(609) 273-9880

$395

Visual BASIC
Visual BASIC is a superset of BASIC that takes its organizing principles

from programs such as Apple's HyperCard. Program screens are created

using a set of drawing program-like tools, and then code is attached to each

object for each event the programmer wishes to have the program respond

to. For instance, a button might have separate functions programmed for a

mouse-down event, a mouse-up event, and a keypress event.

The compartmentalization of code engendered by Visual BASIC'S event-

driven programming model is both a blessing and a curse. On the one hand,

it breaks the programming task down into a series of manageable steps:

Each action and each process can be developed as a separate entity. But it

also makes it difficult to get a grasp on your whole application because your

program code is actually scattered through the application—hiding behind

buttons and list boxes rather than appearing in a single stream, as is the case

with the other Windows BASICs. This can complicate the development and

debugging process with large applications, at least until you become comfort-

able with this new approach to programming.

Visual BASIC supports custom controls, Dynamic Data Exchange, and the

ability to call external DLLs. There has a been tremendous amount of third-

party support for Visual BASIC, resulting in the availability of a wide variety of

custom controls and DLLs that can be incorporated into your programs.

Windows Development Tools 89

Figure 4.12
Realizer's FormDev

screen-design tools

Realizer

File Edit Form Align ClipArt Window Help

Tools

rlin-

forrndev.rlz

Personal Information

ysVar
ir = fdRlzDir + "lib;" + fdRlzDir + "FormDevV"
h = fdRlzDir + "Utility\i

ath = fdRlzDir + "ClipAf

lpPath = fdClipArtPath

MmpPath=
BmpFN ='

tmapdir =

likdir = ''

s = ("DefButton", "Burl

.
—

-j|:s = {ItemNames, "Cap
s = {ItemNames. "L istl

Options.

Next: 120
Color

Te-t

<detauK tont>

Color.

Font.

= LDefButton, Butto

= {ItemNums, Captio

= {ItemNums, _ListBo

c.rlz"

der.rlz"

hifier.rlz"

Button". "GroupBox"}
ight", "Frame", "Bitmap

o", "DropDownList", "L

ton, _GroupBox)

, _Frame, Bitmap, _Bi

DropDownList, _Log, _

Registered users can distribute the Visual BASIC runtime DLL freely.

Overall, Visual BASIC is best suited for small to medium-sized program-

ming tasks. It is well suited for designing attractive, easy-to-use graphical

applications, but may not be robust enough for large-scale development

projects. (Although it is an excellent prototyping tool for applications of any

size.) The standard version of the product does not support the multiple-

document interface (which allows a program window to open several child

windows at once and minimize or arrange their windows at will) but this

capability is available in the Visual BASIC Professional Toolkit.

Visual BASIC was used to develop the projects described in Chapters 12

and 14. The Visual BASIC runtime DLL is included on the disk accompany-

ing this book to allow you to see these projects in action. However, you'll

need the full Visual BASIC development environment if you wish to modify

or customize those projects.

Visual BASIC
Microsoft Corporation

1 Microsoft Way
Redmond, WA 98052

(800) 426-9400

$199

90 CHOOSING YOUR TOOLS

Pascal

Thanks in large part to the success of Turbo Pascal for DOS, Pascal has

eclipsed BASIC as a tool for nonprofessional programmers developing DOS
applications. Turbo Pascal for Windows, the only current implementation of

the Pascal language for the Windows environment, may have the same effect.

Turbo Pascal for Windows
Turbo Pascal for Windows is a full-fledged object-oriented programming

environment for creating stand-alone Windows applications. At the heart of

the Turbo Pascal for Windows environment is a code library called

ObjectWindows, which contains the rough framework for creating a generic

Windows application. By modifying this framework, one can create Windows
applications of any description with extraordinary speed.

Turbo Pascal for Windows applications can access DDE, dynamic link

libraries, and the Windows Help engine. The Turbo Pascal for Windows
package includes the Resource Workshop Toolkit (a set of tools for creating

icons, windows, and dialog boxes), Turbo Debugger for Windows (a tool for

testing and debugging applications), a resource and help compiler, the ability

to create dynamic link libraries, and the ability to run standard DOS Pascal

code in a Teletype-like window.

Combined, these features make Turbo Pascal for Windows at least the

equal of Realizer and Visual BASIC as a tool for creating complete Win-

dows applications from scratch. And unlike either of those products, Turbo

Pascal for Windows programs compile to stand-alone .EXE programs that

don't require the presence of a runtime DLL. Overall, Turbo Pascal for Win-

dows is a rich environment for creating Windows applications of nearly any

description. It provides access to every Windows function without your hav-

ing to access the Windows SDK.
Turbo Pascal for Windows
Borland International, Inc.

1800 Green Hills Road
Scotts Valley, CA 95066

(408) 438-5300

$249.95

Graphical Hypertext Products

The two products in this category are both closely related to Apple's Hyper-

card. Like HyperCard, they make it simple to design attractive user inter-

faces with hypertext links between data. They employ easy-to-learn

programming languages and have good support for graphics and animation.

In graphical hypertext products, your program code is linked directly to

the screen object (button, list box, and so on) that calls it. So if you have a

Windows Development Tools 91

button that sorts a list box, you can copy that button to another screen in your

application, and the code associated with it will be copied too. This is a real

help to development because once you've created a few routines that work

you can reuse them in any application you're developing in that language sim-

ply by copying their associated screen objects to the new application.

The appeal of these products for novice programmers is in the English-

like syntax of their programming languages. For instance, a script written in

Spinnaker Plus might contain the line

Put the TopLeft of Me Into MyPos

which would tell Plus to create a variable called MyPos and to store the coor-

dinates of the top-left corner of the control containing the statement in the

newly created variable.

However, these products also have limitations to their suitability for gen-

eral-purpose application development. These include the massive size of the

files they create when working with internal data and the relative weakness of

their languages in areas such as calculation and heavy-duty data processing.

You might be able to build a spreadsheet using one of these tools, but you

wouldn't want to wait around for it to recalculate a thousand cells.

As a result, these products are best suited for building front ends for exter-

nal databases, for multimedia presentations, and for application prototyping.

Spinnaker Plus

Spinnaker Plus is a superset of HyperCard that runs under Windows, on the

Macintosh, and under OS/2 Presentation Manager, making cross-platform

compatibility one of the product's strongest points. The Macintosh version

can import HyperCard scripts, which can then be moved to the Windows or

OS/2 version with very little difficulty. Spinnaker Plus can also access exter-

nal database information through DDE or through database DLLs.

The Spinnaker Plus development environment features a strong script

editor and easy-to-use graphics tools. You design the user interface of your

application by selecting controls from a toolbar and then dragging them onto

the screen. Then, when you're ready to write the script to be executed by

that control, you can select programming statements from a drop-down

menu, eliminating the need to type statements into the editor. Figure 4.13

shows the Plus programming environment.

A runtime version is available that can be distributed with Spinnaker

Plus scripts for a one-time fee.

Spinnaker Plus is best suited for building graphical databases with a lim-

ited number of records, application prototyping, or building front-ends to

data obtainable through DDE or through a dynamic link library.

92 CHOOSING YOUR TOOLS

Figure 4.13
The Spinnaker Plus

script editor

Spinnaker Plus v. 2.5

Spinnaker Software Corporation

201 Broadway Avenue

Cambridge, MA 02139

(617) 494-1200

$495

Toolbook

Toolbook marries a graphical development environment, with good support

for animation, to a strong set of database functions. The Toolbook Open-

Script language offers a rich function set, and Toolbook can read and write

.DBF files and obtain data through DDE and DLLs. As with Spinnaker Plus,

you design Toolbook screens by selecting user interface items from a palette

of available controls, and then write code for each control separately.

Toolbook's strengths are its graphics capabilities and its ability to access

external data. It isn't particularly well suited for storing large databases, but

it can be invaluable for building graphical front ends to external data and for

multimedia presentations and application prototyping.

Windows Development Tools 93

Toolbook 1.5

Asymmetrix Corporation

110 110th Avenue N.W.

Bellevue, WA 98004

(800) 624-8999

$395

Principles of Application Design

The Nuts and Bolts of Application Design

Implementing a Windows Interface

Prototypes, Testing, and Documentation

The Application-

Development Process

CHAPTER

Principles of

Application

Design

Bonner's

Usability Guidelines

Principles of Application Design 97

WHAT DO YOU DO FOR A LIVING.' ARE YOU A SALES REPRESENTATIVE?

An entrepreneur? An accountant? A securities analyst? A phy-

sician? Well, enjoy it while you can. Your days in that profes-

sion may be numbered. As soon as you start building a

computer application, you're in danger of becoming a software designer.

Maybe you won't identify yourself as such on your Form 1040, but you'll

start to think like one—which can be a terrible thing. Why? Because a soft-

ware designer doesn't know half as much about what an accountant or physi-

cian or entrepreneur needs as the accountants, physicians, and entrepreneurs

for whom he or she is writing the application.

Here's how you can tell if you've undergone this mutation: If you started

out as a sales representative and you still think that the job of a sales rep is

to sell, then you're still a sales rep. But if you think the job of a sales repre-

sentative is to run sales-support software, you've turned into a software

designer—and you've probably lost the ability to write useful sales-support

software.

There is only one way to prevent this as you start writing applications,

whether they are for your own use or others': You've got to remember, with

every line of code you write, what life was like before you started writing

software. Remember how you used to spend your time, and remember the

things that used to matter to you. Above all, remember that to people who
aren't professional software designers, computer applications are a means to

an end, not an end in themselves. Your application should be as functional,

unobtrusive, and dependable as the knob on your office door.

Of course, you might still turn into a software designer even if you do fol-

low this advice. But at least you'll be a good one.

Designing for the Designer

Over the past ten years, I've worked with, reviewed, or seen demonstrations

of at least 5,000 commercial PC software applications. By any measure-

sales, market share, user loyalty, longevity—between 90 and 95 percent of

these products eventually proved to be failures.

Although the factors that determine a commercial software product's

success or failure are as complex as the weather, almost all those that failed

shared at least one flaw: They were designed for the designer, not the user.

The difference is a matter of hubris—that for which the gods (or mar-

ket) punishes one.

For example, many years ago an industry luminary who shall remain

nameless told me that, although his new product did require significantly

more effort to master than the current market leader, "It is an effort for

which the user is amply rewarded."

That statement was pure balderdash since the judgment wasn't his to

make. The decision whether the effort required to master a software package

98 PRINCIPLES OF APPLICATION DESIGN

justifies the result is entirely the purview of the user. And in most cases, smart

users will respond to that sort of attitude with a statement on the order of

"Not ample enough by a mile, Buster!"—as, in fact, they did with the product

in question.

An application designed for the designer assumes that the designer

knows more about the users job than does the user. It forces the user to con-

form to the designer's theories, or to the program's internal conventions and

methods, rather than the program adapting to fit the user's needs. The
assumption is made that the application occupies the central role in the

user's work life—even that the user exists primarily to serve the application,

rather than vice versa.

Fortunately, it's fairly easy to spot these arrogant pretenders. For

instance, an application that can't be described without using a metaphor has

almost always been designed for the edification of the designer. The user

shouldn't have to think about software as a notebook, a desktop, or a collec-

tion of index cards in order to understand it—the user shouldn't have to

think about good software at all. Also beware of applications that claim to

"establish a new paradigm" or promise to "change the way you work"—you

may not need, or want, either one.

Designing for the User

In contrast, the applications that over the years have proven to be successful

show every sign of having been designed for the user. They provide efficient,

responsive, and above all, useful services, without placing untoward

demands on the user. They don't presume to tell you how to go about your

job. and they don't require that you take a course in metaphysics before you

can divine their basic concepts.

An application that has been designed for the designer makes you think

too much about the process of using the application. In contrast, one that has

been designed for the user clarifies the process, so that you can concentrate

on the job that motivated you to pick up the application in the first place.

Of course, it's all well and good to talk about designing for the user or

designing for the designer, but what does it really mean? Aren't I, to a large

extent, playing Monday-morning quarterback here—looking at the pro-

grams that I consider successful and decreeing that they were "designed for

the user"?

Yes and no. Certainly I don't know of any software designer who deliber-

ately sets out to make software that is not accessible to the user. Just as, I

imagine, there are few fashion designers who deliberately set out, as is so

often alleged, "to make women ugly." But just as there are classic definitions

of elegance to which some fashion designers might attend (whereas others

are driven by more garish impulses) so too is there a set of general guidelines

Bonner's Usability Guidelines 99

that software designers can follow in order to ensure the usability of their

applications.

Of course, it's also instructive to remember that "software usability," like

"fashion elegance," is subjective. Some people might think of Madonna
when they hear the word elegance, and others of Lauren Bacall. Similarly,

some computer users and application designers might think of WordStars

control-key sequences as the ideal command interface for any application,

whereas others might prefer the Windows user interface. No one design will

satisfy everyone.

Nevertheless, beyond the allowances that one must make for personal

preference, there is empirical evidence that some user-interface designs work

better than others. The user-interface elements found in Windows 3.1, for

instance, are the result of extensive laboratory tests (at Xerox's Palo Alto

Research Center, Apple, IBM, and Microsoft) and years of experimentation

in various commercial products.

However, just because an application runs under Windows 3.1 doesn't

mean that it is truly usable. I've see applications developed for 40-column

Apple II displays that were more intuitive and simply more right than some
Windows applications. You can design an oppressive, unintuitive, clumsy

application under Windows, just as you can with any other development envi-

ronment. It simply takes a little more effort to do so.

The fact that you'll be building applications under Windows doesn't guar-

antee that the applications you design will be truly usable. Nor, unfortu-

nately, does any other single step that you can take. Including Help screens

doesn't do it. Supporting both mouse and keyboard users doesn't do it. Using

a pastel color palette doesn't do it. In fact, there is simply no magic formula

to designing for the user.

However, there are some general principles you can follow that will at

least help you avoid the big traps. So, in lieu of a magic formula, I offer Bon-

ner's Usability Guidelines, a set of ten general principles that define applica-

tions designed for the user.

Bonner's Usability Guidelines

The guidelines that follow are a mixture of common sense and observations

I've made over the years about the qualities shared by all successful applica-

tions. They're also influenced by my obviously strong bias in favor of the

user: As far as I'm concerned, if a design decision doesn't make life easier for

the user, then it wasn't justified. Period.

You'll notice an almost-contradictory tension between some of these

guidelines, on the order of "The porridge has to be hot enough, but the por-

ridge can't be too hot." Good application design is a dialectic—a process in

which one has to measure these tensions and keep them in balance at every

100 PRINCIPLES OF APPLICATION DESIGN

step. The most classic example of this is "ease of learning" versus "ease of

use." On the one hand you want to make your application easy for new users

to learn, but on the other hand you don't want to slow down or frustrate

experienced users.

So how do you balance the two? Very carefully. (Actually, you balance

them by prototyping and testing your application and judging users' reac-

tions to it, as described in Chapter 8. But for now, let's just say that you do it

very carefully.)

These guidelines apply primarily to applications that you develop for use

by others, rather than quick little utilities you cobble together just for your-

self. You don't need to think very much about usability when you're design-

ing an application for your own use—if you don't like the way it works you

can always change it. But when other users are involved, usability becomes a

much more complex issue. Many a programmer has been shocked to find that

an application that works exactly as expected, and solves precisely the prob-

lem he or she thought needed solving, is all but unusable in the hands of any

other individual. It's an awful revelation—one I hope you never encounter.

The following ten rules will help you avoid any such nasty discovery:

Fit applications into the current work flow.

Improve on existing methods.

Don't surprise the user.

Try to delight the user.

Finish the job.

Make applications open-ended.

Design for reliability.

Don't overwhelm new users.

Don't delay experienced users.

Above all, design for the user's convenience—not your own.

Let's look at each of these rules in detail.

Rule 1: Fit Applications into the Current Work Flow

How many times have you heard the promise "This application will change

the way you work?"

That promise always sounded more like a threat to me. PC users aren't

necessarily looking for a new gestalt every time they walk into a software

store. Often they're simply looking for a small application or utility program

Bonner's Usability Guidelines 101

to replace an equally small, less-efficient piece of their work life—a spelling

checker to replace a spelling dictionary, for example. In such cases, it should

do its job smoothly, without disrupting the rest of the user's routine. It

shouldn't add additional steps to the process just to accommodate its internal

requirements.

That's the ideal, but it is inevitable that most new applications will

require limited retraining, a change in routine, or additional steps. Such is

the price of progress. But the more you are able to minimize this sort of dis-

ruption, the more easily your application will be accepted. So, as you design

an application, think twice about any change that will disrupt the current

work flow, try to find a way to avoid the disruption, and, if it can't be

avoided, make sure the results justify it.

Other times a program plays a larger role—replacing not a single step,

but rather an entire system or process. In such cases, the software should

indeed change the way you work. However, such cases are few and far

between, occurring primarily in situations where a grossly outdated and inef-

ficient system is crying out for replacement. And they require extensive

study and planning before you attempt to implement a solution. The other

situation—one in which an incremental productivity gain can be made by

adding a new application to the process, without disrupting its other compo-

nents—is far more common, and much more likely to be solvable by means

of a quick application-development project.

Rule 2: Improve On Existing Methods

As important as it is that an application fit within the current work flow, just

fitting in isn't enough. If a new application doesn't improve on existing meth-

ods, then there's no reason to use it.

Take, for example, a form-based data entry application. If users have to

enter every bit as much information into the computerized version of a form

as they do on the paper version—and have just as much chance of making a

mistake in the process—there is little reason for them to prefer the comput-

erized version. But if the computerized form takes advantage of the PC's

capabilities to fill in dates, provide a list of customer numbers, and automati-

cally enter the customer's address and billing status, then it is certainly an

improvement on the old method. And users will welcome the new applica-

tion because it speeds the process of filling out the form and reduces the

opportunity for errors.

Of course, there are all kinds of ways of improving on existing methods.

The new application might be faster than the old one, or provide more useful

data, or produce the same results at a lower cost.

At the same time, however, there are trade-offs involved in almost

any new application. The new way of doing things may be faster, but may
also require an extra step on the part of the user. Or it may provide more

102 PRINCIPLES OF APPLICATION DESIGN

comprehensive data, but at the cost of slower execution. Or it may require

that the user learn a new set of procedures.

It would be wonderful if the applications you develop were better in

every part of the process, but this is seldom the case. Instead, in most cases

you'll have to measure the trade-offs involved to ensure that the net result is

positive.

In other words, it's important to ensure that the benefits justify the cost

—

both from the standpoint of your organization and from that of the individ-

ual end user. A common mistake in developing applications is to consider

only the cost or benefit to the organization, ignoring the impact of the new
application on the user. The gain to the organization is very important, of

course, but your application won't be successful unless the user sees it as an

improvement as well. But how do you determine what is an improvement

from the user's standpoint?

A colleague once revealed to me what he considered the cardinal rule

for writing mainframe terminal applications: "You can do anything you want

to the system, as long as you don't increase response time. Users won't stand

for anything that lengthens response time." Even in an environment as

unfriendly as a mainframe terminal system, where users were already used to

a 15-second delay between the time they pressed the Enter key and the time

they got a response from the system, there were unwritten usability rules in

effect.

In the PC environment, the user's expectations are much higher, so there

are more usability rules to consider, which makes weighing the trade-offs

more complicated. Specifics will vary from application to application, but

you can use the following generalizations:

You can do anything you want, but don't make the user's job more
complicated.

If there is no way to avoid increasing the complexity of a process, make
sure your application also offers the user a tangible, compensating benefit.

Overlooking either of these points almost guarantees that you'll end up with

unhappy users, and the anticipated benefits to your organization will surely

go up in smoke.

Rule 3: Don't Surprise the User

In the right circumstances, surprises are great fun. For example, a surprise

birthday party can be the stuff of a lifelong good memory.

On the other hand, a surprise gas main explosion is not much fun. And
that's the kind of surprise that PC users have come to dread over the years

—

because a generation of badly written software has left them picking up after

big booms far more often than after big parties.

Bonner's Usability Guidelines 103

Here's a simple example of a big-boom surprise: You've just spent five

hours creating a complex document. Satisfied with your work, you pull down
the application's File menu and select the Exit item, expecting the applica-

tion—like all good Windows applications—to prompt you to save the file

before shutting down. But it doesn't. Instead, it simply exits to Program

Manager.

BOOM! Five hours work gone in a flash.

Makes you want to kill, doesn't it?

That kind of "Whoops, that didn't work the way I thought it would"

explosion happened all the time with DOS applications, because they lacked

any standard user-interface guidelines. It's less common with Windows appli-

cations—at least on a scale this heinous. But there are lots of less cata-

strophic but still annoying cases of Windows applications not acting the way

the user expects them to, and thus raising the user's irritation level.

For instance, take Lotus Notes version 2.0. Notes has been highly lauded

for the new ground it broke as a group communications application. But it

also deserves a Tin Turkey award for its flagrant violations of standard Win-

dows user-interface conventions. The standard says that if you double-click

on a word in a Windows-based editor, the word should be highlighted. But

nothing happens when you double-click on a word in the Notes editor. Simi-

larly, the standard says that you if minimize a document in a multiple-docu-

ment interface application, the document should be reduced to an icon. But

when you elect to minimize a document in Notes, the document's window is

simply made smaller—not iconized.

This degree of surprise doesn't cost you any data, but it is disconcerting

when a Windows application doesn't work the way you've come to expect

Windows applications to work. Your work is interrupted while you wonder

why an action that has become instinctive didn't have the expected result.

Keep the User Informed

Menu items and mouse clicks that don't work the way they should aren't the

only surprises users have come to dread. Worse, sometimes, are the kinds of

surprises you get from the long, dark, and silent type of application—the

ones that put an hourglass on the screen and start spinning your hard disk

wildly, while you sit there wondering, "What's it doing?... Is it saving some-

thing?... Is it hung up?... Is it trashing my disk?... Should I call Ml 1?"

Which brings us to the first corollary to the No Surprises rule: Applica-

tions should always communicate what they are doing and why.

Given Windows' graphical nature, in many cases your application's nor-

mal screen updates will suffice to supply this communication. As your appli-

cation performs its tasks, the windows being displayed and the data being

presented will change, providing the user with the necessary chics about

what is happening.

104 PRINCIPLES OF APPLICATION DESIGN

At other times, however, your application will embark on a long task

that involves no immediate screen updates, such as indexing a large data file.

If the application simply puts up a busy indicator and does its stuff, the user

has no way of monitoring its progress. You can prevent that by simply dis-

playing an indicator on the screen that shows the routine's progress—a per-

centage meter, perhaps, or a counter showing the number of records that

have been indexed.

Make the Application Wait

That brings us to the second corollary to the No Surprises rule: Applications

should wait for the user's command.

If you're like me, you hate applications that make alterations to your PC's

AUTOEXEC.BAT or CONFIG.SYS file without asking your permission. It's

an obnoxious habit that shouldn't be countenanced in any application.

Initiative is all well and good, but you can trip up the user by showing

too much of it. How much is too much? That's a tough call, but generally it is

safe to say that an application should take care of its internal housekeeping

chores (such as maintaining its private .INI configuration file) automatically,

but should wait for the user's command or approval before taking any action

that might affect the user, the user's work, or the user's environment.

What this means in practice is that an application shouldn't save changes

in a document before the user tells it to, unless you provide a way to undo

the changes. Nor should it embark on long procedures without letting the

user know that they will be time consuming. And it shouldn't make any

changes to the Windows configuration files, or create or rearrange Program

Manager program groups, without asking permission first. No one likes this

kind of surprise.

Rule 4: Try to Delight the User

Here's where I contradict the No Surprises rule: Good surprises—surprises

that delight the user—are okay. In fact, they are to be encouraged. Gener-

ally, a good surprise is one that anticipates what the user will want to do next.

A spelling check program provides a classic example of the difference

between a bad surprise and a good one. You wouldn't want a spell checker to

automatically correct everything that it perceived as a misspelling in your

text—that would be an unpleasant surprise, to say the least. Given the limita-

tions of most electronic dictionaries, it would inevitably introduce as many
errors as it removed, or more.

On the other hand, a spelling checker can pleasantly surprise the user by

automatically suggesting alternatives for any word it identifies as a misspell-

ing. That goes beyond its original mission of simply identifying errors, but

still leaves the user the option of ignoring its suggestions.

Bonner's Usability Guidelines 105

The "Do you want to save changes..." dialog box that most Windows

applications put on screen when you try to exit without saving your most

recent work is another example of a program anticipating a user's desires and

reacting accordingly. And, once again, it takes the middle ground between a

literal interpretation of the users command (to shut down the application

without saving the changes) and a presumptuous one (to save the changes

automatically without determining whether that is what the user wants).

Another area where you can pleasantly surprise the user—or at least

anticipate the user's wants—is in error handling. Say, for instance, you try to

start a second instance of an application that, for one reason or another,

allows only one instance of the application to run. The application can sim-

ply react with an error message, such as "WordMan already running," or it

can anticipate that perhaps what the user actually wants to do is to use Word-

Man, and thus react to the error by activating the running copy of WordMan.

Rule 5: Finish the Job

It's just common sense that your applications should finish what they set out

to do. The user expects an application to do everything necessary to get the

job done, and will be disappointed, or worse, if it doesn't do so.

In order to be sure that your application meets this criterion, you have

to fully analyze the task for which the application will be used. You've got to

identify the task's boundaries—where it begins and ends—and all the steps

necessary to take the user from one to the other.

M.M.M., the MCI mail management system discussed in Chapter 15 is a

good example of this. Most E-mail scripts start and finish with the task of log-

ging onto a remote computer and sending or receiving messages. But

although those tasks are integral to the process of electronic-mail manage-

ment, they aren't the whole story. The E-mail user needs a text editor to cre-

ate messages, an electronic address book, ways of organizing messages that

have been sent and received, and simple methods for responding to mes-

sages or forwarding them to other individuals. A complete electronic-mail

management system, such as M.M.M., has to address all these needs, not

merely the core functions of actually sending and receiving messages.

Chapter 6, "The Nuts and Bolts of Application Design," describes the

process of task analysis in more detail.

Rule 6: Make Applications Open-ended

It happens all the time: You set out to build a simple utility, a disk labeler

maybe, and before you know it some user is telling you, "Yeah, but if you

just changed this it would be a great music synthesizer."

And that's a good thing. If the first computer programmers had been

right about what people would do with computers, there would be live or six

106 PRINCIPLES OF APPLICATION DESIGN

computers in the whole world today. Fortunately, users are more inventive.

They see uses for programs that the programmer never imagined, and push

every programs limits in finding new uses.

In fact, the rarest occurrence in the programming world is the instance

of a programmer actually knowing everything that users will want to do with

an application. So, given that you won't know, how do you make room for

future expansion?

The primary step you can take is to make your applications as open-

ended as possible. Provide ways for them to interact and exchange data

with other applications. Use standard rather than proprietary file formats,

if possible.

Throughout the application-design process, at every step think of other

ways the user might want to use your application, other things he or she

might want to do with it. Then, as you test your application with real users,

watch them and talk to them to see what new ideas they come up with, and

what else they would like the application to do.

Rule 7: Design for Reliability

Reliability is one of the most important factors in usability, and yet it is one

that seldom gets mentioned. Most people don't think of reliability as an ele-

ment of usability, but it is as basic as you can get. An application that isn't

reliable, that doesn't do what it is supposed to do when it is supposed to do

it, isn't usable.

There are two key steps to making your applications reliable: First, test

them yourself under every conceivable circumstance. Torture-test every pos-

sible combination of commands and procedures; test it on as many different

kinds of hardware and with as many other applications running as possible.

Then, when you're sure you've gotten every possible bug out of the

thing, give it to some users to test. They'll try to do things with it that you

never imagined, issue commands in an order you never anticipated, and,

undoubtedly, they'll come up with dozens of problems that you missed.

Rule 8: Don't Overwhelm New Users

If you want your application ever to have experienced users, you've got to

make sure that it doesn't stump new ones. Otherwise, you'll just scare people

away before they get to know your program.

The best thing you can do to help new users approach your program is

to make sure that it follows standard Windows conventions—so that users

can apply their knowledge of other applications to your application—and

that at every stage it makes clear what it is doing.

If, on the other hand, you consistently ignore the standard Windows con-

ventions, and don't follow the guidelines outlined here, your application will

Bonner's Usability Guidelines 107

be both difficult to learn and hard to love. What seem like little decisions in

the design process may end up costing a lot in terms of usability.

Take, for example, Lotus Notes' failure to conform to the Windows con-

vention for highlighting words the user double-clicks on or for minimizing

documents. "Innovations" like these don't strike anyone as good ideas

—

they simply make your application harder for novices and experienced

users alike to use.

As long as you make sure that new users understand what your applica-

tion is doing and what it expects from them, you won't overwhelm them

—

and pretty soon your problem will be one of satisfying experienced users.

Rule 9: Don't Delay Experienced Users

In the world of software, to be slow is to be unfriendly. The more experi-

enced a user is with your application, the more frustrating slow performance

becomes. It's one thing to be a little slow for the user who is new to your

application and still needs to read menus and dialog boxes, but it's something

else entirely to make users who know what they're doing wait for your appli-

cation to catch up at every step. The latter user expects action when he or

she presses a command button, not an agonizing wait for an hourglass-

shaped "this application is busy" cursor to go away.

Your goal should be to have every part of your application respond and

complete its task instantly. That's impossible, of course—even the fastest

computers and best-written software make you wait if you give them a com-

plex enough task. But if you aim for that goal, and try relentlessly to speed

up any routine that doesn't meet it, you'll end up with an application that

will please even the most experienced user.

One of the best ways to speed up the operation of a Windows applica-

tion is to provide shortcuts for experienced users. Build in keyboard short-

cuts or hot keys for menu tasks, so that, for instance, rather than pulling

down the Edit menu and selecting Cut, an experienced user can simply press

Shift-Del to cut data from a document.

Beyond that, experienced users will benefit from the open-endedness and

flexibility that you build into your application. Whereas new users will likely

use the application only in the ways you predicted, experienced users will imag-

ine new uses for it, and will be frustrated if it isn't capable of handling them.

Rule 10: Design for the User's Convenience—Not Your Own
Hubris alone doesn't account for the preponderance of applications that

show insufficient regard for the user. Software designers may be an opinion-

ated lot, but they're not all guilty of such arrogance. Frequently the source of

the problem isn't conceit; it's laziness.

108 PRINCIPLES OF APPLICATION DESIGN

There is a right way to do every job, and there is a way to cut corners. In

a world where there never seems to be enough time, it's inevitable that you'll

sometimes have to settle for "good enough." It even takes some skill—you

have to know your job well enough to know what corners you can cut with-

out having the whole structure collapse on your head.

When you're programming, you can't cut corners designing an applica-

tion's underlying data structures. The application is either going to be able to

handle the data requirements of the job, or it isn't, and it will be obvious

almost immediately if it can't. Similarly, only a fool cuts corners in an area

like error-handling—since any shortcuts you take there will come back to

haunt you a thousand times over.

Consequently, more often than not, the user interface is the place where

corners get cut in program design. You start off by saying, "I can avoid writ-

ing 10 or 15 routines if I just insist that the user meet me halfway on this

point," and then, gee, that felt so good you do it again and again.

But pretty soon you can be insisting that the user meet you halfway on

so many points that he or she would have been better off walking than trying

to take your bus. For example, maybe it's more convenient for you to deal

with data in comma-delimited format, so you insist that the user supply it in

that format, rather than in its existing format. Or it's more convenient for

you to accept commands in a certain sequence, so you insist that the user per-

form them in that sequence, even just to access a subset of the functions pro-

vided by your program. Or your program stores two types of data in

different ways internally, so you insist that the user treat them as distinct

items, even if from the user's perspective they are linked.

That's how a lot of bad programs get written: Design decisions are made
for the convenience of the developer, not the user. As a result, the program

forces the user to focus on the process of using the program, not on the job

to which the program is being applied. In short, the tool becomes more

important than the task.

User interface has always been the "safest" area in which to cut corners

as a programmer because it's the hardest one for users to pinpoint later.

They may know that the application doesn't "feel right," but there are no

obvious bugs that they can identify. Again, however, scrimping on the inter-

face is a self-defeating strategy, because in the long run, people won't use pro-

grams that don't feel right. They'll either seek another solution, or fudge

their way through the process using your application as little as possible, or

simply resent the application so much that their work as a whole suffers.

Only a hardened cynic would view that kind of result as "good enough."

That's it for Bonner's Rules. Keep them in mind as you read the next

chapters on application development and as you build your own applica-

tions. That way, if you do end up mutating into a software designer, you'll at

least be able to hold your head up.

CHAPTER

The Nuts and Bolts of

Application Design
Identifying the

Application 's Purpose

Picking a Development
Tool

Drawing a Flowchart

Defining Input

Requirements

Planning Data Structures

Defining Internal

Processing

Putting It All Together

Identifying the Application's Purpose 111

THIS CHAPTER EXAMINES THE NUTS-AND-BOLTS ASPECTS OF APPLICATION

design—the "under the hood" stuff that actually makes your appli-

cation do what it is supposed to do. We'll look at the processes of

identifying application requirements, picking a development tool,

developing a flowchart for your application, planning links to other appli-

cations, and determining your application's data requirements and data

structures.

Throughout this chapter I use the decisions made during the planning of

the AutoPrint for Windows print queue application (described in Chapter

11) to illustrate points about the application-design process. AutoPrint

allows you to schedule lengthy print jobs for a time when your computer is

otherwise unoccupied. Ultimately I built two versions of the application: one

that works with Norton Desktop for Windows and one that works with the

Windows 3.1 File Manager and the WinBatch batch language. Unless other-

wise noted, the discussion in this chapter concerns the latter version.

Although AutoPrint is a simple application with a minimal amount of

code, the decisions that went into its design and development mirror those

you must make in application-design projects of any size.

Identifying the Application's Purpose

Before you begin to design an application, you have to identify what it is the

application is supposed to do. You'll often find that, as you begin work on an

application, your understanding of its scope and requirements is sketchy at

best. You know you want the application to take you from point A to point

B, but you're not really certain how many stops it will have to make in

between or what mode of locomotion the application should employ.

For instance, the AutoPrint project grew out of my desire for a way to

implement unattended printing of files created by Windows applications. I

wanted to be able to schedule lengthy print jobs so that they would take

place overnight or while I was otherwise away from my desk. But when I

started work on the project, I didn't know what kind of application develop-

ment tool I would use, or how the print queue application would actually

manage to print documents from other applications, or how the user would

add files to the queue. In fact, all I really knew at that point was that 1

wanted to build a print queue.

So how did I end up with the finished AutoPrint for Windows applica-

tion? For that matter, how does any application find its way from the first

rough sketch through to being a finished product?

The process is somewhat involved and occasionally circuitous, but it starts

with a simple step: determining the application's functional requirements.

112 THE NUTS & BOLTS OF APPLICATION DESIGN

Determining Application Requirements

An application's functional requirements consist of the tasks the application

is intended to perform and the desired result of those tasks. Generally, these

can be derived from your basic goals for the application. Ask yourself,

"What actions must the application perform?" "What results do I want from

it?" and "How do I make it produce those results?"

For instance, consider the basic goal of AutoPrint for Windows: unat-

tended printing of selected files. In order to achieve that goal, AutoPrint had

to do the following:

1. Allow the user to add files to the print queue

2. Allow the user to specify the time at which the queue is to be printed

3. Activate itself at the specified time

4. Print all files in the queue

Each of these tasks was critical to AutoPrint's central purpose. A print

queue that didn't provide a way for the user to add files to it would be pretty

useless. Likewise, there would be little value to a print queue designed for

unattended use if the user couldn't specify the time that printing should

begin, or if the queue application was unable to recognize that time when it

arrived. And, of course, a print queue must be able to print files. Thus, these

tasks represent AutoPrint's functional requirements.

Note that the issue of how these tasks will be implemented has not yet

been addressed. Nothing in AutoPrint's list of functional requirements spec-

ified, for instance, how the user would add files to the queue. One possibil-

ity was to require that the user copy all the files to be printed to a queue

subdirectory. Another option was to have the user create a text file listing

the files to be printed and make manual additions to it. And still another

was to have the application present the user with a directory listing from

which he or she could pick the files destined for the queue.

As it turned out, the actual AutoPrint application doesn't use any of

those alternatives. Instead, it allows the user to designate files that are to be

added to the queue from within the Windows 3.1 File Manager. To add a file

to the queue, you simply highlight its listing and press Alt-P—at which point

AutoPrint springs into action, automatically adding the file to its print queue.

As you can see, the functional requirements for AutoPrint played very

little part in dictating the actual implementation of the project. They didn't,

for instance, dictate the choice of development tool, or the user-interface

design, or the exact methods by which any of the functional goals themselves

were met.

Similarly, consider the programming project that started the whole PC
industry on its way: Dan Bricklin and Bob Frankston building VisiCalc, the

Picking a Development Tool 113

first spreadsheet. What was VisiCalc's purpose? To let users build financial

models on a microcomputer. What were its functional requirements? Users

had to be able to enter numbers and formulas into the program and see how
changes in one number or formula affected the results of other calculations.

The program also had to let users save and recall their work, print it out, and

perform a few other housekeeping tasks. But the critical element was for

users to be able to see the result of a change to Assumption A on Result B.

So, in what way did that requirement dictate that VisiCalc employ a

rows-and-columns format like a traditional accounting ledger? Absolutely

none—there were all sorts of other ways Bricklin and Frankston could have

designed VisiCalc's screen. For instance, they might have divided the screen

into sections, one for numeric data, one for formulas, and one for results.

They chose the design they did because that layout was already familiar to

many of its intended users, and was intuitive enough to entice new users, not

because it was in any way implied by the application's functional require-

ments.

Obviously you have to understand the functional requirements of your

application before you can go very far with it. But it is equally clear that

even once you do so, many questions of how to accomplish those require-

ments remain open. The answers to those questions will emerge as a result of

choices you'll make in several areas—everything from how involved a

project you're willing to undertake to the application's data-handling and

user-interface requirements. But the first step toward clarifying those

answers is the selection of a development tool for the project.

Picking a Development Tool

Once you've identified the functional requirements for your application, you

can use those requirements to begin thinking about which development tool

you'll use to create the application, as described in Chapter 4, "Choosing

Your Tools."

The application's functional requirements are not, of course, the sole

basis on which your choice of tools will rest. But weighing those require-

ments against the capabilities of the tools available to you is often the fastest

way to identify the other critical elements that will affect your selection. This

is not the case if your tool of choice is a language such as C or Turbo Pascal

for Windows that provides access to the full range of Windows functions. But

if you're going to be developing the application in a macro language or batch

language, or even in Visual BASIC, the capabilities and limitations of the

development tool will play a large role in determining the appearance and

functionality of your application.

For instance, let's look again at the AutoPrint for Windows print queue

application. Because almost any high-level development tool can be used to

114 THE NUTS & BOLTS OF APPLICATION DESIGN

build applications that interact with the user, keep track of time, and main-

tain lists, the first three of AutoPrint's functional requirements weren't very

important in this selection process; they could have been fulfilled with almost

any of the development tools described in Chapter 4.

The fourth requirement, printing all the files in the queue, was the criti-

cal element, at least in part because its implementation was so open to ques-

tion. Given the diverse file-handling and printing capabilities of the various

high-level development tools for Windows, it wasn't possible to select a tool

for the AutoPrint project until a basic question was resolved concerning how
the fourth functional goal was to be implemented.

The question that had to be answered was whether AutoPrint should

actually print the files in the queue itself, or simply instruct the application

that created each file to print it. The former alternative would have required

AutoPrint to include extensive printer-control capabilities and intimate

knowledge of the file structure of every file to be printed, whereas the latter

alternative required only that AutoPrint be able to identify the application

that created each document and instruct that application to print a docu-

ment. I opted for the latter solution because it was so obviously the simpler

alternative.

That decision simplified the choice of a development tool for the Auto-

Print application. It meant that in order to meet the most critical of the appli-

cation's functional requirements, the development tool had to excel at

interacting with other applications. Given that need, and the simplicity of the

application's remaining functional requirements, it seemed reasonable to

build AutoPrint using a Windows batch language.

Other considerations might have changed that. For instance, although

batch languages are wonderful for controlling other applications, their user-

interface and data processing capabilities are rather weak. So if AutoPrint

had required an elaborate user interface or extensive number crunching or

data handling, the choice of a batch language would have been inappropri-

ate. But even without having determined all the details of AutoPrint's opera-

tion, I was certain that its needs in those areas wouldn't exceed the

capabilities of a language such as WinBatch or the batch language in Norton

Desktop for Windows, and thus I felt comfortable making the commitment

to develop AutoPrint with a batch language.

As described in Chapter 4, the factors that go into the choice of a devel-

opment tool are complex, and in every case some compromises have to be

made. You have to weigh power against speed of development and conve-

nience versus cost. The best rule of thumb is to pick a tool whose strengths

correspond to the most critical aspects of your application, and whose weak-

nesses won't be noticeable in the application at hand.

Once you have selected a development tool, you can begin the process

of plotting the step-by-step operation of the application. One way to do this

is with program flowcharts.

Drawing a Flowchart 115

Drawing a Flowchart

A program flowchart is a diagram that depicts the logical relation between

successive events in an application. Over the years, data processing profes-

sionals have developed an elaborate set of guidelines for flowcharts. They
discriminate, for instance, between outline flowcharts, which merely identify

a programs individual routines and input and output functions, and detail

flowcharts, which define the programming techniques and provide directions

for coding each routine. Moreover, organizations such as the American

National Standards Institute (ANSI) and the European Computer Manufac-

turers' Association have defined elaborate sets of standard symbols to be

used in these flowcharts.

For applications on the level of those presented in this book, you'll sel-

dom need to be quite that serious about flowcharts. The conventions of a for-

mal flowchart are designed to aid in the documentation of complex

applications and to help large teams of programmers work together in a

coherent manner. For a small project on which you'll be the only program-

mer, you should feel free to drop some of the formalities.

Nevertheless, the fundamental concepts of flowcharting are valuable on

any programming project, no matter how modest its scope. As you build a

flowchart, it serves both as a kind of scratchpad for your ideas about the

application and as a tickler that helps you to identify those areas in which

more work needs to be done.

As a result, you might find it worth your while to learn some of the basic

flowchart symbols and conventions. You can, of course, get by with just draw-

ing boxes or circles to represent various parts of your application, but the

ability to use at least some of the standard flowchart symbols, such as the

seven shown in Figure 6.1, is useful because they enable you to distinguish at

a glance between the major components of an application:

Beginning and end points

User input

Decisions

Screen display

Disk input/output

Computational processes

Subroutines

116 THE NUTS & BOLTS OF APPLICATION DESIGN

Figure 6.1
A selection of

useful flowchart

symbols

Beginning/

End point Input/Output Process

User

input
Display

As you draw the flowchart, you should label each symbol and link it to

the next symbol with an arrow, as shown in Figure 6.2, in order to show that

the event or process represented by the second symbol follows that repre-

sented by the first symbol.

Figure 6.2
Flowchart for a

simple "Hello

World" application

(\

Start

\)

' '

/~ ^
Print

"Hello World"

< '

t
"\

End

V)

Flowchart Iterations

I generally create several flowcharts during the course of an application-

development project, making each successive chart more detailed.

The first iteration of one of these flowcharts usually does nothing more

than represent the functional requirements for the application in some sort

of logical order. For instance, returning again to AutoPrint for Windows, the

first iteration of its flowchart consisted of just four steps between the start

and end boxes—user selects files, user sets start time, wait for start time, and

print designated files—as shown in Figure 6.3.

Drawing a Flowchart 117

Figure 6.3
A first-iteration

flowchart for

AutoPrmt

f \

Start

v J

"

\ User /

\ selects /

\ files /

1

1

\ User sets /

\ start /

\ time /

i r

Wait for start

time

i r

Print

designated files

< r

C
"\

End

v J

Looking at this first iteration of the flowchart, the next steps in the pro-

gram-development process become obvious. You have to ask, and answer,

questions such as, "How does the user select files?" "How does the program

know what time it is?" and "What method does the program use to print files?"

The answers to those kinds of questions will be influenced by a number
of factors, including the development tool you've chosen, the style of user

interface you wish to employ, and the nature of the other applications with

which your application will interact. So they may not all be answerable at

this point. But by producing successive iterations of the flowchart, plugging

in the answers as you arrive at them, and highlighting the holes where ques-

tions remain to be answered, you'll find that the flowchart becomes a valu-

able tool in the application-development process.

In the case of AutoPrint, for instance, I soon made the decision that I

actually needed not one program, but two: One would spring into action

when the user pressed the hotkey to activate it. obtain the name of the file

118 THE NUTS & BOLTS OF APPLICATION DESIGN

Figure 6.4
The initial flowchart

for GETFILE.WBT

the user had highlighted in File Manager or a Norton Desktop file pane,

and add that file to the queue. The other program would control the actual

printing of the files in the queue when the designated time arrived. The
first program would store the name of each file added to the queue in a text

file, which the second program would later read. So I modified my original

flowchart to reflect this change in plans. The resulting flowchart of the first

program (called GETFILE.WBT) is shown in Figure 6.4.

f \

Start

V J

' '

Get highlighted

file

Add file name
to queue

Eventually, as the program-development effort progressed, I turned the

process labeled "Get highlighted file" into a subroutine, and added an error-

checking routine that compared the extension of the selected file with those

listed in WIN.INFs Associations section, to ensure that AutoPrint would be

able to print all the files added to the queue. Thus, the flowchart for GET-
FILE.WBT continued to evolve, until it looked like that shown in Figure 6.5.

Neater Flowcharts

AutoPrint is a very simple application, so it's not surprising that the flow-

charts for it are also pretty simple and easy to follow. As your applications

grow more complex, however, it becomes more and more difficult to main-

tain neat flowcharts on paper. As you add more and more subroutines and

decision points, symbols and lines start dashing off every which way until

your hand-drawn flowchart starts to look like a ball of string after the cat's

done with playing with it.

Drawing a Flowchart 119

Figure 6.5
A later iteration of

the GETFILE.WBT

flowchart

Start (user pressed hotkey)

\t

Get

highlighted file

} '

Ext=file extension of

highlighted file

Add file name to

queue list

End

One way to combat the entropic effect a complex application can have

on your dreams of a neatly organized flowchart is to use software, rather

than pen and paper, to draw your flowcharts. Doing so won't actually reduce

the complexity of the application, of course, but it might make the flowchart

easier to understand and easier to maintain.

You can create flowcharts using any drawing-type program, such as

Micrografx Draw for Windows, or, in a pinch, even a paint-style program

such Windows Paintbrush. But if you want a tool that's tailored for this pur-

pose, try ABC Flowcharter, from Roykore Inc., 2215 Filbert Street, San Fran-

cisco, CA 94123; (415) 563-9175.

ABC Flowcharter is a Windows application that combines drawing-

program-like tools with a set of predefined flowchart symbols and the ability

to automatically route lines between symbols. And, because it allows you

to create links between flowcharts, you can produce detailed charts of com-

plex projects simply and elegantly. Symbols linked to another flowchart are

120 THE NUTS & BOLTS OF APPLICATION DESIGN

depicted with shadows in ABC Flowcharter. Double-clicking on a linked

symbol opens up the flowchart to which it is linked.

For small projects, you don't necessarily need flowcharts as sophisticated

as those produced by ABC Flowcharter, but it can be an invaluable aid on

larger, more complex projects—serving both as a drawing board for sketch-

ing out new parts of the application and a road map to the parts you've

already completed.

Once you've got a rough outline of your program in the form of an ini-

tial flowchart, it is time to start filling in the gaps by determining more of the

details of how the program will actually accomplish the tasks you've defined

for it. In order to do so, you have to define the application's input require-

ments, its data structures, and its internal processes. Let's look at each step

in succession.

Defining Input Requirements

One of the key stages in any application-development project is determin-

ing your application's input requirements. Here you figure out what data the

application will need in order to do its job, and from where it will obtain

that data.

Almost every application requires some kind of data input, either from

the user or from other sources. The exceptions are applications that are com-

pletely self-contained. For instance, a self-extracting archive contains all the

data that it needs to do its job: the names and contents of the compressed

files and the method by which they were compressed and should be decom-

pressed. But in the vast majority of cases, an application requires some kind

of data—keystroke input from the user or a command line parameter or

some information about the status of Windows or another application.

The nature and complexity of these data input requirements vary consid-

erably from application to application. In some cases they are very simple;

for instance, consider the Windows Calculator accessory. In order to perform

its basic functions, all it requires in the way of data input are the numbers it

is to use and the mathematical functions it should perform on them. Both are

supplied by the user.

Most applications end up having more complex data input require-

ments than this, however, and in most cases they rely on a combination of

direct user input and other sources of data. For instance, AutoPrint makes

use of direct user input to initially select files for addition to the queue and

to determine the time at which the queue should be printed. But it also

uses an internal file listing of a special queue directory to keep track of the

files in the queue. When the time comes for AutoPrint to print the files in

the queue, it opens that data file and prints the files it finds listed there,

rather than relying on the user to enter the names directly at print time

Defining Input Requirements 121

(which would be most inconvenient in an application designed to provide

unattended printing services).

Applications that interact with other Windows applications may also

require information about the status of another application or of Windows
itself in order to make that interaction possible. For instance, while it is print-

ing the files in the print queue, AutoPrint for Windows keeps tracks of both

the total number of screen windows that are open in the Windows environ-

ment and the title of the active window, in order to monitor the progress of

the current print operation. If your application will require data of this type,

you have to make sure that the development tool you build it with provides

access to that data, either through direct program commands (as in the case

of most Windows batch languages) or through access to the Windows API
functions that provide that information (as in the case of Turbo Pascal for

Windows or Visual BASIC, among others).

Links to Other Applications

The other applications operating within the Windows environment can also

be important sources of data for a Windows application. Obtaining data

from other applications eliminates the need for the user to recreate the data

within your application.

There are several ways to obtain data from other applications. One way
is to import data from the other applications disk-based files. This is often

the speediest way to move another applications data into your application,

especially when a large quantity of data is involved, but it requires that your

application be able to read the files created by the other application. Thus,

the ability of your development tool to provide access to files created by the

other application is a key factor in determining whether your application can

use this method.

Dynamic Data Exchange
Another way to integrate data from another application within your own is

through a DDE (Dynamic Data Exchange) link. This alternative offers you

the ability to create hotlinks between data in your application and data in

another application, so that your application automatically responds to

changes in data being collected or generated by the other application. The
Windows Broker application described in Chapter 14 uses DDE to link an

Excel portfolio-analysis spreadsheet to stock price data that a DynaComm
script program obtains from an on-line electronic source.

There are a several limitations you should consider in planning DDE
links. The first is that not all Windows applications support DDE. If the

application you're developing is to obtain data via DDE, both your develop-

ment tool and the potential source application must have the ability to create

and respond to DDE links. The other limitation is that while DDE links are

122 THE NUTS & BOLTS OF APPLICATION DESIGN

fine for moving relatively small amounts of data, they become slow and ineffi-

cient when large amounts of data are involved. Furthermore, the source

application must be in memory or your application must launch it, and the

source file (such as an Excel worksheet) for the data must be available in

order for your application to update a DDE hotlink to ensure that it repre-

sents the most up-to-date data.

Object Linking and Embedding
With Windows 3.1, Microsoft is attempting to popularize an alternative to

DDE known as Object Linking and Embedding (OLE). OLE differs from

DDE in that, rather than creating a hotlink to a data item in another applica-

tion, it embeds an encapsulated copy of the file containing the remote data

within your application. The encapsulated file identifies the program that cre-

ated it, and tells your application how to display the data. So what you are

actually embedding in your application is a picture of the data from another

application—rendered on screen or printed as it would be by the other appli-

cation. When you double-click on the embedded object, the application that

created it is launched (if it is available on your system), enabling you to edit

the embedded data in its native application.

There are advantages and disadvantages to OLE. On the one hand, it

eliminates the need for you as an application developer to build kitchen-sink

capabilities into your application. An application that supports OLE doesn't

need, for instance, to know specifically how to display an image in order to

incorporate scanned photographic images—you simply use OLE to embed a

scanned image created by another application into your application.

On the other hand, OLE can be very inefficient in terms of disk space. For

instance, if you're embedding data from an Excel worksheet, the size of your

application's data file will grow by the entire size of the source worksheet file,

even if you're actually only interested in a single cell of that worksheet.

The Windows Clipboard

The final method of linking data from other applications to your application

is the simplest and most universal: the Windows Clipboard. When all else

fails, you can almost always use the Clipboard to copy data from another

application and paste it into your own. Some development tools will allow

you to do this under program control, whereas with others you'll be forced

to ask the user to intervene by selecting and copying the source data, but the

option is almost always there. Of course, data imported in this way is entirely

static—it won't register any subsequent changes in the source data—but

copy and paste is still a great "when all else fails" option for the Windows

application developer.

Defining Input Requirements 123

AutoPrint's Data Requirements

In most cases, the data requirements for an application, combined with your

understanding of the capabilities and limitations of the development tool

you're using, go a long way toward defining the application's structure and

form. When you know what data the application will need, and from where it

can expect to obtain that data, you can start thinking about how the applica-

tion will interact with the user, how it will interact with other applications in

the Windows environment, and what data structures it will need to maintain.

In the case of AutoPrint, I knew that the user would have to supply the

time at which printing was to occur and the names of the files to print.

Beyond that, however, I wanted to minimize the amount of information that

the user had to supply to AutoPrint. After all, the purpose of utility applica-

tions is to provide a more convenient way to do things, and AutoPrint

wouldn't be very convenient if it insisted that the user detail every aspect of

how it should go about doing its job.

Still, AutoPrint needed some way to know that when the user said to

print REPORT.DOC, Microsoft Word for Windows should do the printing,

whereas Ami Pro should be used for printing REPORT.SAM, Aldus Page-

Maker for REPORT.PM4, and Microsoft Excel for REPORT.XLS.
Fortunately, that information already exists in the Extensions section of

the WIN. INI file for files created by any installed-Windows application. For

instance, when you install Ami Pro it adds a line to the Extensions section

that associates the file extensions .SAM and .SMM with AMIPRO.EXE.
Which means that when you double-click on a file with either of those exten-

sions in Windows File Manager, Windows will use Ami Pro to open the file.

Thus, I knew that by reading the WIN. INI file, AutoPrint could deter-

mine for itself which program should be used to print each file in the queue,

and therefore that there was no need to make the user enter that data.

I still had to decide, though, how the user would add files to the queue

and specify the starting time for the print job.

Obtaining Files for the Queue
I wanted to make the process of adding files to the queue as convenient as

possible. So right away I eliminated the possibility of having the user type

the file names into a text file in Notepad. And, a short time later. I also elimi-

nated the possibility of having the user identify files using a file and directory

listing in a dialog box created by WinBatch. WinBatch dialog boxes arerft

persistent—as soon as you make a list-box selection the dialog box closes, so

the user would have had to reload the program each time a file was to be

added to the queue.

Instead, I hit upon the idea of using WinBatchs Macro facility (which

allows you to create application-specific hotkeys lor WinBatch applications)

to link the file-selection routine to the Windows 3.1 File Manager. As soon as

124 THE NUTS & BOLTS OF APPLICATION DESIGN

the user pressed the hotkey, the batch program would run, adding the name
of whatever file was highlighted in File Manager to the print queue.

It was a simple solution, and one that added value to a tool that the user

would already be using (File Manager) rather than requiring that he or she

master a new tool. Unfortunately, there was a catch. WinBatch doesn't offer

any way to read the screen, so that even though the cursor was on the file

name, there was no immediate way for the application to read it.

In the Norton Desktop version of AutoPrint, which I completed first, I

solved this difficulty by having WinBatch issue the File Print command to

open up Norton Desktops Print dialog box. Then I had it issue the Ctrl-Ins

(Copy) command to copy the contents of the edit field in which Norton

Desktop lists the full name and path of the highlighted file, before sending

an Esc command to back out of the dialog box. I thus succeeded in copying

the full file name to the Clipboard, from where it was easy to add it to a list

of other files that had previously been added to the queue.

Unfortunately, that method didn't work with File Manager because none

of its dialog boxes ever display the full path of a file in an edit box. Instead,

they simply display its name. And that wasn't good enough because the

queue application had to know both what files to print and where to find

them. So instead, I decided to have the file-selection batch program issue the

standard File Manager Copy command to copy the highlighted file to a spe-

cial queue directory called AUTOPRN. Then, once each file is printed,

AutoPrint deletes it from the AUTOPRN directory.

Obtaining a Start Time
The final chunk of data that AutoPrint needed was the time at which files

were to be printed. Again, I wanted to make things as convenient for the

user as possible. So I thought the user should be able both to designate a

standard time at which files in the queue should be printed every day and to

override that when the need arose to print them at a different time.

The solution here was to allow AutoPrint to accept a command line

parameter (something that WinBatch programs, like DOS batch language

programs, do very well) specifying the starting time. This would allow the

user to use the File Run commands in either Program Manager or File Man-

ager to launch AutoPrint, and then specify a start time on the command line.

Alternatively, if the user wanted to print the queue at the same time every

day, a Program Manager icon with a standard starting time designated on its

command line could be placed in the Startup group.

I realized, however, that there would be times when the user would

neglect to specify a start time on the command line, so the first thing Auto-

Print does when it launches is display a dialog box containing an edit field in

which the user can enter a start time for the print job. The edit field initially

displays cither the time (if any) that was passed on the command line or

"NOW", but the user can replace that with any time he or she wants. Then,

Planning Data Structures 125

when the user clicks the OK button to close the dialog box, AutoPrint reacts

by either immediately printing the queue (if the print-time field contained

"NOW") or by shrinking to an icon and waiting until the designated print

time arrives.

That completed the process of defining AutoPrint's data input needs. It

now knew which files to print, when to print them, and how to print them.

Planning Data Structures

The structures that your application will use to maintain and store data

are another important consideration early on in the program-development

process.

These structures generally incorporate the standard data types that were

discussed in Chapter 2—strings, integers, long numbers, and so on—although

some development tools may support additional types, such as a date type

that can be used to store and manipulate date-oriented information.

In addition, some development tools may utilize special forms of the

standard data types. For instance, if you're using Excel's macro language to

develop an application, you'll think in terms of cell values and labels rather

than numbers and strings, but you'll find that the Excel data types act in very

much the same way as their equivalent standard data types. You can even

create arrays on the worksheet that serve the same purpose as a string or

numeric array in a more traditional programming tool.

Defining Variables

When you plan the data structures for your application, you're determining

how your application will use the data types available to it to store the infor-

mation that it needs. Some of the information it stores may be obtained from

other sources, such as user input or links to other applications, whereas other

information will be created within your application. For instance, an applica-

tion that multiplies any two integers entered by the user and displays the

result might use three integer variables: two, X% and Y%. for instance, to

store the two integers entered by the user, and the third, Z%, to store the

product of the first two numbers.

On the other hand, if you knew that you wouldn't have any need for the

original integers once their product had been obtained, you could conserve

memory by redefining one of the variables used to hold the result of the mul-

tiplication operation, as follows:

X% = X% * Y%

Prior to this statement, the variable X% would hold the first integer

input by the user. But after this statement has been executed, it would hold

126 THE NUTS & BOLTS OF APPLICATION DESIGN

the product of the two integers input by the user, and the program would no

longer "know" the original value of X% (although as long as Y% isn't rede-

fined, the program could redetermine the original value of X% by dividing

its new value by Y%).

This simple example demonstrates that, in addition to needing to know
what kinds of data your application will need to manipulate (and thus what

data types to store it in), you need to think about the life span of each data

item as you define it. Some variables are defined in one statement, used in

the next, and then never used again, whereas others are used repeatedly

throughout the execution of an application. For instance, let's turn the exam-

ple above into a guessing game in which the application selects a random

integer from 1 to 50, and the user has to guess which one the computer has

selected, as shown in Figure 6.6. You could create the functional guts of that

application in Visual BASIC using the following code:

Sub Guess_Number

Randomi ze

Correct% = Int(Rndd) * 50) + 1

Do

Guess%= Int(Val(InputBox$("Guess a number from 1 to 50"))

)

Sel ect Case Guess%

Case Is =

Exit Sub

Case Is = Corrects

Exit Do

Case Is > Corrects

Print Str$(Guess%) + " is too high"

Case Is < Corrects

Print Str$(Guess%) + " is too low"

End Select

Loop

Print "You guessed it!
"

End Sub

Correct% is the random integer selected by the application, and

Guess% is the user's current guess. Correct% is established early in this rou-

tine by the statement:

Corrects = Int(Rnd(l + 1

which tells Visual BASIC to multiply 50 times a random number equal to

or greater than and less than 1, add 1 to the total, and set the variable

Correct% equal to the integer value of that number (that is, any decimal

places are dropped). The RANDOMIZE statement preceding this line tells

Visual BASIC to "reseed" its random number generator—otherwise it

would select the same "random" number every time, significantly reducing

the complexity of the game.

Planning Data Structures 127

Figure 6.6
A simple guessing

game application

Once the value of Correct% has been established, it does not change.

Guess%, on the other hand, is redefined every time the user enters another

guess. Visual BASIC creates an input box labeled "Guess a number from 1

to 50", and then assigns the integer portion of the value of the string entered

by the user to the variable Guess%. So. for example, if the user entered 49.5.

Guess% would be equal to 49. On the other hand, if the user entered Dog.

Guess% would be equal to 0, since the value of a nonnumeric string is 0.

But what if you wanted to retain the value of each of the guesses made
by the user? Suppose, for instance, that you wanted to limit the user to five

guesses and display the value of each wrong guess if he or she doesn't hit

upon the correct number within that limit. To do so. you could modify the

above code as follows:

Sub Gues

Randomise

CorrectX = Int(RndU) * 50) + 1

ReDim Guess%(5)

For X - To 4

Guess%(X) - Val(Input Box$("

Select Case Guess%(X)

Case Is -

i t Sub

I rom 1 to 5i r
'

128 THE NUTS & BOLTS OF APPLICATION DESIGN

Case Is = Corrects

Exit For

Case Is > Corrects

Print Str$(Guess%(X)) + " is too high"

Case Is < Corrects

Print Str$(Guess%(X)) + " is too low"

End Select

Next X

If X < 5 Then

Pri nt "You Guessed It"

Else Print "All your guesses were wrong!"

For X = To 4

Print "Guess " + Str$(X+l) + " was " + Str$(Guess%(X)

)

Next X

Print "The correct answer was: " + Str$(Correct%)

End If

End Sub

Here Guess% has been changed from a simple integer variable into an

integer array with five elements (element through element 4), and the DO
loop, which would repeat endlessly until the user guessed the correct num-
ber, has also been changed, to a FOR-NEXT loop that gives the user only

five guesses.

As each guess is made, its value is assigned to element X in the array

Guess%(), so that the first guess in assigned to Guess%(0), the second to

Guess%(l), and so on. If the user guesses the correct number, the EXIT
FOR command makes the program exit the loop prematurely, so that the

value of X will always be between and 4 if the correct guess was made.

Otherwise, the loop continues, incrementing X by 1 each cycle until its

value is greater than the upper boundary on the FOR-NEXT loop. So if the

user fails to guess the correct answer, X will be equal to 5 at the conclusion

of the FOR-NEXT loop. In that case, a second FOR-NEXT loop is per-

formed in order to print the value of each incorrect guess, as recorded in the

array GUESS%() and shown in Figure 6.7.

Global Variables

Because of the simplicity of the preceding application, there was no need to

use the values of Correct% and Guess% anywhere outside the routine

where they were defined. However, in a more complex application you might

want to make use of those variables in additional routines. If so, then you'll

need to follow your development tool's scoping rules to have it retain the def-

initions and values of these variables even when the current routine is done

and program control jumps to another routine. In Visual BASIC, for

instance, you could define Correct% as a global variable by including the line

GLOBAL Corrects

Planning Data Structures 129

in your application's Global module. Doing so would make the current value

of Correct% available to every routine in the application, and allow any rou-

tine to modify its value.

Figure 6.7
The revised

guessing game

Microsoft Visual Basic [run]

file Edit Code Run Window Help

|c= Guessing Game T T]
1 1 is too low

1 50 is too high

1 25 is too high

1 12 is too low
1 18 is too high

IAN youi guesses weie wiong!
Guess 1 was 1 Start

iGuess 2 was 50
Guess 3 was 25
IGuess 4 was 12
Guess 5 was 18
The collect answei was: 13

Disk-Based Data Formats

If your application is going to use disk-based storage for data, then you ha\ e

to think about disk-based data structures, as well as internal ones, as you

write the application. Generally, you'll use disk storage if you want to pre-

serve data from one time that the application is run until another, or if you

want to work with large amounts of data that won't fit comfortably into RAM.
Planning disk-based data structures is simplest if you're using an applica-

tion macro language for your development work because in most eases you'll

use the underlying application's native file formal for the disk-storage needs

of your custom application. For instance, if you're writing an application in

Excels macro language, you'd use the Excel XI.S lile format to stoic am
data used by your custom application. Similarly, you'd use the dBASE tile

format for an application developed with dblast/Win. and the Paradox for-

mal for applications developed in Object Vision.

Of course, not all applications that feature macro languages have such

convenient file formats. You might not find the standard document formats

130 THE NUTS & BOLTS OF APPLICATION DESIGN

supported by Word for Windows or Ami Pro to be quite so useful for tabular

data or data from small database applications written in their macro lan-

guages. And, of course, languages such as Turbo Pascal, Visual BASIC, and

WinBatch don't have predefined file formats. So it may turn out that you'll

need to devise your own data-file structures for your application.

There are endless ways to organize disk-based data. Almost every appli-

cation has its own format(s) for storing data to disk, and seldom are any two

directly interchangeable. In addition, the capabilities of the various develop-

ment tools discussed in this book for using disk-based data, and the methods

by which they do so, all vary greatly. But most Windows development tools

provide access to at least three basic ways of storing data: sequential text

files, random-access text files, and INI files.

Sequential Text Files

Sequential text files are useful for storing random-length data that will be

read in sequence. Generally each field is anywhere from to 255 characters

long (although longer data items are possible). Each field is usually sepa-

rated from the next field, and each record from the next record, by standard

delimiters. For instance, a comma might be used to separate fields, and a car-

riage return-line feed combination to separate records.

Sequential text files are very easy to use and flexible—you don't need to

know how much data is in any particular record, or the form that the data will

take, or even how many records the file contains. But they're also inefficient in

many ways. For instance, in order to read the contents of the 4,000th record in

the file, you must first read all the records preceding it because without know-

ing how long each record is there is no way to jump directly to the beginning

of the record 4,000. (You can get around this problem by indexing the records,

so that you know the starting position and length of each record in the file, but

doing so adds considerably to the complexity of the file-access process.)

In addition, it is difficult to make modifications to records in a sequential

access text file, again because the length of each field and record can vary.

Shortening or lengthening even a single data field in one record might mean
that you have to rewrite the entire database because otherwise there would

be no place to store the extra data (in the case of lengthening a field), and no

way to indicate that the space a shortened field no longer uses is not part of

the record. Attempts to delete a record, or to overwrite an existing record

with a new one, pose similar problems.

For these reasons, it is best to use sequential text files in situations where

all records will be read from disk or written to disk at once, such as an applica-

tion's configuration file or a mini-text editor that stores each line of text as a sep-

arate record. Sequential files provide a straightforward, low-maintenance

solution to those kinds of disk storage needs—where there is no need to know

where one record ends and another begins because you're reading or writing all

at once.

Planning Data Structures 131

Random-Access Text Files

Random-access files are so named because you can read or write any record

in a random-access file individually, without having to first go through all the

records in the file that precede it. This is possible because, rather than using

field and record delimiters, each record in the file has a fixed length, as does

each field in each record. So if each record is 250 bytes long, you know that

the first field of the second record will begin with the 251st byte of the file.

Random-access files are much more responsive than sequential text files

in many ways. For instance, you can edit, overwrite, or delete records with-

out having to rewrite the entire file. But they are in other ways somewhat
more restrictive. You have to know in advance how much space will be

required for each field and each record, and changing the length of a record

or field can be difficult. For instance, if you discover that you actually need

55 characters to store each record, rather than 50, you'll have to convert all

the records for which you've entered data so far to reflect the new record

length. Otherwise, if you simply change your application to read 55-charac-

ter records from the file, the first record it reads will contain all of the origi-

nal first record and the first five characters of the original second record; the

second record it reads will start with the sixth character of the original sec-

ond record; and so on.

Thus, you have to plan carefully when defining random-access files.

You'll be rewarded for that effort, though, by being able to read or write any

record, or any field in any record, at any time, thus speeding up your applica-

tion's data-storage and -access routines.

INI Files

INI files are specially formatted text files primarily intended to be used by

Windows and Windows applications to store configuration data. Every Win-

dows 3.1 system has a WIN. INI file in which some configuration data is

stored, but applications may also create and maintain private INI files. For

instance. Ami Pro uses a configuration file called AMIPRO.INI. Turbo Pas-

cal for Windows uses one called TPW.INI, and so on.

INI files are text files that follow a standard format. Each INI file is

divided into sections, the name of which appear inside brackets, as follows:

[section name]

Each section can contain one or more fields, which look like this:

Datadir=C:\SHEETS

Macrodir=C:\MACROS

The text to the left of the equals sign in each field is known as the key

name, and the text to the right of the equals is called the key.

132 THE NUTS & BOLTS OF APPLICATION DESIGN

INI files function as sort of a cross between random-access and sequen-

tial files, in that you can request the value of a single key in a specified sec-

tion without having to instruct your application to read through the entire

INI file (although that is what happens in the background). In addition, Win-

dows provides some special support for the WIN.INI file, specifically a stan-

dard system message, WM_WININICHANGE, which can be used to notify

applications that have read data from the WIN.INI file that it has been

changed and they should consequently reread the file.

Some Windows development tools, such as WinBatch, have built-in com-

mands for creating, reading, and writing INI files. Others, such as Visual

BASIC and Turbo Pascal for Windows, allow you to access the standard Win-

dows API routines for doing so. Thus, INI files provide a good way to store

application configuration data. However, although it may be tempting to do

so, you should resist the urge to use the INI file functions to store larger

amounts of data. Windows INI file functions were not designed to work with

huge amounts of data, and prove to be slow and inefficient when you try to

use them to write hundreds of lines of data at once.

Other Data Formats
Beyond the three formats described above, there are many other ways to

store data to disk, including a seemingly endless array of binary file for-

mats. In binary files, data is transferred to disk in raw, unformatted form,

rather than as ASCII or ANSI text. This enables binary files to be used to

store a much wider variety of data types—everything from graphic bitmaps

to executable program code—that cannot be rendered in ASCII form.

However, it also makes using binary files considerably more complex than

using text-based files. And, unless your application development tool pro-

vides implicit support for one or more binary file formats, you would be

well advised to master other areas of the program-development process

first, before tackling this one.

AutoPrint's Data Structures

AutoPrint's data structures are very simple. Partly this is due to the uncom-

plicated tasks that it performs, and partly to the limitations of the WinBatch

language in which it is written. WinBatch doesn't support arrays and doesn't

have any scoping rules—all variables are global to the application.

In any case, most of the variables in the two batch programs that make
up AutoPrint are merely used to hold the results of functions or calculations.

For instance, the line

NewApps=WINITEMIZEO

assigns the results of the WINITEMIZE function (which returns a tab-

delimited list of all open windows) to the variable NewApps. The next line

Defining Internal Processing 133

in the application counts the windows listed in NewApps, by using the

ITEMCOUNT function to count the number of times the contents of the

variable HTab (which had earlier been defined as a horizontal tab charac-

ter) appear in the contents of NewApps, and assigns the result to the vari-

able NewAppCount:

NewAppCount=ITEMCOUNT(NewApps, HTab)

That is about as complex as AutoPrint's data structures get. Because it

copies the files to be printed to the AUTOPRN directory, the WinBatch ver-

sion of AutoPrint doesn't even need to maintain a list of those files. Instead,

it simply obtains a listing of the files in that directory when it is ready to

begin the printing process.

The Norton Desktop version of AutoPrint, on the other hand, uses a

disk-based data file to store the full path and file name of each file to be

printed, in lieu of copying those files to a queue directory. It uses a simple

sequential text file called AUTOPRN.LST for that purpose, simply append-

ing the full name and path of each new file to be printed to the end of the

list, followed by a carriage return. When the time comes to print the files in

the queue, AutoPrint reads through AUTOPRN.LST line by line, printing

each file listed there in sequence.

In addition, both versions of AutoPrint make heavy use of the WIN. INI
file: to ensure that the file extension of the file being added to the queue is

listed in the Extensions section of WIN. INI, to determine the default printer,

and to determine whether or not the Windows Print Manager print spooler

should be used. Fortunately, WinBatch makes access to either the WIN. INI

file or private INI files quite simple, through commands such as INIREAD,
which is used as follows:

Spool er=I N I READC Windows "."Spooler", "yes")

This command assigns the key value of the key name Spooler in the Win-

dows section of WIN. INI to the variable Spooler. The two possible settings for

this key are yes and no. The third parameter in the INIREAD call instructs

the INIREAD function to return a value of yes if the key is not found.

Defining Internal Processing

All the data structures and disk files and data sources in the world aren't

much use if your application doesn't know how to do anything with them. In

order to put those creations to work, you have to define the internal process-

ing that your application will use to achieve its tasks.

Doing so is basically a problem of translation. You need to translate

your mental description of each process the application must perform into

one that your development tool will understand.

134 THE NUTS & BOLTS OF APPLICATION DESIGN

For instance, I knew that AutoPrint had to be able to find the applica-

tion that created each file in the queue in order to print it. So it seemed rea-

sonable to test whether or not WIN.INI contained an association for each

file specified by the user at the time the user specified it. Figuring that out,

however, was only half the job, because the description would mean nothing

to WinBatch. I still had to translate that description into WinBatch code,

which I did, resulting in these lines:

Ext=FILEEXTENSION(FileToPrint)

As socExi s t s=I N I READ
(" Extensions", Ext ,@FALSE)

IF AssocExists==@FALSE THEN GOTO AssocErrJump

The Extensions section of WIN.INI uses the three-character file exten-

sion to associate document files with the applications that created them. So

the first line of code here uses WinBatch 's FILEEXTENSION function to

obtain the extension of the file that the user has designated (the name of

which is stored in the variable FileToPrint) and assigns the extension to the

variable Ext.

The second line of code uses the INIREAD function to determine if the

extension is listed in WIN. INI. If it is found there, the function will return

the name of the application associated with that extension. If the extension is

not found, it will return the default specified by the third parameter to the

INIREAD function: ©FALSE. In either case, the returned value is assigned

to the variable AssocExists.

Finally, the third line tests the value of AssocExists and jumps to an

error routine if it is equal to @FALSE. (@FALSE is a predefined constant in

WinBatch.)

In order to be a successful translator, you need to know both languages

inside and out. Fortunately, however, you needn't be terribly fluent in a pro-

gramming language before you can start programming. Like a tourist travel-

ing abroad with a traveler's phrase book in hand, you can look things up as

you go along, skimming the language's reference manual for inspiration and

relying on its index, the examples it contains, and its on-line help system for

aid when you get stuck. Studying other peoples' work in the language can

also be very instructive. You'll learn what control structures work best with

the language and what things it seems to do easily, and you might pick up

some good tips and shortcuts.

It's not always fun to struggle with a phrase book or a programming lan-

guage reference guide, but you do have one advantage here compared to the

tourist who's hoping he can find the words for "I'd like a half a kilo of

cheese, a loaf of bread, and a bottle of red wine" before the grocer loses

patience and throws him out of the store. Your PC doesn't care how long it

takes you to come up with the right syntax, as long as you get it right in the

end. And, although in the early stages you might occasionally spend a day or

more struggling to figure out how to do something that in the end proves so

Putting It All Together 135

simple you could kick yourself, eventually the rules and syntax of any appli-

cation development tool that you use frequently become as natural to you as

those of your native tongue.

Putting It All Together

As the various projects presented in Chapters 9 through 15 will demonstrate,

program development is an iterative process. It might be simpler if the route

was a straighter line—if you could start by defining your applications objec-

tives, then pick a programming tool, then plan the application s data require-

ments and structures, then throw together a user interface, and finally crank

out the code to glue it all together—but that's not the way it works. The vari-

ous parts of a programming project are all interconnected; you can't lose

sight of any of them no matter what stage of the project you're at. Your user-

interface design objectives will affect your choice of development tools, but

your development tool will also mold your user-interface objectives. In the

end, each of the pieces must work, and must blend harmoniously with all the

others, in order for the application as a whole to succeed.

The next two chapters continue this discussion of the process of develop-

ing a Windows application. Chapter 7 discusses the standard elements of the

Windows user interface and how they should be used to build effective appli-

cations, and Chapter 8 discusses prototyping and testing your applications.

CHAPTER

Implementing

a Windows
Interface

Application Windows
Features

Standard User-Interface

Controls

The SAA Standard

Common Extensions

to the Standard

The Keyboard Interface

Dialog Box Design

Putting It All Together

Implementing a Windows Interface 137

NOW WE GET TO THE FUN PART—DESIGNING AND IMPLEMENTING A USER

interface for your application. Every Windows application develop-

ment project involves at least a little bit of user-interface design

work. Even a simple little utility such as a WordBASIC keyboard

macro requires that you answer at least some user-interface questions.

Say for instance, that you want to be able to highlight an entire para-

graph in a Word for Windows document by issuing a single keyboard com-

mand. You could do that with a macro consisting of the command
EXTENDSELECTION repeated four times, as follows:

Sub MAIN

EXTENDSELECTION

EXTENDSELECTION

EXTENDSELECTION

EXTENDSELECTION

End Sub

Once you've written or recorded this macro, to put it to use all you have

to do is assign it a keystroke combination (using Word for Windows' Key-

board Options dialog box), so that the macro will be executed whenever you

press those keys.

The only question is which keystroke combination you'll assign to it, and

that's a user-interface design question.

Ideally, you would assign the macro to a keystroke combination that is

easy to remember. Word for Windows allows you to assign macros to letter

keys in combination with the Shift and/or Ctrl key. In this case, you might

want to use a combination that includes the letter "p", since paragraph

begins with that letter. Shift-P would be a bad idea, of course, since you need

that combination to type a capital "P". Ctrl-P would be ideal, but Word for

Windows already uses that combination to provide quick access to the drop-

down list box that controls font size. You can change that, but since the Shift-

Ctrl-P combination would work just as well for the paragraph selection

macro, there is no need to change the default setting for Ctrl-P.

The choice of keystroke combination to use for accessing a single macro

is a minor user-interface design problem, of course, but it is not a trivial one.

If you pick a bad combination—one that is difficult to remember or awkward
to reach—you may end up deciding that it is easier to use another method to

select the paragraph.

Of course, the problem wouldn't arise at all if there were a standard key-

stroke combination used for highlighting paragraphs. Alas, there is no such

standard for this command in the Windows environment. However, the Win-

dows environment does offer standard solutions for a great many other user-

interface design issues. The better you understand these standards, the easier

the process of designing a user-interface design will be for you. Moreover, by

138 IMPLEMENTING A WINDOWS INTERFACE

adhering to these standards, you'll make it easier for anyone who already

knows how to use any other Windows application to learn how to use yours.

The Standard Advantages
They say that eventually you can get used to just about anything. That has

certainly been true in the case of PC user interfaces. Many of the most popu-

lar PC applications over the years, including WordStar, WordPerfect, and

just about every other major DOS word processor, have had truly awful user

interfaces (in my humble opinion). They take years to master and only hours

to forget. Most have so little internal consistency that your knowledge of one

feature is of no benefit to you in learning to use another. Plus, if you don't

use a feature for six months, you might as well never have used it because its

procedures will probably have nothing in common with those of the features

you have used more recently.

Of course, when you make those criticisms in front of a WordStar or

WordPerfect user, you're as likely to get a punch in the nose as agreement.

After all, not only did that person shell out good money for the program

you're criticizing, but he or she also went through all the trouble of learning

to use it. Some people don't take kindly to having all that effort questioned.

Moreover, they'll argue, there is nothing intrinsically simpler or more intui-

tive about the Windows interface than about the interface used by their

DOS application.

They're right, in a way. Although buttons and scroll bars and icons make
a lot of sense once you've learned to use them, there is really no way that

you could call the Windows interface intuitive, any more than you could call

the user interface of an electric can opener or an automobile intuitive. You
have to learn a specific set of procedures before you can use any of them.

One might argue that a certain Windows application is marginally easier to

use than a certain DOS application, but all computer applications, no matter

what user interface they employ, require some study before you can put

them to use.

Nevertheless, the Windows interface remains the greatest single advan-

tage that Windows applications have over DOS applications. How so?

Because the standardization of the user interface among Windows applications

makes the learning process much easier and faster. It might take just as long to

teach a complete novice to use Word for Windows as it would Microsoft Word
for DOS. But after having done so, you can teach the Windows-version user

how to use any other Windows application in a tiny fraction of the time that it

would take to teach the DOS-version user to learn another DOS application.

The Windows user can build upon his or her knowledge of the Windows inter-

face in learning new applications, whereas DOS application users often must

try to forget all the user interface conventions used by one application in order

to learn another.

Application Window Features 139

As a developer of Windows applications, it is to your benefit to follow

the standard Windows user-interface conventions at every opportunity.

Doing so will simplify the learning process for any Windows user, which in

turn convinces the user that yours is the simplest and most intuitive can

opener he or she has ever seen.

Application Window Features

The most basic element in the Windows user interface is the application win-

dow, pictured in Figure 7.1. Nearly every Windows application makes use of

a standard window—the primary exceptions being small utilities that commu-
nicate to the user entirely through dialog boxes.

Figure 7.1
A standard

application window

and its features

Control menu box Title bar Minimize burton Maximize button

Menu bar

— ^
Workspace Scroll bars

A standard application window is made up of several basic components,

described in the following sections.

Title Bar

The title bar appears across the top of the application window, displaying the

name of the application and, in some cases, the name ol the document with

140 IMPLEMENTING A WINDOWS INTERFACE

which it is working. For instance, the title bar for the standard Windows shell

program always reads "Program Manager", whereas the title bar for Win-

dows Write reads "Write - (Untitled)" if the current document has not been

saved to disk or "Write - SAVEDDOC.WRI", for example, if the current

document has been saved under the name SAVEDDOC.WRI.
Program Managers title bar doesn't change because it works with the

same data set—the program groups that you have established. Applications

such as text editors, spreadsheets, databases, and so on, which use different

data sets, should always display the name of their current document in the

title bar because the name in the title bar also determines the caption of the

applications icon when it is minimized. (Incorporating the current document

name into the icon caption makes it easier for the user to select the applica-

tion and document with which he or she wants to work.)

Minimize and Maximize Buttons

The buttons that appear at the rightmost edge of the title bar, the minimize

and maximize buttons, are used to shrink the application window to an icon

and to enlarge it to fill the screen, respectively.

Most development tools give you control over whether your applica-

tion's window includes minimize and maximize buttons, and whether it can

be minimized or maximized. Not all applications need maximize buttons.

Many utility applications only need to display a small status screen or a dia-

log box from which to elicit user input, so there is no reason they should ever

need to fill the screen. On the other hand, unless there is no possibility that

the user will ever want to activate another application while yours is run-

ning—the likelihood of which I put at zero—you should always provide a

minimize button.

Control Menu Box

Appearing at the leftmost edge of the title bar, the Control menu box is used

to access the Control menu, a special menu that offers the user the ability to

move, resize, or close the current application, or to access the Windows Task

Manager. Some applications may modify the Control menu, adding new

items to it or deleting some of the standard options.

Menu Bar

The menu bar, which appears directly beneath the title bar, contains the

application's menus. Most Windows applications include three or four drop-

down menus, which follow a fairly standard organization.

Application Window Features 141

The Control menu (accessed from the Control menu box), offering the

choices Restore, Move, Minimize, Maximize, Close, and Switch To

The File menu, offering the choices New, Open, Close, Save, Save As,

Print, Print Setup, and Exit

The Edit menu, offering the choices Undo, Cut, Copy, and Paste

The Help menu, offering the choices Contents, Search Help On, How to

Use Help, and About application name

Of course, many applications omit some or all of these menus or

options, and almost all add additional items to the standard list. For instance,

an application that supports DDE might add a Paste Special command fol-

lowing the standard Paste command, and some applications add a list of

recently opened files to the bottom of the File menu.

In addition, most applications add additional drop-down menus to the

four standard ones. Unfortunately, there is almost no standardization of

these menus. For instance, Microsoft Word for Windows, Write, Notepad,

Lotus Notes, and Microsoft Excel all offer a Find option, to search for text

or numbers within a document. Yet they place that item variously under

menus called Edit, Find, Search, Options, and Data. So how is a poor user

supposed to find Find?

Without a standard model for menu layout, it's not always clear how you

should structure the menus in your application. But if you know that most of

your users will be using the application in conjunction with or alongside

another application, you should try as much as possible to model your appli-

cation's menus after those of the other application, thereby injecting at least

a little standardization into this sea of inconsistency.

Dynamic Menu Items

Windows provides several standard ways to update menus dynamically dur-

ing the course of program execution. You can gray out or disable specific

menu items, you can add and delete items, and you can place check marks

alongside menu items.

Disabling a menu item is an easy way to indicate to the user that the

function accessed by that item is not available at the current time. For

instance, if the Clipboard is empty, the Paste item on the edit menu should

be disabled because there is no data there to paste.

You can also disable menu items to indicate that there is no need to

carry them out. For instance. PageMaker 4.0, which uses large, complex files

that can take a minute or more to load and save, disables the File Save

option until the user has changed the open document. This way the user

doesn't spend time saving a file unnecessarily, although he or she can still use

142 IMPLEMENTING A WINDOWS INTERFACE

the Save As option to save the current file under a new name or in a differ-

ent location.

The ability to add or delete menu items offers several possibilities. It

enables you to add a list of recently used documents to a file menu, or a vary-

ing list of available tools or functions to a utility menu. A communications

program could list available connections, and a print utility the printers avail-

able to a particular workstation.

Menu check marks, meanwhile, enable you to make menu items work
like toggle switches. For instance, a text editor's edit menu might include an

item labeled "Word Wrap", as in the menu from Notepad shown here:

HEI
Jndo Ctrl+Z

Cut

Copy

Paste

Ctri+X

Ctrl+C

Ctrl+V

H!ES^^Bi
Select All

Time/Date F5

V Word Wrap

When the user selects the item for the first time, a check mark appears

beside it, indicating that the option has been activated. Selecting it a second

time turns the option off, and removes the check mark.

Cascading Menus
Cascading menus, or submenus, are a mixed blessing. On the one hand they

offer a good way to organize related menu items under a single heading.

Your application might include a menu item called Select, for instance, to

which would be attached a cascading menu with a choice for each available

printer, as shown here:

Open

Save

Select Printer

Exit

LaserJet II on LPT1

Postscript printer on network

The problem with cascading menus is that they are frequently misused

as a replacement for dialog boxes. Many applications force users to make
choices from several different cascading menus, when they would be better

served by a single dialog box on which they could make all those choices at

once. For instance, in a word processor separate cascading menus for font,

font size, type style, and alignment could be replaced by a single dialog box

Application Window Features 143

called Type Settings—reducing the amount of times the user has to go back

and reactivate the menu in order to adjust these settings.

This problem is exacerbated when developers attach cascading menus to

cascading menus, so that the user has to go three or four menu layers deep in

order to make a selection. It's tempting to do this sometimes, since it is easier

and faster in most cases to add cascading menu items than to draw dialog

boxes. But although cascading menus seem like a neat solution for the devel-

oper, they're generally cumbersome for the user, so you should avoid going

overboard with them.

Scroll Bars

Horizontal and/or vertical scroll bars should appear along the bottom or

right side of the application's window if the window is not large enough to

display its entire contents (see Figure 7.1). The user can scroll the window by

moving the scroll box, which represents the position of the current view rela-

tive to the whole file, or by clicking in the scroll bar or on the scroll bar's

arrow controls.

Like the minimize and maximize buttons, scroll bars are of primary bene-

fit to applications that display large amounts of data, which may not all fit

onto the screen all at once. They are generally not' needed for small utility

applications.

Application Workspace

Windows applications that are capable of working with only one document

at a time, such as Notepad or Paintbrush, display the contents of that docu-

ment in the application workspace—which consists of the window area

beneath the application's menu bar (Figure 7.1). Some applications, such as

Paintbrush, devote some of this area to displaying tool palettes or status

bars, but the remainder of the area beneath the menu bar is used to display

the contents of the current document.

Document Windows

Windows applications that can work with more than one document at a time

generally utilize the multiple-document interface (MDI)—a variation of the

standard application window in which each document appears in its own siz-

able, movable, minimizable window within the application workspace, as

shown in Figure 7.2. Each open document in an MDI application can be

enlarged to (ill the application's workspace, minimized to the size of an icon

at the bottom of the workspace, or moved anywhere within the workspace.

The multiple-document interface can be used for applications that

work either with multiple independent documents (such as word processing

144 IMPLEMENTING A WINDOWS INTERFACE

documents or spreadsheets), or multiple views of the same data (such as list

and browse views of a database or directory and file lists for a disk drive).

It should not be used to represent different parts of your application. For

instance, floating palettes, such as the style palette in a word processor or

the drawing-tools palette in a graphics program, should either be visible to

the user or hidden, but not minimized. Minimization within the multiple-

document interface should be reserved for documents or document views,

not program screens.

Figure 7.2
An application

utilizing the multiple-

document interface

Standard User-Interface Controls

Along with a basic standard for laying out windows, the Windows interface

also features a standard set of user-interface controls.

Command Buttons

The most basic user-interface controls are command buttons, also referred to

sometimes as pushbuttons or action buttons. The purpose of a command but-

ton is to provide the user with an easy way to initiate an action. So when the

user clicks a command button, your application should immediately respond

by carrying out the action associated with that button.

Standard User-Interface Controls 145

The most common command buttons are the OK and Cancel buttons

found in most Windows dialog boxes, as shown in Figure 7.3.

Figure 7.3
Dialog box with OK

and Cancel buttons

Text Styles rr
Apply styles:

El Italic

Bold

OK

Cancel

These buttons are used to signal that the application should proceed

with or abandon the tasks indicated by the user's actions within the dialog

box. The standard convention is to make the OK button the default button

for the dialog box (meaning that it will be selected anytime the user presses

the Enter key), and to make the Cancel button the one that will be selected

anytime the user presses the Esc key.)

Command buttons may also be used in any other situation in which you

want to give the user the opportunity to initiate an action. For instance, an

application's main window may contain a row of buttons that are used to

jump to other parts of the application or to provide quick access to com-

mands that normally would be accessed from a pull-down menu.

Check Boxes

A check box is an on-off toggle switch. Check boxes are used to offer the

user the option of activating or deactivating a particular program feature

or option.

Check boxes may be presented singly or in groups. When presenting

them in groups, however, remember that the options they offer should be

compatible. For instance, it would make sense to use a pair of check boxes to

give users the ability to select text attributes such as boldface or italic, as

shown in Figure 7.3, since text can be both bold and italic at once. However,

you shouldn't use check boxes to present a choice of text-alignment style,

since text cannot be left-justified and centered, for instance, at the same time.

Grayed Check Boxes
Although most check boxes are used for two-state on-off options, in which

the checked state turns the option on and unchecked turns it off. there is

actually a third check box state: grayed. This state is traditionally under pro-

gram control—that is, that the application itself, rather than the user, turns a

check box gray to indicate that the choice it presents is inapplicable to the

current situation. Most other user interface controls including buttons.

146 IMPLEMENTING A WINDOWS INTERFACE

menu choices, and icons—can also be grayed in this manner to indicate that

an option is not available at the present time.

Recently, however, some applications have started to make another use

of the grayed state for check boxes, providing a way for users to set the

check box to that state in order to indicate that they don't care whether the

option or state that it represents is active. For instance, Word for Windows
utilizes this capability in a dialog box that allows users to search for particu-

lar styles of text within a document, as shown here:

Style

Klfiold

D Italic

^2 Stiikethrough

Hidden

I I Small Caps

All Caps

For each of several attribute options, the user can either leave the option

grayed, or click it once to search for text with that attribute, or click it twice

to search for text without that attribute. Leaving any choice grayed indicates

that the user doesn't care whether or not the search text has that attribute.

Radio Buttons

Radio buttons, also known as option buttons, are used to present the user

with a choice of mutually exclusive options. One might, for instance, use a

set of three radio buttons to allow the user to specify whether text should be

left-aligned, right-aligned, or centered, as shown in Figure 7.4.

Figure 7.4
A group of radio

buttons

Text Styles

Alignment

O Lett

©Right!

O Centeied

Radio buttons should always be presented in groups, and it should be

possible to select only one option in the group at any one time. So if the user

selects the option button labeled "Centered" in the example above, both the

Left and Right options should be automatically turned off.

Standard User-Interface Controls 147

Radio Buttons or Check Boxes?
It may not always be apparent when you start to design a dialog box or input

screen whether you should use radio buttons or check boxes to present a

given option. For instance, it's not uncommon that an option seems to be a

simple yes or no choice—and thus perfect for a check box—when you begin.

In the course of the development process, however, your design grows more

complex, so that in the end you need to present the user with a set of mutu-

ally exclusive options in the form of radio buttons. For example, a simple

check box in a text editor for turning word wrap on and off might evolve into

a series of radio buttons for specifying text-alignment options.

Changing your application to incorporate radio buttons in place of check

boxes, or vice versa, is usually fairly simple, especially if the development

tool you're using includes a graphical dialog box or screen editor. More diffi-

cult is recognizing the need to make that change when it arises. Just remem-

ber, check boxes should be used when you have one or more options that

need to be toggled on and off, whereas radio buttons are the interface ele-

ment of choice when you have two or more options that must be dealt with

in a mutually exclusive fashion.

Group Boxes

A group box is a graphical dialog box element consisting of a label and a rect-

angular box that holds other user-interface elements. Generally a group box

is used to indicate that the options within it are related. For instance, you

might use a group box to present a group of radio buttons or a series of

related check boxes. Then you could use the group box label to identify the

general purpose of those options, as shown in the group box labeled "Styles"

in Figure 7.5.

Figure 7.5
Using a group box

to present related

options

Text Options

1 1Stylet

Italic

Kl Bold

E*j Underline

Z) Small Caps

mm

148 IMPLEMENTING A WINDOWS INTERFACE

Icons

If you use Windows, you know what icons are: little pictures that generally

do something when you click on them. I say "generally," because some icons

are purely informational: they serve as warning lights rather than prettified

command buttons.

Icons offer two primary benefits to the application developer: They can

attract the user's attention, and they can help you to conserve screen real

estate. The degree to which you can capitalize on those benefits will depend

on how well you understand the capabilities and limitations of icons. Both

can be seen in the most famous icon of all, the Macintosh's Trash icon:

The trash can is a marvelous example of an icon. It stands out on the

screen, and its primary use is immediately obvious: This is where you put

files that you no longer want. Novice users grasp that idea immediately. And
certainly, the trash can image gets that idea across in far less screen space

than a button labeled "Repository for No-Longer-Needed Files," and stands

out on the screen far better than a plain button labeled "Trash."

Nevertheless, the Trash icon falls short of conveying all the information

the user needs to know about its operation. Nothing about the icon indicates,

for instance, that the user will have to select the menu item Empty Trash

before any files are actually deleted. Nor is there anything about its appear-

ance to suggest that you can also eject diskettes from the Macintosh's inter-

nal drive by dragging them onto the Trash icon.

Of course, these are things that the Macintosh user learns quickly, and

once learned, they are seldom forgotten. The Trash icon makes so much
sense for its purpose that it reminds the user of everything else necessary to

its operation. This suggests an important rule about the design and use of

icons: Their effectiveness rests as much upon the user recognizing and inter-

preting them in the context they appear in as on any intrinsic message con-

veyed by the icon itself.

However, even the best-designed icons convey only a limited amount of

information. The more complicated the task, the more difficult it is to com-

pletely represent it through an icon, and the more you must rely on the user

to interpret the icon in context.

Standard User-Interface Controls 149

For an example a little closer to home, consider the four text-alignment

options presented as icons on the ruler in the Windows Write application:

These icons do a good job of communicating their meaning and of offer-

ing the Write user access to a common word processing function. But you

still couldn't call them 100-percent effective at conveying their meaning. An
uninitiated user might suppose, for instance, that they are used to indicate

that you want to draw horizontal lines of varying lengths on the screen. And
even after their general meaning is known, there is nothing about their

appearance to convey that the actions they initiate will affect either currently

selected text or any new text entered after the current insertion point, but

not any other text already entered in the document.

Nevertheless, the text-alignment icons in Write are generally effective.

Once the user has learned their purpose, it is easily recalled because the

appearance of the icons suggests their meaning. And they thus provide an

effective shortcut to the program's text-alignment functions.

Icons lose effectiveness quickly when you display too many at once, or

when the images are so abstract that the user can't recall their meaning from

one moment to the next. For instance, version 2.0 of Abacus' Becker Tools

for Windows suffered greatly on both these counts, as Figure 7.6 illustrates.

Its main screen featured no less than 65 icons, many of them highly abstract.

Not surprisingly, the program's interface has since been redesigned.

Informational Icons

In addition to action icons, which function as command buttons in disguise,

some applications make use of icons for informational purposes only. These

are primarily used in message boxes. The IBM Systems Application Archi-

tecture guidelines (discussed below) call for four standard message box icons:

A lowercase "i," indicating that the message is informational only, such as

"File transfer complete."

An exclamation point, !, for warning messages such as that shown in

Figure 7.7.

A question mark, ?, for questions.

A stop sign, for messages that a problem has occurred that requires a

response from the user, such as "File not found. Please insert a disk con-

taining the file into drive A and press Enter."

150 IMPLEMENTING A WINDOWS INTERFACE

Figure 7.6
How not to use

icons

BeckerTools

File Directory Backup Disk Special Options Applications

Source: C:stacvol_dsk*.

Target:

n
«-

EMI

CO

H->B

fa?

en rn
o -»

POD
»Ea Info

HtHlfl
e

ACCESS
ACTION*
ALDUS
AMIPRO

A0T0PRN
DOS
DVNADEHO
EXCEL
FLW
FONTS
GAMES
GRAPHICS
1C0NDRAW
IMAGPREP
MC
MI SC TEXT
HDW
N0TES2

<DIR>
<DIR>
<DIR>
<DIR>

<DIR>
<DIR>
<DIR>
<DIR>
<DIB>
<DIR>
<dir>
<DI«>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>

No path

Files: 0/40 Dirs: 0/43 Entries

Figure 7.7
A warning icon

& Are you sure you want to format drive C:?

OK Cancel

For icons of this type to be effective, the user has to see them frequently,

so that they cause a sort of conditioned response. Even then, however, they

don't carry a great deal of weight, so don't assume you can do without

explanatory text in your dialog boxes.

Static Text

Static text controls, or labels, are simply blocks of text that arc used to iden-

tify the purpose of other controls or to provide instructions to the user. For

Standard User-Interface Controls 151

example, you might place a label that reads "Files" above a list box that con-

tains a list of files.

There seems to be an inherent tendency among programmers to be as

terse as possible within dialog boxes. Maybe this stems from a natural aver-

sion to typing, or maybe it's a holdover from the days of trying to cram appli-

cations into 64k PCs, but either way it results in dialog boxes that aren't as

clear as they could be, or should be. The fact is, memory isn't all that pre-

cious anymore, and a few extra keystrokes can make your dialog boxes far

clearer.

Compare, for instance, the two dialog boxes that follow, both of which

are designed to elicit a file extension from the user. The first is an example of

the "less said the better" school of dialog box design:

File Type

Entei File Type:

OK.]

IHM

The problem with this dialog box is that its meaning and operation will

only be clear to someone who knows exactly what information it requires.

For the casual or new user, it is a mystery—one that will require at least

some experimentation to solve.

The second example does a far better job of communicating exactly

what information it requires from the user, thanks to the addition of a few

lines of explanatory text:

File Type

Extension:

Enlei Ihe Ihiee lellei file extension thai

identities files of the type that you wish to

view (foi instance. WRI foi files pioduced by
Microsoft Wntel

The addition of this text to the dialog box won't slow down the experi-

enced user at all, and will only cost a few dozen extra bytes of disk space, yet

it all but eliminates the chance that the new user will be completely befud-

dled by the dialog box's meaning.

Edit boxes

Edit boxes are used within a dialog box to allow the user to enter strings of

textual information.

152 IMPLEMENTING A WINDOWS INTERFACE

Edit boxes come in many varieties: single- and multiple-line, with and

without horizontal or vertical scroll bars, and accepting limited or unlimited

amounts of text (or nearly unlimited—depending on the development tool

you're using, text boxes are actually limited to either 32k or 64k of text).

Depending on which of these options you select, you can use edit boxes for

everything from obtaining a one-word database field entry to serving as the

core of a simple memo or message editor.

List Boxes

List boxes are a great tool for providing the user with a range of choices:

Which document do you want to print? Which telephone number do you

want to dial? And so on.

The beauty of using list boxes for this purpose is that you don't need to

know in advance how many elements the list box will contain. There may be

5 or 500 files to choose from or telephone numbers to dial—it doesn't matter.

The list box presents them in sorted, ascending order (if you select the

option to sort the list box offered by most development tools), allowing the

user to scroll through the list to find the item that he or she wants. Figure 7.8

shows one such list box.

Figure 7.8
A list box sorted in

ascending order
File Name: Directories:

c:\ww2\docs

Lis! Files of Type:

Word Documents f.doc) Read Only

There are some times, of course, when you do know exactly how many

choices the user will have. If you're implementing binary file transfers in a

communications application, for instance, and your application only supports

the XMODEM, YMODEM, and Kermit protocols, then you know that the

user will always have a choice of those three protocols.

In a case like that, however, where you have a known, finite number of

mutually exclusive choices to present, you're better off using radio buttons

Standard User-Interface Controls 153

than a list box. Although both methods elicit a choice from the user, the use

of radio buttons would be preferable in this instance because it is more pre-

cise: It takes advantage of the users knowledge of Windows conventions to

signal that the choices are both constant and mutually exclusive.

List boxes come in three standard varieties: single-selection, multiple-

selection, and extended-selection.

Single-selection list boxes allow the user to select only a single item from

the list at a time. The standard File Open dialog box, shown in Figure 7.8, is

a good example of a single-selection list box. Although it may present a list

of hundreds of files, you can select only one at a time.

Multiple-selection list boxes offer the user the opportunity to select multi-

ple items from the list. Any item in the list can be selected by clicking on it

once. Clicking on an already selected item deselects it.

Extended-selection list boxes also offer the user the ability to select multi-

ple items, but in a different manner. With an extended-selection list box,

users can select a range of contiguous items by clicking on the first item in

the range and then shift-clicking on the last item. Or they can select multiple,

noncontiguous items by clicking on each one while holding down the Ctrl

key. File Manager's file windows are an example of extended-selection lists

(see Figure 7.9).

Figure 7.9
File Manager

displays files in an

extended-selection

list

File Manager - [C:\WINDOWSV.T
=1 File Disk Tree View Options Window Help *& Sb St l^ld n^le C: [STACV0f._D5K.l

-CDrr,ixt?.i *. Ddx;
- CO rctw CDsystern

- CO rc*es2

-CD c«

- C3 C«200

system102 2153

Qsystem.256 2151

Qsystem.800 2154

- CD E«ontac Qsystem.bak 2154

- CD Plants Qsccwtkbm 1905

- CD pkwin Qwinhelp.brnlc 1179

- CO Pm4 [?) 2S6color.bmp 19994

- CO pstonts 5| arcade bmp 630

- CD pstyler parches bmp 1" :'.

- CD :a,"yP? fcargylebmp 630

- CD stacker §1 benej bmp 630

- r°"~)temp Bcars.bmp 630

- r~lt?mpforn fe castle bmp 778

- C2 utils fechitzbmp 19918

- CD 1* b ;arthns bmp 481078

- (Tlwin3 Regyptbmp 630

- Q] windfv 1 flock bmp 1630

~\1^i wincfcwr.| I D honey bmp 854

- I°~l winslih fS) leaves bmp 15118

- (Tlww2 @) marble bmp 27646

- CO -y 1 1 Q pacer bmp 9662

1. r*l rk-iitu hmn ; \\\. .

1

1

154 IMPLEMENTING A WINDOWS INTERFACE

Which Style to Use?
Generally, multiple- and extended-selection list boxes should be used when
you want to give the user the opportunity to indicate several items that

should be affected by the next command he or she issues.

Which of these styles to use, multiple or extended, is pretty much a mat-

ter of personal choice, since both accomplish largely the same ends. Person-

ally I find multiple-selection list boxes annoying, since I often end up

inadvertently selecting multiple items when I am merely trying to move the

cursor within the list box by clicking on another item. So I prefer extended-

selection boxes. But, on the other hand, the multiple-selection style does

have the advantage of not requiring the use of Ctrl- or Shift-key combina-

tions to select multiple items.

Unfortunately, you often don't have a choice of style. Many high-level

languages only offer the ability to create single-selection list boxes. For

instance, in the MCI mail management application described in Chapter 15,

I would rather have used an extended-selection list box to allow the user to

simultaneously select multiple mail messages to print, delete, or move to

another storage folder. Unfortunately, the DynaComm script language I

used to build the application doesn't support multiple- or extended-selection

list boxes, so I was unable to do so. (I was able to work my way around at

least part of the problem, however, by allowing the user to mark messages in

the list box for later deletion.)

One thing you should keep in mind if you use multiple- or extended-

selection list boxes is that their implementation in Windows is somewhat

flawed from the perspective of user-interface transparency: There is no way

the user can tell from looking at a list box which of the three varieties it is.

As a result, there is a good chance that the list box will not act the way the

user expects it to—which is, of course, not recommended in terms of user-

interface design.

On the other hand, regrettable as this inconsistency may be, there are

times when it makes so much sense for the user to be able to select multiple

items from a list, that the inability to do so will cause more anger or frustra-

tion than the brief confusion of "Now do I click or Ctrl-click or what to

make this work?"

Displaying Big Lists

If you're going to use a list box to present a long list of files or other items,

make the list box as big as you can. Many applications try to conserve screen

space by using list boxes in which only four or five items are visible at once. As
a result, the user may have to scroll or page down through dozens of items to

find the one he or she wants. With a bigger list box, showing more items on

screen at once, the user can simply click on the list box's scroll bar to jump 15

or 20 items down the list at a time—a far friendlier solution. So when a list box

is going to be used to present large lists, make it as large as practical.

Standard User-Interface Controls 155

Combo Boxes and Drop-Down Lists

There are three closely related types of controls in this category:

The drop-down combination box, which consists of an edit box joined to a

drop-down list box

The simple combination box, which consists of an edit box joined to a list

that is always visible

The drop-down list box, which resembles the drop-down combo box but

omits the edit box

All three controls are shown in Figure 7.10.

Figure 7.10
Varieties of drop-

down lists and

combo boxes

Combo Boxes and Drop-Down Lists

Simple Combination Diop Down Combination Drop-Down List

Line 1

Line 2 i

The two combination-style controls are useful when you want to present

users with a list of predefined choices, but also allow them to enter a new
data item. The drop-down list box, conversely, should be used when you

want to limit the user to a predefined set of choices. So, you might use a

drop-down combo box for a File Save As... dialog box, from which the user

could either pick an existing file name or enter a new one; and you would use

a drop-down list box for a File Open dialog box from which the user would

select only existing files.

The choice of whether to use a simple combo box or a drop-down

combo box depends mainly on the number of predefined choices that you'll

be presenting. The simple combo box is ideal if you'll never be offering more

than three or four predefined choices, since you can make the list portion of

the box large enough to display all those choices at once. If the set of choices

is going to be much bigger than that, though, you'll be better off using a drop-

down combination box and letting the user scroll through the list.

That concludes our discussion of the standard Windows user-interface

elements. Before going on to look at nonstandard elements, let's take a brief

look at where the standard originated.

156 IMPLEMENTING A WINDOWS INTERFACE

The SAA Standard

All of the window elements and user-interface controls discussed so far are

codified in a remarkable 1989 publication from IBM called Systems Applica-

tion Architecture Common User Access Advanced Interface Design Guide—
the SAA guidelines for short.

The SAA guidelines grew out of an attempt to formulate the principles

and rules by which user interfaces should operate on computing devices

—

everything from dumb terminals linked to remote mainframes to the most

powerful PCs and workstations. Eventually the decision was made to pro-

duce separate guidelines for programmable devices (PCs and workstations)

and nonprogrammable ones (terminals), resulting in the publication of the

work cited above for programmable devices.

The SAA guidelines are amazingly detailed, specifying everything from

the keystrokes to be used for selecting text to the order of items on File and

Edit menus. As such, they represent the closest thing we have to a set of

rules for designing Windows applications.

Anyone who sets out to design Windows applications will find these

guidelines of interest. However, I wouldn't recommend that you take a blood

oath to follow them. Certainly, you should whenever possible—and think

twice before violating them—but don't let their restrictions prevent you from

implementing a better idea. It is far too early to lock user-interface design

into a set of immutable rules. Too much creative innovation is still going on

in user-interface design—and we still have too much to learn about what

works and what doesn't—for any attempt to limit developers to a set of iron-

clad rules to succeed. In this regard, the SAA's attempt to codify the PC user

interface was doomed to failure from the start.

Nevertheless, the SAA guidelines are well worth studying. Even though

some of the detailed elements are looking increasingly archaic, the basic prin-

ciples espoused in the guidelines remain as valid today as they were in 1989:

The user should feel confident that he or she understands the interface and

how it will react, and the user should always be in control.

To achieve this, the SAA guidelines preach a message of consistency,

immediate feedback, modeless operation (the same action should have the

same result at every point in a program), and constant encouragement of the

user's desire to explore. Make the interface transparent, the guide advises

developers, allow the user to control the dialog, and make the interface

forgiving.

There's always the chance that, like Woody Allen in Sleeper, we'll wake

up one day to a world in which conventional wisdom has been turned on its

head. Perhaps in that future steak and ice cream will be health food and the

principles of good design will call for confusing users at every opportunity.

But until then, the SAA guidelines offer as fine an exposition of the princi-

ples of good user-interface design as you'll (ind anywhere.

Common Extensions to the Standard 157

The SAA Common User Access Guide is included with the Microsoft

Windows SDK, or may be obtained from your local IBM sales office. Ask for

publication SC26-4582.

Common Extensions to the Standard

As the Windows environment has evolved and matured, there have been

some additions to the basic set of user-interface controls. A new element

would pop up in one application, then somebody else would take inspiration

from it in designing another application, and before you knew it, every Win-

dows application worth its salt had to have a ribbon or an icon bar.

These new elements earned their place as part of the Windows standard

for a good reason: They work. They make sense to users and developers

alike, because they make applications easier to understand and use.

Icon Bars

Perhaps the most ubiquitous of the new additions to the Windows interface

is the icon bar—although the name changes from vendor to vendor.

Microsoft calls it a toolbar, whereas Lotus calls the collection Smartlcons.

and other vendors have come up with their own names. What all the varia-

tions boil down to though, is a selection of icons running across the top, bot-

tom, or one side of the application's window, offering single-click access to

program functions such as file opening, saving, or printing, or to macros.

Microsoft Word for Windows' toolbar is shown here:

y & %h © IE :E if W H UH ^5 Ji V e*

In some applications, the user can define the arrangement and purpose

of each icon, whereas in others the set of icons is fixed. In either case, how-

ever, the icon bar has proven successful because of the immediate access it

offers to program functions. With an icon bar available, there is no need for

the user to hunt through menus to activate common program functions.

Instead they're just a mouse click away.

Ribbons

Ribbons are closely related to icon bars, but are reserved for providing

access to formatting commands, such as text styles and font names in a word

processor or alignment options in a spreadsheet program.

158 IMPLEMENTING A WINDOWS INTERFACE

Most ribbons, like that of Word for Windows (shown below), feature a

combination of icons and other controls.

CW_NORMAL
|

|T | Courier fin 12 [|Tj
|
B

|
/ |

«
|
fi|"a]s]s] ['

t) t I tJT1 [¥]

Active Status Lines

A somewhat less common recent user-interface invention is the active status

line, which is used to its best advantage in Lotus applications such as Ami
Pro and Freelance Graphics for Windows. Many Windows applications use

the bottom line of their window to display document status information,

such as page count or cursor position in a word processor, but generally they

present that information as static text. Recently, however, some applications

have turned this area into an active control, so that, for instance, when you

click on the page counter a dialog box opens asking what page you want to

go to; or if you click on the current font indicator a list of available fonts

appears, as shown in Figure 7.11.

Figure 7.11
Status bar font

menu in Ami Pro

Ami Pro - [OUTOLLSAM]
File Edit View Text Style

q5 % %r^

4;

6;

_Zd*i
i (notion

Fl ag pararn e

TheX.y.cx,

parameter is

This functior

n.
ion Cnd

Fusion CndClbl

Fusion Ext

Fusion ExtObl

Fusion Obi

Futura

Fulura Cnd
Fulura CndObl

Fulura Ext

Fulura ExtObl

Fulura Obi

Gararnond

GillSans

This functior! 13 oudji-0 Id-Style

Because of E Goudy-Old-Style Cnd

data you war Goudy-Old-Sljile CndO
Goudy-Old-Style Ext

This fane tiol Goudy-Old-Style ExtOi

Goudy-Old-Style Obi

PickFon| G,aPnicL '9ht

Helv

This funcnor| Helve, ica

Helvetica-Black

Helvetica-Light

Helvetica-Narrow

kadoraCaps

Janton Text

MeSSag^Janton Text Ext

Juniper

nee iIa wiijLetieiGothic

Lilhoi Light

Modern

Page Frame Tools Window Help

-^

in your v/i rid'

This functioi

dow with a title bar (which can be moved by the userjor zero (no title

rmine the size of the window (in percents of screen size). The Title

1 caption if you specified flag = 1.

: newly created window, or for failure.

|g, or adds to, the textual data that v/ill later be flowed into your wmdo
pO chars per character string youmay have touse several of these toge

Courn

The Keyboard Interface 159

Beyond providing the user with the same one-click access to commands
as an icon bar, using the status bar in this manner is a good way to conserve

screen space. Icon bars, status lines, ribbons, and menus all take valuable

space away from the main document window, reducing the amount of the

document that is visible to the user. The more you can put elements such as

the status bar to double use, the more room you can reserve for the docu-

ment, which is, after all, the users prime concern.

The Keyboard Interface

The keyboard interface is easy to overlook in the user-interface design pro-

cess. When you think of Windows applications, you probably think first of

drop-down menus, scroll bars, and icons. Ctrl-key combinations come way
down on the list. Nevertheless, the keyboard shortcuts and conventions used

in your application will have a big effect upon its usability.

With the exception of freehand drawing applications, which require a

mouse or other graphical input device, every aspect of every Windows appli-

cation should be available from the keyboard. Providing complete keyboard

access to your application will make it easier for notebook computer users

and others operating without a mouse, and for those users who simply prefer

to keep their hands on the keyboard.

Keyboard Navigation

The most critical element of the keyboard interface is the user's ability to

navigate through every dialog box, screen, and menu from the keyboard.

With most application-development tools, providing keyboard access to

dialog box controls or menus is as simple as adding an ampersand symbol to

the letter in the controls label or the menu item's name that, when pressed

simultaneously with the Alt key. will be used to access that item. (The speci-

fied letter will be underlined when the control or menu is displayed.) For

instance, the letter "P" would be underlined in a button named &Print, and

the button would be accessed anytime the user pressed the Alt-P key combi-

nation. Conversely, one named Print would have no underlined letter and no

way to be accessed via an Alt key combination.

Whenever possible, it's best to use the first letter of the menu item's

name or the control's caption in the Alt key combination. Of course, if

you've got buttons named Print, and Paste, and Parse, you can't use Alt-P

for all three. So when more than one control or menu item starts with the

same letter, you've got to pick other letters in the names of some o\ them,

preferably letters the user will remember easily. For instance, you might

160 IMPLEMENTING A WINDOWS INTERFACE

choose to underline the "r" in Parse, since the "r" sound is so dominant in its

name, or the "a" in Paste, so that the three buttons look like these:

j§§ Three Buttons % •«.

Print

Pajrse

Paste

Most Windows development tools automatically provide several addi-

tional kinds of keyboard-navigation support, for instance, pressing the Alt-

Spacebar combination to activate the menu bar, or pressing the Tab key to

navigate from one control to another in a dialog box. Depending on the devel-

opment tool you use, you may or may not have the ability to modify these,

such as by modifying the order in which the Tab key selects dialog box items.

Keyboard Shortcuts

Beyond providing for keyboard access to menus and control structures, you

may also want to provide shortcuts for directly accessing specific program

functions. For instance, rather than having the user first select the Edit

menu, and then the Paste item, most Windows applications that offer a Paste

function provide direct access to it via the Shift-Ins key combination. Simi-

larly, the combinations Shift-Del and Ctrl-Ins, for Cut and Copy, respec-

tively, are used in many Windows applications, as shown in the Word for

Windows menu pictured in Figure 7.12.

Keyboard shortcuts enable users familiar with your program to improve

their speed and efficiency, since they don't have to maneuver through several

levels of menus and dialog boxes.

Like icon bar options, keyboard shortcuts provide direct access to pro-

gram functions. So it is a good idea to provide them for any functions that

will be used frequently, and especially when you want to enable the user to

reissue a command using the same parameters as were used for the previous

instance of the command. For example, in most applications the user needs

to go through at least one menu layer and one dialog box to initiate a search-

and-rcplace function—which makes sense since the user needs to supply the

text to search for and the text with which it should be replaced. But there is

no reason to make the user go through the same menu and dialog box just to

replace another instance of the same search text with the same replacement

text. Instead, you should provide a shortcut key that will execute the

Replace Next function immediately.

Dialog Box Design 161

Figure 7.12
Word for Windows'

Edit menu

View Insert Format Tools

Undo Copy

Repeat Copy

Ctrl+Z

FA

Cut Shift+Del

Copy Ctrl + lns

Paste Shitt+lns

Paste Special.

Edit Select All Ctrl+NumPad 5

Find-

Replace...

Go To...

Glossary...

Links...

Object...

Savesel

Select Text

F5

Ctrl+Shitt+S

gn

Dialog Box Design

With the WYSIWYG dialog box editors that accompany most Windows
development tools, laying out the controls in a dialog box is more of a

graphic design project than a programming task. These editors generally

allow you to position and resize the dialog box, add controls anywhere

within the box, and move or resize controls to your heart's content. Thus,

there is a large subjective element to dialog box design. Programmers tend

to lay out dialog boxes according to what looks good or makes sense to them.

Nevertheless, there are some basic rules that, while not cast in stone, are

useful to follow as you design dialog boxes:

Direct the user's attention to the most important element in the dialog

box. A dialog box might have a dozen buttons or check boxes or icons, all

of which act upon the item that the user selects from a list box. In that case,

the list box is obviously the most important element in the dialog box. So

don't hide it in a corner, and don't use a drop-down list. Make the list box

big and central, so that the user will understand right away that it is the

most important element. You might also want to separate it from the other

elements with an outline or rule.

Group related elements. If your dialog box has several check boxes, radio

buttons, or edit fields, all of which concern one aspect of the program's

operation, arrange them in a group so that the user will understand right

away that they are related. Use a group box to separate them from unre-

lated elements, or leave space between them and other elements.

162 IMPLEMENTING A WINDOWS INTERFACE

Arrange elements in a sensible order. Keyboard users will want to tab

between items in the dialog box. Don't confuse them by having the cursor

jump all over the place when they hit the Tab key. Instead, move the cursor

in a progression from the upper-left control to the one at the lower right,

and then to the dialog box's OK and Cancel buttons.

Establish internal standards for dialog boxes. There may not be any PC
industry-wide established standards for the appearance of dialog boxes,

but that doesn't mean you can't establish standards for the ones you
design. As much as possible, you should come up with a standard dialog

box layout and stick with it for every dialog box you design. Always put

the OK and Cancel buttons in the same place, and always use the same
structures (lines, group boxes, and so on) to isolate related elements

and highlight key elements. You might want to model those standards

after those used by another application that your users are already

familiar with.

Using Common Dialog Boxes

The lack of standardization of dialog boxes may be easing, thanks to the

inclusion in Windows 3.1 of standard dialog boxes for opening and saving

files, printing files, and selecting fonts or colors. These are provided in the

form of a DLL called COMMDLG.DLL, which is found in the WIN-
DOWS\SYSTEM folder. Applications can utilize these dialog boxes (one of

which is shown in Figure 7.13) by calling the COMMDLG.DLL file.

Figure 7.13
COMMDLG. DLL's

dialog box for

opening files

File Name:

am
apiief.txt

const2.txt

constant. Ixl

ctlhwnd.txt

giid.txt

piopview.txt

readme.txt

winapi.txt

List Files of Type:

Text VTXT

_

Diiectoiies:

c:\vb

&c:\
fc vb

D 3d

S3 bitmaps

CD ccl

CD clip

l°~1 clipait

Diives:

ncel

Read Only

I c: stacvol dsk

Putting It All Together 163

Putting It All Together

That concludes this general discussion of Windows user-interface elements.

Chapter 8 describes the process of prototyping and testing your applications.

Then, the programming projects described in Chapters 9 through 15 will

provide hands-on examples that put these elements to use in actual appli-

cation-design projects.

CHAPTER

Prototypes,

Testing, and

Documentation

Prototyping

Testing and Debugging

Documentation

Shrink-Wrap Time

Prototyping 165

ONCE YOU'VE FINISHED DEFINING ALL THE DATA STRUCTURES. INPUT

requirements, and internal procedures for your application, and

have designed an effective user interface, the time finally comes to

start turning all that work into a finished application. However,

there are three more steps that you must complete before you're done with

the program-development process: developing a prototype, testing and

debugging, and documenting the application.

Prototyping

In the traditional world of program development, an application prototype

serves the same sort of purpose as a pilot episode for a new television series:

It gives the sponsors a chance to see how things are going to turn out before

they commit big money to it.

Developing large applications in C or Fortran or COBOL is both expen-

sive and time-consuming, so the traditional systems-development cycle calls

for the programmer to first build a nonworking or limited-function proto-

type. Often the prototype will be built using tools that allow speedier devel-

opment. On a PC, for instance, the programmer might use BASIC or Pascal

(or an enhanced slide show application such as Dan Bricklin's Demo II from

Intersolv, Inc.) to build the prototype.

When complete, the prototype is presented to the client, the manager in

charge of the project, or the eventual user of the program to solicit sugges-

tions and comments. Then the programmer modifies the prototype and pre-

sents it for review again, and so on until a final design is approved. Once that

approval has been received, the programmer starts all over again, rewriting

the application from scratch in C or COBOL or whatever language the

project is to be built in.

That sounds like an awful lot of work, and it is. But it is also a necessary

part of large programming projects in which the programmer won't be a user

of the application, and the intended user isn't a programmer. One reason for

this is, as you'll undoubtedly discover if you start writing applications for

other people to use, that most users don't know what they want from an

application until you give them what they think they want.

In other words, if you ask a group of people to describe precisely the

application they want, and then you give them exactly that application, it

won't be what they want. Instead, once the application is in front of them

they'll ask you to move this and change that and. "How can we make this

work a little better?" So it makes sense to turn out a prototype as quickly as

possible and let the users take whacks at that, rather than invest too much
time and money trying to produce a finished application before you've

obtained approval of a prototype.

166 PROTOTYPES, TESTING, AND DOCUMENTATION

Iterative Prototypes

Just as word processing forever changed the writing process—eliminating, for

most writers, multiple formal drafts and replacing them with an ongoing pro-

cess of revision—so too the Windows development tools described in this

book have changed the application-development process. Rather than having

to go through a two-stage process of first producing a prototype (or a series

of prototypes) and then producing the actual application, you can build your

application in stages, adding functionality and making changes as you go

along. Among other benefits, this allows you to get the user involved very

early on in testing code that will eventually form the final application. So

rather than build prototypes, you build iterative versions of your application.

This approach is possible because Windows reverses a key part of the tra-

ditional application-development process. Whereas in the character-based

world it made sense to start off by defining an applications internal pro-

cesses and procedures and then build up a user interface around them, in

Windows it makes sense to build your applications from the user interface

down. The user interface—windows, buttons, menus, and dialog boxes

—

becomes the framework on which you hang the code that actually puts those

interface elements to use.

Of course, you can't entirely reverse the process, because you need to

have at least an idea of the tasks that the application will perform and how it

will go about them before you can design its user interface. But you don't

need to nail either of these down entirely—instead, you can combine loose

ideas about how the application will work with a solid user-interface design,

and then go on from there.

The first iteration of a program produced in this manner might be what

appears to be a complete application, except that every button click or menu
choice results in a message box that tells the user, "This feature is not yet

implemented." As you write more and more code, those messages will be

replaced with working subroutines.

Why Do It This Way?
There are three major advantages to this user-interface-down approach to

coding applications. The first is that it gives you the greatest amount of time

to observe how users react to your application's user interface and to fine-

tune it based on those observations.

You might wonder what real benefit there is to adding a nonfunctional

menu item or button to an application in progress, but even a nonfunctional

menu item is going to jog your ideas—and those of anyone testing the appli-

cation—far more than would an entry on a "yet to be completed" list of func-

tions. As your application starts to take shape, you and those testing the

application can exchange ideas. And that communication will result in belter

solutions for implementing and integrating new features than you would

Prototyping 167

come up with on your own. In short, the design process becomes a collabora-

tion between you and the user, which ensures that the resulting program has

indeed been designed for the user.

The second big advantage to this approach is that, in an event-driven

environment such as Windows, the user interface is the hub around which

your application revolves. In the character-mode world, programmers could

build applications that forced the user to conform to a tree-structured menu
system and sequential procedures; the programmer dictated the flow of con-

trol. In contrast, in a Windows application the user dictates the flow of con-

trol, accessing different parts of the application at will by interacting with the

user interface. So you need to have the user interface in place before you can

complete the functional underpinnings.

On-the-Job Training

The final major benefit of this approach to application development is that

you needn't know how to make the application do everything that it eventu-

ally will do before you begin work on it.

Consider, for example, M.M.M., the MCI Mail Manager application

described in Chapter 15. When I started work on the M.M.M. project, I

knew that I wanted it to offer a broad range of message-handling facilities.

For instance, I wanted to be able to create new messages, answer messages,

print messages, delete messages, and forward messages. I wanted to be able

to access an off-line address book listing the names and MCI account num-

bers of frequent correspondents. I wanted the application to be able to send

and receive messages either automatically (at preset intervals) in the back-

ground while I worked with other programs, or instantly, at my command. I

also wanted to be able to sort messages by a variety of methods (name,

sender or addressee, and date) and to move messages among several differ-

ent mail folders.

The problem was, I'd never even programmed a log-on routine in Dyna-

Comm's script language, let alone a full-fledged application. 1 knew from my
perusals of the DynaComm reference manual that its script language was

capable of doing everything I wanted it to, but I didn't know how to make it

do anything. So I had a choice. I could study the manual and try to figure out

everything I would need to know how to do in advance, or I could dig right

in and start programming, implementing new functions as 1 figured out how.

Being a big believer in on-the-job training, I opted for the second approach.

I started by exploring the commands in the DynaComm script language

for creating and updating dialog boxes, which soon enabled me to put

together M.M.M.'s primary user component, a dialog box that I dubbed the

main Mailboxes screen (shown in Figure N.l).

168 PROTOTYPES, TESTING, AND DOCUMENTATION

Figure 8.1
M.M.M.'s main

Mailboxes screen

Account: Paul Bonner Sort by: None H . H . H

.

Online

>Bannar, Todd
<Jones, Robert
>Greer, Stephen
>Hitrano, Tom
<Bonner, Paul
<Peyton, Bill
<Deming, AndY
>Demmq, Andy

<Meester, Alex
>Meester, Alex
<DeVoney, Chris
<Gemmiti, Gus
<Gemmiti, Gus

Hi ! ! !

HHH
Did it work?
binary transfers
from torn raitrano re mmm
HHH
HHH Version 2 .0

HHH Version 2 .0

DYNACOHH SCRIPT
DYNACOHH SCRIPT
H.H.H.
HHH comments.
HHH comments.

<H. Qppenheimer, Ga PEN Newsletter #34

329
192

546
353B
3538
23617

12/28/90
01/02/91
04/24/91
06/10/91
06/10/91
10/14/91

Next, after studying some sample log-on scripts that accompany the

DynaComm package, I succeeded in getting the script to log onto MCI and

send my user name and password at the appropriate moment. Doing that, I

learned the value of the script language's WAIT STRING command, which

pauses script execution until a specified string is received from the remote

host. For instance, the command

WAIT STRING "user name:"

would pause script execution until MCI sent its "Please enter your user

name:" prompt, and then resume execution with the next command,

SEND $Name

to send my user name.

Next, I applied that knowledge to the task of teaching the script to recog-

nize the MCI prompt that tells you when there are messages waiting for you,

and to respond to that prompt by downloading each message into a separate

file. Of course, I needed a way to keep track of the files I was downloading,

so I had to learn about DynaComm's database-like tables feature. That, in

turn, provided me with the knowledge I needed to create the tables that

Testing and Debugging 169

would be used to store the names and MCI addresses of people in the scripts

address book, and so on.

In putting together the address book, meanwhile, I figured out how to use

DynaComm's TABLE SORT commands to keep the address book in alphabet-

ical order, a lesson I later applied to the sorting functions on the main Mail-

boxes screen. Later I tackled the more complex tasks of creating outgoing

messages and adding support for sending messages to people on other mail ser-

vices through MCTs EMS (external mail service) function, and so on.

I took some missteps along the way, and several times I had to go back

and rewrite routines when I realized that the methods I'd used initially weren't

robust enough (the log-on procedure described above is a good example

—

I later expanded it to handle various error conditions). Still, I am convinced

that tackling a real programming task from the start was the best way to

learn the DynaComm script language—and that the same would be true for

any other programming language. I doubt whether I would ever have under-

taken the project if I had been forced to completely master all the tech-

niques that I might conceivably have needed before starting. Moreover, the

lessons I learned (and the mistakes I made) in building the early functions

enabled me to make the functions I built later more robust, and suggested

many possibilities that I might otherwise have overlooked.

Testing and Debugging

Simultaneously with this iterative program-development method, you should

conduct an ongoing process of testing and debugging your application.

The first step in the testing process is to ensure that every aspect of the

application works to your own satisfaction. Once you've decided that the

application bug free, it is time to put it in the hands of other users, who are

bound to uncover more problems in five minutes than you could find in five

years of testing it yourself.

Developer Testing

The first rule of application testing is obvious: You have to test every new fea-

ture you add to your application to make sure it works as expected. So, for

example, if clicking the button labeled "Exit" is supposed to end your applica-

tion, the first test you've got to make is to ensure that it actually does so.

Expect the Unexpected
Next, you should try to trip up your application by subjecting it to unusual or

unexpected conditions. Consider the Read button on M.M.M.'s main Mail-

boxes screen (Figure 8.1). When the user clicks this button, the script is sup-

posed to react by loading the message under the selection bar in the central

170 PROTOTYPES, TESTING, AND DOCUMENTATION

list box into DynaComm's memo editor. But what happens if there are no

messages in the current mail folder when the user clicks the Read button? (It

makes no sense, of course, that the user would try to read a message when
none exists, but rest assured that eventually someone will try to do just that.)

DynaComm reacts in an unfriendly manner to instructions to edit a non-

existent file, posting a Task Error box and halting script execution—a rather

harsh reaction to an innocuous user error. So to prevent that you have to

anticipate the error and incorporate code that checks to make sure the cur-

sor is pointing to an actual message before the script attempts to process the

Read command.

Don't Assume It Ain't Broke
The third step in testing your application is to ensure that your fixes and new
additions don't foul up functions that used to work. In an iterative program-

development process you'll often find yourself tinkering with existing record

structures or modifying existing variables to use them in new ways. But in

the course of doing so, it is easy to overlook the fact that the little change

you just made completely undermines an existing routine that expects the

variable whose value you just modified to remain unmodified.

Because of this, you should perform a thorough retest of your previously

tested code every time you incorporate a new routine into your program, or

every time you modify an existing one.

Covering Every Base

As you proceed with your tests, there are some standard pitfalls you should

look out for. These problems and traps have been known to trip up even the

most accomplished Windows programmers, so it is imperative that you con-

duct these tests for every application you develop.

As you conduct these tests, don't just look for problems that crash your

application or damage data. Those are the most serious problems, of course,

but they're not the only ones you should fix before deciding that your appli-

cation is ready for prime time. Look for situations that slow down your appli-

cation, or make it less convenient to use than you anticipated. These are

problems that will directly impact the usability of your application—and they

should be solved before you decide the application is finished.

Mouse and Keyboard Operation

You should test every aspect of your application both with and without a

mouse, asking yourself these questions:

Is every feature accessible from the keyboard?

Is that access as convenient as it should be?

Testing and Debugging 171

Is there a keyboard shortcut for every menu item and every dialog box

control?

If the answer to any of these questions is no, you should go back and add bet-

ter keyboard support to your application.

Standard and 386 Enhanced Modes
You should also test your complete application in both Standard mode and

386 Enhanced mode. (Fortunately, the removal of Real mode from Windows
3.1 eliminated the need to also test in that antiquated variant of Windows.)

As a Windows user, you might be under the impression that as far as

Windows-based applications are concerned. Standard mode and 386

Enhanced mode are identical. However, as a Windows developer you'll soon

realize the falseness of that assumption. For no obvious reason, things that

work flawlessly in one mode won't work in the other. Mode-related problems

are especially likely with (but not limited to) applications that interact with

local area network software or with DOS-based software. To be safe, how-

ever, you should completely test every application you write in both modes.

Different Video Resolutions

If you always run Windows in a single video mode, it's easy to forget that

other users of your application will be utilizing other screen resolutions. Win-

dows applications are supposed to be device-independent with regard to

screen resolution, but that independence doesn't always come automatically.

The seven-point control labels that are perfectly readable in standard VGA
mode might be completely illegible in 1024x768 8514/a mode, or the beauti-

ful screen you've built by mixing bitmaps and standard user-interface con-

trols in 800x600 SVGA mode might be scrambled in 640x350 EGA mode.

And the striking color display you've built to use on your 256-color monitor

might be absolutely unreadable on a notebook PC's 16-gray shade screen.

You should actually start thinking about the different screen resolutions

under which your application may run during the application-design phase.

For instance, if there is any possibility that your application will be used on

an EGA-resolution screen, you shouldn't create a fixed-sized dialog box any

larger than 640x350 pixels. (On a VGA screen the minimum size increases to

640x480.) Otherwise, the user won't be able to see the entire dialog box.

It might not be practical to test your application with every screen mode,

but test it with as wide a variety of resolutions and color-depths as possible.

TrueType

You should also test your application with True Type enabled and disabled,

and with all but the standard fonts that accompany Windows 3.1 (Anal, Cou-

rier New, Times New Roman, Symbol, and WingDing) disabled. (Hherwise,

you might discover that, without your even being aware of it, your application

172 PROTOTYPES, TESTING, AND DOCUMENTATION

is relying on TrueType's presence, and that the text displays that look so good

with TrueType's scalable fonts look terrible on a system in which TrueType

has been disabled, or on which the specified font doesn't exist.

Similarly, if you're using Adobe Type Manager to provide scalable Post-

Script fonts for your screen display, test the application with ATM disabled.

Network Operation

If you developed your application on a system that is connected to a local

area network, be sure to test it on a stand-alone machine. Or, if you've devel-

oped it on a non-networked PC, but expect that it will be used on a network,

be sure to test it on the network—even if your application won't be interact-

ing directly with the network.

Low Memory Conditions

If you are working on a fast 386 or 486 with lots of RAM, it is easy to forget

that many users are still using less powerful machines with just 1 or 2 mega-

bytes of RAM. On those machines, Windows is constantly straining to fit

everything it can into memory. Low memory conditions present a much
harsher environment for Windows applications, and thus you should use

them to test the robustness of your application. What happens when you try

to run your application when there is only 100k of free RAM? Does it die?

Does it slow to a crawl? If so, then you should get back to work and try to

isolate the problem.

Low System-Resource Conditions

System-resource memory is a block of RAM that Windows devotes to keep-

ing track of windows, menus, icons, and every other distinct element of each

application that is running. In Windows 3.0, it was easy to run low on system

resources, a condition that led to many an application crash.

Windows 3.1 is, thankfully, far better at managing system resources than

its predecessor—partly because it devotes twice the RAM (128k versus 64k)

to the task. Nevertheless, it is not impossible to run low on system resources

even in Windows 3.1.

Thus, it is important that you test your application in situations in which

system-resource memory is very limited—such as those in which Program

Manager's About box reports less than 20 percent free system resources.

The easiest way to do so is to use the program STRESS.EXE from the Win-

dows Software Developer's Kit to create a low system-resource situation.

(STRESS.EXE is also useful for its ability to simulate other situations that

can trip up an application, including low memory conditions and low disk-

space conditions.)

If you don't have access to the SDK, however, you can create the same

situation by opening up several applications that you know are big consum-

ers of system-resource memory Any application that sports lots of icons is a

Testing and Debugging 173

good candidate here, but you can test an application's resource appetite by

checking the memory-usage report on the Program Managers About box

before and after loading the application. Also, Program Manager itself is a

big user of system resources, because every program group and every pro-

gram item consumes a chunk of that memory. So another way to cause a pre-

cipitous drop in system-resource memory is to create several program

groups, each containing dozens of program items.

Running in the Background
If your application engages in any background processes (processes that

launch or execute automatically without user interaction), you should test

it running in the background both as a window covered by another applica-

tion's window and as a minimized icon. Your goal here is to ensure that

your application runs correctly in both states and that it doesn't interfere

with or cause a serious performance drain on other applications running in

the foreground.

Different Windows Shells

Dozens of commercial Windows shells are available. (These applications

replace Program Manager and shut down Windows when they are shut

down.) In addition, undoubtedly hundreds more custom shells are in use at

various corporate sites. So it is unrealistic to expect that you can test your

application with each of them. However, you should ensure that it isn't

dependent on Program Manager (or Norton Desktop for Windows or what-

ever other shell you use) by evaluating its performance with at least a couple

of other shell programs.

Different Drive/Directory Combinations

Be sure to test the ability of your application to run from a different drive

and a different path than those in which you developed it. Your application

should not be dependent on running from a specific drive or directory, and

shouldn't include any drive- or directory-specific references. Otherwise, you

might find that the application that always runs flawlessly from your

C:\DEV\BIN\MYAPP directory doesn't work at all from someone else's

E:\UTILSdirectory.

Nevertheless, it is often convenient (if not especially wise) to include

directory-specific references early on in the development process, before all

the routines necessary for the application to automatically locate its direc-

tory are in place. Unfortunately, it is easy to forget to remove these refer-

ences later—a problem you won't be aware of until you get the first angry

user complaint. The best way to ensure that these references don't exist in

your finished application is to run your application from a different drive and

a different directory than the one in which you wrote it.

174 PROTOTYPES, TESTING, AND DOCUMENTATION

When doing this testing, be sure to move your program files to the new
directory for testing (after backing them up), rather than simply copying

them there. Otherwise, your application might appear to pass the drive/direc-

tory independence test, when it is actually still using the original files in the

original subdirectory.

User Testing

There are two reasons to give your application to the people who will actually

end up using it as early as possible in the development process. The first is

that users will uncover bugs you never dreamed of. They'll try to open nonex-

istent files, and click buttons when there no earthly reason for doing so, and

try to merge incompatible data, and otherwise test your application's every

stitch and seam (commercial-application developers call this beta testing).

The other reason is that doing so might produce an application that is

not only more bug-free than you could produce alone, but also richer and

more valuable. The key to collecting this double benefit is to piggyback a lit-

tle usability testing onto the bug-catching and function-testing process.

In practice, you'll want to be selective about which users you give the

application to for testing. You don't want testers who are going to be so dis-

couraged over bugs in early versions that they get turned off to the applica-

tion as a whole. So you should select users who are enthusiastic about the

project and who you consider hardy enough to survive a few crashes with

their good humor intact.

Then watch them work with your application. Look to see where they

hesitate and where they are confused, and ask them why. What did they

expect the application to do at that point? What would make more sense

—

what would be a better way to have it work? The user won't always know
how to fix the problem, but if nothing else he or she has helped you to iden-

tify a problem you might never have discovered on your own.

Next, find out the user's general impressions of the application. What
does he or she like about it? What should be changed? What other things

should it do?

You should try to start this usability testing process as early as possible

in the development cycle. Of course, before you can do this kind of testing

you have to have an application that is at least partially functional, but there

is no point in waiting until the application is complete before you start.

Doing it early allows you to incorporate both users' suggestions and any

resulting ideas of your own into the final application. The end result is an

application that pleases everyone involved.

Documentation 175

Documentation

Documentation is a necessary evil. How many times have you heard people

say, "I never read documentation"? They might even believe it, but just try

giving them an application without any documentation. Can you hear them

screaming?

The fact is that even the most simple and intuitive application requires

at least a modicum of documentation. For your homegrown applications,

there is no need to produce the 20-pound monsters that major software com-

panies seem to specialize in, but if anyone else but yourself is going to be

using the application, you should provide documentation for at least the fol-

lowing three general areas.

Installation

The documentation should specify the files that have to be installed to use

your application. Do they need to be on the DOS path? What changes, if

any, does your application make to WIN.INI, AUTOEXEC.BAT, or CON-
FIG.SYS? What files, if any, does your application install in the WINDOWS
directory?

Basic Operations

You should provide an overview of the general purpose of the application

and detailed instructions on the use of each application screen and dialog

box, including explanations of every menu item, button, list box, and other

control.

The documentation should also briefly discuss any assumptions you're

making about the skill level or knowledge the user has coming into the appli-

cation. If, for example, you've built an application using Excels macro lan-

guage that expects the user to have a basic knowledge of spreadsheet

operations, your documentation should at least tell less experienced users

what chapters in the Excel documentation they should review in order to

acquire that knowledge. (If you want to get more ambitious, you could

include a tutorial on spreadsheet basics in your documentation.)

Troubleshooting

The documentation should also identify the most likely areas in which

problems might arise during operation, and suggest solutions to each.

These are going to vary considerably from application to application. In a

communications application, for instance, they might include modem- or

terminal-settings problems, or incorrect network sign-on data, whereas in a

WordBASIC form-letter application they might include incompatible data-

file types or missing files.

176 PROTOTYPES, TESTING, AND DOCUMENTATION

On-Line Help

In a Windows application, on-line help can be even more important than

written documentation, so it should be a part of any application that is des-

tined for widespread use.

Fortunately, Windows 3.1 provides a superb Help system, which is avail-

able to any Windows application. Unfortunately, developing HLP-format

files for use with the Windows Help engine can be a nightmarish proposition.

To begin with, you need a copy of Word for Windows or another Windows
application capable of producing RTF (Rich Text Format) files. Then you

need a copy of the Windows Help compiler, which turns RTF into HLP files.

The Help compiler is part of the Windows SDK, and is also included with

Turbo Pascal for Windows, the Visual BASIC Professional Toolkit, and

many other Windows development tools. Finally, you need a lot of time and

patience to build the complex Word for Windows RTF file from which the

Help compiler will build the HLP file.

However, there is a better way to create both written and on-line docu-

mentation for your applications. Doc-To-Help, from Wextech Systems, will

take plain text documents in Word for Windows and simultaneously create

formatted manuals and Windows Help files. So you need only create one file

in Word for Windows, and Doc-To-Help will do the rest—generating both a

standard Windows on-line help system and an indexed and cross-referenced

paper manual.

Doc-To-Help is available for $249 from Wextech Systems, Inc., 60 East

42nd Street, Suite 1733, New York, NY, 10165; (212) 949-9595.

Shrink-Wrap Time

Once the ink dries on the documentation, it's time to break out the shrink-

wrap machine and pronounce your application ready to go. You've gone

through a long process of defining the application, selecting a development

tool, designing a user interface, coding the functional underpinnings, build-

ing prototypes, testing and debugging, and finally documenting the applica-

tion. And, to tell the truth, that's probably not the easiest way to develop an

application. You can almost certainly produce a result—of some kind—faster

if you just go into a dark room by yourself for a while. However, though you

will emerge with a "finished" product that way, it won't be as strong or as

usable as one in which you've involved the user from the beginning.

Enough theory—let's party. This concludes the second section of the

book. The chapters in the final section present hands-on examples that put

the principles described here to work in real programming projects, with

step-by-step explanations of the decisions made at every stage of the process.

Bon appetit.

Customizing Applications—The Ultimate Notepad

Presenting Data—Who's Who at PC/Computing?

Automating Existing Applications—AutoPrint for Windows

Making Use of Libraries—Recycler

Linking Applications through DDE—Windows Broker

Enhancing Applications—DocMan

Communicating with Host Systems—M. M. M.: the MCI Mail Manager

The Projects

CHAPTER

Customizing

Applications—The

Ultimate Notepad

The Birth of a Notion

Exploring

NOTEPAD.WDF

Exploring

NOTEPAD.WBT

Wrapping Up The
Ultimate Notepad

The Birth of a Notion 181

LET'S
START OFF THE PROJECTS SECTION OF THE BOOK WITH AN EASY

one: an example of how Windows batch languages can be used to

customize and enhance other Windows applications. For this

project, dubbed The Ultimate Notepad, I used Wilson Window-
Ware s WinBatch to add a series of new functions to the Windows 3.1 Note-

pad accessory.

The Birth of a Notion

The origin of this project was simple. I wanted to make Notepad more useful.

It's awfully convenient having a small, fast text editor always available,

the way the Notepad accessory is in Windows. The Windows 3.1 version of

Notepad can edit any ASCII file up to about 50k in length, and because it is

identified as the default editor for TXT and INI files, it is automatically

launched whenever you double-click on a file with either of those extensions

in File Manager.

Unfortunately, convenience is about all Notepad has going for it. It is

missing too many features that are de riguenr for a full-featured text proces-

sor. It doesn't allow you to merge existing files into the current file, to edit

more than one file at a time, or to save a selected part of the current file to a

new file. It offers a search capability, but not a replace function. It can't

count the number of words in a file, and it refuses to automatically indent a

new line of text to the same point as the previous line. It doesn't even pro-

vide shortcuts for converting a selected block of text to upper- or lowercase.

All of which combine to make Notepad a highly disappointing text processor.

There are, of course, other better-endowed text editors available for

Windows if you've given up on Notepad, but they're not perfect either. Few
of them are as quick to load or as fast at basic operations as Notepad is—and

you have to pay for them (Notepad is free).

It is also possible to edit plain ASCII files in Windows Write or another

full-featured word processing application, but you have to go through a file

import routine (albeit a brief one with Write), and you're dealing with a pro-

gram much less limber than Notepad. So a word processor really doesn't do

the trick either.

Besides, I like Notepad. Everything it does, it does very well. It simply

doesn't do enough. So I decided to try and change that.

Selecting the Development Tool

This project was somewhat atypical of most program development efforts, in

that the capabilities of the development tool provided much of the original

impetus for the project. In most cases, a development project is need-driven,

182 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

and the selection of a development tool is a matter of finding the tool that

best suits the need.

In this case, however, things were turned upside down. Although I cer-

tainly needed a better text editor than the standard Notepad, I wasn't har-

boring any hope that I could fashion an improved model out of Notepad

itself. As far as I knew then, Windows applications that didn't include a

macro language were not customizable. So I made do, sometimes working

with Notepad and grumbling about its inadequacies, and sometimes using

other text editors.

But then I was introduced to WinBatch, which offers the ability to custom-

ize other Windows applications in two ways: by providing hotkey access to

application-specific macros written in the batch language, and by allowing you

to attach new menu items for those macros to the application's Control menu.

I was looking around for a way to put those capabilities to the test when
it occurred to me that perhaps here was a solution to Notepad's inadequacies.

It hardly seemed a fair test, though. Batch languages are best for knitting

together the advanced capabilities of other applications, and Notepad is so

limited that I doubted there was enough material to work with. Still, if there

was a way to enhance Notepad, WinBatch was it, so I decided to give it a try.

Setting Objectives

Having decided that this project was a good way to test the limits of what is

possible with a batch language, I outlined a tough set of objectives. I wanted

to bring Notepad up to par by adding to it all the basic text-editor features it

lacked:

A customizable mask for the File Open dialog box

The ability to edit more than one file at once

A merge file facility

A command to save selected text

A Replace command to accompany Notepad's search facility

Automatic indentation

The ability to convert selected text to upper- or lowercase

Word and character counting

In truth, I thought this list was pretty unrealistic. I didn't really expect

the WinBatch-Notepad combination to prove capable of all those functions.

In fact, I probably would have been satisfied if I had succeeded in producing

even half of them. Still, I thought the project was worth the effort—if only to

see which ones were possible.

Exploring NOTEPAD. WDF 183

To my surprise, the WinBatch-Notepad duo went eight for eight at the

plate. After only a few days' effort, I was able to add working versions of

each of these functions to Notepad. Some of them—most notably the word

count function—are a little slower than I would like, but not so slow as to

render them unusable.

Let's look at how The Ultimate Notepad was built.

Exploring NOTEPAD.WDF
The thing that makes WinBatch so useful for customizing other applications

is that you can create a series of batch programs or macros specific to the

other application, and then identify them as such to WinBatch using a special

definition file. This file contains the name of the menu item to be added to

the Control menu of the application, a shortcut key for that item, and the

name of the macro to be executed when that menu item or shortcut key is

selected.

WinBatch actually consists of two executable files: WINMACRO.EXE
and WINBATCH.EXE. WINMACRO.EXE has the task of adding the

items to the Control menus of other applications. It also monitors those

applications to determine if one of the custom menu items or keyboard short-

cuts has been selected. If so, it launches WINBATCH.EXE and passes it the

name of the selected macro. WINBATCH.EXE is the WinBatch language

interpreter, which carries out the macro's instructions.

When you launch WinMacro it simply appears as an icon at the bottom

of your screen (shown below) and waits for you to launch another applica-

tion. When you do so, it checks to see whether a custom menu-definition file

exists for that application. If so, WinMacro modifies the application's Con-

trol menu by adding to it the items specified in the definition file.

The definition files used by WinMacro have the same name as the execut-

able file they are associated with, but they have the extension .WDF. Thus,

the WinMacro definition file for NOTEPAD.EXE is NOTEPAD.WDF.
To effect the modifications that I wanted to make to Notepad. 1 created

the following NOTEPAD.WDF file:

;NOTEPAD.WDF

Open File... \
A 0:WINBATCH NOTEPAD. WBT OpenerSub

Open Another... \
A N:WINBATCH NOTEPAD. WBT OpentwoSub

Insert File... \
A I:WINBATCH NOTEPAD. WBT MergeSub

184 CUSTOMIZING APPLICATIONS— THE ULTIMATE NOTEPAD

Save Sel ecti on . . .

Edi ti ng

Search and Replace

Auto Indent

Convert to UPPER

Convert to lower

Word Count

\
A S:WINBATCH NOTEPAD. WBT SaveselSub

rWINBATCH NOTEPAD. WBT DummySub

\
A R:WINBATCH NOTEPAD. WBT ReplaceSub

\
A A:WINBATCH NOTEPAD. WBT AutoIndentSub

\
A U:WINBATCH NOTEPAD. WBT CupperSub

\
A
L: WINBATCH NOTEPAD. WBT ClowerSub

\
A C:WINBATCH NOTEPAD. WBT FastcountSub

This file produces the menu shown in Figure 9.1.

Figure 9.1
The customized

Control menu for

Notepad

1
Notepad - (Untitled)

Restore Open File...

Open Another...

"0

Insert File... *l

Minimize Save Selection... ~S

Maximize —Editing

—

Search and Replace

Auto Indent

Convert to UPPER

... *R

~A

~U

Close AK+F4

Switch To.. Ctrl+Esc

Convert to lower *L

Word Count *C

The first line in the file is a comment (as are all program lines preceded

by a semicolon in the WinBatch language) that identifies the name of the

file. The remaining ten lines specify the custom items that WINMACRO-
.EXE is to add to Notepad's Control menu.

The first part of each menu item definition contains the text of the new
menu item. For instance, the first new menu item will read "Open File...".

The backslash that follows this text is used to separate the menu item text

from the hotkey for this item (which also appears on the menu). In the case

of the first menu item, the hotkey is listed as a O, which means Ctrl-O. (The

caret, A
, is used to represent the Ctrl key throughout the WinBatch lan-

guage. Similarly, the plus sign (+) represents the Shift key, and the exclama-

tion point (!) represents the Alt key).

Finally, the text following the colon after the shortcut key identifies the

application that should be launched when the menu item is selected and the

parameters that are to be passed to that application. In the case of the first

menu item, the application to be launched is WINBATCH, the first par-

ameter is NOTEPAD.WBT (the name of the file that contains all the cus-

tom macros for this project) and the second parameter is OpenerSub, the

name of the subroutine in that file that is associated with the first menu item.

The only menu item that doesn't follow this pattern is the one for the

separator bar, which is labeled " Editing ". There is no hotkey for this

item because the user is not supposed to select it

—

its purpose is merely to

Exploring NOTEPAD. WBT 185

separate the group of menu items. However, WinMacro does require you to

specify an action for this item, so I instructed it to perform the subroutine

labeled "DummySub" in the NOTEPAD.WBT file, which consists of a single

command, EXIT, that terminates the batch program. In other words, the

macro launches and exits immediately, without carrying out any actions.

Next, let's look at the NOTEPAD.WBT file itself.

Exploring NOTEPAD.WBT
NOTEPAD.WBT is a single batch program that contains ten individual mac-

ros, corresponding to the ten menu items I added to Notepad's Control

menu. These appear in NOTEPAD.WBT as individual subroutines.

Introductory Lines

NOTEPAD.WBT begins with a comment line containing the name of the

file, followed by eight lines of code that are executed no matter which menu
item is selected from the customized Control menu in Notepad.

;NOTEPAD.WBT

HomeDir=DIRHOME()

DIRCHANGE(HomeDir)

EnterString=NUM2CHAR(13)

TabString=NUM2CHAR(9)

CRLFString=STRCAT(EnterString,NUM2CHAR(10))

Null-""

01dClip=CLIPGET()

GOTO %Paraml%

These lines establish a series of variables and directory pointers that are

used by most of the macros in NOTEPAD.WBT. First, the DIRHOMEQ
function is used to set the variable HomeDir to point to the directory that

contains WinBatch's executable files. Then the next line. DIRCHANGE-
(HomeDir) makes HomeDir the current directory. If you've installed WIN-
BATCH.EXE and WINMACRO.EXE in your WINDOWS directory

alongside NOTEPAD.EXE, this command ensures that any File Open or

File Save dialog boxes used by the macro will point to that directory.

The next two lines use the WinBatch NUM2CHAR function to create

variables containing special key sequences, such as a horizontal tab character

(TabString=NUM2CHAR(y)), and a carriage return character (Enter-

String=NUM2CHAR(13)). Then the next line combines NUM2CHAR with

WinBatch's STRCAT command (which joins two strings) to create a variable

named CRLFString that contains the carriage return-line feed combination.

186 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

Finally, the introductory lines assign an empty string to the variable

called Null, and assign the current contents of the Clipboard to the variable

OldClip. This is here because many of the routines in NOTEPAD.WBT
change the contents of the Clipboard. Storing the Clipboard's original con-

tents here in the variable OldClip allows the macro to restore the Clipboard

before exiting.

The Subroutine Macros

The WinBatch GOTO command is used next, to jump to the subroutine

specified on NOTEPAD.WBT's command line (OpenerSub in the case of

the first menu item, FastcountSub in the case of the last item, and so on).

The OpenerSub Routine

OpenerSub is used to supply additional choices for the mask that Notepad

uses to display files in its File Open dialog box. When you select the File

Open command in Notepad, you're normally presented with a list of all the

text files in the current directory (*.TXT), and you can use the File Type

combo box to select instead a list of all files in the directory (*.*). But what if

you just want to select from all the INI files in the directory, or all the

README files? Normally, you'd have to type the file specification you

wanted into the File Name edit box. But with The Ultimate Notepad, you

can pick the file mask you want to use from a customizable list of eight, as

shown in Figure 9.2.

Figure 9.2
The File Opener

dialog box

File Opener

O MNI

O *.WDF

O Mst O READ*.*

O *.WBT O *.DLG

<§>;*.f><t;

O *.ASC

OK I
CANCEL

You can access this dialog box by selecting the Open File... item on Note-

pad's Control menu, or by pressing the hotkey Ctrl-O. Then, once you've

made your selection, the macro opens Notepad's File Open dialog box and

automatically types the file mask that you've specified into the File Name
edit field.

Exploring NOTEPAD. WBT 187

The code for this routine looks like this:

:OpenerSub

Selectl = "*.TXT"

Select2="*.INI"

*.lst"
'READ*.*"

'*.ASC"

"MASK.DL6")

GOTO Oops

Sel ect3='

Select4='

Select5='

Select6="*.WDF"

Select7="*.WBT"

Select8="*.DLG"

IF FILEEXIST(STRCAT(HOMEDIR, "MASK.DLG")
)== ©FALSE THEI

GOTO OpenerWrite

:OpenerDraw

DIAL0GB0X("File Opener"

FileString=Select%A%

SENDKEY("!FO")

C=WINGETACTIVE()

IF (C=="Notepad") THEN

: PutString

CLIPPUTC Fi

1

eStri ng)

SENDKEYC' + IINSERTMENTERI")

GOTO Ender

:0ops

W=WINGETACTIVE()

IF W=="0pen" THEN GOTO PutString

IF W=="Notepad" THEN GOTO Oops

GOTO Ender

The OpenerSub code starts, like every routine in this file, with a label,

which is indicated by a single word preceded by a colon. :OpenerSub in this

case. This identifies the routine to WinBatch. allowing you to jump to it with

a GOTO command.
The next eight lines identify the eight file masks the dialog box will offer

and assign them to variables Selectl through SelectH. Then the next line

checks to see whether a file called MASK.DLG exists in the directory

pointed to by the variable HomeDir.

To create a custom dialog box in WinBatch, you store instructions for

drawing the box in a special template file. NOTEPAD.WBT creates these

template files automatically the first time they are needed. So if MASK.DLG
is not found in HomeDir, the macro jumps to the OpenerWrite routine,

which draws the box and then jumps back to the next line in the program,

labeled "OpenerDraw." (OpenerWrite and two other dialog box creation

routines are discussed at the end of this chapter.)

188 CUSTOMIZING APPLICATIONS—-THE ULTIMATE NOTEPAD

Note that if, after having run this routine once, you modify the list of file

masks it offers, you'll need to delete MASK.DLG from your WINDOWS
directory in order to force the macro to recreate the dialog box using the new
file masks the next time it is run.

WinBatch's program flow-control commands are limited to a GOTO
statement and an IF-THEN statement, so it doesn't support subroutines, per

se. However, you can create a section of code that will act like a subroutine

by using a GOTO command to jump to the code segment's label, and then at

the end of the routine jump back to another label on the line following the

original GOTO command, as is done here with the OpenerDraw label.

The next line in the routine uses the DIALOGBOX command to draw

the dialog box described in MASK.DLG and title it "File Opener". This

command pauses script execution until the user makes a selection from the

dialog box. The choice made by the user will be assigned to the variable A,

since that is the variable used to define the selection in the dialog box tem-

plate. So the next line takes advantage of WinBatch's variable-substitution

command to assign the contents of the selected file mask to the variable

FileString. (In WinBatch, anytime you place the name of a variable between

percentage signs, the contents of that variable are inserted into its place at

runtime. So if A=5, then Select%A% will be interpreted as Select5.)

Next the macro uses the SENDKEY command to send the standard File

Open command (Alt-FO) to Notepad, and then the WINGETACTIVE(

)

command to assign the title of the active window to the variable C. If the

File Open dialog box is the active window, C will contain "Open". However,

if the text in the current file has not yet been saved, Notepad will have

posted a message box titled "Notepad", which informs you of that and offers

you the chance either to cancel the File Open operation or to proceed with

or without saving your text. So if the title of the current window is "Note-

pad", the macro knows that the File Open dialog box is not active, and

jumps to the Oops subroutine to await the user's response to the error mes-

sage from Notepad.

Meanwhile, if the File Open box is active, execution continues at the line

following the label :PutString. The macro places the file mask to be used

onto the Clipboard using the CLIPPUT command, and then sends the key-

strokes Shift-Ins Enter to Notepad's File Open dialog box. These commands
paste the contents of the Clipboard (the selected file mask) into the File

Name edit box, and force Notepad to update its file listing to display only

files matching the specified file mask, just as if you had typed the mask your-

self and then pressed the Enter key.

Having completed its task, the macro jumps to a routine called Ender,

which is used to terminate each of the routines in NOTEPAD.WBT Ender

restores the original contents of the Clipboard before exiting.

The remaining commands in OpenerSub—those that follow the :Oops

label—are performed only if Notepad responded to the original !FO

Exploring NOTEPAD. WBT 189

command with a message box warning that the current file has not been

saved, as shown in Figure 9.3. The Oops subroutine is designed to pause

script execution until you indicate whether or not you want to save the cur-

rent file, or until you select the Cancel button. So it keeps checking the title

of the active window. If the title is "Open", then you have evidently already

signaled your intention to either save or not save the file, so control jumps

back to the PutString routine and the script picks up where it left off.

Figure 9.3
Notepad's warning

message that the

current file has not

been saved

Notepad

The text in the C:\WINDOWS\SEL.TXT file has
changed.

Do you want to save the changes?

Yes No Cancel

Meanwhile, if the current window title is "Notepad", then you haven't

responded to the dialog box yet, so it jumps back to the beginning of the

Oops routine and checks the title again. If neither of those conditions is true,

then you must have selected the Cancel button (in which case the title would

be "Notepad — filename"', where filename is the name of the current file).

That concludes the OpenerSub routine.

The OpenTwoSub Routine

The next target on my list of goals for improving Notepad was the ability to

open more than one file at a time and copy text back and forth between files.

Unfortunately, Notepad is strictly limited to working with a single file at a

time, and no amount of clever batch file coding is going to change that. Nev-

ertheless, I achieved a degree of success with a simple seven-line subroutine

that takes advantage of the fact that you can run multiple copies of Notepad

at once to create a close approximation of a two-windowed Notepad. This

routine simply opens a second instance of Notepad and stacks the two Note-

pad windows so that they fill the screen (as shown in Figure c).4). allowing

easy copying of data back and forth between files.

The code for OpenTwoSub looks like this:

:OpenTwoSub

ThisWin=WINGETACTIVE()

WINSHOW(ThisWin)

WINPLACEC0.0. 1000.500.Thi sWin)

RUNCNOTEPAD. EXE". Null)

190 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

ThatWin=WINGETACTIVE()

WI NPLACEC0 ,500, 1000, 1000, Tha tWin)

GOTO Ender

The first command in OpenTwoSub uses WINGETACTIVEQ to

obtain the title of the active Notepad window. Next, the WINSHOW com-

mand is applied to the current Notepad window. I used WINSHOW here

because it automatically restores maximized windows to their normal size,

allowing the next command, WINPLACE, to change the window's size and

location. Otherwise, if the window is in a maximized state, WINPLACE will

have no effect on it. Then the macro issues the WINPLACE command to

resize the current window so that it starts at the top-left corner of the screen

and extends all the way across the screen and halfway down it.

Figure 9.4
OpenTwoSub

stacks a pair of

Notepad windows 2.04 Changes
Fixed bug introduced in 2.03 that prevented changes to

the System file specification from being saved.

2 . 05 B!ii;- :

tf." :(;::;!

kdded Initial screen to amaze and amuse durinc
loading process.

Mow and then I make changes to the

Notepad - (Untitled)

File Edit Search Help

BBSu

I

The WINPLACE command views the screen as composed of 1,000 hori-

zontal units and 1 ,000 vertical units, and accepts two pairs of coordinates:

one for the upper-left corner and the other for the lower-right corner (in X,Y

order). So the command WINPLACE 0, 0, 1000, 500, tells WinBatch to

arrange the window starting at the upper-left corner of the screen (point 0, 0)

and extending all the way across (1,000 units) and halfway down (500 units).

Exploring NOTEPAD. WBT 191

Next the script runs a second copy of Notepad (passing it a Null parame-

ter instead of a file name), uses WINGETACTIVE() to obtain its title, and

then WINPLACE to size it so that it fills the bottom half of the screen.

Finally, the macro jumps to the Ender routine.

The MergeSub Routine

The next routine, MergeSub, provides the ability to merge other text files

into the current file. It is called when you select the Insert File... item from

Notepad's Control menu.

My experience with this routine illustrates one of the biggest time-

wasting traps you can encounter as a programmer. I had decided that the

way to implement this routine was to use WinBatch's FILEREAD command
to read the insertion file line by line, copying each line to the Clipboard and

then pasting it into the file. It was such an obvious solution that I never

looked for another one—even though no matter how much I tweaked it, the

routine was too slow to be useful. The fastest version I could come up with

still took nearly two seconds per kilobyte of data in the insertion file. So it

would take over 36 seconds to insert a 20k file into the current Notepad doc-

ument—pretty awful performance in my opinion.

Nevertheless, it seemed so evident that this was the correct method that

I wasted countless hours trying to squeeze a little more performance out of

it, rather than looking around for a new method. In fact, I got to the point of

describing that method for this chapter when it suddenly hit me, "That's

dumb. Why don't I just run another copy of Notepad, load the file there and

copy it to the Clipboard, then shut down the new Notepad and paste the

Clipboard contents into the original Notepad?"

Bingo. The new method works like a dream. It will insert a file of any

size into your current Notepad document in about four seconds flat. (Of

course, the total size of your current file and the file being inserted cannot

exceed Notepad's 50k limit.)

The moral of this story is that sometimes, after having spent hour upon
hour trying to patch and tweak a section of code to make it do what you

want it to, the best thing you can do is tear it up and start off fresh with a

blank sheet of paper. If the obvious solution doesn't work, don't kill yourself

trying to make it work. Instead, look for another "obvious" solution.

The new and improved code for MergeSub looks like this:

:MergeSub

A = "*.TXT"

IF FI LEEXIST(STRCAT(HOMEDIR. "INSERT. DLG"))== ©FALSE THEN

GOTO InsertWrite

: InsertDraw

DIALOGBOXC Insert File" ."Insert. Dig")

EXCLUSIVE(@ON)

192 CUSTOMIZING APPLICATIONS— THE ULTIMATE NOTEPAD

IGNOREINPUT(@True)

RUN("NOTEPAD.EXE",A)

SENDKEYC'IEA")

SENDKEY(" A |INSERT)")

SENDKEYC "
! FX"

)

SENDKEYC "+{ INSERT} "

)

IGNOREINPUT(@False)

EXCLUSIVE(@OFF)

GOTO Ender

The routine begins by assigning the value *.TXT to the variable A,

which will be used to set the file mask used by the dialog box from which

you'll select the file you want to insert. Next it determines whether a tem-

plate file for that dialog box (INSERT.DLG) already exists, and if not, it

jumps to the InsertWrite routine to create it. It then draws that dialog box

(shown in Figure 9.5), and from it obtains the name of the insertion file.

Figure 9.5
The Insert File

dialog box

Insert File

Select file to insert:

c:\windows

sel.txt

select.txt

setup.txt

syswitch.txt

ultnotwc.txt

wbt.txt

[docs]

msapps

CANCEL
|

WinBatch automatically creates the OK and CANCEL buttons on the

dialog box, and cancels execution of the script if you select the CANCEL
button, so there is no need to write code to process the result of the dialog

box. Instead, the variable A is automatically set to whatever file was selected

in the dialog box's list box.

Next, the macro sets two switches that affect the operation of WinBatch:

EXCLUSIVE and IGNOREINPUT. By turning EXCLUSIVE on, the

macro instructs WinBatch not to yield control to other Windows applica-

tions. This maximizes the performance of the macro, but can cause problems

Exploring NOTEPAD. WBT 193

with background operations, particularly network or communications tasks.

(So you may want to remove this line if the macro appears to interfere with

background tasks on your system.)

The second switch, IGNOREINPUT(@TRUE), tells WinBatch to

ignore keyboard and mouse input until it encounters an IGNOREINPUT-
(@FALSE) command. This command is necessary in the macro because Win-

Batch pastes the contents of the insertion file at whatever insertion point is

active. So if, in the middle of this macro's operation, you moved the cursor in

Notepad or activated another application, the inserted text wouldn't end up

where you wanted it. IGNOREINPUT prevents this by freezing the cursor

until the macro is done.

You should take extreme care in how you use the IGNOREINPUT
switch. Once it has been activated, there is no way to interrupt the macro, so

if you have made a coding mistake that sends your macro into an endless

loop, there is no way to stop it except by rebooting your PC. The moral is

that you shouldn't use this switch until you are certain that the rest of your

code is bulletproof.

The next line of the routine executes a new copy of Notepad, passing it

the name of the insertion file as a command-line parameter (thus automati-

cally loading the insertion file into the new copy of Notepad). Then it sends

the new copy of Notepad the command Alt-EA (Edit, Select All) to select

the entire text of the insertion file, and copies it to the Clipboard by sending

the Ctrl-Ins command. Then it quits the new copy of Notepad. This causes

Windows to reactivate the last active program, which was the original copy

of Notepad, to which the macro sends the Shift-Ins (Paste) command, past-

ing the contents of the insertion file into the current Notepad file.

The macro concludes by turning off the IGNOREINPUT and EXCLU-
SIVE switches, and then jumping to the Ender routine. All in all it is a sim-

ple and fast solution to the problem of inserting a file in Notepad, and it

illustrates an important point—in a multitasking environment such as Win-

dows, there is no need to do everything in program code. Let another pro-

gram (or, in this case, another copy of the same program) do the work for

you, if you can.

The SaveselSub Routine

The next routine, SaveselSub, is used to save a block of text from the current

file to disk as a separate file. To use it, you would simply highlight the text

you want to save, and then press Ctrl-S or pick the Save Selection item from

the Notepad Control menu.

:SaveselSub

Continue-1

CLIPPUKNul 1)

Default-STRCAT(DIRGET(). "SELECT .TXT"

)

SENDKEYCM INSERT!"

194 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

Default)

%DefaulU already

a=CLIPGET()

IF a==Null THEN GOTO Empty

:CheckFi 1

e

Defaul t=ASKLINE("Save Sel ection" , "Save to filename:

Exists=FILEEXIST(Default)

IF Exists==l THEN Continue = ASKYESN0("Fi 1 e Already Exists"

exists. Okay to overwrite?")

IF Continue==0 THEN GOTO CheckFile

hFP=FILEOPEN(Default. "Write")

FILEWRITE(hFP.a)

FILECLOSE(hFP)

GOTO Ender

: Empty

MESSAGE("Save Sel ection" , "You must select text first!")

GOTO Ender

The SaveselSub routine begins by initializing the variable Continue with

a value of 1. Then it clears the Clipboard and initializes the variable Default,

used as a default file name for the new file, by concatenating the name of the

current directory and SELECT.TXT using the STRCAT command. Next it

sends a Ctrl-Ins command to copy the current selection to the Clipboard,

and then checks to see if the Clipboard is empty. If so, it jumps to the Empty
subroutine.

Otherwise, it uses the ASKLINE command, which prompts the user for

a single line of input, to determine a name for the file in which the selected

text should be stored, suggesting the file name contained in the variable

Default as a default possibility, and assigning the user's response back to the

variable Default. The ASKLINE prompt is shown in Figure 9.6.

Figure 9.6
The prompt used to

obtain a file name

for the selected text

Save Selection m
Save to filename:

I
|C:\WIND0WS\SELECT.7XTH

Qk Cancel

Next, the routine determines whether the file specified by Default

already exists. If so, it warns the user and asks whether it should overwrite

the existing file, as shown in Figure 9.7.

If the user indicates that the file should not be overwritten, the routine

jumps back to the Checkfile subroutine to elicit a new name for the file. Oth-

erwise, it opens the file specified by Default for writing, writes the contents of

the Clipboard to that file, and then closes it and jumps to the Ender routine.

Exploring NOTEPAD. WBT 195

Figure 9.7
The "File Already

Exists" warning

File Already Exists

© C:\WINDOWS\SELECT.TXT already exists. Okay
to overwrite?

Yes No Cancel

The Empty routine, meanwhile, is called only if there was no text

selected in the current file when the Save Selection command was issued. It

simply posts a message to that effect (shown below) and then jumps to the

Ender routine.

The DummySub Routine

DummySub is called if the user selects the separator bar in the custom Con-

trol menu. It simply issues the Exit command.

: DummySub

EXIT

The ReplaceSub Routine

ReplaceSub adds a replace function to Notepad, allowing you to search for a

specified character, word, or phrase and replace it with whatever text you specify.

The centerpiece of the ReplaceSub routine is the rather complex dialog

box shown in Figure 9.8. The template for the Replace dialog box specifies

that the variable A represents the search string. B represents the replace-

ment string, C indicates whether the macro should query the user each time

the search string is found (C=l) or automatically replace all instances of the

search string (C=2), D indicates the direction of the search (forward from

the insertion point if D=l, backwards if D=2, or throughout the entire tile if

D=3), and E indicates whether the search operation should be case-sensitive

(E=l)orno1 (E=0).

196 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

Figure 9.8
The Replace dialog

box

HjlL3LllI33H

Replace

:

Changes

With:

Global replace: ® Query first

Search: O Forward O Reverse

E] Match case?

O Replace all

<§> Entire file

OK CANCEL

The code for the ReplaceSub routine begins by initializing the values of

variables A through E, and then determines whether the dialog box

REPLACE.DLG already exists. If not, it jumps to the ReplaceWrite subrou-

tine. Otherwise, it draws the dialog box on screen and continues as shown here:

: Repl aceSub

a=Null

b=Null

c-1

d=l

e=0

IF F

I

LEEX I ST(STRCAT(HOMED I R," REPLACE.DLG'

: Repl aceDraw

D

I

ALOGBOXC Repl ace "."REPLACE.DLG")

IF A==Null THEN EXIT

IF B==Null THEN EXIT

CLIPPUT(A)

IF D==3 THEN SENDKEY (

"

A
| HOME I "

)

SENDKEY("!sf+{ INSERT))"

IF D==l THEN SENDKEYC'ID")

IF D==2 THEN SENDKEY ("! U"

)

IF D==3 THEN SENDKEYC'ID")

SENDKEYC'-")

B=STRTRIM(B)

CLIPPUT(B)

GOTO CheckFind

: FindNext

SENDKEYC If3|")

:CheckFind

DaWin-WINGETACTI VE()

IF DaWin=="Notepad" THIN GOTO Notfound

IF DaWin— "Find" THEN SENDKEYC " {ESC}"

)

., nAi /ateC'Notepad")

IF E--1 THEN GOTO Checkcase

: As k

©FALSE THEN GOTO ReplaceWrite

Exploring NOTEPAD. WBT 197

If C==2 THEN GOTO Replnext

DELAY(l)

Change=ASKYESNO("This one". "Change this one?")

IF Change==0 THEN GOTO FindNext

WINACTIVATE("Notepad")

:Repl next

SENDKEYC+I INSERT I "

)

GOTO FindNext

:Checkcase

SENDKEY(" A (INSERTI")

Case=CLIPGET()

CLIPPUT(B)

IF Case==A THEN GOTO Ask

GOTO FindNext

:Notfound

SENDKEY("~")

GOTO Ender

Once the user has filled out the dialog box and pressed Enter to close it,

the routine checks to make sure that search and replacement strings were

specified. If either field is empty, the routine exits. Otherwise, it places the

search string on the Clipboard. Next, if the user has said to replace A with B

throughout the entire file, it sends a Ctrl-Home command to Notepad to

move the cursor to the top of the file. Then it sends.the command Alt-SF

Shift-Ins to Notepad, opening the standard Find dialog box and pasting the

search string into its edit field. Then it sets the direction switches in the Find

dialog box, sending an Alt-D (down) if the user specified a forward search or

a global search, or an Alt-U (up) if the user specified a backward search, and

then it sends an Enter (represented in WinBatch by the tilde) to close the

Find dialog box and initiate the search.

Next, the routine copies the replacement string (B) to the Clipboard and

jumps to the CheckFind routine. CheckFind begins by assigning the caption of

the current window to the variable DaWin, using the WINGETACTIVE()
command. If the current Window is titled "Notepad", then Notepad has

posted a message saying that the search string wasn't found, as shown in Figure

9.9, so the macro jumps to the Notfound routine.

Meanwhile, if the window caption is "Find" then the search string has

been found and Notepad has left the Find dialog box on screen so that the

user can use its Find Next button to search for the next instance of the

search string, as shown in Figure c).l(). When Find Next is selected, the macro

responds by sending an Escape character, which closes the Find dialog box.

After closing the Find dialog box, the macro issues the WINACTIVATE
command to reactivate Notepad, and then checks the value of the variable E
to determine if the search should be case-sensitive. You might expect that it

could make use of the Match Case option on Notepad's Find dialog box for

this purpose, but it can't, because there is no way for WinBatch to determine

whether the Match Case check box is cheeked when Notepad opens the Find

198 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

dialog box. (Notepad keeps track of whether you checked Match Case the

previous time the Find command was used, and opens up the dialog box

using the previous setting.) WinBatch could easily toggle the Match Case

check box to the opposite of its current state, but since it doesn't know what

that state is, doing so wouldn't do it much good. So instead, the routine does

its case checking using WinBatch commands in the Checkcase subroutine.

Figure 9.9
Notepad's search

string not found

message

=| Find

Find What: absolute
1- Notenad 1 _l

i r_l Match Case CHB Cannot find "absolute"

OK

Figure 9.10
Notepad's Find

dialog box.
Find What

I I Match Case

Diiection"

O Up <8> Down

Cancel

Note that although this method works better than having the macro try

to guess whether the Match Case box is checked, it still relies on the user not

having left that box in a checked state in the previous Find operation. If you

discover the macro is not finding text that you know it should, check the sta-

tus of the Match Case check box on the Notepad Find dialog box, and dese-

lect it if it is checked.

If the search is not to be case-sensitive, the next line checks the value of

the variable C, which determines whether all instances of the search string

are to be replaced automatically or if the user wants to approve or cancel

each change. If C is equal to 2 (indicating automatic replacement) the macro

jumps ahead to the Replnext subroutine. Otherwise, it uses the DELAY
command to pause for one second, allowing the user to examine the instance

of the search string that Notepad has found and highlighted, and then uses

the ASKYESNO function to determine if the current instance is to be

changed. If the answer is no (Change=0) the macro jumps back to the Find-

Next label to find the next instance of the search string. FindNext simply

sends an F3, the shortcut key for Notepad's Find Next function, to Notepad,

and then goes on to the CheckFind routine.

Exploring NOTEPAD. WBT 199

Meanwhile, if the user indicates that the found text is to be replaced, the

macro continues with the Replnext subroutine, which sends the Shift-Ins

command to overwrite the highlighted search text with the replacement

string, and then jumps back to FindNext.

The Checkcase subroutine, which comes next in the listing, is called

when a case-sensitive search is required. It copies the highlighted search text

to the Clipboard, and then assigns it to the variable Case. Then it copies the

replacement text back to the Clipboard, and uses WinBatch s string-compari-

son capability to determine if the found text is equal to the search text

—

which would indicate that both the contents and the case of the two strings

match. If so, it jumps back to the Ask routine to continue with processing

that instance of the search text. Otherwise, it jumps to FindNext to find the

next instance of the search text.

Finally, the NotFound routine is called when Notepad can locate no

more instances of the search string. It sends an Escape character to close

the Notepad message box, and then jumps to the Ender routine, thus ending

the macro.

The AutolndentSub Routine

The next routine in NOTEPAD.WBT is AutolndentSub. This routine is

designed to automatically indent a new line of text using the same number of

tabs as begin the current line.

This capability is useful for several purposes, including creating indented

lists, indenting loops and subroutines in program code, and creating outlines.

The macro, which can be launched by pressing Ctrl-A, simply counts the

number of tabs at the beginning of the current line and then starts the next

line with the same number of tabs.

: AutolndentSub

CLIPPUKNull)

SENDKEY("(END) +{ HOME

}

A
{ INSERT)")

A=CLIPGET()

A=STRCAT(A,"1")

SendString=STRCAT("{ END T.EnterSt ring)

OITEMCOUNKA.TABSTRINGM
:CountTabs

IF C==0 THEN GOTO DoneTab

SendString=STRCAT(SendStri ng, TabString)

C=C-1

GOTO CountTabs

:DoneTab

SENDKEY(SENDSTRING)

GOTO Ender

200 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

The routine starts by clearing the Clipboard. Then it sends the key

sequence End, Shift-Home, Ctrl-Ins, which first moves the cursor to the right

edge of the current line of text, then moves it to the left edge, highlighting

everything in between, and finally copies the highlighted line to the Clip-

board. Then it assigns the contents of the Clipboard to the variable A, and

next appends a single character to that variable. (I used the character 1, but

any nonspace, nontab character would do.) Without this, the macro counts

one too few tabs on lines that contain no characters but tabs.

Next the macro creates a string called SendString, consisting of an END
command (which moves the cursor to the end of the current line) and the

contents of EnterString (to start a new line). Then it counts the number of

tabs in the string assigned to variable A, using the ITEMCOUNT function,

and assigns that result to the variable C.

Next, the macro enters the CountTabs loop. The first line of the loop

examines the value of C. If it is equal to 0, the macro jumps to the DoneTab
subroutine. Otherwise, it appends a tab to SendString, decrements the value

of C, and jumps back to the beginning of CountTabs.

This rather awkward procedure is a workaround for the lack of a FOR-
NEXT loop command in WinBatch. It simply decrements the value of C
after each tab is added until C is equal to 0. In a language such as BASIC,
which includes a FOR-NEXT structure, this routine would be rendered in a

much more easily understood manner, as follows:

FOR X=l TO C

SENDSTRING=SENDSTRING+TabString

NEXTX

In the WinBatch code, once C is equal to there are no more tabs to be

added, so the macro jumps to DoneTab, which sends SendString to Notepad

(moving the cursor to the end of the current line, sending the Enter charac-

ter, and then sending however many tabs the macro has added to Send-

String). Then it jumps to the Ender routine, signaling the end of the routine.

The CupperSub Routine

The next two routines, CupperSub and ClowerSub, are used to convert

selected text in the current Notepad file to upper- or lowercase. (As a side-

note, these were the only two routines I knew WinBatch was capable of

before I started this project; they are inspired by similar examples in the Win-

Batch manual.)

Exploring NOTEPAD. WBT 201

CupperSubs code looks like this:

:CupperSub

CLIPPUKNull)

SENDKEY(" A |INSERT|")

CLIPPUT(STRUPPER(CLIPGET()))

SENDKEY("+(INSERT!")

GOTO Ender

CupperSub begins by clearing the Clipboard, and then places the

selected text on the Clipboard. It then combines the STRUPPER function

(which converts a string to uppercase) and the CLIPGET() command to

replace the current contents of the Clipboard with an all-capitals version of

those contents. Then it pastes the text back into Notepad and jumps to the

Ender routine.

The ClowerSub Routine

ClowerSub is identical to CupperSub, except that it uses the STRLOWER
function to convert the Clipboards contents to lowercase:

:C1 owerSub

CLIPPUT(Null)

SENDKEYCMINSERT}")
CLIPPUT(STRLOWER(CLIPGET()))

SENDKEYC + UNSERTD
GOTO Ender

The FastcountSub Routine

The final major routine in NOTEPAD.WBT is FastcountSub, which is used

to obtain word and character counts for the current Notepad file. It is the

most complicated of the routines listed here, not least because the process of

defining what constitutes a word is more complex than you might think.

When I started work on this routine, I assumed that counting words

would be easy. I though of a word as any block of characters separated from

its neighbors by a space on either side. But that definition proved surpris-

ingly inadequate even for straight text, and laughably off-base for text that

includes programming code or other nonstandard elements.

For instance, using that definition, each of the following items would con-

stitute one word:

decisions—not

reality. .unless

read-only

202 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

EXCLUSIVE(@ON)

CLIPPUT(STRLOWER(CLIPGET()))

Even worse, this list of five items (each appearing on its own line with no
spaces before or after it) would as a whole be recognized as a single word by

a word-count algorithm that looked only for preceding and following spaces.

So I was forced to come up with a broader method of counting words,

one that recognized that characters such as brackets, parentheses, ellipsis

points, and hyphens should all be recognized as delimiters between words, as

should tabs, carriage returns, and line feeds.

The other complicating factors were that WinBatch's string-manipula-

tion functions fail if you try to work with strings longer than about 10k in

length, and that although it offers routines such as STRSUB and STRIN-
DEX, which allow you to search for characters within a string, they are tor-

toiselike in performance. I knew this routine would never function with the

speed of one written in assembly language, but I wanted it to be usable.

After much experimentation, I came up with the following solution. It's

still not perfect, but it delivers a very close to accurate (within 5 percent on

most files) count of words and characters, and does so with reasonable speed

(counting 7,600 words in a 48k file in about 25 seconds on my 386/33). Here's

what it looks like:

: Fastc

EXCLUS

Space=

Words=

Chars=

SENDKE

:GetNe

SENDKE

SENDKE

SENDKE

A=CLIP

IF A—
CLIPPU

STRREP

STRREP

STRREP

STRREP

STRREP

STRREP

STRREP

STRREP

ountSub

IVE(@0n

Y(" A

xt

Y(" +

Y("A

Y("(

GET(

NULL

T(NU

LACE

LACE

LACE

LACE

LACE

LACE

LACE

LACE

{HOMED

(PGDN 31+IEND)")

(INSERT)")

RIGHT}")

THEN GOTO FINAL

LL)

(A,")", Space)

(A," I" . Space)

(A,"]", Space)

(A, "(".Space)

(A, "{".Space)

(A, "[".Space)

(A.":". Space)

(A,". . .".Space)

Exploring NOTEPAD. WBT 203

STRREPLACE(A.";",Space)

STRREPLACE(A,"-\ Space)

STRREPLACE(A,'7\ Space)

STRREPLACE(A,CRLFString,Space)

STRRE P LAC E (A, TabSt ring .Space)

Chars=Chars+ STRLEN(A)

Word s=Words+ITEMCOUNT(A, Space)

GOTO GetNext

: Final

SENDKEY(" A (HOME|")

EXCLUSI VE(@Of f

)

BEEP

MESSAGEC'Word Count ", "%Chars% characters in %Words%

words .
"

)

GOTO Ender

The routine begins by setting WinBatch s EXCLUSIVE switch to on, then

defines the variable Space as a space character and initializes the variables

Words and Chars to 0. Next it sends a Ctrl-Home command, to instruct Note-

pad to move the cursor to the top of the file, and then enters the GetNext loop.

GetNext starts by highlighting three screen-pages of text: issuing three

Shift-PgDn commands and a Shift-End command to move to the end of the

last line of the third page. Then it copies the selected text to the Clipboard,

and sends a Right Arrow keystroke to move the cursor to the first character

of the next line, removing the highlighting from the current selection. Next it

assigns the contents of the Clipboard to a variable named A, and checks to

see if A is empty. If so, then it has reached the end of the file, and so it jumps

to the Final subroutine.

Otherwise, it clears the Clipboard and issues 13 STRREPLACE com-

mands in a row, each of which replaces all instances of a possible word delim-

iter (including opening and closing parentheses and brackets, hyphens,

ellipsis points, tabs, and carriage returns) with a space. Then it counts the

number of characters and the number of words in string A. It uses the Win-

Batch STRLEN command to obtain a count of the number of characters in

the string, and the ITEMCOUNT command to obtain the word count.

ITEMCOUNT returns a value equal to the number of items (other than

spaces) in string A that are separated from one another by spaces. Then it

adds that result to the current value of Words and loops back to get the next

three screen-pages of text.

When the macro reaches the end of the file (indicated by the variable A
being empty) it jumps to the final routine, which returns the cursor to the top

of the file, deactivates WinBatchs EXCLUSIVE switch, beeps the PC
speaker to wake up the user, and opens a message box that delivers the word

204 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

and character counts it has obtained, as shown below. Then after the user

closes the message box, the macro concludes by jumping to the Ender routine.

The Ender Routine

The Ender routine, referred to so often above, consists of just two lines:

: Ender

CLIPPUT(OldClip)

EXIT

The first line in Ender restores the original contents of the Clipboard,

and the second stops execution of the macro. There are two advantages to

placing these commands here, rather than at the end of each macro. The first

is that it ensured that I didn't forget to restore the Clipboard contents after

any of the macros that use the Clipboard. The second is that it offers the abil-

ity to add other routines here that will be executed at the end of any macro

that calls Ender, should the need to do so ever arise.

The Dialog Box Routines

The next three routines are used to create the dialog boxes used by the

OpenerSub, InsertSub, and ReplaceSub routines. They follow a similar

order and logic, starting with a FILEOPEN command to open the file for the

dialog box template, then a series of FILEWRITE commands that write the

dialog box template instructions, then a FILECLOSE command, and finally

a GOTO command that returns to the calling routine.

The WinBatch template format is simple, if not particularly intuitive.

Blank lines in the template file create blank lines in the dialog box, so in the

routines that follow, this command denotes a blank line:

F I L E W R I T E (h F P ,

"
"

)

Static text is created simply by entering it into the template. So the

command

FI LEWRITEf hFP . "Select file to insert:")

would create the static text siring, "Select file to insert:" when the DIALOG-
BOX command is used to load the template file.

Exploring NOTEPAD. WBT 205

Radio buttons are created by indicating the variable to be used to store

the number of the button that is selected from the button group, followed

by a caret, followed by the individual button's number. The following would

create a line in the template file to produce four radio buttons, labeled

"*.TXT\ "*.INI", "*.1ST\ and "READ*.*", respectively:

FILEWRITE(hFP."[AM *.TXT] [A A
2 *.INI] [A A

3 *. 1ST] [AM READ*.*]")

File list boxes with accompanying fields in which you can enter a new

file specification are created by following a variable that contains the default

file specification with a dollar sign to create the edit field. Then a series of

lines containing the same variable, followed by a backslash, is used to deter-

mine the height of the list box. So the following code would create the file-

specification edit field, followed by a blank line, followed by a list box that is

three lines high:

FILEWRITE(hFP,"[a$]")

FI LEWRITEChFP ,

"
"

)

FILEWRITE(hFP,"[a\]")

FI LEWRITEChFP ,

"

[a\]")

FILEWRITEC hFP .

"

[a\]")

Standard edit fields are created by following the variable to which the

edit fields contents are to be assigned with a number sign. The following

command would create an edit field with the prompt "Replace:" and would

assign the contents of the edit field to the variable A:

FILEWRITE(hFP, "Replace: [A#]")

Finally, check boxes are created by following the variable to which the

result of the check box is to be assigned with a plus sign, then the value to be

assigned to the variable if the check box is checked, then the text of the

check-box prompt. So the command:

FILEWRITEC hFP ."[E+lMatch case?]")

would write a line in the template file to create a check box with the prompt

"Match case?". The variable E will be assigned the value 1 if the user checks

the check box.

Without further ado. then, here are the listings of the OpenerWrite,

Insert Write, and ReplaceWrite subroutines.

The OpenerWrite Routine

OpenerWrite contains this code:

:OpenerWri te

hFP-FILEOPEN(STRCAT(HOMEDI R. "MASK.DLG")

.

"WRI Tf
"

FILEWRI .•")

206 CUSTOMIZING APPLICATIONS—THE ULTIMATE NOTEPAD

FILEWRITE(hFP."[A A
l *.TXT] [A A

2 *.INI] [A*3 *. 1ST] [AM READ*.*]")

FILEWRITE(hFP,"[A*5 *.ASC] [A A
6 *.WDF] [A A

7 *.WBT] [A*8 *.DLG]")

FI LEWRITEC hFP, ""

)

FILECLOSE(hFP)

GOTO OpenerDraw

You could create the same template file manually (rather than automati-

cally, as is done here) by entering the following text into Notepad or another

text editor and saving the file as MASK.DLG (being sure to leave a blank line

at the beginning and end of the file to create empty lines in the dialog box):

[A A
1 *.TXT] [A A

2 *.INI] [A A
3 *. 1ST] [AM READ*.*]

[A A
5 *.ASC] [A A

6 *.WDF] [A A
7 *.WBT] [A A 8 *.DLG]

The InsertWrite Routine

InsertWrite contains the following code:

: InsertWri te

hFP=FILEOPEN(STRCAT(HOMEDIR," INSERT.DLG")," WRITE")

FILEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FI LEWRITEC hFP

FILECLOSE(hFP)

GOTO InsertDraw

'Sel ect

'[a$
'")

Ta\
'[a\

•Ca\

'[a\

"Ca\

"Ca\

"[a\

"[a\

file to insert
]"

The ReplaceWrite Routine

Finally, here's the ReplaceWrite routine:

: Repl aceWri te

hFP=FI LEOPEN(STRCAT(HOMEDI R. "REPLACE. DLG")

FILEWRITE(hFP."")

"Replace: [a//

""J

"With: [b#
"")

"Global replace: [cMQuery f i rst]

"Search: [d A lForward] [d A 2Reverse] [d A 3Entire

"[e+lMatch case?!" j

FI LEWRITEC hFP .

FILEWRITE(hFP.

FILEWRITEChFP.

FI LEWRITEC hFP.

FI LEWRITEC hFP
.

FILEWRITEChF P

.

FILEWRITEChFP,

FI LECLOSEChFP)

GOTO ReplaceDraw

."WRITE")

]")

]")

[c A 2Replace al 1]")

I i 1 e]
"

)

Wrapping Up The Ultimate Notepad 207

Wrapping Up The Ultimate Notepad

That concludes discussion of The Ultimate Notepad project. You'll find all the

code for the project on the disk that accompanies this book. Feel free to exper-

iment with it and adapt it to your own needs. You might, for instance, start by

modifying the MergeSub routine to call the file mask-selection dialog box

used by OpenerSub, rather than having the Insert File dialog box default to

offering a selection of TXT files.

Although The Ultimate Notepad adds some truly useful features to the

Windows Notepad, it is in the end limited by both Notepads bare function

set and the limitations of the WinBatch language. In the following chapters

you'll see how programming efforts of similar scope, tackled with more capa-

ble tools, can yield more impressive results.

CHAPTER

Presenting Data

Who's Who at
In the Beginning

Was Confusion

Application-Design

Issues in Plus

Exploring the

Application

Wrapping Up the

Who 's Who Application

In the Beginning Was Confusion 209

THIS CHAPTERS PROJECT, WHO'S WHO AT PC/COMPUTING, WAS DEVEL-

oped in preparation for that company's move to spanking new quar-

ters in the Mystic Center office complex in the Boston suburb of

Medford, Massachusetts. This interactive system was designed to

provide a variety of information about each PC/Computing employee,

including his or her title, telephone extension, office location, and place on

the magazine's organizational chart. Although the original intent was to use

it internally, as the project progressed plans were also made to distribute it

externally as a marketing promotion.

As it turns out, however, the application was never widely distributed

either internally or externally. In a curious twist that will make sense if

you've ever faced the prospect of spending your days in Medford, the pow-

ers that be announced shortly before the move that two months after arriv-

ing in Medford the magazine's offices would move yet again—this time to

Foster City, California. In the excitement that followed, the Who's Who
project was permanently back-burnered.

Nevertheless, this project remains a good example of how easily you can

develop an attractive and practical interactive information system using only

a minimal amount of program code, given the proper Windows development

tools.

In the Beginning Was Confusion

Assuming that you don't succumb to toxic fumes from the freshly laid carpet-

ing, the worst thing about a move to a new office is the confusion. If you're

lucky, you can find your own office, but that's about it. Where's the confer-

ence room? Where's the fax machine? Where's the bathroom?

If anything, I'm more prone to this confusion than most. And, in what

may be a related malady, I've also been known to forget the names, titles,

and areas of responsibility of people I see and work with every day. So it was

purely out of self-interest that as the move to our new offices in Medford

approached, I started thinking about an application I'd seen demonstrated

on a Sun workstation several months before.

The Sun application linked an office floor plan with individual employee

records. I thought the concepts embodied in that application could be

expanded to serve as a guide for locating not only people but resources such

as laser printers, conference rooms, and coffee machines in the new office.

The resulting Windows application could also provide a picture of both the

overall organizational structure of PC/Computing and the areas of responsi-

bility of each individual employee.

The functional goals for the Who's Who application developed out of

those initial musings. I wanted to start with a floor plan displaying the lax-

out of the new offices, and then link each office on the plan to a personnel

210 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

information sheet that would provide vital statistics about the occupant of

that office—including name, title, job description, and telephone extension.

I also wanted to be able to conduct free-form searches through the data-

base, and to locate each individual on an organization chart.

Despite its obvious uses, I knew this application was destined to fall into

the "nice to have" rather than "need to have" category. So its operation had

to be completely intuitive; otherwise, it was unlikely many people would

take the trouble to use it. For the same reason, the application had to be fun

to use. So I wanted to make it colorful and graphic, with scanned photo-

graphs of each employee and attractive representations of the floor plan and

organizational chart.

Choosing the Tool

Remarkably, considering that this application's functional requirements

would have overwhelmed all but the most powerful DOS-based application-

development tools, any number of Windows tools could have handled this

project. It certainly was within the reach of any of the Windows BASICs, or

of Turbo Pascal for Windows. But I also could have pulled it off using a data-

base development tool such as Superbase 4 or ObjectVision or even

dbFast/Win. It might even have been possible to build it using the macro lan-

guage for Lotus's Ami Pro word processor. All of those languages offer the

element critical to making this application work: the ability to link graphic

objects (such as the depiction of an office on a floor plan) to other program

screens.

However, in selecting a program-development tool for this application I

followed my own advice from Chapter 4 and tried to identify the right tool

for the job. This meant using the tool that would require the least amount of

effort and smallest amount of program code to do the job. Which in this case

added up to it being a perfect project for a Hypercard-like tool such as

Asymmetrix's Toolbook or Spinnaker Plus. Both are tailored for this kind of

job—one in which you want to present a relatively small amount of data in a

graphic manner, with links between disparate data items and simplified sup-

port for responding to user-interface events such as mouse moves and button

clicks. Unlike all of the other Windows development tools that would have

allowed me to build this application, Toolbook and Plus could do most of the

work for me, allowing me to spend more time thinking about design details

and less pondering the subtle nuances of Windows's message queue.

My preliminary evaluation of Toolbook and Plus suggested that they

were fairly equally matched. Their command languages offer similar capabili-

ties, and both provide adequate (albeit far from blazing) performance. The

decision between them would have come down to a coin toss except for one

thing: Spinnaker also offers a Macintosh version of Plus, whereas Toolbook is

available for the PC only. Had this application ever gone into wide circulation

Application-Design Issues in Plus 211

at PC/Computing, it would have needed to be available to the art and produc-

tion staffs, who work on Macintosh computers, as well as to the rest of the edi-

torial, marketing, and sales staffs, who all use Windows-capable PCs. So the

availability of a Macintosh version tipped the scales in Plus's favor.

Application-Design Issues in Plus

Spinnaker Plus makes plain what some other Windows development tools

only suggest: For all practical purposes, the interface is the application. With

Plus you have no choice but to start off the development process by building

a user interface for your application, because every line of program code is

associated with a user action. You cannot create program code unless you

have already created the user-interface element it is to be associated with.

That restriction might sound a little confining, since it would seem to

eliminate the possibility of general purpose subroutines that can be called by

several top-level routines. However, the user interfaces constructed by Plus

are structured in such a way that you can still write global procedures, even

though they must be structured as responses to user actions.

Stacks

In Plus, as in the Macintosh application HyperCard, which inspired it, applica-

tions are referred to as stacks. Each stack is composed of one or more cords—
or individual screens—each of which is associated with a background, which

may be shared with other cards. User-interface objects such as buttons and

bitmaps may appear on either the card or the background. In the former case

they are specific to the card upon which they appear; in the latter they will

appear on every card sharing that background.

Plus responds to user actions through a hierarchical series of handlers.

For instance, when you press the left mouse button while the cursor is on a

button. Plus interprets the message it receives from Windows as a result of

that action as MOUSEDOWN, and responds by looking at the code associ-

ated with that button for an ON MOUSEDOWN handler. Thus, if the fol-

lowing code was associated with a button. Plus would respond by beeping

the PC's speaker five times:

ON MOUSEDOWN

BEEP 5

END MOUSEDOWN

However, if there is no ON MOUSEDOWN code associated with the

button (or if the button's code included a PASS MOUSEDOWN statement).

Plus would then look at the code associated with the card to see if it con-

tained an ON MOUSEDOWN routine, and if so would execute it.

212 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

If the card didn't contain, or passed, the ON MOUSEDOWN statement.

Plus would look at the code associated with the background. And if it failed

to find an ON MOUSEDOWN there, or if the background procedure con-

tained a PASS MOUSEDOWN statement, Plus would look next to the code

associated with the stack.

For instance, if the code listed above was associated with the stack, and

none of the other elements on the card or background intercepted the

MOUSEDOWN first, Plus would beep the PC's speaker five times anytime

you pressed the left mouse button, no matter what card or background was

visible or what user interface element was under the mouse pointer (making

for a very annoying application).

Finally, if none of the four possible locations in the current stack (the

button, card, background, or the stack itself) contained an ON MOUSE-
DOWN procedure. Plus would continue to look for one further up its

message-passing hierarchy, first looking in any library scripts that are defined

for the current stack, then in the Home stack, and finally in the Plus applica-

tion itself. If it can't find a handler for the MOUSEDOWN message in any of

those locations, it ignores the message, taking no action.

Thus, as you build an application in Plus, one of the key decisions you

have to make over and over is where to put a segment of code. If the action

you want Plus to carry out is specific to a single user-interface element, then

you should associate the code with that element. But if it is applicable to

every element on a particular card, on a particular background, or in the

entire stack, then you should associate it with the card or background or

stack, as the case may be.

Drawing the Interface

Since every line of code in Plus is associated with a user action, before you

can write any code you have to create the elements with which the user will

interact.

Like many Windows development tools, Plus provides a palette of stan-

dard user-interface elements from which you can choose. To create a button,

for instance, you would select the Button tool and draw the button on the

screen, as shown in Figure 10.1.

Next, you would double-click on the button you've just drawn, to open

its Info dialog box, as shown in Figure 10.2. From this dialog box you can

modify the button's appearance, identify an icon that it is to display (from

Plus's array of predefined icons), link it to another card (so that when the

user pushes the button Plus displays that card), or modify its script.

When you select the button labeled "Script" on the Button Info dialog

box, Plus opens the button's Script window, which holds all the scripts associ-

ated with that button. So, if you have already written ON MOUSEDOWN
and ON MOUSEUP procedures for the button, both would appear in its

script window, as shown in Figure 10.3.

Application-Design Issues in Plus 213

Figure 10.1
A newly drawn

pushbutton

File Edit Navigation Object Text Font Graphic

* i mam m m nJETo Si

Button tool

button id 1

Figure 10.2
The Button Info

dialog box

PLUS
File Edit Navigation Object T_ext Font Graphic

JS B H_j_JH®Njia^:;

8k$r><J Svtho No /lillliMillill tf>. ;

Style

_J tmopQfvol

(_) rodto button

IX] Show nomt

E Avto hlli'h

l~l £o V fti'ol

k».

lop:

OQflrOff>.'

251

176

351

198

B

[Sc4,l }[&* } (fco»)
(

C(nee/ r_lj

214 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

Figure 10.3
The Script window

for a button

Plus's Limitations

Plus was originally developed on the Macintosh as a superset of HyperCard,

and its array of standard user-interface elements betrays this heritage. Miss-

ing are such standard Windows elements as drop-down list boxes and group

boxes, as well as the enhanced three-dimensional controls offered by many
Windows development tools.

However, you can simulate many of these elements through judicious

use of Plus's painting and drawing tools, which provide the ability to create

bitmapped or vector-based graphic objects on a card or background. For

instance, I created the illusion of three-dimensional frames on the opening

screen of the Who's Who application by first creating a light gray paint

object (a bitmapped graphic object), which covers the entire card, and then

adding draw objects (vector-graphic objects) with black lines along their bot-

tom and right edges and white lines along the top and left edges, as shown in

Figure 10.4.

Paint and draw objects in Plus are not static as they are in many pro-

grams. Instead, you can associate scripts with them, just as you can with but-

tons, list boxes, and edit fields.

Exploring the Application 215

Figure 10.4
Creating three-

dimensional frames

File Edit Navigation Object lext Font Graphic

^/^@ ^T o CJOOG

PC/Computing at Mystic Center

Exploring the Application

The Who's Who application is built around four basic cards, or program

screens:

The Opening screen presents an alphabetical list of all employees. Each

name is linked to the employee's personnel card, and buttons allow you to

initiate a free-form search, jump to the Organization Chart or Floor Plan.

or return to Plus's Home card (the opening Plus screen).

The Floor Plan screen is where each office or cubicle is linked to its occu-

pant's personnel card. This screen also includes buttons for jumping to the

Opening screen or the Organization ("hart, and for initiating a search.

The Personnel Card screen is a template that is copied for each employee.

It features space for the employee's photo: database fields for the employ-

ee's name, title, telephone extension, and department: a multiline text box

that holds a description of the employee's areas of responsibility; and but-

tons for initiating a search and jumping to the Organization Chart. Floor

Plan, or Opening screen.

216 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

The Organization Chart screen is a hierarchical chart that utilizes standard

pushbuttons to represent each employee. These buttons are linked to the

employee personnel cards. Additional buttons on the Organization Chart

screen provide links to the Floor Plan and Opening screens, and allow the

user to initiate a free-form search.

Let's look at each of these in detail.

The Opening Screen

Who's Who at PC/Computing's Opening screen, shown in Figure 10.5, greets

you by presenting several options for locating the information you seek. If

you know the last name of the person you're looking for, you can select his

or her name from the list box at the left of the screen. Doing so will take the

application to that individual's personnel information card.

Figure 10.5
The Who's Who

application's

Opening screen

File Edit Navigation Object Text Font Graphic

PC/Computing at Mystic Center

Editorials. Production

Atelsek

Bonner

//allace

Floor Plan

<5§fc

Org Chart

Search

J

If, on the other hand, you want to know the physical location of some-

one's office or of a departmental resource, you can jump to the Floor Plan

screen by clicking on the corresponding button—identified by a compass icon.

If you want to see what position someone occupies on the magazine's

organization chart, you can click the button labeled "Org Chart", or if you

Exploring the Application 217

want to search for individuals on the basis of their title or department, or a

certain phrase appearing in their job description, you can click on the button

labeled "Search".

Finally, if you've finished using the Who's Who application, you can

return to Plus's Home stack (its opening menu) by clicking the button depict-

ing a house.

Now let's look at the scripts that power this screen.

The OpenStack Script

The first script executed as the Who's Who application is launched is associ-

ated with the ON OPENSTACK handler. This is a stack-level handler that

responds to the OPENSTACK message Plus generates when it launches a

stack. Thus, you could think of it as sort of an AUTOEXEC.BAT program

for the stack.

The ON OPENSTACK script looks like this:

ON OPENSTACK

LIBRARY "PTOOLS.STA"

WINDOWTOCARDSIZE

HIDE TOOLBOX

GLOBAL High

PUT "" INTO High

LOCK RECENT

SET THE AUTOSAVE TO

END OPENSTACK

The script starts by loading Plus's Power Tools library—a set of functions

not built into the standard Plus application but available to any stack that

loads the library PTOOLS.STA. Next the script uses the WINDOWTO-
CARDSIZE command from that library to adjust the size of the Plus win-

dow to match that of the opening card in the Who's Who stack.

The next command, HIDE TOOLBOX, hides the palette of develop-

ment tools that normally appears at the top of the Plus window. Next the

script establishes a global variable called High and initializes it as an empty

string. (The PUT "" INTO High is the equivalent of a High="" statement in

BASIC.)

Then, the script sets a pair of standard Plus toggle switches. Plus nor-

mally maintains a series of thumbnail images of each card that you view,

allowing you to jump to a card you've already viewed by picking its image

from a screen of "recent" cards. In addition. Plus normally saves the current

stack to disk at regular intervals. However, both of these facilities slow Plus's

performance, so in order to get the fastest possible performance from the

Who's Who application, the script issues the commands LOCK RECENT
(turning oil the thumbnail feature) and SET THE AUTOSAVE TO (turn-

ing off the AUTOSAVE feature

)

218 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

Finally, the script issues the END OPENSTACK command, concluding

processing of the OPENSTACK message.

The Home Button Script

The Home stack acts as sort of an opening menu for Plus; from it you can

modify various program settings and access other stacks. The Home Button

in Who's Who is used to shut down the Whos Who application and return to

the Home stack. Its script looks like this:

ON MOUSEUP

GO Home

END MOUSEUP

Here, the script responds to the ON MOUSEUP message, which is sent

when you release the left mouse button over the object to which the script is

attached, by issuing the simple command, GO Home.
In addition to the MOUSEUP and MOUSEDOWN handlers, Plus also

interprets a variety of other mouse-related events, including among others

MOUSEENTER (which occurs when the mouse pointer touches the

attached object), MOUSELEAVE (which occurs whenever the mouse

pointer is removed from the object), MOUSESTILLDOWN (sent repeat-

edly while the left mouse button is held down), and MOUSEWITHIN (sent

repeatedly while the mouse cursor rests on the object). This wide variety of

mouse-related events offers you great flexibility in responding to different

user actions, as will be seen in some of the routines that follow.

The next routine is attached to the Floor Plan button on the main screen.

The Floor Plan Button Script

The script for the Floor Plan button is only slightly more complex than that

for the Home button.

ON MOUSEUP

SET CURSOR TO 4

LOCK SCREEN

GO TO CARD AAAB

UNLOCK SCREEN WITH VISUAL EFFECT SCROLL RIGHT

SET WINDOWTITLE TO "Who's Who?"

END MOUSEUP

The Floor Plan button code responds to the MOUSEUP event (sent

when the user releases the left mouse button over the Floor Plan icon) by

first setting the cursor to shape 4. Shape 4 looks like a wristwatch, and is

used here to indicate that the application is busy, in the same way that most

Windows applications use the hourglass. Among the other standard cursor

shapes in Plus are the arrow, for item selection (shape 0), and the I-beam cur-

sor, lor text entry (shape 1).

Exploring the Application 219

Next the script locks the screen, which prevents Plus from updating it

until the UNLOCK command is issued (or until the current script ends).

Then the command GO TO CARD AAAB is issued, telling Plus to draw the

Floor Plan screen in memory. Because the screen is locked. Plus doesn't dis-

play the Floor Plan screen as it is being drawn—that would slow the drawing

operation. Instead, it draws the screen completely in memory, and then dis-

plays it and makes it the active card when the script executes the command
UNLOCK SCREEN WITH VISUAL EFFECT SCROLL RIGHT.

The VISUAL EFFECT SCROLL RIGHT part of that command tells

Plus to scroll the image of the new card over that of the current card, so that

it looks like the new card is sliding from left to right onto the screen. Plus

supports a variety of visual effects that provide interesting transformations

from screen to screen: the SCROLL (or WIPE) RIGHT, LEFT, UP, and

DOWN commands; IRIS (or ZOOM) OPEN and IRIS CLOSE (in which

the new card either appears first at the center of the old card and then zooms

open from there, or appears at the periphery of the new card and then takes

over the screen from the outside edge in); and DISSOLVE (in which the cur-

rent screen seems to disintegrate as it changes into the new screen).

The final command in the Floor Plan script sets the title bar of the Floor

Plan window to "Who s Who?"

Card-Naming Conventions

You might be wondering how the Floor Plan became card AAAB.
Every object in Plus has a name. When you create a new button or other

object. Plus names it automatically. For instance, a button drawn on a card's

background might be given the name Background Button 4. These names

are editable, and in most cases you'll want to give them names that will be

more evocative of their actual use. For instance, I renamed the buttons for

the Floor Plan and Organization Chart, "Floor Plan" and "Org Chart".

Plus also names new cards automatically, giving them names like Card 5

or Card 34. So how did the Floor Plan become card AAAB, rather than

Card 4 or Card 2 or whatever Plus had originally named it?

As you'll see below, the script automatically renames new personnel

cards to reflect the last name of the person about whom they present informa-

tion. For instance, the card with my employee information is named Bonner.

I wanted the script to automatically keep these personnel cards in alphabeti-

cal order, so that the user could employ Plus's standard navigation commands
to go to the next card (Ctrl-3) or previous card (Ctrl-2) alphabetically. The

only practical way to do this, however, was to use the CARDSORT com-

mand to alphabetically sort the entire stack of cards (in ascending order by

card name) every time a new card is added to the stack. The problem with

that was that a card named Opening Screen would be unlikely to end up as

the first card after a sort procedure. Instead, it would c\\<.\ up in the middle ol

220 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

the pack, mixed in with the personnel cards. Floor Plan, Organization Chart,

and others.

To solve this problem, I named the Opening Card AAAA, the Floor

Plan AAAB, the template card from which all new personnel cards are cre-

ated AAAC, and the Organization Chart ZZZ_OrgChart. This ensures

that—unless PC/Computing hires someone whose last name begins with

more than three As or Z's, the Opening Screen will always be the first card,

the Floor Plan will be the second, the template card will come third, fol-

lowed by the personnel cards, and the Organization Chart will always be the

last card.

The Organization Chart Button Script

As you might expect, the Organization Chart button script opens the Organi-

zation Chart. It uses the following code:

ON MOUSEUP

SET CURSOR TO 4

LOCK SCREEN

GO TO LAST

UNLOCK SCREEN WITH VISUAL EFFECT SCROLL LEFT

SET WINDOWTITLE TO "Organization Chart"

END MOUSEUP

As you can see, this code is very similar to that of the Floor Plan button,

varying only in that it substitutes the keyword LAST for a card name in its

GO TO command (thus telling Plus to show the last card in the stack) and in

the visual effect with which it unlocks the screen.

The Organization Chart buttons that appear on the personnel cards and

the Floor Plan screen feature nearly identical scripts. They vary from this

one only in the visual effects used to reveal the Organization Chart screen.

The use of different transformation effects adds some visual interest to the

application, but doesn't affect its function.

Next we'll look at the script for the Search button on the Opening Screen.

The Search Button Script

This routine makes use of the Plus ASK function, which requests a single line

of input from the user and assigns that input to a system variable known as IT.

ON MOUSEUP

GLOBAL WHATTOFIND

ASK "Enter search string:"

IF IT IS EMPTY THEN EXIT MOUSEUP ELSE PUT IT INTO WhatToFind

SCREEN

GO NEXT

FIND Wha1

If r HE RESULT IS NOT EMPTY THEN

Exploring the Application 221

BEEP

ANSWER "Couldn't find "

GO PREVIOUS

EXIT MOUSEUP

END IF

END MOUSEUP

& WhatToFind

The script begins by creating a global variable called WhatToFind. Next

the script opens an input box and prompts the user to enter a search string,

as shown in Figure 10.6.

Figure 10.6
The Search

function's input box

PLUS
File Edit Navigation Object lext Font Graphic

Who's Who at PC/Computing

PC/Computing at Mystic Center

j I

'""'-''
I

Oig Chail

Seaich •ffoT

The result of that input box (the text the user enters) is automatically

assigned to the system variable IT. So the script examines the contents of IT

and if it is empty (which would be the case if the user pressed the Enter key

without entering any data, or canceled the operation by pressing the Esc key

or selecting the Cancel button), the script exits the MOUSEUP handler rou-

tine. Otherwise, it assigns the value of IT to WhatToFind.

Next the script locks the screen, selects the next card, and then issues the

Plus FIND command, instructing Plus to find the next card field that con-

tains the lext in WhatToFind. (I decided to start the process by going to the

next card because otherwise Plus would find WhatToFind on the current

card if it exists there, which is generally not what the user has in mind.)

222 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

Plus uses a system variable called RESULT to store error messages. This

allows your application to examine the value of RESULT to determine

whether or not the previous operation was successful. If Plus finds a match
for WhatToFind, it automatically makes the card on which the match was

found the current card, and the variable RESULT will be empty. Otherwise,

RESULT will contain the error message "card not found". So the script tests

the results of the Search operation by examining the contents of RESULT.
If RESULT is not empty, then the Search operation must have been

unsuccessful. So the script beeps the PC's speaker, displays the message

"Couldn't find" followed by the contents of WhatToFind, makes the previ-

ous card (the card the operation started with) the current card, and exits the

MOUSEUP procedure.

If, on the other hand, RESULT is empty, then the Search operation was

successful, and the card on which the search text was found has automati-

cally been made the current card. So the script simply issues the END
MOUSEUP command, automatically unlocking the screen and making the

new current card visible.

The Search buttons that appear on the Personnel Card, Floor Plan, and

Organization Chart screens utilize scripts identical to this one.

The final script associated with the Opening screen is attached to the

Employee List list box.

The Employee List List-Box Script

The script attached to the Employee List list box is the most complex in the

Who's Who application. Nevertheless, it is easy to follow once you under-

stand its basic function.

The list of employees that appears on the Opening screen is a back-

ground field called Employee List. When you click on one of the names in

the list, the script jumps to the card for that employee. If no personnel card

exists for that employee, the script creates one automatically.

This enables you to create a personnel card for any employee simply by

adding a name to the employee list (by typing the person's last name into the

list box in Plus Card Edit mode) and then selecting that name from the list

box. Of course, you'll also want to amend the Floor Plan and Organization

Chart to reflect the employee's position on each, (and you'll have to keep the

list in order manually, since there's no sort function for it). However, the abil-

ity to create personnel cards on the fly frees you from having to create a card

for each employee before you can begin using the application.

Here's the script:

ON MOUSEDOWN

GLOBAL WhichCard

PUT CLICKLINEf) INTO WhichCard

PUT THE SH0R1 NAME OE ME INTO WhichField

SELECT L I NF WhichCard, WhichField, BG

Exploring the Application 223

PUT FIRST WORD OF THE SELECTION INTO WhichCard

IF WhichCard IS EMPTY THEN EXIT MOUSEDOWN

SET CURSOR TO 4

LOCK SCREEN

GO TO CARD WhichCard

IF THE RESULT IS NOT EMPTY THEN

GO TO CARD AAAC

DOMENU COPY CARD

DOMENU PASTE CARD

SET THE NAME OF THIS CARD TO WhichCard

PUT WhichCard INTO BG DBFIELD Name

SORT ASCENDING BY SHORT NAME OF CARD

GO TO CARD WhichCard

END IF

UNLOCK SCREEN WITH VISUAL EFFECT WIPE RIGHT

SET WINDOWTITLE TO WhichCard

END MOUSEDOWN

The script begins by establishing the global variable WhichCard and

assigning to it the value returned by the CLICKLINE function (the line num-

ber of the item selected in the list box). Then it uses the command PUT
THE SHORT NAME OF ME to assign the list box's name to the variable

WhichField. (In a scheme that might have pleased T S. Eliot—or at least

one of his cats—every item in Plus has both a short name and a long name.

The short name of this list box is Employee List. Its long name, which also

identifies the card, background, and stack in which the list box is found, is

BKGND FIELD "Employee List" OF CARD ID 4199 OF BKGND ID
3758 OF STACK "WHONEW.STA".)

The next line, SELECT LINE..., is used to highlight the line the user

clicked in the list box. It tells Plus to select the entire line indicated by the

variable WhichCard in the field WhichField on the background of the cur-

rent card.

Next the script assigns the first word of the highlighted line—in this case

the last name of the selected employee—to the variable WhichCard, and

then checks to see if WhichCard is empty, which it would be only if the user

had clicked on an empty line. If so, the script exits the MOUSEDOWN func-

tion. Otherwise, it creates the busy cursor, locks the screen, and issues the

command CO TO CARD WhichCard, instructing Plus to jump to the

selected employee's personnel card.

Next, the script checks the value of the system variable RESULT If

RESULT is not empty (it contains an error message), then the script surmises

that the card it just instructed Plus to go to does not exist. Consequently, it

sets out to create the card, first by issuing the command to go to the Person-

nel Card Template (card AAAC). Once that card, shown in figure 10.7.

224 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

has been made current, the script issues the command DOMENU COPY
CARD to execute the Plus menu command COPY CARD, which copies the

current card, followed by DOMENU PASTE CARD, which pastes the copy

back into the stack, creating a new card identical to the Personnel Card Tem-
plate card.

Figure 10.7
The Personnel Card

Template card BHHoE
Navigation Object T_ext Font Graphic

whonew.STA rr\^HHHHBHH
Name;

Pn006:

Title Dept.: Features

:

Next, the script uses the contents of the variable WhichCard (the

selected employee's name) to name the new card, and assigns that same text

to the field on the card labeled "Name", in which the employee's name is to

be displayed.

Having created the new card, the script uses the Plus SORT command to

sort the stack by card name, thus ensuring that the personnel cards remain in

alphabetical order. Then it reissues the command GO TO WhichCard, to

make the newly created card current (since the SORT command might have

made another card current), thus ending the process of creating a new card.

Finally the script unlocks the screen with the WIPE RIGHT visual

effect, and sets the window title of the now-visible employee card to the

employee's name, before ending the MOUSEDOWN procedure.

That concludes the scripts associated with the Opening screen of Who's

Who. Next we'll examine the Floor Plan screen.

Exploring the Application 225

The Floor Plan Screen

The Floor Plan screen, shown in Figure 10.8, shows a map of PC/Computing's

Medford offices.

Figure 10.8
The Floor Plan

screen

File Edit Navigation Object T_ext Font Graphic

Who's Who?

Waid |
belaney

| |
Steinbeig" Wallace

|
|0lowacq L'udihee I

Sbbal Ca Ellison i.,. . DeJean

Visitor Dickircon

Finnie Conaldior

Gralla
Shipley White

Schmidi

Brehm

Frame

Yapp

Kotowicn

Dolan Grant
Eddhwl 1

Taylor
[
pWatT

I Jeiome

L.
T.rfiiHi

T^ir

..'ell;

[TOW]

Maltai:

Trasil

Laialdoj

Sffl

Aside from the three buttons at the lower-right corner of the screen, all

the elements on the Floor Plan, including the building outline, cubicles, and

offices, are individual draw objects.

I designed the Floor Plan screen to help the user identify the occupant of

each office and as an aid to locating offices and resources. 1 lence. each oWkc
on the Floor Plan screen responds to the MOUSEENTER message by identi-

fying its occupants name and title on the Floor Plan screens title bar. Confer-

ence rooms and other facilities on the floor Plan likewise respond to the

MOUSEENTER message by identifying their purpose. And as soon as the

mouse is moved away from an object, the window title reverts to "\\ ho's

Who at PC/C?".

When you click on an office, it becomes highlighted on the screen, and

then the script displays the occupant's personnel card. Again, as on the ()pen-

ing screen, if no personnel card exists for that indiv idual the script creates it

automatically.

226 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

Although almost all the background draw objects on the map have a

script attached to them, I actually only needed to create three completely

unique draw objects from scratch: one for completely "inanimate" objects,

such as cubicle and exterior walls; one for objects such as conference rooms,

which can identify themselves on the title bar but are not linked to a person-

nel card; and one for offices and cubicles, which are linked to their occu-

pant s personnel card.

To create additional offices and facilities, I merely copied the appropri-

ate object and pasted it into position, and then amended its script. For

instance, to create an additional office, I copied an existing office, pasted it

into place, and then changed the name of the new object and its MOUSE-
ENTER script to reflect the name of the occupant of that office. Figure 10.9

shows the script-editing window used to make these changes.

Figure 10.9
Editing a script in

Plus

File Edit Navigation Object lext Font Graphic

h i SIhKE CD d> /\ I
njei

script of bkgnd drawobiect "Steinberg"

Macro Syntax Find Print

|on mouseEnter
set wind owtitle to "Don Steinberg, Senior Writer"

end mouseEnter

on mouseLeave
set windowtitle to "Who's Who at PC/C?"

end mouseLeave

mmmmmmmmmmmmmam^ggfg/ggm

The Floor Plan Background Scripts

The code that actually links offices and cubicle occupants to the personnel

cards resides not within the individual draw objects that represent those

locations, but rather in the ON MOUSEUP handler for the Floor Plan's

background.

Exploring the Application 227

ON MOUSEUP

SET CURSOR TO 4

LOCK SCREEN

PUT THE SHORT NAME OF THE TARGET INTO ChosenOne

IF ChosenOne IS EMPTY THEN EXIT MOUSEUP

GO TO CARD ChosenOne

IF THE RESULT IS NOT EMPTY THEN

GO TO CARD AAAC

DOMENU COPY CARD

DOMENU PASTE CARD

SET THE NAME OF THIS CARD TO ChosenOne

PUT ChosenOne INTO BG DBFIELD NAME

SORT ASCENDING BY SHORT NAME OF CARD

GO TO CARD ChosenOne

END IF

UNLOCK SCREEN WITH VISUAL EFFECT ZOOM OPEN

SET WINDOWTITLE TO ChosenOne

END MOUSEUP

This script probably looks familiar, if you remember the script for the

Employee List list box on the Opening screen, because it performs pretty

much the same actions in pretty much the same way.

The primary difference between this and the Employee List script is that

this script makes use of the system variable TARGET, which Plus uses to

identify the object that received the message the script is handling. Thus, if

you released the mouse button over my office, the short name of TARGET
would be Bonner, even though the current script is attached to the back-

ground rather than to the object Bonner. (The background MOUSEUP script

is performed because the office buttons don't have a MOUSEUP procedure.)

The script assigns the short name of TARGET to the variable Chosen-

One, and then issues the command GO TO CARD ChosenOne to activate

the selected individual's personnel card. If that card does not exist, the script

creates it, using the same method as the Employee List procedure on the

Opening screen.

Keeping Track of Highlighting

In addition to the MOUSEUP script, the Floor Plan background has a

MOUSEDOWN script, used to ensure that only the office the user has

clicked on is highlighted.

This is necessary because when you select the Floor Plan button from a

personnel card, that button's script creates a variable called 1 ligh. stores the

short name of the current personnel card there, and then turns highlighting

o\\ for the corresponding office or cubicle on the Floor Plan (so that the color

of the oW'^c or cubicle is reversed). I wanted that highlighting to turn off as

228 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

soon as the user begins to click on another office or cubicle, so I included the

following MOUSEDOWN handler on the Floor Plan's background:

ON MOUSEDOWN

GLOBAL High

IF High IS NOT EMPTY THEN SET HIGHLIGHT OF BG DRAWOBJECT High TO FALSE

END MOUSEDOWN

Thus, if High contains the name of a draw object (that is, High is not

empty), the script turns off highlighting for that object. Meanwhile, because I

had set the AUTOHIGHLIGHT property to TRUE for office and cubicle

objects using the Object Properties dialog box, shown in Figure 10.10, high-

lighting will be turned on automatically for whatever office the user has

selected with the mouse once the mouse button is released.

Figure 10.10
The Object

Properties dialog

box

PLUS
File Edit Navigation Object T_ext Font Graphic

h\ i IbBIjIDqM/N-1 I |NJjJ!P>

Bkgo<f 0rowO{y
l

s NiliMi

Styie:

_) ovol

_) bo(3 lift*

O »*<* H"

1X1 Sttow ttotrn

H A«to ktSk

No Events

7J Coat Modify

top:

197

110

246

159

^~l (l
OK

|) ^SL-

Now let's look at the scripts for office and cubicle objects.

The Office Object Scripts

Each office and cubicle object has two simple scripts: one that changes the

Floor Plan's window title to identify the occupant of the office or cubicle

whenever the mouse pointer is over that object, and one that changes the

Exploring the Application 229

window title back to "Who's Who at PC/C?" once the mouse pointer leaves

that object. The first script looks like this:

ON MOUSEEENTER

SET WINDOWTITLE TO "Paul Bonner, Senior Editor"

END MOUSEENTER

This script must be modified for each office to reflect the name and title of its

occupant.

The second script is identical for each office and cubicle:

ON MOUSELEAVE

SET WINDOWTITLE TO "Who's Who at PC/C?"

END MOUSELEAVE

Facilities Scripts

The scripts for conference rooms and other facilities that identify them-

selves on the title bar are similar to those for offices and cubicles. In fact,

their MOUSELEAVE handlers are identical to that listed above, and their

MOUSEENTER handlers differ only in that they identify the purpose of

the facility, rather than an individual's name and title, as follows:

ON MOUSEENTER

SET WINDOWTITLE TO "Conference/Training Room"

END MOUSEENTER

In addition, however, these objects have empty scripts for handling the

MOUSEUP and MOUSEDOWN messages:

ON MOUSEUP

END MOUSEUP

ON MOUSEDOWN

END MOUSEDOWN

These empty handlers intercept the MOUSEUP and MOUSEDOWN
messages for these objects and discard them, preventing them from ever

reaching the background-level scripts for those events. Thus, clicking the

mouse on a conference room does not change the current highlighting or

make Plus attempt to jump to a personnel card for that room.

Inanimate-Object Event Handling

I didn't want Plus to respond at all to mouse events involving inanimate

objects, such as the outside walls on the Floor Plan, so I used the Object

Properties dialog box to set the No Events property for these objects to

True. Doing so tells Plus to ignore any events involving these objects.

230 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

Floor Plan Screen Buttons

In addition to all the draw objects that make up the office map, the Floor

Plan screen includes three standard buttons: Search, Org Chart, and First.

As previously noted, the Search and Org Chart buttons are identical to those

on the Opening screen card, except for the visual effects used with the Org
Chart button's UNLOCK SCREEN command (the Floor Plan version of

this script uses the ZOOM OPEN effect).

The button called First, which has the icon of a face in profile, is

designed to take you back to the Opening screen of the application. Its script

looks like this:

ON MOUSEUP

SET CURSOR TO 4

LOCK SCREEN

GO TO FIRST

UNLOCK SCREEN WITH VISUAL EFFECT SCROLL LEFT

SET WINDOWTITLE TO "Who's Who?"

END MOUSEUP

This script simply turns on the busy cursor, locks the screen, and then

activates the Opening screen (the first card in the stack, hence the keyword

FIRST), unlocks it with a SCROLL LEFT effect, and sets the window title

to "Who's Who?"
That's it for the Floor Plan screen. Now let's look at the Personnel Card

screen.

The Personnel Card Screen

Each personnel card contains four background database fields (one each for

the employee's name, title, telephone number, and department), plus a scroll-

ing text field that can hold extended biographical data, and a paint object

that can display a scanned photograph of the employee. In addition, each

personnel card has four buttons, one to launch the search function and three

others to jump to the Organization Chart, Opening screen, and Floor Plan.

Figure 10.11 shows a typical personnel card.

As discussed above, the script creates new personnel cards automatically

as it needs them, by copying the Personnel Card template and pasting a new

card into the stack. These newly created cards are more or less blank. The

name field holds the last name of the employee, and the department field

holds its default value, Features, as shown in Figure 10.12.

To fill in a newly created card, you would simply type the necessary data

into the Name, Title, and Phone database fields, and the biographical infor-

mation field. The Dept. (department) field, however, won't allow you to type

data into it directly. Instead, it reacts to any keypress by opening a pop-up

menu on the screen, from which you can select the employee's department,

as shown in Figure 10.13.

Exploring the Application 231

Figure 10.11
A Who's Who

personnel

information card

Name Paul Bonner Phone 617 -555-5555

Title; Senior Editor Dept. Features

Bonner splits his time

between studying Windows

development Issues,

developing the Windows

Project series, writing

product reviews, and

working on improving his

hook shot.

1

(555

^
u

Figure 10.12
A newly created

personnel card

File Edit Navigation Object Jext Font Graphic

DeJean

———.

—

rr

232 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

Figure 10.13
The pop-up

Departments menu

Providing a pop-up list such as this allows you to ensure that all entries

for a given department will be the same—which simplifies processes such as

searching for people by department. Otherwise, one Features writer's depart-

ment might be labeled "Features", another "Feat. Dept.", and another "Feat".

The paint object field for the scanned photograph is also empty when

Plus creates the card. To add a scanned photo to the field, you can either

select the Import Picture option on the Object Information dialog box, or

simply select the card in background editing mode and paste a graphic that

you have previously captured to the Clipboard into it. (I found the second

method the more reliable of the two. I used a hand scanner to create a 16-

color scanned image of each employee photograph, and then used the Win-

dows Clipboard to paste it onto the card.)

The Department Field Script

The Personnel Card screen has only two unique scripts: the script for its

Floor Plan button and the script for the department field. Let's look at the

department field script first:

ON KEYPRESSED

PUT " Management; Art; Features; Help; New

Copy; Production" INTO Department^' st

Prime Time;

Exploring the Application 233

IF N=0 THEN EXIT

IF N-l THEN PUT

IF N=2 THEN PUT

IF N=3 THEN PUT

IF N=4 THEN PUT

IF N=5 THEN PUT

IF N=6 THEN PUT

IF N=7 THEN PUT

IF N=8 THEN PUT

END KEYPRESSED

PUT THE TOPLEFT OF ME INTO ThePos

PUT 1 INTO ItemNumber

PUT POPUPMENUSELECT (ThePos, Departments st , ItemNumber)

INTO N

KEYPRESSED

'Management" INTO ME

'Art" INTO ME

'Features" INTO ME

'Help" INTO ME

'New" INTO ME

'Prime Time" INTO ME

'Copy" INTO ME

'Production" INTO ME

This script, which is launched in response to any keypress in the Depart-

ments field, begins by creating a list of all PC/Computings editorial depart-

ments, which it calls DepartmentList. Then it assigns the top-left screen

coordinates of the department field (THE TOPLEFT OF ME) to the vari-

able ThePos, and the number 1 to the variable ItemNumber.

Next, the script opens a pop-up menu at the coordinates indicated by

ThePos, using the list of items in DepartmentList as menu items, with the

first item in the list (ItemNumber) highlighted. It then waits for the user to

select a menu item. Once a selection has been made, the number of the

selected item is assigned to the variable N.

Finally, the script fills the department field with a string corresponding to

the user's choice. If N = 1 , for instance, indicating that the user selected the

first item on the list, the script places "Management" into the department

field.

This segment of code demonstrates both how unconventional and how
intuitive the Plus language can be. "PUT THE TOPLEFT OF ME INTO
ThePos" looks like gibberish to anyone used to more conventional lan-

guages, but it actually is pretty simple to understand, if you don't mind its

self-conscious cuteness.

The Floor Plan Button Script

The only other unique script on the Personnel Card screen is the MOUSEUP
handler for the Floor Plan button, which not only jumps to the Floor Plan

screen but highlights the office of the person whose personnel card you last

worked with.

ON MOUSEUP

SET CURSOR TO 4

GLOBAL H |l

GET THE SHORT NAME OF THE CARD

PUT IT INTO HIGH

234 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

LOCK SCREEN

GO TO CARD AAAB

UNLOCK SCREEN WITH VISUAL EFFECT SCROLL RIGHT

SET WINDOWTITLE TO "Who's Who?"

IF High IS NOT EMPTY THEN SET HI LITE OF BG DRAWOBJECT High TO TRUE

END MOUSEUP

The MOUSEUP handler sets the busy cursor, then creates the global

variable High. Next it obtains the short name of the current card and assigns

it to the variable High. Then it locks the screen, jumps to the Floor Plan

screen (card AAAB), unlocks the screen with a scroll-right effect, and sets

the window title of the Floor Plan screen to "Who's Who?" Finally it exam-

ines the variable High, and if it is not empty (which it would be only if the

user pressed the Floor Plan button while viewing the empty Personnel Tem-

plate card) turns on highlighting for the draw object with the same name.

That brings us to the application's final screen, the Organization Chart.

The Organization Chart Screen

Although the Organization Chart screen is visually complex, its operation

and scripts are very simple. The screen displays a hierarchical chart of the

editorial organization at PC/Computing (circa January, 1991), with each indi-

vidual represented by a separate pushbutton, as shown in Figure 10.14.

When you press a button, Plus jumps to that individual's personnel card.

In addition, the Organization Chart screen contains buttons for jumping

to the Floor Plan and Opening screens, and a button to activate the Search

routine. The scripts for the Search and Floor Plan buttons are identical

(except for the visual effect on the Floor Plan button's screen-unlock

sequence) to those for the same buttons on the Opening screen. And the

Opening Screen button's script is identical (again, except for the unlock

sequence) to that of the corresponding button on the Floor Plan.

I painted the hierarchical organization lines directly onto the Organiza-

tion Chart's background using Plus's paint tools, so they exist only as bit-

maps, not as objects.

The buttons representing each member of the editorial staff are identical

except for their names. The script that powers those buttons is located at the

background level, rather than being contained in each button. I could have

attached it to each button's MOUSEUP procedure, but that would have

meant that the script code would be physically reproduced once for every

button in the stack's file—swelling the file size and increasing the amount of

time it takes Plus to load the screen. So instead, I placed the script at the

background level, where it applies to every personnel button on the organiza-

tion chart.

Exploring the Application 235

Figure 10.14
The Organization

Chart screen

The Organization Chart Script

The Organization Chart script reacts to the MOUSEUP event, and uses the

TARGET variable to obtain the name of the button the user pressed:

ON MOUSEUP

SET CURSOR TO 4

LOCK SCREEN

PUT THE SHORT NAME OF THE TARGET INTO ChosenOne

IF ChosenOne IS "ZZZ_Org_Chart" THEN

UNLOCK SCREEN

SET WINDOWTITLE TO "Organization Chart"

EXIT MOUSEUP

END IF

GO TO CARD ChosenOne

IF THE RESULT IS NOT EMPTY THEN LOCK SCREEN

GO TO CARD AAAC

DOMENU COPY CARD

DOMENU PASTE CARD

SET THE NAME OF THIS CARD TO ChosenOne

PUT ChosenOne INTO BG DBFIELD Name

236 PRESENTING DATA—WHO'S WHO AT PC/COMPUTING

SORT ASCENDING BY SHORT NAME OF CARD

GO TO CARD ChosenOne

END IF

UNLOCK SCREEN WITH VISUAL EFFECT ZOOM OPEN

SET WINDOWTITLE TO ChosenOne

END MOUSEUP

By now this probably looks pretty familiar, since it closely resembles the

scripts that get you to the personnel cards from the Opening screen or the

Floor Plan.

The script uses TARGET to obtain the user's selection, and assigns that

to the variable ChosenOne. Then it determines if ChosenOne is equal to

"ZZZ_Org_Chart", which happens to be the name of the Organization

Chart. (ChosenOne would have that value if the user had clicked on the

background, rather than on a button.) If so, the script unlocks the screen,

restores the window title (which Plus forgets when it encounters a LOCK
command) and exits the MOUSEUP procedure.

Otherwise, the script issues the command GO TO CARD ChosenOne.

If no such card exists, the script creates it, using the now familiar COPY
CARD, PASTE CARD sequence to duplicate the Personnel Template card.

That concludes discussion of the Organization Chart screen.

Wrapping Up the Who's Who Application

The Who's Who application demonstrates just how easily you can build a

data-presentation application in Windows, given the right development tools.

This application obviously doesn't perform any heavy-duty data-analysis

functions, but it provides rapid access to a variety of data in forms that

would be difficult to present with a non-Windows development tool. More-

over, once you've become proficient with Plus, it would be easy to modify

the application to have it gather and maintain a richer set of data. In the

meantime, Who's Who at PC/Computing was simple to build, and is enjoy-

able to use—a winning combination any way you look at it.

CHAPTER

Automating

Existing

Applications

—

AutoPrint

for Windows

Designing the

Application

How AutoPrint Works

The GETFILE.WBT
Batch File

The AUTOPRN.WBT
Batch File

Putting the Batch Files

to Work

The WinBatch Version

The COPYMAC.WBT
Batch File

The AUTOPWBT
Batch File

Automating Existing Applications 239

SOMETIMES YOU CAN GET AN AWFUL LOT OF MILEAGE OUT OF A FEW
lines of programming code. Take, for instance, AutoPrint for Win-

dows, a batch printing utility designed to automate the process of

printing files created by Windows applications. It allows you to

specify files for unattended printing, eliminating the need to manually issue

the File Open and Print commands for each file you wish to print. It also

allows you to specify a time at which the print utility will run each day, so

that time-consuming print jobs can be performed overnight or at another

time that will not interfere with your PC use. It is powerful enough to print

any number of files, created by nearly any Windows program, at any time

you specify, and yet requires only a few dozen lines of code.

Printing a document created by a Windows application is tricky business.

You need to know all about fonts, bit-mapped graphics, and complex page

formatting, and you have to translate that knowledge to your program.

That's the kind of task that requires thousands of lines of program code, not

dozens, and a knowledge of Windows' internal workings well beyond the

reach of most users.

The key to AutoPrint's efficiency is that it doesn't actually print anything

itself. Instead it sidesteps those complex formatting issues by having the pro-

gram that created a document do the actual printing. So, rather than getting

involved in the messy job of printer control, AutoPrint simply controls other

Windows applications, taking advantage of their ability to print the docu-

ments they create. In short, when you run the AutoPrint utility, it automati-

cally identifies the application that created each document you want to print,

launches that application, and tells it to print the document.

By virtue of its ability to use the printing facilities of other applications

in this way, AutoPrint for Windows is an embodiment of the concept of cut-

and-paste programming discussed in Chapter 3. Even though it consists of

only a few simple lines of batch language code, it performs a series of highly

complex tasks by taking advantage of the capabilities of other applications.

The same approach can be used for a wide variety of utility programming

tasks in Windows.

The Impetus behind AutoPrint

AutoPrint was born out of my frustration with the way that printing several

complex documents under Windows can tie up a computer. Try to print a

half-dozen large PageMaker documents, or large documents created in any

other Windows program that contain lots of different fonts and large bit-

mapped graphics, and you might end up sitting in front of your computer

for hours. And you spend most of that time just waiting for your application

to send the output from one document to the Windows Print Manager or to

your printer before you can give it the commands to load and print the next

document. The ridiculous thing about it is that the process is essentially

240 AUTOMATING EXISTING APPLICATIONS

automatic—as long as your printer doesn't run out of paper all you basically

have to do is issue the print command. But despite that, you can't do any-

thing else with your PC, or at least with the application doing the printing,

until the print job is complete.

The obvious solution was to build a print queue for Windows. By this I

don't mean a replacement for Windows' Print Manager, which saves the data

being sent from an application to your printer while a document is being

printed, and feeds that information out only as fast as the printer can handle

it. Although Print Manager speeds the printing process a little by enabling

your application to operate faster than your printer can accept data, the pro-

cess can still be time consuming because of the time it takes for Windows
applications to format documents for printing.

Rather, I wanted AutoPrint to initiate and manage the slow, dull process

of printing multiple documents, so that it could take place after I'd gone

home for the night, or while I was at lunch or a meeting, not while I sat at

the keyboard. So I designed AutoPrint to act as a print queue that would

maintain a list of files designated for later printing, and then print them at a

more convenient time.

Designing the Application

The requirements for AutoPrint were so simple that it could have been built

using nearly any Windows development tool. All the utility really had to do

was provide a way for the user to designate the documents to be printed;

then it had to interact with other Windows applications to make them print

those documents.

One approach would have been to use a tool with which I could design

an attractive user interface for the portion of the application used to desig-

nate the files the utility should print. In that case, the application would prob-

ably have looked something like a modified version of the File Open dialog

box provided by Windows 3.1, with drive, directory, and file list boxes that

the user could manipulate until the file to be printed was highlighted.

It wouldn't have been difficult to implement the utility in that fashion

using a tool such as Turbo Pascal for Windows, Visual BASIC, or Realizer,

but it nevertheless seemed unnecessarily complex. What appeared more rea-

sonable was to try to make the process of selecting files for later printing an

extension of the standard file management tools I was already using for

things like moving and deleting files. That way, I hoped, I would be able to

highlight the name of a document in a Windows 3.1 File Manager window,

press a hotkey, and instantly have the document added to the AutoPrint list.

To accomplish that, I wanted a tool that put more emphasis on interact-

ing with other applications than on building custom applications from

How AutoPrint Works 241

scratch. Specifically, I needed a Windows batch language, such as WinBatch,

Bridge Batch, or Batchworks. The question was, which one?

The Right Tool for the Job

Following the precepts of cut-and-paste programming, I opted to build the

initial version of AutoPrint for Windows using Batch Runner, the version of

WinBatch that is built into Norton Desktop for Windows. Doing so allowed

me to take advantage of Norton Desktop's Scheduler utility to designate a

daily time at which all the files in the AutoPrint queue would be printed. It

also simplified the process of actually initiating the printing of each docu-

ment, because, unlike the standard Windows 3.1 File Manager, Norton Desk-

top has a "smart" print command.
In the Windows 3.1 File Manager, when you highlight a plain ASCII text

file (such as one created by the Notepad accessory) and then issue the File

Print command, the file will be printed. But if you highlight any other kind of

file and issue the File Print command, File Manager merely prints the name
of the file.

In contrast, whenever you highlight a file in a Norton Desktop drive win-

dow file pane and issue the File Print command, Norton Desktop uses the

file association recorded in the Extensions section of WIN. INI to launch the

program associated with that file, and then instructs it to print the file.

Thus, using the Norton Desktop batch language eliminated the need to

write either scheduling code or the code necessary to launch applications

and issue the Print File command.
Once the initial, Norton Desktop version of AutoPrint was complete,

however, I expanded the code using the standard version of WinBatch and

Windows File Manager to provide the same scheduling and printing functions

outside of Norton Desktop. (See the section titled "The WinBatch Version".)

How AutoPrint Works
AutoPrint for Windows is used as follows: Throughout the day you can desig-

nate any document file for printing, simply by selecting its name—either in a

File Manager window or in the file pane of a Norton Desktop for Windows
drive window—and pressing Ctrl-P Doing so will launch a short batch pro-

gram called COPYMAC.WBT (or GETFILE.WBT if you're working with

Norton Desktop), which adds the file to the list of those to be printed. When
the actual AutoPrint batch file is run later, it directs the printing of each file

on the list.

The key to AutoPrint's ability to interact with other applications this

way is found in the WIN. IN I file in your Windows directory. This file, used to

store a variety of parameters and option settings for Windows and Windows

242 AUTOMATING EXISTING APPLICATIONS

applications, contains a section called Extensions, which Windows uses to

identify the program associated with a given file extension. This information

is used, for example, when you double-click on a document in File Manager.

What you're doing is telling Windows to run that document—but documents

are not executable files. So Windows looks in the Extensions section of

WIN.INI to find out which executable program the file is associated with,

that is, what application should be used to "run" documents that have the

extension of the one you selected.

For instance, some of the standard entries in the Extensions section of

WIN.INI look like this:

txt=notepad . exe A .txt

pcx=pbrush .exe A .pcx

wri=wri te . exe A .wri

These entries tell Windows that Notepad is associated with files that

have a .TXT extension, Paintbrush (pbrush.exe) is associated with .PCX
files, and Write is associated with files that have a .WRI extension. So when
you double-click on a document that has a .TXT extension, Windows loads it

into Notepad.

Many Windows applications add additional entries to the Extension sec-

tion of WIN.INI when you install them on your system. For instance,

Microsoft Word for Windows adds these lines to the Extensions section:

doc=wi nword.exe A .doc

dot=wi nword . exe A .dot

These lines tell Windows to associate files with a .DOC (document) or

.DOT (document template) extension with WINWORD.EXE, Word for

Windows' executable file.

So, as long as your WIN.INI file contains an entry in its Extensions sec-

tion that tells Windows which executable program to use with every type of

file in your AutoPrint list, AutoPrint won't have any trouble identifying the

program to be used in printing each document.

Of course, identifying the program that created a document, successfully

launching that program, and instructing it to print the document are entirely

different things. However, although AutoPrint is not infallible, it will always

be able to complete the first two steps as long as the program it is attempting

to launch is located in a directory or subdirectory listed on your DOS path.

Once the application is launched, AutoPrint can almost always convince

it to print the designated file, thanks to the widespread standardization of

the printing process in Windows applications. In virtually all Windows appli-

cations, you can print a document by pressing first Alt-F (to open the File

menu), then P (for Print), and then Enter once or twice to close a print

The GETFILE.WBT Batch File 243

options dialog box or two. AutoPrint takes advantage of that standardization

to launch the printing process.

This, by the way, is a good example of why it makes sense for developers

of Windows applications to follow the standard Windows application design

guidelines whenever possible. Not everybody necessarily loves the File-Print

method for printing documents. Perhaps some developers would prefer to

use a menu named Output, with options such as Serial Printer, LPT1, and

LPT2, in which case the print command might be something like Alt-O S, or

Alt-O 1 . But you can see how that kind of individualization of a standard

process, such as printing, would make it much more difficult to build a utility

such as AutoPrint (not to mention that it would be one more thing users

would have to learn before they could use the application effectively).

The GETFILE.WBT Batch File

The Norton Desktop version of the AutoPrint utility actually consists of two

batch files, GETFILE.WBT and AUTOPRN.WBT. The former is used to

add files to the AutoPrint queue, whereas the latter prints the files in the

queue.

Norton Desktop for Windows includes a feature known as the Launch

List, which takes the form of a custom menu of applications that is added to

the Control menu of all your Windows applications. (The Control menu is

the one that appears when you click on the gray box in the upper-left corner

of a Windows applications main window.) A small utility called the Launch

Manager allows you to assign new items to the Launch List menu and to des-

ignate hotkeys that can be used to activate those items. I used this utility to

assign the hotkey Ctrl-P to the GETFILE batch program, so that it would

run whenever the user pressed that key combination.

GETFILE.WBT is designed to be used in conjunction with Norton

Desktop s File Manager-like drive windows. To add a file to the AutoPrint

queue, you simply highlight the file in the drive window's file pane and then

press Ctrl-P to launch the GETFILE batch program.

GETFILE.WBT has a very simple job. It simply has to identify the file

selected in the drive window file pane and add it to the AutoPrint queue,

after checking to ensure that an association exists for files with its extension.

The only difficult part of that process is identifying the selected file. In

order to print it later, the AUTOPRN batch file needs the file's full path

name, and. unfortunately, it can't actually read the screen. So there had to be

some way to determine which file was selected and its full path.

Even that was fairly simple, however. When you issue the File Print com-

mand in Norton Desktop, a dialog box entitled "Print" opens. The Print dia-

log box includes an editable text box listing the name and lull path o{ the file

currently selected in the file pane, as shown in Figure 1 1.1. So GETFILE

244 AUTOMATING EXISTING APPLICATIONS

issues the File Print command, copies the contents of that text box and adds

them to the AutoPrint queue list, and then cancels the File Print dialog box.

Figure 11.1
Norton Desktop's

Print dialog box
Directory: c:\amipro\docs

Print-

OK

_ :

C:\AMIPRO\DOCS\demo.samH

lo: growse...

HP LaserJet Series II on LPT1:
*l Setup...

GETFILE Dissected

GETFILE.WBT consists of four simple routines, called Start, Main, Wrong-

App, and AssocErrJump.

The Start Routine

The Start routine simply initializes three string variables: AutoPrnDir (the

directory that holds the Norton Batch Runner program, used to execute

batch files), AutoPrnList (which contains the name of the AutoPrint queue

list), and TempFile (which holds the name of a temporary file used by the

GETFILE routine).

:Start

AutoPrnDir=DIRHOME()

AutoPr n Li st=STRCAT(AutoPrnDir, "AUTOPRN . LST"

)

Temp File=STRCAT(AutoPrnDir, " TEMP LI ST

.

LST")

The DIRHOME function in the first line of the routine returns the name

of the directory in which Batch Runner resides. Then the second and third

lines use the STRCAT command to concatenate that name with the file

names AUTOPRN.LST and TEMPLISTLST, to define the variables Auto-

PrnList and TempFile. Thus, if Batch Runner resides in the directory

C:\NDW\, the variable AutoPrnList will equal C:\NDW\AUTOPRN.LST
after the execution of the second line in the routine.

The Main Routine

The next routine, Main, is the workhorse of the GETFILE.WBT batch file.

This routine begins by making sure that the cursor is in a Norton Desktop

drive window file pane and that a single file has been selected. It then copies

the name of that file to a variable called FileToPrint. Next, it checks that an

association has been defined for files with the extension of the selected file.

The GETFILE.WBT Batch File 245

Then it adds the file's full name and path to the list of files to be printed. And
finally, it unloads itself from memory.

Here's how the routine begins:

: Ma i n

SENDKEYC "
! FP"

)

IF WINGETACTI VE() <>"Print" THEN GOTO WrongApp

The first line uses SENDKEY to issue the File Print command by send-

ing the keystrokes Alt-F P to Norton Desktop. (Alt is represented in a

SENDKEY command by an exclamation point character (!); similarly, Ctrl is

represented by a caret (

A
) and Shift by a plus sign (+).)

After the first line of the Main routine sends the File Print command,

the second uses the batch language 's WINGETACTIVE title to obtain the

title of the current active window or dialog box. If the cursor is in the file

pane of a Norton Desktop drive window, sending the File Print command
should open a dialog box labeled "Print". If the active window isn't entitled

Print, then the cursor must not have been in a Norton Desktop drive window

file pane, so execution jumps to the error routine called WrongApp
(described below).

Of course, all this test does is ensure that some application opened a dia-

log box labeled "Print" in response to the SENDKEY command. So the rou-

tine continues by checking to ensure that a file name is highlighted in the

Print dialog box, as follows:

CLIPPUTC "")

SENDKEYC "
^

(

INSERT}")

SENDKEY ("{ESCAPE}")

FileToPrint=CLIPGET()

IF FileToPrint=="" THEN GOTO WrongApp

Period=STRSCAN(FileToPrint,".",l,@FWDSCAN)

IF Period==0 THEN GOTO WrongApp

First the Windows Clipboard is emptied by placing an empty string onto

it using the CLIPPUT command. Then SENDKEY is used to send the stan-

dard Windows shortcut for the Copy command (Control-Insert) to copy the

contents of the edit box that displays the document's full name and path.

Next, the routine sends an Escape character to cancel the dialog box.

and then assigns the contents of the Clipboard to the variable FileToPrint.

The script then examines the contents of File ToPrint to ensure that the vari-

able contains a valid file name. It starts by checking to make sure that FileTo-

Print isn't an empty string. If it is empty, that means there was no file name
to copy in the dialog box's edit field, so it jumps to the WrongApp error rou-

tine. (One way this error could occur is il more than one file name is high-

lighted at the time you press Ctrl-P.)

246 AUTOMATING EXISTING APPLICATIONS

Next, the routine scans the string to detect the presence of a period, such

as that used to separate a files name and its extension. If the string doesn't

contain a period, then either a directory name (rather than a file name) was

highlighted, or the cursor wasn't in a Norton window file pane at the time the

routine was activated. In any case, without a file name to process, the routine

cannot continue.

If a file name was obtained from the Print dialog box, the routine goes

on like this:

Ext=FILEEXTENSION(FileToPrint)

As socExists=IN I READ ("Extensions", Ext, ©FALSE)

If AssocExists==@FALSE THEN GOTO AssocErrJump

It uses the FILEEXTENSION function to obtain the file's extension.

Then it uses the INIREAD command to determine if an association exists

for files with that extension. The INIREAD command automatically

searches the section of WIN.INI specified by the first item in its parameter

list. If it finds the second item specified in the parameter list there, it returns

the value @TRUE. Otherwise, it returns @FALSE.
If the specified document's extension is not found in the Extensions list,

the batch program jumps to a second error routine, AssocErrJump (see

below).

If the specified file's extension is found in the Extensions section of WIN.-

INI, GETFILE knows that AutoPrint will be able to print the file later. So it

adds the file's complete name and path to the queue list with these commands:

FHandl e=F

I

LEOPEN (TempFi 1 e, "WRITE")

FILEWRITE(FHandl e.FileToPrint)

FI LECLOSEC FHandl e)

FILEAPPEND(TempFile,AutoPrnList)

FILEDELETE(TempFile)

FileUpper-STRUPPER(FileToPrint)

MESSAGEC'Get File", "%FileUpper% has been added to the

AutoPri nt queue. "

)

EXIT

The first command in the preceding block opens a temporary file, using

the name assigned earlier to the variable TempFile. Next, it writes the name

of the selected file (FileToPrint) to that file and then closes the file. Then it

appends that temporary file to the end of the file identified by the variable

AutoPrnList (creating the latter file if it does not already exist). It then

deletes the temporary file, converts the name of the file to be printed to

uppercase, and displays a message saying that the file has been added to the

queue, as shown in Figure 1 1 .2. Finally, it exits.

The GETFILE.WBT Batch File 247

The reason for this somewhat clumsy use of a temporary file is that the

Norton Desktop batch language doesn't allow you to position the cursor

within a file before writing to it. Thus, if the routine simply opened the print

queue list and wrote the name of the file to be printed there, each time you

ran the batch program it would overwrite the existing contents of the queue.

This method preserves the previous contents of the file, with only a small

cost in terms of elegance.

Figure 11.2
The Get File dialog

box

Get File

C:\AMIPRO\DOCS\GOODIES.SAM has been added to the

AutoPrint List.

OK
I

The final two routines in GETFILE.WBT handle common errors that

might arise during use of the batch program.

The WrongApp Routine

The first of these routines, WrongApp, is called when any of three possible

error conditions occurs:

There was no Norton Desktop drive window active at the time the batch

file was launched

The cursor wasn't in the file pane window

The cursor was highlighting either a subdirectory name or more than one

file (neither condition can be handled by GETFILE.WBT)

In the event that any of these errors occurs, the batch program closes the

open dialog box and displays an error message, as shown in Figure 1 1.3.

Once the user has clicked on the OK button in the error message box. the

program exits.

: WrongApp

SENDKEYCIESC}")
MESSAGE("AutoPRN Error". "Sorry, the cursor must be in a

Norton Desktop drive window file pane and a single file

must be highlighted for the AutoPRN file selection

routine to work correctly.")

EXIT

248 AUTOMATING EXISTING APPLICATIONS

Figure 11.3
The error message

displayed by the

WrongApp routine

AutoPRN Error

Sorry, the cursor must be in a Norton Desktop drive

window file pane and a single file must be highlighted

for the AutoPRN file selection routine to work correctly.

The AssocErr Jump Routine

The final routine in GETFILE.WBT is called if the extension of the file that

the user has selected for printing is not listed in the Extensions section of the

WIN.INI file. AutoPrint for Windows can't print such files, so rather than

adding them to the AutoPrint queue, GETFILE displays an error message

telling the user to use Norton Desktop's Associate command to fix the prob-

lem by identifying the program that should be associated with that kind of

document.

:AssocErrJump

SENDKEY("(ESCI")

MESSAGE("AutoPRN Error", "Sorry, no association exists for

this file, so it won't be printable. Use File Associate to

correct the probl em. "

)

EXIT

The AUTOPRN.WBT Batch File

AUTOPRN.WBT is the second batch program used by the Norton Desktop

version of AutoPrint for Windows. Its function is also very simple. It sends

the name of each document listed in the AutoPrint queue to Norton Desk-

top's File Print command. Then, when each file in the queue has been

printed, it deletes the queue list and then exits.

The only tricky part of this is the timing. It's easy enough to send the

command to print the first file in the queue, but once that's been done the

batch program has to pause while Norton Desktop runs the application that

will do the actual printing, directs it to print the file, and then closes the appli-

cation down again. Only then should the batch program send the File Print

command for the next file in the queue.

[f you were to print several files in a row yourself using the File Print

command, you would rely on visual cues to know when Norton Desktop was

ready to accept another file to print: The cursor would change from an hour-

glass (indicating that Windows is busy) to an arrow, and the icon represent-

ing the program doing the printing would disappear from the screen.

The AUTOPRN.WBT Batch File 249

Unfortunately, the batch language can't read the screen that way. However, it

can count open windows, and then use the number it counts to determine

whether the application used to print the current document is still active, or

if it has been unloaded from memory, in which case Norton Desktop should

be ready to print the next file in the queue.

AUTOPRN Dissected

AUTOPRN.WBT consists of five routines: Start, GetFile, PrintFile,

TitleCheck, and ExitRoutine.

The Start Routine

The Start routine begins, as shown below, by initializing variables pointing to

the Batch Runner directory (AutoPrnDir), the file containing the print list

(AutoPrnList), and a variable that contains the horizontal tab character

(HTab).

: Start

AutoPrnDir=DIRHOME()

AutoPrn Li st=STRCAT(AutoPrnDir, "AUTOPRN . LST"

)

HTab=NUM2CHAR(9)

Next, the routine checks to make sure the queue file specified in the vari-

able AutoPrnList actually exists. If there is no queue file, that means that

there are no files to print, so the program exits. Otherwise, it opens the file

for reading.

IF FileExist("%AutoPrnList%")==@FALSE THEN EXIT

FHandle=FILEOPEN("%AutoPrnList%"."READ")

Then, the Start routine activates Norton Desktop and closes any open

Norton Desktop windows using the Close All command on Norton Desk-

top's Windows menu.

WINACTIVATECNorton Desktop")

SENDKEYC !WA")

After that, the routine reads the WIN. INI file twice: first to identity the

current default printer, and then to determine if the printer setup specifies

that the Print Manager should be used to spool printer output. If so, it

launches Print Manager, so that it will be included in the initial count of open

windows that AUTOPRN.WBT uses to determine whether it is time to send

the print command for the next file.

Pri nter=I N I READC Windows "."device"."")

Spool er=I N

I

READ(" Windows "."Spooler "."yes")

IF Spooler=="yes" THEN RUN("PRINTMAN.EXE" .
" ")

250 AUTOMATING EXISTING APPLICATIONS

Finally, the Start routine uses the WINITEMIZE command to obtain a

list of all open windows, and then the ITEMCOUNT command to count

that list:

Apps=WINITEMIZE()

AppCount=ITEMCOUNT(Apps,HTab)

The WINITEMIZE command automatically separates each member of a list

with a horizontal tab character, so the second parameter to the ITEM-
COUNT command tells Batch Runner to use a tab as the delimiter in count-

ing the members of that list.

The GetFile Routine

The next routine, GetFile, consists of only two lines.

:GetFile

Fi 1 eToPn"nt=FILEREAD(FHandle)

IF FileToPrint=="*EOF*" THEN GOTO ExitRoutine

The first line uses the FILEREAD command, which reads a single line of a

file at a time, to get the next entry in the AUTOPRN.LST file. Then it

checks to see if the end-of-file marker has been reached, and if so, it jumps

to the Exit routine. Otherwise, it proceeds on to the PrintFile routine, which

does the actual work of sending the commands to print the file.

The PrintFile Routine

The PrintFile routine starts by activating Norton Desktop for Windows and

sending the File Print command. That opens the Print dialog box, to which

the batch file sends the name of the file to print. Then it sends a Tab charac-

ter to advance the cursor to the next field in the dialog box, a drop-down list

box used to select the printer to be used. The routine automatically selects

the first printer on the list, and then tabs over to the OK button and presses it

by sending an Enter character. This closes the dialog box, instructing Norton

Desktop to execute the print command. The PrintFile routine concludes by

delaying for five seconds before it proceeds to the TitleCheck routine.

: P r i n t F i 1 e

WINACTIVATECNorton Desktop")

SENDKEYC "
! FP"

)

SENDKEY("%FileToPrint%")

SENDKEYf" 1TABI")

SENDKEYf "! (DOWN! (DOWN)")

SENDKEYriTABMENTERl")
DELAYC5)

The AUTOPRN.WBT Batch File 251

The TitleCheck Routine

The TitleCheck routine is used to monitor the progress of the preceding

print command. It consists of a brief loop that the program executes over

and over until Norton Desktop is ready to print another file.

The key to this routine is the fact that Norton Desktop automatically

closes down any programs launched using the File Print command after the

print job for which they were launched has been completed. This means that

between jobs the count of active applications should be the same as the ini-

tial count obtained during the Start routine.

:Ti tl eCheck

ActiveWin=WINGETACTIVE()

IF ActiveWin=="Warning" THEN EXIT

IF ActiveWin=="Print Manager" THEN EXIT

IF ActiveWin=="Norton Desktop" THEN GOTO GetFile

NewApps=WINITEMIZE()

NewAppCount=ITEMCOUNT(NewApps,HTab)

IF NewAppCount==AppCount THEN WINACTIVATEC "Norton Desktop")

GOTO TitleCheck

This routine begins by obtaining the title of the active window. During a

print job, this will generally be the name of the program that created the file

being printed. For instance, if you're printing a file with a .WRI extension,

the title will be "Microsoft Write."

The second line of the routine checks to see whether the title starts with

the word "Warning", which would indicate that Norton Desktop has

detected a print error. The batch file responds to this by exiting, leaving the

error message on screen for you to read when you return. The next line per-

forms almost the same function, checking this time for an error message

from Print Manager.

Next the routine checks to see whether Norton Desktop is the active

application. If so, that means that the current print task has been completed,

and so the routine jumps to the GetFile routine to start the next print job.

Otherwise, the routine obtains a new list of open windows, and counts

that list. If a print job is active, the new count will be higher than the original

window count, because the application doing the actual printing will be

among those that are counted. If not, then the last print job must have fin-

ished, so the command to activate Norton Desktop is issued. If a job is

active, then it loops back to the beginning of the routine and once again

starts checking the title of the active window.

The ExitRoutine Routine

The final routine in the batch file, ExitRoutine, is performed after all the

files in AutoPrnl.ist have been printed. It begins with an INIWRITF com-

mand, which restores the default printer configuration in the WIN. INI file.

252 AUTOMATING EXISTING APPLICATIONS

(This is necessary because the Norton Desktop File Print command tends to

deactivate the default printer after it finishes printing a file.) Then it closes

the AUTOPRN.LST file, deletes it, and exits.

: Exi tRouti ne

I NIWR I TEC "Windows "."device ".Printer)

FILECLOSE(FHandle)

FILEDELETE(AutoPrnList)

EXIT

Putting the Batch Files to Work
Once the two batch files were complete, all that remained to be done to fin-

ish the Norton Desktop version of AutoPrint was to add two menu items to

the Launch List for launching GETFILE.WBT and AUTOPRN.WBT (as

shown in Figure 11.4), and to schedule AUTOPRN.WBT to run each day.

Figure 11.4
The Launch List

menu

Norton Desktop

Restore

Move
Size

Minimize

Maximize

Close AU+F4

Switch To... Ctrl+Esc

Launch Manager...

*utoPrint Select Ctrl+P

AutoPrint for Windows
Control Panel

Format Diskette

KeyFinder

Scheduler

Sleeper

SuperFind

Putting the Batch Files to Work 253

The first new menu item, labeled "AutoPrint Select", was given the fol-

lowing command line:

C:\NDW\BATCHRUN.EXE GETFILE.WBT

This links it to the GETFILE batch file. The option was also assigned the

hotkey Ctrl-P, so that GETFILE would run whenever that key combination

was pressed.

I also added an item to the Launch List menu for launching the AUTO-
PRN batch file, labeling it "AutoPrint for Windows" and giving it this com-

mand line:

C:\NDW\BATCHRUN.EXE AUTOPRN.WBT

I didn't assign a hotkey to this item since it doesn't require the same level of

instant access as the GETFILE.WBT batch program.

The final step in setting up the Norton Desktop version of AutoPrint for

Windows was to add a pair of items to Norton Desktop s Scheduler. The
Scheduler allows you to specify events—either a message to be displayed or

a program to execute—that you want to have occur at a specified time or at

regular intervals, as shown in Figure 1 1.5. If you set up Scheduler to automat-

ically run whenever Windows is launched, you can be sure that the events

you've specified will occur as scheduled.

Figure 11.5
The Norton

Desktop Scheduler
Events

AuloF'RN Piogtam

Scheduler- September 16, 1991 04:27

Frequency Scheduled

Daily

\»IA<
At 22 00

Ed*

j
C°p»

I I Hide When Iconized D Load With Windows

The first item added to the Scheduler was a reminder message: "Remem-
ber to identify files that you want printed overnight!", shown in Figure 1 1.6.

I scheduled it to pop up on my screen every day at 5:00 p.m.

Finally. I scheduled AUTOPRN.WBT to automatically run nightl) at

10:00. So every night at 10:00 p.m. the AUTOPRN batch file launches.

checks to see if a print queue list exists, and if so. prints the liles on it.

254 AUTOMATING EXISTING APPLICATIONS

Figure 11.6
Creating the daily

AutoPrint nudge

Cancel

Schedule

Fiequencji:

lime:

Bay:

Date:

Month:

Year:

Daily

17 >J:uO Xj

Having the AUTOPRN.WBT file execute every day like this ensures

that any files you've added to the print queue will automatically be printed.

Of course, if you want to print them at some other time, you simply select

the AutoPrint item from the Launch List to immediately run the AUTO-
PRN.WBT batch program.

The WinBatch Version

No sooner had I wrapped up the Norton Desktop version of AutoPrint for

Windows than I realized that, as handy as some of Norton Desktop's features

were in AutoPrint, they weren't absolutely essential. Using the capabilities

of the WinBatch language alone, it would be possible to duplicate the Sched-

uler and Launch List capabilities used by the AutoPrint utility, and to launch

and issue print commands to the applications that would print the docu-

ments listed in the print queue.

Like the Norton Desktop version, the WinBatch version of AutoPrint

consists of two batch files: COPYMAC.WBT and AUTOP.WBT
I was able to reuse many of the routines from the Norton Desktop ver-

sion of AutoPrint in the WinBatch version. However, I did have to expand

them significantly to support several new functions, including built-in

The COPYMAC.WBT Batch File 255

scheduling. Several changes were also necessary to reflect differences

between Norton Desktop's drive windows and the Windows 3.1 File Manager.

Macro Files

The WinBatch equivalent of Norton Desktop's Launch List is WinMacro, a

small utility that allows you to add menu items used to launch batch files to

the Control menu of any Windows application. This facility is used in The

Ultimate Notepad project, detailed in Chapter 9.

Whenever WINMACRO.EXE is running, it watches to see what other

applications you load into memory, and adds any menu items that you've

specified to their Control menus. These Control menu assignments are made
through files with a .WDF extension. Thus to add a menu item to File Man-

ager's Control menu, you would define the menu item in a file called WIN-
FILE.WDF—File Manager's executable file is called WINFILE.EXE.

To get the ball rolling with the WinBatch version of AutoPrint, I created

a W1NFILE.WDF file that contained the following single line:

Add file to AutoPRN queue \
A
P : WINBATCH . EXE COPYMAC.WBT

This adds a menu item labeled "Add file to AutoPRN queue" to File

Manager's Control menu, as shown in Figure 1 1.7, and assigns it the hotkey

Ctrl-R Whenever you press the hotkey or select the menu item, the batch file

COPYMAC.WBT is executed.

The COPYMAC.WBT Batch File

The COPYMAC.WBT batch program is the equivalent of the GET-
FILE.WBT batch program used by the Norton Desktop version of Auto-

Print. However, there is a fundamental difference in the way the two operate.

GETFILE.WBT takes advantage of the fact that Norton Desktop's Print

command displays the full path of the file it is about to print, which allows

GETFILE to copy the file's name and path into the AutoPrint queue list.

Unfortunately, the same command issued in Windows 3.1's File Manager

merely displays the name of the file in the editable text field, not the full

path. Thus, there is no way for WinBatch to determine the file's path, and

thus no way for it to find the file again when it's time for it to be printed.

To solve this difficulty, COPYMAC issues a File Copy command, and

copies the file that is being designated for later printing into a subdirectory

called C:\AUTOPRN. Then, when the AUTOPWBT batch program is exe-

cuted later, it prints and deletes each file that it finds in the C:\AUTOPRN
directory. This method is slower and most costly in terms of disk space—

although the disk space used to store the files to be printed is reclaimed once

l hey have been printed.

256 AUTOMATING EXISTING APPLICATIONS

Figure 11.7
Modifying File

Manager's Control

menu Move
Size

Minimize

Maximize

Close

Switch To.

dcdemo

CDdos

CD excel

S3 fonts

CD games

CD graphics

CDicondraw

CD misctext

SQndw
CD notes

r~lncrnntac

Alt+F4

Ctrl+Esc

do's

CDexcel

CDfonts

CDgames
CDgraphics

CDicondraw

CDmisctext

CDndw
CDnotes

CDpccontac

sdktoolT
-

CDtemp
CDlypealgn

CDutils

CDvb

Dw31
CDwln3

CDworkshop

CDwpc

CDwpwin

win bat

Qcommand.com
l] image.dat

Qtreeinfo.dt

@] comdex.trtm

E] ep.ini

Slnorton.ini

Qtreeinfo.ncd

Qconfig.sys

Qhimem.sys

C: 2, 068KB free, Total 48 till

: :.

COPYMAC Dissected

COPYMAC.WBT consists of three routines: Main, WrongApp, and

AssocErrJump.

The Main Routine

The Main routine starts by emptying the Clipboard, and then issues the File

Copy command. It then checks the title of the current window, which

should be Copy. If it is not, then the routine is not working, so it jumps to

the WrongApp error routine.

:Mai n

CLIPPUK "")

SENDKEYCIFC")
A=WINGETACTIVE()

IF AO"Copy" THEN GOTO WrongApp

File Manager's Copy dialog box includes two editable text fields. When
the dialog box opens, the first field contains the name of the file that was

highlighted in the File Manager window when the Copy command was

issued. The second field, which is used to designate the destination for the

copied files, is either blank or contains the name of the last copy destination

The COPYMAC.WBT Batch File 257

if the Copy command has already been used in the current Windows session,

as shown in Figure 1 1.8. The cursor is located in the second edit field.

Figure 11.8
File Manager's

Copy dialog box
Cuuent directory CAAMIPRO\DOCS

From: demo sam

Xo: <J) c:\autopm

O Copy to Clipboard

At this point the batch program must examine the file name in the first

edit field to ensure that it is valid, so the program sends a Shift-Tab key-

stroke to move the cursor up to that field, copies its contents to the Clip-

board, and then assigns them to the variable File, as shown in the first three

lines below.

SENDKEY("+(TABI")

SENDKEY(" A (INSERT}")

Fi1e=CLIPGET()

I=STRSCAN(Fi 1 e
,

"
\

" , 1 ,@FWDSCAN

)

IF IO0 THEN GOTO WrongApp

Fi 1 e=STRTRIM(File)

Ext=FILEEXTENSION(File)

AssocExi sts=INIREAD(" Extensions", Ext, "@TRUE")

If AssocExists==@FALSE THEN GOTO AssocErrJump

The batch program then uses the STRSCAN command to determine if

the variable File contains a backslash character. If it does, then the field con-

tains a directory name rather than a file name, so the batch program jumps

to the WrongApp error routine. Otherwise, it trims any excess spaces off the

file name and then checks that the document's file extension is listed in the

Extensions section of the WIN. INI file. If not, it jumps to the AssocErrJump
error routine.

Next, COPYMAC.WBT sends a Tab character to advance the cursor to

the destination field, and then sends C:\AUTOPRN to the destination field

and closes the dialog box, initiating the file copy by simulating a press of the

Enter key.

SENDKEYC'ITAB}")

SENDKEYCC:\AUTOPRN")
SENDKEY("{ ENTER}")

EXIT

258 AUTOMATING EXISTING APPLICATIONS

The WrongApp Routine

The next routine in COPYMAC.WBT is a general-purpose error routine

called WrongApp. It simply closes the Copy dialog box and displays an error

message (shown in Figure 11.9), if for any reason COPYMAC.WBT was not

able to process the file or files that were highlighted in File Manager when it

was run.

: WrongApp

SENDKEY (
" { ESC

}

"

)

SENDKEYC "
{ ESC J "

)

MESSAGEC "AutoPRN Error", "Sorry, one or more files must be

highlighted for the AutoPRN file selection routine to

work correctly .

"

)

EXIT

Figure 11.9
The WrongApp

error dialog box

AutoPRN Error

Sorry, one or more files must be highlighted for the

AutoPRN file selection routine to work correctly.

The AssocErrJump Routine

The AssocErrJump routine is called if the highlighted file's extension isn't

listed in the WIN.INI file. It's very straightforward.

: AssocErrJump

SENDKEYC'IESO")
SENDKEYC'IESO")
MESSAGE("AutoPRN Error", "Sorry, no association exists for

this file, so it won't be printable. Use File Associate

to correct the problem.")

EXIT

The AUTOP.WBT Batch File

AUTOP.WBT is the WinBatch version of AUTOPRN.WBT. The most obvi-

ous difference between the two is the addition of a time-checking routine to

AUTOP.WBT, which allows you to specify the time you want files in the

AUTOPRN directory to be printed.

The AUTOP.WBT Batch File 259

When AUTOP.WBT is run, it displays a dialog box (shown in Figure

11.10) that contains an edit field in which you can enter the time to print the

queued files. The default is to print the files immediately. But if you specify a

later time, the dialog box disappears, and AUTOP also disappears—except

for its icon at the bottom of the screen—until that time arrives.

Figure 11.10
The START.DLG

dialog box

AutoPrint for Windo

r\\s

Start print job at: 22:00

(Enter time in 2U hour format as hh:nm, or type

NOU to begin immediately.)

Alternatively, when you run AUTOP.WBT, you can include a command
line parameter specifying the starting time. The starting time must be speci-

fied in 24-hour format. So if you wanted to run AUTOP.WBT at 10:00 p.m.,

you could issue the File Run command in Program Manager or File Man-

ager, and give it the following command line:

WINBATCH.EXE AUTOP.WBT 22:00

Similarly, if you wanted the print queue emptied at 10:00 p.m. even day.

you could create a Program Manager icon with that same command line, as

shown in Figure 11.11. and place it in Program Manager's Stat 1 1 p folder. In

that case. AUTOP would run whenever you launched Windows, and would

present you with the START.DLG dialog box suggesting 22:00 as the starting

time. You could press Enter to accept that time, in which case any files m the

AUTOPRN directory would be printed at 10:00 p.m. Alternatively, you

260 AUTOMATING EXISTING APPLICATIONS

could enter a different starting time, or you could type NOW to begin print-

ing immediately.

Figure 11.11
Creating a Program

Manager icon for

AutoPrmt

mi Program Item Properties

Description:

Command Line:

Working Directory:

Shortcut Key:

AutoPrint for Windows

winbatch.exe autop.wbt 22:00
CanciM

\win3
,Si ,'! ,.,.". "i-

s

Browse...
None

Zl Run Minimized
Change icon,,.

r ~f

j
Help

™
-i: tw; mix ;r

AUTOP Dissected

AUTOP.WBT consists of nine separate routines: Start, ConfirmTime,

TimeCheck, StartNow, PrintFileLoop, GetWindTitle, EndLoop, WentFine,

and NextFile.

The Start Routine

The Start routine begins by changing the name of the batch program's icon

(which is always visible at the bottom of the screen while the batch program

is running) from its default of "WBT -- AUTOP.WBT" to "AutoPrint for

Windows".

: Start

WINTITLE("WBT","AutoPrint for Windows")

if Param0>0 THEN Start=Paraml

if Param0==0 THEN Start="N0W"

Then it checks the value stored in the global variable ParamO, which con-

tains a count of the number of command line parameters that were passed to

the batch program. If at least one command line parameter was passed, it

assigns the contents of the first one to the variable Start. Otherwise it assigns

"NOW" to Start.

The Confirm Time Routine

Next, the program displays a dialog box showing the value it has assigned to

Start and asking you to confirm the starting time. You can edit this value

using the form hh:mm in 24-hour time format. Here's that code:

WATCH

: Conf i rmT ime

DIALOGBOX' "AiHoPr int for Windows" ,
"START. DLG")

The AUTOP.WBT Batch File 261

The dialog box used by AUTOP.WBT is defined in the file START.DLG, as

follows:

Start print job at: [Start//]

(Enter time in 24 hour format as hh:mm, or type

NOW to begin immediately.)

This dialog box definition tells WinBatch to display the prompt "Start

print job at:" followed by an editable text box containing the value of the

variable Start and, two lines beneath that, another text message that explains

the form in which a starting time should be entered. WinBatch automatically

adds OK and Cancel buttons to the dialog box definition. Pressing the Can-

cel button automatically aborts the script.

Once you click the OK button to close the dialog box, the ConfirmTime

routine examines the starting time that you've specified. If Start contains the

value "NOW", the program jumps to the StartNow routine. Otherwise, it

tests the value of Start to ensure that it is a valid time.

IF STRUPPER(Start)=="NOW" THEN GOTO StartNow

Col on=STRSCAN(Start , "
:

" , 1 ,@FWDSCAN

)

IF Colon==0 then Start=STRCAT(Start ," :00"
)

IF Colon==2 THEN Start=STRCAT("0"
, Start)

IF STRLEN(Start)<5 THEN GOTO ConfirmTime

StHour=STRSUB(Start,l,2)

StMin=STRSUB(Start,4,2)

IF ISNUMBER(StHour)==@FALSE THEN GOTO ConfirmTime

IF ISNUMBERCStMi n)==@FALSE THEN GOTO ConfirmTime

IF StHour>23 THEN GOTO ConfirmTime

IF StHour<0 THEN GOTO ConfirmTime

IF StMin>59 THEN GOTO ConfirmTime

IF StMin<0 THEN GOTO ConfirmTime

IF STRSUB(StHour,l.l)=="0" THEN StHour=STRSUB(StHour , 2 , 1

)

WINTITLEC'AutoPrint'VAutoPrint for Wi ndows - -Wai ti ng for

%StHour%:%StMin%")

The STRSCAN function is used to locate the colon (:) character within

the contents of the variable Start. If Start doesn't contain a colon, the script

adds a colon and a pair of zeros to the end of the current contents of Start,

on the assumption that you've simply entered IS, for example, when you

meant 18:00. If, on the other hand, it finds a colon in the second position, it

tacks a zero onto the beginning of Start, in an attempt to change the time to

24-hour format: 9:00 becomes 09:00, for instance.

Next, the routine checks the length of Start. If it is less than five charac-

ters long, it cannot contain a valid time, so the program jumps back to the

beginning of the ConfirmTime routine and redisplays the dialog box so that

262 AUTOMATING EXISTING APPLICATIONS

you can reenter the Start time. Otherwise, it assigns the first two characters

of Start to the variable StHour, and the fourth and fifth characters to StMin.

It then uses the ISNUMBER function to determine if both variables contain

integers. If either variable fails that test, the time entered must not be valid,

so the script jumps back and redisplays the dialog box.

The script then checks that the values of StHour and StMin fall within

valid ranges, that is, the specified starting hour is from to 23, and the speci-

fied starting minute is from to 59. Once again, if any of those tests fail, the

routine jumps back and redisplays the dialog box.

Finally, the routine strips off the preceding zero that it added to the start-

ing hour (if a single-digit hour was specified), and then changes the title of

the program's icon to reflect the time at which the print job will begin.

The TimeCheck Routine

The next routine, TimeCheck, is a simple loop that checks the current time

every 15 seconds to determine if the designated starting time has arrived. It

uses the DATETIME function to obtain the current time, and then the STR-

SUB function to break the value returned by DATETIME down into the cur-

rent hour and current minute. (DATETIME supplies the date and time in a

single long string, such as "Wed 10/02/91 2:26:07 PM".) Then it converts the

current hour to 24-hour format and compares the current hour and current

minute to the values of StHour and StMin. Here's what it looks like:

:TimeCheck

DELAYC 15)

CurrTime=DATETIME()

CurrHour=STRSUB(CurrTime,14,2)

CurrHour=STRTRIM(CurrHour)

CurrMin=STRSUB(CurrTime,17,2)

CurrAMPM=STRSUB(CurrTime,23,2)

IF CurrAMPM=="PM" THEN CurrHour=CurrHour+12

IF CurrHour==24 THEN CurrHour=0

IF CurrHourOStHoiir THEN GOTO TimeCheck

IF CurrMin<StMin THEN GOTO TimeCheck

The StartNow Routine

If the designated starting time has been reached, execution of the program

continues past the end of the TimeCheck routine to the StartNow routine,

which initializes a series of variables: HTab (used to parse the list of open

windows), AutoPrnDir (the directory in which queued files are stored), Files

(a list of the files in AutoPrnDir), FileCount (the number of files in Auto-

PrnDir), and Counter (used to keep track of the file being printed). The rou-

tine then launches Print Manager, if it is set up to run, and then counts the

number of open windows.

The AUTOP.WBT Batch File 263

: StartNow

HTab=NUM2CHAR(9)

AutoPrnDir="C:\AUTOPRN\"

Files=FILEITEMIZE("%autoprndir%*.*")

FileCount=ITEMCOUNT("%Files%"," ")

IF FileCount==0 THEN EXIT

Counter=l

Spool er=I N I READC Windows "."Spooler", "yes"

)

IF Spooler=="yes" THEN RUN("PRINTMAN . EXE" . ""

)

Apps=WINITEMIZE()

AppCount=ITEMCOUNT(Apps,HTab)

The PrintFileLoop Routine

The PrintFileLoop routine is the next to execute. It attempts to run each doc-

ument in the AUTOPRN directory. When you "run" a document for which

an associated executable file is specified in WIN. INI, Windows launches the

executable file and instructs it to load the document. Then, once the docu-

ment has been loaded into the application program, the PrintFileLoop rou-

tine issues the standard File Print command to the program, waits one

second, and then sends a carriage return (if necessary) to close the Print dia-

log box. (Some programs require this, some don't.)

: Pri ntFi 1 eLoop

FileToPrint=ITEMEXTRACT(Counter. Files," ")

RUN("%AutoPrnDi r%%Fi 1 eToPri nt%"
. ""

)

DELAY(5)

App=WINGETACTIVE()

SENDKEY("!FP")

DELAY(l)

IF WINGETACTIVE()<>App THEf

DELAY(l)

SENDKEY("~")

The GetWindTitle Routine

Next, the GetWindTitle routine repeatedly checks the name of the current

active window. While printing is under way this window will generally be a

print status dialog box of some kind. (Again, this varies from program to pro-

gram.) The routine loops until the print status dialog box closes and the

application's main window is active again.

:GetWindTitle

CurrApp=WINGETACTIVE()

IF CurrApp==App THEN GOTO EndLoop

DELAY(l)

GOTO GetWindTitle

264 AUTOMATING EXISTING APPLICATIONS

The EndLoop Routine

The next routine, EndLoop, sends the standard File Exit command to close

down the program that just printed the document. If the program doesn't

close immediately, it sends a pair of N's to close any dialog boxes of the save-

before-closing ilk that the program may have created as part of its shutdown

process.

: EndLoop

SENDKEYC'IFX")

DELAY(l)

IF WINEXIST(App) THEf

DELAY(l)

IF WINEXIST(App) THE!

WINWAITCLOSE(App)

GOTO WentFine

SENDKEYC'N")

SENDKEYC'N")

The routine pauses, using the WINWAITCLOSE() command, until the

application is completely shut down before proceeding to the WentFine

routine.

The WentFine Routine

WentFine deletes the file that has just been printed from the AUTOPRN
directory (the original file will remain in the directory from which COPY-
MAC.WBT copied it) and then jumps to the NextFile routine.

: WentFi ne

FILEDELETE("%AutoPrnDir%%FileToPrint%")

GOTO NextFile

The NextFile Routine

The NextFile routine adds 1 to the current value of the variable Counter,

and then checks to see whether the value of Counter is now higher than the

total number of files to print. If so, its job is done, so it exits. If not, it jumps

back to the PrintFileLoop routine and prints the next file.

: NextFi 1

e

Counter=Counter+l

IF Counter>Fi 1 eCount THEI

GOTO PrintFileLoop

EXIT

This concludes the AutoPrint for Windows application. However, the

techniques used here for launching applications, automating their opera-

tions, and scheduling events should be of use in any number of your own
Windows development projects.

Making Use of

Libraries—Recycler
Basic Operations

Defining Functional

Requirements

The Application

Framework

Exploring

GLOBAL.BAS

Exploring FORMLFRM
Exploring

DRAGDROP.BAS

Wrapping Up Recycler

Basic Operations 267

THIS PROJECT, RECYCLER, DEMONSTRATES HOW EASILY YOU CAN EXTEND

the power of Windows 3.1 development tools by taking advantage of

dynamic link libraries. The Recycler application acts as a recycling-

bin for disk files. When you no longer want a file, you drag it from

the Windows File Manager into the recycling bin. Then later, when you

empty the bin, the disk space the file occupied is recycled—or made avail-

able to you once again. But in the meantime, if you decide you can't live

without one or more of these files, you can restore them any time before you

empty the bin.

This might sound faintly reminiscent of the Macintosh Trash application,

and in truth it does bear a certain resemblance to that classic. However, in

keeping with the green-conscious '90s, the emphasis here is on recycling,

rather than contributing to overcrowded landfills or hard disks.

Basic Operations

When you launch Recycler, it appears as an icon (shown below) at the bot-

tom of your screen.

You can click on the Recycler icon to open its window, but doing so

won't be of much interest until you've dragged files into the Recycler; before

that the window merely displays an empty list box, as shown in Figure 12.1.

Figure 12.1
Recycler's window

when the recycling

bin is empty

Things get more interesting when you open up the Windows 3.1 File

Manager, highlight a few files, and drag them onto the Recycler's icon. Sev-

eral things then happen at once. The Recycler icon changes to display an

overflowing bin, and its label changes to display the number of liles that

you've dragged onto it and their total size in kilobytes, as shown below.

268 MAKING USE OF LIBRARIES — RECYCLER

Moreover, the files you've dragged onto the Recycler disappear from the

File Manager's file listing.

Recycler doesn't actually delete the files that you've dragged onto it (or

even move them for that matter); it simply turns on the DOS Hidden
attribute for each file. This makes the files disappear from the File Manag-
er's file listing, unless you have turned on the Hidden/System Files option on
File Manager's View By File Type dialog box. If you have set this option, the

files in the recycling bin will appear in File Manager's listing with an excla-

mation mark on the small icon that precedes each file's name, as shown in

Figure 12.2.

Figure 12.2
File Manager will

list files in the

recycling bin only if

you have turned on

its Show

Hidden/System

Files option

File Manager
File Disk Tree

IN3\DYNAC0MM\DAT\MB1*

^}o Sb 5=]

•Slwfn3
- CDdeskapp
& desktop

-Sdynacomm
Gbdat

M.DSK)

Ifernbl

C3mb2
-Qpccts^
Qdcm
SDdcp

Qud3
Q unsent

Qunsent.bak

nss?
Qc~p3322.dat

Elc~p3323.dat

clno21.dat

Dclno22.dat

Dclno23.dat

[1 b!r_22.dcm

12/4/91 1 1:5.7:54

3/16/92 10:11:56

3/16/92 10:11:56

1038 2/26/92 15:34:24 ha

2713 2/26/92 15:34:48 ha

634 2/11/92 13:15:00 a

1923 2/11/92 13:16:20 a

371 2/11/92 13:16:26 a

41990 1/27/92 17:38:06 a

Selected 1 file(s) {776 bytes) otal 265 rile(s) (822.1 76 bytes)

In addition to removing the files from the standard File Manager listing,

hiding them in this manner makes them invisible both to most common file

operations at the DOS command line (including the COPY and DELETE
commands) and to the standard Windows File Open dialog box. So if there

are 18 TXT files in a directory, and you drag 16 of them into the Recycler, a

COPY *.* command at the DOS command line will only copy the two unhid-

den files, and the File Open dialog box in Notepad (or any other application

that works with TXT files) will list only those two files.

When you open the Recycler window after you've dragged files onto it,

you'll find that its central list box contains a list of those files, as shown in Fig-

ure 12.3. The list box contains the name and full path of each file that you've

dragged onto Recycler.

Basic Operations 269

Figure 12.3
Recycler's list box

lists the files it has

hidden

The Restore button can be used to unhide whichever file is currently

selected in the list box. When you do so, the file disappears from Recycler's

list box and reappears in the directory in which it originated. Alternatively,

you can use the item labeled ''Restore air
1

on Recycler's File menu (shown

in Figure 12.4) to unhide all the files in the bin, or the one labeled "Erase

all" to permanently delete all the listed files.

Figure 12.4
Recycler's File

menu offers the

opportunity to

delete or restore all

files in the bin

Re cycler 1"

B*mi'H-liMcOMM\DAT\MB1\C~P3
Erase all

^iW'lJJll
322 DAT

3 Reitoie 1

H £iate j

HOMM\DA IAMBI \C~P3323.DAT
Exit

About H

53 «<

Capabilities and Limitations

That about sums up Recycler's basic features. However, there are also a cou-

ple of limitations worth noting. The first is that Recycler doesn't work with sub-

directories, because the dynamic link library used by the application doesn't

know how to hide directories. So if you drag a subdirectory onto Recycler, it

will refuse to accept it, and will post the error message shown in Figure 12.5.

270 MAKING USE OF LIBRARIES <-- RECYCLER

Figure 12.5
Recycler displays

this error message

if you drag a

subdirectory onto it

Fite Manager

File Disk Tree View Options Window Help

C:\W1N3\DYNAC0MM\DAT\V

F^lo F=1 b

•a A/in3

CUdeskapp

G3 desktop

ED dynacomm I

-Ifedntl—

M

sEEM ls3« C: (STACVOLDSK]

Dr
-Or
Dp

- CDdcm
QDdcp

Ombl 11/30/90 19:18:26

Dmb2 9/21/91 15:45:3S

CDpcctemp

D accounts 524

1/14/92 07:23:36

3/12/92 11:09:10

Recycler

Couldn't add C:\WIN3\DYNACOMM\DAT\MB2

The second limitation is that Recycler doesn't keep track of the files in

the recycling bin from one session to another. Thus, you must determine

whether you want to erase or restore each file in the bin before you shut

down the Recycler application. If you try to close Recycler (either by

attempting to shut down Windows or by selecting Recycler's File Exit com-

mand or the Close command on its System menu) while there are files in the

recycling bin, it will post the error message shown in Figure 12.6, and put a

halt to the shutdown process.

Figure 12.6
Recycler insists

that you either

erase or restore

the files in the

recycling bin before

shutting down the

application

Recycler

Please either erase files or restore all files

before closing the Recycler

Despite these limitations Recycler is a useful application. It gives you a

chance to think twice about whether you actually want to delete a file, and it

also gives you a chance to do a little what-if experimentation with disk space.

For instance, if you're trying to clear 10 megabytes of space on your hard

drive, you can drag files from various directories into Recycler until it indi-

cates that they total the amount of space you need, and then erase them all

Defining Functional Requirements 271

at once. Or you can use File Manager's Search command to find all the BAK
or BMP or TXT files on your hard disk, and then drag whichever ones you

don't need onto the Recycler—which again allows you to see whether the

total disk space they occupy matches the amount you want to free up.

The advantage to using Recycler in this way is that the totals it maintains

are cumulative. You can drag files from several different directory windows,

and/or the results from several different searches, into Recycler, and it will

always indicate the total size of all the selected files. Then it allows you to

delete or restore the whole group with a single menu command.

Defining Functional Requirements

Recycler revolves around two key functions: the ability to accept drag-drop

messages from File Manager and the ability to hide files.

One of the neatest new features of Windows 3.1 from a programmer's

standpoint is that, with very little effort, you can make your application send

a message to Windows that says "I accept drag-drop messages." Once this

has been done, Windows will alert the application when the user drags files

from File Manager onto the application's window and drops them there.

Recycler uses this capability as its only input source for the files it is to

hide. You can select any number of files in File Manager, drag them onto

Recycler by holding down the left mouse button, and then release the button

to add them to the recycling bin. Thus the first major functional requirement

for Recycler was that it had to be able to send Windows the "files accepted

here" message and react when Windows sends it back an "OK, you've got

'em" message in response to the user dragging files onto the application.

The other major functional requirement for the application was that it

had to be able to hide the files that were dropped onto it.

One of the primary purposes of the Recycler application is to make the

files dropped on it disappear from file listings and make them invisible to

most standard file-manipulation commands. There are several ways to

accomplish this. I could, for instance, have had all the files copied to a special

Recycler directory and then deleted from their original locations. But there

was little additional benefit to be gained from actually moving the files to a

new directory, as opposed to merely hiding them. And the additional house-

keeping needed to track each file's original and new location seemed like too

much work for too small an advantage.

Selecting the Development Tool

The functional requirements for the Recycler project meant that the develop-

ment tool had to be able to utilize the Windows application programming
interface (API) functions that control File Managers drag and drop features.

272 MAKING USE OF LI B R AR I ES — R EC YC LER

and had to offer a way to set DOS file attributes. In addition, the user-inter-

face aspects of the development tool had to be strong enough to let me build

an easy-to-use interface for the application.

Eventually I decided to build the project using Visual BASIC, largely

because in the midst of experimenting with the new Windows 3.1 drag-drop

functions, I had accidentally discovered what appeared to be a simple way to

implement support for them in Visual BASIC. I wanted to test that method
in a real-world application, especially since I'd had several knowledgeable

people express surprise and doubt that it would work: They believed it was

impossible to build a generic message loop in Visual BASIC.

Message Loops

When you dig down deep into its substructure, every Windows application

revolves around a central message-handling loop that constantly monitors

and responds to the messages Windows sends to the application. These mes-

sages span an enormous range, everything from "the mouse just moved" to

"a button was clicked" to "Windows is shutting down."

Languages such as C and Turbo Pascal for Windows provide the devel-

oper with complete control over how an application responds to these mes-

sages. But that means the developer also has complete responsibility for

ensuring that the messages are handled correctly, since the application won't

make any automatic assumptions about how a message should be handled.

(The situation isn't as odious as it sounds, however, because an application

can call the DefWindowProc function, which provides default processing for

any Windows message that the application doesn't otherwise process. Never-

theless, there is a considerable responsibility on the part of the programmer

to make sure that all the i's are dotted and t's are crossed in terms of han-

dling messages.)

In Visual BASIC, on the other hand, the message-handling loop is hid-

den away, beyond the programmer's control. Visual BASIC automatically

handles all the message processing for your application, relieving you of the

responsibility of doing so, but also constraining your ability to make use of

the full range of Windows functions. Visual BASIC provides automatic han-

dling of those messages related to its core commands and functions, and

throws away the rest. The programmer cannot add additional functions or

hooks to Visual BASIC'S central message loop.

Nevertheless, it is possible to sneak a peek at the messages Windows is

sending to your application. Visual BASIC has the ability to use functions in

external dynamic link libraries, and you can take advantage of that ability by

accessing the PeekMessage function in USER.EXE, the dynamic link library

that supplies most of the Windows user-interface functions.

The PeekMessage function checks the specified application's queue for

a message, and places it in a special message-structure variable that your

Defining Functional Requirements 273

application can examine. A Visual BASIC application can call this function,

just as it can call nearly any other Windows API function. However, it doesn't

do much good to call PeekMessage just once, since if there is no message wait-

ing for the application, the function simply returns a value of —it doesn't

wait for a message to actually arrive. So in order to ensure that PeekMessage

captures all the messages for your application as they arrive, you have to call

it over and over again. In other words, you've got to build a message loop.

Fortunately, Visual BASIC provides a device that allows you to do just

that; it's called a DoEvents loop. A DoEvents loop is a closed loop that your

Visual BASIC application performs whenever it is not busy doing something

else. In other words, whenever your application isn't busy carrying out some

other command, it executes the statements in the DoEvents loop, then

checks to see if there is anything else it should be doing (such as responding

to user input or carrying out a sort function or redrawing its window). If not,

it executes the statements in the DoEvents loop again.

Visual BASIC DoEvents loops are not well suited to act as general-pur-

pose message loops, because Windows messages can pour into an application

at overwhelming speed, especially when the user is interacting with that

application. And although Visual BASIC is remarkably fast for a pseudo-

compiled BASIC, it isn't fast enough to allow a user-coded message loop (as

opposed to Visual BASIC'S underlying message loop) to keep up with rapid

mouse movements or keystrokes. By the time Visual BASIC reacts to one

mouse-movement message it may have missed ten more.

Nevertheless, I discovered that despite this inadequacy. Visual BASIC'S

DoEvents loop was more than capable of handling drag-drop messages from

File Manager. For one thing, although Windows might be multitasking, Win-

dows users are not. So if the user is dragging files from File Manager onto

your Visual BASIC application, he or she isn't also interacting with your

application at the same instant. Therefore your application is almost guaran-

teed to be performing its DoEvents loop, rather than responding to user

input, at the instant the files are dropped onto it. (This wouldn't necessarily

be the case if your application was one that performed extensive background

processing, but in an application such as Recycler, which responds exclu-

sively to user input, you can be assured that the DoEvents loop will be wait-

ing for the message.)

In addition, the File Manager drag-drop messages come in an easily han-

dled sequential form. First comes the message that one or more files have

been dropped onto your application. Then your application asks, "How
many files?" and Windows responds with the total number of files that were

dropped. Your application can then request the name and path of each file,

one at a time, and perform whatever processing is required using that file,

before requesting the next name. Since your application controls the dialog

with Windows, there is no chance that it will miss one of the file names while

it is busv doing something else.

274 MAKING USE OF LIBRARIES — RECYCLER

In short, I discovered it was possible to create an apparently foolproof

loop for handling drag-drop messages with less than a dozen lines of Visual

BASIC code.

DOS Attribute Control

Of course, in addition to obtaining the names of files from the Windows drag-

drop messages, Recycler had to be able to do something with those files. Spe-

cifically, I wanted to be able to hide the files that were dropped onto the recy-

cling bin.

Alas, Visual BASIC'S built-in command set provides very little in the

way of file-manipulation functions. It offers ways to create files, delete them,

rename them, and obtain their length, but none for setting their attributes.

Fortunately, however, there is a growing library of public domain and share-

ware utilities for extending Visual BASIC. In building Recycler, I was able to

make use of a public domain dynamic link library called DISKSTAT.DLL,
which was written and posted on CompuServe's MSBASIC forum by Art

Krumsee. DISKSTAT.DLL, which is included with the Recycler project code

on the disk that accompanies this book, provides functions for obtaining and

setting file attributes, as well as several other disk- and file-related functions,

all of which can be accessed by Visual BASIC applications.

The Application Framework
The Recycler application was generated from three files: GLOBAL.BAS,
FORM1.FRM, and DRAGDROP.BAS.

GLOBAL.BAS is a Visual BASIC global file. It contains the declara-

tions for the global variables used throughout the Recycler application, as

well as definitions for the user-defined data types and functions and the exter-

nal procedures (DLL calls) that the application uses.

FORM1.FRM is a form: a special Visual BASIC file type that includes

both a window design and program code associated with that window. Often

an application will have several forms, each describing a separate window or

dialog box. Recycler has only one custom display window, however, since it

uses the standard MSGBOX function to create messages to the user, and

thus it requires only one Form file.

DRAGDROP.BAS is a module file, meaning that it consists entirely of

program code, most of which takes the form of program subroutines or user-

defined functions called by other routines. In addition, DRAGDROP.BAS
contains a routine called MAIN, which acts as the startup routine for Recy-

cler, meaning that the instructions in that routine are the first to be executed

when you launch the Recycler application.

Let's start off our examination of Recycler by exploring the GLOBAL-
.BAS file.

Exploring GLOBAL. BAS 275

Exploring GLOBAL.BAS
Recycler uses GLOBAL.BAS to hold definitions of all the function and sub-

routine calls it makes to the Windows API files and to DISKSTAT.DLL, and

to define and initialize a series of global variables.

The GLOBAL.BAS file begins by defining two special variable types

—

PointAPI and Msg. These are used by some of the API calls that follow, and

their definitions must appear in the GLOBAL.BAS listing prior to the func-

tions or subroutines that make use of them.

Type Definitions

The PointAPI type is used by several Windows API functions to designate

the horizontal and vertical location of a specified point on the screen. Its defi-

nition looks like this:

Type PointAPI

X As Integer

Y As Integer

End Type

In other words, a variable of type PointAPI will consist of two integers,

X and Y. These indicate the horizontal and vertical locations, respectively, of

the specified point.

The next definition, that of the variable type Msg, is a bit more complex:

Type Msg

hWnd As Integer

Message As Integer

wParam As Integer

1 Param As Long

Time As Long

PT As PointAPI

End Type

The Msg variable type is used to convey a variety of information about a

Windows message. It consists of six components: first the identity of the win-

dow that is to receive the message (passed in the form of an integer labeled

hWnd); then the message number (in the form of an integer labeled Mes-

sage); then a pair of components (the integer wParam and the real or long

number lParam) whose definition and purpose vary according to the value of

Message; then the time at which the message was posted (in the form of a

long variable called Time); and finally the position of the screen cursor when

the message was posted (in the form of a PointAPI variable called PT).

276 MAKING USE OF LIBRARIES — RECYCLER

Visual BASIC can work with user-defined variables like these as a unit,

by defining a variable to be of the specified type, as follows:

DIM NewStuff AS MSG

or it can work with the components that make up the user-defined variable,

like this

MessNum=NewStuff.Message

or

MessTime&=NewStuff.Time

Function and Subroutine Definitions

Next the GLOBAL.BAS file defines five external functions or subroutines

that allow Recycler to make use of the capabilities it needs from external

DLLs.

Once you have defined an external function or subroutine in Visual

BASIC, your application can use it in exactly the same manner as it uses

Visual BASIC'S core functions and commands. For instance, the Windows
API function IsWindowVisible takes a single integer parameter and returns

a single integer value, just like the internal Visual BASIC function for obtain-

ing the size of an open disk file, LOF. Thus once you have defined the IsWin-

dowVisible function, you can use it in your application as easily as you can

use LOF. The statement

WinVis% =IsWindowVisible(WinHandle%

)

would return an integer indicating whether or not the window designated by

WinHandle% is visible (after this function, WinVis% would be equal to -1 if

WinHandle% is visible, or if it is not), just as

FileLen% =LOF(FileNum%

)

would return the length of the file indicated by FileNum% to the integer vari-

able FileLen%.

Before you can use the Windows API functions, or functions or subrou-

tines from any dynamic link library, you have to define them for Visual

BASIC, telling it the parameters the function or subroutine requires and

what value, if any, it returns.

The first definition in GLOBAL.BAS is for the PeekMessage function,

which is used in the DoEvents loop that enables Recycler to accept drag-

drop messages. The function definition looks like this:

Declare Function PeekMessage Lib "USER" (lpMsg As Msg. ByVal hWnd As Integer, ByVal

wMsgFi

1

terMin As Integer, By Va 1 wMsgFi 1 terMax As Integer, ByVal wRemoveMsg As

Integer) As Integer

Exploring GLOBAL. BAS 277

This tells Visual BASIC that the function PeekMessage is found in the

Windows library USER.EXE, that it accepts five parameters, and that it

returns an integer value. In order to use PeekMessage, you have to pass it the

following: a pointer to a Msg type variable to use for storing the message; an

integer identifying the handle (the integer by which Windows identifies the

window) of the window whose messages you want to view; a pair of integers

indicating the numbers of the lowest and highest messages that interest you

(all Windows messages are numbered—for instance, the WM_DROPFILES
message, used to indicate that File Manager has dropped files onto the win-

dow, is number 563); and an integer indicating whether the message should be

removed from the message queue after processing by PeekMessage. The inte-

ger returned by the function indicates whether or not a message was found. It

will be equal to if no message was found, and to -1 if one was located.

Calling the Drag-Drop Functions

The next three definitions in GLOBAL.BAS access three routines from the

Windows 3.1 library SHELL.DLL that control the File Manager drag-drop

interface. These are DragAcceptFiles, which Recycler sends to indicate that

it is willing and able to accept File Manager drag-drop messages; DragQuery-

File, which Recycler uses to find out what files were dropped onto it after

PeekMessage returns the WM_DROPFILES message; and DragFinish,

which Recycler uses after obtaining the list of files to tell Windows that it can

discard the data structure it had reserved to hold the file names from the

DragQueryFile operation.

Here's the first of these declarations:

Declare Sub DragAcceptFiles Lib "SHELL" (ByVal hWnd As Integer. By Va 1 Accept As

Integer)

DragAcceptFiles is a simple subroutine call that tells Windows whether

the window indicated by the integer variable hWnd will or will not accept

drag-drop messages, based on the value of the integer variable Accept. If

Accept is -1 (True), then the window will accept drag-drop messages; if it is

equal to (False), it will not.

The next definition is

Declare Function DragQueryFile Lib "SHELL" (ByVal hDrop As Integer. ByVal

IndexFi lename As Integer, ByVal lpFileName As String. ByVal Buffsize As Integer)

As Integer

DragQueryFile is a function call that returns an integer whose meaning

varies according to the value of the IndexFilename parameter used to call

the function. If you pass a value of -1 to DragQueryFile, it returns the num-

ber of files that were dropped onto the window. But if you pass it any value

ranging from to the total number of files that were dropped onto the win-

dow, it returns the number of bytes in the file name corresponding to that

278 MAKING USE OF LIBRARIES - RECYCLER

value. That is, if IndexFilename=4, the DragQueryFile function will return

the length of the name of the fifth file that was dropped on the window.

The other parameters to the DragQueryFile function are equally impor-

tant. The hDrop parameter is an integer that identifies the Windows internal

data structure used to store the file names from the current drag-drop opera-

tion. Windows identifies that structure to your application through the

wParam parameter of the WM_DROPFILES message. The lpFileName

parameter identifies a null-terminated string (a string ending with ASCII char-

acter 0, the null character) in which the application wants Windows to store

the name of the dropped file. And the BuffSize parameter is an integer telling

Windows the length, in bytes, of the null-terminated lpFileName string.

When you pass a string from Visual BASIC to a Windows API function

that will modify the string, you must first create the string and ensure that it is

long enough to hold whatever data Windows might place in it. As you'll see

below, Recycler initializes the lpFileName string to a length of 129 characters.

The final drag-drop-related API definition is for the DragFinish

subroutine:

Declare Sub DragFinish Lib "SHELL" (ByVal hDrop As Integer)

This subroutine call is used to tell Windows that it can discard the data

structure it was using to hold file names from the last drag-drop operation.

It takes a single parameter, an integer variable that corresponds to the value

of hDrop obtained from the wParam parameter of the WM_DROPFILES
message.

Calling DISKSTAT.DLL

Because Recycler also makes use of three functions from Art Krumsee's

DISKSTAT.DLL, it needs to declare them here along with the Windows
API functions. The declarations for SetFileHidden, IsFileHidden, and

FindFile are as follows:

Declare Function SetFileHidden Lib "DISKSTAT.DLL" (ByVal fname As String, ByVal

PlusMin As String) As Integer

Declare Function IsFileHidden Lib "DISKSTAT.DLL" (ByVal fname As String) As Integer

Declare Function FindFile Lib "DISKSTAT.DLL" (ByVal fName As String, ByVal Searchpath

As String, ByVal Fullname As String) As Integer

The first declaration tells Visual BASIC that the SetFileHidden function

can be found in the library called DISKSTAT.DLL (which must be on the

DOS path for this call to work). The function takes two parameters, fName

(the name of the file to be hidden or made visible) and PlusMin (either a plus

sign to indicate that the file is to be hidden, or a minus sign to indicate that it

should be visible), and returns an integer value that indicates whether or not

the operation was successful. The value returned will be if the operation

Exploring GLOBAL. BAS 279

was successful, 2 if the file wasn't found, 3 if the path wasn't found, or 5 if

DOS refused to provide access to the file.

The IsFileHidden function, which is used to determine whether a file is

already hidden, takes only a single parameter—the name of the file whose

Hidden attribute is to be checked—and returns an integer. The returned

value will be if the file is not already hidden, or -1 if it is.

The FindFile routine, which indicates whether a specified file can be

found on a specified path, takes three parameters: the name of the file to

find, the path to search, and the name of the string in which DISK-
STATDLL should store the full path of the file if it finds it. The function

returns an integer value that will equal if the file was found, or a nonzero

number if it was not.

Global Constant and Variable Definitions

The GLOBAL.BAS file concludes by defining a series of six global constants

and variables. Defining these as global means that they will be available to

routines throughout the application. The value of a global constant cannot

be changed once it has been established. In contrast, any routine in the appli-

cation can modify the value of a global variable, after which the new value

will be available to every routine in the application.

Recycler s global constants are as follows:

Global Const True = -1

Gl obal Const Fal se =

Declaring the constants True and False as -1 and 0, respectively, allows

you to use them to evaluate the results of functions that return a value of -1

or to indicate success or failure. Thus, you can write:

IF IsWindowVisible(MyWindow%) = TRUE ...

which improves the readability of your application, compared to

IF IsWindowVisible(MyWindow%) = -1 ...

Next, come the four global variable definitions:

Global Handle As Integer

Global NewMessage As Msg

Global NameOfFile As String * 129

Global TotSize As Long

These declarations create the variable I landle (which is used to stoic the

number by which Windows refers to Recycler's main window) as an integer.

NewMessage (used to store messages retrieved by PeekMessage) as a Msg
type variable, NameOfFile (used to retrieve file names through the

280 MAKING USE OF LIBRARIES —RECYCLER

DragQueryFiles function) as a string with a fixed length of 129 characters,

and TotSize (which is used to keep track of the total size of all the files in the

recycling bin) as a real or long variable.

That concludes the tour of the GLOBAL.BAS file. Now let's look at the

Form file, which constitutes Recycler's main window.

Exploring FORM1.FRM
Visual BASIC form files consist of a graphic design for a window or dialog

box and the code that is attached to the elements of that design. You start off

the process of creating a form by selecting the New Form option from Visual

BASICs File menu, and then start laying out user-interface elements on new
blank form, by selecting them from Visual BASIC'S Toolbox (a palette of

available user-interface elements) and dragging them onto the form, as

shown in Figure 12.7.

Figure 12.7
A newly created

Visual BASIC form

with button and list-

box controls

Visual BASIC gives you control over a variety of properties for each ele-

ment of the form design. For instance, you can control the size, location, and

background and foreground colors of the form itself, along with its border

style, caption, and whether it uses Minimize and Maximize buttons and a

Control box. You can have similar control over the appearance and

attributes of each user-interface element you create on the form.

In addition, Visual BASIC gives you the ability to write code that tells the

application how to respond to a wide range of events for each user-interface

Exploring F0RM1.FRM 281

element. For instance. Visual BASIC offers eight unique events for standard

command buttons: Click, GotFocus, LostFocus, KeyDown, KeyUp, KeyPress,

DragDrop, and DragOver. (Visual BASIC'S DragDrop and DragOver event

procedures are internal to the application—allowing you to drag items within

your application. They don't handle drag-drop messages from File Manager or

even from other Visual BASIC applications.)

The form itself can react to events as well—everything from Resize

(which occurs when you change the size of the form) to Unload (which

occurs when you or the application closes the form).

The Recycler application includes a modest range of user-interface ele-

ments: a list box, a pair of command buttons, a label, and a drop-down

menu. The list box, label, and buttons were created by selecting them from

the Toolbox and drawing them on screen. The menu was created with the

Menu Design window shown in Figure 12.8.

Figure 12.8
The Visual BASIC

Menu Design

window

Microsoft Visual Basic [design]

File Edit Code Run Window Help

Caption

Each menu item is treated as a unique user-interface control. Selecting a

menu item triggers its Click procedure. For instance, the Exit item on the

File menu is associated with a control called FileExit. so the FileExit_Click

procedure is executed when that item is selected.

282 MAKING USE OF LIBRARIES — RECYCLER

General Procedures

In addition to code that is directly associated with control events, a form may
contain some code items that act as general-purpose subroutines, much like

the routines in a code-only module, except that the general routines associ-

ated with a form are available for use with that form only.

Recycler's FORM1.FRM has only one general-purpose statement, the

variable definition

Deflnt A-Z

This statement tells Visual BASIC that any variable starting with any let-

ter from A to Z should be treated as an integer unless otherwise specified.

This eliminates the need to specifically declare variables to be of the type

integer, while at the same time ensuring your application will never use a

slow, inefficient real number variable unless you specifically tell it to do so.

Now for the event procedures in FORM1.FRM.

Event Procedures

The two buttons on the Recycler form are part of a single control array

known as Commandl. A control array is a group of controls that share the

same name, type, and event procedures. Each element of the control array

has a unique index number that can be used to identify it, and it may have

other unique elements as well, such as its caption or size. Nevertheless,

because the elements of a control array share common properties and proce-

dures, they are much more efficient in terms of program size and system-

resource use than a unique control for each user-interface element would be.

The Commandl Click Procedure

On Recycler's form, the Restore button has an index number of 0, and the

Erase button has an index of 1. The Click event procedure for Commandl
evaluates the index number of the item that was clicked, as seen here:

Sub Commandl_Cl i ck (Index As Integer)

LI = Li stl . Li stlndex

If LI < Then Exit Sub

FileToHide$ = Li stl . Li st(LI

)

Select Case Index

Case Is =

Temp = HideFi I e(Fi

1

eToHide$, False)

Case Is = 1

Warn! "Do you really want to delete " + Fi

1

eToHide$ + "?"

Temp = MsgBox(Warn$, 20, "Recycler")

IDN0=7

If Temp = IDNO Then Exit Sub

Exploring F0RM1.FRM 283

Temp = HideFile(FileToHide$, False)

Kill FileToHideS

End Select

Li stl

.

Removeltem LI

Fi xTi tl

e

If Li stl . Li stcount = Then Recycl er

.

Icon =

LoadPictureCRECEMPTY.ICO")

LI = LI - 1

Li stl . Li stlndex = LI

Li stl. Re fresh

End Sub

The Command l_Click procedure begins by assigning the value of Listl-

.Listlndex to the variable LI. The Listlndex property of a list box identifies

which item in the list box is selected. Listl is the name of the list of files in

the recycling bin, so its Listl.Listlndex property identifies which file is high-

lighted in Recycler's list box.

Next, the routine evaluates the value of LI and, if it is less than (indi-

cating that no item is selected), exits the subroutine, ending processing of the

Click event.

Otherwise, the routine assigns the value of the List property for item LI

in the list box to the string variable FileToHide$. The List property identifies

the text of a list-box item, so this command assigns the name of the selected

file (as it appears in the list box) to FileToHide$.

Next, the routine executes a Select Case statement that evaluates the

value of Index, the integer variable in which Visual BASIC has placed the

index number of the button the user clicked. If Index is equal to 0, then the

user pressed the Restore button. In that case, the routine calls the HideFile

subroutine (located in the DRAGDRORBAS module, discussed below),

passing it the name of the file to be restored and the value False, which

tells HideFile to turn off the Hidden attribute for the file. Then the flow of

execution jumps past the end of the Select Case routine, to the command
Listl. Removeltem LI, which is discussed under "Removing the Selected

Item," below.

In the meantime, if the variable Index was equal to 1. then the Erase but-

ton was selected. Recycler reacts by opening a message box on screen that

asks the user to verify that permanent deletion of the selected file is desired,

as shown in Figure 12.9.

The MsgBox statement takes three parameters: the message to be

posted, the style of message box in which to post it. and the title of the mes-

sage box. The message-box style is the total of the numeric values that

Visual BASIC assigns to various message-box elements. In this case, the mes-

sage box is style 20, since it includes both a stop-sign icon (value !(">) and Yes

and No buttons (value 4).

284 MAKING USE OF LIBRARIES — RECYCLER

Figure 12.9
Recycler seeks

confirmation before

deleting any file

If the No button is pressed, Visual BASIC returns a value of 7, and so

Recycler exits the Click procedure. Otherwise, it calls the HideFile subrou-

tine to make the selected file visible, and then issues the Visual BASIC Kill

command to delete the file (Kill won't work on a hidden file, so the file must

be made visible before it can be deleted), thus concluding the Select Case

procedure.

Removing the Selected Item Next, no matter which button was pressed,

the routine issues the Removeltem command to remove the selected item from

the list box, then calls the FixTitle subroutine (in DRAGDROP.BAS) to update

Recycler s file-count data. Then it checks to see if the ListCount property of the

list box is equal to 0, in which case it resets the icon used to represent Recycler

to that of an empty recycling bin, by loading the file RECEMPTY.ICO. (REC-

FULL.ICO and RECEMPTY.ICO are standard ICO-format icon files, which I

created using hDCs Icon Designer. All icon files must be located in the same

directory as the RECYCLER.EXE application.)

Finally, the routine decreases the value of LI by one, uses the Listlndex

command to set the selection bar in the list box to the item that corresponds

to LI, issues the Refresh command to refresh the contents of the list box, and

then exits, ending processing of the button click.

The FileEmpBin Click Procedure

FileEmpBin_Click is called when you select the Erase all item from Recy-

cler's File menu. It begins by using a message box to verify that you actually

want to erase all the files in the bin.

Sub Fi 1 eEmpBi n_C lick)

Mess$: "Are you sure you want to permanently delete all

the files in the Recycler?"

Temp MsgBox($Mess, 273, "Recycler")

Exploring F0RM1.FRM 285

If Temp = 2 Then Exit Sub

LI = Li stl . Li stCount - 1

For X = To LI

FileToKillS = Listl . List(X)

Temp=Hi deFi 1 e(Fi 1 eToKi 1 1 $, FALSE)

Kill FileToKillS

Next X

For X = To LI

Li stl . Removeltem

Next X

Recycler.Icon = LoadPi cture("RECEMPTY . ICO"

)

FixTitle

End Sub

The routine uses a message box of type 273, meaning that it has a Stop

icon (16), OK and Cancel buttons (1), and that the second button—the Can-

cel button—is the default (256). The box is shown in Figure 12.10.

Figure 12.10
The Erase all

confirmation box

l<=>\ Recycler
|

»
|

File

H^H
Recycler

(2)
Are you sure you want to permanently delete all

the files in the Recycler?

OK Cancel

If the Cancel button is selected (Temp=2), the routine exits. Otherwise,

it proceeds to erase all the files in the recycling bin. First it uses ListCount to

obtain a count of the items in the list box, and then it subtracts 1 from it.

because items in the list box are numbered starting with 0, so the first ele-

ment in the list box would be identified as item 0, and the tenth element in

the list box would be identified as item 9. Then, for each element in the list

box. it repeats the deletion sequence used by the Delete button, first making

the file visible, and then deleting it. Then it removes each item from the list

box, changes Recyclers icon to indicate that the bin is empty, calls FixTitle

to fix Recyclers window title and file count to show its newly empty state,

and then exits.

286 MAKING USE OF LIBRARIES — RECYC LER

The FileResAII_Click Procedure
FileResAll_Click is called when you select the Restore all item from Recy-

clers File menu. It closely resembles the FileEmpBin_Click procedure:

Sub FileRecAll_Click (

)

X = MsgBoxC Restore all files from Recycler?", 273,

"Recycler")

If X = 2 Then Exit Sub

LI = Listl.Listcount

For X = To LI - 1

FileToHideS = Li stl

.

List(0)

N = HideFi 1 e(Fi

1

eToHide$, False)

Li stl

.

Removeltem

Next X

FixTitle

Recycler. Icon = LoadPi cture("RECYCLE1 . ICO")

End Sub

Like the Erase all procedure, the Restore all routine starts off by con-

firming the user's intent, using the message box shown in Figure 12.11.

Figure 12.11
The Restore all

confirmation box

File

Recyder

CAWIN: — Recycler

HWil Restore all files from lecycler?

mm
i

Cancel

It continues by unhiding all the files in the bin and resetting the win-

dow 's icon and title bar, using a series of steps that are nearly identical to the

Erase all procedure. The only difference in the routines is the absence of a

Kill FileToHideS statement in the Restore all procedure.

The Form Resize Procedure
Form_Resize is called when the user resizes the form or minimizes it or

restores it from a miminized state. I wanted the title of Recycler's window to

change depending on whether it was in a minimized or restored condition, so

I used the Resize event to call the FixTitle procedure in DRAGDROP.BAS:

Sub Form Resize ()

Exploring FORM 1 . FRM 287

FixTitle

End Sub

The FileAbout Click Procedure

FileAbout_Click is called when the user selects the About Recycler item on

the File menu:

Sub Fi 1 eAbout_Cl i ck (

)

x = MsgBox("Recycl er by Paul Bonner. Copyright © 1992 by

Paul Bonner. All Rights Reserved.", 64, "About

Recycl er"

)

End Sub

The message box produced by this procedure is shown in Figure 12.12.

Figure 12.12
The About Recycler

message box

Recycler

C:\WIN3\DYNACOMM\DAT\CBAR2.BMP

O
About Recycl

Recycler by Paul Bonner. Copyright© 1992 by
Paul Bonner. All Rights Reserved.

The FileExit Click Procedure

FileExit_Click is called when the user selects the Exit item on the File menu:

Sub FileExit_Click (

)

Unload Recycler

End Sub

This procedure simply instructs Visual BASIC to unload the Recycler

form (FORM 1.FRM). This triggers the Form_Unload procedure.

The Form Unload Procedure

The Form_Unload procedure performs the steps necessary to shut down the

Recycler application:

Sub Form_Unload (Cancel As Integer)

If Li stl . Li stcount > Then

MsgBox "Please either erase files or restore all files

before closing the Recycler". 272, "Recycler"

Cancel = True

288 MAKING USE OF LIBRARIES — RECYCLE*

Exit Sub

End If

End

End Sub

The procedure begins by examining the value of Listl.Listcount. If it is

greater than zero, then there are still files in the Recycler, so the procedure

posts an error message and halts the shutdown process. Otherwise, it simply

issues an End command to halt execution of the program.

That concludes the FORM1.FRM file. Now let's examine the routines in

the DRAGDROP.BAS file.

Exploring DRAGDROP.BAS
Like FORM1.FRM, DRAGDROP.BAS starts off by defining all unsigned

variables as integers, using the statement

Deflnt A-Z

Beyond that general definition, DRAGDROP.BAS consists of five

named subroutines and functions: Main, HideFile, CheckForDir, FixTitle

and FixSize.

The Main Subroutine

I used the Set Startup Form item on the Visual BASIC Run menu to desig-

nate Main as the startup procedure for the Recycler application, making it

the first code executed when the application launches.

Main starts off by instructing Visual BASIC to display the Recycler win-

dow. Then it issues the FixTitle command to make sure that the correct title

is displayed for the window, and uses the hWnd function to obtain the Win-

dows handle for the Recycler window:

Sub Main (

)

Recycl er . Show

FixTitle

Handle = Recycl er . hWnd

Fi 1 eNum = -

1

PM_N0REM0VE =

PM_NOYIELD = 2

wRemoveMsg = PM_N0REM0VE Or PM NOYIELD

DragAcceptFi 1 es Handle, True

Do Whi le DoEventsC)

X : PeekMessageCNewMessage , Handle, 563, 563, wRemoveMsg)

If X <> Then

Screen. Mousepointer = II

Exploring DRAGDROP.BAS 289

Beep

X = DragQueryFi 1 e(NewMessage.wParam, FileNum, NameOfFile,

128)

For Counter = To X - 1

Y = DragQueryFi 1 e(NewMessage.wParam, Counter, NameOfFile,

128)

If IsFileHidden(NameOfFile) = Then

N = HideFi 1 e(NameOf Fi 1 e , True)

If N = Then

Recycl er . Li stl . Add I tern NameOf Fi 1

e

Else

Fail$ = NameOfFile

MsgBox ("Couldn't add " + Fail $) : Fail$ = ""

End If

If Recycl er. Li stl . Li stcount = 1 Then Recycl er. Icon =

LoadPicture("RECYCLE2.IC0")

End If

Next counter

FixTi tl

e

DragFinish NewMessage.wParam

Screen .Mousepointer =

End If

Loop

End Sub

Once those introductory steps are complete, the routine assigns the

value of-1 to the variable FileNum, and uses the Or operator to combine

two standard parameters for the PeekMessage command: PM_NoRemove
(which instructs Windows not to remove the message from the Windows
queue) and PM_NoYield (which prevents Visual BASIC from yielding con-

trol to another task while the PeekMessage statement is being executed).

Then it calls the Windows DragAcceptFiles subroutine, passing it the handle

of the Recycler window as the window that will accept drag-drop messages.

Next the Main routine enters the DoEvents loop, which allows it to mon-

itor drag-drop messages. This loop is performed constantly while Recycler is

active. It begins by calling PeekMessage to determine whether a message of

type 563 (WM_DROPFILES) is waiting for Recycler. If the value returned

by PeekMessage does not equal 0, then a WM_DROPFILES message is

waiting. Recycler responds to this by turning the cursor into an hourglass to

indicate that it is busy (Screen.MousePointer=l 1), then beeps the PC
speaker, and calls the DragQueryFile function.

Since FileNum has been set equal to -1, the DragQueryFile function will

return the number of files that were dropped on the window. Then the rou-

tine loops through the list of files that were dropped on the window, obtaining

290 MAKING USE OF LIBR ARI ES — RECYCLER

each file's name in turn, and issuing the command to hide it. If the hide opera-

tion is successful (N=0), the routine adds the name of the file to the list box

on the Recycler window.

If, on the other hand, Recycler was unable to hide the file, it informs the

user via the message box shown in Figure 12.5. The most common reason for

Recycler being unable to follow through is that the item it's attempting to

hide isn't a file at all, but rather a subdirectory.

Next, the routine checks the total number of items in Listl, and if it is

equal to 1, loads the RECFULL.ICO icon to show that Recycler is not

empty. Then it loops back to get the next file.

Once all the file names have been retrieved and all the files have been

hidden, Recycler calls the FixTitle routine to fix the window caption, sends

the DragFinish message to release the Windows data structure reserved for

the drag-drop operation, turns the cursor back to its standard shape, and,

finally loops back to the beginning of the DoEvents loop and starts over

again looking for the WM_DROPFILES message.

Now let's look at the function that actually hides the files dropped onto

Recycler.

The HideFile Function

HideFile uses DISKSTATDLL's SetFileHidden routine to either hide a file

or make a file visible. The function takes two parameters: FileToHide$ (the

name of the file to hide or make visible) and Hiding (an integer variable that

indicates whether the file should be hidden or made visible):

Function HideFile (Fi

1

eToHide$, Hiding)

If Hiding = True Then PlusMin$ = "+"
: Else PlusMin$ = "-"

N = CheckForDir(FileToHide$)

If N <> Then HideFile = 1: Exit Function

HideFile= SetFi 1 eHi dden(Fi

1

eToHi de$, P 1 u s M i n $

)

End Function

The HideFile function starts by evaluating the value of the Hiding

parameter. If it is True (equal to -1, per the Constant definition of True in

GLOBAL.BAS), then the string variable PlusMin$ is set to "+". Otherwise,

it is set to "-".

Next, the HideFile function calls the CheckForDir function (described

next), passing it FileToHide$ and assigning the result of the function to the

integer variable N. CheckForDir ensures that the file HideFile is about to

hide is indeed a file, and not a directory. If N contains a nonzero value, then

FileToHide$ is a directory or is otherwise unavailable, and so HideFile

assigns the value 1 to its own return value and returns to the procedure that

called it. (The Main routine examines the value returned by the HideFile

function, and posts the message box shown in Figure 12.5 if the value is not

equal to 0.)

Exploring DRAGDROP.BAS 291

Otherwise, HideFile calls the SetFileHidden function, passing it the

name of the file to hide and the string variable PlusMin$, and assigns the

results of SetFileHidden to its own result before returning to the routine that

called it. Again, the value of HideFile will be if the SetFileHidden function

was successful, or another value if it failed.

The CheckForDir Function

CheckForDir is used by the HideFile function to determine whether a file

that is about to be hidden or made visible is available for that operation.

This is necessary because the DISKSTAT.DLL does not return an error if

you try to set the Hidden attribute for a directory or subdirectory, even

though doing so has no effect on the directory or subdirectory.

Function CheckForDir (Fi 1 eToHi de$)

SearchpathS = Envi ron$("PATH")

Results = Stri ng$(129 , 0)

CheckForDir = Fi ndFi 1 e(Fi 1 eToHi de$, SearchpathS, Result!)

End Function

CheckForDir determines whether the file name being tested points to a

file or to a directory by using the FindFile function from DISKSTAT.DLL. If

you ask FindFile to find a fully qualified file name for an existing file (such as

C:\VB\RECYCLER.EXE), it will always report that it can find it. But if you

pass it the full path to a directory entry (such as C:\VB\SAMPLES), it will

always report that the file cannot be found. So the FindFile function turns

out to be a good way to determine whether a name supplied by a drag-drop

function points to a file or to a directory.

The CheckForDir function begins by setting the string SearchPath$

equal to the DOS path, using Visual BASIC'S Environ$ function to obtain

the path. Then it initializes Result$ as a 129-character null-terminated string,

and then calls the FindFile function, passing it the variables FileToHide$,

SearchPath$, and Result$. If the file specified by FileToHide$ is indeed a file,

the function will return a value of 0, indicating that the file was found. But if

it is a directory, the function will return a nonzero value, indicating that the

Recycler shouldn't add FileToName$ to the recycling bin.

The FixTitle Subroutine

FixTitle is called during Recycler's loading process, and then again whenever

the user places files in an empty recycling bin, empties the bin, or minimizes or

restores Recycler's window. This routine is responsible for making sure that

Recycler's window title and icon caption reflect its current state; the window

title should simply read "Recycler" when the window is in a restored state, but

the caption should be changed to indicate the number of files and their total

size (in kilobytes) when Reevcler is minimized. In addition. FixTitle ensures

292 MAKING USE OF LIBRARIES — RECYCLER

files in Recycler.

that the text that appears below the list box in the Recycler window always cor-

rectly reflects the number of files in Recycler and their total size in bytes.

Sub FixTitle ()

FixSi ze

KB& = TotSize / 1024

LI = Recycler. List 1 . Lis tcount

Recycl er. Label 1 .Capti on = Str$ (LI

" + Str$(TotSize) + " bytes"

If LI = Or Recycl er .Wi ndowstate <> 1 Then

Recycl er. Capti on = "Recycler": Exit Sub

If LI = 1 Then Recycl er

.

Capti on

Str$(KB&) + " KB": Exit Sub

Recycl er. Caption = "Recycler

Str$(KB&) + " KB"

End Sub

= "Recycler 1-file" +

+ Str$(LI) + "-files" +

FixTitle starts by calling the FixSize subroutine (detailed below), which

sets the global variable TotSize equal to the total size in bytes of all the files

in the recycling bin. Then FixTitle divides that total by 1024 to obtain the

total size in kilobytes of the files in the bin, and assigns that result to the real

number KB&.
FixTitle then uses the ListCount command to count the files in Listl on

the Recycler form, and resets the caption of the label on the Recycler form

to indicate the number of files and their size in bytes.

Next, FixTitle sets the window title (the caption of the Recycler form),

setting it to read "Recycler" if the bin is empty or if the window state of the

Recycler window does not equal 1 (the window is not minimized). Alterna-

tively, it will be set to "Recycler 1-file " plus its size in kilobytes, if the mini-

mized Recycler contains a single file; or "Recycler", followed by the total

number of files in the bin, followed by "-files " and their total size in kilo-

bytes, if the minimized Recycler contains more than one file.

Once it has set the window title, FixTitle exits, returning control to the

routine that called it.

The FixSize Subroutine

FixSize, the last routine in Recycler, simply counts the total size in bytes of

all the files in the Recycler bin:

Sub Fi xSi ze (

)

TotSize =

For X = To Recycl er. Li stl . Li stcount - 1

Temp=FreeFi 1

e

F$=Recycler. Listl. List(X)

If CheckForDir (F$) <> Then Goto Skip

Wrapping Up Recycler 293

Open Recycl er. Li stl . Li st(X) For Input As Temp

TotSize = TotSize + LOF(Temp)

Close Temp

Skip

Next X

End Sub

FixSize starts by setting the global variable TotSize equal to 0. Then, for

each file in the bin, it obtains a free file handle, checks to make sure the file

exists, and if it does, opens the file and uses the Visual BASIC LOF file to

obtain its length, adding that value to the current value of TotSize. (It has to

open the file because LOF will only work on an open file.) Then it closes the

open file and goes on to the next file in the bin. When it has added the size of

each file to TotSize, it exits, returning control to the FixTitle routine, which

called it.

Wrapping Up Recycler

Recycler wasn't the most challenging project in the world; it's a nice little

application, but it doesn't do all that much. Moreover, there are a couple of

factors that keep it from being of commercial grade': its inability to work with

subdirectories and to keep track of files in the recycling bin from session to

session.

Still, those limitations could be easily overcome. You could circumvent

the inability of DISKSTAT.DLL to hide subdirectories by having Recycler

move files to a designated Recycler subdirectory rather than hiding them,

and use an array to keep track of their original location. And you could

"train" Recycler to keep track of its contents from session to session by hav-

ing it save that array to disk every time it shuts down, and reload the array

when it starts up.

The point of the Recycler project, however, wasn't to provide the world's

best recycling bin. Instead, it was to demonstrate the ease with which you

can extend Windows development tools using dynamic link libraries—and

the power those libraries can give your applications. Think about it: Visual

BASIC doesn't provide built-in support for either of the two crucial func-

tions performed by Recycler—accepting drag-drop messages and hiding

files. Yet by making a few external-library declarations, it was a simple mat-

ter to build an application in Visual BASIC that revolved around those capa-

bilities. With this kind of extensibility, there are almost no limits to the

power of any Windows development tool that can interact with external

dynamic link libraries.

Next, in Chapter 13, you'll see another kind of extensibility: that pro-

vided by Dynamic Data Exchange.

CHAPTER

Linking Applications

through DDE— |
Windows Broker

Broker's Origin and
Structure

Exploring

BROKERl.XLS

Exploring LOTS.XLS
and IBM.XLS

Exploring the

BROKER1.XLM File

Exploring

BROKER1.DCP

Wrapping Up Windows
Broker

Broker's Origin and Structure 295

WINDOWS BROKER IS AN EXAMPLE OF HOW WINDOWS'S DYNAMIC

Data Exchange (DDE) facility and application macro languages

can be combined to form a custom application that joins the

capabilities and features of two or more existing applications.

Windows Broker links Microsoft's Excel spreadsheet program and Future-

Soft Engineering's DynaComm asynchronous communications program to

produce an automated stock-trading system that can track the values of the

stocks in a portfolio and issue electronic buy and sell orders to an on-line dis-

count brokerage.

Broker's Origin and Structure

One of the more common examples used to illustrate the benefits of Win-

dows DDE is that of automating the downloading of on-line financial data

into a spreadsheet-based portfolio-analysis application. That always sounded

like a great idea to me, but I'd never actually seen it done. So I decided to

test the practicality of the notion once and for all by creating a broker for

Windows.

And I decided to push the envelope a little while I was at it. It would

have been easy to make Windows Broker simply track changes in the value of

a portfolio by downloading stock-price information. But I also wanted it to

automate the process of buying and selling stocks through an on-line discount

brokerage, so that I could issue a buy or sell order at the push of a button.

To keep the scope of the project manageable, however, I limited it to

managing a fictitious portfolio with holdings in only two stocks: IBM and

Lotus Development Corporation.

Choosing the Tools

There was no contest in the choice of a spreadsheet in which to build Win-

dows Broker. Most experts agree that Microsoft's Excel is so far superior to

the competition in terms of programmability and customizability that I knew
from the start it would serve as the core component of the Windows Broker

project. (The application was originally built in Excel 3.0, but it can also be

used with the new Excel 4.0.)

The choice of a communications tool for use with Windows Broker was a

little less obvious, because the application's communications functions could

have been handled by any Windows asynchronous communications package

with a decent macro language and support for DDE. That includes, among oth-

ers. Crosstalk Communication's Crosstalk for Windows, Hi-Q's Mission Con-

trol, and SynappSys's WinComm. In the end, however, I selected FutureSolt

Engineering's DynaComm program for use in this part of the Windows Broker

application, mostly because I was already favorably impressed (and familiar)

with its macro language from other development projects.

296 WINDOWS BROKER

I also had to select a source for electronic stock prices and an on-line

brokerage. I found both on CompuServe. Windows Broker uses Compu-
Serve's Quick Quote service to obtain daily stock price data, and Quick &
Reilly's Quick*Way on-line brokerage (accessible through CompuServe) to

issue buy and sell orders for securities in my fictitious portfolio.

Quick*Way offers a "game account" feature that allows you to set up

imaginary portfolios and buy and sell stocks in them, following your gains

and losses without actually ever buying a real share of stock. The game
account turned out to be awfully useful as I developed Windows Broker,

since it allowed me to avoid having to buy and sell real shares of stock just to

test the script.

Application Framework
The Windows Broker application consists of five files:

BROKERl.XLS, an Excel spreadsheet that is used to analyze and present

data about the portfolio's holdings

IBM.XLS and LOTS.XLS, a pair of worksheets used to hold daily stock-

price and sales-volume information for IBM and Lotus Development

Corporation

BROKER1.XLM, an Excel macro sheet used to hold the spreadsheet

macros that power the Windows Broker application

BROKER1.DCP, a DynaComm macro file that performs all Windows
Broker's on-line activities

Let's look at each of these, starting with the BROKERl.XLS file.

Exploring BROKERl.XLS
BROKERl.XLS is the control center of the Windows Broker application,

and the only part of the application with which the user interacts. It keeps

track of trades in the portfolio, recording the date of each transaction, the

security purchased or sold, the number of shares traded, the price paid or

received per share, and the commission paid on the trade.

In addition, BROKERl.XLS contains nine separate screen "pages," self-

contained areas of the worksheet, each of which fills the screen with a cus-

tom display. These screen pages (discussed below) present information

about the portfolio in numeric or graphic form and elicit user input through

on-screen buttons and data entry fields. Except for the Opening screen,

there are separate versions of each screen for IBM and Lotus stocks.

Exploring BR0KER1.XLS 297

Opening Screen This screen, shown in Figure 13.1, presents a line chart

illustrating the closing-price performance of both securities in the portfolio

for the past 60 trading days, plus three buttons: one labeled "Lotus", which

jumps to the Lotus Stock screen; one labeled "IBM", which jumps to the

IBM Stock screen; and one labeled "Update Prices", which launches Dyna-

Comm and instructs it to obtain the latest price and volume information for

both securities from CompuServe.

Figure 13.1
Windows Broker's

Opening screen

Microsoft Excel - BR0KER1 .XLS

File Edit Formula Format Data Options Macro Window Help

p

o
r

t

f

IBM Lotus

o
1

i

o Update Prices

Price Per Share

BO

404

20

lll M lllltl H IIlllttlllilllll l lll l llll l l l llll l lll l ll M III I I M

™ ii § § S § -8 !
»S| r-

Lotus IBM

Stock Screens The Stock screens detail the users holdings in the current

stock, including the total shares held, average price per share, total price

paid, current price per share, current value of the portfolio, total commis-

sions paid, and a plus/minus figure that indicates the user's total gain or loss

on the security. In addition, each Stock screen presents a summary of the

users last transaction of the stock, buttons for jumping to three separate

graphs illustrating various aspects of the stock's performance, and a small

Transaction Order form that allows the user to enter a buy or sell order. Fig-

ure 13.2 shows the Lotus Stock screen.

298 WINDOWS BROKER

Figure 13.2
The Lotus Stock

screen

Microsoft Excel - BROKER! .XLS

File Edit Formula Format Data Options Macro Window Help

Developi

Shares held: 1200

Average price $22.27

Total paid $26,725.00

Current price: 7 50

Current value. $45,000.00

Commission: $154.00

Plus/minus: $18,121.00

Last trar Bought 1 00 at 37 1/2 on 3/20/92.

Return to Broker

Ready

G
r

Last 21 Days.

a

P
h

Prioo

s Volume

Transaction Order

Shares:

Buy

21-Day High-Low-Close Chart These screens (the Lotus version of which

is shown in Figure 13.3) illustrate the high, low, and closing prices for the

stock over the previous 21 trading days.

60-day Price Chart These screens illustrate the closing price for the stock

over the previous 60 trading days, as shown in Figure 13.4.

60-Day Volume Chart These screens, as Figure 13.5 shows, illustrate trad-

ing volume for the stock over the previous 60 trading days.

Worksheet Mechanics
The Windows Broker screens take advantage of Excel's strong graphic capa-

bilities and its ability to place buttons and graphs directly on the worksheet.

They also utilize its ability to hide many standard spreadsheet features,

including the formula bar, Toolbar, scroll bars, and cell gridlines.

On the Opening screen (Figure 13.1), I created the Windows Broker

headline and the Portfolio bar using Excel's word processing tool, which

allows you to draw a text box directly on the worksheet and to specify its

font, fill color, border, and orientation (horizontal or vertical). 1 then used

Excel's button tool to create the Lotus, IBM, and Update Prices buttons and

to link them to macros on the BROKER l.XLM macro sheet. Figure 13.6

shows the Excel 4.0 Properties menu used to make this linkage.

Exploring BR0KER1.XLS 299

Figure 13.3
The Lotus 21-Day

High-Low-Close

chart

Microsoft Excel - BROKER1.XLS
File Edit Formula Format Data Options Macro Window Help

Lotus Development Corporation

40

36

30

25

20 -

15 •

10

5 •

l r r .''" l ,p
.

r *

pi > i
!. r r i r

r r
h r

Return

o -I—i
1

—

t- -i 1 1 1 1 1 1 1 1 1 1 1
1 I I I I

u

.

U U u_ u. U. u. u_ S — 2 1 . > 2 ! 2 ! 2 2 2 % 2 1.

Heady

Figure 13.4
The Lotus 60-Day

Price chart

Microsoft Excel - BR0KER1 .XLS

File Edit Formula Format Data Options Macro Window Help

Lotus-Last 60 Days

needy

300 WINDOWS BROKER

Figure 13.5
The Lotus 60-Day

Volume chart

Microsoft Excel - BR0KER1 .XLS

File Edit Formula Format Data Options Macro Window Help

Lotus Volume

3CO0O0O

2500000

2000000

1500000

1000000

500000

& d) 43 itJ ifl <6

a a a *? -? 7A ti A cm to 00
3-5-J-J-17U.li.lLL.U.lLli.ll.U.U,3IIIJEIJ

ri-rNNMNf)

Ready

Figure 13.6
The Properties

menu for a

worksheet button

Exploring BROKERl.XLS 301

The Opening screen price chart, which graphs changes in the closing

prices of both stocks in the portfolio over the past 60 trading days, is linked

to the LOTS.XLS and IBM.XLS files. In each of those files, I created a

named range called Last60Close, which contains the relevant prices, and one

called Last60, which contains the date each price was recorded. The price

chart utilizes both of them. It uses the Last60 range to supply the labels for

its x-axis, and the Last60Close range to supply its y-axis variables, as shown

in the Edit Series dialog box used to define the chart (see Figure 13.7).

The two Stock screens, and their charts, were built using the same

methods.

Figure 13.7
The Price chart

reflects ranges in

the L0TS.XLS and

IBM.XLS files

Microsoft Excel

File Edit Gallery Chart Format Macro Window Help

BR0KER1.XLS

Windows Broker

te e y
Ready

BROKERLXLSCha

100 r^

80 {

Price Per Share

D

Name: |="IBM"

X Labels: |=IBM XLSMaslGO

Value*: |=IBM XLSMaslGOclose

Plot Order .'

I»£|ff |L-|
|

lj |te* |ll»llll My
|

1Vlt
|

fal |!B | |

- V
|
UIU

|
liffll || JLl.|Ulii||l— |LzJ

|
|

«
|
UJ M

Hidden Data
The BROKERl.XLS file also contains two data ranges that the user won't

normally see. The first is hidden behind the Windows Broker headline on the

Opening screen. I've used the cells that are obscured by the headline to store

a variety of information the DvnaComm script needs to access, as detailed in

Table 13.1.

The use of each of the items is explained later in this chapter in the sec-

tion "Exploring BROKER.DCP."

302 WINDOWSBR OKER

Table 13.1 Data Needed by DynaComm

Cell Contents

Al CompuServe telephone number

Bl CompuServe log-on name

CI CompuServe password

Dl Quick & Reilly account number

El Quick & Reilly log-on name

Fl Quick & Reilly password

Gl Quick & Reilly portfolio name

A2 Stock symbol (for transactions)

B2 "B" for Buy or "S" for Sell

C2 Quantity to buy or sell

Transaction Histories

The other hidden data in the worksheet consists of the transaction histories

for the two accounts. These are located in the cells immediately below those

occupied by the Volume charts, and are named IBMTrans and LOTSTrans,

respectively. These ranges—which include the details of each transaction

made in the portfolio, and keep track of total shares, profit and loss, and

other data—are maintained automatically by the macros that handle stock

transactions. Figure 13.8 shows the IBM transaction history.

Exploring LOTS.XLS and IBM.XLS
The LOTS.XLS and IBM.XLS files simply hold the daily price and volume

data for Lotus and IBM stock, respectively. Each includes five columns of

data, identified by the column headings Date, High, Low, Close, and Vol-

ume, as shown in Figure 13.9.

Both worksheets also contain a series of named ranges (listed in

Table 13.2) used by the graphs in BROKERl.XLS and the macros in

BROKER l.XLM to extract the data they need.

Exploring LOTS. XLS and IBM. XLS 303

Figure 13.8
The IBMTrans

range of

BR0KER1.XLS

Figure 13.9
Price data from the

IBM. XLS worksheet

Microsoft Excel - IBM.XLS

File Edit Formula Format Data Options Macro Window Help

6 Date High Low Close |Vol

27-Nov 114.125 112 5/8 113 1/2 15315

28-Nov 113.875 112 3/8 112 3/8 13192

9 29-Nov 112 875 1115/8 |l12 11957

10 30-Nov 114.5 [1-11 1/4
1
1 1 3 5/8 18044

11 :
[ip,; 114 5 1113 1/8 1113 3/8 15702

12 4 Dec 115 113 114 3/4 14577

13 5 Dec 114.875 113 3/4 114 5/8 14845

14 6-Dec 116 111 1/4 111 1/2 33898

ie 7 -Dec 112 875 110 3/4 |112 1/2 |l9094

16

17

10-Dec

1 1 -Dec

1 1 3 75 112 1/8 113 3/8 7 1 1 738

113 125 1 1 2 3/8 112 7/8 9979

10 1 12-Dec 1145 1125/8 114 3/8 14719

;

13-Dec 114 625 112 7/8 112 7/8 10931

14 Dec 112 5 (11 H1 1/4 14352

ai 17-Dec 111.75 1 1 1 5/8 |l11 1/2 |9549

22

as

24

18-Dec 1135 1111/2 113 1/2 H 61 71

19-Dec 114 112 1/8 112 3/4 24639

20-Dec 1 1 4 625 112 1/4 113 3/4 1 8960

25 21-Dec 114 375 113 3/8 113 7/8 20846

20 24-Dec 11425 113 3/4 113 7/8 '3413

26-Dec 114 25 1113 1/2 113 1/2 3968

HI '-
DecM .-•fi.rior

113 875 113 113 5/8 7141

11 a 87.5 mi" in i/fl T>ao

304 WINDOWS BROKER

Table 13.2 Named Ranges in LOTS.XLS and IBM.XLS

Range Contents

LAST60 Dates of last 60 prices

LAST60CLOSE Closing prices for last 60 dates

LAST60V0L Trading volumes for last 60 dates

LAST21 Dates of last 21 prices

LAST21HIGH Daily high prices for last 21 dates

LAST21LOW Daily low prices for last 21 dates

LAST21CL0SE Closing prices for last 21 dates

LAST21V0L Trading volume for last 21 dates

LASTPRICE Most recent closing price

I started off the Windows Broker project by seeding these worksheets

with 60 days of historical trades that I'd obtained through a standard inter-

active session with the CompuServe Quick Quote service. They are now
maintained automatically: When you click the Update Prices button, a com-

bination of Excel and DynaComm macros (in BROKER1.XLM and

BROKER1.DCP) obtain the latest prices, add them to the bottom of the

data tables in the two worksheets, and redefine the ranges to include the

latest data.

Exploring the BROKER1.XLM File

An XLM file is referred to in Excel as a macro sheet. Generally, an XLM file

is used to store macros associated with an XLS (worksheet) file that has the

same name as the macro sheet. So BROKER1.XLM stores the macros asso-

ciated with BROKERl.XLS.

Navigational Macros
The BROKER 1.XLM file starts off with a series of scripts that move the

active spreadsheet window from one screen page of the application to

another in response to the user's commands. The Go_Lots macro leads

things off.

Exploring the BROKER1 . x LM File 305

The Go Lots Macro
GoJLots is executed when the user clicks the Lotus button on Windows Bro-

ker's Opening screen, or when the user clicks the button labeled "Return"

on any of the three Lotus graph screens.

Go_Lots

=HSCR0LL(15 .TRUE)

=VSCR0LL(1 .TRUE)

= F0RMULA("L0TS", !A2)

=FORMULA("=0", !S12)

=DEFINE.NAME("BuyTarget\ !S12)

=DEFINE.NAME("TransTarget", !P11)

=IF(BROKERl.XLS!TransTarget=" Unrecorded")

=G0T0(Update)
= END.IF()

=RETURN()

Note that in this, and all the Excel macros that follow, command lines are

preceded by an equal sign (=), whereas comment lines and macro names
appear without any preceding character. You'll also note that all these Excel

macros seem to spend most of their time either selecting ranges or changing

formulae. This has to do with the peculiar programming model imposed by

spreadsheets, in which cells and cell ranges act as the equivalent of variables

and arrays in a more standard language. Unfortunately, this can make
spreadsheet macro code difficult to follow, since the meaning of =Formula
("LOTS",!A2) isn't as apparent as that of a statement such as A$="Lots".

Nevertheless, the two statements are equivalent.

Go_Lots begins by moving the screen window so that the cell at col-

umn 15 in row 1 of the worksheet is at the upper-left corner of the screen,

thus revealing the Lotus Stock page, which is stored at that location in the

BROKERl.XLS worksheet. The presence of the TRUE parameter in the

HSCROLL and VSCROLL commands indicates that the number in the

previous parameter points to an absolute location, that is, a specific loca-

tion on the worksheet. Otherwise, if the second parameter was FALSE or

was missing, the first parameter would be interpreted as a percentage of the

total width or height of the worksheet.

Next, the macro prepares to accept a transaction order involving Lotus

stock, by placing the string "LOTS" in cell location A2 (the location Dyna-

Comm queries to determine which security to buy or sell) and the number
in cell location S12 (the entry blank on the transaction order form). The
exclamation point preceding the cell references identifies them as being on

the active worksheet (BROKERl.XLS) as opposed to the macro sheet

(BROKER1.XLM).
Next, the macro gives location S12 the name BuyTarget and location PI 1

(the location where Lotus transactions are recorded) the name Trans Target.

306 WINDOWS BROKER

These range names are used by the DynaComm script during the stock trans-

action process.

Finally, the macro checks to see whether the cell TransTarget (Pll) con-

tains the string "Unrecorded". If so, it calls the Update macro. Otherwise,

it exits.

The GoJBM macro
The Go_IBM macro is very similar to the Go_LOTS macro:

Go_IBM

=HSCR0LL(25 .TRUE)

=VSCR0LL(1.TRUE)

=FORMULA("IBM ", !A2)

=FORMULA("=0",!AC12)

=DEFINE.NAME("BuyTarget",!AC12)

=DEFINE. NAME ("TransTarget", !Z11)

=IF(BROKERl.XLS!TransTarget=" Unrecorded")

=G0T0(Update)

=END.IF()

=RETURN()

The only differences between Go_IBM and Go_Lots are the location of

the Stock screen the macro scrolls to, the value it places in cell A2, and the

location to which it assigns the names BuyTarget and TransTarget. The
Go_IBM macro places the string "IBM " in A2 and defines the cells AC12
and Zll as BuyTarget and TransTarget, respectively.

The ChartHLC macro
The macro called ChartHLC is executed when the user presses the button

labeled "Last 21 Days" on either Stock screen:

ChartHLC

=VSCR0LL(23,TRUE)

=RETURN()

The graphs that illustrate the high-low-close prices for each stock appear

on the screen page below its Stock page, so the ChartHLC macro simply

scrolls the screen down until row 23 is at the upper edge of the screen win-

dow, in order to expose the high-low-close chart.

The ChartPrice Macro
ChartPrice operates identically to ChartHLC, except that it scrolls the

screen down to row 52, to reveal the chart of the stock's closing price over

the past 60 trading days:

<.\\,i r \.\'r i (.a

Exploring the BR0KER1.XLM File 307

=VSCR0LL(52,TRUE)

=RETURN()

The ChartVol Macro
ChartVol scrolls the screen down to row 82, to reveal the chart of sales vol-

ume over the previous 60 trading days for the current stock:

ChartVol

=VSCR0LL(82,TRUE)

=RETURN()

The Home Macro
The last of the navigational macros is Home, which jumps back to Windows
Brokers Opening screen:

Home

=HSCR0LL(1 .TRUE)

=VSCR0LL(1 .TRUE)

=RETURN()

Home simply scrolls the screen to the left and then up until the cell at

row 1, column 1 is at the upper-left corner of the visible screen window.

Communication Macros
The next several macros interact with DynaComm. They take the data Dyna-

Comm obtains, convert it into usable form, and issue buv and sell orders.

The Get Prices Macro
Get_Prices, the first of the macros that interact with DynaComm, is used to

obtain current price data for the two stocks in the portfolio. The macro runs

when the user clicks the Update Prices button on the Opening screen.

=Get_Prices

=Beep

=F0RMULA("&Quotes&".!D2)
= 1 NITI ATE("DYNACOMM". "BR0KER1 . DCT"

)

=TERMINATE(A40)

=MESSAGE(TRUE. "Connecting to CompuServe")

=RETURN(

)

Get_Prices begins by beeping the PCs speaker (just for the heck of

it), and then places the string "&Ouotes&" in cell location D2 of the

BROKERl.XLS worksheet. Then it uses the DDE command INITIATE
to launch DYNACOMM.EXE, and passes it the name of the compiled

308 WINDOWS BROKER

script it should execute: BROKER1.DCT. (DYNACOMM.EXE must be

on your DOS path for this command to work.)

At this point, the DynaComm script takes over, examining the value of

cell D2 to determine what process it should perform (get quotes, place a

transaction order, or record a transaction). It then connects to CompuServe,
retrieves the stock prices, and then uses DDE to send the data back to

Excel, which stores it on the BROKERl.XLS worksheet in cell locations

A26 and A28. Then the DynaComm script instructs Excel to launch the

Cleanup macro, which interprets the data retrieved from CompuServe and

moves it into the LOTS.XLS and IBM.XLS worksheets. (The discussion of

BROKER1.DCP, below, will fully document the workings of the Dyna-
Comm script.)

The Cleanup Macro
The stock data that DynaComm receives from CompuServe isn't quite ready

for spreadsheet use. Spreadsheets like to keep things orderly—each number
and each label stored in a separate cell.

When DynaComm requests the latest price on a stock, however, it

receives back a long string of data—including the name of the company
(which may be truncated or abbreviated); the day's trading volume for the

stock; the stock's high, low, and last prices; the change from the previous

day's close; and the date of the last transaction—all of which gets squeezed

onto a single line, like this:

INTERNATIONAL BUSINESS MA 19230 87.125 85.625 85.875 -1.625 3/19

Obviously that string has to be parsed into its constituent values before

it is of much use in a spreadsheet, a task that DynaComm's script language

undoubtedly could have handled. But rather than trying to figure out exactly

how to do the parsing in DynaComm, I elected to simply poke the entire

string through DDE into a specific cell location in BROKERl.XLS, and

then use Excel's PARSE command, which was made for tasks like this.

This illustrates one of the hidden advantages of building applications

that link macro languages from two or more programs—you can let the pro-

gram that's best suited for a task do the work. The not-so-hidden disadvan-

tage is that you've got to master two or more macro languages before you

can know for sure which program is really best suited to the task.

Once it has sent the stock price data through the DDE channel to Excel,

DynaComm instructs Excel to launch the Cleanup macro:

Cleanup

-MESSAGECTRUE. "Formatting latest stock data")

-SELECTC "R26C1 : R28C1 "

)

-PARSE("[LOTUS DEV CORP COM II 3790]| 22.250]| 21. 500] [21 .750] [0.000]

[2/2? |")

Exploring the BROKER1.XLM File 309

Cleanup starts by displaying the string "Formatting latest stock data" on

the status bar at the bottom of the Excel screen. Then it selects the cell range

C26 to C28 (the range in which the Lotus and IBM stock price data has been

stored), and utilizes the Excel PARSE command to break it into seven col-

umns of data—one each for the stock name, the volume, high, low, and close

figures, the change in price, and the date. The stock price data supplied by

CompuServe always follows the same format, so I was able to use the stan-

dard template specified in the parameter to the PARSE command to break it

up into individual values. (The square brackets in the template indicate

where each data item begins and ends.) I used an actual example of the data

for the template. When the macro executes. Excel compares the template to

the data it is being asked to parse and carries out the parse operation using

the same breaks between data items as in the template.

Next, the macro selects the range in which the PARSE command has

placed the high, low, close, price change, and date information for the stocks,

and applies Excels General format to the entire range (meaning that num-

bers, labels, and dates will be displayed in the worksheets default format for

their type.)

R26C3: R28C7")

UMBERC'General

=SELECT(

=FORMAT.NUMBER("General")

=SELECT("R28C3")

=SELECT(
"
R26C6: R28C7")

=CLEAR(3)

=SELECT("
R25C2: R28C2"

)

-CUTO
=SELECT("R25C6")

=PASTE()

=SELECT("R25C3: R28C6"

)

-CUTO
=SELECT("R25C2")

=PASTE()

=CALCULATI0N(3)

=SELECT(
"
R26C2: R26C5")

-CUTO
=SELECT("R3C1")

It then clears the range that holds the price change and date, since Win-

dows Broker doesn't use either of those items. Then it executes a series of

cut-and-paste operations, which first rearranges the data so that it appears in

the high, low, close, and volume order used in the LOTS.XLS and IBM.XLS
worksheets. And finally it selects all the Lotus data and cuts it to the Clip-

board in preparation for the next series of statements.

=0PEN("LOTS.XLS")

=MESSAGE(TRUE. "Updating Lotus data")

310 WINDOWS BROKER

=SELECT("R7C3")

=SELECT.END(4)

=SELECT("R[1]C")

=PASTE()

=SELECT("RC[-1]")

=F0RMULA("=T0DAY()")

=C0PY()

=PASTE.SPECIAL(3)

=SetRanges()

=CLOSE(TRUE)

In these statements the macro opens the LOTS.XLS worksheet, places

the message "Updating Lotus data" on the Excel status line, and then moves
the cursor to the bottom of the Lotus stock price data range and pastes the

new Lotus data there. It accomplishes this by first selecting the top of the

data range (R7C3), then moving to the bottom of the range with the

SELECT.END(4) command, then moving one row farther down with the

command SELECT("R[1]C"), which tells Excel to select the cell one row

down in the same column. Then it issues a PASTE() command to paste the

Lotus price and volume data into the worksheet, and then moves one col-

umn to the left and enters the formula =TODAY, which always displays the

current date.

Next, in order to convert that formula into a static date (one that doesn't

change from day to day), the macro copies the cell that holds the =TODAY
formula and then issues the PASTE.SPECIAL(3) command, which pastes

the value of the formula (the current date) back into the cell.

Then the macro calls the SetRanges subroutine (detailed below), which

redefines a series of cell ranges used by BROKERl.XLS to include the new
data. Finally, the macro issues the CLOSE(TRUE) command to close the

LOTS.XLS file, before returning to the BROKERl.XLS file to work with

the IBM price data, using the following statements:

=SELECT("R28C2: R28C5")

=CUT()

=SELECT("R3C1")

=0PEN("IBM. XLS"

)

=MESSAGE(TRUE, "Updating IBM Data")

=SELECT("R8C3:R8C3")

=SELECT.END(4)

=SELECT("R[1]C")

=PASTE()

=SELECT("RC[-1]")

-F0RMULA("-TODAY ()")

=C0PY()

=PASTE. SPECIALC3)

Exploring the BROKE Rl . X LM File 311

=SetRanges()

=CLOSE(TRUE)

=CALCULATI0N(1)

=SELECT("R1C1"

)

=MESSAGE(FALSE)

=RETURN()

This code is similar to the lines above that enter data into LOTS.XLS.
Here the macro selects the IBM price data, cuts it to the Clipboard, and

moves the cursor to the top of the BROKERl.XLS file. Then it opens the

IBM.XLS file, posts a message that it is updating the IBM data, and follows

the same series of steps as does the LOTS.XLS file to post the new data in

IBM.XLS. When those steps are complete, it closes IBM.XLS, recalculates

the BROKERl.XLS worksheet, moves the cursor to row 1, column 1, turns

off the status-line message, and finally issues the RETURN() command, end-

ing the Cleanup macro.

The SetRanges Macro
The SetRanges subroutine macro is used twice by the Cleanup macro to

redefine the named ranges in the LOTS.XLS and IBM.XLS files.

SetRang

=SELECT

=SELECT

=SELECT

=DEFINE

=SELECT

=DEFINE

=SELECT

=DEFINE

=SELECT

=DEFINE

=SELECT

=SELECT

=DEFINE

=SELECT

=SELECT

=DEFINE

=SELECT

=DEFINF

=SELECT

=DEFINE

=RETURN

es

("R7C2"

. END(4)
(

" R [- 2

1

.NAMEC
(OFFSET

.NAMEC
(OFFSET

. NAMEC
(OFFSET

.NAMEC

.END(3)

. END(4)

.NAMEC

.END(l)

("RC-60

.NAMEC
(OFFSET

.NAMEC
(OFFSET

.NAMEC
()

]C2:RC",)

Last21",SELECTI0N())

(SELECTIONO.0,1))
Last21high",SELECTI0N())

(SELECTIONC),0,D)
Last211ow",SELECTI0N())

(SELECTIONC),0,D)
Last21close",SELECTIONO)

Lastprice".SELECTI0NO)

]C2:RC")

Last60",SELECTIONO)
(SELECTIONC), 0.3))

Last60close",SELECTION())

(SELECTIONC).0.D)
Last60vol". SELECTIONC))

312 WINDOWS BROKER

Despite how complex its code looks, the operation of SetRanges is sim-

ple. It just moves to the last filled cell in a column of data—for instance the

closing price column—and then selects that cell and the 20 immediately

above it and defines the range as Last21Close (or Last21High, Last21Vol,

Last21Low, as the case may be). Then it does the same thing for each of the

other names it defines, with the exception that it selects the preceding 59

cells for the 60-day ranges.

That concludes the macros that deal with updating daily stock data. Next

come the two macros that are used to actually purchase or sell stock, called

Buy and Sell, respectively.

The Buy Macro
Buy is launched when the user presses the button labeled "Buy" on either

the IBM or Lotus Stock screen.

Buy

=F0RMULA("B", !B2)

=FORMULA("=BuyTarget", !C2)

=FORMULA("&BuySell&", !D2)

=MESSAGE(TRUE, "Connecting to CompuServe")

=Beep

=FORMULA("&BuySell&", !D2)

=1 NITI ATE ("DynaComm"," BROKE Rl.DCT")

=TERMINATE(A51)

=RETURN()

The macro begins by placing the letter "B" (for Buy) in cell B2 of

BROKERl.XLS, the formula =BuyTarget in cell C2, and the text "&Buy-
Sell&" in cell D2. BuyTarget will be equal to either LOTS or IBM, depend-

ing on which Stock screen was active when the Buy button was pressed.

Then the macro uses the Excel status bar to announce that it is connecting

to CompuServe, beeps the PC's speaker, and utilizes the DDE command
INITIATE to launch DynaComm and instruct it to execute the compiled

script BROKER1.DCT.
The DynaComm script uses the values the Buy macro places in cells B2,

C2, and D2 to determine which actions it should perform. Once launched, it

carries out the transaction and automatically enters data about it into the

Excel worksheet, before ending.

Next the Excel script terminates the DDE connection established by the

INITIATE command. Since the Buy macro's INITATE command is located

in cell A51 of the BROKER1.XLM macro sheet, the command to terminate

it is TERMINATE(A51). Then the macro comes to an end with the com-

mand RETURN.

Exploring the BROKER1.XLM File 313

The Sell Macro
Sell is nearly identical to the Buy macro, varying only in the value it places in

cell B2 and the location used as a parameter in its TERMINATE command:

Sell

=F0RMULA("S",!B2)
= FORMULA("=buytarget\ !C2)

=MESSAGE(TRUE, "Connecting to CompuServe")

=Beep

=F0RMULA("&BuySell&".!D2)

=INITIATE("DynaComm","BROKERl.DCT")

=TERMINATE(A62)

=RETURN()

Transaction-Recording Macros
Once a purchase or sell order has been placed, the DynaComm macro that

places it inserts the text string "Unrecorded" into the Last Transaction field

on the stock sheet for the stock specified in the order. (This indicates that

the worksheet has not yet obtained the data from Quick*Way telling it when
the trade actually occurred, the price per share, and the commission paid on

the trade.)

From that point on, every time the Go_Lots or Go_IBM macro takes

you to that stock sheet, it launches the Update macro to determine whether

you wish to obtain the complete data for the last transaction.

The Update Macro r

The Update macro starts by creating a message box informing you that the

last transaction has not been recorded, and offering you the chance to do so,

as shown in Figure 13.10. The code for Update looks like this:

Update

=ALERT("last transaction has not been recorded. Would you like to record it now?".l)

=IF(C2=FALSE)

=RETURN()

-END.IFO
-MESSAGE(TRUE. "Connecting to CompuServe")

=Beep

-F0RMULA("&Update&".!D2)

-INI T

I

ATE(" DynaComm". "BR0KER1. DC'

"

-TERMINATE(C9)

-RETURN()

If you press the Cancel button on the Alert box, cell C2 on the macro

sheet (the location of the =ALERT statement) will be equal to FALSE, so

the subroutine will terminate, returning control to the Go_LotS or do IBM
routine. Otherwise, it places the message "Connecting to CompuServe" on

314 WINDOWS BROKER

the Excel status line, beeps the PCs speaker, places the text string

"&Update&" in cell D2 of BROKERl.XLS to tell DynaComm what opera-

tion it is to perform, and uses the INITIATE command to launch Dyna-

Comm and execute BROKER1.DCT Then it immediately terminates the

DDE connection and returns control to the Go Lots or Go IBM routine.

Figure 13.10
The Update

Transactions

reminder box

Microsoft Excel - BR0KER1 .XLS

File Edit Formula Format Data Options Macro Window Help

Intern

Shares held

Average price

Total paid

Current price

Current value

Commission:

Plus/minus

The DynaComm Update routine checks with Quick*Way to see if the

transaction has occurred yet. If so, it obtains the data about the transac-

tion, updates the Last Transaction field, and then pokes the complete trans-

action data into Excel, starting at cell location A35. Then it instructs Excel

to execute the Transaction macro, which moves the data into the area of

the BROKERl.XLS worksheet used to store transactions for the current

stock. If the transaction has not yet taken place, DynaComm logs off with-

out changing the BROKERl.XLS worksheet. You can enter several trans-

action orders in a row, and the Update routine will record them as they

take place.

The Transaction Macro
By the time DynaComm instructs Excel to launch the Transaction macro,

the DynaComm script has already placed all the data it has obtained from

Exploring the BR0KER1.XLM File 315

Quick*Way about the transaction into BROKERl.XLS, starting at location

A35, as detailed in Table 13.3.

Table 13.3 Transaction Data Storage Locations

Cell Contents

A35 Transaction date

B35 "Buy" or "Sell"

C35 Quantity of shares transacted

D35 "LOTS" or "IBM"

E35 Price per share

F35 Commission paid

The Transaction macro moves this data into either the LotusTrans or the

IBMTrans ranges on BROKERl.XLS, depending on which stock was traded.

Transaction

=SELECT("R35C4"

)

= 1 FCACTI VE

.

CELLC) = " LOTS"

.

SELECT (" LotusTrans"), SELECT (
" I BMTrans")

)

=SELECT.END(4)

=SELECT("R[1]C")

=F0RMULA("=R35C1")

=SELECT("RC[1]")

=F0RMULA("=R35C2")

ACTIVE. CELL() = "SeH")

=CLEAR(3)

=SELECT("RC[1]")

=F0RMULA("=R35C3")

=SELECT("RCC -1]"

)

=ELSE()

=F0RMULA("=R35C3")

-END.IFO

The Transaction macro starts by examining the contents of D35 to deter-

mine which transaction range should receive the data. If D35 contains

"LOTS", it issues the command SELECT ("Lotus Trans"). Otherwise, u

selects the IBM Trans range. Then it moves to the bottom row of data in the

range, then moves down one more row to the first blank row and enters the

formula =R35C1, to copy the transaction date into the left-most cell oi the

new row.

316 WINDOWS BROKER

Next the macro has to enter the contents of cell C35—the quantity of

shares bought or sold—into either the second or the third cell of the new
row. The second column of the transaction range is used to record stock pur-

chases, so it receives the number from C35 if B35 is "Buy", whereas if B35 is

"Sell", the number from C35 is entered in the third column, which is used to

record sales. So the macro starts by moving to the second cell in the new row
and entering the formula =R35C2 there, thus copying the value of cell B35
into the cell. Then it evaluates the contents of that cell, and if they are equal

to the string "Sell", clears the cell and moves one column to the right, enter-

ing there the contents of C35. Otherwise, if the evaluated cell is equal to

"Buy", it overwrites the =R35C2 formula with =R35C3, entering the number
of shares purchased into the second cell of the row.

=SELECT("RC[2]")

=F0RMULA("=R35C5")

=SELECT("RC[1]")

=F0RMULA("=RC[-l]*RC[-3]")

=SELECT("RC[1]")

=F0RMULA("=RC[-2]*RC[-3]")

=SELECT("RC[1]")

=F0RMULA("=R35C6")

=SELECT("RC:RC[-6]")

=C0PY()

=PASTE.SPECIAL(3)

Next the macro moves two columns to the right, into the cell used to

record the price per share of the stock, and enters the formula =R35C5 to

copy the price from cell E35. Then it moves one more column right, into the

column that stores the total price paid for purchase transactions, and enters

the formula =RC[-l]*RC[-3], setting the value of that cell equal to the num-

ber of shares purchased multiplied by the price per share.

After recording the total price paid, the macro moves one column to the

right, into the cell that stores the proceeds from sales transactions, and

enters the formula =RC[-2]*RC[-3], setting the value of that cell equal to the

value of the price per share column multiplied by the value of the quantity

sold column. Finally, it once again moves one column to the right and enters

the formula =R35C6 to copy the commission paid on the trade into the

active cell.

Next, the macro copies the entire new row of data to the Clipboard and

then pastes it back into the same row as values rather than formulae. This

breaks the link between this record and the values of cells A35 through F35.

Without this step, the transaction record would change whenever the con-

tents of those cells changed.

=FORMAT.NUMBER("0.00")

Exploring BR0KER1.DCP 317

=SELECT("RC")

=F0RMAT. NUMBER ("dd -mmm-yy "

)

=SELECT("R[1]C:R[1]C[7]")

=INSERT(2)

=SELECT(" R35C1 : R35C6"

)

=EDIT.DELETE(2)

=SELECT("R35C1")

=IF(LEN(ACTIVE.CELL())>0 , GOTO

(

trans), GOTO (Home)

)

=RETURN

Next, the Transaction macro formats the entire new record to display its

contents as a number with two-digit accuracy, and then selects the first cell in

the record (the date of the transaction) and reformats it to display as a date.

Then it moves down one row, highlights the blank cells that will constitute

the next record, and issues the INSERT(2) command, which tells Excel to

insert new cells in the place of the highlighted ones, thus pushing the high-

lighted ones down one row. This effectively extends the transaction range

and all formulae that refer to it by an additional row, ensuring that the next

record that is entered is also included in those formulae.

Finally, the macro jumps back to the cell range in which DynaComm left

the transaction data, highlights the range, and deletes it with the command
EDITDELETE(2), which makes Excel shift the cells below the highlighted

range up to take its place. Then the macro checks the contents of cell A35. If

A35 is not empty, it means that DynaComm retrieved more than one transac-

tion record during its last update session, so the macro jumps back to the

start of the Transaction macro and repeats the entire process for the next

record. Otherwise, it returns, its job done.

That concludes the Excel macros for the Windows Broker application.

Exploring BROKER1.DCP
BROKER l.DCP is executed whenever Windows Broker needs to perform

an on-line task, no matter whether that task is to retrieve stock-price infor-

mation, post a buy or sell order, or record transactions.

The BROKER l.DCP script tile contains 14 named routines: Intro, Get-

Vars, FixVars, Dial, Select_Task, Messagebar, StripString, Wait_Send,

GoQuotes, GoOWK, BuySell, GoUpdate, Update, and Fail. The first live

are introductory routines; they are executed in sequence every time the com-

piled version of the script (BROKER L.DCT) is run. The next three (Mes-

sagebar, StripString, and Wait_Send) are general-purpose subroutines that

are called repeatedly by one or more of the other routines. The last six rou-

tines are task dependent.

318 WINDOWS BROKER

The Introductory Routines
Let s begin at the beginning, with the first of the introductory routines, Intro.

The Intro Routine

The Intro routine (identified by the label "*Intro") consists of just four lines

of code:

*Intro

LOAD "BR0KER1.DCS"

TITLE "Windows Broker Online"

ACCESS "EXCEL" "BR0KER1.XLS" %Channel

IF ERROR CANCEL

The first statement instructs DynaComm to load the settings file called

BROKER1.DCS, which contains the communications settings to be used for

communicating with CompuServe. Next, the routine changes the title of the

DynaComm window to "Windows Broker Online", and then attempts to

open a DDE channel to the BROKERl.XLS worksheet. If the access

attempt is successful, the channel number will automatically be assigned to

the integer variable % Channel. Otherwise, the IF ERROR routine issues

the CANCEL command, ending script execution.

The GetVars Routine

Once a DDE channel has been opened to the BROKERl.XLS worksheet,

the GetVars routine uses it to obtain the data the script needs to carry out its

assigned task:

*GetVars

REQUEST $Task FROM %Channel "R2C4"

REQUEST $Phone FROM %Channel "R1C1"

REQUEST $Name FROM %Channel "R1C2"

REQUEST $Pass FROM %Channel "R1C3"

REQUEST $Account FROM ^Channel "R1C4"

REQUEST SBuyname FROM %Channel "R1C5"

REQUEST SBuypass FROM ^Channel "R1C6"

REQUEST SPortfolio FROM %Channel "R1C7"

REQUEST $Buy FROM ^Channel "R2C1"

REQUEST SBuysell FROM XChannel "R2C2"

REQUEST SBuynum FROM XChannel "R2C3"

ACCESS CANCEL %Channel

GetVars starts off by using the DynaComm DDE command REQUEST
to obtain the contents of cell location D2 (R2C4) and assign them to the vari-

able $Task. (Following this command, $Task will be equal to either &Buy-

Se)l&, &Update&, or &Quotes&.)

Exploring BROKER1.DCP 319

Next, the routine issues ten more requests to obtain the CompuServe
telephone number; the users CompuServe identification and password; his

or her Quick*Way account number, log-on name, and password; the name of

the portfolio in which any trades are to take place; the symbol of the stock to

buy or sell (if any); whether to buy or sell; and the number of shares to buy

or sell. All these values are stored under the Windows Broker banner on the

Opening screen of the application. Finally, the routine uses the ACCESS
CANCEL routine to close the DDE channel.

The FixVars Routine

Once the variables have been obtained from Excel, DynaComm executes the

FixVars routine. FixVars resolves a messy anomaly involving DDE communi-

cations between Excel and DynaComm. The data DynaComm obtains from

Excel tends to arrive with several carriage-return/line-feed combinations of

unknown origin tacked onto to it. FixVars removes those extra characters.

* F i x V a r s

PERFORM StripString($Task)

PERFORM StripString($Phone)

PERFORM StripString($Name)

PERFORM StripString($Pass)

PERFORM StripString($Buyname)

PERFORM StripString($Buypass)

PERFORM StripString($Account)

PERFORM StripString($Portfol io)

$Buy=SUBSTR($Buy,l,4)

$ Buy sel 1=SUBSTR($ Buy sell ,1.1)

%Buynum=NUM($Buynum)

$Buynum=STR(%Buynum)

Most of the strings that arrive from Excel are enclosed in ampersands, so

the FixVars routine calls the StripString subroutine to cut the strings down
until they consist of only that data previously separated by ampersands, thus

eliminating any extraneous characters tacked onto the end of the string dur-

ing the DDE communication.

In the case of the $Buy, $BuyScll, and SBuyNum variables, however,

there is no need to enclose them in bracketed ampersands or to use Strip-

String. Since the lengths of $Buy (four characters—either "LOTS" or

"IBM ") and $BuySell (one character

—

cither "B" or "S") are known, the

FixVars routine simply uses the DynaComm SUBSTR (substring) function

to change them to the correct size. Meanwhile, since $BuyNum contains a

number, the extraneous carriage-return/line-feed characters don't affect the

strings numeric value. So the routine simply uses the DynaComm NUM
function to convert SBuyNum to an integer, which it assigns to the integer

variable %BuyNum and then converts back to a string, thereby removing

the extraneous characters.

320 WINDOWS BROKER

The Dial Routine

Once all the variables have been cleaned up, DynaComm executes the Dial

routine (and its LoginLoop subroutine) to connect to CompuServe.

*Dia1

DIAL $Phone

WAIT DELAY "1"

*LoginLoop

SEND NOCR " A C"

WHEN STRING 1 "ID" RESUME

WHEN TIMER "2" GOTO LoginLoop

WAIT RESUME

WHEN CANCEL

SEND $Name

PERFORM Wait_Send ("Password: ",$Pass)

WAIT STRING "Last"

WAIT QUIET "1"

The Dial routine starts off by issuing the DynaComm DIAL command,
giving it the telephone number stored in the string variable $Phone as a

parameter. At this point DynaComm automatically pauses script execution

until a connection is made.

Once the telephone has been answered, the script waits one more sec-

ond, and then executes a loop called LoginLoop, in which it sends the Ctrl-C

command to get CompuServe's attention and establishes a pair of WHEN
conditions. The first tells DynaComm that when it receives the string "ID"

from CompuServe, it should continue execution at the statement after the

WAIT RESUME command. The second WHEN condition tells DynaComm
that it should jump back to the beginning of LoginLoop every time its inter-

nal timer reaches two seconds. The following statement, WAIT RESUME,
pauses script execution until the RESUME command is issued.

What all that means is that DynaComm sends a Ctrl-C to CompuServe

every two seconds until it receives the CompuServe log-in prompt "Please

enter user ID:". Once that string is received, the script cancels the WHEN
conditions, sends the user's CompuServe log-on name, and then calls the

Wait_Send subroutine, passing it parameters that tell it to wait for the

prompt "Password: " and then send the contents of the variable $Pass back

to CompuServe.

Once the log-on procedure is complete, the script waits for the string

"Last", which appears in the standard CompuServe welcome message. (The

message begins, "Last access: " followed by the time and date the user last

accessed CompuServe.) It then waits for the line to go quiet for one second,

which indicates that the welcome message is done, before proceeding to the

Select Task routine.

Exploring BR0KER1.DCP 321

The Select Task Routine

Once the script has successfully logged onto CompuServe (which the "Last"

prompt is proof of), it performs the Select_Task routine to determine what

its next step should be:

*Sel ect_Task

SWITCH $Task

CASE "Update"

PERFORM GoQWK

PERFORM GoUpdate

LEAVE

CASE "BuySell"

PERFORM GoQWK

PERFORM BuySell

LEAVE

CASE "Quotes"

PERFORM GoQuotes

SWITCH END

QUIT

Select_Task uses DynaComms SWITCH statement, which is the equiva-

lent of the SELECT CASE statement described in Chapter 2, to evaluate

the contents of the variable $Task. If $Task contains the string "Update",

then the script s job is to update the portfolio-transaction records. It does so

by performing the GoQWK routine, followed by the GoUpdate routine.

Once the GoUpdate routine is complete, the script leaves the SWITCH rou-

tine and executes the first command past the SWITCH END statement,

QUIT, which stops the script and unloads DynaComm.
Meanwhile, if $Task is equal to "BuySell", the script s job is to either pur-

chase or sell stock, so it executes first the GoQWK routine, followed by the

BuySell routine. If $Task is equal to "Quotes", the script's job is to get cur-

rent stock prices, so it performs the GoQuotes routine.

General-Purpose Subroutines
The following three routines—Messagebar, StripString, and Wait_Send—are

repeatedly called as subroutines by other routines in BROKER l.DCT

The Messagebar Subroutine

Messagebar is called whenever the script wants to send a command to Excel

through the DDE channel:

*Messagebar ($Message)

ACCESS "EXCEL" "SYSTEM" %Channel

INSTRUCT ^Channel SMessage

322 WINDOWS BROKER

ACCESS CANCEL %Channel

RETURN

This routine takes its name from the fact that most of the calls to it

throughout BROKER1.DCP are intended to update the Excel status-line

message bar. For instance, the commands

$Message= ' [MESSAGE(TRUE, " Hanging Up "
)]

'

PERFORM Messagebar($Message)

would place the text "Hanging Up" on the Excel message bar. But the

INSTRUCT statement can actually be used to send any command to Excel.

Thus the script also uses the Messagebar routine to command Excel to

launch macros, such as the Cleanup macro Excel uses to incorporate new
stock-price data into the worksheet. The commands to launch the Cleanup

macro would look like this:

$Message='[RUN("BROKERl.XLM!Cleanup")][BEEP()]'
PERFORM Messagebar($Message)

The Messagebar routine operates by first establishing a DDE channel to

Excel, then instructing it perform the command specified in the $Message

variable, and finally canceling the DDE channel and returning to the calling

routine.

The StripString Subroutine

StripString is called repeatedly by the FixVars routine to clean up data items

obtained via DDE from Excel:

*StripString($Stripstring)

%Pl=POS($Stripstring,"&")

%P2=P0S($Stripstring,"&",%Pl+l)

$Stri pstri ng=SUB5TR($Stripstring,%Pl + l,%P2-2)

RETURN

StringString uses the DynaComm POS function to obtain the location of

the first ampersand in the string FixVars passes to it, and assigns that loca-

tion to the integer variable %P1. Then it uses POS again to find the next

ampersand's location, which it assigns to %P2. Finally, it sets the new value

of $Stripstring equal to the part of the original $Stringstring that lies

between %P1 and %P2, using DynaComm's SUBSTR function.

Thus if the text of $Stripstring, as passed by FixVars, is "&MyAccount-

Name&JFJGLD", %P1 will be equal to 1, %P2 will be equal to 15, and the

new $Stripslring will be "MyAccountName".

Exploring BROKER1.DCP 323

The Wait Send Subroutine

Wait_Send is used whenever the script has to wait for a known prompt and

respond with a known string:

*Wait_Send ($Prompt , $Response)

WAIT STRING $Prompt

WAIT QUIET "1"

SEND SResponse

RETURN

The Wait_Send routine pauses script execution until it receives the text

designated by $Prompt from CompuServe, then waits for one second of

silence on the communications line (which gives DynaComm a chance to fin-

ish painting the screen once CompuServe stops sending data), then sends the

text in response to CompuServe before returning to the calling routine. The
text it waits for doesn't have to be on a line by itself; in fact, in most cases the

script waits for just a word or two out of a long line of text. All that matters

is that the text is unique enough to be a reliable indicator that CompuServe
has arrived at the specific prompt the script is waiting for.

The WAIT QUIET statement here and in other routines really isn't nec-

essary, since most of the time the BROKER l.DCT script will operate in the

background, hidden behind Excel, where it doesn't really matter how messy

the screen looks. But since some users might like to activate DynaComm
with the Alt-Tab switch in order to watch the on-line session take place,

these brief pauses are a nice device for keeping things tidy on screen without

seriously affecting the script's performance time.

Task-Specific Routines
Execution of the remaining routines in BROKER l.DCP is based on the task

the script has been launched to perform. The first of these, GoQuotes, is

used to update stock prices.

The GoQuotes Routine

GoQuotes is used when the BROKER l.DCT script has been executed in

response to the user clicking on the Update Prices button. The routine takes

over following a successful log-in by the Dial routine with the main Compu-
Serve or ZiffNet prompt (since some CompuServe members may connect

initially with ZiffNet, home of PC/Computings PCContact service, PC Maga-
zine's Magnet, and other Ziff-Davis information services, rather than with

the main CompuServe area):

*GoQuotes

SEND "GO CIS:QUOTES"

$Message='[MESSAGE(TRUE. "Connecting To Quick Quote")]'

PERFORM Messagebar(SMessage)

324 WINDOWS BROKER

PERFO

PERFO

$Mess

PERFO

COLLE

COLLE

COLLE

COLLE

COLLE

COLLE

PERFO

PERFO

$Mess

PERFO

HANGU

CLEAR

WAIT

ACCES

POKE

POKE

ACCES

$Mess

PERFO

$Mess

PERFO

RETUR

RM W

RM W

age=

RM M

CT $

CT $

CT $

CT $

CT $

CT $

RM W

RM W

age=

RM M

P

ai t_

ait_

'[ME

essa

Junk

Junk

Junk

Junk

LOTS

IBM

ai t_

ai t_

'[ME

essa

Send ("choice", "1")

Send ("Issue:", "LOTS, IBM")

SSAGE(TRUE, "Collecting Quotes")]'

gebar($Message)

Send ("Issue:", " A M")

Send ("!", "/Off")

SSAGE(TRUE, "Hanging Up")]'

gebar($Message)

DELAY "2"

S "EXCEL" "BR0KER1.XLS" %Channel

SLOTS TO %Channel "R26C1"

$IBM TO %Channel "R28C1"

S CANCEL ^Channel

age='[MESSAGE(FALSE)]'

RM Messagebar(SMessage)

age='[RUN("BROKERl.XLM!Cleanup")][BEEP()]'

RM Messagebar($Message)

The routines start by issuing the command GO CIS:QUOTES, which

links DynaComm to CompuServe's Quick Quote service no matter whether

you've dialed into CompuServe or ZiffNet. Then the Wait_Send subroutine

is called, with instructions to wait for the string "choice" (which appears in

the CompuServe Quick Quote main menu prompt "Enter choice:") and to

respond by sending a 1 to access the Current Quotes menu item.

Next, the routine waits for the "Issue:" prompt, to which it responds

with the symbols of the stocks for which it wants current prices. Then it

updates Excel's status bar to read "Collecting Quotes", and issues a series of

COLLECT commands, each of which captures a complete line of text from

CompuServe.

The first four COLLECTS receive things that we're not interested in—an

empty line, a column headings line, and so on—so the script just assigns

them, in sequence, to the variable $Junk. Then comes the data we're after,

two lines that look like this:

LOTUS DEV CORP COM 5947

INTERNA! I0IIAI BUSINESS MA 19260

37.750 36.750 36.875 0.625 4:00

86.625 85.7 50 86.125 0.250 4:36

Exploring BROKER1.DCP 325

The script assigns the first of these lines to the variable SLOTS and the

second to $IBM. Then it waits for the "Issue:" prompt to reappear, sends a

Ctrl-M to leave the Quick Quote service, and then waits for the standard

CompuServe "!" prompt. When that prompt appears, the script sends the

command /OFF (signaling to CompuServe that the user wishes to discon-

nect) and updates the Excel status-line message area to read "Hanging Up".

Then the script issues the DynaComm HANGUP command to disconnect

the modem, and the CLEAR command to clear the terminal screen.

That concludes the script s on-line work. Now all it has to do is get the

stock price data into the Excel worksheet. It begins this part of its job by

establishing a new DDE link to Excel, and then using the DynaComm DDE
command POKE (which sends a data item to the DDE host and waits for an

acknowledgment) to copy the contents of the variable $LOTS into cell loca-

tion A26 of the BROKERl.XLS file, and the contents of $IBM into cell loca-

tion A28. With that job done, it terminates the DDE connection with the

command ACCESS CANCEL % Channel, and calls the Messagebar subrou-

tine with the parameter [MESSAGE(FALSE)], to turn off the Excel status-

bar message line. Finally, the routine uses Messagebar again to instruct Excel

to run the Cleanup macro on BROKER1.XLM (described earlier), and

returns to the Select_Task routine, which called it.
.

The GoQWK Routine

The Select_Task routine calls GoQWK to establish a link to the Quick*Way
brokerage service whenever the user wishes to place an order or record a

transaction:

*GoQWK

$Message='[MESSAGE(TRUE,"Connecting To Qui ck*Way")
]

'

PERFORM Messagebar($Message)

SEND "GO CIS:QWK"

WHEN STRING 1 "Access" RESUME

WAIT RESUME

WAIT DELAY "1"

SEND "8"

PERFORM Wait_Send ("name" . $Account)

PERFORM Wait_Send ("word" , $Buyname)

RETURN

The routine springs into action at the main CompuServe prompt, follow-

ing a successful log-in. It starts by updating the Excel status-line message bar

to read "Connecting to Quick*Way". and then issues the command GO
CIS:QWK to link to the Quick*Way brokerage.

Quick*Way's opening screen, shown in Figure 13.11, is a menu offering a

variety of information about the Quick*Way service, as well as the opportu-

nity to open an account. But the script is interested in only one item, number

326 WINDOWS BROKER

8, which reads "Access Quick^Way", so it waits for that text to arrive over

the communications line. When it does, the script pauses for a second, and

then responds by selecting menu item 8.

Figure 13.11
The main

Quick'Way menu Enter choice! go cis:qwk

I/oli are now entering the CompuServe Information Service and will be subject to
|

CompuServe's service terms, conditions and operating rules.

For information, or to signup for CompuServe's new pricing plan, type GO
CHOICES.

CompuServe

WELCOME TO QUICK*UA¥

I DynaComm
File Edit Search Settings Phone ^Transfers Script Window Help

CIS:QWK-1

1 Introduction to Quick*Way
2 About Quick & Reilly
3 Terms and Prices of Quick*Way
4 More Information about Quick»Uay
5 Open a Quick*Uay Account - Enroll

today, trade in a few days.
6 Company Analyzer <$E>
7 Demonstration of Quick*Vlay
8 Access Quick*Way <$>

Enter choice?!

The script then issues two Wait_Send commands in a row, waiting first

for Quick*Way's "Username" prompt (to which it replies by sending the con-

tents of the string variable $Account) and then for the prompt "Password:"

(to which it replies by sending the contents of the variable $Buyname).

That concludes the process of linking to the Quick*Way service, so the

script returns to the Select_Task routine to see what it is to do next.

The BuySell Routine

Select_Task calls the BuySell routine to enter stock purchase or sale orders:

*BuySell

PERFORM Wait_Send ("NUMBER", "211")

lMessage=' [MESSAGEdRUE , "Sending transaction order")]'

PERFORM Messagebar($Message)

PERFORM Wait_Send ("Short Name", SPortfolio)

PERFORM Wait_Send ("Symbol", $Buy)

PERFORM Wait_Send ("(S)", SBuysell)

Exploring BR0KER1.DCP 327

PERFORM Wait_Send ("of", $Buynum)

PERFORM Wait_Send ("word" , $Buypass)

Once it has logged into Quick*Way, the script receives the prompt

'TYPE NUMBER TO SELECT", to which it replies by sending "211", the

address of Quick*Way's BUY OR SELL STOCKS page. This page consists of

a series of prompts about the transaction. So, after updating the Excel status-

line message bar, the script issues a series of Wait_Send commands that

respond to each of the prompts that appear: Quick*Way sends "Short Name"
(asking for the short name of the portfolio), and the script responds with

$Portfolio. Quick*Way prompts "Symbol" (asking for the symbol of the stock

to buy or sell) and the script responds with $Buy. Quick*Way prompts "(S)"

(as in (B)uy or (S)ell) and the script responds with $Buysell. Quick*Way
prompts "of" (from "Number of Shares") and the script responds with

$Buynum. Finally, Quick*Way prompts "word" (asking for the account's spe-

cial transaction password) and the script responds with $Buypass.

PERFORM Wait_Send ("Correct", "Y")

IF $Buysell="S" WHEN STRING "specific" SEND "N"

PERFORM Wait_Send ("Agai n" , "N")

WHEN CANCEL

PERFORM Wait_Send ("Other" , "N")

PERFORM Wait_Send ("NUMBER", "0")

WAIT STRING "!"

$Message='[MESSAGE (TRUE, "Hanging up")] '

PERFORM Messagebar($Message)

SEND "/OFF-

HANGUP

Once the order has been entered, Quick*Way displays a summary of it

and asks "Is this ORDER Correct", to which the script responds "Y". Next,

in the case of a sell order in which the user owns more shares of the security

than he or she is selling, Quick*Way will ask if the seller wishes to sell spe-

cific shares. The script anticipates this eventuality with a WHEN STRING
condition that sends the response "N" if it receives the text "specific".

Meanwhile, the script calls Wait_Send to handle the other prompt that

might appear at this point, "Order again in this Portfolio", to which it also

responds "N". Once that prompt has been received, the possibility of receiving

the "specific" prompt has passed, so the script cancels the WHEN STRING
condition. Finally, it responds to the Quick*Way "Order in another Port-

folio" prompt by sending "N", concluding the Quick : Way transaction

routine.

Once the transaction is complete. Quick*Way repeats its "TYPE NUM-
BER TO SELECT" prompt. This time the script responds by sending a 0,

the command to disconnect from the Quick*Way service. It then wails for a

328 WINDOWS BROKER

"!" prompt from CompuServe, to which it responds by sending the "/off"

command. And then it updates the Excel status-bar message area to read

"Hanging up" before issuing the DynaComm HANGUP command.

ACCESS "EXCEL" "BR0KER1.XLS" %Channel

INSTRUCT ^Channel ' [BEEP()]'

INSTRUCT %Channel ' [FORMULA! "Unrecorded" , "Transtarget")]

'

INSTRUCT %Channel ' [MESSAGE! FALSE)]

'

ACCESS CANCEL ^Channel

RETURN

The final steps in the BuySell routine begin with the script opening a

DDE channel to BROKERl.XLS. It uses the channel first to instruct Excel

to beep the PCs speaker (signaling the user that the transaction has been

entered), and then to tell Excel to enter the text "Unrecorded" in the named
range Transtarget (which points to the Last Transaction: area for the stock

just purchased or sold). Finally, it instructs Excel to clear its status-bar mes-

sage area, closes the channel, and returns to the Switch_Task routine, which

called it.

The Gollpdate Routine

GoUpdate is called following GoQwk when the script has been instructed to

record the last purchase or sale transaction. Its first job is to determine if the

data the script seeks about the transaction is available yet.

*GoUpdate

WHEN STRING 1 "513" WHEN CANCEL STRING, GOTO Update

WAIT STRING "SELECT"

WHEN CANCEL STRING

GOTO Fail

Quick*Way relays information about completed transactions by means

of messages. If it has information for you about one or more recent transac-

tions, it sends the line "- You have new Messages (Menu # 513) -" before its

initial "TYPE NUMBER TO SELECT" prompt. So the GoUpdate routine

simply establishes a WHEN STRING condition that looks for the text string

"513". If it receives that text, it cancels the WHEN STRING condition, and

jumps to the Update routine (described below). Meanwhile, if it receives the

text "SELECT" without having received "513", then no transaction mes-

sages are available, and so it jumps to the Fail routine (described below).

Exploring BROKER1.DCP 329

The Update Routine

Update is executed when the script receives the message "- You have new
Messages (Menu # 513) -" during an on-line session launched lor the pur-

pose of updating transactions.

*Update

$Message='[MESSAGE(TRUE, "Retrieving Transaction Data")]'

PERFORM Messagebar(SMessage)

SEND "513"

TABLE DEFINE FIELDS CHAR 8 CHAR 4 CHAR 12 CHAR 4 CHAR 12 CHAR 12

WAIT STRING "Message"

The routine begins by posting the message "Retrieving Transaction

Data" on the Excel status bar. Then it sends the text "513" to Quick*Way,

instructing it to go to the messages page. Next, the routine defines a Dyna-

Comm structured table to hold the message data. Each record in the table

consists of six fields. The first field has room for 8 characters of data, the sec-

ond 4, the third 12, the fourth 4, and the fifth and sixth 12 each. Then it waits

for the string "Message", after which it enters a subroutine called Loop.

Transaction messages from Quick*Way follow a standard form. A typi-

cal message is shown in Figure 13.12.

Figure 13.12 Message Received 03:50 PM ON 3/20/92
Atypical The Message You May Wish to Delete is
Quick 'Way

message

PBONNER Acct. no.: Q5555-5555 Your

Sell order for 100 LOTS at Mkt was

executed at 36 3/4. The commission

was $29.00.

The Loop subroutine is designed to interpret these messages:

*l_oop

COLLECT $Date

WAIT STRING "Acct"

COLLECT $Junk

COLLECT $0rder

COLLECT $Price

COLLECT SCommis

PERFORM Wait_Send ("Delete". "Y")

Loop starts by using a COLLECT command to assign the line that starts

"Message Received" to the variable $Date, and then waits for the text string

330 WINDOWS BROKER

"Acct". It assigns the line on which "Acct" appears (which has no useful

data) to the variable $Junk, and then follows that by assigning the contents

of the next three lines to the variables $Order, $Price, and $Commis.
So if the Loop subroutine received the message listed above, $Date

would contain the text "Received 03:50 PM ON 3/20/92" ("Message" would

be omitted because the COLLECT command wasn't issued until after it had

been received). $Order would contain "Sell order for 100 LOTS at Mkt
was". $Price would contain "executed at 36 3/4. The commission". And
$Commis would contain "was $29.00."

Next, the script waits for the prompt "Delete this Message: (Y,N)" to

which it responds "Y". Then it sets about turning the text in $Date, $Order,

$Price, and $Commis into useful data:

SET %Temp LENGTH($Date)

SET @R0.1 SUBSTR($Date,%Temp-8.8)

SET %Temp LENGTHt $0rder)

SET @R0.2 SUBSTR($0rder,l,4)

SET @R0.3 SUBSTR($0rder,15,%Temp-29)

SET @R0.4 SUBSTR($0rder,Uemp-14,4)

SET @R0.4 FI LTER(@R0 .4 , "
"."")

SET %Temp LENGTH($Pri ce)

SET $Price SUBSTRt SPri ce , 13 ,%Temp-28)

PARSE $Price $Price "." $Junk

SET @R0.5 SPrice

SET Uemp LENGTFK SCommi s

)

IF SUBSTR(SCommi s.l .3)="was" SComrni s=SUBSTR(SCommi s .4, %Temp-4)

SET Uemp LENGTH(SCommi s)

SET @R0.6 SUBSTR(SCommis,2,%Temp-2)

IF @R0.2="Sell" $TRANS="SoId ", ELSE $TRANS= "Bought "

SQuan=TRIM(@R0.3)

$Price=TRIM(@RO .5)

SDate=TRIM(@R0.1)

STrans=STrans
|

SQuan
|

" at "
|

SPrice
|

" on "
|

SDate
|

"."

The first step it performs here is to extract the date the transaction was

recorded from the string variable $Date and place it in the first field of the

current DynaComm table record. This is easy because we know that the date

will always occupy the last eight character positions of that string, so the

script uses the LENGTH function to determine the length of $Date, and

then sets the first field in the current record equal to SUBSTR($Date,%-
Temp-8,8), the part of $Date that starts eight characters from the end of the

string and extends for eight characters.

Next, the routine has to determine whether the transaction was a pur-

chase or a sale, what stock was purchased or sold, and how many shares were

involved—all of which it can extract from $Order. Since the first four charac-

ters of $Order will always be either "Buy " or "Sell", it is easy to determine

the nature of the transaction using SUBSTR, and to assign that to the second

field in the current table record.

Exploring BR0KER1.DCP 331

Determining the stock symbol and the quantity bought or sold is a bit

trickier, since locations of that data in the string $Order vary according to

the length of the string (which itself varies according to the nature of the

transaction, the stock symbol, and the number of shares bought or sold—all

of which can be of variable length). Still, there are certain things we know
about those locations. By studying several such records, I determined that

the quantity of shares involved will always start at position 15 or 16, and

there will always be at least 29 characters in the string other than those that

indicate the quantity. So the routine extracts characters from the string start-

ing at position 15 and extending for a number of characters determined by

subtracting 29 from the length of the string (thus, if the string is 33 characters

long, it extracts characters 15 through 18) and assigns them to the third field

of the current record.

I also knew that the stock symbol would always start 13 or 14 characters

from the end of the string (depending upon whether it is a 3-character sym-

bol (IBM) or a 4-character one (LOTS)), so the routine extracts 4 characters

starting 14 characters from the end of the string, and assigns them to the

fourth field in the current table record. Then it uses the FILTER command
to strip any extraneous spaces from the beginning and/or the end of that

record, so that, for instance, either " IBM" or "IBM " would become "IBM".

Next the routine has to extract the price paid or received per share from

the string in $Price. This is relatively easy because the price will always start

at position 13 of the string and there are always 28 characters other than the

price in the string. So the routine simply extracts the substring that starts at

position 13 and extends a number of characters, which it determines by sub-

tracting 28 from the total length of the string, and assigns the result to $Price.

Then, just in case the period that follows the price is part of the extracted

substring, it uses the PARSE command to divide $Price into two substrings

—

the first consisting of the characters to the left of the period, the second of

the characters to the right—and redefines $Price yet again to consist of the

former. Then it assigns the value of $Price to the fifth field in the current

table record.

Finally, the routine must extract the commission paid on the transaction

from the $Commis string. Depending on whether the price per share was an

even dollar amount (32) or a fractional amount (32 1/4), the word "was"

might appear at the end of the $Price line or at the beginning of the $Com-
mis line (as in the message in Figure 13.12). So the routine checks to sec

whether "was" appears at the beginning of $Commis, and if it does, strips it

off using SUBSTR. Then, no matter what the original $Commis string con-

tained, it uses SUBSTR to strip off the dollar sign and period from the

string, and assigns the resulting number to the sixth field of the current table

record.

332 WINDOWS BROKER

Next, the routine builds the string it will place in the Last Transaction:

field for the stock involved in this transaction. If the second field of the

current table record contains "Sell", it starts the string with "Sold ". Other-

wise, the routine starts the string with "Bought ". Next it assigns the values

of other fields to $Quan (the number of shares bought or sold), $Price (the

price per share), and $Date (the transaction date), using the TRIM function

to remove any leading or trailing spaces from all three strings. Then it assem-

bles the final string by using the DynaComm string concatenation command
(indicated by the vertical bar). Thus after this process $Trans would read

"Sold 100 at 36 3/4 on 3/20/92."

RECORD WRITE

ACCESS "EXCEL" "BR0KER1.XLS" %Channel

IF @R0.4="L0TS" POKE $Trans TO ^Channel "LOTSTarget"

IF SUBSTR(@R0.4,1,3) ="IBM" POKE STrans TO ^Channel "IBMTarget"

ACCESS CANCEL ^Channel

$Trans=""

SEND ""

WHEN STRING "received" GOTO LOOP

WAIT STRING "you have"

WHEN CANCEL STRING

Next the routine saves the current table record (which DynaComm main-

tains in a temporary file), and opens a DDE channel to Excel. Then, depend-

ing on the contents of the fourth field of the record, it instructs Excel to copy

the string $Trans into one of two named ranges: LOTSTarget or IBMTarget,

which correspond to the Last Transaction: fields on the two Stock screens.

Then it cancels the DDE session, clears the string $Trans, and sends a car-

riage return to tell Quick*Way to proceed. It then monitors the text it

receives from Quick*Way, looking for the string "received", which would

indicate that another transaction message is waiting. If it gets that string, it

jumps back to the beginning of the Loop routine and processes the new mes-

sage. Otherwise, if it receives the message "You have no more Messages", it

cancels the string condition.

SEND ""

WAIT QUIET "1"

SEND
""

WAIT QUIET "1"

SEND "0"

WAI r QUIET "1"

SEND "0"

$MESSAGE=' [MESSAGE (TRUE." Transact ion(s) recorded. Hanging up.") I

'

PERFORM Messagebar($Message)

SEND "/off"

WAIT QUIET "1"

HANGUP

ACCESS "EXCEL" "BR0KER1.XLS" %Channel

[NSTRUC1 ^Channel '[BEEPO I'

Exploring BR0KER1.DCP 333

INSTRUCT ^Channel ' [MESSAGE(FALSE)]

'

TABLE SAVE TO CLIPBOARD AS SYLK

INSTRUCT XChannel ' [SELECT("R35C1")
]

'

INSTRUCT ^Channel '[PASTEt)]'

INSTRUCT %Channel ' [RUN("BR0KER1 . XLMlTrans")][BEEP()
]

'

ACCESS CANCEL %Channel

RETURN

If no more messages are waiting, the routine backs out of the Quick*-

Way service by sending a pair of returns, followed by a 0. Then it updates the

Excel status bar, sends the /off command to CompuServe, and hangs up.

Now all that remains is to copy the contents of the data table into Excel.

So the routine opens a DDE channel to BROKERl.XLS and instructs

Excel first to beep the PC's speaker and then to clear its status line. Next the

routine saves the data table to the Windows Clipboard in SYLK format

(SYLK is a data exchange format used by Excel), then instructs Excel to

select cell A35 and paste the contents of the Clipboard there. Finally, the

routine concludes by instructing Excel to run the macro called Trans on

BROKER1.XLM, then terminate the DDE connection and return to the

Select_Task routine, which called it.

The Fail Routine

Fail is performed only if no messages were waiting for the user on QuickC-

Way when the script was instructed to update transaction records:

* F a i i

$Message='[BEEP()]'

PERFORM Messagebar(SMessage)

$Message=' [MESSAGE (TRUE . "Transaction not yet recorded. Hanging up.")]'

PERFORM Messagebar($Message)

SEND "0"

WAIT QUIET "1"

SEND "/off"

HANGUP

$Message='[BEEP()]'

PERFORM Messagebar($Message)

$Message=' [MESSAGE (FALSE)]'

PERFORM Messagebar(SMessage)

RETURN

Fail starts off by instructing Excel to beep the PC's speaker, and then to

post the message "Transaction not yet recorded. Hanging up." on its status

line. Next the routine exits from Quick*Way and disconnects from Compu-
Serve. Then it instructs Excel to beep the PC's speaker again and clear its

message bar. Finally, it exits, returning to the Switch_Task routine.

334 WINDOWS BROKER

Wrapping Up Windows Broker

Windows Broker is more like the beginning of a full-fledged stock-trading

system than a finished application. It does its job well, but what it does is

fairly limited. Certainly a full-scale system would have to be able to work
with more than two securities, and should provide easy ways to add addi-

tional securities to the portfolio, view a complete transaction history, and per-

form additional analytic functions.

Fortunately, all those features and more are possible, thanks to the tre-

mendous flexibility afforded the developer by the combined power of the

Excel and DynaComm languages. By combining tools in this manner, you

can use them to create applications that exceed in range and scope any-

thing that would be possible using a single product's macro language. And
although this does entail the complication of having to learn more than one

language, it still saves you tremendous amounts of coding time and effort

compared to developing a similar application from scratch using a general-

purpose program-development tool.

CHAPTER

Enhancing

Applications

—

DocMan

Functional Requirements

A Tour ofDocMan

Exploring

DCGLOBAL.BAS

Exploring FORM1.FRM

Exploring

DOCMAN2.FRM

Exploring

ACTIONS.FRM

Exploring

FINDDLG.FRM

Exploring

GLOBCODE.BAS

Inside Ami Pro

Wrapping Up DocMan

Enhancing Applications—DocMan 337

DOCMAN IS A GLIMPSE INTO A BETTER WORLD—ONE IN WHICH YOUR
interaction with your PC will not be ruled by DOS's ridiculous

eight-letter file names and mind-numbing directory structures—or

even by applications. Instead, in this better world, documents will

rule. In other words, the computer will conform to your needs. You'll name
and access documents according to what makes sense to you, and let the

computer take care of its own housekeeping.

DocMan also serves as an example of how to build a custom application

that interacts with and modifies the behavior of an existing commercial appli-

cation. In this case, DocMan (written in Visual BASIC) serves as a front

end for Lotus's Ami Professional word processor. DocMan provides a way
for you to select Ami Pro documents to open, print, or delete on the basis

of 120-character titles, 300-character descriptions, and as many as four

indexed keywords, rather than by their 8-character file name.

Opening Moves
For the most part, Windows does a good job of shielding the user from the

complexities and limitations of DOS. However, except for the long labels

one can apply to Program Manager icons, it does nothing to address the

problem of DOS's eight-letter limit for file names.

For instance, say you're creating a report detailing your third-quarter

sales analysis for 1992, and you get the crazy notion you'd like to call the file

"1992 Third Quarter Sales Analysis Report." DOS won't let you do anything

that sensible. Instead, you're stuck with something like Q392SLAN.DOC

—

which flows off the tongue somewhat less trippingly, and may be consider-

ably more difficult to decipher six months down the road.

Windows itself doesn't do anything to change that. Some Windows appli-

cations, including Word for Windows and Ami Pro, do attach document-

description or summary sheets to files, but they don't go far enough. They
still force you to rely on DOS's eight-letter file names as your primary inter-

face for opening, saving, and finding documents.

This reliance on DOS file names, and the insistence by even the most

advanced Windows applications that the user navigate through labyrinthine

directory structures to locate files, is an unacceptable anachronism. In a day

and age in which applications provide single-button click access to amazingly

complex procedures, it is hard to believe—and even harder to accept—that

the simple act of opening and closing documents hasn't progressed since the

earliest days of personal computing.

In fact, I found it so hard to accept that I decided to do something about

it, and thus was born DocMan. Eventually I expect to see the kind of func-

tionality DocMan provides extended to every application. But for now, I

have at least have one application (Ami Pro) trained to deal with documents

in a more modern and civilized manner.

338 ENHANCING APPLICATIONS — DOCMAN

Functional Requirements

DocMan's functional requirements were very simple. I wanted it to provide a

way for users of Windows applications to locate and manipulate documents

using long file names, elaborate descriptions, or keywords, rather than stan-

dard file names and directory paths.

If you want to provide long file names to an application operating under

DOS, there are two ways to go about it: You can build the facility into your

application, as WordPerfect did; or you can build a TSR application that tries

to intercept the File Open and Save commands of selected applications and

impose its own in their place, as World Software did with Extend*A*Name.

Both models have their limitations. The former limits the use of long file

names to a single application, whereas the latter is subject to the memory
constraints and occasional reliability problems of memory-resident software.

The Windows environment provides a third option: the opportunity to

create a stand-alone program that acts as a document control center, keeping

track of long file names, descriptions, and keywords for your documents, and

interacting with other Windows applications via DDE or other mechanisms.

By using the document control center to select, open, print, and create docu-

ments, the user can take advantage of the extended descriptive elements that

it provides.

Many Windows applications provide the user with the ability to customize

the application's menus, adding options or modifying the basic function of com-

mands such as File Open, Print, or Save. I took advantage of this capability by

designing DocMan to receive messages containing descriptive information

about a file at the time the application that created the file saves it to disk.

Although the present version of DocMan works only with Ami Pro, I designed

it to be extensible to work with nearly any other Windows application.

Selecting Development Tools

If my intent with this project had been to build an application that would

only be used with documents created by Ami Pro, I could have built Doc-

Man entirely in Ami Pro's powerful macro language, and saved myself con-

siderable trouble figuring out and coding the interface between Ami Pro and

the DocMan application. However, since I wanted to retain the option of

extending DocMan to work with other applications, I elected to build it

using a more general-purpose application-development tool.

I chose to use Visual BASIC as that tool for several reasons: the ease

with which it allows the developer to build an attractive and responsive user

interface, the relative ease of writing BASIC code, and Visual BASIC'S abil-

ity to create a relatively small and speedy stand-alone EXE file. (The final

DocMan EXE file is less than 45k in size. Of course, the 265k Visual BASIC
runtime engine, VBRUN100.DLL, must also be present on the user's disk.)

A Tour of DocMan 339

In addition, I used the Ami Pro macro language to create a series of four

macros that are used to ensure every document the user creates in Ami Pro

is registered in DocMan.

A Tour of DocMan
DocMan consists of two primary user-interface screens, plus an opening ban-

ner and an About box.

The OpenDM Screen
The first of these two screens features a form named OpenDM and its com-

panion, a floating palette labeled "Tools", both shown in Figure 14.1. The
OpenDM form features a large list box that shows the documents that have

been registered in DocMan by their titles, which can each be up to 120 char-

acters long. Immediately beneath the list box is a large editable text field,

which is used to present the description (up to 300 characters long) of which-

ever document is selected in the list box. Beneath that box appear three non-

editable text fields, listing the DOS file name of the document, the applica-

tion that created it, and the date it was created; and four editable text fields

presenting the four keywords the user has assigned to the document.

Figure 14.1
The OpenDM form

and its companion

tools palette

DEiea

Dogs in the Modem World: The Shocking Tiuth

The Secret Life ol Ami Professional

The Perennial Shade Garden: An Annual Challenge

Report on Mr. Big's Trip To The Moon
Riverside Picnics

Demonstration document for Ami Pro 2.0 Announcement
Three page document that performs a printer capability test.

Automatically conveits other word processor document files into Ami Pro liles

There are some really big cats moving into the neighborhood Toms mostly, ol some kind
of Calico variety You hardly see cats this big anywhere else, not by a long shot. I don't

know what to make of it. But the dogs 'round here sure are scared

b: c:\amipro\docs\betsyd2.sam

unei: amrpro

Dote: 10 05-1991

Calico Crazies

Trouble for Spot

Big kitties

Mean Cols

Search

Tools

New

fjpen

Print

Delete

—

Program

Managa

340 ENHANCING APPLICATIONS — DOCMAN

The OpenDM form also includes two command buttons. The first,

labeled "Search", is used to open the other main user-interface element in

DocMan, the Find Document dialog box (the FindDlg form), from which the

user can initiate a keyword search of DocMan's document listings. The sec-

ond command button, labeled "Next Match", is initially grayed, but will be

enabled whenever a successful search has been carried out. It acts as a short-

cut that allows the user to find the next document that matches the same cri-

teria as the last successful search.

The tool's palette, which resides in a separate form file named Actions, ini-

tially appears along the right-hand side of the OpenDM form, although the

user can reposition it at will. It consists of four buttons: New, Open, Print,

and Delete.

You can create a new Ami Pro document at any time by clicking on the

New button. When you want to open, print, or delete an existing document,

you can do so by either clicking on the corresponding button, or by placing

the cursor over a document title in OpenDM's list box, and then pressing the

right mouse button and holding it down while you drag to the desired com-

mand button. When you begin to drag the mouse, the mouse pointer changes

to the Ami Pro icon. Then when you release the right mouse button, the

command button under the mouse pointer will carry out its action (open,

print, or delete) on the file youVe dragged onto it.

In addition, the OpenDM screen has two pull-down menus (shown

below). The File menu has New, Open, Print, and Delete options (which can

be used in lieu of the Actions form buttons), as well as an Exit option that

stops the DocMan application and an About option that opens the About

DocMan box. The Edit menu has Copy, Cut, Paste, and Delete options, which

allow you to carry out these common editing actions in OpenDMs editable

text fields.

| Edit 1*111
New Ctrl+N Copy

Cut

Shift+lns

Shift+DelOpen Ctrl+0

Print Ctrl+P

Delete Ctrl+D

Paste Ctrl+lns

Delete Del

Exit

About

The FindDlg Screen
The FindDlg form, shown in Figure 14.2, appears when you click the Search

button on OpenDM or press Alt-S. It lets you initiate a keyword search of

all the documents that have been registered with DocMan. (Actually, the

term keyword is a bit of a misnomer, since a keyword can be up to 31 charac-

ters long and may consist of several words.)

A Tour of DocMan 341

Figure 14.2
DocMan's Find

Document dialog

box

The Secret Life ot

The Perennial Sha
Big Cats

Report on Mr. Big

Riverside Picnics

Demonstration doc
Three page docurn

Automatically com

Trouble lor Spot. V.

no more. Today's c

and a shocking am

:
: c \amipio\do

wner: amipro

Date: 07 04-1991

Apathy
Bad kitties

bees
Betsy
Big kitties

birds

Calico Crazies

Canines
Canoes and Dogs
Cats

CIA
Documents
Dogs
DOS
exit

expansron
favorites

Calico Crazies

Delete Key

The list box on the left-hand side of the Find Document dialog box lists

all the keywords for every document registered with DocMan. You can

select any one of these keywords for use in the search either by double-click-

ing on it (in which case it will appear in the first empty keyword field on the

right side of the dialog box) or by dragging it onto a keyword field while

holding down the right mouse button. When you drag a keyword, the mouse-

pointer turns to a key shape, and stays that way until you release the right

mouse button. The keyword you drag replaces any text currently in the key-

word field over which you release it.

In addition (if youTe sure of your spelling), you can type a keyword

directly into any of the keyword fields.

The keyword searches carried out by DocMan are OR-based, meaning

that once you've entered the keywords you want to search for and have

clicked the Go button, DocMan will locate the first document in its list that

has been assigned any of the keywords you have selected. If the document it

finds is not the one you wanted, you can click the Next Match button on

OpenDM to search for the next matching document, or the Search button to

return to the find Document dialog box and change the search criteria.

FindDlg contains three other buttons besides (io: (ancel, which returns

to the OpenDM screen without carrying out the search: Delete Key, which

342 ENHANCING APPLICATIONS - DOCMAN

removes the currently selected keyword from the keywords list; and Clear

Fields, which clears all four keyword fields on the FindDlg screen.

The Ami Pro Document Description Dialog Box
In addition to the screens that are part of DocMan itself, the application

includes one custom screen in Ami Pro: a dialog box containing a form you

fill out every time you create a new document in Ami Pro. The form, which

was built using the dialog box editor in the Ami Pro Macro Developers Kit,

is shown in Figure 14.3.

Figure 14.3
The Document

Description dialog

box

Ami Pro - (Untitled)

File Edit View Text Style Page Frame Tools Window Help

1 =

Title: Trouble Brewing In America's Basements

Desc:

Stouts, Porters, Pale Ales - you name it and people are brewing it.

The home brewing craze is sweeping the land, and eating up

valuable hours that could otherwise be spent playing video

games.

rseyv 'orris

Brewing video games

Body Taxi TiniesHewRomanFS 12 cAamiptoSdocs I"* 1 BiB

The Document Description form contains six user-entry fields: one for

the title of the document (up to 120 characters), one for the description (up

to 300 characters), and four for the document's keywords. This information,

along with the documents DOS file name and path, is all sent to DocMan
when you save the file for the first time (thus preventing entries in DocMan
lor files you elect to abandon without saving), and again whenever you use

Ami Pro's Save As option to save the file under a different name.

Exploring DCGLOBAL.BAS 343

DocMan's Skeleton
Although DocMan is a considerably more complex application than Recy-

cler (the project described in Chapter 12) it includes the same elements as

that earlier Visual BASIC project: a global module, in which the application

declares its global variables and defines its external library calls; a form (or

in DocMan's case, several forms), consisting of a screen design and the code

linked to it; and a code-only module, which contains the code for all the

applications general purpose subroutines. These modules are examined in

the sections that follow. Also essential to DocMan are four macros written in

Ami Pro. These are discussed at the end of the chapter.

Exploring DCGLOBAL.BAS
DocMan s global module is called DCGLOBAL.BAS, and contains the dec-

larations for a series of constants, variables, and external library functions

that are used throughout DocMan.

Constant Declarations

DCGLOBAL.BAS begins—like every good code module in Visual BASIC—
by declaring that all variables in the file are integers unless stated otherwise.

It then sets out to declare a series of contants for use throughout DocMan:

Deflnt A-Z

Global Const MB_0K = &H0

Global Const MB_OKCANCEL = 1

Global Const MB_ABORTRETRYIGNORE = 2

Global Const MB_I CONEXC LAMAT I ON = 48

Global Const IDOK = 1

Global Const IDCANCEL = 2

Global Const IDABORT = 3

Global Const IDRETRY = 4

Global Const IDIGNORE = 5

Global Const TRUE = -1

Global Const FALSE =

Global Const SHIFT_MASK = 1

Global Const CTRL_MASK = 2

Global Const ALT_MASK = 4

The first four Consl declarations identify tour different message box-

style parameters used in various combinations throughout the application.

The MB_OK style, lor instance, is used to indicate that a message box

should include only an OK button, and the MB_ABORTRI I rS IGNORE
style indicates that the message box should have three buttons: Abort. Retry,

344 ENHANCING APPLICATIONS — DOCMAN

and Ignore. MBJCONEXCLAMATION indicates that the message box

should include the standard exclamation mark icon in addition to whatever

button(s) it contains.

The next five Const definitions are used to evaluate the result of a mes-

sage box, which button the user pressed. If the integer value returned by the

message box is equal to IDOK (1), then the user selected the OK button,

and if it is equal to IDRETRY (4), the user selected the Retry button.

The constants TRUE and FALSE are used throughout the application

to evaluate the results of functions that return a value of either -1 (TRUE)
or (FALSE).

Finally, the SHIFT_MASK, ALT_MASK, and CTRL_MASK constants

are used to evaluate the results of the SHIFT argument in a KeyUp message

to determine which (if any) of the three corresponding keys were pressed at

the time the KeyUp message was triggered. (Despite its name, SHIFT indi-

cates the status of the Ctrl and Alt keys in addition to that of the Shift key.)

External-Function Declarations

Next, DCGLOBAL.BAS declares a series of external functions:

Declare Function FindWi ndow Lib "USER" (ByVal CName As Any, ByVal Caption As Any) As

Integer

Declare Function Islconic Lib "USER" (ByVal hWnd As Any) As Integer

Decl are Function PostMessage Lib "USER" (ByVal hWnd As Integer. ByVal wMsgAs Integer,

ByVal wParam As Integer, lParam As Any) As Integer

Declare Function GetClassWord Lib "USER" (ByVal hWnd As Integer, ByVal nlndex As

Integer) As Integer

Declare Function GetModul e Fi

1

ename Lib "KERNEL" (ByVal hModule As Integer, ByVal

IpFilename As String, ByVal nSize As Integer) As Integer

Declare Function SetActi veWi ndow Lib "USER" (ByVal hWnd As Integer) As Integer

The FindWindow function in the Windows USER.EXE library is used to

obtain the handle of an open window. The function can search for the win-

dow using either its caption or its class name (each Windows application has

a unique class name) or both.

The Islconic function indicates whether or not the window specified in

its hWnd parameter is minimized.

The PostMessage function places the Windows message specified in its

wMsg parameter in the application message queue for the window specified

in its hWnd parameter. The wParam and lParam parameters are used to spec-

ify any parameters required by the wMsg message.

The GetClassWord function can be used to retrieve a variety of informa-

tion about the window specified in its hWnd parameter. DocMan uses it to

obtain its own module handle (that is, the module handle of the OpenDM
window), which it then passes to the next function declared here, GetMod-

ulclilename, to obtain its own fully qualified file name (that is, the full path

of the DOCMAN.EXE file). From that it can extract the path in which its

Exploring DCGLOBAL.BAS 345

DOCMAN.EXE file is stored, which it needs in order to know where to look

for its data files.

Finally, the SetActiveWindow function is used to activate the window

designated by its hWnd parameter. DocMan uses it to make Ami Pro the

active application if it is running in the background when you instruct Doc-

Man to open or print a file or create a new file.

Next, DCGLOBAL.BAS declares two constants that are used in con-

junction with the PostMessage function described above:

Global Const WM_SYSCOMMAND = &H112

Global Const SC_RESTORE = &HF120

WM_SYSCOMMAND and SC_RESTORE are used in conjunction to

indicate that the application specified by the hWND parameter of the PostMes-

sage function should restore its window to its normal size. WM_SYS-
COMMAND is used as the wMsg parameter to PostMessage, whereas

SC_RESTORE is used as the wParam parameter.

Data-Storage Declarations

Next, DCGLOBAL.BAS contains a series of declarations that DocMan uses

to create and manage its data files. First it declares the global constant RAN-
DOMFILE, which is used to indicate that a file is to be opened in random-

access mode:

Global Const RAND0MFILE=4

Then it defines a custom data type called DocRec that will be used to store

data about each document registered in DocMan:

Type DocRec

RecordNum As Long

Title As String * 120

Description As String * 300

File As String * 60

Owner As String * 8

Date As String * 10

Keyl As String * 31

Key2 As String * 31

Key3 As String * 31

Key4 As String * 31

End Type

This definition states that each record of type DocRec will start with its

record number, followed by a 120-character title, a 300-character description.

a 60-character file name and path, an 8-character field called Owner (which

346 ENHANCING APPLICATIONS — DOCMAN

will be used to identify the application that created the document), a 10-

character date, and four 31-character keyword fields.

Next, DCGLOBAL.BAS creates a variable called RecordVar using the

newly defined record type. This variable will be used to hold records as they

are loaded into memory or saved to disk.

Global RecordVar As DocRec

Variable Declarations

Finally, DCGLOBAL.BAS concludes by declaring a series of variables that

will be used in various routines throughout DocMan:

Gl oba

Gl oba

Gl oba

Gl oba

Gl oba

Gl oba

Globa

Gl oba

Gl oba

Globa

Gl oba

EditFile As String

OpenFileNum As Integer

CI eanUpFi 1 eNum As Integer

FileNum As Integer

RecordNumber As Long

LastRecord As Long

NewRecordFl ag As Integer

Whi chRecChanged As Integer

Keyword As String

FindNext As Integer

ExePath As String

The purpose of these variables will be explained in the descriptions of

the program code in which they are used.

Exploring FORM1.FRM
Because DocMan goes through a number of elaborate steps as it loads the

OpenDM form into memory, the process of doing so can take several sec-

onds. Rather than leaving the user facing a blank screen throughout that

time, I created a small form called FORM1.FRM, which is displayed during

the program-loading process and then hidden as soon as OpenDM is com-

pletely loaded into memory. FORM1.FRM simply displays a brief message

about the application, as shown in Figure 14.4.

FORM1.FRM contains only two blocks of code: Form_Load and Form_-

Paint. Since FORM1.FRM is designated as the startup form for DocMan, it

is the first part of the application that loads into memory, and its Form_Load
procedure is the first to be executed:

Sub Form_Load (

)

CenterForm For rn 1

End Sub

Exploring FORM 1 . FRM 347

Figure 14.4
DocMan's opening

banner

DocMan Document management
for Windows 3.1.

' "
" Copyright © 1 991 . 1 992 by Paul Bonner "

"

*3L

Program

Managei

Form_Load simply calls the CenterForm routine in the GLOBCODE.BAS
file, which centers the form on the screen.

Once the Form_Load procedure has been executed, the Form_Paint rou-

tine is performed:

Sub Form_Pai nt (

)

Label 1 . Refresh

Label2. Refresh

Load OpenDM

OpenDM. Show

End Sub

The Label 1. Refresh and Label2.Refresh commands ensure thai the text

on the form is completely painted before the next statement. Load
OpenDM, is executed. Without them, the application would charge ahead

and load OpenDM before the opening banner was completely drawn, leav-

ing the user looking at an empty square rather than the pithy text that

FORM1.FRM is supposed to display.

The Load OpenDM command loads the OpenDM form into memory,
and executes its Form_Load procedure. Once thai process is complete, the

next command, OpenDM. Show, displays the OpenDM form to the user.

348 ENHANCING APPLICATIONS - DOCMAN

Exploring DOCMAN2.FRM
The OpenDM form is the mainstay of the DocMan application. Through it

the user can open, print, delete, and create files; initiate searches; and access

every other aspect of the application. OpenDM 's screen and program code

are stored in a file called DOCMAN2.FRM

General and Loading Routines
In addition to event-related subroutines such as Form_Load or Com-
mandl_Click, every Visual BASIC form file has a general-routines area

that can be used to declare variables or external functions for use with the

current form only, or for use with subroutines called only by other routines

in the current form.

OpenDMs general-declarations statement contains only this one line:

Deflnt A-Z

You may be wondering why I repeated this declaration here, even

though it already appears in the DCGLOBAL.BAS file. Unlike every other

declaration in an application's global module, Deflnt is always applied

locally. In other words, the Deflnt A-Z in DCGLOBAL.BAS applies only to

variables defined in that file. If you want Deflnt A-Z to take effect through-

out your application, you must declare it in every form and code module in

your application. (FORM1.FRM had no Deflnt only because its procedures

use no variables of any type.)

The Form_Load Procedure

OpenDM's FormJLoad procedure is executed as OpenDM is loaded into

memory.

Sub Form_Load (

)

CenterForm OpenDM

GetPath

Load FindDlg

CenterForm FindDlg

Load Actions

Load AboutDLG

Actions. Left OpenDM. Left + OpenDM. Width + 50

Actions. Top = OpenDM. Top + 100

Actions. Show

It starts by calling CenterForm in GLOBCODE.BAS to center OpenDM
on screen. Next it calls the GetPath routine (also in GLOBCODE.BAS),
which determines the directory path DocMan is stored in. Then it loads the

Find Document dialog box into memory, and calls CenterForm again to make

Exploring DOCMAN2.FRM 349

sure the dialog box will be centered on screen when it is displayed. Next, the

routine loads the AboutDLG and Actions forms into memory, positions the

Actions form at the right edge of the OpenDM window, and issues the

Actions.Show command to display it.

Next, OpenDM reads the DOCMAN.DAT file into memory. DOCMAN-
.DAT contains the title, description, and keyword data for every document

that has been registered with DocMan.

Recordlen = Len(Recordvar)

FileNum = Fi

1

eopener(ExePath + "DOCMAN.DAT", RANDOMFILE,

Record! en

)

Lastrecord = L0F(Fi

1

eNum) \ Len(Recordvar)

For I = 1 To Lastrecord

Get FileNum, I, Recordvar

Titles.Addltem RTrim$(Recordvar. Title)

Next I

The data-access procedure starts by determining the length of the global

variable Recordvar (which was earlier defined as being of the custom record

type DocRec). Then it calls the Fileopener routine in GLOBCODE.BAS,
passing it the path and name of the file to open, the' mode of access it should

use, and the length of each data record.

Next, the routine determines the number of records in the DOCMAN-
.DAT file by dividing the total length of the file by the length of RecordVar

(which is the length of a single record). Then it loops through the file, read-

ing each record and adding the document-title portion of the record to the

Titles list box on OpenDM using Visual BASICs Addltem command, before

reading the next record.

When all the records have been read, OpenDM s FormJLoad routine

concludes, as follows:

Whi chRecChanged=-l

If Lastrecord > Then Ti tl es . Li sti ndex =

ReadSel ectedRecord

Command2 . Enabl ed = False

Forml .Hide

End Sub

First it sets the Which RecChanged variable (which, as its name suggests,

points to a changed record) to -1, indicating that the current record has not

changed, and then, as long as at leasl one record has been read, sets the

Listlndex property of the Titles list box to 0. The Listindex property deter-

mines which item in the list box is highlighted. Listindex numbering starts

from zero, so this command simply selects the first item in the list, as long

as the list isn't empty. The routine has to set WhichRecChanged to -1

350 ENHANCING APPLICATIONS — DOCMAN

before setting the Listindex property, because setting Listindex automati-

cally triggers the Click routine for the list box, which saves the current

record back to disk if WhichRecChanged is greater than -1.

Next, the routine calls the ReadSelectedRecord subroutine in GLOB-
CODE.BAS to load the description, keywords, and other data for the cur-

rent record into the proper edit boxes on the form. Then it disables the Next

Match button (Command2) and hides the opening banner.

The Form_Paint Procedure

FormJPaint is automatically executed once the Form_Load routine has been

completed.

Sub Form_Paint (

)

AutoRedraw = True

Call FrametOpenDM, 30. 30. OpenDM. Hei ght - 670, OpenDM. width - 100. 2)

Call Frame(OpenDM, Titles. Left - 30, Titles. Top - 30. Ti tl es . Hei ght + 60

,

Titles. width + 60, 1)

Call FrametOpenDM, Descri ption . Left - 30, Descri pti on .Top - 30, Descri ption . Hei ght

+ 60, Descri pti on .width + 60, 1)

Call FrametOpenDM, Label 1(4) . Left - 30, Label 1(4) .Top - 30, (Textl (2) .Top -

Textl(0).Top) + Textl(2). Height + 60. Textl(0) . Left + Textl(0) .width + 60, 2)

For X = 4 To 7

Call FrametOpenDM. Textl (X). Left - 15, Textl(X).Top - 15, Textl (X)

.

Hei ght + 30 .

Textl(X). width +30, 1)

Next X

End Sub

Form_Paint begins by setting the AutoRedraw flag for OpenDM to

True. Doing so instructs Visual BASIC to maintain a bitmapped image of

the form in memory and to henceforth use that image to restore DocMan's

screen display, rather than reexecuting the commands that follow. This elimi-

nates the need to redraw the OpenDM screen when DocMan is restored

from an iconized state or brought to the top after having been obscured by

another window, thus speeding DocMan's display.

The remaining commands in the Form_Paint routine call the Frame rou-

tine in GLOBCODE.BAS and instruct it to draw the lines that give the

OpenDM form and its controls a three-dimensional appearance. The param-

eters to the Frame routine tell it the name of the form on which the frame

should be drawn, the x-y coordinate of the top-left corner of the frame, the

frame's height and width, and finally the frame's style (either a 1 or a 2,

depending on whether a thin concave frame or a thick convex frame is

desired).

User-Action Routines
Once the Form_Paint procedure has finished, the process of loading DocMan
is complete, and all remaining routines occur only in response to user actions.

Exploring D0CMAN2.FRM 351

The Titles GotFocus Procedure

Titlcs_GotFocus is called whenever the input focus is given to the Titles list

box. This occurs when the user clicks on the list box or tabs to it.

Sub Ti tl es_GotFocus ()

MenuCut . Enabl ed = False

MenuCopy . Enabl ed = False

MenuPaste. Enabl ed = False

MenuDel ete. Enabl ed = False

End Sub

The routine disables the Cut, Copy, Paste, and Delete options on Doc-

Man's edit menu, because they cannot be used to edit or otherwise change

the contents of the Titles list box. The menu items appear grayed out when
disabled, as shown here:

opy Shift+lns

Cut Shifti Del

Paste CUM ins

Delete Del

The Titles_Click Procedure

Titles_Click is called in response to the user selecting a new record by click-

ing on the Titles list box or by moving the list box's selection bar using the

cursor keys.

Sub Titles_Click ()

If Whi chRecChanged > -1 Then

Wri teChangedRecord

End If

ReadSel ectedRecord

End Sub

Titles_Click starts by checking whether the current record has been

changed (in which case Which RecChanged would be greater than -1) and, if

so, calls the WriteChanged Record routine in GLOBCODE.BAS to save the

new contents of the record to disk. Then it calls the ReadSelectedRecord

routine to read the description, keywords, file name, and other data for the

newly selected record.

The Titles LostFoeus Procedure

TitlesJLostfocus is called when the input focus moves to another control.

This occurs in response to the user clicking on or tabbing to the other control

352 ENHANCING APPLICATIONS — DOCMAN

Sub Ti tl es_LostFocus ()

MenuCut. Enabled = TRUE

MenuCopy . Enabl ed = TRUE

MenuPaste. Enabled = TRUE

MenuDelete. Enabled = TRUE

End Sub

The Titles_LostFocus routine simply reenables the menu items the Got-

Focus routine disabled.

The Titles JVlouseMove Procedure
Titles_MouseMove is called whenever the user moves the mouse over the

Titles list box.

Sub Ti tl es^MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

If Button <> 2 Then Exit Sub

Ti tl es_Cl i ck

Getfile

If Editfile = "" Then Exit Sub

Titles. Drag

End Sub

The routine begins by checking the value of the Button argument to

determine if the right-hand mouse button is down (Button = 2). If not, the

routine ends. (Using only the right mouse button for drag operations allows

the user to use the left mouse button for the standard operations of selecting

list-box items and scrolling the list box.)

If the right-hand mouse button is down, the routine calls the Titles_Click

routine to save the current record, if necessary, and then calls the GetFile

routine in GLOBCODE.BAS to obtain the title of the document under the

mouse pointer. If no document is highlighted, the routine ends. Otherwise it

calls the Titles.Drag method, which automatically tells Visual BASIC to

change the mouse pointer to the specified drag icon for the list box (the Ami
Pro icon) and to allow the user to drag the icon across the screen. This icon

was specified during the design process, by setting the Draglcon property for

the listbox, as shown in Figure 14.5.

The Commandl Click Procedure

Commandl_Click is called when the user clicks on the button labeled

"Search".

Sub Commandl_Cl i ck ()

If Whi chRecChanged > -1 Then WriteChangedRecord

I f I indOl g .Textl(0) .Text + FindDl g.Textl (1) .Text + F

i

ndUl g

.

Textl (2) .Text +

FindDlg.Textl(3).Text - "" Then

OpenDM. Titles. 1 istindex - Vi

Exploring DOCM AN2.FRM 353

El se FindNext = 1

End If

FindDlg.Show 1

End Sub

Commandl_Click first checks the status of WhichRecChanged and, if

it doesn't equal -1, calls the WriteChangedRecord routine in GLOBCODE-
.BAS.

Figure 14.5
Setting the drag

icon for the Titles

list box

Microsoft Visual Basic {design)

File Edit Code Bun Window Help

Diaglcon

A

n

@
q

IS

B

(Icon) ... 180.120 U.J. 7875x181?

DocMan
File Edit

Titles

Load Icon

File Name: ICO OK

Descnption of file

File Keyl

Owner Key2

Files:

queue4 ico

ecempty ico

lecfull. ico

ligaiiow ico

ligtaiio.ico

tiash2.ico

tiash3.ico

tiash4.ico

Cancel

Date: Key3
Seaich N_ext Match

Next, it combines the contents of the four keyword fields on FindDlg

and checks to see whether together they equal "", which would indicate that

all four are empty. If so, it moves the selection bar to the top of the Titles list

box, so that the search will start with the first record and proceed from there.

Otherwise, it sets the flag FindNext equal to 1, in order to instruct the search

routine to begin searching at the record following the current record. Then it

issues the FindDlg.Show 1 command, instructing Visual BASIC to display

the Find Documents dialog box. The parameter 1 specifies thai FindDlg

should be modal, meaning that no input will be allowed in any o[' DocMan's
other forms until the user has closed the Find Document dialog box. If the

parameter had been or missing, the form would be modeless, like the

Actions form.

354 ENHANCING APPLICATIONS — DOCMAN

The Command2 Click Procedure
Command2_Click is called in response to the user clicking on the Next

Match button.

Sub Command2_Cl i ck ()

If Whi chRecChanged > -1 Then Wri teChangedRecord

FindNext = 1

Fi ndRecord

End Sub

FindNext checks the status of WhichRecChanged, and calls

WriteChangedRecord if necessary. Then it sets FindNext equal to 1 and calls

the FindRecord routine in GLOBCODE.BAS, which searches for the next

document matching the specification of the previous search.

The Description Change Procedure

Description_Change is called whenever the user changes the contents of the

description field for the current record.

Sub Descri pti on_Change ()

WhichRecChanged = Ti tl es . Li stlndex

TestLength OpenDM. Descri pti on , 300

End Sub

The routine begins by setting the value of WhichRecChanged to the List-

Index property of the Titles list box (thus identifying the record that needs to

be saved when the user selects another record), and then calls the

TestLength routine in GLOBCODE.BAS, passing it the full name of the

Description field (OpenDM.Description) and the maximum length allowed

for its contents. TestLength ensures that the user doesn't enter more data

than is allowed in the field.

The Textl Change Procedure

Textl_Change is called whenever the user changes the contents of any of the

four keyword fields—Textl (4) through Text 1(7).

Sub Textl_Change (Index As Integer)

WhichRecChanged = Ti tl es . 1

i

sti ndex

TestLength OpenDM. Textl (Index) , 31

End Sub

The routine sets WhichRecChanged equal to Titles. Listlndex, and then

calls TestLength to ensure that the user hasn't entered more than 31 charac-

ters in the field.

Exploring DOCM AN2.FRM 355

The Textl GotFocus Procedure

Textl_GotFocus is called whenever any of the seven fields that share the

name Textl receive the input focus.

Sub Textl_GotFocus (Index As Integer)

If Index < 4 Then

Beep

Textl(4) . SetFocus

Else

Textl(Index) .SelStart =

TextK Index) . Sel Length = 31

End If

End Sub

The first three Textl fields are Textl(O), Textl(l), and Textl(2), which

correspond, respectively, to the File, Owner, and Date fields to the left of the

keyword fields, all of which are read-only—that is, user input to these fields

is not allowed. (Once upon a time there was a Textl(3) too, which held other

data, but it was eliminated early in the development process.)

The Textl_GotFocus routine begins by evaluting the value of Index and,

if it is less than 4 (indicating that the user tried to set the focus to one of the

three read-only fields), it beeps the PCs speaker, moves the input focus to

Textl(4), and exits. Otherwise, it highlights all the text in the selected field,

as shown in Figure 14.6.

The Form LinkExecute Procedure

Form_LinkExecute is the most complex procedure in the DOCMAN2.FRM
listing. It is called in response to the OpenDM form's receiving a DDEExe-
cute message from Ami Pro.

The Ami Pro macro SaveWithNewName (described near the end of this

chapter) is called when the user saves a new file for the first time or saves an

existing file under a new name. The macro establishes a DDE link to the

OpenDM form, and sends a series of DDEExecute command lines to Doc-

Man.

The first of these command lines starts with the text "titl=", followed by

the documents title. This is followed by "appl=", along with the name of the

application that created the document (which will always be "amipro" in this

version of DocMan). Then follows the document's DOS file name. 300-char-

acter description, and four keywords. Ami Pro then sends one final com-

mand string, "show", which instructs DocMan to process the data it has just

received.

DocMan receives each command string in turn as the CmdStr argument

to the LinkExecute message. So the Form_LinkExecute routine evalutes the

contents of each CmdStr as it arrives, usiim a lom> Select Case statement.

356 ENHANCING APPLICATIONS — DOCMAN

Figure 14.6
The text in each

keyword field is

highlighted as the

field receives the

input focus
The Secret lie of Ami Professional

The Perennial Shade Garden: An Annual Challenge

Big Cats
Report on Mr. Big's Trip To The Moon
Riverside Picnics

Demonstration document for Ami Pro 2.0 Announcement
Three page document thai perforins a printer capability test.

Automatically converts other word processor document files into Ami Pro files.

Trouble for Spot. When we peeled back the puppy chow we discovered it's a dog's life

no more. Today's canine is beset by a sea of troubles: fleas, mean cats, phony bones,
and a shocking and fast-growing illiteracy problem.

Fife: c:\amtpro\docs\gardens.sam

Owner: amipro

Date: 07-04-1991

Dogs Canines

Trouble for Spot

Sub Form_LinkExecute (Cmdstr As String, Cancel As Integer)

Select Case Left$ (Cmdstr , 4)

Case "tit!"

NewRecordFl ag = False

If Whi chRecChanged > -1 Then Wri teChangedRecord

NewRecordFlag = TRUE

Titles. Addltem Mid$(cmdstr, 6, 120)

Lastrecord = Lastrecord + 1

Recordvar. Recordnum = Lastrecord + 1

OpenDM.Ti tl es . Li sti ndex = Lastrecord - 1

Recordvar. Title = Mid$(Cmdstr, 6, 120)

The "titl" string is the first command string sent by Ami Pro, so DocMan
knows when it receives a command starting with those four characters that

the commands that follow are for a new record. The routine begins by set-

ting the variable NewRecordFlag to False, and then calls WriteChanged-

Record, if necessary, before setting NewRecordFlag to True.

WriteChangedRecord exits immediately if NewRecordFlag is True, so

the routine has to set it to False before calling the routine in order to force

WriteChangedRecord to save the current record.

Exploring DOCM AN2.FRM 357

Next, the routine extracts 120 characters of text from the command
string, starting at the sixth character (the character immediately to the right

of the = sign), and calls the Visual BASIC Addltem command, which adds

the string as a new item at the bottom of the Titles list box.

Then it increments the record count and the value of RecordNum
(which indicates the current record), moves the selection bar in the Titles list

box to the new item, and sets the Title field of Recordvar to the new docu-

ment title.

At this point, Recordvar (the variable of type DocRec that holds the

contents of the current record) contains only the title of the new record. The

remaining data in Recordvar is left over from the record that was previously

current. So the routine has to obtain the remainder of the data about the

new record from Ami Pro before the record can be saved to disk.

Case "appl"

TextKD.Text
Recordvar .Owne

Case " d e s c

"

Descri ption .Te

Recordvar. Desc

Case "keyl"

Textl(4).Text

Recordvar. Keyl

Case "key2"

Textl(5).Text

Recordvar. Key2

Case "key3"

Textl(6).Text

Recordvar. Key3

Case "key4"

Textl(7).Text

Recordvar. Key4

Case "file"

Textl(0).Text

Textl(2).Text

Recordvar. Fi le

Recordvar . Date

= Mid$(Cmdstr, 6, 8)

r = OpenDM.Textl(l) .Text

xt = Mid$(Cmdstr, 6, 300)

ription = OpenDM. Descri pti on .Text

= Mid$(Cmdstr, 6, 31)

= OpenDM. Textl(4) .Text

= Mid$(Cmdstr, 6, 31)

= OpenDM. Textl(5) .Text

= Mid$(Cmdstr, 6, 31)

= OpenDM. Textl(6). Text

= Mid$(Cmdstr, 6, 31)

= OpenDM. Textl(7) .Text

= Mid$(Cmdstr, 6, 99)

= Date$

= OpenDM. Textl(0). Text
= OpenDM. Textl(2). Text

The procedures for handling the command strings that start with "appl".

"desc", "keyl", "key2", "key3", and "key4" are all fairly straightforward.

DocMan uses the Visual BASIC Mid$ routine to extract the desired text

from the command string, add it to the correct edit held on OpenDM for

data of that type, and then add it to the appropriate held in Recordvar.

The file= routine is only slightly more complex. First the document's

DOS file name is placed in Text 1(0), then the current date (obtained via the

358 ENHANCING APPLICATIONS — DOCMAN

Visual BASIC Date$ function) is placed in Textl(2). Then the File and Date

fields of Recordvar receive the same data, the last pieces necessary to consti-

tute the new record.

Case "show"

If NewRecordFlag = TRUE Then

Put FileNum, lastrecord, recordvar

Addkeys

End If

OpenDM.Wi ndowstate =

Acti ons . Wi ndowstate =

Acti ons .Show

OpenDM. Show

AppActivate "DocMan"

If Newrecordf 1 ag = True Then Ti tl es . Li sti ndex = Lastrecord
- 1

NewRecordFlag = False

End Select

End Sub

When the "show" command string is received, DocMan checks the value

of NewRecordFlag and then uses the Visual BASIC Put command to write

the new record to disk. (It checks the value of NewRecordFlag because Ami
Pro also uses the "show" command string to make DocMan activate itself,

not only when a new record is being created. On those occasions I didn't

want the routine to write a record to disk.)

Next, the routine calls the AddKeys function in GLOBCODE.BAS to

add the keywords from the new record to the keyword list on the Find Docu-

ment dialog box. Then it sets the Windowstate property of both the Actions

form and OpenDM to (normal), thus restoring them in case they were min-

imized when OpenDM received the DDE message from Ami Pro.

It then issues the commands Actions.Show and OpenDM.Show, bringing

both windows to the top (moving them in front of Ami Pro, which was most

likely obscuring them at the time the DDE message came in), and uses the

AppActivate command to make DocMan the active application.

Then, if the NewRecordFlag variable is equal to True, it sets the List-

index property of the Titles list box to LastRecord - 1 (placing the selection

bar on the new record, since Listindex is numbered from zero and Last-

Record counts from one). It then concludes by setting NewRecordFlag to

False, ends the Select Case routine, and exits the subroutine.

Thus, at the conclusion of this routine, both DocMan's main window and

its tools palette will be visible on screen, with Ami Pro in the background,

and the selection bar in the Titles list box will be on the newly created record.

Exploring D0CMAN2.FRM 359

The Form Unload Procedure

Form_Unload is called when the OpenDM form receives an Unload mes-

sage, signaling that the application is to close down.

Sub Form_Unload (Cancel As Integer)

Unload FindDlg

Unload Actions

Unload AboutDLG

Unload Forml

End Sub

The Form_Unload routine instructs Visual BASIC to unload the four

other forms used by the application (FindDlg, Actions, AboutDLG, and

Forml) before shutting down. You must explicitly unload every form you

load in Visual BASIC; otherwise, they remain in memory even after your

application has shut down, consuming RAM and system resources.

The Form Resize Procedure

Form_Resize is called when the size of the OpenDM form changes. Since

OpenDM has a fixed border (rather than being sizeable), this will only occur

when the application is minimized or restored.

Sub Form_Resi ze (

)

Select Case OpenDM. Windowstate

Case

Actions .Show

OpenDM. SetFocus

Case 1

Acti ons .Hide

End Select

End Sub

This routine's only job is to make sure that the Actions tools palette is

hidden when you minimize OpenDM, and is visible when your restore it.

(DocMan hides the Actions form rather than minimizing it because minimiz-

ing it would add a second icon to the bottom of the screen. Hiding it allows

you to control both forms from a single icon.)

The routine evaluates the value of the OpenDM.Windowstate property.

II it is equal to 0, then the user has just restored the OpenDM window, so the

routine makes Actions visible and then sets the input focus to OpenDM. On
the other hand, if the Windowstate property is 1. then the user has just mini-

mized OpenDM, so the routine hides the Actions form.

360 ENHANCING APPLICATIONS — DOCMAN

Menu Item Routines
The remaining routines in DOCMAN2.BAS are called in response to the

user's menu selections. Most consist of single-word calls to routines in

GLOBCODE.BAS.

The ExitMenultem Click Procedure
ExitMenuItem_Click is called when the user selects the Exit item on Doc-

Man's File menu.

Sub Exi tMenuItem_Cl i ck ()

ExitDocMan

End Sub

The routine reacts to the user's menu selection by calling the ExitDoc-

Man routine in GLOBCODE.BAS.

The AboutMenultem_Click Procedure

AboutMenuItem_Click is called when the user selects the About item on the

File menu.

Sub AboutMenuItem_Cl ick ()

AboutDLG.Show 1

End Sub

The routine instructs DocMan to display the AboutDLG dialog box in

modal form.

The NewMenultem Click Procedure
NewMenuItem_Click is called when the user selects the New item on the

File menu. It simply calls the NewFile routine in GLOBCODE.BAS.

Sub NewMenuItem_Cl i ck ()

NewFi 1

e

End Sub

The PrintMenultem Click Procedure

PrintMenuItem_Click calls the PrintFile routine in GLOBCODE.BAS when
the user selects the Print item from DocMan's File menu.

Sub Pri ntMenuItem_Cl i ck ()

PrintFile

End Sub

The DeleteMenultem Click Procedure

DelcteMenuItem_Click is called when the user selects Delete from the Doc-

Man File menu.

Exploring D0CMAN2.FRM 361

Sub DeleteMenuItenuCl ick ()

Del eteFi 1

e

End Sub

DeleteMenuItem_Click calls the DeleteFile routine in GLOBCODE-
.BAS.

The OpenMenultem Click Procedure

OpenMenuItem_Click calls the OpenDoc routine in GLOBCODE.BAS
when the user selects the Open item on the File menu.

Sub OpenMenuItem_Cl i ck

Opendoc

End Sub

()

The MenuCopy Click Procedure

MenuCopy_Click is called when the Copy item on DocMan s Edit menu is

selected.

Sub MenuCopy_Cl ick (

)

SendKeys " A
l INSERT)"

End Sub

All Visual BASIC edit controls react in the standard manner to the Win-

dows shortcut keys for Copy, Cut, Paste and Delete, so the Copy command
simply sends the standard Ctrl-Ins keystroke to the edit control that has the

input focus, instructing it to copy any text that the user has selected to the

Windows Clipboard.

The MenuCut Click Procedure
MenuCut_Click , which is called when the user selects the Cut item from the

Edit menu, sends the standard Cut (Shift-Del) shortcut to the current edit

control.

Sub MenuCut_Cl ick (

)

SendKeys " + fDEU"
End Sub

The MenuDelete Click Procedure

MenuDelete_Click is called when the user selects the Delete item on Doc-

Man's Edit menu. It responds by sending the Del keypress, causing the cur-

rent edit control to delete any text the user has selected.

Sub MenuDelete_Cl i ck ()

SendKeys "I Delete}"

End Sub

362 ENHANCING APPLICATIONS -DOCMAN

The MenuPaste_Click Procedure

MenuPaste_Click, the final routine in DOCMAN2.FRM, is called when the

Paste command is selected from DocMan s Edit menu. It sends the Shift-Ins

shortcut command, for Paste, to the current edit control, instructing it to

paste the contents of the Clipboard at the current text-insertion point.

Sub MenuPaste_Cl ick (

)

SendKeys "+| INSERT}
"

End Sub

Exploring ACTIONS.FRM
The Tools palette called Actions is designed to provide the user with simple

single-click or drag-and-drop access to the same functions provided by the

File menu on the OpenDM form.

ACTIONS.FRM consists of a Deflnt A-Z statement and four subrou-

tines: Form_Load, Commandl_Click, Commandl_DragDrop, and Com-
mandl_KeyUp.

The Form_Load Procedure

Form_Load is performed as ACTIONS.FRM is loaded into memory, before

it is actually displayed on screen.

Sub Form_Load (

)

Actions. Width = 825

End Sub

The Actions Form_Load routine simply sets the width property to 825

twips (the default unit of measurement in Visual BASIC). Twips are logical

units that vary according to the resolution of your display. Visual BASIC
won't allow you to create a form narrower than about 930 units at design

time (the width required to display the Control box and minimize and maxi-

mize buttons—which appear on all forms at design time even when you have

set the form's property options not to display any of them at runtime, as I did

with ACTIONS.FRM).
However, since I wanted the form to be just large enough to hold its but-

tons, I had two options: I could make the buttons wide enough to fill the nar-

rowest form that Visual BASIC would let me create at design time, or I

could adjust the width of the form at runtime to fit the size of the buttons I

had created. Making the buttons larger would just have been a waste of

screen space, so I chose to adjust the size of the form as it loads into memory.

Exploring ACTIONS. FRM 363

Button Routines

The four buttons on the Actions form are part of a control array called Com-
mand 1. This means that they share the same event-code routines. Each but-

ton has a unique index number (ranging from to 3), which is passed to a

shared event routine at the time the routine is called. So, for instance, if you

click the New button (index 0), the Commandl_Click procedure receives

as its index parameter.

The Commandl Click Procedure
Command l_Click is performed when the user clicks any of the four buttons

on the form.

Sub Commandl_Cl i ck (Index As Integer)

Select Case Index

Case

NewFi 1

e

Case 1

OpenDoc

Case 2

P r i n t F i 1 e

Case 3

Del eteFi 1

e

End Select

End Sub

Commandl_Click uses a Select Case statement to evaluate the value of

the Index argument and call the appropriate routine in GLOBCODE.BAS
(the NewFile routine if you clicked the New button, the OpenDoc routine if

you clicked the Open button, and so on).

The Commandl DragDrop Procedure

Command l_DragDrop is called when you drop a file dragged from the Titles

list box onto any of the four buttons on the Actions form. When you drag a

document onto the Open button and drop it, it is clear that you want to open

the document, just as if you had clicked the Open button after having

selected the document in the Titles list box. Similarly, the meaning of drop-

ping a document onto the Print and Delete buttons is also pretty obvious.

But dropping a document onto the New button doesn't make any sense, so

the routine screens out DragDrop calls with index number 0.

Sub Commandl_DragDrop (Index As Integer, Source As Control . X As Single. Y As Single)

It index > Then Commandl_Cl ick (Index)

End Sub

If the Index argument received by the routine is greater than 0. the rou-

tine simply calls the Command 1 (lick routine, passing along the same index

364 ENHANCING APPLICATIONS — DOCMAN

number, and allowing it to determine which routine in GLOBCODE.BAS
should be called to process your action. Meanwhile, it simply ignores docu-

ments that you drop onto the New button (index 0), since it assumes that

you have done so in error.

The Commandl KeyUp Procedure
As I started to work on DocMan, I discovered that the problem of using a

separate form such as ACTIONS.FRM as a tools palette is that when the pal-

ette has the input focus, the shortcut keystrokes for accessing buttons and

menus on the main form don't get processed. So I added the following rou-

tine to ACTIONS.FRM, designing it to send every keystroke typed while

ACTIONS.FRM has the input focus to the OpenDM form. Doing this in the

KeyUp routine for the form's buttons, rather than in their KeyDown or Key-

Press routines, gives Actions the opportunity to process the shortcut keys for

the ACTIONS.FRM buttons.

Sub Commandl_KeyUp (Index As Integer, KeyCode As Integer, Shift As Integer)

OpenDM. SetFocus

SendStri ng$ = "

"

If Shift And SHIFT_MASK Then SendString$ = "+" + SendStringS

If Shift And ALT_MASK Then SendStringS = "%" + SendStringS

If Shift And CTRL_MASK Then SendStringS = " A "
+ SendStringS

SendStringS = SendStringS + Chr$(Keycode)

SendKeys SendStringS

End Sub

The KeyUp routine is called with three arguments: the index of the com-

mand button that has the input focus, the keycode of the key that was

pressed, and an integer variable containing a bit field that reflects the state of

the Shift, Ctrl, and Alt keys. In order to discover which, if any, of those keys

were pressed, the routine must perform a series of three logical AND opera-

tions using the SHIFT_MASK, ALT_MASK, and CTRL_MASK constants

that were defined in DCGLOBAL.BAS.
The routine begins by giving OpenDM the input focus. Then it assem-

bles a string called SendStringS by adding the character +, %, or A to the

empty string if the results of the AND operations indicate that the Shift, Alt,

or Ctrl key was pressed. Then it adds a one-character string consisting of

CHR$(KeyCode) to the end of SendStringS. (The CHR$(KeyCode) func-

tion returns character number Keycode in the ANSI character set.) Finally, it

uses the Visual BASIC SendKeys function to send SendStringS to OpenDM.
That concludes discussion of the routines in ACTIONS.FRM.

Exploring FINDDLG.FRM 365

Exploring FINDDLG.FRM
FindDlg, the Find Document dialog box, is loaded into memory as OpenDM
loads and is then made visible whenever you press the Search button on the

OpenDM form.

General and Loading Routines
FindDlg s general procedures are limited to a simple Deflnt A-Z statement.

The first procedure executed as it loads is Form_Load.

The Form Load Procedure

The FindDlg Form_Load Procedure is responsible for loading the

DMKEYS.DAT file, which contains the keywords for all the documents that

have been registered with DocMan.

Sub Form_l_oad ()

Keysfilenum = FreeFile

On Error GoTo Loaderror

KeysFile$ = ExePath + "DMKEYS.DAT"

Open KeysFile$ For Input As Keysfilenum

The routine begins by using the Visual BASIC FreeFile function to

obtain the first available file handle. Then it sets up an On Error routine that

will jump to the Loaderror label if an error occurs during the operations that

follow. Next, it creates the variable KeyFile$ by concatenating the contents

of ExePath and the string "DMKEYS.DAT", and then instructs Visual

BASIC to open KeyFile$ for read operations and to assign the handle Keys-

filenum to it.

Do Until EOF(Keysfilenum)

Line Input #Keysf i

1

enum, Item$

Item$ = RTrim$(Item$)

FindDlg. Listl .Addltem Item$

Loop

CI ose Keysf i 1 enum

FindNext =

Exit Sub

Next, the routine enters a Do loop, in which it reads one line at a time

from the newly opened file until it encounters the end-ol-lile marker. It

assigns the contents of each line to the string variable [tem$ as it is read,

then trims any excess spaces from the end of Item$ before adding it to the

Keywords list box (FindDlg. List 1). Then it loops back and reads the next

line. When the end-of-file marker is found, the routine exits the Do loop and

closes the file. It then sets the global variable FindNext equal to and exits.

366 ENHANCING APPLICATIONS - DOCMAN

In the event an error occurs during the opening or reading of

DMKEYS.DAT, the On Error condition in the FindDlg Form_Load routine

jumps to the label "Loaderror:", which follows the lines listed above.

Loaderror :

Action = Fi

1

eErrors(Err , KeyFile$)

Select Case Action

Case

Resume

Case Else

Exit Sub

End Select

End Sub

The Loaderror subroutine calls the FileErrors function in the GLOB-
CODE.BAS file, passing it the values of Err (the Visual BASIC runtime

error code) and KeysFile$, and assigning the integer value returned by the

function to the variable Action. If Action is equal to 0, then the user selected

the Ignore or Resume button from a message box created by the FileErrors

function, and thus the routine attempts to resume the file-access process.

Otherwise, it exits the File_Load subroutine.

The Form_Paint Procedure
Form_Paint is called the first time the FindDlg dialog box is displayed on

screen.

Sub Form_Pai nt ()

AutoRedraw = True

Call Frame(FindDl g

Call Framet Fi ndDl g

+60, 1)

For X = To 3

Call Frame(Fi ndDl g

Textl(X). width + 30

Next X

End Sub

30, 30, FindDlg. Height - 500, Fi ndDl g .width - 230, 2)

Li stl . Left - 30, Listl.Top - 30, Li stl .Height + 60, Listl. width

Textl(X).Left

1)

15, Textl(X).Top - 15, Textl(X) .Height + 30,

The routine begins by setting the form's AutoRedraw property to True,

precluding the need to redraw the form the next time it is displayed. Then it

makes a series of six calls to the Frame procedure in GLOBCODE.BAS to

create the appearance of three-dimensional borders around the edges of the

dialog box and its controls.

The Form Unload Procedure
Form_Unload is called when DocMan attempts to unload FindDlg from

memory. It reverses the actions of the FormJLoad routine by saving the cur-

rent keyword list to disk.

Exploring FINDDLG.FRM 367

Sub Form_Unload (Cancel As Integer)

Keysf i 1 enum = Freefile

KeysFile$ = ExePath + "DMKEYS.DAT"

On Error Resume Next

Kill KeysFile$

The routine begins by obtaining a free file handle and establishing the

On Error Resume Next condition, which tells DocMan to ignore any disk

errors that occur. Then it uses the Visual BASIC Kill command to delete

the current version of KeysFile$. (The On Error Resume Next condition

keeps DocMan from balking if KeysFile$ doesn't exist when this command
is executed.)

On Error GoTo Unloaderror

Open KeysFileS For Output As Keysfilenum

Items = Fi ndDl g. Li stl . Li stcount

Check =

Do While Check < (Items)

Out$ = FindDlg.Listl.List(Check)

Print # Keysfilenum, Out$

Check = Check + 1

Loop

Close Keysfilenum

Exit Sub

Once it has deleted the old copy of KeysFile$, the routine establishes a

new On Error condition that will jump to the Unloaderror label (below) in

the event of a file system error. Next it opens KeysFileS for output, and

obtains a count of the number of items in the Keywords list. It then loops

through the list, starting with item and continuing until it reaches the end,

assigning each item in turn to the variable Out$ and using the Visual BASIC
Print # command to save the contents of Out$ to KeysFileS before looping

back and obtaining the next item in the list box.

When it has gone through the entire list, the routine closes the file and

exits.

The code following the "Unloaderror:" label is executed only if an error

occurred while saving the file. Like the error routine in the Form_Load pro-

cedure, it calls the FileErrors function in GLOBCODE.BAS and either

attempts to resume or exits depending on the value it returns.

Unl oaderror :

Action = Fi

1

eerrors(Err , Keysf i 1 ename$

)

Select Case Action

Case

Resume

368 ENHANCING APPLICATIONS — DOC MAN

Case Else

Exit Sub

End Select

End Sub

Event Procedures
The remaining procedures in FINDDLG.FRM are called in response to user

actions.

The Commandl Click Procedure
The Go and Cancel buttons on the Find Document dialog box form a single

control array called Commandl, so when you click either button the Com-
mandl_Click procedure evaluates its Index argument to determine what

action it should take.

Sub Commandl_Cl i ck (Index As Integer)

Select Case Index

Case

Fi ndRecord

Case 1

Hide

End Select

End Sub

If you click the Go button (index 0), the routine calls the FindRecord

subroutine in GLOBCODE.BAS, whereas if you click the Cancel button

(index 1), the routine issues the Hide command to hide the FindDlg form,

shifting the input focus back to OpenDM.

The Listl_Click Procedure
Listl is the Keywords list box. The Listl_Click procedure is performed each

time you click once on an item in the list box, or move the list box's selection

bar to a new item using the cursor keys.

Sub Listl_Click ()

Word = Li stl . Li sti ndex

Keyword = Li stl . Li st

(

Word)

End Sub

The routine assigns the value of the Listl.Listindex property to the inte-

ger variable Word (Listl.Listindex will be equal to if the first item is

selected, or to 1 if the 1 1 th item in the list is selected), and then evaluates

the List property for that item. The List property returns the text of a list-

box item, so the statement Keyword = Listl.List(Word) assigns the text of

item Word of list box Listl to the string variable Keyword, which was

Exploring FINDDLG.FRM 369

declared as a global variable in DCGLOBAL.BAS. The Listl_Dblclick, Tex-

tl_DragDrop, and Command3_DragDrop functions described below all

make use of the Keyword variable this routine establishes.

The Listl Dblclick Procedure

Listl_Dblclick is called when you click twice on an item in the Keywords list

box. It is designed to copy the selected keyword to the first empty keyword

search field on the right side of the form.

Sub Listl_Dblclick ()

For X = To 3

If TextHXKText = "" Then Textl (X) . Text = Keyword: Exit For

Next X

End Sub

Since every Dblclick event is preceded by a Click event, the value of

Keyword has already been set by the Listl_Click routine. So the Dblclick

routine simply examines the contents of the four keyword search fields (a

control array called Textl with four elements numbered through 3) and

places the contents of Keyword into the first field it finds whose Text prop-

erty is empty. Once it has placed Keyword, it exits the For loop used to exam-

ine the fields. If none of the fields are empty, the routine simply exits without

making any changes in the contents of the fields.

The Listl MouseMove Procedure

Listl_MouseMove is used to initiate drag-drop operations.

Sub Listl_MouseMove (Button As Integer, Shift As Integer. X As Single. Y As Single)

If Button <> 2 Then Exit Sub

Listl_Click

Li stl .Drag

End Sub

Because I only wanted drag operations to take place if the right mouse
button was depressed, the routine begins by examining the value of its But-

ton argument. If it does not equal 2 (the right button), the routine exits. Oth-

erwise, it calls Listl_Click to get the current value of Keyword, and then

Listl.Drag to initiate the drag procedure.

The Textl DragDrop Procedure
Textl_DragDrop is called when the user drags a keyword onto any of the

four keyword search fields on the right side of the form.

Sub Textl_Dragdrop (Index As Integer. Source As Control . X As Single. Y As Single)

TextH Index) .Text = KeyWord

Keyword - ""

End Sub

370 ENHANCING APPLICATIONS — DOCMAN

The Textl_DragDrop routine uses the value of its Index argument to

place the contents of Keyword into the Text property of the field the key-

word was dropped on.

The Command2 Click Procedure
Command2_Click is called when the user clicks the Clear Fields button.

Sub Command2_Cl i ck (

)

For X=0 to 3

Textl(X).Text = ""

Next X

OpenDM.Ti tl es . Li sti ndex =

FindNext =

0penDM.Command2. Enabl ed = FALSE

End Sub

Command2_Click begins by clearing the contents of the four keyword
fields (by setting the Text property of each field to ""). Then it moves the

selection bar in OpenDM's Titles list box to the first item in the list (so that

the next search will start at the beginning of the list), sets FindNext to

(since you can't find the next occurrence of the search criteria if the search

criteria are blank), and disables the Next Match button on OpenDM (for the

same reason).

The Commands Click Procedure
Command3_Click is called when the user clicks on the Delete Key button on

the FindDlg form, signaling that the key currently selected in Listl should be

removed from the Keywords list.

Sub Command3_Cl i ck (

)

Word = Listl. Li sti ndex

If Word < Then Exit Sub

FindDl g . Li sti

.

Removeltem Word

Wri teKeyFi elds

End Sub

The routine begins by obtaining the current Listindex number for Listl

(the number of the selected keyword) and, if it is less than (indicating that

none of the keywords is selected) it exits immediately. Otherwise, it removes

the selected item from the list and then calls the WriteKeyFields routine in

the GLOBCODE.BAS file, which writes the changed keyword list to disk.

The Command3 DragDrop Procedure

Command3_DragDrop is called when the user drags a keyword onto the

Delete Key button. It responds by triggering the Command3_Click event.

Exploring FINDDLG.FRM 371

Sub Command3_DragDrop (Source As Control, X As Single, Y

As Single)

Command3_Cl i ck

End Sub

That concludes the discussion of the routines in FINDDLG.FRM.

Exploring ABOUTDLG.FRM
AboutDLG, the last form in the DocMan application, constitutes the About

DocMan dialog box. Shown in Figure 14.7, the About DocMan dialog box

appears when you select the About item on OpenDM s File menu.

Figure 14.7
fheAbout DocMan

dialog box
DocMan

The Seciet Lile of Ami Professional

The Perennial Shade Gardr
)Big Calt
Repoit on Mr. Big's Tiip To
Riverside Picnics

Demonstration document Ic

Three page document that

Automatically converts othi

Quick exit to DOS. Type ex

» Len(Desciiplion Text)

II xX > 300 Then
MsgBox "300 characters on

File: c:Vamipro\macros\doi

Owner, amipro

)ato: 10-04-1991

DocMan is part of PC/Computing's
continuing series of Windows Projects.

The program was written in Microsoft

Visual BASIC, with additional macro code
produced using Lotus Development
Corporation's Ami Professional 2.0.

Copyright *> 1991. 1992 by Paul Bonner

No commercial use of this application, its

source code, or its design concepts is

permitted without the express written

consent of the author.

OK

I -'

icrobiotics

teat

Tools

New

Open

Print

Delete

The code for AboutDLG is limited to a Deflnt A-Z statement and two

routines: Form Paint and Command 1 (lick.

The Form Paint Procedure
AboutDLG's Form_Paint procedure simply issues one call to the Frame rou-

tine in GLOBCODE.BAS to create a three-dimensional effect around the

borders of the dialog box.

372 ENHANCING APPLICATIONS — DOCMAN

Sub Form_Paint ()

Call Frame(AboutDLG, 30, 30, AboutDLG. Hei ght - 520, AboutDLG. width - 220, 2)

End Sub

The Command!. Click Procedure
Commandl_Click issues the command to unload AboutDLG when the user

clicks the OK button.

Sub Comma ndl_Cl i ck (

)

Unload AboutDLG

End Sub

Once the About DocMan dialog box has been unloaded, the input focus

returns to the OpenDM form.

Exploring GLOBCODE.BAS
GLOBCODE.BAS is a massive code-only module containing no less than 26

subroutines and functions. In addition, its general declarations section is a bit

more complex than those of DocMan 's forms, since it contains a series of vari-

able declarations, in addition to the ubiquitous Deflnt A-Z statement:

Deflnt A-Z

Dim TestKeyO) As String

Const RunProg$ = "amipro.exe "

Const ClassNamel = "AmiProWndA"

Const HiColor = &HFFFFFF

Const LoColor = &H808080

The four-element string array TestKey is used by the FindRecord and

TestField routines, which carry out the search requests entered through Find-

Dig. The constants RunProg$ and ClassName$ are used to launch Ami Pro

or to detect an existing instance of Ami Pro in memory. Finally, the constants

HiColor and LoColor are used to hold the hexadecimal RGB numbers that

represent the two colors used by the Frame routine, light gray (&H808080)

and white (&HFFFFFF).
In the actual GLOBCODE.BAS file, the remaining, named routines

appear in alphabetical order. However, since discussing them in that order

would only make the already sketchy flow of an event-driven program even

more difficult to follow, related routines have been placed "next door" to

one another in the following discussion. (Refer to the index for page num-

bers of specific routines.)

Exploring GLOBCODE.BAS 373

The CenterForm Procedure

CenterForm is called by the OpenDM and FindDlg forms during their

Form_Load routines to center the form on screen.

Sub CenterForm (F As Form)

F.Left = (Screen. Width - F. Width) / 2

F.Top = (Screen .Height - F. Height) / 2

End Sub

The routine uses a variation of the technique that typists used to center

text on a page before the invention of word processors. It subtracts the width

of the form from the width of the screen, divides the result by two, and then

uses that number as the left edge of the form. Then it subtracts the height of

the form from the screen height, divides that by two, and uses the resulting

number as the top edge of the form.

The Frame Procedure

Frame is called by all but one of DocMans forms as part of the Form_Paint

procedure. Each time it is called it draws four lines that together create the

impression of a three-dimensional frame or box.

This version of Frame is one of many Visual BASIC variations on a com-

mon routine for creating the 3-D chiseled-steel effect popular among Win-

dows developers. It accepts six parameters from the calling routine: F, the

name of the form on which it is to draw lines; L, the left edge of the area to

be framed; T, the top edge of the area to be framed; H, the height of the area

to be framed; W, the width of the area to be framed; and Style, the style of

the frame it will draw.

If the Style is set to 1, the routine will draw a thin frame with white lines

along the left and bottom edges of the frame and dark gray lines along the

top and left edges, creating a concave effect (that is, making the control

around which the frame has been drawn appear to be set below the form s

surface). If, on the other hand. Style is set to 2, the routine draws a thick

frame that reverses the color order of the thin frame, creating a convex

effect. DocMan uses Style 2 only to draw the borders around the edges of a

form. Controls are framed using Style 1

.

Sub Frame (F As Form. L, T, H. W. Style)

F.DrawWidth = Style

Select Case Style

Case 1

F. ForeCol or = HiCol or

SwapColor& = LoColor

Case 2

F. ForeCol or = LoColor

SwapColor& = HiColor

374 ENHANCING APPLICATIONS - DOCMAN

Style, T + H)

T + H - Style)

End Select

'draw bottom, then right

F.Line (L + Style, T + H)-(L + W

F.Line (L + W, T + Style)-(L + W,

'reverse colors

F.ForeColor = SwapColor&

'draw top, then left

F.Line (L - Style, T)-(L + W - Style, T)

F.Line (L, T + Style)-(L, T + H - Style)

End Sub

The routine starts by setting the form's DrawWidth property equal to

the value of Style, so that the frame will be 1 pixel wide if Style is equal to 1,

or 2 pixels wide if Style is equal to 2. Then it assigns values to both the form

ForeColor property (the color in which lines will be drawn) and a variable

called SwapColor&, using a Select Case routine to make the assignments

based on the value of Style. Then it issues a pair of F.Line commands to

draw the bottom and right edges of the frame.

The line for the bottom edge starts at a point whose x coordinate is

equal to the value of L plus the value of Style (that is, the intended left edge

of the frame plus the width of the line), and whose y coordinate is equal to

the value of T + Ff (the top of the frame plus the height of the frame). The
bottom line then extends to a point whose x coordinate is equal to the value

of L plus the value ofW (the width of the frame) minus the value of Style,

and whose y coordinate is equal to the value of T + H.

The line along the right edge of the frame follows a similar pattern.

Next, the routine sets the form's ForeColor property equal to Swap-

Color&, and then draws the lines for the left and top edges of the frame,

before returning to the calling routine.

The OpenDoc Procedure

OpenDoc is called when the user selects the Open item from OpenDM's File

menu or the Open button from the tools palette.

Sub Opendoc (

)

Screen .Mousepoi nter = 11

Getfile

If Editfile = "" Then Exit Sub

AppLoaded = Loaded(Cl assName$)

If AppLoaded = Then

LaunchApp RunProg$, Fditfile, 1

Else

T = SetActi veWindow(AppLoaded

)

RestoreApp AppLoaded

SendKeys "%F0" + Editfile + "~", TRUE

Exploring GLOBCODE.BAS 375

End If

Screen. Mousepointer = 1

End Sub

OpenDoc begins by setting the cursor to an hourglass shape (Screen-

.Mousepointer = 11) to indicate that DocMan is busy. Then it calls the Get-

File routine (discussed below) to obtain the name of the file whose title is

currently highlighted in the Titles list box. GetFile places the file name in the

global variable EditFile.

Next, the routine checks to see if EditFile is empty (which it would be if

no file was selected when GetFile was called). If so, it exits. Otherwise, it

calls the Loaded routine, passing it the ClassName$ variable, which holds

Ami Pro s class name, to determine if Ami Pro is already running. If it is,

then Loaded will return the handle to Ami Pro's main window. Otherwise.

OpenDoc calls the LaunchApp routine to launch Ami Pro, passing it the

variable EditFile to instruct it to use the name of the file as a command-line

parameter and telling it to launch the program in run mode 1 (normal win-

dow with input focus). The other run-mode options are 2 (minimized with

focus), 3 (maximized with focus), 4 (normal without focus), and 7 (mini-

mized without focus).

If Ami Pro is already running, however, the routine jumps to the Else

part of the If-Then construct and calls the Windows API function Set-

ActiveWindow to make Ami Pro the active application. Then the routine

calls the RestoreApp routine, in case Ami Pro is currently minimized, and

then sends it the keypress Alt-FO followed by the contents of EditFile.

thereby instructing it to open the document.

Finally, OpenDoc restores the mouse pointer to its normal state and exits.

The GetFile Procedure

GetFile is called by OpenDoc and other routines to obtain the file name of

the document whose title is selected in the Titles list box.

Sub Getfile (

)

Editfile = ""

Editfile = Recordvar. Fi 1 e

Editfile = RTrim$(Edi tf i 1 e

)

End Sub

GetFile begins by clearing the variable Editlile. Then it sets Editfile

equal to the File field in the current record variable. Next il uses the

RTrim$ function to strip off any extra spaces at the end of the Editfile vari-

able, and then it exits, returning the current value of Editfile to the routine

that called it.

376 ENHANCING APPLICATIONS — DOCMAN

The Loaded Procedure

Loaded is used to determine if Ami Pro is already running, so that DocMan
can activate the current instance rather than launching a new one.

Function Loaded (ClassName$)

Loaded = Fi ndWi ndow(Cl assName$, 0&)

End Function

Loaded passes Ami Pro's class name to the FindWindow API function.

If the function returns a value of 0, then Ami Pro is not currently running.

Otherwise, it returns the handle of the running instance.

The RestoreApp Procedure
RestoreApp is used to instruct the running instance of Ami Pro to restore its

window if it is minimized.

Sub RestoreApp (AppLoaded)

If Islconi c(AppLoaded) Then

T = PostMessage(AppLoaded, WM_SYSCOMMAND, SC_RESTORE, 0)

WaitSecs 1

End If

End Sub

The AppLoaded parameter to the RestoreApp routine identifies the run-

ning instance of Ami Pro identified by the Loaded function. RestoreApp

first calls the Islconic function defined in DCGLOBAL.BAS to determine if

Ami Pro is minimized. Then, if that function evaluates to True, RestoreApp

uses the PostMessage function to send it the SC_RESTORE command,
instructing Ami Pro to restore itself to its normal window state. Finally,

RestoreApp calls the WaitSecs routine (described below), which pauses Doc-

Man for one second to allow Ami Pro a chance to restore its window before

any more commands are sent to it.

The LaunchApp Procedure

If Ami Pro isn't running when the Open, Print, or New button is clicked (or

one of the corresponding menu items is selected), DocMan must launch

AMIPRO.EXE. It does so with the LaunchApp routine.

Sub LaunchApp (RunProg$, RunParamS, RunMode%)

T : Shel 1 (RunProg$ + RunParam$, RunMode%)

WaitSecs 1

End Sub

LaunchApp uses the Visual BASIC Shell command to execute Run-

Prog$ (which was previously set to equal "AMIPRO.EXE"), and, in the case

of open and print routines, passes it the name of the document to open in the

Exploring GLOBCODE.BAS 377

RunParam$ string. The RunMode% parameter is used to determine Ami
Pros initial window state, as described earlier. Again, the routine calls Wait-

Sees to give Ami Pro a chance to carry out the command before the next

command is sent to it.

The WaitSecs Procedure

WaitSecs is used to pause execution of DocMan for a second or two, while

Ami Pro reacts to commands that have been sent to it.

Sub WaitSecs (sees)

Start! = Timer

While Timer < Start! + Sees

Temp = DoEventsC)

Wend

End Sub

The routine sets the variable Start! equal to the current value of Visual

BASIC'S Timer function (which always indicates the number of seconds past

midnight), and then enters a While loop that continues until Timer equals

the value of Start! plus the Sees parameter with which WaitSecs was called.

The loop consists of a single statement. Temp = DoEvents(), which is exe-

cuted repeatedly until the While condition is met.

The Recycler project described in Chapter 12 outlined one use of the

DoEvents function in Visual BASIC: to monitor system messages such as

drag-drop messages from File Manager. Another, more common use is to

yield control to Windows so that any other applications waiting for processor

time have a chance to execute. Visual BASIC applications yield control like

this automatically whenever they're waiting for user input, but when they are

performing a long list of instructions they can be processor hogs unless you

remember to call the DoEvents function.

In the case of DocMan, the DoEvents calls in the WaitSecs routine allow

Ami Pro to take control of the processor while it carries out the instructions

that DocMan has given it. Without this statement, DocMan could keep send-

ing Ami Pro more instructions before it was able to carry out the first ones.

The NewFile Procedure

NewFile is called when the user elects to create a new document, by either

clicking the New File button or selecting the File New menu item.

Sub NewFi 1 e (

)

Screen. Mousepointer = 11

AppLoaded = Loaded(Cl assName$)

If AppLoaded = Then

LaunchApp RunProg$, "". 4

1 Ise

378 ENHANCING APP LIC ATION S — DOCM AN

T = SetActi veWindow(AppLoaded)

RestoreApp AppLoaded

End If

SendKeys "%FN", TRUE

Screen. Mo usepointer=l

End Sub

NewFile sets the cursor to an hourglass, then checks to see if Ami Pro is

already running. If not (AppLoaded = 0), it calls LaunchApp to launch it.

Otherwise, it activates Ami Pro's window and calls RestoreApp to restore it,

if necessary. It then concludes by sending the Alt-FN keystrokes necessary to

create a new file in Ami Pro.

The PrintFile Procedure

PrintFile is called when the user indicates that the file selected in the Titles

list box on OpenDM is to be printed.

Sub PrintFile (

)

OpenDoc

SendKeys "%FP", TRUE

WaitSecs 1

SendKeys "~"
, TRUE

End Sub

PrintFile calls the OpenDoc routine to load the document that is to be

printed into Ami Pro, and then sends Ami Pro the Alt-FP command to print.

It then calls WaitSecs to pause for one second before sending the carriage

return needed to close the Ami Pro Print dialog box and print the document.

The DeleteFile Procedure

DeleteFile is called when the user clicks the Delete button or selects the

Delete item on the File menu.

Sub DeleteFile (

)

Getfile

If Editfile = "" Then Exit Sub

Boxtype = MB_OkCancel + MB„I CON EXC LAMAT I ON

Msg$ = "Delete " + Editfile + "?"

Response = MsgBox(Msg$, Boxtype, "Delete File")

Select Case Response

Case IDOK

On Error GoTo Notfound

Kill Editfile

On Error GoTo V)

Del eteRecord

Exploring GLOBCODE.B AS 379

Case IDCANCEL

Exit Sub

End Select

Exit Sub

Notfound :

Resume Next

End Sub

DeletcFilc starts by using GetFile to get the selected document's file

name. Then it creates the message box shown in Figure 14.8, to double check

that the user really wants to delete the selected document.

Figure 14.8
The Delete File

confirmation box
DocMan

File Edit

The Seciet Life of Ami Professional

The Perennial Shade Garden: An Annual Challenge
Big Calt
Repoit on Mr. Big's Trip To The Moon
Riverside Picnics

Demonstration document lor Ami Pro 2.0 Announcement
Three page document II

i t.en(Descrip<ion.T

> 300 Then
rfstjBox "300 characters

: c:\amipro\macrot\

DOS wheat

Search

Tools

New

Open

Print

Delete

The routine uses a Select Case routine to compare the user's response to

the message-box response constants defined in DCGLOBAL.BAS.
I! the user indicates that the file is to be deleted, the routine sets up an

On Error condition, and then issues the Visual BASIC Kill command to

delete the file. Then it cancels the On Error condition with the command On
Error GoTo 0, and calls the DeleteRecord routine to delete the current docu-

ment from DocMan s database, before exiting.

380 ENHANCING APPLICATIONS — DOCMAN

Otherwise, if the user elected not to delete the file, the routine exits

immediately.

The code following the NotFound code is executed only if an error

occurs during the Kill command. It simply instructs the routine to continue

execution at the next line of code.

The DeleteRecord Procedure
DeleteFile calls the DeleteRecord routine to remove the current record

from DocMan's database.

Sub Del eteRecord (

)

Dim Tempvar As DocRec

Position = OpenDM.Ti tl es . Li sti ndex + 1

For I = Position To Lastrecord - 1

Get Filenum, I + 1, Tempvar

Tempvar

.

Recordnum = I

Put Filenum, I, Tempvar

Next I

Lastrecord = Lastrecord - 1

If Lastrecord = Then Clearfields

OpenDM.Ti tl es . Removei tern Position - 1

OpenDM .Ti tl es . Li sti ndex = Lastrecord - 1

Open DM. Titles. Re fresh

End Sub

DeleteRecord starts off by creating a temporary record variable called

Tempvar, and then sets the integer variable Position equal to the Titles list

box's Listindex property plus 1. Then it steps one record at a time through

the database from that position until the next to last record, using the vari-

able I as a counter. At each step, it reads record I + 1 into TempVar, then

resets the RecordNum field in Tempvar (which will equal I + 1 at this point)

to equal I, and then writes TempVar back to the DOCMAN.DAT file at posi-

tion I. It then increments I and repeats the process.

To understand what's taking place here, let's suppose there are a total of

ten records in the database, and that the seventh record was selected when

you initiated the delete operation. The first time through the loop, Delete-

Record would overwrite the old contents of record 7 with the contents of

record 8. Then the next time through, the old contents of record 8 would be

overwritten with the contents of record 9, and the next and last time through

the loop, the old contents of 9 would be overwritten with the contents of

record 10.

Once the loop has concluded, the routine decrements the value of Last-

record, the variable used to keep track of the number of records in the data-

base. At this point, the record the routine was called to delete has been

permanently eliminated.

Exploring GLOBCODE.BAS 381

All that remains now is to do a little cleaning up of the OpenDM screen.

If the database is empty (Lastrecord = 0), DeleteRecord calls the Clear-

Fields routine (below) to clear all the text fields on the OpenDM screen.

Next it removes the deleted records title from the Titles list box, and resets

the list boxs Listindex property to be equal to Lastrecord -1. Finally, it

issues the Refresh command, instructing DocMan to redraw the list box to

display its new, abbreviated-by-one, list of titles.

The ClearFields Procedure
DeleteRecord uses the ClearFields subroutine to clear the text from the

OpenDM text fields if the database is empty.

Sub CI earf i elds (

)

OpenDM. Descri ption. Text = ""

For X=0 To 7

If X=3 Then X=4

OpenDM. Textl(X). Text = ""

Next X

End Sub

The routine simply sets the Text properties of OpenDMs Description

field and the seven text fields in the Textl control array to empty strings,

skipping Text 1(3) because no such control exists.

The FileOpener Procedure

The OpenDM Form_Load routine and the Cleanup routine discussed later

in this chapter both use the FileOpener function to open the DOCMAN-
.DAT file.

Function FileOpener (Nametouse$, Mode, Recordlen) As

Integer

OpenFileNum = FreeFile

On Error GoTo Openererror

Open NameToUse$ For Random As OpenFileNum Len = RecordLen

LastRecord = L0F(0penFi 1 eNum) \ RecordLen

Fileopener = OpenFileNum

Exit Function

Openererror:

Action = Fi

1

eErrors(Err , NameToUse$)

Select Case Action

Case

Resume

Case Else

Fi leopener =

I nd

382 ENHANCING APPLICATIONS - DOCMAN

End Select

End Function

FileOpener starts by obtaining a free file handle, and then, after setting

up an On Error routine, opens the file name specified by NameToUse$ for

random access using the handle returned by FreeFile. Then it determines the

number of records in the file by dividing the total length of the file by the

length of a single record, and returns the file's handle to the routine that

called it.

The code following the Openerror label is executed only in the event of

an error during the process of opening or reading the file. It calls the File-

Errors function, passing it the name of the file and the error code, and then

evaluating the result of that function to determine whether it should resume

or end.

The FileErrors Procedure

FileErrors evaluates the runtime error code to determine the type of error

that has occurred, and then opens a message box describing the error.

Function FileErrors (Errval As Integer. Filename As String) As Integer

Msgtype = MB_I CONEXCLAMAT ION + MB_ABORTRETRYIGNORE

Sel ect Case Errval

Case 68

Msg$ = "Device unavailable "

Case 71

Msg$ = "Disk not ready"

Case 57

Msg$ = "Internal disk error."

Case 61

Msg$ = "Disk full

Case 52

Msg$ = Filename + " is an illegal filename."

Case 75, 76

Msg$ = "The path " + Filename + " doesn't exist."

Case 54

Msg$ = "Can't open " + Filename + " for that kind of access."

Case 55

Msg$ = Filename + " already open."

Case 62

Msg$ = Filename + " has a nonstandard end of file marker,"

Msg$ = Msg$ + " or an attempt was made to read beyond"

Msg$ = Msg$ + " the end of the file."

Case 53

Msg$ - Filename + " not found."

Case El se

"l i le or di sk error associated with " + Filename + "
! Error code: " +

StrSf Errva I

)

End Select

Response - MsgBox(M',')t , Msgtype, "Disk Error")

Select Case Response

Exploring GLOBCODE.BAS 383

Case IDRETRY

Fi leErrors =

Case IDIGNORE

Fi leErrors = 1

Case IDABORT

Fi

1

eErrors = 2

End Select

End Function

The message boxes created by FileErrors have three buttons: Abort,

Retry, and Ignore, as shown in Figure 14.9.

Figure 14.9
A FileErrors

message box

(D

Disk Error

C:\VB\DMKEYS.DAT not found.

Abort Retry Ignore

The function determines which button the user selects in the message box,

and then returns a value to the routine that called it based on that response.

The ReadSelectedRecord Procedure

ReadSelectedRecord is called whenever the selection bar moves to a new
record in the Titles list box on OpenDM.

Sub ReadSelectedRecord ()

If OpenDM. Titles. listindex < Then Exit Sub

If (OpenDM. Ti ties. 1

i

stindex + 1) <= LastRecord And LastRecord > Then

Get Filenum, OpenDM. Ti tl es . 1

i

sti ndex + l, Recordvar

OpenDM. Description. Text = RTrim$(Recordvar. Description)

OpenDM. Textl(0) .Text = RTrim$(Recordvar . Fi 1 e)

OpenDM. TextK 1) .Text = RTrim$(Recordvar. Owner)

OpenDM. Textl(2). Text = RTrim$(Recordvar . Date)

OpenDM. Textl(4) .Text = RTrimKRecordvar . Keyl

)

OpenDM. Textl(5) .Text = RTrim$(Recordvar. Key2)

OpenDM. Textl(6). Text = RTrim$(Recordvar . Key3)

OpenDM. Textl (7) .Text - RTrim$(Recordvar. Key4

)

WhichRecChanged = -1

End If

End Sub

The routine starts by conducting a couple of checks to ensure that Titlcs-

. listindex is pointing at a valid record. Once it has made that determination,

it reads record number Titles. listindex + 1 from Filenum (the handle of the

DOCMAN.DAT file), and places the contents of that record into the

Recordvar variable. Then it copies the contents oi the various fields in

384 ENHANCING APPLICATIONS — DOCMAN

Recordvar into the corresponding fields on OpenDM. Next it sets the Which-

RecChanged flag to -1 (indicating that the contents of the current record

have not changed since it was read from disk) and exits.

The WriteChangedRecord Procedure
WriteChangedRecord is called to save the contents of the current record

when WhichRecChanged is greater than -1, indicating that the contents of

the record have been altered since it was read from disk.

The WriteChangedRecord routine gets called any time an OpenDM edit

field whose contents have been changed loses the input focus. Thus, when
you change the description of a file or one of its keywords, as soon as you tab

to or click in another field, the changed record is saved to disk. However, the

routine also gets called every time data being sent from Ami Pro is inserted

into a field during the OpenDM Link_Execute routine, so Link_Execute sets

the NewRecordFlag to True to prevent WriteChangedRecord from writing

the new record to disk prematurely before all the data being received from

Ami Pro has been entered into the appropriate fields on OpenDM.

Sub WriteChangedRecord ()

If NewRecordFlag = TRUE Then Exit Sub

Recordvar .Ti tl e = OpenDM. Ti tl es . 1

i

st(Whi chRecChanged)

Recordvar . Descri pti on = OpenDM . Descri pti on .Text

Recordvar. keyl = OpenDM .Textl (4) .Text

Recordvar . key2 = OpenDM .Textl (5). Text

Recordvar . key 3 = OpenDM. Textl (6). Text

Recordvar . key4 = OpenDM. Textl (7) .Text

Put Filenum, WhichRecChanged + 1, Recordvar

WhichRecChanged = -1

Addkeys

End Sub

If NewRecordFlag is True, WriteChangedRecord exits immediately. Oth-

erwise, it sets the various fields in the Recordvar variable equal to the con-

tents of the corresponding fields on the OpenDM form. Then it issues the

Visual BASIC Put command to write the changed record to disk, and then

sets WhichRecChanged to -1 to indicate that the current record does not dif-

fer from the version stored on disk. Finally, it calls the AddKeys routine,

which adds any new keywords that appear on the OpenDM form to the Key-

words list.

The AddKeys Procedure

The purpose of AddKeys is to add new, unique keywords to the Keywords

list box on the FindDlg form without creating duplicates of keywords that

already appear in the list.

Exploring GLOBCODE.BAS 385

There were (at least) two possible ways to implement this. One was to

have AddKeys search through the Keywords list four times (once for each

keyword on OpenDM) to determine if the OpenDM keyword already

appears in the list and, if not, to add it. The other was to simply add all four

keywords on any changed record to the list, and then run through the list

once, removing duplicate items. I opted for the second approach, so

AddKeys begins by adding the contents of all four keyword fields on the

OpenDM form to the Keywords list box on FindDlg.

Sub AddKeys ()

For X = 4 To 7

FindDlg.Listl .Addltem OpenDM. TextHX) .Text

Next X

Items = FindDlg. Listl . Listcount

NewKeys =

Check =

FindDlg. Listl. Refresh

Do While Check < (Items)

If UCase$(RTrim$(FindDlg. Listl. 1 i st(Check))) <>

UCase$(RTrim$(FindDlg. Listl. listtCheck + 1)))

And RTn"m$(Fi ndDlg. Listl. list(Check)) <> "" Then

Check = Check + 1

NewKeys = 1

Else

FindDlg. Li stl . Removeltem Check

Items = Items - 1

End If

Loop

If NewKeys = Then Exit Sub

Wri teKeyFields

End Sub

Next AddKeys sets the integer variable Items equal to the number of

items in the list box, and the variables NewKeys and Check equal to 0. Then
it issues the FindDlg. Listl. Refresh command, which tells DocMan to redraw

the list box. Since the list box's Sorted property is set to True, this also causes

the contents of the list box to be sorted in ascending alphabetical order.

Once the list box has been sorted, all the routine has to do to catch dupli-

cate items is to make sure that no two consecutive items are identical. So it

loops through the items in the list box, comparing each item to the one that

follows it.

Because DocMan's searches are case-insensitive, "report", "Report",

and "REPORT" are of identical effectiveness in finding a document that

uses any of the three as a keyword. So the Addke\s routine uses the Visual

BASIC UOase$ function to compare uppercase versions of all keyword list

entries (and the RTrim$ function to ensure that a different number of trail-

ing spaces doesn't prevent the routine from (lagging duplicates).

386 ENHANCING APPLICATIONS — DOCM AN

If the list item being checked is not identical to the one that follows it,

and isn't an empty string, AddKeys increments the value of the counter vari-

able Check and sets NewKeys equal to 1 (indicating that the keyword list has

changed and should be saved to disk). If, on the other hand, the item is iden-

tical to the one that follows it, AddKeys removes the current item from the

list and decreases the variable Items (which reflects the total number of key-

words in the list) by 1 before reading the next keyword.

Once the entire list box has been scanned for duplicates, AddKeys
checks to see whether NewKeys is still equal to 0. If it is, then the keyword

list hasn't changed and AddKeys exits. Otherwise, it calls the WriteKey-

Fields routine to save the list to disk.

The WriteKeyFields Procedure
WriteKeyFields reverses the process of reading keywords from disk that

occurs during the FindDlg Form_Load procedure. It saves every item in the

Keywords list box to the file DMKEYS.DAT, using the Print # command to

write the sequential file and a error-handling routine called Unloaderror to

handle any file errors that occur.

Sub Wri teKeyFiel ds (

)

KEYSFILENUM = FreeFile

On Error GoTo Unloaderror

KeysFileS = ExePath + "DMKEYS.DAT"

On Error Resume Next

Kill KeysFileS

On Error GoTo Unloaderror

Open KeysFileS For Output As KEYSFILENUM

Items = Fi ndDl g . Li stl . Li stcount

Check =

Do While Check < (Items)

OutS = FindDlg. Li stl . Li st(Check)

Print ^KEYSFILENUM, OutS

Check = Check + 1

Loop

Close KEYSFILENUM

Exit Sub

Unl oaderror :

Acti on = Fi

1

eErrors

Select Case Action

Case

Resume

Case Else

Exit Sub

Err, NewNameS)

Exploring GLOBCODE.BAS 387

End Select

End Sub

The ExitDocMan Procedure
ExitDocMan is called when the user selects the Exit item on OpenDMs File

menu.

Sub ExitDocMan ()

CI eanLlp

End

End Sub

ExitDocMan calls the CleanUp routine (below), and then issues the End
command to stop program execution.

The CleanUp Procedure

CleanUp s job is to ensure that all data files have been saved to disk properly

before DocMan exits.

It begins by calling WriteChangedRecord if WhichRecChanged is

greater than -1.

Sub CI eanUp (

)

If WhichRecChanged > -1 Then WriteChangedRecord

NewName$ = ExePath + "DM.TMP"

FMode = RANDOMFILE

Recordcount = LastRecord

On Error GoTo Cleanuperrs

CI eanupf i lenum = Fi

1

eopener(NewName$, fMode,

Len(Recordvar)

)

On Error Resume Next

For I = 1 To Recordcount

Get Filenum, I, Recordvar

Put CI eanupf i

1

enum, I, Recordvar

Next I

CI ose

Kill ExePath + "DOCMAN.DAT"

Name NewName$ As ExePath + "DOCMAN.DAT"

Exit Sub

Cleanuperrs :

Action = Fi

1

eErrors(Err , NewName$)

Select Case Action

Case

Resume

Case Else

End

388 ENHANCING APPLICATIONS — DOCMAN

Exit Sub

End Select

End Sub

Next, CleanUp opens a new file called DM.TMP and copies every

record from 1 to RecordCount from DOCMAN.DAT to the new file.

When that's done, it deletes DOCMAN.DAT and renames DM.TMP to

DOCMAN.DAT, replacing the old file with the new one.

The purpose of replacing DOCMAN.DAT is to ensure that deleted

records are permanently deleted. You'll recall that the initial value of

RecordCount is determined by dividing the length of DOCMAN.DAT by

the length of a single record. When you delete records from the database,

the value of RecordCount goes down, but the data from the deleted records

(or data from other records past the deleted records) still exists in the

DOCMAN.DAT file. If CleanUp simply closed DOCMAN.DAT, the next

time it was opened RecordCount would reflect the total length of the file,

resulting in either duplicate records or previously deleted records appearing

at the end of the file.

By copying only the number of records equal to RecordCount to the

DM.TMP file, the routine ensures that the new file doesn't contain any data

for deleted or duplicate records.

The code following the Cleanuperrs label is called only if a file error

occurs during the cleanup process. If so, it calls FileErrors, and then either

resumes or exits depending on the user's response to the FileErrors mes-

sage box.

The FindRecord Procedure
FindRecord is called when you initiate a search by pressing either the Go
button on the FindDlg form or the Next Match button on OpenDM.

Sub Fi ndRecord (

)

For Temp = To 3

TestKey(Temp) = UCase$(RTrim$(Fi ndDl g .Textl (Temp) . Text)

)

Next Temp

For Match = OpenDM. Ti tl es . 1

i

stindex + 1 + FindNext To LastRecord

Get Filenum, Match, Recordvar

If TestField(UCase$(RTrim$(Recordvar. keyl))) Then Exit For

If TestField(UCase$(RTrim$(Recordvar.key2))) Then Exit For

If TestField(UCase$(RTrim$(Recordvar.key3))) Then Exit For

If TestField(UCase$(RTrim$(Recordvar.key4))) Then Exit For

Next Match

I f Match < LastRecord + 1 Then

FindDlg. Hide

OpenDM. Ti ties . 1

i

stindex = Match - 1

OpenDM. Command2. Enabled - TRUE

ElseMsgBox "Keywords not found", MB OK, "DocMan"

OpenDM. Command2. Enabled = FALSE

Exploring GLOBCODE.BAS 389

End If

End Sub

FindRecord begins by setting the variables Temp(O) through Temp(3)

equal to the uppercase, trailing-spaces-trimmed contents of the four FindDlg

keyword search fields. Then, starting with the document currently selected in

the Titles list box on OpenDM (which will be the first record in the list box if

FindNext = 0), the routine reads each record in turn until the TestField func-

tion (described below) returns a value of TRUE for one of the record's four

keyword fields.

If no match is found, the value of Match will be equal to Lastrecord + 1

at the end of the For loop. But if a match was found, the Exit For command
following the TestField statement that evaluated to TRUE would have made
FindRecord exit the loop before the final Next statement incremented

Match to that value. Consequently, the routine uses the value of Match at

the end of the For Next loop to determine its next action.

If a match was found (Match < LastRecord + 1), the routine hides the

FindDlg form, sets the Titles list box Listindex property to Match - 1. high-

lighting the matching record (since Listindex is numbered from 0, whereas

the record numbers start from I), and enables the Next Match button, as

shown in Figure 14.10.

Figure 14.10
After a successful

search the Next

Match button is

enabled DocMan
File Edit

Dogs in (he Modem World: The Shocking Tiuth

The Secret Life ol Ami Professional

The Perennial Shade Garden: An Annual Challenge
Big Cats
Report on Mr Big's Trip To The Moon
Riverside Picnics

Demonstiation document for Ami Pro 2.0 Announcement
Three page document that performs a printer capability test.

Automatic ally conveits other word processoi document files into Ami Pro tiles

Ah. can there be anything so sweet as a picnic by the livei. canoes floating by. ants

marching along, bees buzzing, horseflies

I ile c \amipio\docs\picmc sam

Owner amipio

Date: 10-04 1991

Canoes and Dogs Dogs

Grasshoppers bees

Search | Next Match

F'(..i«ji.jfn

M«nagei

390 ENHANCING APPLICATIONS — DOCMAN

Meanwhile, if no match was found, FindRecord informs the user

through the message box shown below, and then disables the Next Match
button before exiting the routine.

The TestField Procedure

TestField is used by FindRecord to determine if any of the four key fields in

the current record variable match the search criteria. FindRecord calls

TestField four times for each record that it tests, passing it one keyword field

at a time.

Function TestField (FieldToTest As String)

If FieldToTest = "" Then Exit Function

For Temp = To 3

If FieldToTest = TestKey (Temp) Then TestField = TRUE: Exit For

Next Temp

End Function

If the keyword field that FindRecord has passed to TestField is empty,

the function exits immediately. Otherwise, it compares the value of the field

being tested with each of the four TestKey(Temp) strings in turn. (You'll

recall that the TestKey(Temp) strings hold the criteria for the current

search.) If it obtains a match it returns a value of TRUE to the FindRecord

function. Otherwise it exits, returning a value of FALSE.

The Sub GetPath Procedure

The OpenDM Form_Load procedure calls GetPath to determine the direc-

tory from which DOCMAN.EXE was run, so that it knows where to look for

and store DocMans data files.

Sub GetPath ()

Const GCW_HMODULE = (-16)

ExePath = String$(127. 0)

X = GetModuleFilename(GetClassWord(OpenDM.Hwnd,

Len(ExePath))

GCW. HMODULE). ExePath,

X - Len(ExePath)

Do While X >

If Mid$(ExePath. X,

X - X - 1

Loop

[f X - Then

ExePath - "\"

1) = "\" Then Exit Do

Exploring GLOBCODE.BAS 391

Else ExePath = Left$(ExePath. X)

End If

End Sub

GetPath combines a pair of Windows API functions here, passing Get-

ModuleFilename the result of calling the GetClassWord function with the

parameters OpenDM.Hwnd (the handle of the OpenDM window) and

GCW_HMODULE (a request for a handle to the module). It also passes the

fixed-length string ExePath to GetModuleFilename. along with an integer

indicating the length of that string.

The result is that Windows places the fully qualified name of the running

instance of DOCMAN.EXE in the string ExePath—so that if, for instance,

DOCMAN.EXE is stored in the WINDOWS directory, ExePath will contain

the string C:\WINDOWS\DOCMAN.EXE.
Next, GetPath starts at the last character in ExePath and works its way

back toward the first, looking for a backslash (\). Once it finds one, it uses

the Left$ function to strip off the characters that follow the backslash, so

that C:\WINDOWS\DOCMAN.EXE is cut down to C:\WINDOWS, yield-

ing the path of the directory in which the DOCMAN.EXE application can

be found.

The TestLength Procedure
TestLength is used by the Keyword and Description edit fields on OpenDM
to ensure that the user hasn't entered more text into the field than DocMan
allows (31 characters in a Keyword field, or 300 characters in the Description

field). The Keyword and Description fields call this routine every time the

user types a character there, so it needed to be efficient and quick in order to

keep up with a fast typist.

Sub TestLength (C As Control, L As Integer)

Select Case Len(C.Text)

Case Is <= L

Exit Sub

Case Else

MsgBox Str$(L) + " characters only! ", MB_I CONEXC LAMAT I ON

,

"Input Error"

LeftText$ = Left$(C.Text, C.SelStart)

RightText$ = Mid$(C.Text . C.SelStart + 1)

LeftText$ = Left$(LeftText$. L Len(RightText$))

C.Text = LeftTextS + RightText$

End Select

End Sub

392 ENHANCING APPLICATIONS — DOCMAN

The routine accepts two parameters: C, which indicates the control that

called the routine, and L, the maximum number of characters the control

will accept.

The routine consists entirely of a Select Case statement that evaluates

the length of the text in control C. If the result of Len(C.Text) is less than or

equal to L, the routine exits immediately. Otherwise, it creates the dialog

box shown below, informing the user that he or she has exceeded the maxi-

mum number of characters allowed for the current control.

-1.
""

Input Error 1

(D 31 characters only!

OK

Next, the routine trims the control's text until it is equal to the maximum
length specified by L. The easy way to do this would be to set C.Text =

Left$(C.Text,L), but that would simply strip extra characters from the end of

the text, which might not be what you want if you went over the limit by

inserting characters into the middle of the text. So instead, the routine does

its trimming backwards from the current insertion point, removing enough

characters from the text to the left of the insertion point to get the total

length of the text under the limit.

First the routine assigns all of the control's text up to the current inser-

tion point to the string LeftText$, using the Left$ function, and all the text to

the right of the insertion point to the string RightText$, using the Mid$ func-

tion. Then it modifies LeftText$ by determining the value of L minus the

length of RightText$ and then trimming LeftText$ to that number of charac-

ters. So if L is 31 and RightText$ contains 10 characters, LeftText$ will be

trimmed to 21 characters. Finally, the current text of the control is replaced

by the combined contents of LeftText$ and RightText$.

The strength of this routine is that it removes only as many characters as

necessary to get the control's text under the limit imposed by L. So if you go

over the control's text-length limit by typing a single character into the con-

trol, the routine will remove just one character. But if you paste a string of

characters into the control, the routine will remove as many characters as

necessary to get the text length under the limit.

That concludes discussion of the routines in DOCMAN.EXE. Now, let's

move to the four Ami Professional macros, which supply the data that gives

DocMan something to do.

Inside Ami Pro 393

Inside Ami Pro

DocMan does not function in a vacuum. You can run it independent of any

other application, but there is no point in doing so because DocMan doesn't

have the power to create new records for its database by itself. To be useful, it

requires the active intervention of another application—in this case Ami Pro.

Ami Pro Macros
I wrote four macros to provide support for DocMan in Ami Pro. The first,

AutoExec, modifies Ami Pros standard menus to allow them to interact

with DocMan. The second, AutoNew, is used to obtain a document title,

description, and four keywords from the user every time a new document is

created. The third macro, Savemac, sends that information to DocMan the

first time a document is saved and every time thereafter that it is saved under

a new name. The fourth macro, DMInfo, is used to activate DocMan from

within Ami Pro.

The AutoExec Macro
AutoExec adds a new menu item, called DocMan, to the AmiPro File menu
and modifies the actions of the Save and Save As... items on the File menu so

that they call the Savemac macro rather than the standard Ami Pro save-file

routine. The modified menu is shown in Figure 14.1 1.

The AutoExec macro is executed automatically every time Ami Pro is run.

FUNCTION AutoExecO

IGNOREKEYBOARD(l)

INSERTMENUITEM (1. " & F i 1

e
" . 1 1 . "Doc&man . .

.

" , "DMINFO. SMM" , "Call DocMan")

CHANGEMENUACTIONd. "&File". "&Save A S". "SAVEMAC . SMM" . "Save current fi 1
e"

)

CHANGEMENUACTIONd. "&File". "Save &As . .
.

" . "SAVEMAC .SMMlSaveWi thNewName()"

.

"Save current file under a new name")

IF GETOPENFI LENAMEK) = "" FILECLOSEO

ENDIF

IGNOREKEYBOARD(0)

END FUNCTION

The macro begins by telling Ami Pro to ignore keyboard input. Then it

uses the INSERTMENUITEM command to add a new menu item labeled

"DocMan" as item 1 1 on Ami Pro's File menu. Ami Pro executes the macro

called DMINFO.SMM when the user chooses the DocMan item, and dis-

plays the text "Call DocMan" in its title bar when the menu selector bar

passes over the DocMan item.

Next the macro uses the CHANGEMENUACTION command twice.

first to change the Save menu item's action so that it calls the Savemac

macro, and then to change Save As... so that it calls the SaveWithNewName
subroutine of the Savemac macro. (Since no subroutine name is specified in

394 ENHANCING APPLICATIONS — DOCMAN

the call to Savemac made by the Save menu item, macro execution will begin

at the first line of the macro, rather than at a named subroutine.)

When Ami Pro is loaded, it automatically opens a new file without exe-

cuting the AutoNew macro. But since AutoNew hasn't run, no DocMan
information has been collected for the open file, so the AutoExec macro's

next step is to close the file. It does so by checking the name of the open file,

using the GETOPENFILENAME function. If the file is unnamed, the

macro issues the FILECLOSE command.
Finally, the macro tells Ami Pro to turn off the IGNOREKEYBOARD

switch, and then exits.

Figure 14.11
The modified Ami

Pro File menu

1M 1 1 *

Body Text Time; New Roman ' 12 C:'>AMIPR0\MACROS Ins m i a

The AutoNew Macro
AutoNew executes automatically every time you use Ami Pro's File New
command to create a new file. (There is no need to tell Ami Pro to look for

this macro—it automatically looks for macros called AutoNew, AutoOpen,

and AutoClose whenever a file is created, opened, or closed.)

The macro begins by displaying the Document Description dialog box,

shown earlier in Figure 14.3. The instructions for drawing this dialog box

appear in the macro following the END FUNCTION command. It was cre-

ated using the dialog box editor in the Ami Professional Macro Developer's

Inside Ami Pro 395

Kit, although the standard Ami Pro dialog box editor would have served as

well for this particular job.

FUNCTION AutoNew(

)

Box=DIAL0GB0X(".\ "DocDes")

IGNOREKEYBOARD(l)

SWITCH BOX

CASE

FILECLOSE ()

EXIT FUNCTION

CASE 1

HOURGLASS(l)

Title=GETDIALOGFIELD$(8001)

Descrip=GETDIALOGFIELD$(8002)

Keyl=GETDIALOGFI ELDS (8003)

Key2=GETDIALOGFIELD$(8004)

Key3=GETDIALOGFIELD$(8005)

Key4=GETDIALOGFIELD$(8006)

DOCINFOCTITLE.DESCRIP.0)

DOC I NFOFI ELDS (Key 1 , Key2 , Key3 . Key4 ,
"

"
,."

"

, "

"
, "

"

)

HOURGLASS(0)

ENDSWITCH

IGNOREKEYBOARD(0)

END FUNCTION

Once the dialog box has been closed, the macro tells Ami Pro to ignore

user input. Then it evaluates the result of the dialog box, which was assigned

to the variable Box. If the user pressed the Cancel button. Box will be equal

to 0, so the macro closes the newly created document and exits. Otherwise, it

sets the mouse pointer to an hourglass to indicate that it is busy, and then

uses the GETDIALOGFIELD$ function to obtain the data the user typed

into the Title, Description, and Keyword fields on the dialog box.

The variables to which the macro assigns this data are temporary and

therefore cease to exist as soon as the AutoNew macro ends. This was a

problem, since I didn't want to save the information in DocMan until the doc-

ument was saved. Fortunately. Ami Pro provided an easy solution: a stan-

dard information sheet (Doc Info) for each document, which includes a 120-

character Description field, a 300-character Keywords field, and eight 31-

character Doc Info fields.

Ami Pro doesn't do much with this information, providing no way to

search for documents on the basis of their keywords or description—hence

the need for DocMan. But I was able to use the capacities of these fields as a

guide in planning DocMan's field lengths, so that the 300-character capacity

of the Keywords field, for instance, determined the 300-character limit o\'

DocMan's Description field. I used the DOCINFO and DOCINFO FIELDS

396 ENHANCING APPLICATIONS — DOCM AN

commands to automatically stuff the data obtained from the Document
Description dialog box into fields on the Doc Info sheet for safekeeping.

Finally, the macro restores the standard cursor, tells Ami Pro to start pay-

ing attention to the keyboard again, and exits.

The remaining text in the AutoNew macro is the code for creating the

Document Description dialog box generated by the dialog box editor. It isn't

intended to be comprehensible to anyone except Ami Pro, and I couldn't

even begin to explain the significance of most of its code, other than to say

that it creates the dialog box shown in Figure 14.3. But here it is anyway, for

the morbidly curious:

DIALOG DOCDES

-2134900736 11 24 24 264 167

FONT 10 "SYSTEM"

3 12 18 10 1001 1342177280 "STATIC" "&Title:
"

25 12 198 12 8001 1350631552 "EDIT

3 54 20 10 1004 1342177280 "STATIC" "&Desc:"

25 35 233 71 8002 1350631428 "EDIT

26 109 231 44 11 1342177287 "BUTTO

45 121 77 12 8003 1350631552 "EDIT

158 122 76 12 8004 1350631552 "EDIT

45 136 76 12 8005 1350631552 "EDIT

158 137 77 12 8006 1350631552 "EDIT

230 3 29 11 1 1342242817 "BUTTON" "Okay"

230 19 29 11 2 1342242816 "BUTTON" "Cancel"

END DIALOG

Document Description"

"&Keywords"
ii ii ti

The Savemac Macro
Savemac, or its subfunction SaveWithNewName, is called whenever you

save a file.

FUNCTION Savemac()

IGNOREKEYBOARD(l)

Fname=GETDOCINFO$(DDfilename)

IF MID$(Fname,2,8) "Untitled" THEN CALL SaveWi thNewName()

ELSE SV=SAVE

ENDIF

IGNOREKEYBOARD(0)

END FUNCTION

The Savemac macro begins by telling Ami Pro to ignore keyboard input.

Then it obtains the name of the file being saved, using the GETDOCINFO$
command, and checks to see whether the file is untitled. If so, the macro calls

the SaveWithNewName function. Otherwise it calls the standard Ami Pro

SAVH function to save the file under its current name, then exits.

Inside Ami Pro 397

FUNCTION SaveWithNewNameO
SV=SAVEAS

IF SV<1 THEN EXIT FUNCTION

ENDIF

Path=GETDOCINFO$(Ddpath)

Appname="ami pro"

Fname=GETDOCINFO$(DDfilename)

Fname=STRCAT$(Path, "\", Fname)

Fname=LCASE$(Fname)

Ti tl e=GETD0CINF0$ (DDDescription)

Keyl=GETDOCINFO$(DDUSERl)

Key2=GETD0CINF0$(DDUSER2)

Key3=GETD0CINF0$(DDUSER3)

Key4=GETD0CINF0$(DDUSER4)

Descrip=GETDOCINFOKEYWORDS$()

The SaveWithNewName function calls the standard Ami Pro SAVEAS
function, which obtains the name the user wants to use for the file and saves

it under that name if the user doesn't select the Cancel button on the stan-

dard Save As dialog box. Then SaveWithNewName examines the result of

the Save function and exits if it is less than 1 (which would indicate that the

user canceled the operation). Otherwise, it extracts the data it wants to send

to DocMan from the documents Doc Info sheet, using the GETDOCINFO$
command, and adds the documents path to the document-name variable

Fname.

Channel I D=DDE I N I T I ATE ("DOCMAN" "DOCFORM")

IF (0 = ChannellD)

EXEC ("DOCMAN.EXE". "")

TIME1=N0W() + 3

R=N0W(

)

WHILE R < TIME1

R = N0W()

WEND

Channel I D=DDE I N I T I ATE ("DOCMAN" "DOCFORM")

IF (0 = Channel ID)

MESSAGE ("CAN'T ESTABLISH LINK TO DOCMAN!")

EXIT FUNCTION

ENDIF

ENDIF

Next, the macro attempts to establish a DDE conversation with Doc-

Man using the DDEINITIATE command. If the attempt is unsuccessful (0 =

ChannellD). the macro uses the EXEC command to attempt to launch

DOCMAN.EXE (which must be on the DOS path lor this to work). Then it

398 ENHANCING APPLICATIONS - DOCM AN

waits three seconds, using Ami Pro's NOW function and a WHILE loop to

create the delay, and then tries again to establish the DDE link. If it can't, it

creates a message box saying so and then exits.

DDEEXECUTE(ChannelID

DDEEXECUTE(ChannelID

DDEEXECUTECChannel ID

DDEEXECUTECChannel ID

DDEEXECUTE(Channel ID

DDEEXECUTE(ChannelID

DDEEXECUTE(Channel ID

DDEEXECUTECChannel ID

DDEEXECUTE(ChannelID

"titl

"appl

"file

"desc

"keyl

"key2={Key2

"key3={Key3

"key4=(Key4

"show")

{Title}")

I Appname

IFname}")

I Desc rip 1

(Keyl)")

)")

I")

1")

I")

DDETERMINATE

END FUNCTION

(Channel ID)

If either attempt to create a DDE link is successful, Ami Pro issues a

series of DDEEXECUTE commands to send DocMan the information it

needs about the document being saved, including its title, description, and

keywords. The Link_Execute routine on DocMan's OpenDM form inter-

cepts the information and places it in a new record, as described above.

The SaveWithNewName macro terminates the DDEchannel and exits

after sending the command string "show", which OpenDM's Link_Execute

routine interprets as an instruction to make DocMan visible.

The DM Info Macro
The final Ami Pro macro, DMInfo, is called when the user selects the Doc-

Man item that the AutoExec macro added to Ami Pro's File menu.

FUNCTION DMInfo()

A=FILECHANGED(0,0)

IF A=l THEN SAVE()

ENDIF

Channel I D=DDE I N I T I ATE ("DOCMAN" "DOCFORM")

IF (0 = Channel ID)

EXEC ("DOCMAN.EXE", "")

TIME1=N0W() + 1

R=N0W()

WHILE R < TIME1

R = N0W()

WEND

Channel ID=DDEINIT IATE ("DOCMAN" "DOCFORM")

IF (0 = Channel ID)

MESSAGE ("Can't Find Docman!")

EXIT FUNCTION

Wrapping Up DocMan 399

ENDIF

ENDIF

DDEEXECUTE (Channel ID, "show")

DDETERMINATE (ChannellD)

END FUNCTION

DMInfo starts by determining whether the current document has been

changed since it was last saved. If so, it saves it automatically. Then it uses

the same techniques as SaveWithNewName to establish a DDE conversation

with DocMan and, once it has DocMan's attention, sends it the "show" com-

mand (to which OpenDM's Link_Execute routine responds by making Doc-

Man visible). Finally, its job done, the DMInfo macro terminates the DDE
channel and exits.

Wrapping Up DocMan
That's it. We've made it through every line of code in the DOCMAN.EXE
application, and every line of Ami Pro macro code. But, of course, that's not

the whole DocMan story.

As I said at the beginning of this chapter, DocMan was designed from

the beginning to be extensible for use with applications other than Ami Pro.

Although I may never get around to extending it to work with any other

applications, you're more than welcome to take a crack at it—as long as you

don't attempt to sell the finished product.

Here are the steps you'll have to take to modify DocMan for use with

one or more additional applications:

1. Turn the RunProg$ and ClassName$ string variables in GLOBCODE-
.BAS into arrays, and add the executable file name and class name of

any application that you want to use with DocMan to the array.

2. Modify the GetFile routine in GLOBCODE.BAS to make it examine

the owner field in Recordvar to determine which application created the

document and then have it choose the correct executable file name and

class name from the arrays created in step 1 tor use with that document.

3. Modify the NewFile routine in GLOBCODE.BAS to allow it to find out

what kind of document you want to create.

4. Modify the Titles.Mousemove routine in OpenDM to have it load the

appropriate application's icon from disk when you drag a document.

You could, for instance, have it call GetFile to determine which applica-

tion created the document, and then use the Extraction function from

the Windows 3.1 library SHELL.DLL to obtain that application's icon.

400 ENHANCING APPLICATIONS — DOCMAN

5. (This is the biggie.) Write macros in the new application's macro lan-

guage that duplicate the functions of the Ami Pro macros in the current

version of DocMan. The code will be different and you'll undoubtedly

have to employ different methods, as well, but the result you want to

achieve is the same: to have the application obtain the necessary infor-

mation from the user and send it to DocMan via the DDE channel,

using the command prefixes used by the SaveWithNewName macro

(titl=, file=, show, and so on) to identify the data as it is sent through the

DDE channel.

These steps outline but one of the many ways in which DocMan could

be extended. Another method might be to use a pop-up dialog box created

by DocMan to obtain the document title, description, and keywords. Doing

so would reduce the amount of application macro programming that would

be required to implement support for DocMan, but would also involve some

major changes in DocMans structure. In any case, no matter what you

choose to do with it, DocMan should provide you with some good ideas

about ways to extend standard applications and integrate them with your cus-

tom programs.

CHAPTER

Communicating with

Host Systems

—

M.M.M.: the MCI

Mail Manager

Selecting the

Development Tool

M.M.M. 's Capabilities

How M.M.M. Works

Exploring the

A UTOMCI.DCP Script

Exploring TM.DCP

Exploring EMAIL.DC

P

Exploring PM.DCP

Exploring

ONLINE.DCP

Wrapping Up M. M. M.

Communicating with Host Systems 403

.M.M.: THE MCI MAIL MANAGER IS A COMPLETE. WINDOWS-BASED

front end for the MCI Mail electronic mail service. Developed

entirely in DynaComm s script language, it provides an auto-

mated solution to the tasks of creating, sending, receiving, and

organizing MCI mail messages. Among its more powerful features are dual

off-line address directories, support for up to ten different MCI accounts,

and full off-line composition and editing of messages.

M.M.M. was developed out of my frustration with the standard MCI
Mail user interface. Over the years I had grown dependent on MCI Mail as a

convenient means of corresponding with dozens of professional and personal

contacts across the country. But I had also grown increasingly intolerant of

the standard MCI Mail user interface—including its obscure command struc-

ture and its primitive line editor for creating messages. There was an obvious

need for a better, preferably Windows-based, interface for the mail service.

In addition, the more dependent I became on MCI Mail as a communica-

tions medium, the more I needed a way to organize and store the messages I

had received and sent. Increasingly, the mail service became an important

element of my ongoing projects, so it was no longer enough to simply type

and read messages on line, and to then have them disappear into the ether

once the on-line session was complete.

Consequently, as I set out to design and build a Windows interface for

MCI Mail, I had a broad set of design goals: to simplify and automate the

communications process, to escape the limitations of MCI's on-line editor,

and to simplify the process of organizing the messages I sent and received.

Improving on an Existing Model

I also had a model to work from—not necessarily a good one. but one that

on some level managed to achieve most of these goals in the character-mode

DOS environment—Lotus Express.

Express is an unusual case. In many ways it is the best program avail-

able for what it does, and yet it remains a poor solution. It completely auto-

mates the process of sending and receiving MCI Mail messages, and it

provides a good facility for storing messages off line. Moreover, because it

can function as a memory-resident program, it can communicate with MCI
in the background while you work on other applications. Nevertheless,

every Express user I've ever talked to hates the program, condemning it as a

slow, cumbersome memory hog with a user interface nearly as intractable as

that of MCI Mail.

So, as I set out to build my MCI Mail application tor Windows. I strove

to duplicate the facilities and functions provided by Express, while taking

advantage of both Windows' memory management capabilities and ils user

interface to avoid duplicating the DOS program's warts.

404 COMMUNICATING WITH HOST SYSTEMS

Selecting the Development Tool

I started developing the initial version of M.M.M. quite some time ago—sev-

eral months before the release of Windows 3.0. That timing simplified the

process of selecting a development tool, since most of the high-end tools that

are discussed in this book were not yet available. Toolbook and Spinnaker

Plus wouldn't be released for several months, and products like Visual

BASIC, Realizer, and Turbo Pascal for Windows were then more than a year

from release.

Thus, my choices soon boiled down to the macro languages of two Win-

dows asynchronous communications programs: Crosstalk Communications'

Crosstalk for Windows and Futuresoft Engineering's DynaComm. Not sur-

prisingly, both languages were more than up to the task of automating the

actual on-line session. An MCI Mail session really isn't that complex—you

send a string of text to MCI, wait for its response, and then send the next

string. Any macro language with even a modicum of decision-making capa-

bility (in the form of IF-THEN statements, WHILE loops, and so on) could

handle that task.

The difference between the two languages lay in the capabilities they

had that could be incorporated in the off-line portion of the application.

DynaComm's script language offered the ability to create complex, dynamic

dialog boxes and custom menus for interacting with the user, and included

functions that could be used to build structured, disk-based tables to rapidly

access lists of messages, address directories, and other information. In con-

trast, Crosstalk for Windows fell short in terms of both user interface and

data-handling capabilities. Since I hoped to take advantage of the Windows

interface, and because the ability to organize messages off line was of prime

importance to the project, DynaComm was the obvious choice.

Other Possible Approaches

Today the range of high-level tools available for creating a project of this

scope is much broader. Nevertheless, if I were starting the project over again

today, I would probably still end up building it in DynaComm. Its macro lan-

guage is powerful enough for nearly any communications-related task, and

as noted, it provides remarkably powerful capabilities in the areas of user-

interface design and data handling. Certainly it is hard to imagine that a gen-

eral-purpose language would allow you to develop communications-based

applications as quickly or easily as DynaComm does.

On the other hand, there are reasons why you might not want to use

DynaComm— or any script language—for a project like this. For instance, if

you were developing an application for a large number of users, it might

make sense to develop it using a royalty-free high-level language such as

Visual BASIC or Turbo Pascal for Windows so that you wouldn't have to

M.M.M.'s Capabilities 405

purchase a copy of DynaComm for each user. Doing so would be a more

complex process than developing the application in a script language such as

DynaComms, because of the lack of communications-specific commands in

a general-purpose language. However, you could overcome at least part of

that complexity by making use of a commercial dynamic link library, such as

the MicroHelp Communications Library, to provide those functions. The

one-time fee for the DLL, if any, would soon pay for itself as you distributed

the application.

In addition, a more general-purpose tool than DynaComm would

undoubtedly provide even more control over the user interface and appear-

ance of your application. For instance, although DynaComm allows you to

create complex dialog boxes and custom menus, it does not allow you to

place user-interface controls such as list boxes or buttons on its main win-

dow—they can only appear within dialog boxes. This, combined with Dyna-

Comms inability to display more than one dialog box at a time, significantly

restricts your user-interface design options. Since tools such as Turbo Pascal

and Visual BASIC don't suffer from these limitations, they allow you to

develop more creative interfaces than is possible with a script language such

as DynaComms.

M.M.M.'s Capabilities

M.M.M. has three major purposes: to simplify the creation and editing of

MCI Mail messages, to automate the process of transmitting and receiving

those messages, and to organize and manage messages that have already

been sent or received.

Creating and Editing Messages

In order to simplify the citation and editing of messages, M.M.M. provides a

full-screen editor. The editor offers the standard Windows cut. copy, and

paste functions and other common text-editing capabilities, including word

wrap, the ability to print some or all of the current document and to merge

text files into the current document, and a search-and-replace function.

In addition, M.M.M. simplifies the process of creating the message's enve-

lope—the addressee, subject, and special handling options for the message.

It provides two point-and-click address books for storing and retrieving the

names and MCI identifiers (IDs) of the people with whom you correspond.

(The two lists, named Public and Private, are designed to be used as business

(shared) and personal address books, respectively.) You can add an

addressee to the message's To: or cc: list simply by picking the person's name
from either address book.

406 COMMUNICATING WITH HOST SYSTEMS

M.M.M. also provides simple check-box controls for setting the handling

options for a message. M.M.M. supports three of the most common MCI
handling options: 4Hour, which assigns priority status to the message, speed-

ing its delivery; DOC, which "hides" the list of addresses from recipients;

and Receipt, which instructs MCI Mail to notify you when the message has

been received.

All of M.M.M.'s message-creation and editing routines are used off line.

As each message is created, it is added to your Outbox folder, a list of the

messages that are to be delivered the next time M.M.M. connects to MCI
Mail. (See "Organizing and Managing Messages," below.)

Transmitting and Receiving Messages

M.M.M. offers two ways to transmit and receive messages: Send/Recv and

AutoMCI.
Send/Recv is designed to be used when you want to either transmit mes-

sages immediately or know immediately what messages are waiting for you.

In Send/Recv mode, M.M.M. signs on to MCI, transmits all the messages in

your Outbox, retrieves any messages that are waiting for you, and then signs

off, presenting you with a dialog box that tells you how many messages were

transmitted and received. It also lets you know whether any messages could

not be transmitted due to an addressing error, and adds those messages to an

Unsent list, enabling you to correct the errors and send the messages later.

AutoMCI mode, on the other hand, is designed to operate in the back-

ground, checking your on-line mailbox at regular intervals, sending any mes-

sages in your Outbox and retrieving any messages that are waiting for you

on line. It continues working this way, without interfering with your use of

other Windows applications, until you tell it to stop doing so.

M.M.M. also provides a third communications mode, called Terminal,

which logs you onto MCI Mail and then allows you to interact with MCI in a

standard terminal session. The script's address-book editing routines are

available in this mode, allowing you to use MCI's on-line facilities to look up

someone's correct account number and add that information to your address

book. None of M.M.M.'s other automated features are available in this

mode, however.

Organizing and Managing Messages

Finally, M.M.M. provides a number of facilities designed to help you manage

the messages you have sent and received. These include a total of eight mes-

sage lists, or folders.

The first five message folders are used for specific purposes by the M.M.M.

program. They are Inbox, which is used to store messages that have been

received; Sent, used to store messages that have been transmitted; Outbox,

How M.M.M. Works 407

which stores messages waiting for transmission; Unsent, for messages that can't

be sent due to an error in their address; and Drafts, used to store messages in

progress—ones you are not yet ready to transmit.

Another three message folders are designed to help you organize your

incoming and outgoing messages more efficiently than is possible with the

Inbox and Sent folders alone. Their default names are UD1, UD2, and UD3,

but you can rename them at will ("UD" stands for user-definable). You can

move messages from your Sent or Inbox folder into any of the three user-

definable folders, which allows you to put all the messages pertaining to a

particular project or topic in a single folder, providing an archival record of

all the correspondence on that topic.

In addition to giving you the ability to move messages between folders,

M.M.M. allows you to print messages, delete them, or save them under a dif-

ferent name. It also simplifies the processes of forwarding a message to

another MCI user and replying to messages by providing single-click com-

mand buttons for both functions.

Finally, to simplify the use of M.M.M. itself, the script includes a com-

pletely automated setup routine, which guides you through the process of set-

ting up M.M.M. for use with your account.

How M.M.M. Works
The M.M.M. application consists of five modules: AutoMCI, TM (To Mod-
ule), Email, PM (Phonebook Module), and Online. The source file for each

has the extension .DCP (as in AUTOMCI.DCP), and the compiled, execut-

able file for each has the extension .DCT (as in AUTOMCI. DCT). The lat-

ter four modules serve as support for the AutoMCI module, and can only be

executed by that module. (In fact, if you attempt to launch any of the sup-

port modules using DynaComm s Script Execute command, the support mod-

ule will simply launch AutoMCI and then unload itself from memory.)

The first time you launch AutoMCI. the script will take you through the

automated setup routine, which presents a series of dialog boxes requesting

various information about your MCI account, including your logon name
and password, the names you'd like to assign to the three user-definable mes-

sage folders, and the location where the script should look for your Public

address book. (Your Private address book is automatically stored in your

\DYNACOMM\DAT directory, but your Public address book may be

located on a network drive.)

Once you've finished entering thai information, M.M.M. restarts, pre-

senting you with its standard opening screen, shown in Figure 15.1. This dia-

log box gives you the choice of going to the Mailboxes screen (from which

you can view and manage mail messages) or connecting to MCI Mail using

either Scnd/Recv or AutoMCI mode.

408 COMMUNICATING WITH HOST SYSTEMS

Figure 15.1
The standard

M.M.M. welcome

message

M.M.M.

M.M.M.
t&e, W&V Ifold m*<t<x<?e>i ft* Ttkudam, 3. /

Written by Paul Bonner.

Version 3.1,©1990, 1991 by Paul Bonner.

dP
Send/Recy AutoMCI Mailboxes

The Mailboxes Screen

The Mailboxes screen, shown in Figure 15.2, is a large dialog box that pro-

vides access to, and tools for managing, messages in any of M.M.M.'s eight

message folders.

The central feature of the Mailboxes screen is a large list box, which pre-

sents the messages in the currently selected mail folder and indicates

whether each one was incoming or outgoing, who it was sent to or received

from, its subject, the time and date it was received, and its size.

Within the Inbox folder, each message displays the name of its sender,

whereas the Outbox, Drafts, Sent, and Unsent folders display the name of

the addressee. In the three user-definable folders, the name displayed will be

that of the message's sender or recipient, as appropriate; an incoming or out-

going indicator distinguishes between the two types of messages. Incoming

messages are marked with a < before the sender's name, and outgoing mes-

sages have a > before the recipient's name.

How M.M.M. Works 409

Figure 15.2
The Mailboxes

screen

M.M.M. EH

Account: Paul Bonner Sort by: None View: M.M.M.

Online
• i:.i mi ir , Todd
<Jones, Robert
>Greer, Stephen
>Mitrano, Tom
<Bonner, Paul
<Peyton, Bill
<Dening, flndy

>Dening, Andy
<M. Beal Jr., Ernes
<Meester, Alex
>Meester, Alex
<Delloney, Chris
<Gemmiti, Gus

Hi!!!
MMM
Did it work?
binary transfers
From ton nitrano re mmm
MMM
MMM Uersion 2.0
MMM Uersion 2.0
I'MII.II IJIII'I

DVNftCOMM SCRIPT
DVNftCOMM SCRIPT
M.M.M.
MMM comments.

Jemmiti, Gus
<M. Oppenheiner, Ga

MMM comments.
PEN Newsletter U34

09/0i*/90

09/20/90
09/27/90
11/01/90
11/01/90
12/10/90
12/1V90
12/14/90
12/03/90
12/28/90
01/02/91
0V2V91

3538 06/10/91
3538 06/10/91
23617 10/14/91

Automci

Terminal

Offline

SetUp

Phonebook

Statistics

Minimize

Read yew Message

Move Export Forward Mark Del Print Quit

Send/Recy

J

Above the central list box are two drop-down combo boxes. The first,

labeled "Sort by:", presents four options for sorting the messages in the cur-

rent folder, None, Name, Subject, and Date, as shown here:

Sort by: None

None
Name

Ddte

Selecting None leaves the messages in their current order; Name sorts

the messages by recipient or sender; Subject sorts them by subject; and Date

sorts them by the date they were sent or received. (Note that Sort by Name
will not sort correctly if senders' or recipients' names include a middle initial.

To avoid this problem with recipients' names, enter the names in the address

books without the middle initial, and then always use the address book entry

to address messages, rather than using the Answer button.)

410 COMMUNICATING WITH HOST SYSTEMS

The second drop-down combo box, labeled "View:", presents a list of

the eight mail folders, as shown here:

View: INBOX

INBOX
SENT
OUTBOX
DRAFTS
UNSENT
bookstuf

Cyber

Selecting any folder on the list immediately loads the list of the messages

in that folder into the central list box.

That list box is surrounded by three groups of buttons: The one at the

upper-right lists on-line options; the group below lists off-line options; and

the buttons that run horizontally below the list box show message-handling

options.

Online Options

There are three on-line option buttons: Send/Recv, AutoMCI, and Terminal.

Their labels and actions correspond to the three methods M.M.M. provides

for connecting to MCI Mail, as explained in "Transmitting and Receiving

Messages," above.

Offline Options

The Offline option buttons are labeled "Set Up," "Phonebook," "Statistics,"

and "Minimize." Pressing the Set Up button takes you to a screen that offers

various program setup and maintenance options, as detailed in "The Setup

Menu," below. The Phonebook button loads the PM.DCP file, to allow you

to add or edit names in one or both address books. The Statistics option

opens a dialog box that displays the number of messages in each mail folder

and the amount of unused storage space on the disk on which M.M.M. is

installed, as shown in Figure 15.3.

The final off-line option, Minimize, is used to minimize the DynaComm/-
M.M.M. window. Normally, of course, applications don't have minimize but-

tons—the user is expected to select the Minimize option from the applica-

tion's Control menu or the Minimize arrow at the upper-right corner of the

application's window. However, since DynaComm disables keyboard-short-

cut access to its menus while a custom dialog box is displayed on screen, I

added the Minimize button to the Mailboxes screen for the convenience of

anyone using M.M.M. without a mouse. (You can toggle the input focus

How M.M.M. Works 411

between the dialog box and the menu by pressing AU-F6, but that's the kind

of arcane keystroke combination that is all too easy to forget.)

Figure 15.3
The Statistics

dialog box

Active account: Paul Bonner

Messages

INBOX: 20 UNSENT:
SENT: 36 bookstuf: 31

OUTBOX: M.M.M : 47

DRAFTS: Cyber: 10

Disk space: 4980736

Message-Handling Options

M.M.M.'s eight message-handling options appear in two rows of buttons at

the bottom of the central list box. The top row has two large buttons: Read,

which is used to open the message that is highlighted in the list box; and New
Message, which loads the TM module, enabling you to address and compose

a new message. The bottom row holds the remaining six, smaller buttons:

Answer, which is used to address a reply to the current message; Move,

which moves the current message to a different folder; Export, used to save

the current message to disk under a different name; Forward, which for-

wards the message to another person; Mark Del., which marks the message

for deletion; and Print, used for printing messages.

The Read button is the default button for the dialog box. Thus, anytime

you want to read a message you simply move the list box selection bar until

that message is highlighted, and press Enter to open the message.

When you select the Read command, the current message is loaded into

DynaComm s memo editor as a read-only file. The editor, which the script

fits with a custom menu bar, allows you to read the message, search it for a

specified string, print the entire message or a selected passage, and copy seg-

ments of the message to the Windows Clipboard.

412 COMMUNICATING WITH HOST SYSTEMS

The Set Up Menu
When you select the button labeled "Set Up" on the Mailboxes screen, the

dialog box disappears, and the script displays a custom menu offering access

to various program setup and utility options, as shown here:

M.M.M.

| M.M.M. Account Communications

Restore backups

Return to mailbox screen

Exit to Dynacomm

About M.M.M....

These options allow you to restore backup versions of mailbox lists

(M.M.M. creates a backup whenever it modifies a mailbox list), create mail-

boxes to work with additional accounts (M.M.M. supports up to ten MCI
accounts), switch to a different account, change the names of your user-

defined mailboxes, and modify various modem and communications settings,

such as baud rate and parity.

The Public Phonebook Location

The Set Up menu also allows you to specify the location of your Public

phonebook. This setting is important because it determines whether you

have the right to modify the Public phonebook. If the Public phonebook is

located in the standard DynaComm data directory, along with your Private

phonebook, then you are assumed to have administrator privileges. This

means you can modify your Public phonebook, as well as your Private one,

using the Phonebook Management dialog box (see below). If, on the other

hand, the Public phonebook is located in a different directory, the assump-

tion is made that you are accessing a shared phonebook on a network, so

you are not given the option to modify it.

Thus, if you are a network administrator responsible for maintaining a

Public phonebook for use by everyone on the network, you would make
modifications to it in your standard DynaComm data directory, and then

copy it to a shared disk drive for read-only access by other users.

The Phonebook Management Routine

The Phonebook Management dialog box can be accessed in three ways: by

pressing the Phonebook button on the main Mailboxes screen, by pressing a

button that bears the same label on the dialog box used to address messages,

or by selecting the function key button labeled "Phonebook" during an on-

line terminal session.

The dialog box that appears after any of those events is shown in Fig-

ure 1 5.4. It offers you the ability to add, delete, or edit names in your Private

How M.M.M. Works 413

phonebook and in the Public phonebook if it is located in the DynaComm
data directory, as explained above.

Figure 15.4
The Phonebook

Management dialog

box

Phonebook Management

Phonebook ©Private r>

~E*H
gone]

Public

Dauis, John
Dauis-Wright , Ryan

t

Dayton Associates,
Deuoney, Chris
Dickinson, John
Dockery, Wayne
Doerr, John
Dougherty, Brian

Each entry in either phonebook can consist of up to four lines of infor-

mation. Only the first two are used for MCI addresses: the first line holds the

full name of the account holder, and the second line holds the person's

account number, as shown in Figure 15.5. For EMS addresses ("EMS" stands

for electronic mail service, and indicates that the addressee has an account on

a mail service that interconnects with MCI) all four lines are used: The first

holds the addressees full name, the second holds the name of the EMS ser-

vice, the third shows the EMS service's MCI account number, and the fourth

holds the user's mailbox address on the EMS service.

Figure 15.5
Editing an MCI

subscriber address

Edit Paul Bonner

Name:

MCI ID:

EMS 1:

EMS 2:

MCI It): 378 B3/6

Okay IHI^A

The key to the address book's value is thai it will eliminate most MCI
addressing errors. The biggest problem with automating the sending of MCI
messages is eliminating the need lor the script to make the kind ofjudgment

calls that are so simple lor a human user and so difficult lor a compute!.

414 COMMUNICATING WITH HOST SYSTEMS

For instance, say that you want to send a message to your friend Thomas
Smith. You sign on to MCI and type CR (for create) and enter Thomas
Smith at the "To:" prompt. Lo and behold, MCI replies by presenting you
with the message "There is more than one:" and listing the names and

account numbers of all 5 or 10 or 25 subscribers named Thomas Smith, along

with their business affiliations, as shown in Figure 15.6. It then asks you to

identify which of those names listed was the person with whom you wished

to correspond.

Figure 15.6
MCl's "There is

more than one:"

error message

If you know that Thomas Smith works for XYZ Corporation, that's an

easy call; you simply look for the Thomas Smith listing that identifies XYZ
as his business affiliation. But if an automated script doesn't "know" about

XYZ, it has no way of identifying which Thomas Smith you meant, so it has

to cancel the message-creation operation and add the message to your

Unsent folder.

The address book helps solve this problem by encouraging you to enter

each person's unique MCI account number. You can determine a person's

account number by examining any message from that person (the sender's

account number appears immediately after the sender's name in the message

text) or by experimenting on line using the Create command. For instance,

you could find the MCI account number of Thomas Smith of XYZ Corpora-

tion from the list of all Thomas Smiths, as described above.

How M.M.M. Works 415

Message-Composition Routines

Anytime you press the New Message. Answer, or Forward button on the

Mailboxes screen, the script loads the TM module. This module presents you

with a dialog box through which you enter all of the message s address and

handling information, and then opens the message editor, in which you com-

pose the message.

The message-addressing dialog box is a complex construct, as Figure 15.7

shows. The list box on the left lists all the names in either the Public or Pri-

vate phonebook, depending on which of the radio buttons above the list box

has been selected. Double-clicking on any name adds that name and its full

MCI or EMS address to either the To list or cc list for the message, depending

on which of those radio buttons has been selected. Alternately, you can type a

name into the field labeled "Name:" and then press the Add button to add

that name to the selected list.

Figure 15.7
The message-

addressing dialog

box

Edit Envelope

<§> Public O Private

Richards, Katie
Ross, Randy
Seymour, Jin
Shipley, Chris
Steinberg, Don
Stinson, Craig
Taylor, Wendy
Tjelle, Linda
'.'in Kirk, Doug
Wallace, Peggy
Ward, Patrick
Watts, Janice

Phonebook

©
Cancel Message

— Name: Add

® To list O cc list

1 £ut name

Subject:

Q Receipt

D Priority Delivery

ED Mask I ist Members Done

The other elements work more simply. You enter the message's subject in

the field labeled "Subject:*', and specif) message-handling options by select-

ing the appropriate cheek boxes. Pressing the icon button labeled "Done"

opens up the message editor, and pressing the icon button labeled "Cancel

message" cancels the message and returns you to the Mailboxes screen.

The Message Editor menu used by the TM module is similar to that

accessed via the Read button on the Mailboxes screen, but it includes options

416 COMMUNICATING WITH HOST SYSTEMS

for saving messages, cutting and pasting data, searching for and replacing

data, and merging text files into the message, as shown in Figure 15.8.

Figure 15.8 File | Search

TheM.M.M. =~]~ Undo AH+Bksp

Message Editor

Dear

I lo

Cut Shift+Del

Copy

Paste

Clear

Print

Select All

Ctrl+lns

Shift+lns

Del

Set Margin...

Set Tab Width...

Reformat

Align

Center

Merge...

as: Upcoming speaking engagement

on the 17th to discuss

That pretty much covers the basic capabilities and operations of M.M.M.
Now let's look at how they are implemented in the five scripts that compose

the M.M.M. application.

Exploring the AUTOMCI.DCP Script

AUTOMCI.DCP is a huge script, consisting of nearly 33k of source code

and dozens of subroutines. Each subroutine tends be fairly short, making it

relatively easy to understand the purpose of each. But at the same time, the

use of dozens of subroutines, combined with the event-driven nature of Win-

dows applications in general, means the flow of action in the script is not a

simple A-to-Z affair.

For the programmer, this difficulty is more than offset by the benefits to

be gained from modularity, but for the casual reader, some perseverance

may be required.

Initializing Global Settings and Variables

The AutoMCI script begins by executing a long series of statements that ini-

tialize various global variables and establish a variety of settings that control

the program's operation and appearance.

The first few lines turn the standard arrow-shaped mouse pointer into a

hourglass (to indicate that the program is working), cancel the standard

OynaC'omm menu (by creating an empty menu with the MENU and MENU
END commands), set DynaComm's window title to "M.M.M.", and set the

Exploring the AUTOMCI.DCP Script 417

title to be used for the DynaComm terminal window to "The MCI Mail Man-

ager". Lines beginning with a semicolon are comments.

;AUTOMCI.DCT version 3.1 by Paul Bonner

SET POINTER WATCH

MENU

MENU END

TITLE "M.M.M."

SET TERMTITLE "The MCI Mail Manager"

Setting Up Directories

Next, the script initializes three directory pointers: $Data_Dir, in which it

will store universal data files; $Mem_Dir, in which it will store messages and

data files for individual mail boxes; and DIRECTORY SETTINGS, a Dyna-

Comm global variable used to store the location of the settings file, which in

turn stores communications parameters and other information for use in on-

line sessions.

The script uses the DynaComm SYSTEM command to determine its

default Data and Task directories (the directories in which DynaComm
looks for data files and script files until you tell it to look elsewhere), setting

both $Data_Dir and DIRECTORY SETTINGS to the default data directory

and $Mem_Dir to the default Task directory.

. ***** set up directories

SET $Data_Dir SYSTEM(0x0F01
, "DATA")

SET $Mem_Dir SYSTEM(0x0F01 , "TASK")

SET DIRECTORY SETTINGS $Data_Dir

Once that has been done, the script checks to see whether the settings

file it uses, MAILSETDCS, is already in memory, which would indicate that

M.M.M. is returning from another module. It does this by checking the value

of the @S7 variable, one of eight global variables that are found in all Dyna-

Comm settings files.

A few lines further down, the script will set the value of C^S7 to a string

composed of "MMM" concatenated with the current data directory. Those

values are retained when other M.M.M. modules are executed, but are dis-

carded when you quit M.M.M. So if the first three characters in ("S7 are

"MMM", then the script knows that MAILSET.DCS is already in memory
and holds valid data. Thus, it changes the current data directory to the direc-

tory specified in (p S7 following the letters "MMM". and then jumps ahead to

a procedure called Alt_Start. skipping the process of loading the settings tile

from disk.

II the first three characters in @S7 don't equal "MMM". the script hides

the terminal session screen and on-screen function keys and loads

MAILSETDCS.

418 COMMUNICATING WITH HOST SYSTEMS

IF SUBSTR(@S7.1,3)="MMM" SET %I LENGTH(@S7), SET $Data_Dir

SUBSTR(@S7,4,%I-3), SET DIRECTORY DATA $Data_Dir, GOTO

Alt_Start

SCREEN HIDE

LOAD "MAILSET.DCS"

FKEYS HIDE

Initializing Global Variables

In the Alt_Start routine, the script initializes a series of global variable

names that are used to hold the names of up to ten MCI accounts

($Accountl through $AccountlO), the number of accounts in use

(% AccountCounter), the user's MCI account name and password ($Name
and $Pass), the title of the active mail folder ($Mailbox), and the titles of the

three user-definable mail folders for the active account ($Ms6, $Ms7, and

$Ms8).

*Alt_Start

SET $Accountl ""

SET $Account2 ""

SET $Account3 ""

SET $Account4 ""

SET $Account5 ""

SET $Account6 ""

SET $Account7 ""

SET $Account8 ""

SET $Account9 ""

SET $Accountl0 ""

SET %AccountCounter

SET $Account ""

SET $Name ""

SET $Pass ""

SET $Mailbox ""

SET $Ms6
""

SET $Ms7
""

SET $Ms8 ""

The above routine merely initializes all the string variables to empty

strings, and % AccountCounter to zero. Later it will branch to subroutines

that assign real values to the variables. However, it is necessary to initialize

them here because of the way DynaComm's variable scoping rules operate.

A variable that is initialized in a subroutine in DynaComm is active only in

that subroutine and any subroutines that it calls, and ceases to exist as soon

as the subroutine that initialized it returns to its calling routine. So in order

to have these variables available throughout the program, it is important to

initialize them here, not in a called subroutine.

Exploring the AUTOMCI.DCP Script 419

The script then continues setting additional global variable names. The
next sequence sets the names of the five standard mail folders.

SET $Msl "INBOX"

SET $Ms2 "SENT"

SET $Ms3 "OUTBOX"

SET $Ms4 "DRAFTS"

SET $Ms5 "UNSENT"

Next the script checks the value of the @S7 system variable again, this

time to determine if it holds the value "newuser". The only time the value of

@S7 will be equal to "newuser" is the first time you run the script after

installing it on your system. The value "newuser" tells the script to jump to

the first-time setup routine, which is called SetupMMM.

IF @S7 = "newuser" PERFORM SetupMMM

Otherwise, the script extracts the values of several global variables from

the system variable @S6: % Account (the active-account indicator), %Init (a

program-status indicator), and $PubPath (the location of the Public phone-

book). These variables are stored in @S6, separated by a tilde character (~),

so the script obtains them by using the DynaComm PARSE command to

break the contents of @S6 into two strings: the characters that precede the

first tilde contained in the variable, and the characters that follow it.

SET $Stuff @S6

PARSE SStuff SStuffl "~" SStuff

SET %Account NUM(SStuff 1

)

PARSE SStuff SStuffl "~" SStuff

SET %Init NUM(SStuffl)

SET SPubpath SStuff

For example, if the initial contents of @S6 are "1-1 -C:\DYNACOMM\-
DAT", then after the first PARSE command $Stuffl contains the string "1".

which the subsequent NUM command converts to numeric form for use in

the integer variable % Account. SStuff, meanwhile, contains "1 -C:\DYNA-
COMM\DAT". so the script parses it again to break it into two strings, the

first containing "1" (which it then converts to numeric form for assignment to

the integer variable %Init), and the second containing "C:\DYNACOMM\-
DAT", which it assigns to $PubPath.

Next, the same technique is used to extract the MCI Mail telephone

number and the strings $Pre_Dial and $Post_Dial from the system variable

@S3. Then the user-defined delay between AutoMCT connections (% Delay)

is obtained from the variable («'S4.

420 COMMUNICATING WITH HOST SYSTEMS

PARSE @S3 $NUM
" '" $Pre_Dia

PARSE $Pre_Dial $Pre_Dial "

SET %Delay NUM(@S4)

$Post Dial

The script next sets the values of @S7 and @S8, assigning the concatena-

tion of "MMM" and $Data_Dir to @S7, and the value -1 to @S8. The value

of @S8 is used by the EMAIL.DCT module to determine whether it should

execute the SendRecv (@S8 =-1) or AutoMCI sequence (@S8 > -1). Setting

it to -1 here establishes SendRecv as the default choice.

SET @S7 "MMM"

SET @S8 STRC-1

$Data Dir

Next, the script sets the value of $Ms (used to identify the current mail-

box) equal to $Msl, or "Inbox", and then initializes several more global vari-

ables. Their use will be described below.

SET $Ms $Msl

SET %Forward

SET %Answer

SET %Move

SET %MENU

SET 7ol 9999

SET %MarkDel

SET %NV

Obtaining Data

At this point the script executes a series of several subroutines that it uses to

load data tables into memory and to obtain real values for some of the vari-

ables it has already initialized with dummy values. It starts with the

Account_Data subroutine, from which it obtains the account name, log-on

name, and password for the current account, the names of all the other

accounts, and other account-related data. The Account_Data routine also

calls the Tables routine, which loads into memory the tables that list the con-

tents of the eight mail folders for the current account—designated as tables

through 7. Then, upon returning from Account_Data, the script performs

the Get_Lists subroutine, in which it builds two text tables, named 10 and 1 1.

It uses table 10 to store the mail folder names for the View: list on the Mail-

boxes screen, and table 1 1 to store the four choices for the Sort by: list.

PERFORM Account_Data

PERFORM Get_Lists

At this point the script turns the cursor back into an arrow; sets %Table

(the pointer to the active table) to 0, making Inbox the active table; and then

performs a routine called Stat_Check. If you have just executed the script

Exploring the AUTOMCI.DCP Script 421

(Stat_Check determines this based on the contents of %Init), the Stat_Check

routine displays a welcome message offering you the option of going to the

Mailboxes screen or launching the Send/Recv or AutoMCI routine.

If, on the other hand, the script is returning from a Send/Recv or

AutoMCI session in which mail was transferred, Stat_Check displays a dia-

log box that shows the number of messages sent, received, and unsent during

the session. However, if no mail was transferred during the session,

Stat_Check returns without displaying any dialog box.

SET POINTER ARROW

SET %Table

PERFORM Stat_Check

Then the script sets %Init to and performs the Saveall routine, which

saves the settings file and all the global variables to disk, concluding the ini-

tialization section of the script.

SET %Init

PERFORM Saveall

Analyzing the Main Routine

The Main routine presents the Mailboxes dialog box, which acts as the con-

trol center for the M.M.M. application. You saw it earlier in Figure 15.2.

Drawing the Dialog Box
The routine begins by using DynaComm's ICONIC() function to determine

whether the M.M.M. program has been minimized. If so, it simply loops

back to beginning of the Main routine, staying in this short loop until Dyna-

Comm is restored. This prevents it from drawing its dialog box on screen

while you're using another program, and thus interrupting your work.

Otherwise, the routine uses the DIALOG command to start drawing the

Mailboxes dialog box. The DIALOG command has the following syntax:

DIALOG (Horizontal, Vertical. Width, Height) "Title"

The horizontal and vertical coordinates control the dialog box's location

within the DynaComm window, and the width and height coordinates con-

trol its size. The coordinates are specified in terms of a logical unit. Each

character is four units wide, and each line eight units high. The point of ori-

gin is the upper-left corner of the screen. Thus, a position six characters to

the right and five rows down from the top-left corner would be 24.40.

The si/e and location coordinates are optional, as is the title string. If

you omil any of the coordinates, DynaComm will attempt to determine

them automatically, based on the contents of the dialog box. Specifying

422 COMMUNICATING WITH HOST SYSTEMS

them gives you greater control, obviously, and usually yields a more attrac-

tive dialog box.

The presence or absence of a title string in the dialog statement deter-

mines the style of the dialog box. If you specify a title string, the dialog box

has both a title bar (which makes it movable) and a Control menu. If you

omit the title string, it has neither element.

The dialog statement in the Main routine omits the horizontal coordi-

nate, allowing DynaComm to center the dialog box within the DynaComm
window. It also omits the title string.

*MAIN

IF ICONICO GOTO MAIN

DIALOG (,4,309,176)

The script then proceeds to draw the dialog box. It starts with a MES-
SAGE command, which simply displays the string " Account:" concatenated

with the name of the current account as static text. The script then creates

the central list box, instructing it to display table % Table and to highlight

line %I of the table. Then it draws the two combo box controls, preceding

them with the static text strings "Sort by:" and "View:".

The Sort by and View Commands
The command for creating combo boxes has the syntax

LISTBOX (H.V.W.H) %Table %Pos C0MB0B0X

Everything following the COMBOBOX statement is a command string that

is only evaluated when you select an item from the list box.

The drop-down Sort by: list presents four options: None, Name, Subject,

and Date, which appear as list-box entries through 3. When the user selects

any item on this list other than the zero element (None), the script jumps to

the Sort subroutine. When that routine is finished, it updates the central list

box to display the messages in the active folder in their new sort order.

MESSAGE (4,4,,) " Account: "
|
$Account

LISTBOX (2,24,258,112) XTable %l

MESSAGE (82,4, .) "Sort by:"

LISTBOX (110,4,50,44) 11 COMBOBOX SET %Sort LISTB0X(2), IF

%Sort>0 PERFORM Sort, DIALOG UPDATE LISTBOX 1 TABLE %Table %l

The View: drop-down list offers the user a choice of all eight message

folders. When the user selects a new message folder from the View: list, the

script calls the Ver_Clr routine, which determines whether any messages in

the active folder have been marked for deletion and, if so, whether the user

wishes to delete them. This routine is called whenever the script is about to

execute a sequence of commands in which the active folder might change.

Since the script only tracks the number of messages that have been marked

Exploring the AUTOMC I . DC P Script 423

for deletion in the active folder, it must determine whether they should actu-

ally be deleted before it activates a different table. If it doesn't, the informa-

tion about what is to be deleted is lost.

MESSAGE (172.4. .) "View:"

LISTBOX (192.4.50.78) 10 %Table C0MB0B0X SET %New_TABLE LISTBOXO).

PERFORM Ver_ClrUNV). IF %NV=0 SET Uable %New_Table. PERFORM

Dialog_Update. ELSE IF %NV=1 SET Uable XNew_Table. RESUME, ELSE If

%NV=2 RESUME

If the Ver_Clr routine returns %NV with a value of 0. there were no

messages marked for deletion, so the routine simply sets the %Table vari-

able, which indicates the active table, equal to the value of %New_Table,

which indicates the table that the user selected from the drop-down list.

Then it updates the central list box to show the new table.

If Ver_Clr returns a value of 1 for %NV, then there were messages

marked for deletion, so Ver_Clr had to cancel the Mailboxes dialog box in

order to display its own dialog box. Thus, the routine can't get away with sim-

ply updating the central table. Instead, it must issue the RESUME com-

mand, which results in the entire Mailboxes dialog box being repainted.

If Ver_Clr returns a value of 2, then the user canceled the operation. So

the View-list command sequence comes to an end'by issuing the RESUME
command to repaint the Mailboxes dialog box.

The Message-Handling Commands
Next, the script creates the eight message-handling buttons, which appear

below the central list box in the Mailboxes dialog box (Figure 15.2). The
button-creation command has the syntax

"BUTTON (H.V.W.H) default title command

The optional default setting may consist of one of two keywords:

DEFAULT or CANCEL. Specifying the DEFAULT keyword makes the but-

ton the default option for the dialog box, meaning it will automatically be

selected if the user presses Enter without having tabbed to a different but-

ton. Specifying CANCEL, on the other hand, makes that button the cancel

button for the dialog box, which means that it will be selected when the user

presses the Esc key. The command sequence that follows the title string will

be evaluated only when the button is selected.

BUTTON (2.140.129.14) DEFAULT "&Read" PERFORM RecUI). II %\ > 1 DIALOG

CANCEL. PERFORM Read. RESUME. ELSE SET %\

The Read command sequence, the default command, starts by perform-

ing the Rec subroutine, passing it the variable 1%. The Rec routine deter-

mines which record is currently highlighted in the list box and then checks to

make sine the record is not empty (which it would be if the list bin were

424 COMMUNICATING WITH HOST SYSTEMS

empty). If the record is valid it returns the record number in the variable %I.

Otherwise it sets %I to -1.

If %I comes back from the Rec subroutine with a value greater than -1,

the Read subroutine is performed. Otherwise the command sequence sets

%I to and ends.

The New Message command sequence begins by calling the Ver_Clr rou-

tine to determine if any messages are marked for deletion and, if so, what

the user wants to do with them. If Ver_Clr returns a value of less than 2, the

routine continues. First it sets the value of %Init to 0, and then it launches

the TM routine in the TM.DCT script, passing it the current values of $Dat-

a_Dir, $Mailbox, % Forward (which indicates whether a message is being for-

warded), % Answer (which indicates whether the message is a reply), and

$Pubpath. When that routine concludes, the New Message routine continues

by performing the Get_Lists routine, and then issuing the RESUME com-

mand, which redraws the Mailboxes dialog box.

BUTTON (131.140.129.14) "&New Message" PERFORM Ver_Cl r(XHM) . IF %NV < 2

DIALOG CANCEL. SET % I n i t 0, PERFORM "TM*Tm" ($Data_Dir,

$Mailbox,%Forward,%Answer, $Pubpath), PERFORM Get_Lists, RESUME,

ELSE RESUME

If Ver_Clr returns a value of 2 for %NV, it means that the user elected to

cancel the operation, so the routine simply issues the RESUME command to

redraw the Mailboxes dialog box.

The Answer command sequence begins by performing the Rec subrou-

tine. If Rec returns a value for %I that is greater than 0, the script then

jumps to a subroutine called Ans_Button.

BUTTON (1,154.43,14) "&Answer" PERFORM Rec(%I), IF %I > PERFORM

Ans_Button, RESUME, ELSE SET XI

The command sequences for the Move, Export, and Forward buttons

are all similar to that for the Answer button. They begin by performing the

Rec subroutine, and then, if %I is greater than -1, jump to routines called

Move, Export, and For_Button, respectively, and finally issue the RESUME
command.

BUTTON (44,154,44,14) "&Move" PERFORM RecUI), IF XI > PERFORM Move,

RESUME, ELSE SET %l

BUTTON (88,154,43,14) "&Export" PERFORM Rec(%I), IF %I > DIALOG CANCEL,

PERFORM Export, RESUME, ELSE SET %]

BUTTON (131,154,43,14) "SForward" PERFORM Rec(%I). IF %l > PERFORM

For_Button, RESUME , ELSE SET %\

The Mark Del command sequence is similar to those that immediately

precede it. It performs Rec, then passes the values of %Table and %I to the

Mark_Del routine, and finally performs the Dialog _Update command to

Exploring the AUTOMCI. DCP Script 425

update the contents of the central list box without redrawing the entire dia-

log box.

BUTTON (174.154.43,14) "Mark &Del .
" PERFORM RecUI). IF %I > PERFORM

Mark_DelUTable, %I). INCREMENT %\ , PERFORM Dial og_Update. ELSE SET

%I

The scheme of first marking messages for deletion and then later delet-

ing them serves two purposes. First, it gives the user a chance to change his

or her mind about deleting a message. Second, it speeds up the processing of

the script because deleting messages one at a time can be a very slow process.

DynaComm doesn't offer a record deletion command. Instead, the only

way to delete a record from a table is to copy the active table to a temporary

table, and then copy the temporary table back to the active table minus

those records you want to delete. Once a table has grown to hold several

hundred records, this can be a quite time-consuming process, taking 20 sec-

onds or more with very large tables. By using a batch deletion routine, how-

ever, the process need only be performed once, no matter how many records

have been marked for deletion, rather than once for each record.

Finally, the Print command sequence jumps to the routine Print_Mess if

Rec returns a non-negative value for %I.

BUTTON (217,154,43.14) "&Print" PERFORM RecUI). IF %I > DIALOG CANCEL.

PERFORM Print_Mess. RESUME. ELSE SET XI

The Online Commands
Next the script creates the buttons for the three on-line options, Send/Recv,

AutoMCI, and Terminal.

MESSAGE(272.16..) "Online"

BUTTON (263.24.40,14) "Send/Rec&v" PERFORM Ver_Cl rUNV) . IF XNV < 2 SET

@S8 STR(-l). SET % I N I T 0. PERFORM Saveall. SET DIRECTORY DATA

$Data._Dir
|
SMailbox, SCREEN SHOW. EXECUTE 'email'. ELSE RESUME

BUTTON (263.38.40.14) "A&utomci" PERFORM Ver_Cl rUNV) . IF %NV < 2 SET

@S8 STR(0). SET %Ini t 0. PERFORM Saveall. SET DIRECTORY DATA

$Data_Dir
|
SMailbox. SCREEN SHOW. EXECUTE "EMAIL" . ELSE RESUME

BUTTON (263.52.40.14) "&Terminal" PERFORM Ver_Cl rUNV) . IF %NV < 2 SET

XInit 0. SET @S7 "". PERFORM Saveall. SET DIRECTORY DATA $Data_Dir.

EXECUTE "ONLINE". ELSE RESUME

The command sequences for the three on-line options are all very simi-

lar. Each starts by performing Ver_Clr. If the user doesn't cancel the opera-

tion (that is, %NV < 2), the script continues by setting the value of @SS to -1

(in the case of the Send/Recv command) or to (for AutoMCI).
The (?\S8 setting doesn't matter during terminal sessions, so the Terminal

command sequence doesn't change it. However, it does set C"'S7 to an empty

string, which will force the script to reload the settings file the next time

AutoMCI is executed.

426 COMMUNICATING WITH HOST SYSTEMS

Next, all three command sequences set %Init to and perform the

Saveall routine. Then they set the DynaComm data directory setting to $Dat-

a_Dir, and launch the script that will perform the actual communications ses-

sion (EMAIL.DCT in the case of the Send/Recv and AutoMCI command
sequences, and ONLINE.DCT in the case of the Terminal command
sequence).

The Offline and Quit Commands
Next the script draws the Set Up, Phonebook, Statistics, Minimize, and Quit

buttons.

The Set Up command sequence performs Ver_Clr, then sets %I to the

current list box record, cancels the dialog box, and performs the Menu
subroutine.

MESSAGEC 272, 72 , ,) "Offline"

BUTTON (263,80,40.14) "&Set Up" PERFORM Ver_Cl rUNV) , IF %NV < 2 SET %I

LISTBOX(l), DIALOG CANCEL, PERFORM Menu, RESUME. ELSE RESUME

The Phonebook command sequence sets %I equal to the current list box

record, cancels the dialog box, executes the subroutine named Phon_Man in

the PM script, and then resumes.

BUTTON (263,94,40,14) "P&honebook" SET %I LISTBOX(l), DIALOG CANCEL,

PERFORM "PM*Phon_Man" (0), RESUME

The Statistics command sequence sets %I to the current list box record,

cancels the dialog box, and performs the Stats routine before resuming.

BUTTON (263,108,40,14) "Stat&i sti cs" SET %I LISTBOX(l), DIALOG CANCEL,

PERFORM Stats, RESUME

The Minimize command sequence simply minimizes the DynaComm
window, cancels the dialog box, and resumes. Since the RESUME command
loops back to the beginning of the Main routine, where the IF ICONIC()

command is found, the dialog box will be redrawn only when the window is

restored.

BUTTON (263,122,40,14) "Mi nimi &ze" WINDOW MINIMIZE, DIALOG CANCEL, RESUME

The Quit option is actually presented in the form of an icon button. The

"_stop" entry immediately after the button's coordinates tells DynaComm to

use the icon named _stop from the DCICON3.DLL icon library when it

draws the button.

ICONBUTTON (26/ , 142 . 36 , 14) "_stop" "&Quit" PERFORM Ver.C I r(ZNV) , II %NV <

2 SET % I n i t 1, Ml (<•>'>! "". PI Rl ORM Saveall, SIT DIRECTORY DAIA

$Data Dir, PERFORM Close. Em, MENU CANCEL, QUIT, ELSE RESUMI

The Quit command sequence performs Ver_Clr, then sets %Init to 1 and

@S7 to an empty string before performing the Saveall subroutine. Then it

Exploring the AUTOMCI.DCP Script 427

resets the data directory to $Data_Dir, performs the Close_Em subroutine to

close all open tables, cancels the current (empty) menu, and ends the script

with the DynaComm QUIT command.

The End of Main

The Main routine concludes with the DIALOG END command (which tells

DynaComm that the dialog box definition is complete) followed by a WAIT
RESUME command (which tells DynaComm to pause script execution until

it receives a RESUME command).

DIALOG END

WAIT RESUME

MENU

MENU END

GOTO Main

The RESUME command the script is waiting for is only issued when
there is a need to redraw the dialog box, which generally occurs when a

command button has launched a series of events that cancels the Mailboxes

dialog box and substitutes another in its place. When the RESUME com-

mand is received, the script cancels any menus that may have been drawn

by the processes launched from the dialog box's command buttons, and then

issues the command GOTO Main, which jumps back to the beginning of the

Mailboxes dialog box routine, redrawing the box and then once again wait-

ing for a RESUME statement.

Mailboxes Screen Support Routines

The next five subroutines are support routines for the main Mailboxes dialog

box: Dialog_Update, For_Button, Ans_Button. Rec, and Ver_Clr.

The Dialog Update Routine

The Dialog_Update routine is used to update the contents of the central list

box and the Sort by: combo box. Whenever this routine is called, it refreshes

the two lists, setting the Sort by: list to element (the None option) and

instructing the central list box to display table %Table and to highlight ele-

ment %I of that table.

*Dialog_Update

DIALOG UPDATE LISTBOX 2 TABLE 11

DIALOG UPDATE LISTBOX 1 TABLE %Table %\

RETURN

428 COMMUNICATING WITH HOST SYSTEMS

The For_Button Routine

The For_Button routine starts by performing Ver_Clr. Unless the user can-

cels the operation, it performs the For_Set routine, which creates a copy of

the current message for forwarding, and then executes the Tm routine in

TM.DCT module. When that routine is finished, the For_Button routine con-

cludes by reloading the View: and Sort by: lists.

*For_Button

PERFORM Ver_Clr(%NV)

IF %NV < 2 SET ^Forward 1.

PERFORM For_Set,

PERFORM "TM*Tm" ($Data_Dir. $Mai 1 box ,%Forward //Answer , $Pubpath),

PERFORM Get_Lists, RETURN,

ELSE RETURN

The Ans Button Routine

The Ans_Button subroutine starts by performing Ver_Clr, and then, unless

the user cancels the operation, it cancels the Mailboxes dialog box, performs

the Ans_Set routine (which obtains information about the current message's

sender and subject matter for use in addressing the reply), then calls the Tm
routine in the TM module. When that routine concludes, Ans_Button finishes

up by updating the Sort by: and View: lists before returning control to the rou-

tine that called it.

*Ans_Button

PERFORM Ver_Clr(%NV)

IF %NV < 2 DIALOG CANCEL,

SET %Answer 1,

PERFORM Ans_Set,

PERFORM "TM*Tm" ($Data_Di r

,

$Mai 1 box ,% Forward ,%Answer , $Pubpath)

,

PERFORM Get_Lists,

RETURN,

ELSE RETURN

The Rec Routine

The Rec subroutine, which is called by all the message-handling buttons, sim-

ply sets the value of %I to the record number of the message that is cur-

rently highlighted in the central list box. Then it checks to make sure that the

active table actually has a valid record with that number. This is necessary

because if the LISTBOX() function is performed on an empty list, it will

return a value of 0, which is the same value returned by the first element in a

list that does contain records. Rec determines the record's validity by read-

ing the record and then examining the third character in the record variable,

which in a valid record will never be an empty space. If the third character is

a space, the record is not valid, so Rec sets %I to -1.

Exploring the AUTOM C I . DC P Script 429

*Rec ill)

SET %I LISTBOXC)

RECORD READ %Table

IF SUBSTR(@R%Table

RETURN

AT %I

3,1) = %I=-1

The Ver Clr Routine

The Ver_Clr routine begins by setting the value of %NV to 0, and then

checks the value of the variable %MarkDel, which is used to keep track of

the number of messages in the current folder that have been marked for dele-

tion. If no messages have been marked (%MarkDel=0) the routine ends.

Otherwise, it sets the variable %CD equal to %NV and passes it to the

Check_Del routine, which creates a dialog box asking the user how the mes-

sages that are marked for deletion should be treated.

*Ver_Clr(%NV)

SET %NV

IF %MarkDel=0 RETURN

SET %CD %NV

PERFORM Check_Del (%CD)

IF %CD=0 SET %NV 2,

ELSE SET %NV 1

RETURN

Check_Del will return %CD with one of two values. If %CD comes

back with the value 0, it indicates that the user canceled the operation. In

that case, %NV is set to 2, which will indicate to the calling routine that the

operation is to be canceled. Otherwise, %CD will return with the value 1

.

indicating that the messages were either deleted or the marks were removed

from them. If %CD has the value 1, then the operation that called Ver_Clr is

to proceed, so Ver_Clr sets %NV to 1 and returns.

The Set Up Menu Routine

The Set Up Menu routine creates and displays the menu of setup and utility

functions (shown below) that appears when you press the Set Up button on

the Mailboxes dialog box.

M.M.M. Account Communications

The routine begins by setting the mouse pointer to an arrow shape, and

setting the Dyna('omm data directory to $Data_Dir. Then the menu-defini-

tion process begins, with the command MENU.

430 COMMUNICATING WITH HOST SYSTEMS

*Menu

SET POINTER ARROW

SET DIRECTORY DATA $Data_Dir

MENU

The File Menu
The POPUP command creates the File item on the menu bar.

Return to mailbox screen

Exit to Dynacomm

About M.M.M....

The first ITEM command beneath POPUP creates the first item on the

File menu, labeled "Restore Backups", and instructs the script to perform

the Restore routine when that item is selected.

POPUP "&File"

ITEM "&Restore backups" PERFORM Restore

SEPARATOR

ITEM "Return to SMailboxes screen" MENU, MENU END, RETURN

ITEM "E&xit to Dynacomm" SET ZInit 1, SET DIRECTORY DATA $Data_Dir, SET

@S7 "", PERFORM Saveall, PERFORM Close_Em, MENU CANCEL, CANCEL

SEPARATOR

ITEM "&About M.M.M ", PERFORM About

The next line creates a separator bar, which is followed by two items offer-

ing ways to leave the Menu screen. "Return to Mailboxes screen" cancels the

menu and returns to the Main routine, whereas "Exit to DynaComm" cancels

the script, leaving DynaComm running (in contrast to the Quit button on the

Mailboxes screen, which ends both the script and DynaComm).
The next item on the File menu is another separator bar, which is fol-

lowed by the final item on the menu, "About M.M.M....". When selected,

this item calls a subroutine called About, which displays information about

the script and its authorship.

The M.M.M. Menu
The next menu is labeled "M.M.M." and includes two menu items, as shown

here:

Exploring the AUTOMCI.DCP Script 431

The first option branches to a routine called Auto_Freq, which enables

the user to determine the frequency of AutoMCI connections, and the sec-

ond performs the Pub_Book routine, which is used to enter the location of

the Public address book.

POPUP "&M.M.M."

ITEM "&AutoMCI connect frequency..." PERFORM Auto_Freq

ITEM "Public phonebook &1 ocati on . .
. " PERFORM Pub_Book

The Account Menu
The next popup menu, labeled "Account", is considerably more complex

than the preceding two because its contents vary according to the number of

MCI accounts you have set up within M.M.M. If you have set up only one

account, the Account menu will list only two items: Account Setup..., which

jumps to the Set Up routine to enable to you set up a new account or modify

an existing one, and Mailslot names... which performs first the Slots routine

through which you can enter or modify the names of your user-definable

mail folders, and then Get_Lists to update the list of mail folder names used

by the Mailboxes screen.

POPUP "Uccount"

IF %AccountCounter > 1 ITEM $Acco

IF %AccountCounter > 1 ITEM $Acco

IF %AccountCounter > 2 ITEM $Acco

IF %AccountCounter > 3 ITEM $Acc

IF %AccountCounter > A ITEM $Acc

IF 3!AccountCounter > 5 ITEM $Acc

IF UccountCounter > 6 ITEM $Acc

IF XAccountCounter > 7 ITEM $Acc

IF UccountCounter > 8 ITEM SAcc

IF %AccountCounter > 9 ITEM SAcc

IF %AccountCounter > 1 SEPARATOR

ITEM "&Account setup..." PERFORM Setup.

ITEM "&Mailslot names..." PERFORM Slots.

untl UNCHECKED SET %Choice 0. PERFORM Pick.

unt2 UNCHECKED SET %choice 1. PERFORM Pick

UNCHECKED SET %choice 2. PERFORM Pick

UNCHECKED SET ^choice 3. PERFORM Pic

UNCHECKED SET Xchoice 4, PERFORM Pic

UNCHECKED SET %choice 5, PERFORM Pic

UNCHECKED SET %choice 6. PERFORM Pic

UNCHECKED SET %choice 7. PERFORM Pic

UNCHECKED SET %choice 8, PERFORM Pic

PERFORM Pic

unt3

ount4

ount5

ount6

ount7

ount8

ount9

ountlO UNCHECKED SET %choice 9

RESUME

RESUME

RESUME

RESUME

RESUME

RESUME

RESUME

RESUME

RESUME

RESUME

RESUME

PERFORM GetJ RESUME

However, if you have more than one account, several additional items

appear on the menu: a menu item for each of your accounts, and a separator

bar separating the account names from the Account setup... and Mailslot

names... options, as shown here:

Account

yPaul Bonner

PrivateAcct

p.b.w.et.al.

Account setup...

Mailslot names.

432 COMMUNICATING WITH HOST SYSTEMS

When you select an account name from this list, the routine sets the

value of % Choice to indicate the account you selected, and then calls the

Pick routine, which processes your choice.

The Communications Menu
The next item to appear on the menu bar is labeled "Communications". The
menu looks like this:

The Communications settings item calls the standard DynaComm Com-
munications dialog box, shown in Figure 15.9, using the command SET-

TINGS COMMUNICATIONS. The Modem settings option makes use of

the same method to access DynaComm's standard modem settings routine.

The AutoMCI settings item calls a subroutine called Auto_Set to obtain vari-

ous settings for the AutoMCI routine from the user. And the MCI phone

number item calls the Access_Num routine to obtain the correct telephone

number to use in accessing MCI. Here's what it looks like:

POPUP '^Communications"

ITEM '^Communications settings..." SETTINGS COMMUNICATIONS

ITEM "Mo&dem settings..." SETTINGS MODEM

ITEM "&AutoMCI settings..." PERFORM Auto_Set

ITEM "&MCI phone number..." PERFORM Access_Num

Figure 15.9
The standard

DynaComm
communications

settings dialog box

Communications

Baud Rate

o 110 o 300 o 600 o 1200

% 2400 o 4800 o 9600 o 19200
|

Cancel

Data Bits

05 OG 07 <*>8

Slop Bitt

<S>1 Ol.5 2

" Parity

% None O Maik

O Odd O Space

O Even

Handshaking

% Xon/Xoff

O Hardware

O None

Connectoi

I None
I.HMI

n

I I Paiily Check LJ Caniei Delect

Exploring the AUTOMCI.DCP Script 433

The End of Menu
Finally, the Menu routine concludes with these lines:

MENU END

PERFORM View_Check

WAIT RESUME

GOTO MENU

Following the MENU END statement, which concludes the menu-
definition process, the script immediately performs a subroutine called

View_Check, which places a check mark beside the active account on the

Accounts menu (when you have set up M.M.M. to work with more than

one account). It then waits for a RESUME statement, to which it

responds by jumping back to the start of the Menu routine, and thus

redrawing the menu.

Menu-Support Routines

The next several routines in the AutoMCI.DCP script are menu-support rou-

tines that are called either during the menu-building process or in direct

response to a menu choice made by the user. First' come the View_Check

routine and View_Check_2, a subroutine that it calls.

The View Check Routine

The View_Check routine begins by initializing a variable called %Temp with

a value of 2, and then compares the variable % AccountCounter, which

keeps track of the number of active accounts, to %Temp.

*View_Check

%Temp=2

IF UccountCounter < Uemp RETURN. ELSE IF %Account=0 MENU UPDATE 3 1

CHECKED. ELSE MENU UPDATE 3 1 UNCHECKED

WHILE Uemp < 10 PERFORM VIEW_CHECK_2 (Uemp). INCREMENT Uemp
RETURN

*View_Check_2 (%Temp)

IF UccountCounter < %Temp RETURN. ELSE IF %Account=Uemp- 1 MENU UPDATE 3

%Temp CHECKED. ELSE MENU UPDATE 3 Uemp UNCHECKED

RETURN

It there are less than two active accounts, View_Check simply returns to

the Menu routine, because account names are only listed on the Accounts

menu if more than one account has been established. Otherwise, it checks

the current value of the variable % Account, which keeps track of the active

account. Accounts are numbered through 9. If % Account is equal to 0,

View_Check places a check mark next to the first account listed on the

menu, using the command MENU UPDATE 3 1, which tells DynaComm to

434 COMMUNICATING WITH HOST SYSTEMS

update the first item on the third pop-up menu. Otherwise, it removes the

check mark from that item if one is already there.

Next, View_Check repeats this process eight more times, by calling the

View_Check_2 routine, passing it the value of %Temp, and then increment-

ing the value of %Temp after View_Check_2 has returned, until %Temp is

no longer less than 10. The increment command increases % Temp's value by

1 each time it is executed.

The Pick Routine

The next routine. Pick, is called when the user selects a new account from

those listed on the Accounts menu.

*Pick

IF %Choice = %Account RETURN

SET %Account %Choice

SET POINTER WATCH

MENU

MENU END

SET %MENU 1

PERFORM File_It

PERFORM Saveall

PERFORM Get_Lists

SET POINTER ARROW

RETURN

The routine begins by comparing the account selected by the user

(% Choice) with the active account (% Account). If they are the same, it sim-

ply returns to the Menu routine. Otherwise, it sets the mouse pointer to an

hourglass shape, cancels the menu, and sets the variable %Menu to a value

of 1. (%Menu is a flag used by the File_It routine.) Then it performs the

File_It routine, the Saveall routine, and the Get_Lists routine, in the process

loading the eight mail folders for the newly selected account into memory, as

well as the names of the user-defined mail folders and the account name and

password for the newly selected account. Then it sets the mouse pointer

back to an arrow shape and returns to the Menu routine.

The Pub Book Routine

The next routine, called Pub_Book, is called by the Public phonebook loca-

tion item on the M.M.M. menu.

*Pub_Book

DIALOG (,,160.) "Public Phonebook Location" modal

MESSAGE (8,8,,) "Enter drive and path for public phonebook:"

EDITTEXT (8.24,,) 130 "" $Pubpath

NEWLINE

BUTTON (40,,,) DEFAULT "OK" Rl SUM!

Exploring the AUTO M C I . DC P Script 435

BUTTON CANCEL "Cancel

DIALOG END

WAIT RESUME

SET $Pubpath EDITTEXT(l)

DIALOG CANCEL

%Pp=LENGTH($Pubpath)

IF SUBSTR($Pubpath,%Pp.l)

RETURN

DIALOG CANCEL, RETURN

="\" SET $Pubpath SUBSTR($Pubpath , 1 ,%Pp-

1

Pub_Book simply opens a small dialog box that prompts the user to

enter the location of the Public address book. The dialog box includes both

OK and Cancel buttons. The Cancel button closes the dialog box and returns

to the menu screen when it is selected, whereas the OK button issues a

RESUME command, which results in the variable $Pubpath being assigned

the value of the dialog box's edit text field. The routine uses a combination

of the LENGTH and SUBSTR commands to determine if the last character

in the $Pubpath variable is a \. If so, it strips off the last character before

returning to the Menu routine.

The Access Num Routine

The Access_Num routine is called when the user selects the MCI phone

number item on the Communications menu:

*Access_Num

DIALOG (.,130.) "MCI access number" MODAL

MESSAGE (12,10..) "Enter telephone number for MCI: "

EDITTEXT (12,22..) 72 "" $Num LIMIT 17

BUTTON (24,..) OEFAULT "OK" SET $Num EDITTEXT(l), SET PHONENUMBER $Num.

'Cancel" RESUME

RESUME

BUTTON CANCEL

DIALOG END

WAIT RESUME

DIALOG CANCEL

RETURN

This routine simply opens a dialog box, shown below, that prompts the

user to enter the telephone number it is to use to access MCI Mail.

MCI access number

Enter telephone number for MCI:

IH'l'MiHH

Qkay fiance!
]

When the user presses the OK button, the telephone number thai has

been entered is assigned both to DynaComm's PHONENUMBER global

436 COMMUNICATING WITH HOST SYSTEMS

variable (for use by the Terminal and Send/Recv routines) and to the vari-

able $Num for use by the AutoMCI routine. The RETURN following the

DIALOG CANCEL statement returns to the Menu routine.

The Auto_Set Routine

The following routine, Auto_Set, is used to obtain additional information

needed by the script for use in the AutoMCI routine.

*Auto_Set

DIALOG (, ,186

EDITTEXT 45 "f

EDITTEXT 45 "f

BUTTON (50, , ,

BUTTON CANCEL

DIALOG END

WAIT RESUME

SET $Pre_Dial

SET $Post_Dia"

DIALOG CANCEL

RETURN

) "AutoMCI Settings" M

odem dialing pref i x

:

odem di al i ng suff i x:

DEFAULT "OK" RESUME

"Cancel" DIALOG CANCEL

EDITTEXT(l)

EDITTEXTC2)

ODAL
" $Pre_Dial
" $Post_Dia"

, RETURN

Auto_Set creates a dialog box, shown in Figure 15.10, to obtain the

modem initialization and termination strings that are to be sent, respectively,

prior to and immediately following the MCI-access telephone number dur-

ing the AutoMCI dialing procedure. This information is needed because

AutoMCI uses a custom dialing routine instead of the standard DynaComm
dialing routine.

Figure 15.10
The AutoMCI

Settings dialog box

AutoMCI Settings

Modem dialing prefix:

Modem dialing suffix:

ATMODT

H Cancel

The reason for this is simple. The standard DynaComm dialing routine

opens a small dialog box on screen that can't be closed until a connection is

made. This is fine if you're operating DynaComm in the foreground, as you

do with the Send/Recv or Terminal methods of connecting to MCI. But the

Exploring the AUTOMCI.DCP Script 437

AutoMCI method is designed to dial into MCI in the background. If the

DynaComm dialing routine were used whenever AutoMCI started to dial

the modem, the Dialing dialog box would pop up in the middle of whatever

other application you happened to be using, and keep you from doing any-

thing else with that application until a connection was made.

The custom dialing routine used by AutoMCI is much less intrusive.

However, because DynaComms language doesn't provide any way to access

the modem setup information gathered by its standard modem settings rou-

tine, AutoMCI needs the information gathered by the Auto_Set routine in

order to send the proper modem-initialization string.

The Restore Routine

The Restore routine is called when the user selects the Restore backups item

on the File menu.

^Restore

SET DIRECTORY DATA

DIALOG (, ,148,144)

MESSAGE (8,20, ,)

"

GROUPBOX (8.32,130

CHECKBOX

CHECKBOX

CHECKBOX

CHECKBOX

CHECKBOX

CHECKBOX

CHECKBOX

CHECKBOX

(16,48,

(16,60,

(16,72,

(16,84,

(88,48,

(88,60,

(88,72,

(88,84,

BUTTON (24,112,

$Data_Dir
|

SMailbox

"Restore Backups" modal

Restore backup

,72) "Mai 1 si ots"

$Msl

$Ms2

$Ms3

$Ms4

$Ms5

$Ms6

$Ms7

$Ms8

DEFAULT "OK" RESUME

BUTTON CANCEL "&CANCEL" DIALOG CANCEL. RETURN

DIALOG END

WAIT RESUME

PERFORM Restore_Checks (1, "INBOX")

PERFORM Restore_Checks (2. "SENT")

PERFORM Restore_Checks (3."0UTB0X")

PERFORM Restore_Checks (4. "DRAFTS")

PERFORM Restore_Checks (5. "UNSENT")

PERFORM Restore_Checks (6
.

" U D
1

"

)

PERFORM Restore_Checks (7, "UD2")

PERFORM Restore_Checks (8."UD3"

DIALOG CANCEL

RETURN

for

:

438 COMMUNICATING WITH HOST SYSTEMS

The Restore routine begins by opening a dialog box that contains eight

check boxes, one for each of the eight mail folders, as shown in Figure 15.11.

The user checks all those that should be restored from the backup file.

Figure 15.11
The Restore

Backups dialog box

Restore backups

Restore backup for:

Mai

D

El

Islots

INBOX

SENT

OUTBOX

UNSENT

D bookstuf

M.M.M.

CyberDRAFTS;

Qkay CANCEL

Once the user presses the OK button, the dialog box closes, and Restore

performs the Restore_Checks routine once for each mail folder, passing the

routine the check box number for the mail folder and its file name.

If a mail folder's check box is not checked, the Restore_Checks routine

returns immediately to the Restore routine. Otherwise, it copies the mail

folder's .BAK file over its mail folder file, performs first the Close_and_Clear

routine to close the table representing the mail folder (thus saving the data

from the .BAK file to disk under the mail folder's file name), and then per-

forms the Table_Load routine to reload the table into memory before return-

ing to the Restore routine.

*Restore_Checks (%Box, $Restore_Fi 1 e

)

IF CHECKBOX(%Box)<> 1 RETURN

FILE COPY $Restore_File
|

".BAK" $Restore_Fi 1

e

PERFORM Close_and_Clear(%Box, 1)

SET %ErrCount

PERFORM Table_Load (%Box, $Restore_Fi 1 e

)

RETURN

The %ErrCount variable that the routine initializes immediately before

performing the Table_Load routine is used by the Table_Load routine for

error-checking purposes, as will be explained later.

Exploring the AUTOMCI. DC P Script 439

The About Routine

The next routine. About, which is called whenever the user selects the About

M.M.M.... item on the File menu, displays author and copyright information

for the M.M.M. script in a modal dialog box, as shown in Figure 15.12.

Figure 15.12
The About M.M.M.

dialog box

M.M.M.

File M.M.M. Account Communications

E z

M.M.M.
tie THgl 7%a4t yta«<x?ei ft*

TVudawa, 3.f

Written by Paul Bonner.

Version 3.1,01990, 1991 by Paul Bonn;r.

OK

*About

DIALOG (,.184.114) "About M.M.M." MODAL

PICTURE (16.8) $Data_Dir
|

"MMM2.BMP"

MESSAGE (44.50.,) "Written by Paul Bonner."

MESSAGE (10.62.,) "Version 3.1. \251 1990, 1991 by Paul

Bonner.
"

BUTTON (64,94.

DIALOG END

WAIT RESUME

DEFAULT "OK", DIALOG CANCEL. RETURN

The Auto Freq Routine

The Auto_Frcq routine is used to determine how frequently the user wants

the AutoMCI routine to dial into M< I Mail.

*Auto_Freq

DIALOG (..162.100) "AutoMCI Frequency" MODAL

MESSAGE "Enter interval for AutoMCI"

440 COMMUNICATING WITH HOST SYSTEMS

STR(%Delay) LIMIT 3

MESSAGE "Connections (5-600 minutes)

NEWLINE

EDITTEXT 16 "Frequency in minutes: "

NEWLINE

BUTTON DEFAULT "OK" RESUME

BUTTON CANCEL "Cancel" DIALOG CANCEL, RETURN

DIALOG END

WAIT RESUME

SET $Temp EDITTEXTO
SET %Delay NUM($Temp)

IF %Delay < 5 SET %Delay 5

IF %Delay > 600 SET XDelay 600

PERFORM Saveall

DIALOG CANCEL

RETURN

The AutoMCI Frequency dialog box, shown in Figure 15.13, accepts val-

ues ranging between 5 and 600 minutes (ten hours). If the user enters a value

of less than 5, the delay is set to 5 minutes. Values greater than 600 are

adjusted down to 600. Once the value for the AutoMCI interval has been

established, the Saveall routine is called to save it to disk.

Figure 15.13
The AutoMCI

Frequency dialog

box

AutoMCI frequency

Enter interval for AutoMCI

Connections (5-600 minutes).

Frequency in minutes: yg

Cancel

The Slots Routine

The final menu-support routine, Slots, is used to name the three user-defin-

able mail folders.

*Slots

SET DIRECTORY DATA $Data_Dir
|

$Mai

DIALOG (,,120,132) "Mail slot names"

MESSAGE (16,12, ,) "Mailslot 1

MESSAGE (16,24, ,) "Mailslot 2

MESSAGE (16,36, ,) "Mailslot 3

box

MODAL

$Msl

$Ms2

$Ms3

Exploring the AUTOMCI.DCP Script 441

"Mailslot 4:

"Mailslot 5:

36 "Mailslot

36 "Mailslot

36 "Mailslot

"OK" RESUME

DIALOG CANCEL,

"
|

$Ms4

$Ms5

$Ms6 LIMIT 8

$Ms7 LIMIT 8

$Ms8 LIMIT 8

RETURN

MESSAGE (16,48,

MESSAGE (16,60,

EDITTEXT (16,72,

EDITTEXT (16,84, ,)

EDITTEXT (16,96, ,)

BUTTON (24, , ,) DEFAULT

BUTTON CANCEL "Cancel"

DIALOG END

WAIT RESUME

SET $Ms6 EDITTEXT(l)

SET $Ms7 EDITTEXT(2)

SET $Ms8 EDITTEXT(3)

FILE DELETE "SLOTS-

TABLE DEFINE 9 TEXT "SLOTS"

PERFORM WriteString(9. $Ms6)

PERFORM WriteString(9, $Ms7)

PERFORM WriteString(9, $Ms8)

PERFORM Close_and_Clear (9,0)

DIALOG CANCEL

SET DIRECTORY DATA $Data_Dir

RETURN

Slots consists of a simple dialog box, shown in Figure 15.14, that lists the

names of the five standard mail folders as static text and the names of the

three user-definable ones in editable text fields. Once the user closes the dia-

log box with the OK button, the existing SLOTS data file is deleted and a

new one is created. The WriteString routine is used to write the new names

of the three user-definable mail folders to the new SLOTS file.

Figure 15.14
M.M.M.'s Mailslot

Names dialog box

Mailslot names

Mailslot 1 INBOX

Mailslot 2 SENT

Mailslot 3 OUTBOX

Mailslot A DRAFTS

Mailslot 5

Mailslot 6

Mailslot 7

Mailslot 8

UNSENT

bookstuf

Cyber

Hi

442 COMMUNICATING WITH HOST SYSTEMS

Table-Handling Routines

The next set of routines is used to define, open, close, clear, back up, and

delete the structured tables that M.M.M. uses to store its mail folders.

Each mail folder is represented by a DynaComm structured table con-

sisting of the following nine fields:

• An 81-character field used to store the incoming /outgoing indicator and

the abridged name of the sender or addressee, an abbreviated subject

description, the file size, and date information about each message that is

displayed in the central list box of the Mailboxes screen

• A 28-character field used to store the message's subject

• A 6-character field for its file size

• A 10-character field that is reserved for future use

• A 10-character field used to store the date the message was sent or

received

• A 15-character field used to hold the sender's or addressee's MCI account

number

• A 1-character field used to indicate whether the message is a reply

• An 8-character field used for the name (without extension) of the file in

which the message is stored

• A 45-character field used to hold the full name of the sender or addressee

The Tables Routine

The Tables routine is called during the M.M.M. start-up routine.

*Tables

SET DIRECTORY MEMO $Data_Dir
|

$Mailbox

SET DIRECTORY DATA $Data_Dir
|

$Mailbox

PERFORM Table_Def_And_Load (0, "INBOX")

PERFORM Table_Def_And_Load (1, "SENT")

PERFORM Table_Def_And_Load (2, "OUTBOX")

PERFORM Table_Def_And_Load (3, "DRAFTS")

PERFORM TabIe_Def_And_Load (4, "UNSENT")

PERFORM Table_Def_And_Load (5, "UD1")

PERFORM Table_Def_And_Load (6, "UD2")

PERFORM Table_Def_And_Load (7, "UD3")

SI I DIRECTORY DATA $Data__Dir

RETURN

Exploring the AUTOMCI.DCP Script 443

Tables resets the DynaComm pointers for its Data and Memo directories

to the directory indicated by the concatenation of $DataDir I $Mailbox (which

ends up pointing to a directory such as C:\YVINDOWS\DYNACOMM\-
DATA\MB1), then performs the Table_Def_And_Load routine for each mail

folder before resetting the data directory to $Data_$Dir.

The Table Def And Load Routine

The Table Def_And_Load routine accepts the number and name of the table

to be defined and loaded into memory as parameters.

*Table_Def_And_Load (%Counter. STabfile)

SET %ErrCount

TABLE DEFINE %Counter FIELDS CHAR 81 CHAR 28 CHAR 6 CHAR 10 CHAR 10

CHAR 15 CHAR 1 CHAR 8 CHAR 45 FILE

PERFORM Table_Load (%Counter, STabfile)

RETURN

The routine begins by resetting the %ErrCount variable to 0, and then

uses the DynaComm TABLE DEFINE command to define the table speci-

fied by the variable % Counter. The TABLE DEFINE command specifies

the size of each field in the table. The FILE command at the end of the defi-

nition statement instructs DynaComm to store the' table's data on disk rather

than in global memory.

Next, the routine calls the Table_Load procedure, passing the % Counter

and $Tabfile variables on to it.

*Table_Load UCounter, STabfile)

IF %ErrCount > 5 CANCEL

TABLE LOAD ^Counter FROM STabfile AS DYNACOMM

IF ERRORO INCREMENT %ErrCount, GOTO Table_Load

RETURN

The Table_Load procedure issues the command to load the table speci-

fied by % Counter from the file specified by $Tablile in DynaComm format.

(DynaComm format is a structured record format supported by the Dyna-

Comm program.) The routine includes a primitive error-checking routine: In

the event of a disk error it will try again to read the file from disk, but after

five retries it will give up and cancel the script.

The Close and Clear Routine

The next routine, Close_and_Clear, serves the opposite purpose of the Table

routine.

*Close_and_Clear (XClose. %Redefine)

TABLE CLOSE %Close

TABLE CLEAR %Close

IF %Redefine - 1 TABLE DEFINE XClose FIELDS CHAR 81 CHAR 28 CHAR 6

444 COMMUNICATING WITH HOST SYSTEMS

CHAR 10 CHAR 10 CHAR 15 CHAR 1 CHAR 8 CHAR 45 FILE

RETURN

It accepts two parameters: the number of the table to close and clear

from memory, and % Redefine, which indicates whether the table should

immediately be redefined.

The Table_Save Routine

The next routine, Table_Save, also accepts table number and file name
parameters.

*Table_Save (%Counter, STabfile)

TABLE SAVE %Counter TO STabfile AS DYNACOMM

IF ERRORO PERFORM FastRest (%Table)

RETURN

Table_Save saves the table indicated by % Counter to the file indicated

by $Tabfile in DYNACOMM format. If an error occurs during the save oper-

ation, it calls the FastRest routine, which restores the tables backup file.

The Close_Em Routine

The next routine, Close_Em, is used to close all the tables at once.

*C1 ose_Em

SET %I

WHILE %l < 15 PERFORM CI ose_And„Cl ear (%I,0), INCREMENT %I

RETURN

DynaComm supports the use of up to 15 tables, numbered through 14,

so Close_Em starts with table and calls the Close_and_Clear routine 15

times, incrementing the variable %I (used to designate the table) each time.

The routine doesn't bother checking to determine whether each table is in

fact defined before it tries to close and clear it because DynaComm will

accept instructions to close a table that isn't open without complaint.

The Save Table Routine

The next routine, Save_Table, is used to save the contents of the active mes-

sage-folder table to the appropriate disk file.

*Save_Tabl

e

SET DIRECTORY DATA $Data„Dir
|

Smailbox

IF %Table = PERFORM Table_Save (0, "INBOX")

ELSE IF %Table - 1 PERFORM TabIe_Save (1, "SENT")

ELSE IF %Table -- 2 PERFORM TabIe_Save (2, "OUTBOX")

ELSE IF %Table 3 PERFORM Table_Save (3. "DRAFTS")

ELSE IF %Table : 4 PERFORM Table_Save (4, "UNSENT")

ELSE IF %Table " 5 PERFORM Table.Save (5, "UD1")

Exploring the AUTOMCI.DCP Script 445

ELSE IF %Table = 6 PERFORM Table_Save (6. "UD2")

ELSE IF %Table = 7 PERFORM Table_Save (7, "UD3")

SET DIRECTORY DATA $Data„Dir

RETURN

This routine uses the value of the variable %Table to identify the active

message folder and to determine the file to which it is to be saved.

The Back Up Routine

Save_Table is followed in the listing by a routine called Back_Up, which is

used to save a copy of the file that contains a specified mail folder to a file

with a .BAK extension.

*Back_Up (%Back)

IF

IF

IF

IF

IF

IF

IF

IF

%Backl

%Backl

%Backl

%Backl

%Backl

%Backl

%Backl

%Backl

PERFORM Table_SAVE (0, "INBOX. BAK")

1 PERFORM Table_SAVE (1, "OUTBOX . BAK"

)

2 PERFORM Table_SAVE (2, "SENT. BAK")

3 PERFORM TabIe_SAVE (3, "UNSENT. BAK")

4 PERFORM Table_SAVE (4, "DRAFTS. BAK"

)

5 PERFORM Table_SAVE (5, "UD1.BAK")

6 PERFORM Table_SAVE (6, -"UD2.BAK")

7 PERFORM Table_SAVE (7, "UD3.BAK")

RETURN

The Back_Up routine accepts a single parameter—the number of the

table for which the backup operation should be performed.

The Get List Routine

The Get_Lists routine, which appears next in the listing, is called whenever

the script needs to refresh the tables used to display the Sort by: and View:

list boxes on the main Mailboxes screen.

*Get_Lists

TABLE DEFINE 10 FIELDS

PERFORM WriteString(10

PERFORM WriteString(10

PERFORM WriteString(10

PERFORM WriteString(10

PERFORM WriteString(10

PERFORM WriteString(10

PERFORM WriteStn'ng(10

PERFORM WriteString(10

TABLE DEFINE 11 FIELDS

PERFORM WriteStringdl
PERFORM WriteString(11

CHAR 8

$MS1)

$MS2)

$MS3)

$MS4)

$MS5)

$MS6)

$MS7)

$MS8)

CHAR 8

"None'

"Name'

446 COMMUNICATING WITH HOST SYSTEMS

PERFORM WriteStringCll, "Subject")

PERFORM WriteStringCll. "Date")

RETURN

GetJLists begins by defining table 10, which is used to hold the list of

tables used by the View: combo box. It then calls the WriteString procedure

eight times, to write the names of each of the eight folders to the table. Next

it defines table 11, which is used by the Sort by: combo box, and writes the

name of the four sort options to it, again by calling the WriteString routine.

The WriteString Routine

WriteString accepts two parameters, %TableToWrite, the table number to

which data is to be written, and $Var, the string containing the data to write.

It then sets the current record variable for the designated table equal to

$Var, and issues the RECORD WRITE command.

*WriteString (%Tabl eToWri te . $Var)

SET @R(%TableToWrite) $Var

RECORD WRITE %Tabl eToWri te

RETURN

The ReadString Routine

The final table-handling routine, ReadString, performs the opposite func-

tion, reading a single record from the designated table.

*ReadString (%Tabl e_To^Read , $Var)

Record Read %Tabl e_To_Read

Set $Var TR I M (@R (%Ta bl e_To_Read)

,

"
"." ")

RETURN

Mailboxes Screen Action Routines

The next set of routines is called by command sequences associated with the

buttons on the main Mailboxes screen. The first of these is the Sort routine.

The Sort Routine

The Sort routine makes use of the variable %Sort, which will be equal to

whichever item was selected from the Sort by: list. If %Sort is equal to 0,

then the None option was selected, and so the routine returns without sort-

ing the active folder. Otherwise, the routine determines the field on which to

sort the table that holds the folder's data (field 9 for a by-name sort, field 2

for a by-subject sort, and field 5 for a by-date sort).

*Sort

IF %Sort-0 RETURN

SET %Errorcount

Exploring the AUTO NIC I . DC P Script 447

*Resort

IF %Errorcount > 5 CANCEL

IF %Sort=l %S1=9

ELSE IF %Sort=2 %Sl-2

ELSE IF %Sort = 3 XS1-5

ELSE RETURN

PERFORM BackJJp (%Table)

TABLE SORT %Table %S1 ASCEND

IF ERRORO PERFORM Fastrest (Uable). INCREMENT %Errorcount . GOTO Resort

SET %Errorcount

RETURN

It then calls the Back_Up routine to create a copy of the current folder

in case an error occurs during the Sort routine, and then issues the TABLE
SORT command, instructing DynaComm to sort table %Table on field %S1
in ascending order. If an error occurs, the FastRest routine is called to

restore the original table, and the SORT command is repeated. If more than

five errors occur, the script ends.

The Stats Routine

The next routine, called Stats, is called when the user selects the Statistics

button on the main Mailboxes screen.

*Stats

DIALOG (, ,168.)

MESSAGE (48,8,,) "Active account: "
|

$Account

GROUPBOX (4,24,150,56) "Messages"

PERFORM Stat_Compose (0, $Msl. 12, 62,40)

PERFORM Stat_Compose (1. $Ms2, 12, 62,48)

PERFORM Stat_Compose (2, $Ms3, 12, 62,56)

PERFORM Stat_Compose (3, $Ms4, 12, 62,64)

PERFORM Stat_Compose (4, $Ms5, 86,136, 40)

PERFORM Stat_Compose (5, $Ms6, 86,136, 48)

PERFORM Stat_Compose (6. $Ms7, 86,136, 56)

PERFORM Stat_Compose (7, $Ms8, 86.136, 64)

MESSAGE (12.90, .) "Disk space: STR(DISKSPACEO)
BUTTON (120.90,20,

DIALOG END

WAIT RESUME

DEFAULT "OK". DIALOG CANCEL. RETURN

Stats creates a dialog box identifying the current account, and then

issues eight calls to the Stat Compose routine, which creates and displays a

message about a specified mail folder. Stats passes Stat Compose the table

number and name for each folder and the coordinates to be used to displaj

the message about it. Then, after Stat Compose has displayed the status mes-

sage about each ol the eight folders, Stats displays a string identifying the

448 COMMUNICATING WITH HOST SYSTEMS

amount of disk space remaining on the default drive (which it determines

using DynaComm s DISKSPACE() function), and an OK button with which

the dialog box can be closed.

Stat_Compose assembles and displays a status message for the specified

mail folder.

%H1. %H2, %V)*Stat_Compose (%Ab<)ut, $Label

SET %Count

RECORD READ %About at

WHILE NOT EOF

BEGIN

RECORD READ %About

INCREMENT %Count

END

MESSAGE (%H1 .%V. ,) SLabel
|

"

MESSAGE (%H2.%V. ,) STR(%Count

RETURN

Stat_Compose counts the records in the specified folder by starting at

and reading each record until it encounters an end-of-file (EOF) marker.

Then it displays a static text message displaying the name of the current

table, as identified by the variable $Label, using the coordinates specified in

%H1,% V, followed by a second message presenting the number of records

in the table at coordinates %H2,% V.

The Move Routine

The next routine, Move, is called when the user selects the Move button on

the Mailboxes dialog box.

*Move

DIALOG CANCEL

SET DIRECTORY DATA $Data_Dir
|
$Mailbox

IF %Table=0 $Mbx = $Msl

ELSE IF %Table=l $Mbx=$Ms2

ELSE IF %Table=5 $Mbx=$Ms6

ELSE IF %Table=6 $Mbx=$Ms7

ELSE IF %Table=7 $Mbx=$Ms8

DIALOG (. .150.92)

IF %TabIe=2 MESSAGE "Move message from OUTBOX to Drafts?". GOTO Dl

IF %Table=3 or %Table=4 MESSAGE "Edit envelope and move to OUTBOX?" . GOTO Dl

Move Message from

1
"

|

$Ms6

|
$Ms7

I $Ms8

RADIOGROUP (4,8.,) " Move Message from "
|
$Mbx

RADIOBUTTON (14.24, .) "&]

RADIOBUTTON (14,36. .) "&2

RADIOBUTTON (14,48. .) "&3

*D1

NEWLINE

BUTTON (44,68,.) DEFAULT "OK" RESUMI

BUTTON (84,68,,) CANCEL "Cancel" DIALOG CANCM , RETURN

to:
1

Exploring the AUTO MC I . DC P Script 449

DIALOG END

WAIT RESUME

DIALOG CANCEL

IF Uable = 3 or Uable=4 PERFORM EditJDut, RETURN

IF Uable=2 %Destination = 3,

ELSE SET %Destination RADIOGROUPt)+4

IF %Destination = Uable RETURN

PERFORM Back_Up (Uable)

PERFORM Back_Up (^Destination)

WHILE NOT EOF

BEGIN

RECORD READ ^Destination

END

SET @R%Destination @R%Table

SET %Errorcount

*Jumpl

IF %Errorcount>5 CANCEL

RECORD WRITE %Destination

IF ERRORO INCREMENT %Errorcount. PERFORM FastRest (^Destination) . GOTO Jumpl

SET %Errorcount

SET %Move 1

GOTO Delete

The Move routine is fairly complex because the choices it offers the user

as a destination for the message vary based on the folder that is active at the

time the Move button is selected. If the Outbox folder is active, the only

choice is to move the message to the Drafts folder. If the Unsent or Drafts

folder is active, the only choice is to move the message to the Outbox. Other-

wise, the routine offers the ability to move messages to any of the three user-

defined folders, as shown in Figure 15.15.

The intent of these restrictions is to ensure that all messages in the user-

defined folders have in fact been sent or received, that all messages in the

Inbox have been received, and that all messages in Sent have been transmit-

ted. Without these restrictions, the user would have no way to tell by looking

at a message whether it was actually ever sent, or if it was merely a draft mes-

sage that had found its way accidentally into another folder.

After canceling the Mailboxes dialog box and resetting the data direc-

tory, the Move routine defines the value of $Mbx, which will be used to iden-

tify the active folder, based on the value of %Table. Then it starts to build its

own dialog box. At that point, if %Table is equal to either 2 (Outbox) or 3 or

4 (Unsent or Drafts), it displays a one-line question offering the user a single

possible destination and jumps ahead to the marker Dl to display the OK
and Cancel buttons. Otherwise, it displays a radio group offering the user a

choice of the three user-defined mail folders as possible destinations.

The routine's handling of the results of the Move dialog box is also based

on the active folder. If Unsent or Drafts is active, the routine performs the

Edit_Out routine, which moves the selected message into the Outbox folder

and launches the 'I'M routine to allow the user to edit the message's address.

450 COMMUNICATING WITH HOST SYSTEMS

handling options, and contents. If the Outbox folder is active, the routine sets

the variable % Destination to 3, the table number of the Drafts folder. Other-

wise, it sets % Destination equal to the number of the radio button that was

selected, plus 4 (since the radio buttons are numbered 1 through 3 and the

user-definable mail folders they represent are numbered 5 through 7).

Figure 15.15
The Move Options

dialog box

Move Message from

O 1 bookstuf

2M.M.M.

O 3 Cyber

INBOX to:

Ok Cancel

Then, after checking to make sure that the destination table isn't the

same as the source table, the Move routine calls the Back_Up routine twice,

once for the source table and once for the destination table. It then reads

every record in the destination table to set that table's record pointer to the

end of the file (in order to avoid overwriting an existing record). Then it cop-

ies the current record from the source table to the destination table's record

variable, and then issues a RECORD WRITE command for the destination

table. Finally, it calls the Delete routine to delete the message from the

source table.

The FastRest Routine

If an error occurs during the process of writing the destination table, the

Move routine, like many others, calls the FastRest routine.

*FastRest (^Restore)

SET %ErrCount

SET DIRECTORY DATA $Data_Dir
|

$Mai 1 box

SWITCH %Restore

CASE

FILE COPY "INBOX. BAK" "INBOX", PERI ORM ldble_Load (0. "INBOX")

CASE 1

FILE COPY "SENT. BAK" "SENT", PERFORM Table_Load (1, "SENT")

CASE 2

FILE COPY "OUTBOX. BAK" "OUTBOX", PERFORM Tab1e_Load (2, "OUTBOX")

E 3

FILE COPY "DRAFTS, BAK" "DRAFTS", PERFORM rable load (3, "DRAMS")

I 4

llll r.rjK "UN',! in .h/.r "IIN3INI", PERFORM fable Load (4. "UNSENT")

Exploring the AUTOMCI.DCP Script 451

CASE 5

FILE COPY "UD1.BAK" "UD1". PERFORM Table_Load (5. " U D
1

")

CASE 6

FILE COPY "UD2.BAK" "UD2", PERFORM Table_Load (6, "UD2")

CASE 7

FILE COPY "UD3.BAK" "UD3". PERFORM Tab1e_Load (7, "UD3")

SWITCH END

RETURN

FastRest uses DynaComms SWITCH CASE procedure to act on the

value of % Restore (the table to restore). It copies the specified table's .BAK
file to its data file, and then returns.

The Edit_Out Routine

As described above, the Edit_Out routine is used to move messages from

the Drafts or Unsent folder to the Outbox folder.

*Edit_0ut

SET ^Destination 2

PERFORM BackJJp (%Table)

PERFORM Back_Up UDestination)

SET %Move 1

SET %Answer 2

PERFORM Get_Filename

SET $F @R9.8

SET $F FILTER($f ." ".)

SET DIRECTORY DATA $Data_Dir
|
SMailbox

FILE DELETE "MOVEFILE . DCM"

FILE DELETE "MOVEFILE. ENV"

FILE RENAME $F
|

".DCM" "MOVEFI LE . DCM"

FILE RENAME $F
|

".ENV" "MOVEFI LE

.

ENV"

PERFORM Close_and_Clear (9.0)

PERFORM Delete

PERFORM Saveall

PERFORM "TM*TM" ($Data_Di r

.

$Mai 1 box,%Forward .^Answer . SPubpath), PERFORM

Get_Lists. RETURN

Edit_Out begins by backing up both the source and destination (Out-

box) tables. Then it sets the values of the %Move and % Answer variables,

which are used by the Delete routine, and calls the Get_Filename routine to

identify the name of the file in which the selected message's contents are

stored. Get_Filename reads the selected message's data into table l
), so that

the name of the file is in (? RM.N (field 8 of the record variable for table *)).

Next, Edit_Out sets the variable $F equal to the contents of (§ R9.8, and

then uses DynaComm s FILTER command to remove any spaces from $F.

since spaces are not allowed in a file name. Then it instructs DynaComm to

delete the files MOVEFILE.DCM and MOVEFILF.ENV. and then renames

the .DCM and .ENV files for the selected message to MOVEFILE.DCM
and MOVEFILE.ENV. (The .DCM file holds the message's contents. .ENV

452 COMMUNICATING WITH HOST SYSTEMS

its address information. Only messages in the Drafts, Outbox, and Unsent

folders have .ENV files, since they are the only messages for which M.M.M.
needs to track address information.)

Next Edit_Out calls Close_and_Clear to close table 9, calls Delete to

remove the selected message's record from the active folder, calls Saveall to

save all current settings, and then calls the TM routine in TM.DCT to allow

the user to address and edit the message. When that routine concludes,

Edit_Out finishes up by using Get_Lists to refresh its Sort by: and View:

lists, and then returns to the Mailboxes screen.

The Check_Del Routine

The Check_Del routine is called by the Ver_Clr routine when the user ini-

tiates an action that could result in the active mail folder changing, and the

active folder contains messages that are marked for deletion.

*Check_Del (%CD)

DIALOG (,,168,70) "AutoMCI" MODAL

MESSAGE (4,8,,) "Okay to purge all messages marked for deletion?"

BUTTON (14, 28,, 11) DEFAULT "OK" SET %CD 1, RESUME

BUTTON (,,,11) "&No" SET %CD 2, RESUME

BUTTON (,,,11) CANCEL "Cancel" SET %CD0, RESUME

MESSAGE (4,50,,) "Select 'OK' to proceed, 'No' to clear all marks,"

MESSAGE (4,58,,) "or 'Cancel' to return to the mailbox screen."

DIALOG END

WAIT RESUME

DIALOG CANCEL

IF %CD = RETURN

SET POINTER WATCH

IF %CD = 2 PERFORM Clear_Marks, SET %MarkDel 0, RETURN

PERFORM Purge_Marked, SET %MarkDel 0, RETURN

SET POINTER ARROW

RETURN

The routine creates a dialog box, shown in Figure 15.16, that informs the

user that some of the messages in the active folder are marked for deletion

and asks if they should be deleted. The user has three options: to click the OK
button, signaling that the messages should be deleted; to click the No button,

to clear the deletion marks; or to press the Cancel button, canceling the opera-

tion that called Ver_Clr. If the choice is Cancel, the routine returns a value of

to Ver_Clr. Otherwise, it performs the Clear_Marks routine if the user's choice

is No, or the Purge_Marked routine if the choice is the OK button.

The Clear Marks Routine

The Clear_Marks routine removes deletion marks from all messages in the

;ictivc folder.

" rks

Exploring the AUTOMC I . DCP Script 453

Figure 15.16
The Purge

Messages dialog

box

AutoMCI

Okay to purge all messages marked for deletion?

Select 'OK' to proceed, 'No' to clear all marks,

or 'Cancel' to return to the mailbox screen.

SUBSTR(@R(Uable).1.2.80)

SET DIRECTORY DATA $Data_Dir
|
$mailbox

SET %Counter

RECORD READ %Tab1e AT ^Counter

SET POINTER WATCH

WHILE NOT EOF

BEGIN

RECORD READ %Table AT ^Counter

IF EOF LEAVE

IF SUBSTR(@R(Uable).l.l.l) = "D" SET @R(%Table).l "

RECORD WRITE %Table AT %Counter

INCREMENT ^Counter

END

SET DIRECTORY DATA $Data_Dir

SET POINTER ARROW

RETURN

Messages are marked for deletion by replacing the first character in the

first field of their table record with a D (normally the first character is an

empty space). Thus the Clear_Marks routine reads each record in the active

table and checks the first character in the first field of each record. If that

character is a D, the routine replaces it with a space and writes the changed

record to disk.

The Mark Del Routine

The next routine performs the opposite function, marking the selected mes-

sage for deletion when the user selects the Mark Del. button.

*Mark_Del UTable. %I)

IF %I < RETURN

RECORD READ Uable AT %l

IF SUBSTR(@R(%Table).l.l.l)="D" SET @R(%Tabl e) . 1 " "
|

SUBSTR(@R(XTable).1.2.80). RECORD WRITE %Table AT XI. DECREMENT

XMarkDel

,

ELSE SET @R(XTable).l "D"
|
SUBSTR(@R(XTable) . 1 .2 .80) . RECORD WRITE

Uable AT %I. INCREMENT %MarkDel

RETURN

If the selected message is already marked for deletion, the Mark_I)el

routine removes the deletion mark.

454 COMMUNICATING WITH HOST SYSTEMS

PERFORM Del_0ne

6 CHAR 10 CHAR 10 CHAR 15 CHAR

The Purge Marked Routine

The next routine, Purge_Marked, is used to remove all records that have

been marked for deletion from the active folder.

*Purge_Marked

SET DIRECTORY DATA $Data_Dir
|
Smailbox

IF %MarkDel < 1 RETURN

SET ^Counter

RECORD READ %Table AT %Counter

WHILE NOT EOF

BEGIN

SET POINTER WATCH

RECORD READ %Table AT ^Counter

IF SUBSTR(@R(%Table). 1,1,1)="D"

INCREMENT XCounter

END

PERFORM Back_Up (Uable)

TABLE DEFINE 9 FIELDS CHAR 81 CHAR 28 CHAR

1 CHAR 8 CHAR 45 FILE

TABLE COPY %Table TO 9

PERFORM Close_and_Clear (%Table, 1)

TABLE COPY 9 TO %Table EXCLUDE "D"

TABLE CLOSE 9

SET POINTER ARROW

PERFORM Save_TabIe

RETURN

Purge_Marked reads each record in the table that represents the active

folder. If a record is marked for deletion, Purge_Marked calls the Del_One
routine to delete the .DCM and .ENV files associated with that record, and

then proceeds to read and examine the next record. When all messages have

been read and examined, it backs up the current table. Then it defines table 9

using the same field structure as the eight message folder tables and copies

the current table to it using DynaComm 's TABLE COPY command.

Then it copies table 9 back to the active table using the DynaComm
EXCLUDE command to leave out those messages that begin with the letter D
(the messages that are marked for deletion). Finally, it closes table 9 and saves

the active table, from which the marked messages have been excised, before

returning to the Mailboxes dialog box.

The Del_One routine is called by the Purge_Marked routine to delete

the files associated with a record that has been marked for deletion.

*Del_0ne

SET $F @R(%Table).8

SET $F1 TRIMf $F, ,)
|

".DCM"

SET $F2 TRIM($f,,)
|

".ENV"

FILE DEI I II $F1, FILE DELETE $F2

R! [IJPN

Exploring the AUTOMCI.DCP Script 455

Del_One sets $F equal to the file name specified in field 8 of the current

record, and then creates two new file names by concatenating that file name
with the strings ".DCM" and ".ENV". (The TRIM function removes any trail-

ing spaces from $F, in order to ensure that "J424" becomes "J424.DCM" after

the concatenation, not
-T424 .DCM", which would be an illegal file name.)

Then it issues the FILE DELETE command to delete both files in turn.

The Delete Routine

The Delete subroutine is called by the Move routine to delete, in the active

folder, the record of a message that has been moved to another folder.

*Delete

IF % I < RETURN

SET DIRECTORY DATA $Data_Dir | $Mailbox

TABLE DEFINE 9 FIELDS CHAR 81 CHAR 28 CHAR 6 CHAR 10 CHAR 10 CHAR 15

CHAR 1 CHAR 8 CHAR 45 FILE

TABLE COPY %Table to 9

RECORD READ 9 at %l

PERFORM BackJJp (%Table)

TABLE CLEAR %Table

TABLE COPY 9 to %Table EXCLUDE @R9

TABLE CLEAR 9

PERFORM Save_Table

I%Move=0

SET DIRECTORY DATA $Data_Dir

RETURN

The Delete routine begins by defining 9 as a temporary table and copy-

ing the active table to it. Then it reads record %I (representing the selected

record in the active table) in table 9, and copies all of table 9 except that

record back to the active table. Then it clears table 9, saves the active table,

and returns.

The Saveall Routine

The next routine, Saveall, is called by many routines when they need to save

current script settings.

*Saveal 1

SET @S1 $Name

SET @S2 $Pass

SET @S3 $Num
|

| $Pre_Dial
|

" '

" | $Post_Dial

SET @S4 STRUDelay)
SET @S6 STR(%Account)

|

"~"
| STRUInit) |

"~"
|
SPubpath

SAVE

SET POINTER ARROW

RETURN

456 COMMUNICATING WITH HOST SYSTEMS

The Saveall routine sets the values of the settings variables @S1, @S2,

@S3, @S4, and @S6, and then issues the SAVE command, which saves the

settings file to disk.

Message-Handling Routines

The next several routines are called by the message-handling command but-

tons on the Mailboxes screen.

The Read Routine

First among these routines is Read, which, as you might suppose, is called

when you select the Read button.

*Read

PERFORM Get_Filename

IF @R9="" RETURN

SET $F @R9.8. SET $Subjectl @R9.2, SET $Who @R9.9

IF SUBSTR(@R9. 1.1.1)="*" SET @R9 . 1
" "

|

SUBSTR(@R9 . 1 , 2 ,80) . SET@R%Table
@R9, RECORD WRITE Uable at %\

MENU CANCEL

MENU

POPUP "&File"

ITEM "Read &next" INCREMENT XI, WINDOW CLOSE XWinl, GOTO Read

ITEM "Save &as..." SYSTEM 0x0100 0x0112

SEPARATOR

ITEM "SPrint all" SYSTEM 0x0100 0x0211, SYSTEM 0x0100 0x0243

ITEM "Print se&lection" SYSTEM 0x0100 0x0243

ITEM "Printer Set&up..." SYSTEM 0x0100 0x0122

SEPARATOR

ITEM "SClose" WINDOW CLOSE XWinl, RESUME

POPUP "&Edit"

ITEM "&Copy" SYSTEM 0x0100 0x0222

ITEM "Select &all" SYSTEM 0x0100 0x0211

POPUP "&Search"

ITEM "SFind..." PERFORM FindRoutine

ITEM "Find &next..." PERFORM FindNextJump

POPUP "&Help" SYSTEM 9

MENU END

SET MEMOTITLE TRIM($Who)
|

": "
|

TRIM($Subjectl)

SET $File F I L T E R ($ F
.

" ".)

WINDOW OPEN MEMO $File
|

".DCM" IRUE XWIN1

WHEN WINDOW %HWND %MSG %WPARAM %LPARAM

BEGIN

WINDOW DEFAULT %HWND %MSG %WPARAM ZLPARAM

IF ((%HWND-%Winl) AND (%MSG=0X0002)) RESUME

END

WAIT RESUME

WHEN CANCEL WINDOW

MENU CANCEL

RETURN

Exploring the AUTOMC I . DC P Script 457

As you can see, the Read routine is long and involved. It begins by call-

ing the Get_Filename routine, which copies the selected record to table 9

and returns. Then the Read routine examines the record in table 9, extract-

ing the file name, subject, and sender from it, and changing the read/unread

indicator (an asterisk as the first character of the first record) to a space, indi-

cating that the message has been read. It then copies the table 9 record back

to the active table.

Next, the Read routine defines a new menu to be used for the message

reader. The first pop-up menu on the new menu bar is labeled "File", and

includes the items Read Next, Save as. Print all. Print selection. Printer

Setup, and Close. Most of these make use of the DynaComm SYSTEM com-

mand to access internal DynaComm functions. For instance. Print all issues

the command SYSTEM 0x0100 0x021 1 , SYSTEM 0x0100 0x0243, which

translates to a Select All command, followed by a Print Selection command.
The Read Next command is an exception. It begins by incrementing %I,

so that it points at the next record in the active table, then closes the File win-

dow and jumps back to the beginning of the Read command to read the next

message.

The next pop-up menu, Edit, also uses DynaComm SYSTEM com-

mands to implement standard Copy and Select AH functions. The Find and

Find next items, on the other hand, call script routines called FindRoutine

and FindNextJump, respectively.

The third pop-up menu. Help, makes the standard DynaComm Help

menu available to the user. That concludes the menu definition.

Next the Read routine sets the DynaComm MEMOTITLE variable to

display the sender and subject of the selected message, and then issues the

WINDOW OPEN MEMO command to open the message file. The TRUE
command that appears after the file name sets the read-only status of the file

to TRUE, and the last parameter in the line assigns the memo window's han-

dle to the variable %Winl.
The WINDOW OPEN command opens the file in a memo window,

allowing the user to read it and to make use of any of the items on the menu
that was just created. While the user reads the file, the script goes into a

loop in which it monitors the messages that Windows sends to DynaComm,
looking for a window-destroy message for the memo window that was just

created (such as would be issued if the user double-clicked on the window s

Control menu, or selected the Close item on the File menu). When the

destroy message, (%HWND=%Winl) AND (%MSG=0X0002), is received.

the script exits the loop. Meanwhile, the WINDOW DEFAULT... statement

immediately before the IF..RESUME statement instructs DynaComm to

process all Windows messages, so the window is closed as the script exits

the loop.

Finally, the Read routine cancels the WHEN WINDOW condition and

the menu it created and returns to the Mailboxes screen.

458 COMMUNICATING WITH HOST SYSTEMS

The Get_Filename Routine

The next routine, Get_Filename, is used by the Read routine and others to

obtain information about the selected message.

11 CHAR 28 CHAR 6 CHAR 10 CHAR 10 CHAR 15 CHAR

*Get^_Fi 1 ename

IF %I < RETURN

TABLE DEFINE 9 FIELDS CHAR

1 CHAR 8 CHAR 45 FILE

RECORD READ %Table at %I

SET @R9 @R%Tab1e

RECORD WRITE 9

RETURN

All the Get_Filename routine actually does is copy the selected record

to table 9 so that the routine that called Get_Filename can read and manipu-

late it more easily.

The FindRoutine Routine

Get_Filename is followed in the listing by FindRoutine, which is called by

the Find item on the Read routine's Edit menu.

*Fi ndRouti ne

DIALOG (, ,179,61) "Find"

MESSAGE (5,6,37,10) "&Find what:"

EDITTEXT (45,5,127,12) 127 "" $Find

CHECKBOX (3,20,95,12) %CB "&Match upper/lowercase"

GROUPBOX (3,32,116,26) ""

RADIOGROUP (4,37,113,11) %RG ""

RADIOBUTTON (6,41,50,12) "&Forward"

(61,41,50,12) "&Backward"

DEFAULT "OK" RESUME

CANCEL "Cancel" DIALOG CANCEL, RETURN

23,35

40,35

12)

12)

RADIOBUTTON

BUTTON (130

BUTTON (130

DIALOG END

WAIT RESUME

$Find=EDITTEXT(l)

%CB=CHECKB0X(1)

%RG=RADI0GR0UP(1)

DIALOG CANCEL

*FindNextJump

IF $Find= "" RETURN

IF %CB 1 AND %RG 2 EDIT FI

ELSE IF %CB > 1 AND %RG=1 EDIT

ELSE IF %CB AND %RG=1 EDIT

ELSE IF %CB AND %RG=2 EDIT

RETURN

ID $Find CASE REVERSE,

FIND $ F i n d CASE,

FIND $Find,

FIND $Find REVERSE

Exploring the AUTOMCI.DCP Script 459

FindRoutine begins by essentially duplicating the Find dialog box from

the Windows 3.0 version of Notepad. It offers the options for matching the

case of the search string and searching forward or backward through the doc-

ument. When the user clicks on the OK button, the routine issues the Dyna-

Comm EDIT FIND command, adding the options CASE (case-sensitive

search) and REVERSE (search backwards) as necessary.

The FindNextJump routine, which appears after the DIALOG CAN-
CEL statement in FindRoutine, simply repeats the previous search.

The Ans Set Routine

The next routine, Ans_Set, is called by the Ans_Button routine, discussed

earlier.

*Ans_Set

PERFORM Get_Filename

SET $Id ""

SET $F TRIM(@R9.9)

SET $F1 @R9.2

IF @R9.6 <>"" SET $10 @R9.6

PERFORM Close_and_Clear (9.0)

PARSE $F $Ftempl "." $Ftemp2

IF $Ftemp2 <>"" SET $F FI LTER($Ftemp2
,

" ".) FILTER($Ftempl ".)

IF $Id<> "" SET $F TRIM($F)
|

" /"
|

$Id

SET DIRECTORY DATA $Data_Dir
|
SMailbox

TABLE DEFINE 9 TEXT "ANSWER"

PERFORM WriteString(9. $F)

PERFORM WriteString(9, "re: " f$Fl)
TABLE CLOSE 9

SET DIRECTORY DATA $Data_Dir

RETURN

Ans_Set calls the Get_Filename routine, then reads the record it creates

in table 9 to obtain the message file, sender, and subject matter of the

selected message. It then writes that information, together with the MCI ID

($Id) of the sender, if available, to a text file called ANSWER, before return-

ing to the Ans_Button routine.

The For Set Routine

The For_Set routine, called by the For_Button routine (discussed above),

prepares the selected message for forwarding.

*For_Set

PERFORM Get_Filename

SET DIRECTORY DATA $Data_Dir
|
SMailbox

SET $F @R9.8

FILE COPY FILTER($F." ".)
|

".DCM" TO "FORWARD. DCM"

PERFORM Close_and_Clear (9.0)

460 COMMUNICATING WITH HOST SYSTEMS

SET DIRECTORY DATA $Data_Dir

RETURN

After calling Get_Filename, For_Set copies the .DCM file from the

selected message to a new message called FORWARD.DCM, then returns

to the For Button routine.

The Export Routine

The Export routine is called by the Export button on the Mailboxes screen.

^Export

SET DIRECTORY DATA $Data_Dir
|

SMailbox

PERFORM Get_Filename

SET $F @R9.8

PERFORM Close_and_Clear (9,0)

MENU CANCEL

MENU

SET $ F i 1 e FILTER($F," ",)
|

".DCM"

FILE CREATENAME $ F i 1 e 1 TYPE "*.TXT"

FILE COPY $ F i 1 e $ F i 1 e

1

SET DIRECTORY DATA $Data_Dir

RETURN

Export uses DynaComm's FILE CREATENAME function, which

prompts the user to supply a name for the file being created in order to cre-

ate a text file. Then it copies the current message file to the new file before

returning to the Mailboxes screen.

The Print_Mess Routine

The Print_Mess routine is called when the user presses the Print button on

the Mailboxes screen.

*Pri nt_Mess

SET DIRECTORY DATA $Data_Dir

PERFORM Get_FiIename

SET $F @R9.8

MENU CANCEL

MENU

SET $File FILTER($F," ",)
|

'

DIALOG

MESSAGE "Printing "
|

$ F i 1

e

DIALOG END

PRINT OPEN

PRINT FILE $File

PRINT CLOSE

$Mai 1 box

DCM"

Exploring the AUTOMCI.DCP Script 461

WAIT DELAY "2"

DIALOG CANCEL

SET DIRECTORY DATA $Data_Dir

RETURN

Print_Mess makes use of the DynaComm PRINT FILE command to

print the selected file.

Welcome-Message Routines

The next two routines are used to present various welcome messages to the

user when the AutoMCI script is run.

The Stat Check Routine

The Stat_Check routine is called immediately before the main Mailboxes

screen appears.

*Stat_Check

IF ICONI C() GOTO Stat_Check

SET $Stat @S5

IF $Stat = "" RETURN

PARSE $Stat SCount "&" $Stat

PARSE $Stat SReceived "&" $Stat

SET SUNSENT $Stat

SET XCount NUM($Count)

SET ^Received NUM($Recei ved)

SET XUnsent NUM(SUnsent)

IF %Count < 1 and %Received < 1 and %Unsent < 1 GOTO Welcome

DIALOG (..140.)

MESSAGE (40.8..) "M.M.M.. version 3.1"

NEWLINE

NEWLINE

MESSAGE

MESSAGE

NEWLINE

IF %Count > MESSAGE " "
|
$Count

|

" Message(s) sent."

IF %Received > MESSAGE " "
|

SReceived
|

" Message(s)

received.
"

[I %Unsent > MESSAGE " "
|

SUnsent
|

" Message(s) not sent,

Message

NEWLINE

BUTTON (54...

'Dynacomm script by Paul Bonner"
' \251 1990. 1991 by Paul Bonner.

Check your UNSENT folder.

) OEFAULT "OK" RESUME

DIALOG END

WAIT RESUME

DIALOG CANCEL

SET @S5 "0&0&0"

SAVE

RETURN

462 COMMUNICATING WITH HOST SYSTEMS

Stat_Check begins by ensuring that the DynaComm window has not

been minimized. If it has been, the routine loops until the window is

restored. Otherwise, it sets the variable $Stat equal to the contents of the set-

tings variable @S5, and then parses $Stat and converts the results to numeric

form to obtain three integer variables: % Count, % Received, and %Unsent.

If the AutoMCI script is being executed following an on-line session in

which at least one message was transmitted or received, at least one of these

values will be greater than zero. If not, the Stat_Check routine jumps to the

routine called Welcome.

If at least one message was transmitted or received or an attempt was

made to transmit at least one, then Stat_Check creates a dialog box that

reports the number of messages that were sent, received, and not sent, fol-

lowed by an OK button. When the user selects the OK button, the dialog

box closes and the routine returns to the calling routine, after setting the

value of @S5 to "O&O&O" so that all three counts will start at zero the next

time an on-line session takes place.

The Welcome Routine

The Welcome routine is called if no messages were sent or received in the

previous on-line session, or if an entirely new M.M.M. session is starting (as

opposed to AutoMCI being executed following an on-line session).

*Wel come

IF XInit-0 RETURN

OIALOG (.,168,130)

PICTURE (14,8) $Data_Dir
|

"MMM2.BMP"

MESSAGE (44,50,,) "Written by Paul Bonner."

MESSAGE (10,62,,) "Version 3.1, \251 1990, 1991 by Paul Bonner."

ICONBUTTON (109,90,,) "_INB0X" "&Mailboxes" DIALOG CANCEL, RETURN

ICONBUTTON (4,90,,) "_SENDMAIL" "Send/Rec&v" SET % I n i t 0, SET @S8 "-1",

PERFORM Saveall, DIALOG CANCEL. SET DIRECTORY DATA $Data_Dir
|

$Mailbox, SCREEN SHOW, PERFORM Close_Em, EXECUTE "Email"

ICONBUTTON (58.90.,) "_H0UR4" "&AutoMCI" SET %Init 0. SET @S8 "0",

PERFORM Saveall, DIALOG CANCEL. SCREEN SHOW, SET DIRECTORY DATA

$Data_Dir
|

$Mailbox, PERFORM Close„Em, EXECUTE "EMAIL"

, DIALOG END

WAIT RESUME

The Welcome dialog box simply displays copyright and authorship infor-

mation for M.M.M., along with three icon buttons that can be used to launch

a Send/Recv session or an AutoMCI session or to go to the Mailboxes screen.

Account Setup Routines

The final set of subroutines in AUTOMCI.DCP consists of several routines

that are used to set up and manage MCI accounts within M.M.M.

Exploring the AUTOMCI.DCP Script 463

The Setup Routine

The first of these accounts routines is the Setup routine.

CHAR 8 FILE

*Setup

SET DIRECTORY DATA $Data_Dir

TABLE DEFINE 9 FIELDS CHAR 12 CHAR 12 CHAR 99

TABLE LOAD 9 FROM "ACCOUNTS" AS DYNACOMM

DIALOG (.,128.) "Account setup" MODAL

MESSAGE (12.12..) "Select Account"

LISTBOX (36.32.42.32) 9 ^Account

BUTTON (8,, 24.) DEFAULT "&0K" SET %Choice LISTBOXO, IF %Choice

^Account DIALOG CANCEL. RETURN. ELSE SET %Account %Choice.

File_It, PERFORM Saveall. PERFORM Get_Lists, DIALOG CANCEL
' SET %Choice LISTBOX ()

PERFORM New. RESUME

BUTTON (. ,24.) " & E d i t

BUTTON (. ,24.) "&New"

DIALOG END

WAIT RESUME

DIALOG CANCEL

GOTO Setup

PERFORM Edit,

PERFORM

RETURN

RESUME

The Setup routine is called when the user selects the Account setup...

option on the Accounts menu. It opens a dialog box that lists the current

accounts, and gives you the option of selecting or editing any of those

accounts or creating a new one.

Selecting an account and pressing the OK button on this dialog box is

the same as selecting an account from the drop-down Accounts menu. Select-

ing the Edit button calls the Edit routine.

The New Routine

Selecting the New button on the Account Setup dialog box calls the follow-

ing routine.

*New

SET $Account "Name me"

SET $name "MCI ID"

SET $pass "password"

DIALOG (..140.) "New account" MODAL

NEWLINE

EDITTEXT (8.16,

EDITTEXT (8.32,

EDITTEXT (8.50,

) 52 "Account Name:
'

) 52 "Log on:

) 52 "Password:

BUTTON "OK" SET SAccount EDITTEXT(l).

EDITTEXTO). RESUME

BUTTON "Cancel" DIALOG CANCEL. RETURN

DIALOG END

WAIT RESUME

WHILE NOT EOF

BEGIN

RECORD READ 9

END

$Account LIMIT 12

" $Name LIMIT 12

" SPass LIMIT 12 PASSWORD

SET $Name EDITTEXT(2). SET SPass

464 COMMUNI

SET %I 1

*Name_Di r

SET $Newdir $Data_Dir
|

"MB"
|
STR(%I)

SET DIRECTORY MEMO CREATE $Newdir

IF ERRORO INCREMENT %I, GOTO Name_Dir

FILE COPY $Data_Dir
|

"BLANK. DCM" $Newdir
|

'

FILE COPY $Data_Dir
|

" FORWFORM. DCM" $Newdir

SET @R9.1 TRIM($Account, " ". " ")

SET @R9.2 TRIM($Name. " ", " ")

SET $Pass TRIM($Pass, " ", " ")

PERFORM Code

SET @R9.3 $Pass

SET @R9.4 "MB"
|

STRUI)
RECORD WRITE 9

INCREMENT %A

SET %Account %A-1

IF %Account = SET $Accountl $Account,

SET $Account2 $Account.

SET $Account3 $Account,

SET $Account4 $Account,

SET $Account5 SAccount,

SET $Account6 $Account,

SET $Account7 $Account,

SET $Account8 $Account,

SET $Account9 SAccount,

SET $Accountl0 $Account

ELSE IF ^Account = 1

ELSE IF %Account = 2

ELSE IF %Account = 3

ELSE IF %Account = 4

ELSE IF %Account = 5

ELSE IF %Account = 6

ELSE IF %Account = 7

ELSE IF %Account = 8

ELSE IF ^Account = 9

RETURN

\BLANK.DCM"

I "\FORWFORM.DCM"

The New routine is fairly straightforward, if a little long. It begins by cre-

ating a dialog box with edit fields in which you can enter a name for the new
account, the account's MCI log-on name, and the account's password, as

shown in Figure 15.17. These fields are all limited to 12 characters, and the

PASSWORD keyword following the LIMIT 12 statement in the Password

field tells DynaComm to echo anything typed into that field as a series of

asterisks, rather than as the actual letters that are being typed.

Once the dialog box has been filled out and closed, the routine attempts

to create a new directory in which to store the new account's messages and

data files. It begins by attempting to create a directory called MB1 under the

DynaComm data directory. If an error occurs in that operation, indicating

that MB1 already exists, it increments the value of %I and tries again (with

MB2 this time). It continues to increment %I in this manner until it finds an

acceptable name. It then copies the files BLANK.DCM and FORWFORM-
.DCM to the new directory, uses the Code routine to encode the account's

password, and then saves the account data before returning.

Exploring the AUTOMCI.DCP Script 465

Figure 15.17
The New Account

dialog box

New account

Account Name:

Log on:

Password:

EEOanTa

MCI ID

Cancel

The Account Data Routine

The next routine, Account_Data, is used to get information about the active

account during the M.M.M. start-up process and whenever the user selects a

different account from the Accounts menu or the Account Setup dialog box.

DATA $Data_Dir

9 FIELDS CHAR 12 CHAR 12 CHAR 99 CHAR 8 FILE

FROM $Data_Dir
| "ACCOUNTS" AS DYNACOMM

ounter

*Account_Data

SET DIRECTORY

SET %MENU

TABLE DEFINE

TABLE LOAD 9

RECORD READ 9

SET %AccountC

WHILE NOT EOF

BEGIN

RECORD READ 9

SET SRecord T

IF %AccountCo

ELSE IF %Acco

IF %Acco

IF %Acco

IF %Acco

IF %Acco

IF %Acco

IF %Acco

IF %Acco

IF %Acco

INCREMENT %A

! ND

DECREMENT %A

AccountJ)ata loads a file called ACCOUNTS into tabic M and reads

through it, obtaining the names of each account that the user has set up from it.

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

AT %A

RIM(@R9.1.

,

unter = S

untCounter

untCounter

untCounter

untCounter

untCounter

untCounter

untCounter

untCounter

untCounter

)

ET $Account

1 SET $Ac

SET $Ac

SET $Ac

SET $Ac

SET $Ac

SET $Ac

SET $Ac

8 SET $Ac

9 SET $Ac

?

3

4

5

6

7

1 $Reco

count2

count3

count4

count5

count6

count7

count8

count9

countl0

rd.

$Record

.

$Record,

$Record.

$Record,

$Record

,

$Record ,

$Record

,

$Record.

$Record

466 COMMUNI
Tlllllt Ml Jill HOST SYSTEMS

The File_lt Routine

Account_Data then performs the File_It routine, which is also called by

other routines in the script, including the Pick routine.

*File_It

SET POINTER WATCH

IF %Menu = 1 SET DIRECTORY

TABLE DEFINE 9 FIELDS CHAR

DATA $Data_Dir,

12 CHAR 12 CHAR 99 CHAR 8 FILE,

TABLE LOAD 9 FROM $Data_Dir
|

RECORD READ 9 at ^Account

SET SAccount TRIM(@R9.1, ,)

SET TERMTITLE "The MCI Mail M

SET $Name @R9 .

2

SET $Pass @R9.3

SET SMailbox @R9.4

PERFORM Close_and_Clear (9,0)

SET @S1 $Name

SET @S2 $Pass

SET DIRECTORY MEMO $Data.

SET DIRECTORY DATA $Data^

SET %I

TABLE DEFINE 9 TEXT "SLOTS"

PERFORM ReadString(9, $MS6)

PERFORM ReadString(9, $MS7)

PERFORM ReadString(9, $MS8)

PERFORM Close_and_CIear (9,1

PERFORM Tables

RETURN

"ACCOUNTS" AS DYNACOMM

anager : SAccount

Dir

Dir

lai

lai

box

box

File_It reopens the ACCOUNTS file to obtain the user name, password,

account name, and mailbox directory (the MB number directory in which the

account's messages and data files are stored) of the active account. It then

reads the SLOTS file from the active account's mailbox directory to obtain

the names of the active account's three user-definable mail folders.

The Edit Routine

The Edit routine is called when the user selects the Edit option in the

Account Setup dialog box.

* E d i t

RECORD READ 9 at SSChoice

SET SAccount @R9.1

IF SUBSTR($Account.l.l)="

SET $Name @R9.2

SET $Pass @R9.3

PERFORM Decode

or SUBSTR($Account,l.l)= RETURN

Exploring the AUTOMCI.DCP Script 467

SET SMailbox @R9.4

i "Edit Account

52

52

52

MODAL

"Account Name:

"Log on:

"Password :

SAccount LIMIT 12

" $Name LIMIT 12

" SPass LIMIT 12 PASSWORD

'Messages are stored in
"

' "
I
$Data_Dir I $Mailbox

DIALOG (,.180,:

EDITTEXT (8.16,

EDITTEXT (8.32,

EDITTEXT (8.50,

NEWLINE

MESSAGE

MESSAGE

NEWLINE

BUTTON (40.,.) "OK" SET SAccount EDITTEXT(l), SET $Name EDITTEXT(2). SET

SPass EDITTEXTO). RESUME

BUTTON "Cancel" DIALOG CANCEL. RETURN

DIALOG END

WAIT RESUME

SET @R9.1 SAccount

SET @R9.2 SName

PERFORM Code

SET @R9.3 SPass

SET @R9.4 SMailbox

RECORD WRITE 9 at %Choice

RETURN

The Edit routine creates a dialog box that allows the user to modify the

account name, log-on name, and password for any account, as shown in Fig-

ure 15.18. It makes use of the Decode routine (below) to decrypt the

account's password.

Figure 15.18
The Edit Account

dialog box

Edit account

Account Name:

Log on: MCI ID

Password:

Messages are s

C:\WIN3\DYNA

tored in

COMM\DAT\mb2

Okay Cancel

The Code Routine

The Code routine uses the DynaComm ENCRYPT function to scramble the

account password, passing it the word PASS as an encryption key.

468 COMMUNICATING WITH HOST SYSTEMS

*Code

SET $Pass ENCRYPT($Pass,"PASS")

SET $PL STR(LENGTH($Pass))

SET $Pass $PL
|

$Pass

RETURN

After encrypting the password, the Code routine determines its length,

converts that length to a string called $PL, and concatenates $PL with the

$Pass string. This is necessary because of a glitch in DynaComm's handling

of encrypted strings that makes them tend to grow in length and become
undecryptable after they have been stored in a fixed-length record table.

The Decode Routine

The Decode routine uses the value of $PL to circumvent the encryption

problem by only attempting to decrypt that many characters of the $Pass

string.

*Decode

SET %PL NUM(SUBSTR($Pass,l,2))

SET $Pass SUBSTR($Pass.3,%PL)

SET $Pass DECRYPT($Pass,"PASS")

RETURN

The SetupMMM Routines

The final two routines in the AUTOMCI.DCP script are used to set up

M.M.M. for the first time. The first is called SetUpMMM.

*SetupMMM

SET TERMTITLE "MMM Setup"

SET $S1 "First time set up"

SET $S2 "Before using MMM for the first time"

SET $S3 "you need to set some basic parameters."

PERFORM SetupMMM_Dialog

SETTINGS COMMUNICATIONS

SETTINGS MODEM

SET $Num "1-800-825-1515"

PERFORM Access_Num

SET $S1 "Account settings"

SET $S2 "Okay, now you'll set up the MMM script"

SET $S3 "to work with your MCI account."

PERFORM SetupMMMJDialog

TABLE DEFINE 9 FIELDS CHAR 12 CHAR 12 CHAR 99 CHAR 8 FILE

TABLE LOAD 9 FROM "ACCOUNTS" AS DYNACOMM

SET %AccountCounter

SET %I

Exploring the AUTOMCI.DCP Script 469

SET XAccount

PERFORM New

TABLE CLOSE 9

SET $S1 "Mai 1 si ots"

SET $S2 "Okay, now you'll set up the names for this"

SET $S3 "account's three user-defined mailboxes."

PERFORM SetupMMM_Dialog

SET $Mailbox "MB"
|

STR(%I)

SET $Ms6 "UD1", SET $Ms7 "UD2", SET $Ms8 "UD3"

PERFORM Slots

SET $S1 "Public phonebook"

SET $S2 "Last, you need to indicate where MMM"

SET $S3 "can find your Public phonebook."

PERFORM Setupmmm_Dialog

SET $Pubpath $Data_Dir

PERFORM Pub_Book

SET TERMTITLE "The MCI Mail Manager"

SET $S1 "All done"

SET $S2 "That's it, MMM is now set up for use."

SET $S3 "Press enter to run

PERFORM Setupmmm_Dialog

SET @S3 $NUM
|

SET @S7
""

SET %Confirm 1

SET %l

SET %Delay 30

SET % I n i t 1

SET DIRECTORY DATA $Data_Dir

PERFORM Saveall

RESTART

SetUpMMM guides the user through the process of setting communica-

tions and modem parameters, specifying the MCI access number, creating a

new account, naming the three user-definable mail folders for the new
account, and indicating the location of the Public phonebook. It makes use of

the same dialog boxes and routines used for these purposes in other parts of

the AutoMCI script, as well as of a general-purpose message routine called

SetupMMM_Dialog, which simply displays a three-line message to the user

followed by an OK button. The last of these prompts is shown in Figure L5.19.

*SetupMMM_Di al og

DIALOG (..150.) $S1

NEWLINE

MESSAGE (6...) $S2

MESSAGE (6...) $S3

470 COMMUNICATING WITH HOST SYSTEMS

NEWLINE

BUTTON (60. ,

.

DIALOG END

WAIT RESUME

DIALOG CANCEL

RETURN

DEFAULT "OK" RESUME

Figure 15.19
A prompt from the

SetupMMM routine

Public phonebook

Last you need to indicate where MMM

can find your Public phonebook.

Exploring TM.DCP
The TM.DCP (To Module) module is used to address, compose, and edit out-

going messages.

Calling the TM Module

The only way to execute the TM module is to call it as an external subrou-

tine. It expects to be passed five parameters: $Data_Dir, $Mailbox, % For-

ward, % Answer, and $Pubpath, all of which serve the same function in this

routine as they do in the AutoMCI routine.

*TM ($Data_Dir, SMailbox, ^Forward,

IF $Data_Dir="" EXECUTE "AUTOMCI"

SET DIRECTORY DATA $Data_Dir
|

$Mai

SET DIRECTORY MEMO $Data_Dir
|

$Mai

FILE COPY "OUTBOX" "OUTBOX.BAK"

FILE COPY "DRAFTS" "DRAFTS. BAK"

$Null - ""

%Answer, SPubpath)

box

box

%Null=0

SET XMessnum 1

The TM script begins by checking to ensure that it has been passed a

parameter for $Data_Dir. If it hasn't, it is probable that the user tried to exe-

cute TM directly, which can't be done, so it launches the AutoMCI script. Oth-

erwise, it sets the DATA and MEMO directories to the directory specified by

Exploring TM.DCP 471

the concatenation of $Data_Dir and $Mailbox, and makes backup copies of

the Outbox and Drafts folders. Then it initializes the variables $Null and

%Null, and sets the variable %Messnum to 1.

Message-Creation Routines

The script continues by executing a series of routines that create, edit, and

address messages.

The New Mess Routine

The first of these routines is New_Mess. The New_Mess routine is per-

formed when TM is executed for the first time and to reinitialize several vari-

ables if the user chooses to compose another message immediately after

finishing the current one.

*New_Mess

%List=l

%Phonebook=13

$Subject=$Null

$Name=$Null

$Fi 1 e=$Nul

1

$From2=$Null

%C1 = %Null

%C2 = %Null

%C3 = %Nul 1

TABLE DEFINE 11 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

TABLE DEFINE 14 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

SET %Table 11

IF %Answer=l PERFORM Answer_Message

PERFORM Get_Date

SET STextfile SFile
|
STRUMessnum) , SET STextfile FI LTER(STextf i 1

e.
" ".)

FILE DELETE STextfile
|

".ENV". FILE DELETE STextfile
| ".DCM"

SET POINTER ARROW

IF %Answer=2 FILE RENAME "MOVEFILE .DCM" STextfile
|

".DCM". PERFORM Edit_Set

TABLE DEFINE 10 TEXT STextfile
|

".ENV"

SET DIRECTORY DATA $Data_Dir

TABLE DEFINE 13 FIELDS char 45 char 45 char 45 char 45 FILE

TABLE LOAD 13 FROM SPubpath
|

"\PUBLIC. PBK" AS DYNACOMM

TABLE DEFINE 8 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45 FILE

TABLE LOAD 8 FROM "PRIVATE . PBK" AS DYNACOMM

SET DIRECTORY DATA $Data_0ir
|
SMailbox

SET %Name *Nul

1

SET SNamel SNull. SET SName2 SNull . SET SName3 SNull. SET SName4 SNull

New_Mess begins by initializing a series of variables that will be used In

the To_Dialog routine (below), and then defines two tables. 1 I and 14. to

hold the list of To: and cc: addressees for the message being composed. It

then examines the value of the variable % Answer. If %Answer has a value

472 COMMUNICATING WITH HOST SYSTEMS

of 1, it calls the Answer_Message routine to obtain information about the

message being answered.

Next the New_Mess routine calls the Get_Date routine to create a name
for the new message file based on the current date and time. It then deletes

any files with that name that already exist, and if Answer% is equal to 2

(indicating that a message is being forwarded), renames MOVEFILE.DCM
(which was created when the user selected the Forward button) to the new
message name and calls the Edit_Set routine.

Next it creates an envelope file for the new message, and defines tables 8

and 13 to hold the Public and Private address books. Finally, it initializes sev-

eral additional string and integer variables, before proceeding on to the

To_Dialog routine.

The To_Dialog Routine

To_Dialog creates the Message Addressing dialog box, shown in Figure 15.20,

which is used to obtain addressing and handling information for the message

being created. Its operation is fairly straightforward. Clicking either phone-

book option button launches the ChangeJList subroutine, which displays

the specified address book. Clicking on the To: and cc: buttons toggles back

and forth between lists of the message's To: and cc: fields. Clicking the Edit

name button launches the Edit_Name routine, which allows the user to

change the name that is currently highlighted in the To: or cc: list. Selecting

the Cut_Name button deletes the highlighted name. The Edit Phonebook

button is used to launch the address book-management script.

Here is the To_Dialog routine:

*To_Dialog

DIALOG (,,268.198)

MESSAGE (8,4, .) "Edit Envelope"

EDITTEXT (100.34,,) 98 "Name: " $Name

BUTTON (238,34,25,11) DEFAULT "&Add" PERFORM Get_Name

RADIOGROUP (4,18,,) $Null PERFORM Change_Book

RADIOBUTTON (12,18, ,) "&Public"

RADIOBUTTON (56,18, ,) "Private"

LISTBOX (16,34.76.100) XPhonebook %Name

WIDEBUTTON (24,134,56,11) "Edit Phone&book" PERFORM Edit_Phbk, RESUME

RADIOGROUP (110,55,,) %List $Null PERFORM Change_List

RADIOBUTTON (130, 55,, 11) "&To list"

RADIOBUTTON (200.55, ,) "cc list"

LISTBOX (112,71,148,40) %Table

BUTTON (132,118,45.11) "SEdit name" PERFORM Edit_Name

BUTTON (196,118,45,11) "&Cut name" PERFORM Cut Name

"Subject: " SSubject

"Receipt"

"PRIORITY DELIVERY" CHECKBOX (92,186.,) XC3 "Mask

Stop" "Cance&l Message" SI I POINTER WATCH, FILE

".INV", SI I XTable XNull, SI I 7,1 9999, SET

EDITTEXT (92,144, ,) 118

CHECKBOX (92,158,.) %C1

CHECKBOX (92,172,,) %C2

List Members"

ICONBUTTON '0,1/0, .)
"_

DELHI $Textf1 l"

Exploring TM.DCP 473

/

DIRECTORY DATA $Data_Dir. RETURN

ICONBUTTON (228,170.,) NOTE "&Done" PERFORM Done. RETURN

DIALOG END

WAIT RESUME

SET %Phonebook RADIOGROUPt 1) . IF %Phonebook=l %Phonebook=13 . ELSE

%Phonebook=8

$Name=EDITTEXT(l)

GOTO To„Dialog

Figure 15.20
The Message

Addressing dialog

box

Edit Envelope

O Public <§> Private

Dockery, Wayne
Doerr, John
Dougherty, Brian
Duorak, John
Dyson, Esther
E. Ballard, Lisa
E. Dauis, Freder
Edward Mcflllistei

Einstein, Ken
Ekel, Richard

Name: Thomas Smith / 555-5555 Add

<S> To list

Cannon, Orlan

iley, Mark
Edit name

|

Edit Phonebook
1

Cancel Message

Subject:

D Receipt

Q Priority Delivery

D Mask List Members

O cc list

Cutname

Done

The only thing that isn't immediately obvious about this routine is the

action of the Add button, which launches the Get_Name routine. This but-

ton is identified as the default button for the dialog box, which means that it

is executed whenever the user presses Enter or double-clicks a control that

doesn't have its own command sequence. Thus, the Get_Name routine is exe-

cuted whenever the user double-clicks on a name in the address book list or

types a name into the Name field and presses Enter.

The Edit Phbk Routine

The next routine, Edit_Phbk. is used to launch the Phon_Man address book

editing routine in PM.DCT. It begins by noting the values of the Subject field

and the handling options, so that they can be restored when the Phon_Man
routine is complete. Then it launches that routine.

*Edit_Phbk

SET SSubject EDITTEXT(2)

SET %C1 CHECKBOX(l)

474 COMMUNICATING WITH HOST SYSTEMS

SET %C2 CHECKB0XC2)

SET %C3 CHECKB0XC3)

SET ^Phonebook 13

SET $Phonebook "Private"

PERFORM "PM*Phon_Man" (RADI OGROUP (1)

)

RETURN

After returning from the Edit_Phbk routine, the Script executes a

RESUME command so that the To_Dialog dialog box is redrawn reflecting

the handling and subject-field settings recorded by Edit_Phbk.

The Edit_Set Routine

The Edit_Set routine is used to obtain address information from messages

that are being moved from the Drafts or Unsent folders to the Outbox.

*Edit_Set

IF NOT EXISTS "MOVEFILE. ENV" RETURN

TABLE CLEAR 9

TABLE DEFINE 9 TEXT "MOVEFI LE

.

ENV"

*Esl

RECORD READ 9

IF @R9="To:" GOTO Esl

IF @R9="cc:" GOTO Es2

IF @R9 <> $Null SET @R11.1 @R9 , PERFORM READSTRI NG(9 . @R11 . 2), PERFORM

READSTRING(9, @R11 .3) . PERFORM READSTRINGC9 , @R1 1.4). RECORD WRITE

11, RECORD read 9

GOTO Esl

*Es2

RECORD READ 9

IF @R9 = "Subject:" GOTO Es3

IF @R9 <> $Null SET @R14.1 @R9 , PERFORM ReadStri ng(9 . @R14 . 2), PERFORM

ReadString(9, @R14. 3)

,

PERFORM READSTRING(9 , @R14.4), RECORD WRITE

14, RECORD READ 9

GOTO Es2

*Es3

RECORD READ 9

SET $Subject @R9

RECORD READ 9

SET %C1 NUM(@R9)

RECORD READ 9

SET %C2 NUM(@R9)

RECORD READ 9

SET %C3 NUM(@R9)

FILE DELETE "MOVEFI LE

.

ENV"

RETURN

The routine begins by opening MOVEFILE. ENV. It then uses repeated

RECORD READ commands to read through the file line by line. The struc-

ture of .ENV or envelope files is quite simple: The file begins with a line

Exploring TM.DCP 475

containing the label "To:", then has four lines of address information

(name, MCI ID, EMS1, and EMS2) for each person on the To: list, with a

blank line separating each name, then a line containing the label "cc:" and

four lines of address information for each person on the cc: list, then a line

containing the label "Subject:" and a line for the message's subject, and

finally three lines that contain either a 1 or a 0, reflecting the message's han-

dling options.

Thus, the envelope file for a message addressed to my MCI address,

and copied to John Smith at an EMS address, would look something like

Figure 15.21.

Figure 15.21
A sample envelope

'file

Notepad -BKM4921.ENV
File Edit Search Help

To:
Bonner, Paul
MCI ID: 378-6376

cc:
Smith, Thomas
EMS: Internet
MCI ID

MBX: TSBTS

Subject:
New finance ideas
1

As it reads through the file, the Edit_Set routine uses the labels "To:",

"cc:" and "Subject:" to guide its actions. Nonblank lines after the To: label

are copied to the table that holds the list of To: recipients, those after the cc:

label are added to the cc: list, and so on.

The Get Date Routine

M.M.M. automatically assigns names to the message files it creates when you

compose or receive mail, based on the current date and time. The Get_Date
routine, and its companion routine. Shorten, are used to generate these file

names.

476 COMMUNICATING WITH HOST SYSTEMS

*Get_Date

SET $D1 SUBSTR(DATE(),1,2)

SET $D2 SUBSTR(DATE(),4,2)

SET $D5 SUBSTR(DATE(),8.1)

SET $T1 SUBSTR(FILTER(TIME()

SET $T2 SUBSTRC FI LTER(TIME()

SET $T3 SUBSTRC FI LTER(TIME()

IF $T3 = "P" $T1=STR(NUM($T1)+12

SET $T4 $T1
|

":"
|

$T2

PERFORM Shorten ($D1)

PERFORM Shorten ($D2)

Shorten ($T1)

Shorten ($T2)

e $D1
I

$D2

$Null),1.2)

$Null).3.2)

$Null),8,1)

PERFORM

PERFORM

SET $Fi

RETURN

$T1 $T2 |$D5

Get_Date begins by setting a series of three variables to hold the current

month ($D1), day ($D2), and a single digit representing the current year

($D3). These values are obtained from the DynaComm DATE function,

which returns the current date in the form of 11/03/88. Then the variables

$T1, $T2, and $T3 are used to hold the hour, minute, and am/pm indicator

for the current time, which is obtained from the TIME function. If the

am/pm indicator says that the current time is a pm hour, the value of $T1 is

increased by 12. Then variable $T4 is set to hold the hour and minute indica-

tors from $T1 and $T2, separated by a colon.

Thus, if the TIME function returns a value of 03:05:18 pm, $T1 will con-

tain the string "15", $T2 will contain the string "05", $T3 will contain "P",

and $T4 will contain "15:05".

The Shorten Routine

Next, the Shorten routine is called four times, once each for $D1, $D2, $T1,

and $T2.

^Shorten ($T)

IF NUM($t)<26 $T=CHR

IF NUM($T)=26 $T="~"

IF NUM($T)=27 $T="!"

IF NUM($T)=28 $T="$"

IF NUM($T)=29 $T="_"

IF NUM($T)=30 $T="#"

IF NUM($T)=31 $T=" A "

RETURN

NUM($T)+65), RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

This routine is used to produce a shorter version of the current time and

date, so that they can be represented in a six-character file name. Ordinarily,

Exploring TM.DCP 477

it would take up to ten characters to represent the time and date in a file

name: two characters for the current hour, two for the current minute, two

for the month, two for the day, and two for the year.

However, the script cheats a little by representing the year with a single

digit (which leads to the possibility of message names repeating after ten

years), but even so, a numeric representation of the time and date would still

require an additional eight digits, and I wanted to get the total down to at most

six so that I could append an additional two-digit code. The code would allow

up to 99 messages to be received using the same six-digit time and date stamp.

The answer was to convert each element of the time and date to a single

alphanumeric character. Numbers from to 25 are simply converted to their

letter equivalents (0 becomes A, 1 becomes B, and so on) by using the CHR
function to convert the value of the number being converted, plus 65, to a

single-letter string. (The script adds 65 to the value of the number because

the ANSI uppercase alphabet starts at CHR$(65).

Numbers from 26 through 31, meanwhile, are simply assigned other char-

acters that can legally be used in file names (~, !, $, _, #, and A
, respectively),

and numbers from 32 to 59 are not converted.

Once Shorten has been performed for each of the four strings, Get_Date

creates a variable called $Filename by concatenating the contents of $D1,

$D2, $T1, $T2, and $D5 with this command:

SET $File $D1
|

$D2 |
$T1

|
$T2 |$D5

Thus, a file created at 3:05 pm on October 8, 1991 would be called

KIPF1. And since minutes from 32 to 59 are not converted, a message at 3:42

pm on the same day would be called KIP421, still meeting the six-character

limit objective.

The Get Name Routine

The following routine, Get_Name, is performed when the user selects the

Add button on the Message Addressing dialog box (Figure 16.20), created

by the To_Dialog routine.

*Get_Name

$Name=EDITTEXT(l) . IF SUBSTR($Name . 1 . 1)<>" " AND $NameO$Null PERFORM

Parse_Name. PERFORM Add_To. PERFORM UPDATE. RETURN

IF LISTBOXUK0 RETURN

%Name=LISTB0X(l)

RECORD READ %Phonebook AT %Name

SET @R9 @R$SET $Namel @R(%Phonebook) .

1

SET $Name2 @R(%Phonebook) .2

SET $Name3 @R(%Phonebook) .3

SET $Name4 @R(%Phonebook) .4

PERFORM Add_To

PERFORM Update

RETURN

478 COMMUNICATING WITH HOST SYSTEMS

The Get_Name routine has to be able to add names to the To: and cc:

list boxes from both the address book list box and the Name: field. It begins

by examining the Name: field. If that field is not empty, and its first character

is not a space (which would suggest that the field contains only spaces), the

Get_Name routine calls the Parse_Name, Add_To, and Update routines, in

succession, before returning.

Otherwise, Get_Name looks to the address book list box for a name to

be added to the current list. If no name is selected in the address book list

box (LISTBOX(l) < 0) it returns, unable to find a name to add to the To: or

cc: list. Otherwise, it reads the selected name's record in the % Phonebook

table and sets the four fields of name data equal to those in the % Phone-

book record. Then it calls the Add_To and Update routines before returning.

The Parse_Name Routine

The Parse_Name routine is used by the Get_To routine to break names

typed into the Name: field into the four fields of name data.

*Parse_Name

$N2=$Null

PARSE $Name $Namel "/" $Name2

If $Name2<>$Null PARSE $Name2 $Name2 "/" $Name3, SET $Name2 TRIMC $Name2 ,

" ". " ")

IF $Name3<>$Null PARSE $Name3 $Name3 "/" $Name4, SET $Name3 TRIM($Name3,

" ", " ")

SET $Test FILTER($Name,", ".). IF LENGTHC $Test)=0 SET $Name $Nul 1 , RETURN

PARSE SNamel $N1 "." $N2

IF $N2 = $Null PARSE SNamel $N1 " " $N2, SET SNamel TRIM($n2." ". " ")
|

". "
|

TRIM ($N1. " ", " ")

RETURN

To enter a person's name and MCI address or EMS address into the

Name: field, you type all the information on one line, separating the four

fields with a /. Thus, you might enter

John Smith / 555-5555

to address a message to John Smith at MCI address 555-5555. Or you would

enter

John Smith / EMS: INTERNET / MCI ID: 376-5414 / JS@ABCXYZ.COM

to send a message to Mr. Smith at an Internet EMS address.

The Parse_Name routine takes what you type and breaks it up for the

Name, MCI ID:, EMS1 , and EMS2 fields using DynaComm's PARSE com-

mand. In addition, if the Name field does not contain a comma, it reverses

the order of the addressee's name, so that John Smith becomes Smith, John

in the To: or cc: list.

Exploring TM.DCP 479

1,1)="M" or SUBSTR($Name2,l,l)="m" SET $To

MCID: mcid",), SET $Name2 "MCI ID: "
|

$To

$Namel

$Name2

$Name3

$Name4

The Add To Routine

The Add_To routine is used to actually add the addressees name to the To:

or cc: list.

*Add_To

IF SUBSTR($Name2

FILTER($Name2.

SET @R(%Table).l

SET @R(%Table).2

SET @R(%Table).3

SET @R(%Table).4

RECORD WRITE %Table

RETURN

The first line of the Add_To routine uses the DynaComm FILTER com-

mand to remove any or all of the characters "MCID: mcid" from $Name2,

the variable that holds the MCI ID of the addressee. It then adds the string

"MCI ID:" to the beginning of $Name2. This ensures that all MCI addresses

will follow a consistent pattern, making it simpler for the EMAIL.DCT rou-

tine to process them.

Once that step is done, the routine simply assigns the variables $Namel
through $Name4 to the four fields in the current record of the To: or cc: list,

and then writes that record to disk before returning.

The Update Routine

After the name has been added to the To: or cc: list, the Get_Name routine

calls the Update routine to refresh the contents of the To_Dialog dialog box.

*Update

SET $Namel $Null. SET $Name2 $Null. SET $Name3 $Nul 1 . SET $Name4 $Null

DIALOG UPDATE LISTBOX(l) TABLE %Phonebook

DIALOG UPDATE LISTB0XC2) TABLE Uable
DIALOG UPDATE EDITTEXT(l) $Null

RETURN

Update clears the contents of the variables $Namel through $Name4.
then uses the DynaComm DIALOG UPDATE command to refresh the two

list boxes so that they show the current address book and To: or cc: list. It

then clears the Name: field before returning.

The Edit Name Routine

The Edit_Name routine is used to edit addressing data for the selected

addressee.

*Edi t_Name

SET %Name LISTB0X(2)

RECORD READ %Table AT %Name

480 COMMUNICATING WITH HOST SYSTEMS

|

TRIM(@R9.2)

$Name
|

"/"
|

TRIM(@R9.3)

$Name "/" TRIM(@R9.4)

1)

IF @R%Table = $Null RETURN

TABLE DEFINE 9 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

SET @R9 @R%Table

SET $Name TRIM(@R9.1)
|

"/

IF @R9.3 <>$Null SET $Name

IF @R9.4 <> $ N u 1 1 SET $Name

PERFORM Close_and_Clear (9

TABLE COPY %Table TO 9 EXCLUDE @R%Table

PERFORM Close_and_Clear (%Table.l)

TABLE COPY 9 to %Table

PERFORM Close_and_Clear (9,0)

DIALOG UPDATE LISTB0XC2) TABLE %Table

DIALOG UPDATE EDITTEXT(l) $Name

RETURN

The routine copies the four fields of the current record to the variable

$Name, and then places $Name into the Name edit text field after deleting

the record from the To: or cc: list. This allows the user to edit the data the

way it appears in the edit text field.

The Cut_Name Routine

The Cut_Name routine is used to remove a selected record from the To: or

cc: list.

*Cut_Name

SET %Name LISTB0XC2)

RECORD READ %Table AT %Name

IF @R%Table = $Null RETURN

TABLE DEFINE 9 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

TABLE COPY %Table TO 9 EXCLUDE @R%Table

PERFORM Close_and_Clear (%Table,l)

TABLE COPY 9 TO Uable
PERFORM Close_and_Clear (9,0)

DIALOG UPDATE LISTBOXC 2) TABLE %Table

RETURN

After checking to ensure that the cursor isn't on an empty record, Cut_Name

defines table 9 as a temporary table and copies all records except the high-

lighted record in the current table to table 9. It then closes, clears, and rede-

fines the To: or cc: table, and copies the contents of table 9 to it. Finally it

closes and clears table 9, and updates the contents of the To: or cc: list box.

The Change List Routine

The Change_List routine is called when the user selects either the To: or cc:

radio button.

Exploring TM.DCP 481

*Change_Li st

% L i s t =RADI0GR0UP(2)

IF %L1st = 1 SET %Table 11, ELSE SET %Table 14

DIALOG UPDATE LISTB0XC2) TABLE %Table

RETURN

The DynaComm RADIOGROUP function returns an integer that iden-

tifies the selected button in the specified radio-button group. So Change_List

assigns the value of RADIOGROUP(2) to the variable %List, and then

acts, based upon % List's value. If %List is equal to 1, Change_List sets the

%Table variable to 1 1 (the To: list). Otherwise, %Table is set to point to 14

(the cc: list). Then the routine issues the DIALOG UPDATE command to

update the list box to show the new table.

The Change Book Routine

The Change_Book routine, used to toggle between the Public and Private

address books, is nearly identical to Change_List.

*Change_Book

SET %Phonebook RADIOGROUPC 1

)

IF 7 Phonebook=l %Phonebook=13, ELSE %Phonebook=8

DIALOG UPDATE LISTBOX(l) TABLE %Phonebook

RETURN

The Answer Message Routine

The next routine, Answer_Message, is called during the script's initialization

sequence if the % Answer flag is set to 1, which indicates that the message

being composed is a reply.

*Answer_Message

TABLE DEFINE 9 TEXT "ANSWER"

PERFORM Readstring(9, $Name)

SET $N1 $Nul

1

PERFORM Readstring(9, $Subject)

PERFORM CI ose_and_Cl ear (9,0)

SET $Namel $Null

SET $Name2 $Null

SET $Name3 $Null

SET $Name4 $Null

PERFORM Parse_Name

IF $Name2 <>$Null SET $Name2 "MCI ID: "
|

$Name2

PERFORM Add_To

SET $Name $Null

FILE DELETE "ANSWER-

RETURN

482 COMMUNICATING WITH HOST SYSTEMS

The Answer_Message routine begins by denning the file ANSWER,
which was created in the AUTOMCI.DCT script as a text file, and then

reads from it the name of the person whose message is being answered and

the subject of the message. It then performs the Parse_Message routine to

break the name into its component parts and then the Add_To routine to

add that information to the message 's To: list. Finally it deletes the

ANSWER file and returns.

The Done Routine

The Done routine is called when the user presses the Done button on the

Message Addressing dialog box.

*Done

SET $Subject EDITTEXT(2)

RECORD READ 11 at XNull

SET $G @R11.1

IF SUBSTR($G,1.1) = " " SET %Table 11, SET %List 1, GOTO To__Dialog

DIALOG CANCEL

PERFORM Close_and_Clear (13,0)

PERFORM Close_and_Clear (8,0)

GOTO Process

The Done routine begins by setting the message subject equal to the

contents of the Subject: text box, and then reads the first record in table 11

(the To: table). If the first character in that record is a null string, then the

To: list must be empty. A message needs at least one To: recipient, so when
this error occurs, the routine simply returns to the Message Addressing

screen so that the user can add to the To: list.

The Process Routine

If the first character in the To: list is anything other than a null string, the

Done routine closes and clears the address book tables, cancels the dialog

box, and proceeds to the Process routine.

^Process

SET %Table 2

SET @R11.1 "
"

RECORD WRITE 11

SET @R14.1 "
"

RECORD WRITE 14

;
***** WRITE envelope

PERFORM Wri teString (10, "To:")

SET %R %Null

;
***** WRI II lo fields

RECORD READ 11 at %R

SET @R10 @R11.1

Exploring TM.DCP 483

SET $First2 @R10

SET @R10 TRIM(@R10 (

" "," ")

The Process routine begins by writing blank records at the end of both

the To: and cc: lists (tables 1 1 and 14). Then it begins the process of building

the .ENV file (table 10) for the message by first writing the string "To:" to it,

and then reading the first field in the first record in table 1 1 (the To: table) to

obtain the first name in the To: list. It assigns that variable to the @R10
record variable and to the $First2 variable, which is used to store the name
of the first person on the message s To: list.

The More Tos Routine

Then the script continues on to the More_Tos loop.

*More_Tos

RECORD WRITE 10

SET $From2 @R11.2

PERFORM WriteString(10,$From2)

PERFORM WriteString(10, OR11.3)

PERFORM WriteString(10, @R11 .4)

PERFORM WriteString(10, $Null)

INCREMENT %R

RECORD READ 11 at %R

SET @R10 @R11.1

IF SUBSTR(@R10,1,1)<>" " GOTO More_Tos

SET %R %Null

PERFORM WriteString (10. "cc:")

The More_Tos loop begins by writing the contents of the @R10 record

variable to disk, then sets the variable $From2 to the contents of the second

field in the current record in table 11. It then performs the WriteString routine

to write that variable to record 10, followed by three additional WriteString

commands, which write the contents of fields 3 and 4 (the EMS fields) of the

current table 1 1 record, and then a blank record, to table 10. Next it incre-

ments the counter % R, which it uses to track the number of the table 1

1

record that is being processed, and reads the next record in table 11. If that

record isn't blank, there are more To: names to process, so the routine jumps

back to the More_Tos label.

The Write CC Fields Routine

If there is no next record, the script writes the string "cc:" to the .ENV file

and proceeds on to the Write_CC_Fields routine.

*Write_CC_Fields

RECORD READ 14 at %R

484 COMMUNICATING WITH HOST SYSTEMS

PERFORM WriteString(10, @R14.1)

PERFORM WriteString(10, @R14.2)

PERFORM WriteString(10. @R14.3)

PERFORM WriteString(10, @R14.4)

PERFORM Wn'teString(10, $ N u 1 1)

INCREMENT %R

RECORD READ 14 AT %R

SET @R10 @R14.1

IF SUBSTR(@R10, 1,1) <> " GOTO Write CC Fields

The Write_CC_Fields routine works much like the More_Tos routine

(above), except that it takes its data from table 14 (the cc: table) rather than

from table 11. It reads a record in table 14 and writes each of its fields to the

.ENV file table as a separate record. Then it reads the next record in table

14, and jumps back to the beginning of the Write_CC_Fields routine if the

record isn't blank.

The Write Subject and Handling Routine

If the record is blank, the script continues on to the Write_Subject_and_Han-

dling routine.

*Wri te_Subject_and_Handl ing

PERFORM WriteString(10, "Subject:")

PERFORM WriteString(10,$Subject)

PERFORM WriteInteger(10,CHECKBOX(2))

PERFORM Wr ite Integer (10, CHECKBOX(l))

PERFORM Wri te Integer (10 .CHECKBOX (3))

PERFORM Close_and_Clear (11.0)

PERFORM Close_and_Clear (14,0)

PERFORM Close_and_Clear (10,0)

SET $Bodyfile $Texttile
|

".DCM", SET $Bodyfile FI LTER($Bodyf i 1 e
,

" ",)

IF %Forward=0 and ^Answer <> 2 FILE COPY "BLANK. DCM" TO $Bodyfile

IF %Forward=l FILE COPY "FORWFORM. DCM" to SBodyfile, FILE COPY

FORWARD. DCM" TO $Bodyfile APPEND, FILE DELETE " FORWARD . DCM"

SET $Who $First2

IF SUBSTR($Subject,l,4)="re: " SET $Subject SUBSTRt $Subject , 5 ,25)

The Write_Subject_ar)d_Handling routine begins by writing the string

"Subject:" to record 10, and then writes the message's subject, followed by

the values of the three handling check boxes (1 if the option was checked,

if it was unchecked). That completes the envelope file, so the routine closes

and clears from memory tables 10, 11, and 14, and assigns the name of the

message to be created to the variable $Bodyfile.

DynaComm won't create a new memo file automatically under script

control without user interaction, so rather than force the user to intercede in

the process, the script copies an existing file, BLANK.DCM (a text file con-

taining a single space character) to $BodyFile. However, if the user is for-

warding a message, the script first copies FORWFORM.DCM (a message

Exploring TM.DCP 485

file that contains a banner that reads "Forwarded Message") to $Bodyfile,

and then appends the file FORWARD.DCM (which contains the body of the

message being forwarded) to that. Finally, it sets the variable $Who to the

value of $First2, and trims the characters "re:" from the beginning of $Sub-

ject if it finds them there.

The Compose Message Routine

The script then proceeds to the Compose_Message routine.

*Compose_Message

MENU CANCEL

MENU

POPUP "File" System 1

POPUP "Edit" System 2

POPUP "Search" System 3

MENU END

SET MEMOTITLE TRIM($Who)
|

": "
|
TRIMC $Subject)

WAIT EDIT $Bodyfile

MENU CANCEL

MENU

MENU END

The Compose_Message routine instructs DynaComm to display its stan-

dard File, Edit, and Search menus, and to give the message window it is

about to open a title that consists of the contents of $Who separated from

the contents of $Subject by a colon. Then it issues the command WAIT
EDIT $BodyFile, which tells DynaComm to load $Bodyfile into a memo win-

dow and pause script execution until that window has been closed, thus giv-

ing the user the opportunity to compose or edit the message, as shown in

Figure 15.22.

The script resumes when the edit window closes, canceling the menu.

The Process Message Routine

It then proceeds on to the Process_Message routine.

*Process_Message

DIALOG (..170.)

MESSAGE (4.8.,) "What would you like to do with this message?"

MESSAGE (4.32..) "Save to OUTBOX for delivery at next connect."

MESSAGE (4.42..) "or save to DRAFTS for more editing. "

MESSAGE (4.52. .) "or DISCARD i I
.

"

ICONBUTTON (20.76..) "„outbox" "Outbox" SET XTable 2. RESUME

ICONBUTTON ".change" " Drafts" SET %Table 3. RESUME

ICONBUTTON "_trash" "Discard" DIALOG cancel . FILE DELI • t file
|

MV" . FILE DELETE SBodyfile. GOTO End 1

1

DIALOG END

WAIT RESUME

486 COMMUNICATING WITH HOST SYSTEMS

Figure 15.22
The M.M.M.

message editor

File Edit Search

Undo Alt+Bksp

Cut Shift+Del
Ton, Copy Ctrl+lns

Paste Shift+Ins

disc Clear

Print

Select All

Del

Set Margin...

Set Tab Width...

Reformat

Align

Center

Merge...

M.M.M.

Thomas: new finance proposal

t»e finance project that I would like to

~^nr

SET $Temp_To SUBSTR($Fi rst2 , 1 . 18)

SET $Temp_Sub SUBSTRt $Subject , 1 ,25)

IF LENGTH($Temp_To) <18 PERFORM Pad ($Temp_To, 18)

IF LENGTH($Temp_Sub) <25 PERFORM Pad ($Temp_Sub, 25)

SET $Temp_Date DATE()

SET %fs FILESIZE($Bodyfile)

SET $Fs STRUFs), IF LENGTH($Fs)<6 PERFORM Pad ($Fs.6:

SET @R(Uable).l " >"
|

$Temp_To

$Temp_Date
|

"

SET @R(%Table).2 SSubject

SET @R(%Table) .3 STR(%Fs)

SET $tl SUBSTR(FILTER(TIME(),":",$Null),1.2)

SET $t2 SUBSTR(FILTER(TIME(),":".$Null).3,2)

SET $t3 SUBSTR(FILTER(TIME().":", $Null), 8.1)

IF $T3 = "p" $Tl=STR(NUM($tl)+12)

SET $T4 $T1
|

":"
|

$T2

SET @R(%Table).4 1T4

SET @R(%Table).5 DATE(

)

IF SUBSTmi rom2J ,1)-"M

FILTER($I rom2,"MCID

SET @R(%Table).6 $From2

SET @R(%Table).8 $Textfile

SET @R(%Table).9 $1 lrst2

RECORD WRITE (XTablej

II stable - 2 TABLE SAVE 2 10 "OIJTBOX

$Temp__Sub ;fs

or SUBSTR($From2 > l,l) = "m'
,

mcid" .

)

SET $From2

AS DYNACOMM, I I SI I ABLE SAVE 3 TO

Exploring TM.DCP 487

"DRAFTS" AS DYNACOMM

DIALOG CANCEL

GOTO End_It

The Process_Message routine begins by creating a dialog box, shown in

Figure 15.23, that gives the user three options for handling the message that

was just created: to place it in the Outbox folder, to place it in the Drafts

folder, or to discard it. If the user selects the last option the message is erased

and the routine jumps ahead to the End_It routine. Otherwise, the Process_-

Message routine proceeds to build the record for table 2 (the Outbox folder)

or table 3 (the Drafts folder) which will point to the newly created message.

It begins this process by constructing the first field in the message,

which is what is displayed in the main list box of the Mailboxes screen (Fig-

ure 15.2). In order to do so, it has to trim or pad the various data items that

are to be included in that field so that they'll all line up correctly in the list

box. Thus, the subject of the message gets trimmed to 25 characters, the file

size is padded to 6 characters, and so on.

Figure 15.23
The Process

Message dialog box

What would you like to do with this message?

Save to OUTBOX for delivery at next connect,

or save to DRAFTS for more editing,

or DISCARD it?

m
Outbox Drafts Discard

Next the routine writes the rest of the fields for the record, using the real

unpadded and untrimmed values for subject, file si/e. sender, and so on.

Finally, the routine saves the record to either the Drafts or Outbox folder

before proceeding to the End_It routine.

The End It Routine

The End_It routine is as follows:

*End It.

SET Unswer %Nul I

SET ^Forward XNull

DIALOG (. .160.)

MESSAGE (24.16..) "What do you want to do now?"

ICONBUTTON (15.36.60.) "..create" "&New Message" DIALOG CANCEI.

^Forward %Null. SET %Answer %Null. INCREMENT %Messnum. GOTO N

488 COMMUNICATING WITH HOST SYSTEMS

ICONBUTTON (80,36.60.) "_outbox" "&Mailboxes" RESUME

ICONBUTTON (15.66.60.) "_sendmail" "&Send Mail" SET POINTER WATCH, SCREEN

SHOW, SET DIRECTORY DATA $Data_Dir
|
$Mailbox, PERFORM

"AUTOMCI*Close_Em". EXECUTE "EMAIL"

ICONBUTTON (80,66,60.) "_hour4" "&AutoMCI" SET POINTER WATCH, SCREEN

SHOW, SET @S8 STR(0), SET DIRECTORY DATA $Data_Dir
|
$Mailbox,

PERFORM "AUTOMCI*Close^Em", EXECUTE "EMAIL"

DIALOG END

WAIT RESUME

DIALOG CANCEL

SET UABLE 2

SET %I 9999

SET DIRECTORY DATA $Data_Dir

RETURN

End_It asks the user what he or she wants to do next—create another

message, go to the Mailboxes screen, execute the Send/Recv routine, or

launch the AutoMCI background mail service— as shown in Figure 15.24. In

the first case it jumps back to the New_Mess routine at the beginning of the

TM.DCP listing. In the last two cases it launches the EMAIL.DCT script, set-

ting the appropriate flags to initiate either a Send/Recv or an AutoMCI ses-

sion. Finally, if the choice is to return to the Mailboxes screen, the routine

issues a RETURN command.

Figure 15.24
The Endjt dialog

box What do you want to do now?

New Message Mailboxes

* H
Send Mail AutoMCI

Utility Routines

The final six routines in TM.DCP are general-purpose utility routines.

The Pad Routine

The first of these routines, Pad, is used to pad a string to a specified length by

adding spaces to the end of the string.

Prjrj (\\\k\, % p rj d I en)

Exploring EMAIL. DCP 489

WHILE LENGTH($Pad) < %PacLLen SET $Pad $Pad
|

" "

RETURN

The Readlnteger Routine

Readlnteger is used to read an integer variable from a specified table.

*ReadInteger (%Tabl e_To_Read . %Var)

Record Read %Tabl e_To_Read

SET %Var NUM(@R(%Tabl e_To_Read)

)

RETURN

The Writelnteger Routine

Writelnteger writes an integer variable to a specified table.

*WriteInteger (%Tabl eToWri te, %Var)

SET @R(%Tab1eToWrite) STR(XVar)

RECORD WRITE %Tabl eToWri te

RETURN

The final three utility routines, ReadString, WriteString, and Close_and_-

Clear, are identical to those with the same names that appear in AUTOMCI.DCP.
That concludes the listing of TM.DCP. Next you'll see EMAIL.DCR the

script that conducts the actual interaction with MCI and is responsible for

sending and receiving mail during AutoMCI and Send/Recv sessions.

Exploring EMAIL.DCP
Even after all the code talked about so far, M.M.M. still hasn't spent a

minute on line. That's about to change. EMAIL.DCP is the communications

workhorse of M.M.M., providing full support for two of its three on-line

modes: AutoMCI and Send/Recv. (Interactive Terminal-mode support is

provided by the script ONLINE.DCP.)

Initializing Global Variables

EMAIL.DCP begins by making backup copies of the three tables that it

manipulates (Inbox, Outbox, and Unsent), and then initializes a series of glo-

bal variables.

*Emai 1

IF SUBSTR(@S7,1.3)<>"MMM" EXECUTE "AUTOMCI"

CLEAR

MENU

MENU END

PERFORM BackUpFiles ("INBOX")

490 COMMUNICATING WITH HOST SYSTEMS

PERFORM BackUpFiles ("OUTBOX")

PERFORM BackUpFiles ("UNSENT")

PARSE @S5 $01dl "&" $01 d2

SET XTotalSent NUM($01 dl

)

PARSE $01 d2 $01 dl "&" $01 d2

SET UotalUnsent NUMC $01 d2)

SET %Unsent

SET %DELAY NUM(@S4)

SET %Total Received NUM(@S8)

SET %Count

SET %Time

SET %Con_time

SET %ErrCount

SET $To ""

SET $Cc
""

SET $EMS
""

SET $MBX ""

11 = 1

SET %Cancel

SET $FileName ""

RESETSERIAL

IF Uotal Received>-1 GOTO Auto^Retri eve

The @S5 settings variable will contain O&O&O if EMAIL.DCT was just

launched. But it will contain other values for the number of messages that have

been sent and not sent if the script is restarting as part of an AutoMCI session.

The value of %TotalReceived, which is obtained from the @S8 variable,

determines whether a Send/Recv or an AutoMCI session is launched. When
the AUTOMCI.DCT script launches EMAIL to perform a Send/Recv ses-

sion, it sets @S8 to -1. In contrast, it sets the variable to when it launches an

AutoMCI session, and the AutoMCI routine subsequently increments the

value of @S8 whenever it receives a message. Thus, if @S8 is greater than -1,

the script jumps to the Auto_Retrieve routine. Otherwise, it proceeds with

the Send_Recv routine.

Message-Transmission Routines

The next set of routines is executed when the user selects the Send/Recv but-

ton on the Mailboxes screen. The routines log onto MCI, send any messages

in the Outbox folder, and retrieve any messages waiting in MCI for the user.

The Send Recv Routine

The Send_Recv routine simply calls a series of subroutines in succession.

*Send_Recv

SI r ITotalRecel yed v>

Exploring EMAIL. DCP 491

PERFORM Get_Date

PERFORM Login

PERFORM Loop

IF NOT CONNECT PERFORM End

PERFORM Send_Message

SET %I %Count

IF NOT CONNECT PERFORM End

PERFORM Pickup

IF NOT CONNECT PERFORM End

PERFORM Logout

*End

SET POINTER WATCH. SET @S5 STRUTotal Sent)
|

"&"
|

STRUTotal Received)
|

"&"
|
STRUTotalUnsent), SCREEN HIDE, RESETSERIAL. EXECUTE "AUTOMCI"

It starts by calling the Get_Date routine to create a file name to be used

for received messages; followed by the Login routine, which dials MCI and

waits for a connection; the Loop routine, which controls the sign-on process;

the Send_Message routine, to send any messages in the Outbox; the Pickup

routine, to retrieve any messages waiting for the user; and finally the Logout

routine, to disconnect from MCI. It checks after each step to make sure it is

still connected to the MCI service. If not, it jumps to the End routine, where

it stuffs variables representing the total numberof messages that were sent,

received, and not sent during the session into the @S5 variable, and then exe-

cutes the AUTOMCI.DCT script.

The Get_Date routine (with its companion routine. Shorten), functions

just like the one with the same name in the TM routine.

The Login Routine

The Login routine dials the MCI access number that is stored in the settings

files PHONENUMBER variable, as shown here:

DynaComm

Dialing 18008251515

Time Remaining 38

Cancel
|

* Log in

SET $N1 SETTINGS(PHONENUMBER)

DIAL $N1 RETRY 3 DELAY 45

IF NOT CONNECT*) DISPLAY "No Connect i on A M" .CLEAR . PERFORM End

RETURN

If after dialing three times, the Login routine is unable to connect to MCI,
it performs the End routine. Otherwise, the Send_Recv routine calls Loop.

492 COMMUNICATING WITH HOST SYSTEMS

The Loop Routine

Loop is called after a connection has been established. It sends a carriage

return, then waits for two seconds after establishing a pair of WHEN
STRING conditions.

*Loop

SEND ""

WHEN STRING "name:" WHEN CANCEL STRING, GOTO Prompts

WHEN STRING 1 "NO CARRIER" HANGUP, CLEAR, RETURN

INCREMENT %I

IF %I = 10 HANGUP, CLEAR, RETURN

WAIT DELAY "2"

GOTO Loop

A WHEN STRING condition, which remains in effect until the com-

mand WHEN CANCEL STRING is issued, tells DynaComm to monitor the

data being received from the remote host and perform a specified task only

when a certain string is received. In this case, the routine looks for the string

"NO CARRIER", to which it will respond by hanging up the line and return-

ing, or the string "name:", to which it will respond by canceling the WHEN
STRING conditions and jumping to the Prompts routine.

Meanwhile, if the Loop routine receives neither string within 10 seconds,

it issues another carriage return. If after 10 loops it still has received neither

string, it hangs up the line and returns.

The Prompts Routine

The Prompts routine is called in response to MCI Mail's "Please enter your

name:" prompt.

*Prom

SET $

SET $

PERFO

SEND

WHEN

WHEN

WHEN

WHEN

WAIT

WHEN

RETUR

pts

Name @S1

Pass @S2

RM Decode

$Name

STRING

STRING 1

STRING 2

STRING 3

RESUME

CANCEL STRING

Password:" WAIT QUIET "1", SEND $Pass

name:" WAIT QUIET "1", SEND $Name

NO CARRIER" HANGUP, CLEAR, RETURN

Command:" RESUME

Prompts sets the variable $Name to the contents of @S1, and the vari-

able $Pass to the contents of @S2. Then it performs the Decode routine to

unscramble the password string.

Exploring EMAIL. DCP 493

The routine then creates four WHEN STRING conditions: one that

looks for the string "Password:", to which it will respond by sending $Pass;

one that waits for "name:", to which it will respond by sending $Name; one

that waits for "NO CARRIER", to which it will respond by hanging up; and

one that waits for "Command:" (the string that MCI sends after a successful

log-on), to which the script responds by canceling the other string conditions

and returning to the Send_Recv routine.

The Send Message Routine

After a successful log-on, the Send_Recv routine calls the Send_Message

routine so that it can transmit the messages in the users Outbox.

*Send_Message

PERFORM Table_Def_and_Load (4, "SENT")

PERFORM Table_Def_and_Load (5, "UNSENT")

FILE DELETE DIRECTORY DATA
|

"HOLDFILE"

TABLE DEFINE 7 TEXT DIRECTORY DATA
|

"HOLDFILE"

SET %Unsent

TABLE DEFINE 2 FIELDS CHAR 81 CHAR 28 CHAR 6 CHAR 10 CHAR 10 CHAR 15

CHAR 1 CHAR 8 CHAR 45 FILE

TABLE LOAD 2 FROM DIRECTORY DATA
|
"OUTBOX" AS DYNACOMM

%0ut=NUM(RESULTO)

SET %C0UNT 1

IF %Out=0 SET XCount 0. RETURN

The Send_Message routine begins by defining and loading the Sent and

Unsent folders. Then it defines a temporary data file called HOLDFILE,
which it uses to store data about the message that is currently being sent.

Then it loads the Outbox folder into table 2, and sets %Out equal to the

DynaComm RESULT function, which returns the number of records in the

table. If %Out equals 0, the routine returns because there are no messages

to send. Otherwise, it continues onto the Looper routine.

The Looper Routine

Looper calls the Send_Loop routine to transmit the first record in the

Outbox.

*Looper

PERFORM SencLLoop

IF %Cancel>0 SET %Cancel 0, INCREMENT %Count

IF %Count < %0ut+l GOTO Looper

PERFORM Save_and_Close (4. "SENT")

PERFORM Save_and_Close (5. "UNSENT")

PERFORM Delete_File

RETURN

494 COMMUNICATING WITH HOST SYSTEMS

Then it compares the % Count variable, which tracks the number of mes-

sages that have been sent, with %Out. If % Count is less than %Out plus 1, it

jumps back to the beginning of the Looper routine to send another message.

Otherwise it saves and closes the Sent and Unsent folders, and calls the

Delete_File routine to delete the records in the Outbox folder before returning.

The Send_Loop Routine

Send_Loop begins by reading the current record in the Outbox table to

determine the names of the outgoing message's envelope and body files.

Then it sends the command CREATE to launch MCFs message-composition

procedure.

*Send_Loop

CLEAR

RECORD READ 2 at %Count-l

SET $Sendfile TRIM(@R2 .8)

SET $Body DIRECTORY DATA
|

$Sendfile
|

".DCM"

SET $Header DIRECTORY DATA
|

SSendfile
|

".ENV"

TABLE DEFINE 1 TEXT $Header

SEND
""

WAIT STRING "Command:"

WAIT QUIET "1"

SEND "CREATE"

WAIT STRING "TO:"

WAIT QUIET "1"

PERFORM Get_To

IF %Cancel>0 RETURN

WHEN CANCEL STRING

PERFORM Get_cc

IF %Cancel>0 RETURN

WHEN CANCEL STRING

PERFORM Get_Sub

IF %Cancel>0 RETURN

WHEN CANCEL STRING

PERFORM ReadInteger(l,%Priority)

PERFORM ReadInteger(l.%Receipt)

PERFORM ReadInteger(l,%Mask)

WAIT QUIET "1"

The message-creation process is an interactive one. The script sends the

CREATE command, to which MCI responds by sending the string "TO:".

Then the routine performs the Get_To subroutine, to read and send all the To:

addressees in the message's envelope file. Then it checks the value of % Can-

cel. If % Cancel is greater than 0, an error occurred and the message has been

moved to the Unsent folder. Otherwise, the routine proceeds to perform the

Exploring EMAIL. DCP 495

Get_cc routine to create the cc: fields on the message s address, and then

reads the $Subject and handling-options values from the envelope file.

The Send Body Routine

The Send_Body routine, next, transmits the body of the message using Dyna-

Comm's FILE SEND TEXT command.

*Send_Body

SEND " A M"

FILE SEND TEXT $Body NOLF

WAIT QUIET "2"

SEND " A M"

SEND "/"

WAIT QUIET "1"

The / that the script sends after transmitting the body of the message

informs MCI that the message is complete.

The Send Handling Routine

MCI responds to the / by requesting the message-handling options, which

are transmitted by the Send_Handling routine.

*Send_Handl ing

IF ^Priority > AND ^Receipt > AND %Mask > SET SHandling "4hour.

receipt, doc",

ELSE IF ^Priority > AND %Receipt > SET SHandling "4hour. receipt".

ELSE IF %Priority > AND %Mask > SET SHandling "4hour, doc".

ELSE IF ^Receipt > AND XMask > SET SHandling "receipt, doc".

ELSE IF %Priority>0 SET SHandling "4hour".

ELSE IF ^Receipt > SET SHandling

ELSE IF XMask > SET SHandling

ELSE SET SHandling

SEND SHandling

WAIT QUIET "1"

SEND "Y"

WAIT STRING "Command:"

WAIT QUIET "1"

SET SR "Handling: "

IF SHandl ing <>

ELSE SET @R7
""

RECORD WRITE 7

PERFORM WriteSTRING(7,"")

SET @R4 @R2

SET STarget SFileName
|
STRUCou

SET @R4.8 STarget

RECORD WRITE 4

"receipt" ,

doc"

.

SET @R7 SR
|
SHandling.

After composing the handling-options siring and sending it to MCI, the

script sends the command Y to tell MCI to send the message, then wails lor

496 COMMUNICATING WITH HOST SYSTEMS

the Command: prompt to return. Then, if the handling-options string was

not a null string, it concatenates it with the string "Handling:" and writes it

to table 7.

Next it starts the process of moving the message from the Outbox folder

to the Sent folder by setting the current record in the Sent table equal to the

current record in the Outbox table, correcting the file name specified in the

record, and then writing the Sent record. The process will be completed later

when the records in the Outbox are deleted.

The Prepare_For_Next_Message Routine

The script then prepares to handle the next outgoing message.

*Prepare_For_Next_Message

INCREMENT %C0UNT

INCREMENT %TotalSent

PERFORM Close_and_Clear(7,0)

SET STarget STarget
|

".DCM"

FILE RENAME "HOLDFILE" STarget

FILE COPY $Body STarget APPEND

FILE DELETE SHeader

FILE DELETE SBody

TABLE DEFINE 7 TEXT DIRECTORY DATA
|

"HOLDFILE"

RETURN

The Prepare_For_Next_Message routine begins by incrementing the

% Count and %TotalSent variables (% Count tracks the total number of mes-

sages the script attempts to send, including those that end up in the Unsent

folder, whereas %TotalSent tracks only those that were successfully transmit-

ted). Then it closes table 7, which contains all the address and handling infor-

mation for the message that was just sent, and renames it to the name
specified in $Target.

The $Target file is the file to which the Sent record will point. The file

should contain both the address information and the body of the message

that was sent, so the routine appends the body of the message to $Target.

Then it deletes the old envelope and body files from the outgoing message

and creates a new HOLDFILE file before returning to the calling routine.

The Get To Routine

The Get_To routine reads and interprets the outgoing message's envelope file.

*Get_To

SET $J
""

SET $PREFIX "To:

RECORD READ 1

IF SUBSTR(@R1.1.4)-"EMS:" SET %To 1. GOTO EMS

If SUBSTR(@R1.1.6)-"MCI ID" SET $To Ho
I

" / "
I @R1. RECORD READ 1

Exploring EMAIL. DCP 497

IF SUB5TR(@R1J ,6)="REM0TE" SET $To $To

IF $To <>"" PERFORM Send_To ($To, "TO:")

%Cancel>0 RETURN

SET $To @R1

IF SUBSTR($To.l.3) = "To:" SET $To
"

" / "
|
@R1

WAIT QUIET '

ELSE IF SUBSTR($To.l.3)-"cc:

STRING "CC:", WAIT QUIET "l"

ELSE IF SUBSTR($To,l,l)=" "

ELSE IF $To="" GOTO Get_To

PARSE $To $T1 "." $T2

SET $To TRIM($T2." ". " ")

GOTO Get To

" $To = '

, RETURN

SET $To
'

GOTO Get_To

SET $Cc "cc:

GOTO Get To

TRIM($T1 ")

RECORD READ 1

1". IF

SEND $To, WAIT

The Get_To routine is a complex loop that builds up a string named $To

as it reads records from the outgoing message s envelope file. If it encounters

a record that starts with the characters "EMS:" it jumps to the EMS routine;

if it encounters one that begins "cc:" it returns to the calling routine. Other-

wise, it continues to read through the file until it has a valid address.

The Send To Routine

Once determined, the address is transmitted using the Send_To routine.

*Send_To ($Send, $Desire)

PERFORM Writestring(7, $Prefix
|

$To)

SEND $Send

"not found" GOTO Err

"You have" GOTO Err

"must" GOTO Err

"Please enter" GOTO Err

"There is" GOTO Err

WHEN STRING 1

WHEN STRING 2

WHEN STRING 3

WHEN STRING 4

WHEN STRING 5

WAIT STRING $Desire

WAIT QUIET "1"

RETURN

Send_To accepts two parameters: $Send, the string to send; and

$Desire, the desired response. It starts by writing the string $To to table 7,

then sends it to MCI and initiates a series of WHEN STRING conditions to

identify various MCI error messages. It then waits for MCI to return the

string $Desire, after which it returns to the routine that called it.

The Get cc Routine

The Get_cc routine is similar to Get_To.

*Get_cc

SET $J
""

SET $ Pre fix "cc:

RECORD READ 1

IF SUBSTR(@R1.1.4)-"EMS:" $To - $Cc. SET %To 0. GOTO EMS

498 COMMUNICATING WITH HOST SYSTEMS

IF SUBSTR(@R1.1,6)="MCI ID" and $Cc<>"" SET $Cc $Cc
|

" / "
|

@R1 . RECORD

READ 1

IF SUBSTR(@R1,1,6)="REM0TE" SET $CC $CC
|

" / "
|

@R1 , RECORD READ 1

IF $Cc <>"" and $CcO"cc:" PERFORM Send_To ($Cc, "CC:"), WAIT QUIET "1".

IF ^Cancel > RETURN

SET $Cc @R1

IF SUBSTR($Cc,1.3) = "cc:" SET $Cc "", GOTO Get_cc

ELSE IF $Cc="Subject:" $Cc="", SEND $Cc, RETURN

ELSE IF SUBSTR($Cc,l,l)=" " SET $Cc "". GOTO Get_cc

ELSE IF $Cc="" GOTO Get_cc

PARSE $Cc $T1 "." $T2

SET $Cc TRIM($T2." ". " ")
|

" "
|

tRim($Tl," "," ")

GOTO Get_cc

Like Get_To, the Get_cc routine calls the Send_To routine once it has

extracted a valid MCI address from the envelope file. And, also like Get_To,

it calls the EMS routine if it encounters an EMS address.

EMS"), IF %Cancel > RETURN

The EMS Routine

The EMS routine processes the EMS address found in the envelope file,

sends it to MCI, and then returns to either the GetJTo or Get_cc routine.

*EMS

SET $J
""

SET $To $To
|

" (EMS)"

PERFORM Send_To ($To.

SET $Emsl @R1

SET $Emsl SUBSTR($Emsl,5,45)

RECORD READ 1

SET $Ems2 @R1

SET $Ems2 SUBSTR($Ems2 .8 ,45

)

RECORD READ 1

SET $Ems3 @R1

SET $Ems3 SUBSTR($Ems3 , 5 ,45

)

SET $To TRIM($Emsl)
|

" /
"

SET $Prefix "

PERFORM SencLTo ($To, "MBX")

SET $To $Ems3, PERFORM Send„To

SEND
""

SEND "Y"

IF %To=l WAIT STRING "TO", ELSE WAIT STRING "CC"

WAIT QUIET "1"

SET $To
""

SET $Emsl ""

SET $Ems2
""

SET $Ems3
""

SET $Cc
""

IF %To=l SET %To 0, GOTO Get_To

GOTO Getcc

TRIM($Ems2)

IF %Cancel > I

$To, "MBX")

RETURN

IF %Cancel > RETURN

Exploring EMAIL. DCP 499

The Err Routine

The Err routine is called if MCI fails to accept an address transmitted by the

Send_To routine. There are several reasons this might occur; a mistake in

the addressee's name or MCI number and the use of a name without an MCI
ID number for a subscriber whose name is not unique among subscribers are

probably the most common errors.

*Err

WHEN CANCEL STRING

PERFORM WriteSTRING(7,"")

PERFORM Wri teSTRING(7

,

"SEND ERROR")

PERFORM WriteSTRING(7,"")

PERFORM Close_and_Clear(7,0)

WAIT QUIET "1"

SELECTION BUFFER

SELECTION SAVE " ERRORLOG . DCM"

CLEAR

The Err routine adds the line "SEND ERROR" to the HOLDFILE file

for the outgoing message, then uses the DynaComm SELECTION
BUFFER and SELECTION SAVE commands to save everything that has

appeared on the screen since the CREATE command for the current mes-

sage was sent to a file called ERRORLOG.DCM. Then it clears the screen

and continues with the Errl routine.

The Errl Routine

The Errl routines job is to back MCI out of the error message and to a

point where the script can attempt to send the next message.

*Errl

SEND ""

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WAIT

GOTO

STRING

STRING

STRING

STRING

STRING

STRING

QUIET '

Errl

"Please enter" SEND

"TO:" SEND

"CC:" SEND

"SUBJECT:"

"EMS" SEND

"MBX" SEND

" /
"

.

" /
"

.

SEND
M / II

II / II

GOTO

GOTO
" /

"

.

'0", SEND '

Err2

Err2

GOTO Err2

/", GOTO Err2

Once Errl has done its job, the script continues onto Err2.

The Err2 Routine

Err2 moves the message from the Outbox folder to the Unsent folder, incre-

ments the %Unsent and %TotalUnsent variables, copies the message's old

500 COMMUNICATING WITH HOST SYSTEMS

envelope to another file under a new name, deletes HOLDFILE, copies

ERRORLOG.DCM (which contains information about the source of the

error) to $Target, then appends a copy of the message body to $Target, and

finally deletes the old $Header and $Body files before returning.

*Err2

WHEN CANCEL STRING

WAIT STRING "Command:"

SET @R5 @R2

SET STarget SFileName
|

STR(%Count)

SET @R5.8 STarget

RECORD WRITE 5

INCREMENT %Unsent

INCREMENT %Total Unsent

FILE COPY SHeader STarget
|

"
. ENV"

SET STarget STarget
|

".DCM"

PERFORM Close_and_Clear(7,0)

TABLE DEFINE 7 TEXT "HOLDFILE"

FILE COPY "ERRORLOG.DCM" STarget

FILE COPY SBody STarget APPEND

FILE DELETE "HOLDFILE"

FILE DELETE "ERRORLOG

FILE DELETE SHeader

FILE DELETE SBody

TABLE CLEAR 1

SET STo ""

SET SCc ""

SET %Cancel 1

RETURN

Dcr

When the user reads the message in the Unsent folder, it will contain the

MCI error message, followed by the original body of the message.

The Get Sub Routine

The Get_Sub routine is used to read the subject of the message from the

message's envelope, transmit it to MCI, and then write it to HOLDFILE.

*Get_Sub

PERFORM ReadSTRING(l.SSub)

WAIT QUIET "1"

SEND SSub

PERFORM WriteSTRING(7, "Subject: "
|

SSub)

PERFORM WriteSTRING(7, "Sent: "| DATEO
|

" at "
|

TIMEO)
RETURN

Exploring EMAIL. DCP 501

The Delete File Routine

The Dclete_File routine clears the Outbox table after the messages in the

Outbox have been sent.

*Delete_File

TABLE CLEAR 2

PERFORM Save_and_Close (2

,

"OUTBOX")

RETURN

Message-Reception Routines

The next four routines are used to retrieve any mail that is waiting for the user.

The Pickup Routine

Once all the messages in the user's Outbox have been transferred to MCI,
Send_Recv_Routine calls the Pickup routine to retrieve any messages that

are waiting for the user and add them to the users Inbox.

*Pickup

WAIT QUIET "1"

SEND "Scan"

COLLECT $J

COLLECT UNTIL "m" $M

SET $M FILTER($M, "m ","")

%I=NUM($M), IF %I > 99 %l = 99

IF %I < 1 WAIT STRING "Command:", CLEAR, RETURN

WHEN STRING 1 "Press" SEND ""

WAIT STRING "Command:"

WHEN QUIET "60" HANGUP. WAIT DELAY "15". PERFORM Logout, PERFORM End

The Pickup routine sends the command Scan to MCI, to which MCI
responds by sending a blank line, followed by either the message "Your

Inbox is empty" or "XX messages in INBOX." The routine assigns the blank

line to the junk variable $J, then captures the next line up to the character

"m" in the variable $M. So if MCI had replied "3 messages in INBOX". $M
would contain "3". Then the routine uses the NUM function to assign the

numeric value of $M (3 in the current example) to %I, and then determines

whether %I is greater than 0. If not, it returns to the calling routine. Other-

wise, it continues by executing the PR_Loop routine.

The PR Loop Routine

The PR_Loop routine retrieves the messages reported by MCI one by one.

%S - l

WHILE %S < (%I+1)

BEGIN

502 COMMUNICATING WITH HOST SYSTEMS

SEND "PR "
|

STR(Xs)

SET $File SFileName
|
STR(%S+%Count

)

CLEAR

FILE RECEIVE TEXT $File

SET $Subject
""

WAIT STRING "From:

COLLECT $From

WHEN STRING 1 "Subject: ", COLLECT SSubject, WHEN CANCEL STRING

WHEN STRING 2 "EMS: ", COLLECT $Ems. WAIT STRING "MBX: ", COLLECT $MBX.

WHEN CANCEL STRING. WHEN STRING "Subject: ", COLLECT SSubject, WHEN

CANCEL STRING

WAIT STRING "Command:"

WAIT QUIET "2"

FILE CLOSE

PR_Loop begins by initializing the value of %S, which will be used to

track the number of the message being received. Then it sends MCI the com-

mand PR, followed by a space and then the string containing the value of

%S, thus instructing MCI to "print" (transmit without page breaks) message

number %S, as shown in Figure 15.25.

Then it initializes a name for the new file by appending a string contain-

ing the value of %S to the end of the $File variable that was created by the

Get_Date routine and instructs DynaComm to send the incoming text to a

file with that name. It uses WHEN STRING commands to capture the mes-

sage's subject and sender, and the sender's MCI or EMS address, and assigns

them to variables. MCI sends the "Command:" prompt (see Figure 15.25) at

the end of the message, so the script waits for that string, followed by two

seconds of silence on the communications line, and then closes the file.

This delay serves two purposes: It cleans up the session screen display by

allowing DynaComm's display to catch up to the incoming data stream, and

it provides a safety check that prevents the script from closing a message file

prematurely if the message being received happens to contain the text "Com-

mand:". The file won't be closed if message transmission continues after the

"Command:" string is received because the routine is waiting for two sec-

onds of silence on the line.

The Process Incoming,Mess Routine

The Process_Incoming_Mess routine is executed once the message file is

closed.

*Process_Incomi ng_Mess

PERFORM Date_Fix

SET %Fs FILESIZE($File
|

".DCM")

PARSE $Frorn $From "/" $ID

PARSE $From $From " " $Froml

',\ I IFroml TRIM($I roml .

" "
,

" ")
|

" ."

SET $From TRIM($I rorn)

SET $From $Froml I

" " |$l rorn

Exploring EMAIL. DCP 503

Figure 15.25
The Print Message

command
Date:
Fron:

The MCI Mail Manager: Paul Bonner

Mon Oct 28, 1991 3:40 pn EST
Don Steinberg / MCI ID: 478-3279

TO: « Paul Bonner / MCI ID: 378-6376
Subject: RE: fane and fortune

Sure. I also dole out assignments pretty liberally. MCI submission prefd.
Subuersiue material recommended.

Command:

Stop)(Pause] Bytes: | Receiving: KSL441 3.DCM

%Re =

IF SUBSTR($Subject,i,4)="RE: " PARSE SSubject $Subl " " $Sub2, %Re = 1,

$Subject = SUBSTR($Sub2,1.23)

ELSE $Subject=SUBSTR(SSubject. 1.23)

PERFORM Table_Write

INCREMENT %s

END

SET %Total Received %Total Recei ved + %I, SET @S8 STRUTotal Recei ved)

RETURN

The Process_Incoming_Mess routine begins by calling the Date_Fix rou-

tine, which cleans up the date information in the file containing the message

that was just received. Then it uses a variety of DynaComm functions to

obtain the size of that file, to separate the message senders name from his or

her MCI account number, to reverse the order of the sender's names so that

the $From variable contains the name in last-namc-first order, and to strip

the characters "Re:" from the beginning of the message's subject string, if

they appear. It then calls the Table_Write routine to write an Inbox record

for the newly received message.

The Date Fix Routine

The message files sent by MCI and captured by this script contain a header

that looks like this:

Date: Thu Jul 05. 1990 8:42 am EST **PRI0RITY

504 COMMUNICATING WITH HOST SYSTEMS

From: Future Soft Engineering Incorporated / MCI ID: 390-5883

TO: * Paul Bonner / MCI ID: 378-6376

Frequently the first line of that header in the received file contains some
garbage characters, so that the first line looks like this instead:

%$#%$@Date: Thu Jul 05, 1990 8:42 am EST

The Date_Fix routine is used to remove those characters and restore the

appearance of the Date: line, by eliminating any characters preceding the

"D" in "Date".

*Date_Fix

TABLE DEFINE 9 text $File
|

".DCM"

RECORD READ 9 at

SET @R9 TRIM(@R9," "," ")

%Dpos = P0S(@R9,"D")

XLendate =LENGTH(@R9)

IF %Dpos<>0 GOTO Df_Loop2

SET @R9 ""

*Df_Loopl

SET @R9 @R9
|

"
"

IF LENGTH(@R9K%Lendate GOTO Df_Loopl

RECORD WRITE 9 at

RECORD READ 9

*Df_Loop2

%Dpos = P0S(@R9,"D")

%Lendate =LENGTH(@R9)

IF %Dpos > 1 SET @R9 SUBSTR(@R9,2,%Lendate-l)
|

" ". GOTO Df_Loop2

RECORD WRITE 9

*Df_Finish

TABLE CLOSE 9

RETURN

Date_Fix treats the message file as a sequential-access text file. It opens

the file and reads it line by line. If the "Date" string is not found on the first

line of the file, it replaces any characters it finds there with spaces, and then

reads the next line, removes any characters that precede the "D" from that

line, and then closes the file, saving the changes it has made.

The Logout Routine

The Logout routine is used to disconnect from MCI.

k
\ ogout

SEND "EX"

*Hang

Exploring EMAIL. DCP 505

WHEN CANCEL

HANGUP

CLEAR

RETURN

Logout begins by sending the MCI EX (for exit) command, cancels all

current WHEN conditions with the WHEN CANCEL command, then hangs

up the line and returns to the routine that called it.

The Loginerror Routine

The Loginerror routine is called if MCI refuses to accept the password sent

by the script. It simply hangs up the line, prints the message "password

error" to the terminal screen, and cancels execution of the script.

*Logi nerror

HANGUP

DISPLAY "password error A m"

CANCEL

The Table Write Routine

The TableJWrite routine is used to create an Inbox record for the newly

received message.

*Tabl e_Wri te

TABLE DEFINE FIELDS CHAR 81 CHAR 28 CHAR 6 CHAR 10 CHAR 10 CHAR 15

CHAR 1 CHAR 8 CHAR 45 FILE

IF EXISTSC "
INBOX") PERFORM TABLE_LOAD(. DIRECTORY DATA

|
"INBOX")

WHILE NOT EOF

BEGIN

RECORD READ

END

SET @R0.2 SSubject

SET @R0.3 STRUfs)
SET @R0.4 ""

SET @R0.5 DATE()
|

" "
|
STR(%s)

|

" "

SET @R0.6 FILTER($ID."MCID: mcid".)

IF %re =1 SET @R0.7 "R"

ELSE SET @R0.7 "
"

SET @R0.8 $File

SET @R0.9 $From

SET $Ems "". SET $MBX
""

PERFORM PAD (SFrom. 18)

PERFORM PAD (SSubject. 25)

SET $Fs STRUfs)
PERFORM PAD ($Fs. 6)

SET @R0. 1
"*<"

| SUBSTR($From.l.l8)
|

'

$s| " "
|
DATEO

|

"

RECORD WRITE

PERFORM Save_And_Close (0. "INBOX")

|
SUBSTR($Subject.l.25)

506 COMMUNICATING WITH HOST SYSTEMS

%Re =

RETURN

Table_Write loads the Inbox folder into memory and then positions the

record pointer after the last record in the table by reading the entire table.

Then it writes the sender, subject, file size, and other information about the

newly received message to the Inbox record before closing the Inbox and

returning.

The Auto_Retrieve Routine

The Auto_Retrieve routine is called if the user elected to start an AutoMCI
session rather than a Send/Recv session. The routine begins by drawing a

menu, and then connects to MCI.

*Auto_Retri eve

CLEAR

MENU

POPUP "&Automci"

ITEM "&Connect Now" GRAYED PERFORM Restart

ITEM "Cance&l AutoMCI" SET POINTER WATCH, FILE CLOSE, HANGUP,

RESETSERIAL, INCREMENT %Count, PERFORM End

SEPARATOR

ITEM "&Quit" GRAYED PERFORM Auto_Quit

MENU END

PERFORM Get_Date

Auto_Retrieve begins by creating a custom menu to control the

AutoMCI session. The menu contains three items, as shown here:

Connect Now
Cancel AutoMCI

Quit

Two of the options, Connect Now and Quit, are initially grayed (dis-

abled). The Connect Now item becomes enabled whenever the AutoMCI
routine is in its waiting loop, between connections. It allows the user to force

AutoMCI to connect immediately rather than waiting for the next scheduled

connection.

The Cancel AutoMCI menu button cancels the current AutoMCI ses-

sion and executes the main M.M.M. script; the Quit button stops script exe-

cution altogether.

The Auto Dial Seq Routine

Once the menu has been drawn, AutoMCI connects to MCI using the Auto_-

I)ial_Seq roi tine and two subroutines: Check_When and Conn_Made.

Exploring EMAIL. DCP 507

*Auto_Dial_Seq

PARSE @S3 $NUM $Pre_Dial

PARSE $Pre_Di al $Pre_Dial $Post_Dial

SET SPhone SETTINGSC PHONENUMBER)

SEND $Pre_Dial
|

SPhone
|
$Post_Dial

TIMER ON, TIMER RESET

WHEN STRING 1 "CONNECT" GOTO Conn_Made

'No" hangup. WAIT DELAY

'NO" hangup. WAIT DELAY

'Connect" GOTO Conn_Made
' HANGUP. RESETSERIAL. WAIT DELAY "5

2
'

3
'

4
'

'45'

'5"

'5"

PERFORM RESTART

PERFORM RESTART

PERFORM Restart

WHEN STRING

WHEN STRING

WHEN STRING

WHEN TIMER

*Check_When

WAIT DELAY "1"

GOTO Check_When

*Conn_Made

WHEN CANCEL TIMER. WHEN CANCEL STRING. WHEN CANCEL

WHEN QUIET "60" HANGUP, WAIT DELAY "5". PERFORM Restart

PERFORM Loop

WHEN QUIET "60" HANGUP, WAIT DELAY "5". PERFORM Restart

The Auto_Dial_Seq, Check_When, and Conn_Made routines replace

the standard DynaComm dialing routine with a custom one to avoid the stan-

dard DynaComm Dialing dialog box. This dialing routine probably employs

a little less error checking than is built into the standard DynaComm dialer,

but it doesn't matter, since in the event of any error the routine simply

restarts the script and tries again.

The Auto Main Routine

Once the connection has been made, the script calls the Loop routine

described above to log the user onto MCI. Then the Auto_Main routine

takes over.

*Auto_Mai n

SET %Count

PERFORM Send_Message

WHEN QUIET "60" HANGUP. WAIT DELAY "5". PERFORM Restart

SET %I %Count

PERFORM Pickup

WHEN QUIET "60" FILE CLOSE. HANGUP. WAIT DELAY "5". PERFORM Restart

PERFORM Logout

WHEN CANCEL

WAI 1 MM A-

CLEAR

MENU UPDATE 1 1 ENABLED

MENU UPDATE 1 4 ENABLED

PERFORM Time_Set

SET %Con_Time %TimeUDelay. IF %Con_Time>1440 SET %Con_Time «Con_Time • 1440

DISPLAY "Will connect again in less than "
|
STR(%Con_Time - *Time)

|

" minutes. A M"

The Auto_Main routine functions much like the Send_Rccv routine, tak-

ing the AutoMCI session through a sequential series of steps: first sending

508 COMMUNICATING WITH HOST SYSTEMS

messages, then picking up any messages waiting for the user, then logging

out. Then, once the line has been hung up, it enables the two menu items

that were disabled when the AutoMCI menu was first drawn, and displays a

message in the terminal window that indicates the amount of time before the

next scheduled connection.

The Loop3 Routine

The script then proceeds to the Loop3 routine.

*Loop3

WAIT DELAY "5"

PERFORM Time_Set

DISPLAY "*M A M A M A M A M"

DISPLAY STR(%TotalReceived)
|

" message(s) received. A M"

IF %TotalSent > DISPLAY STRUTotal Sent)
|

" message(s) del

i

vered .

A M"

IF UotalUnsent > DISPLAY STR(%Total Unsent)
|

" message(s) not

sent. A MCheck UNSENT folder. A M"

IF Uime = 1 Or %Time = 2 WAIT DELAY "120", PERFORM Restart

IF %Con_Time - Uime < 1. HANGUP. PERFORM Restart

WAIT DELAY "6"

PERFORM Time_Set

DISPLAY " A M A M A M A M A M"

DISPLAY "Will connect again in less than "
|

STR(%Con_Time - %TIME)
|

"

mi nutes .

A M"

IF %Time = 1 or %Time = 2 WAIT DELAY "120", PERFORM Restart

IF %Con_Time - %Time < 1, HANGUP, PERFORM Restart

GOTO Loop3

The Loop3 routine waits five seconds, checks the time, then displays a

status message indicating the number of messages that have been sent,

received, or not sent in the AutoMCI session. Then it compares the current

time (%Time) to the next scheduled connection time (%Con_Time) and

restarts the script (thus forcing a connection to MCI) if the difference

between them is less than one minute.

Because the routine used to determine the next scheduled connection

time is somewhat inexact when dealing with intervals that span the hour of

midnight, the script simply restarts itself if the current time is 1 or 2 (one or

two minutes past midnight), thus forcing the script to determine another con-

nection time that doesn't span the midnight hour.

If the scheduled start time hasn't arrived, the script waits another six sec-

onds, then displays another message indicating the amount of time before

the next scheduled connection, as shown in Figure 15.26. Then it checks the

time again and, if the scheduled start time still hasn't arrived, jumps back to

the beginning of Loop3.

The Restart Routine

When the scheduled start time arrives, the script jumps to the Restart routine.

Exploring EMAIL. DCP 509

Restart
SET POINTER ARROW

SET @S5 STR(XTotalSent)

SAVE

HANGUP

RESETSERIAL

RESTART

STRUTotalReceived) I

"&"
I STR(%TotalUnsent)

Figure 15.26
The AutoMCI

session status

message

The MCI Mail Manager: Paul Bonner
|Will connect again in less than 15 minutes.

u nessage(s) received.

Will connect again in less than 15 minutes.

&

The Restart routine stuffs the current values of %TotalSent. %TotalRe-

ceived, and %TotalUnsent into the @S5 variable, saves the settings sheet.

and restarts the script.

The Time Set Routine—

The Time_Set routine converts the current time into a single number indicat-

ing the number of minutes past midnight.

*Time_Set

SET $Time TIMEC)

SET %H NUM(SUBSTR($Time,1.2))

SET %M NUM(SUBSTR($Time,4.2))

SET $Ampm SUBSTR($Time . 7 , 1

)

IF %H=12 SET %H %W - 12

IF $Ampm ="P" SET %H %H+12

SET %Time (%H*60)+%M

IF %Time>1440 SET %$Time %Time-1440

RETURN

510 COMMUNICATING WITH HOST SYSTEMS

If the number of minutes is greater than 1,440 (which would occur only

if the time was between 12:01 am and 12:59 am) the routine subtracts 1,440

from it, thus converting 12:59 am to a value of 59 minutes.

The Auto_Quit Routine

The Auto_Quit routine is called when the user selects the Quit item from

the AutoMCI menu.

*Auto_Quit

SET POINTER WATCH

SET @S5 "0&0&0"

PARSE @S6 $Stringl "~" $String2

PARSE $String2 $ I N IT "~" $String3

SET $ I N IT "1"

SET @S6 $Stringl
|

"~"
|

UNIT
|

"~"
|

$String3

SAVE

FILE CLOSE

HANGUP

RESETSERIAL

SCREEN HIDE

QUIT

Auto_Quit simply performs a little housekeeping, reinitializing the val-

ues of settings variables @S5 and @S6, so that the AUTOMCI.DCT script

will interpret them as indicating a cold start, before hanging up the connec-

tion and stopping script execution.

Standard Library Routines

The remaining routines in EMAIL.DCP are general-purpose library rou-

tines. Several of these are repeats of routines found in AUTOMCI.DCP and

TM.DCP. Specifically, EMAIL.DCP's Decode, WriteString, Close_and_-

Clear, Table_Def_and_Load, and ReadString routines are identical to those

with the same names in AUTOMCI.DCP. Its Pad, Writelnteger, and Readln-

teger routines are identical to those in TM.DCP.

The BackUpFiles Routine

BackUpFiles creates a backup copy of the specified file.

BackUpFiles (SBackltUp)

FILE COPY DIRECTORY DATA
|
SBackltUp TO DIRECTORY DATA

|

$BackItUp
|

".BAK"

RETURN

Decode, which decrypts the user's password, appears in AUTOMCI. DCP.

The Table Load Routine

Tablc_Load is used to load a specified table.

Exploring PM.DCP 511

*Table_Load (%Counter, $Tabfile)

IF %ErrCount > 5 CANCEL

TABLE LOAD %Counter FROM $Tabfile AS DYNACOMM

IF ERRORO INCREMENT %ErrCount, GOTO Table_Load

SET %ErrCount

RETURN

The Save and Close Routine

Finally, Save_and_Close is used to save the contents of the specified table to

the specified file before closing and clearing the table.

*Save_and_Close (%Tablenum, STableName)

TABLE SAVE XTablenum TO DIRECTORY DATA

PERFORM Close_and_Clear(%Tablenum)

RETURN

STableName AS DYNACOMM

That concludes the EMAIL.DCP script. Next the PM.DCP script will be

discussed. It is used to maintain the Public and Private address books.

Exploring PM.DCP
The PM.DCP (Phonebook Module) module is used to edit the user's Private

address book, and the Public address book as well, if it is located on the

users local drive.

The Phon Man Routine

The Phon_Man routine determines whether the Public address book is

located in the users \DYNACOMM\DAT directory.

*Phon_Man (%Env)

SET Udmin *

SET SMailbox DIRECTORY DATA

SET DIRECTORY DATA System(0x0f01 . "Datd "

If ExistsC'Public.Pbk") FILE COPY "Public. Pbk" TO "Publ i c.Bak" . SET

%Admin 1

FILE COPY "Private. Pbk" TO "Pri vate .Bak"

TABLE DEFINE 8 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45 File

TABLE LOAD 8 FROM "Pri vate . Pbk" AS DYNACOMM

IF %Admin=l TABLE DEFINE 13 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45 File,

TABLE LOAD 13 FROM "PUBL 1C . PBK" AS DYNACOMM

IF %Admin=l AND %Env=l SET fcPtable 13. %Button=2. $Phonebook="Publ ic" .

Else SET %Ptable 8. $Phonebook="Pri vate" . %Button-l

*Loaded

SET %Ip 1

SET %Edit

SET $N1
"

SET $N2 $N1. SET $N3 $N1 . SET $N4 tNl

SET $Name "". SET $Id "". SET $Address3 "". Si T $Address4
""

512 COMMUNICATING WITH HOST SYSTEMS

The value of % Admin is set according to where the Public address book
is placed. If % Admin is equal to 1, it indicates that the Public book is in

\DYNACOMM\DAT and the user has the right to edit both address books,

so both are loaded into memory. Otherwise, only the Private book is loaded.

The Main_Phon Routine

The Main_Phon routine is where the address book is made available for

editing.

*Main_Phon

SET $Message "Phonebook Management"

DIALOG (, ,160.128) SMessage

RADIOGROUP (8.14,.) %Button "Phonebook" PERFORM Up^Phon

RADIOBUTTON (.14, ,) "Private"

IF %Admin=l Radi obutton (,14,,) "Public"

LISTBOX (6,30,140,70) %Ptabl e lip

BUTTON (12,96. .11) DEFAULT "&Edit" SET %Edit 1. SET %Ip Listbox (1),

PERFORM Edit_Book, RESUME

BUTTON (,,,11) "&Add" PERFORM Add_Name, RESUME

BUTTON (,,,11) "&Cut" SET %Ip Listbox(l), Perform Del ete_Name, Perform

Up_Phon

WIDEBUTTON (52.110. . 11)"&Done" Dialog Cancel. SET DIRECTORY DATA

SMailbox, RETURN

DIALOG END

Wait RESUME

SET $N1 "

SET $N2 $N1, SET $N3 $N1, SET $N4 $N1

SET $Name "". SET $Id "", SET $Address3 "". SET $Address4 ""

SET XEdit

GOTO Main^Phon

Main_Phon presents the Private address book (and the Public one if

% Admin equals 1) in a list box, along with buttons that offer the user the

options of editing an existing entry in the selected address book, cutting an

existing entry, and adding a new one, as shown in Figure 15.27.

The Add Name Routine

The Add_Name routine is called when the user selects the Add button on

the Phonebook Management dialog box. It sets the values of the string

variable $Messagel and the integer variable %Edit, and then jumps to the

Add_Edit_Dialog subroutine, which is shared by the Add_Name and

Edit Name routines.

*Add_Name

SET $Messagel "Add Name To

SET % E d i t

GOTO Add_Edit_Dialog

SPhonebook

Exploring PM.DCP 513

Figure 15.27
The Phonebook

Management dialog

box

Phonebook Management

Phonebook <S>!Private O Public

Dauis, John
Dauis-Wright , Ryan
Dayton Associates,
Deuoney, Chris
Dickinson, John
Dockery, Wayne
Doerr, John
Dougherty, Brian

Edit
|

Done

Cut

The Edit Book Routine

Edit_Book, called when the user selects the Edit button on the Phonebook

Management dialog box, sets a series of variables equal to the current con-

tents of the record being edited, and then jumps to the Add_Edit_Dialog

routine.

*Edit_Book

IF %Ip < RETURN

TABLE DEFINE 12 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

RECORD READ %Ptable AT %Ip

SET @R12 ©Ratable
RECORD WRITE 12

SET $N1 @R12.1

PARSE $N1 $Last "," $First

SET $Ft TRIM($First," "," ")

SET $Lt TRIM($Last." "," ")

SET $N1 $Ft
|

" "
|

$Lt

SET $N2 @R12.2

SET $N3 @R12.3

SET $N4 @R12.4

SET %Edi t 1

TABLE CLOSE 12

TABLE CLEAR 12

SET $Messagel "Edit "
|

$N1

GOTO Add_Edi t_Di alog

If SUBSTR($N3.1.1)="

If SUBSTR($N4.1 .!)='

SET $N3 SUBSTR($N3,2.29)

SET $N4 SUBSTR($N4,2,29)

The Add Edit Dialog Routine

The Add Name to... dialog box, created in the Add_Edit_Dialog routine,

displays the four fields of the current address book record, as shown in Fig-

ure 16.2S. These fields will be blank if a new entry is being created: if an

existing entry is being edited, they will reflect its current contents.

514 COMMUNICATING WITH HOST SYSTEMS

*Add_Edit_Dialog

TABLE DEFINE 12 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

DIALOG CANCEL

DIALOG (, ,190,86) $Messagel

EDITTEXT (4,8,124.) 120 "Name: " $N1

EDITTEXT (4.20,124.) 120 "Mci Id: " $N2

EDITTEXT (4.32.124.) 120 "Ems 1: " $N3

EDITTEXT (4.44.124.) 120 "Ems 2: " $N4

BUTTON (56, 66,, 11) DEFAULT "OK" RESUME

BUTTON (,.,11) "Cancel" DIALOG CANCEL, RETURN

DIALOG END

WAIT RESUME

SET $Name TRIM(Edi ttext (1)

)

SET $Id TRIM(Edittext(2))

SET $Address3 TRIM(Edi ttext(3)

)

SET $Address4 TRIM(Edi ttext (4)

)

IF %Edit=l IF $Name=$Nl

IF %Edit=0 IF $Name = "'

PARSE $Name $Fi rst " "
S

SET $Ft TRIM(SFirst)

SET $Lt TRIM($Last)

SET %P

SET $P UPPER(SLast)

SET %? POS($P, "List",)

I SET $Name $Lt

AND $Id=<

AND $Id=

Last

J2 RETURN

RETURN

.

"
|

$Ft

Or SUBSTR($Id,l,l) = "M" SET $Id FI LTER($Id , "Mcid :

IF %P --

IF SUBSTR($Id,l,l)="M'

Mcid:" ,)

IF SUBSTR($Id,l,lX>"E" AND SUBSTR($ Id , 1 . 1)<>"E" AND LENGTHC $ I d) > SET

$Id "Mci Id: "
|

$Id

IF %Edit= 1 TABLE COPY %Ptable TO 12 EXCLUDE @R%Ptable, ELSE TABLE COPY

stable TO 12

SET @R12.1 $Name

SET @R12.2 $Id

SET @R12 .3 $Address3

SET OR12.4 $Address4

RECORD WRITE 12

TABLE COPY 12 To %Ptable

TABLE SORT %Ptable 1

SET XEdit

RETURN

Once the user has made the desired additions or changes to the record

and pressed the OK button, the Add_Edit_Dialog routine cleans up the data

entered by the user, reversing the first and last names and making sure that

MCI and EMS addresses are entered correctly. It then copies the record to

the selected address book.

The Delete Name Routine

The Delete_Name routine is used to delete the selected name from the cur-

rent address book, using the by now familiar COPY EXCLUDE method.

Exploring ONLINE. DCP 515

*Delete_Name

IF %Ip < RETURN

RECORD READ %Ptable At %Ip

TABLE DEFINE 12 FIELDS CHAR 45 CHAR 45 CHAR 45 CHAR 45

TABLE COPY %Ptable To 12

RECORD READ 12 At %Ip

TABLE CLEAR %Ptable

TABLE COPY 12 To %Ptable EXCLUDE @R12

TABLE CLOSE 12

TABLE CLEAR 12

RETURN

Figure 15.28 Add name to Private

The Add Name to...

Name:

MCI ID:

EMS 1:

EMS 2:

dialog box lhn|

Okay Cancel

The Up Phone Routine

The final routine in PM.DCP, Up_Phon, is used to update the address book

list box and the address book selection radio buttons when the user selects a

radio button.

*Up_Phon

SET %Up Radiogroup(l)

IF %Up=l $Phonebook= "Private". %Ptable=8

IF %Up = 2 %Ptable = 13. SPhonebook = "Public"

SET ^Button %Up

DIALOG UPDATE LISTBOX 1 TABLE %Ptable %Ip. DIALOG UPDATE RADIOGROUP 1 ^Button

RETURN

That concludes the PM.DCP listing, which leaves only the

ONLINE.DCP script to consider.

Exploring ONLINE.DCP
ONLINE.DCP is launched when the user selects the button labeled "Termi-

nal" on AUTOMCI.DCP's main Mailboxes screen. Its primary purpose is to

dial into MCI, log the user in, and then end.

516 COMMUNICATING WITH HOST SYSTEMS

The Terminal Routines

In addition to routines for calling MCI and logging in, ONLINE.DCP con-

tains several small routines that can be launched when the user selects one of

the on-screen function key buttons that appear in a Terminal session.

The Online Routine

The Online routine begins by dialing into MCI. It calls a series of routines:

Login, Loop, Prompts, Logout, Loginerror, and Decode. With the exception

of Login, these are identical to the routines with the same names in the

EMAIL.DCP script. (Decode is also used in AUTOMCI.DCP)
Login differs by directly executing the AUTOMCI script if no connection is

made, rather than jumping to the End routine as it does in EMAIL.DCP.

*0n 1 i ne

SET TERMTITLE "Online To MCI"

WINDOW MAXIMIZE

SCREEN SHOW

FKEYS SHOW

WINDOW RESTORE

SET %I

SET $Name @S1

SET $Pass @S2

PERFORM Decode

PARSE @S3 $Num $Pre_Dial

PARSE $Pre_Dial $Pre_Dial $Post_Dial

PERFORM Login

PERFORM Loop

CANCEL

* Log in

SET $N1 FILTER($Num,"~ ,/ ","")

DIAL $N1 RETRY 3 DELAY 30

IF NOT CONNECTO DISPLAY "NO CONNECTIONS" , CLEAR . EXECUTE "AUTOMCI"

RETURN

Once ONLINE.DCT has logged onto MCI, the script ends. Any further

script actions must be triggered from the on-screen function keys shown in

Figures 15.29 and 15.30. I defined the function keys shown in Figure 15.29

using DynaComm's Function Keys settings dialog box, shown in Figure 15.30.

The Capture Routine

The only unique code in ONLINE.DCP besides the Online routine, is found

in the Capture and Print routines. The Capture routine is called when the user

selects the function key labeled "Text Capture" during a terminal session. The

function key is assigned the command A$E 'online*capture', which instructs

DynaComm to execute the routine labeled "Capture" in the ONLINE script.

Exploring ONLINE. DCP 517

Figure 15.29
An M.M.M. Terminal

session

DynaComm

Online to MCI

to access MCI Mail?
Find out about the software
changes scheduled for 1/10/92.

Type UIEW ACCESS CHANGES

Today's Headlines at 12 pn EST:

-Jobless Rate Up 0.2 Point to 7.U
In Dec, Payrolls Rose 31,000

-Borden Inc. To Cut 1,300 Jobs,
Take (4th-(Juarter Charge

Type //BUSINESS on Dow Jones for Details.

MCI Mail Uersion U9.0.D

There are no messages waiting in your INBOX.

Command: |

H
Scan Inbox JC
Scan Desk

Kc.nl Inbox

Type Inbox

^
Phonebook

-M.M.M. ~7"
Level: 1

00:01:23

Figure 15.30
The function key

definition screen

Function Keys

Key Name: Command:

Fl rff-UIJVITt |scan inlicix'M

F2: Scan Desk scan desk'M

F3: Read Inbox ead inbox'M

F4: Type Inbox piinl inbox"M

F5: Text Capluie *$E "online'captuie"

F6: Punt Session
1
~$E "online'piint"

FZ Phonebook "$E "pm"

Ffi M.M.M. ex~M"$H~$E "aulomci"

OK

Key Level

®1 02
03 04

Display Modes

D One Row Only

I I Show as [cons

E Keys Visible

Q Auto Anange

*Capture

%Cap=0

DIALOG (. ,H0.)

MESSAGE (4. .,)

BUTTON (12, . .)

BUTTON "Cancel"

DIALOG END

"Capture"

Capture to a text file?"

OK" SET %Cap 1. RESUME

SET %Cap 0. RESUME

518 COMMUNICATING WITH HOST SYSTEMS

WAIT RESUME

DIALOG CANCEL

IF %Cap = 1 FILE RECEIVE TEXT "CAPTURE.TXT" APPEND

IF %Cap = 2 FILE CLOSE

RETURN

The Capture routine opens a simple dialog box that asks the user if he or

she wishes to capture the terminal session to a text file. If the user selects the

OK button, the dialog box closes and incoming text is captured to the file

CAPTURE.TXT. Otherwise the script issues the FILE CLOSE command to

close CAPTURE.TXT, if it is open.

The Print Routine

The Print routine is called when the user selects the Print Session function key.

* P ri n

t

%Print=0

DIALOG (, ,140,) "Print Log"

MESSAGE (4,,,) "Spool terminal session to printer?"

BUTTON (12,,,) "OK" SET % P r I n t 1, RESUME

BUTTON "Cancel" SET %Print 0, RESUME

DIALOG END

WAIT RESUME

DIALOG CANCEL

*Print_Stuff

IF %Print= PRINT TERMINAL OFF, RETURN

PRINT TERMINAL ON

RETURN

The Print routine verifies that the user wants to spool the current session

to the printer. If so, the command PRINT TERMINAL ON is issued to

instruct DynaComm to print everything that is sent or received over the com-

munications line. Otherwise, PRINT TERMINAL OFF is used to cancel

printing of the session.

This concludes the listing of the ONLINE.DCP script.

Wrapping Up M.M.M.
Now, sadly, this discussion of the M.M.M. project, the last and most complex

of the projects presented in this book, comes to an end.

I hope the discussion of M.M.M.'s code has been instructive. Certainly it

demonstrates just how much one can achieve using application macro lan-

guages. Although M.M.M. is fairly complex, developing an application of simi-

lar functionality is not beyond the reach of any skilled PC user who takes the

trouble to master an application macro language such as DynaComm's.

Wrapping Up M.M.M. 519

However, thanks to the modular and event-driven structure of Windows
applications, there is no need ever to build a project as ambitious as M.M.M.
in a single fell swoop. M.M.M. was built in pieces. The message-retrieval rou-

tine was built first, followed by the message-sending routines and the main

Mailboxes display screen. Message-management functions such as Move and

Delete came much later, after a long period of experimentation with and fine-

tuning of the appearance and operation of the existing routines.

The problem with any project as complex as M.M.M. is that it is never

really finished. As I wrote this chapter I thought of all kinds of new features

I would like to add to M.M.M. one day—an unlimited number of user-

defined mailboxes, the ability to send fax messages via MCI, better message-

editing routines, and so on. It's a tribute to Windows and the power of the

best application macro languages that all those extensions, and more, are

possible for the DynaComm macro programmer. No doubt as you explore

M.M.M. and adapt its code to your own uses, you'll find even more ways to

extend its power. Good luck, and have fun with it.

APPENDIX A

Commercial DLLs and Custom Controls

The following pages present a guide to commercially available dynamic link

libraries and custom controls for Windows application development.

The judicious use of these controls and code libraries can enable you

to build powerful applications far more quickly and easily than would be

possible if you had to program the functions they provide yourself. More-
over, these products allow you to extend existing applications in directions

that their internal macro languages don't support. For instance, with a few

DLL calls you could add support for TCP/IP (transmission control proto-

col and Internet protocol) network communications, or for ISAM (indexed

sequential-access method) data storage, or even the ability to play animation

files or digitized audio, to a custom application that you've built in Word for

Windows or Superbase 4 or some other off-the-shelf application.

The prices for these products range from about $50 for some of the small

custom-control libraries, up to around $1,000 for the most extensive database-

management facilities. In most cases, the applications you build using these

libraries and controls can be distributed without paying any additional royal-

ties to the developer of the library.

AccSys
Function: Database access

Works with: Any development tool that provides DLL access

Description: AccSys for Paradox and AccSys for dBASE provide a large col-

lection of DLL function calls for complete control of Paradox and dBASE
files, respectively.

Copia International, Ltd.

1342 Avalon Court

Wheaton, IL 601S7

(708) 682-8898

Agility/VB

Function: Database access

Works with: Visual BASIC
Description: Agility/VB provides Visual BASIC programmers with a set of

DLL functions for manipulating and querying dBASE III+ and dBASE IV

files and native Agility-format files using a query-by-example interface. It

includes sample programs and extensive on-line help.

Apex Software Corp.

4516 Henry Street, Suite 401

Pittsburgh, PA 15213

(412)681-4343

522 APPENDIX A

Ami Pro Macro Developer's Kit

Function: Macro utilities

Works with: Ami Pro

Description: The Ami Pro Macro Developer's Kit includes a 700-page man-
ual on the Ami Pro macro language, a dialog editor with Smartlcons, sample

macros, and a macro source-code stripper for creating runtime versions of

Ami Pro applications.

Lotus Development Corporation

55 Cambridge Parkway

Cambridge, MA 02142

(617) 577-8500

Autodesk Animation Player for Windows
Function: Playing FLI and FLC animations

Works with: Any development tool that can make DLL calls

Description: Autodesk Animation Player for Windows provides the ability

to script, edit, and play back animations in FLI and FLC formats from hard

disks or CD-ROMs. A second product, The Autodesk Animation Player

DLL for Visual BASIC, provides playback-only access to FLI- and FLC-
format animations for Visual BASIC.

Autodesk, Inc.

2320 Marinship Way
Sausalito, CA 94965

(415) 332-2344

Bridglt

Function: Database access

Works with: Any development tool that can make DLL calls

Description: Bridglt gives applications full access to dBASE and Clipper

files, including the ability to open, index, read, write, and update files utiliz-

ing either dBASE- or Clipper-format indexes. It includes sample code for

access from Visual BASIC.

Unelko Corporation

7428 East Karen Drive

Scottsdale, AZ 85260

(602)991-7272

Commercial DLLs and Custom Controls 523

ButtonTool

Function: Custom controls

Works with: Visual BASIC
Description: ButtonTool provides custom command buttons for Visual

BASIC, including 3-D effects, shadows, borders, graphic symbols, and a vari-

ety of button-down effects, which determine how the button will look when
it is pressed.

OutRider Systems

3701 Kirby Drive, Suite 1196

Houston, TX 77098

(713)521-0486

ChartBu ilder for Visual BASIC
Function: Graphing

Works with: Visual BASIC
Description: The ChartBuilder custom control provides Visual BASIC devel-

opers with access to a variety of two- and three-dimensional graphs, includ-

ing bar graphs, pie charts, x-y graphs, and others.

Pinnacle Publishing, Inc.

18000 72nd Avenue South, Suite 217

Kent, WA 98032

(206)251-1900

Custom Control Factory

Function: Custom controls

Works with: Visual BASIC
Description: Custom Control Factory includes animated buttons; multistate

buttons that change appearance each time they are clicked; and enhanced

pushbuttons; check boxes, option buttons, and toolbars. Another tool avail-

able from Desaware, CCF-Cursors, enhances cursor creation and manipula-

tion in Visual BASIC, and allows any Visual BASIC control to process the

full range of mouse messages.

Desaware

5 Town & Country Village, Suite 790

San Jose, CA 95128

(408) 377-4770

524 APPENDIX A

Dialoger

Function: Dialog box utility

Works with: Superbase 4

Description: Dialoger works with the Whitewater Resource Toolkit to sim-

plify creation of dialog boxes in Superbase 4. Dialog boxes can be created

with the Whitewater Resource Toolkit, and Dialoger will generate the DML
code needed to insert them into Superbase applications.

Application Methods

11612 82nd Avenue South

Seattle, WA 98178

(206) 772-3215

Distinct TCP/IP for Windows
Function: Network access

Works with: Any development tool that provides DLL access

Description: This DLL extends TCP/IP, RPC (remote procedure call), and

NFS (network file systems) networking capabilities to Windows developers,

allowing them to build custom TCP/IP network applications or distributed

applications such as Windows front ends to UNIX databases. It includes a

configuration utility and a network monitor for monitoring host communica-

tions and data transmission traffic.

Distinct Corporation

P.O. Box 3410

Saratoga, CA 95070

(408) 741-0781

EditTool

Function: Custom control

Works with: Visual BASIC
Description: EditTool adds to Visual BASIC'S edit controls and provides the

ability to perform input field masking (restricting input to certain charac-

ters), add spin controls, and customize input fields with shadows, borders,

and 3-D effects.

OutRider Systems

3701 Kirby Drive, Suite 1196

Houston, TX 77098

(713)521-0486

Commercial DLLs and Custom Controls 525

FastData

Function: Database management
Works with: Toolbook

Description: FastData is a set of DLL functions for storing, retrieving, search-

ing, and sorting data more quickly than Toolbook alone can do. Data can be

arranged in arrays, lists, stacks, queues, and property tables.

Heizer Software

P.O. Box 232019

Pleasant Hill, CA 94523

(800) 888-7666

Graphics Server SDK
Function: Graphing

Works with: Any development tool that provides DLL or DDE access

Description: The Graphics Server DLL enables developers to give their appli-

cations the ability to create a variety of two- and three-dimensional graphs,

including pie and bar charts, area graphs, line graphs, high-low-close graphs,

and x-y graphs. Graphics Server can be accessed through either DLL calls or

DDE. It includes sample source code for accessing the DLL from C, SQL Win-

dows, Superbase 4, Toolbook, Microsoft Excel, and Word for Windows.

Pinnacle Publishing, Inc.

18000 72nd Avenue South, Suite 217

Kent, WA 98032

(206)251-1900

ImageMan
Function: Image display and printing

Works with: Any development tool that can make DLL calls; Visual BASIC-
specific version also available

Description: The ImageMan DLL enables your application to display and

print TIFF, PCX, GIF, BMP, DIB, and WMF graphics files. A complemen-

tary product called ImageMan/X adds the ability to save files in any of those

formats. ImageMan/VB, the Visual BASIC version, provides the same func-

tions as the ImageMan product in the form of a custom control, and adds the

ability to scale, zoom and scroll images.

Data Techniques, Inc.

1000 Business Center Drive, Suite 120

Savannah, GA 31405

(912)651-0003

526 APPENDIX A

MicroHelp Communications Library

Function: Communications

Works with: Visual BASIC
Description: Communications library provides communications subroutines

and functions (some written in assembly language) that can be called from

Visual BASIC. It includes file-transfer routines supporting XModem, YMo-
dem, ZModem, and CompuServe B protocols.

MicroHelp

4636 Huntridge Drive

RoswelLGA 30075

(404) 552-0565

MicroHelp Muscle
Function: Code library

Works with: Visual BASIC; QuickBASIC version also available

Description: MicroHelp Muscle offers hundreds of assembly language sub-

routines to perform a variety of tasks—including file access, array manage-

ment, and input masking—more quickly and with a smaller program size

than would be possible in Visual BASIC alone. It includes a programmer's

guide, two reference manuals, and source code.

MicroHelp

4636 Huntridge Drive

Roswell, GA 30075

(404) 552-0565

MicroHelp Network Library

Function: Network access

Works with: Visual BASIC
Description: MicroHelp Network Library provides network access (user and

administrator services) to Visual BASIC applications. It supports Novell,

LANtastic, and NetBIOS-compatible networks.

MicroHelp

4636 Huntridge Drive

Roswell, GA 30075

(404) 552-0565

Commercial DLLs and Custom Controls 527

Microsoft LAN Manager Toolkit for Visual BASIC
Function: Network management

Works with: Visual BASIC
Description: The LAN Manager Toolkit includes a number of tools for custom-

izing LAN Manager-based networks, and includes a system-performance

graphing utility and sample utilities for common network-management and

diagnostic needs.

Microsoft Corporation

One Microsoft Way
Redmond, WA 98027

(800) 227-4679 (Microsoft Inside Sales)

Microsoft Visual BASIC Library for SQL Server

Function: Data access

Works with: Visual BASIC
Description: Microsoft Visual BASIC Library for SQL Server provides cus-

tom controls to facilitate access to Microsoft's SQL Server for Visual BASIC
applications.

Microsoft Corporation

One Microsoft Way
Redmond. WA 98027

(800) 227-4679 (Microsoft Inside Sales)

Microsoft Visual BASIC Professional Toolkit

Function: Custom controls

Works with: Visual BASIC
Description: The Professional Toolkit includes a broad set of custom controls

and extensions to the basic Visual BASIC package, including a spreadsheet-

like grid, support for MDI child windows, 3-D controls, bitmapped buttons,

support for Pen-Windows and Multimedia Windows, a chart control, a utility

for creating installation programs, the Visual BASIC Control Developer's

Kit, and supplemental documentation.

Microsoft Corporation

One Microsoft Way
Redmond, WA 98027

(800) 227-4679 (Microsoft Inside Sales)

528 APPENDIX A

Microsoft Word for Windows Developer Kit

Function: Macro development kit

Works with: Word for Windows
Description: The Microsoft Word for Windows Developer Kit includes a

handbook for Word for Windows developers; a WordBASIC manual with a

companion disk containing example macros, the Microsoft Excel Dialog Edi-

tor, and macros for translating Excel dialog box code to Word dialog code; a

Word for Windows technical reference; and a disk containing WordBASIC
tools and sample macros.

Microsoft Corporation

Word for Windows Developer Desk
Ridgewood F/4

One Microsoft Way
Redmond, WA 98073

(800) 227-6444, extension 6581

ObjecTrieve/VB

Function: Database management
Works with: Visual BASIC
Description: ObjecTrieve/VB consists of a set of custom controls and forms

that add ISAM-based data-management tools to Visual BASIC. Based on

the X/OPEN standard, ObjecTrieve/VB can create, search, index, and man-

age database files, and supports multipart indexes, automatic updating of

index files, container files, and multiple-record access streams.

The company also offers two optional add-ons for ObjecTrieve: DbCon-
trols and BLOB Manager. DbControls can be used to build complete Objec-

Trieve/VB applications without writing any code. BLOB Manager can be

used to add large binary objects (such as bitmapped images or digitized

audio or video) to an ObjecTrieve/VB database.

Coromandel Industries, Inc.

70-15 Austin Street, Third Floor

Forest Hills, NY 11375

(800) 535-3267

Commercial DLLs and Custom Controls 529

PC Comnet DLL
Function: Netware access

Works with: Any development tool that provides DLL access

Description: This dynamic link library gives applications access to Novell

Netware API calls.

PC Comnet, Inc.

31 Progress Court, Unit 5

A

Scarborough, Ontario M1G 3V5

Canada

(416) 289-1331

PDQComm for Windows
Function: Communications

Works with: Visual BASIC
Description: A library of Visual BASIC subroutines and function calls, PDQ-
Comm offers complete low-level control over the Com ports, as well as high-

level routines for sending and receiving data using the XModem or YMo-
dem protocol. Several terminal-emulation subroutines are also provided,

including ANSI, DEC VT52 and VT100, and Data General D215. Complete

source code (with commentary) is included.

Crescent Software, Inc.

11 Bailey Avenue

Ridgefield, CT 06877

(203) 438-5300

PowerLibW 3.1

Function: Database access

Works with: Visual BASIC, Actor 4.0, and other development languages that

support DLL calls

Description: PowerLibW 3.1 is a database-management system in the form

of a DLL, giving access to dBASE-compatible files. It allows access and

manipulation of database files, indexing, and querying. It can also be used

with Microsoft SQL Server to create local dBASE files. PowerLibW
includes extensively commented source code for a Visual BASIC DBF edi-

tor and DBF file viewer.

FTN Corporation

R.D. 4 Box 659

Montoursville, PA 17754

(717)435-2202

530 APPENDIX A

PowerShoW 3.2

Function: Image management
Works with: Any Windows development language that supports DLL calls

Description: PowerShoW is a DLL that provides image-management tools

for manipulating DIB, TIFF, and TARGA bitmap images in 8-, 16-, and 24-

bit color. It supports file-format conversions, dithering, scrolling and zoom-

ing, and many other image-editing functions. Source code for a Visual

BASIC image viewer is included.

ETN Corporation

R.D. 4 Box 659

Montoursville, PA 17754

(717) 435-2202

Q+E Database Library

Function: Database access

Works with: Any development tool or macro language that supports DLL
calls

Description: Q+E Database Library provides programmable access to a

broad range of databases, including dBASE II, III, and IV; Microsoft SQL
Server; Sybase; Oracle; DB2; Netware SQL; Paradox; ASCII text files; and

XLS files. It can be called from any development tool that supports external

DLL calls. Sample code demonstrating database access techniques for Tool-

book, Excel, and Visual BASIC is included.

Pioneer Software

5540 Centerview Drive, Suite 324

Raleigh, NC 27608

(919) 859-2220

Q+E Database/VB
Function: Database access

Works with: Visual BASIC
Description: A Visual BASIC-specific package for creating database applica-

tions with dBASE-compatible files, Q+E Database/VB includes custom con-

trols for creating list boxes, combo boxes, text boxes, pictures, check boxes,

radio buttons, pushbuttons, and scroll bars that access a database. The visual

interface makes it possible to access databases without writing code.

Pioneer Software

5540 Centerview Drive, Suite 324

Raleigh, NC 27608

(919)859-2220

Commercial DLLs and Custom Controls 531

Quadbase-SQL for Windows
Function: Database access

Works with: Any development language that supports DLL function calls

Description: Quadbase-SQL for Windows is a database engine allowing the

development of SQL-capable database applications. It is a DLL with a broad

palette of tools for constructing SQL queries, manipulating dBASE III and

IV, Foxbase, Clipper, and Lotus 1-2-3 files.

Quadbase Systems, Inc.

790 Lucerne Drive, Suite 51

Sunnyvale, CA 94086

(408) 738-6989

QuickPak Professional for Windows
Function: Custom controls and code library

Works with: Visual BASIC
Description: QuickPak Professional is an extensive collection of Visual

BASIC subroutines, functions, and custom controls. It includes enhanced

list-box, edit-box, and scroll-bar controls; file-management routines; equiva-

lents for Lotus 1-2-3 statistical and financial functions; array processing; and

a variety of utilities to simplify your application's interactions with DOS,
Windows, and system hardware. Also included are several demonstration

programs illustrating the use of QuickPak tools and complete, commented
source code for all the QuickPak routines.

Crescent Software, Inc.

11 Bailey Avenue

Ridgefield, CT 06877

(203) 438-5300

RealSound for Windows
Function: Sound

Works with: Any tool capable of making DLL calls

Description: RealSound for Windows is a DLL system for playing sounds on

the computer's internal speaker or on a sound card. It supports all Windows-
compatible development tools and includes a manual with special chapters

on Microsoft C, Borland C++, and Borland Turbo Pascal for Windows.

RealSound Inc.

4910 Amelia Earhart Drive

Salt Lake City, UT 84116

(801)359-2900

532 APPENDIX A

SQL SoftLink

Function: SQL database access

Works with: Any application supporting DDE
Description: SQL SoftLink provides DDE-capable applications with access

to Microsoft's SQL Server.

SQLSoft
10635 N.E. 38th Place, Building 24, Suite B
Kirkland,WA 98033

(206) 822-1287

Superbase Utilities 1

Function: Form editing in Superbase

Works with: Superbase 4

Description: Two utilities are included in this package: one that converts

Superbase forms to DML programs, and another that will return the coordi-

nates of any object within a form, and enables moving, resizing, or altering of

the object.

Dalco Publishing

808-808 West Hastings Street

Vancouver, British Columbia V6C 1C8

Canada

(604) 687-8808

SuperDialog!

Function: Dialog box design

Works with: Superbase 4

Description: A dialog box designer written in DML, SuperDialog! gives pro-

grammers the ability to create dialog boxes using the mouse. The resulting

dialog box can then be converted into a stand-alone Superbase program that

can be pasted into applications.

Dalco Publishing

808-808 West Hastings Street

Vancouver, British Columbia V6C 1C8

Canada

(604) 687-8808

Commercial DLLs and Custom Controls 533

3-D Widgets #1, #2, #3
Function: Custom controls

Works with: Visual BASIC
Description: These three sets of custom controls for Visual BASIC include

enhanced list and combo boxes, bitmapped buttons, 3-D versions of all of

Visual BASIC'S standard controls, ribbon buttons for creating toolbars, and

enhanced menus.

Sheridan Software Systems

65 Maxess Road
Melville, NY 11747

(516)753-0985

VBAssist

Function: Programming utility

Works with: Visual BASIC
Description: VBAssist smoothes production of Visual BASIC programs with

a variety of design tools for creating, aligning, and manipulating controls; the

Property Assistant, which displays control properties; and a Visual Basic

code manager for saving and retrieving procedure codes.

Sheridan Software Systems

65 Maxess Road
Melville, NY 11747

(516)753-0985

VB/ISAM MX
Function: Database management

Works with: Visual BASIC
Description: VB/ISAM MX provides a set of functions for the creation,

indexing, and searching of ISAM data files. It is not compatible with data-

base or ISAM files created by other data-management packages.

Software Source

42808 Christy Street, Suite 222

Fremont, CA 94538

(510)623-7854

534 APPENDIX A

VB Project Archiver

Function: Program development archiving

Works with: Visual BASIC
Description: VB Project Archiver provides archival project management and

version tracking for Visual BASIC programs.

The Young Software Works

300 Mercer Street, Suite 15A
New York, NY 10003

(212) 982-4127

VBTools 2.0

Function: Custom controls, graphics, utilities

Works with: Visual BASIC
Description: VBTools 2.0 includes over 30 custom controls, graphical special

effects, and several utility functions.

MicroHelp

4636 Huntridge Drive

Roswell, GA 30075

(404) 552-0565

VBXRef
Function: Programming management
Works with: Visual BASIC
Description: VBXRef creates reports of the properties of forms and controls

created in Visual BASIC, and can also cross reference variables and proce-

dures used in the objects.

MicroHelp

4636 Huntridge Drive

Roswell, GA 30075

(404) 552-0565

Commercial DLLs and Custom Controls 535

Visual Architect Series

Function: Custom controls

Works with: Visual BASIC
Description: Visual Architect provides a set of custom controls for Visual

BASIC developers, including formatted edit fields; a spreadsheet control;

BMP, PCX, and GIF viewers; bitmapped buttons; and a meter control

(among others).

Prescription Software

P.O. Box 309

75 Walnut Street

Richmond, OH 43944

(614) 765-4333 (Tamara Calaway)

Whitewater Resource Toolkit 3.5

Function: Resource editor

Works with: Windows 3.0 or higher development applications

Description: The Whitewater Resource Toolkit creates reports of Windows
resources, including dialog boxes and menus, and can return information

on IDs, locations, and groups for dialog boxes, menus, strings, and accelera-

tors. Also included is a dialog box editor with support for third-party cus-

tom controls.

The Whitewater Group
1800 Ridge Avenue

Evanston, IL 60201

(708) 328-3800

Appendix B

Companion Disk Instructions

The Companion Disk in the back of this book includes the source code for

the seven projects presented in Chapters 9 through 15, and other programs

and utilities that will be useful as you create applications. The following pro-

grams are on the disk:

CW Install, a Windows-based installation program

Compiled EXE versions of the DocMan and Recycler projects and the

VBRUN100.DLL needed to run them

A set of Visual BASIC files demonstrating the use of all the file manage-

ment functions in Art Krumsee's DISKSTAT.DLL (DISKSTAT.DLL,
which accompanies the Recycler project, is described in Chapter 12)

A full, working version of WinBatch 3.1 for use with the AutoPrint and

Ultimate Notepad project files

Using CW Install

To launch the installation program CW Install, place the Companion Disk in

the A or B drive on your PC, and then select the Run item on the File menu
in the Windows 3.1 Program Manager or File Manager. Next, type A:\CWIN-

STAL.EXE (or B:\CWINSTAL.EXE) in the edit field on the Run dialog

box, then click the dialog box's OK button.

Once CW Install loads, use the dropdown combo box labeled "Destina-

tion Drive" to indicate the drive on which you wish to install one or more of

the project files. CW Install installs each project's files separately, so you can

specify different destination drives for different projects if you like.

Next, select the project whose files you wish to install from the list box

below the destination drive combo box. Click on the Install Project button to

install the selected project's files on the destination drive, or click on the

Describe Project button to see more information about the selected project.

When you click the Install Project button, a dialog box will appear that

lists the files to be installed and asks you to specify the directory on the desti-

nation drive in which you wish to install them. CW Install always suggests a

default directory for each project, but you can change that to any other direc-

tory. (However, use the default directory whenever possible.) CW Install will

create the destination directory if it doesn't already exist.

Note that there are two listings each in the Projects list box for the Auto-

Print, Windows Broker, and DocMan projects. The inclusion of two listings

for AutoPrint allows you to install either the Norton Desktop for Windows

or WinBatch version. In the case of Windows Broker, you can specify differ-

ent destination directories for the Excel and DynaComm files. For DocMan,

you can choose between the Visual BASIC and Ami Pro files.

Companion Disk Instructions 537

In addition, the files in some projects need to be split across two or more

directories. When you attempt to install one of these projects, CW Install

presents you with successive lists of files for each required directory.

When you've finished installing files, click the Exit button to quit CW
Install. If you need assistance while using CW Install, click the button

labeled Help on CW Install's opening screen.

Project Files

The files for each project are stored in separate directories on the Compan-
ion Disk as follows:

Project

The Ultimate Notepad

Who's Who at PC/Computing?

AutoPrint for Windows

Recycler

Windows Broker

DocMan

M.M.M.

Directory

\CWINSTAL\9ULTNOT

\CWINSTAL\10WHOS

\CWINSTAL\1 1AUTOP

\CWINSTAL\12RECYCL

\CWINSTAL\13WINBRO

\CWINSTAL\14DOCMAN

\CWINSTAL\15MMM

Each project file is described in the following sections.

The Ultimate Notepad
The Ultimate Notepad project adds a range of new functions to Notepad,

including a search-and-replace facility, the ability to work with multiple files

at once, and a word-count facility. As described in Chapter 9, The Ultimate

Notepad consists of just two files, both intended for use with WinBatch:

NOTEPAD.WBT

NOTEPAD.WDF

WinBatch macro file

WinMacro menu definition file

The default destination directory for The Ultimate Notepad is D:\WB31
(where D: indicates the destination drive.)

To use The Ultimate Notepad, make sure that WINMACRO.EXE
(included in WinBatch) is running before you launch Notepad.

538 APPENDIX B

Who's Who at PC/Computing
Who's Who at PC/Computing is an employee information graphic that was
built using Spinnaker Plus. As described in Chapter 10, Who's Who at

PC/Computing consists of a single file:

WHONEWSTA Who's Who application

The default destination directory for Who's Who at PC/Computing is

D:\Plus. You must have Spinnaker Plus installed on your system to use this

application.

AutoPrint for Windows
AutoPrint for Windows is a Windows print queue that allows you to desig-

nate nearly any document created by a Windows application for printing at a

specified time. Two versions are included on the companion disk, one

designed for use with Norton Desktop for Windows (NDW), the other for

use with WinBatch and the Windows 3.1 File Manager. As described in

Chapter 11, AutoPrint for Windows includes five files:

GETFILE.WBT

AUTOPRN.WBT

COPYMAC.WBT

AUTOP.WBT

WINFILE.WDF

NDW macro that adds file to print queue

NDW macro to print all files in queue

WinBatch version of GETFILE.WBT

WinBatch version of AUTOPRN.WBT

WinBatch menu definition file

The default destination directory for the NDW version of AutoPrint for

Windows is D:\NDW, and the default destination directory for the WinBatch
version is D:\WB31.

To use the WinBatch version of AutoPrint for Windows, make sure that

WINMACRO.EXE (included in WinBatch) is running before you launch

File Manager.

Recycler

Recycler is a recycling bin for files that hides files that you drag onto its icon

from the Windows 3.1 File Manager. The files in the recycling bin can be

restored or deleted at any time. As described in Chapter 12, Recycler

includes eight files.

Companion Disk Instructions 539

RECYCLER.EXE

RECYCLER.MAK

GLOBAL.BAS

FORM1.FRM

DRAGDROP.BAS

DISKSTAT.DLL

RECEMPTY.ICO

RECFULL.ICO

Executable version

Visual BASIC project file

Global declarations file

Form file

Code module

DOS functions DLL used by Recycler

Icon file used by Recycler

Icon file used by Recycler

The default installation directory for Recycler and its source files is

D:\VB\RECYCLER. The default directory for DISKSTAT.DLL is D:\WIN-

DOWS\SYSTEM.
You'll need to install the Visual BASIC runtime DLL

(VBRUN100.DLL) included on the Companion Disk to use RECY-
CLER.EXE, and you'll need the full Visual BASIC development environ-

ment to edit Recycler's source files.

Windows Broker

The Windows Broker project is a stock-trading and portfolio analysis system

built using Microsoft Excel and FutureSoft Engineering's DynaComm. As
described in Chapter L3, Windows Broker consists of the following files:

BROKER1.XLW

BROKER1.XLM

BROKERl.XLS

LOTS.XLS

IBM.XLS

BROKER.DCS

BROKER1.DCT

BROKER1.DCP

Excel workspace file

Excel macro file

Excel worksheet file

Daily stock price worksheet

Daily stock price worksheet

DynaComm settings file

Compiled DynaComm script file

DynaComm script source code file

The default destination directory for the Excel files is D.AEXCEL. The

default directory for the DynaComm settings file is /XADYNACOMM-
\DCS, and for the DynaComm script files it is D:\DYNACOMM\DCP.

540 APPENDIX B

DynaComm is very fussy about its use of directories, so changing this

default is not recommended.

You'll need Excel 3.0 or 4.0 to use the Excel portion of the Windows Bro-

ker application, and DynaComm 3.0 (or higher) to use the DynaComm scripts.

DocMan
DocMan is a document management system built in Visual BASIC and the

Ami Pro macro language that allows you to organize and access Ami Pro

documents using 120-character document titles. As described in Chapter 14,

DocMan consists of these files:

DOCMAN.EXE

DOCMAN.MAK

DCGLOBAL.BAS

FORM1.FRM

DOCMAN2.FRM

FINDDLG.FRM

ACTIONS.FRM

ABOUTDLG.FRM

GLOBCODE.BAS

DOCMAN.DAT

DMKEYS.DAT

AUTOEXEC.SMM

AUTONEW.SMM

SAVEMAC.SMM

DMINFO.SMM

Executable version of DocMan

Visual BASIC project file

Global declarations file

Form file for opening banner

Form file for DocMan's main screen

Form file for Find Document dialog box

Form file for floating tools palette

Form file for About DocMan dialog box

Visual BASIC global code module

Sample document data file

Sample keywords file

Ami Pro AutoExec macro

Ami Pro AutoNew macro

Ami Pro File Save functions macro

Ami Pro Call DocMan macro

The default destination directory for DocMan's Visual BASIC files is

D:\VB, and for its Ami Pro files, D:\AMIPRO\MACROS. (Note, if you

already have Ami Pro macros called AUTOEXEC.SMM or AUTONEW-
.SMM, you should rename them before installing DocMan's Ami Pro mac-

ros, and then edit the DocMan Ami Pro macros after installing them to

include the routines from your existing macros with those names. Otherwise,

Companion Disk Instructions 541

your existing AUTOEXEC.SMM and AUTONEW.SMM macros will be

overwritten during the installation process.)

To run DOCMAN.EXE, you'll need to install VBRUN100.DLL from

the Companion Disk. You must have Ami Pro to use the Ami Pro macros.

The full Visual BASIC environment is required to edit the DOCMAN.MAK
project files.

M.M.M.: the MCI Mail Manager
M.M.M.: the MCI Mail Manager is a full-featured electronic mail manage-

ment system written using the DynaComm script language, as described in

Chapter 15. The version on the Companion Disk features one change from

that described in the text: a number of utility routines that were repeated in

several modules have been moved to a shared-code module called COM-
MON.DCP. With this change, M.M.M. now consists of 18 files:

AUTOMCI.DCP

AUTOMCI.DCT

COMMON.DCP

COMMON.DCT

EM.DCP

EM.DCT

ONLINE.DCP

ONLINE.DCT

PM.DCP

PM.DCT

TM.DCP

TM.DCT

BLANK.DCM

FORWARD.DCM

MAILSET.DCS

MMM2.BMP

Source code for M.M.M.s main module

Compiled code for main module

Source code for common utility routines

Compiled code for common utility routines

Source code for communications module

Compiled code for communications module

Source code for terminal mode module

Compiled code for terminal mode module

Source code for phone book module

Compiled code for phone book module

Source code for message editor module

Compiled code for message editor module

Template file for new messages

Template file for forwarded messages

DynaComm settings file

Bitmap file displayed by M.M.M

542 APPENDIX B

PRIVATE.PBK

PUBLIC.PBK

Sample private phone book data file

Sample public phone book data file

The default installation directory for the source and compiled code files

is D:\DYNACOMM\DCP, and the default directory for the remaining files is

D:\DYNACOMM\DAT. Given DynaComirTs extreme fussiness about file

storage locations, changing these defaults is not recommended.

In order to use M.M.M. you'll need version 3.0 or higher of DynaComm.

Other Files

The Companion Disk includes several other files in addition to those for the

book's seven projects. These include VBRUN100.DLL (the Visual BASIC
runtime DLL), DISKSTAT.EXE (an executable file demonstrating other

functions of the DISKSTAT.DLL) and its Visual BASIC source code files,

and WinBatch 3.1. These are stored in the following directories on the Com-
panion Disk:

File

VBRUN100.DLL

DISKSTAT.EXE (and source code)

WinBatch 3.1

Directory

Root directory

\DISKSTAT

\WINBATCH

Visual BASIC Runtime DLL (VBRUN100.DLL)
VBRUN100.DLL is required to run CWINSTAL.EXE, RECYCLER.EXE,
and DOCMAN.EXE. Its default installation directory is D:\WIN-

DOWS\SYSTEM.

DISKSTAT.EXE
DISKSTAT.EXE is a demonstration program for the various file manipula-

tion functions provided to Visual BASIC by DISKSTAT.DLL. DISK-

STAT.EXE was written by Art Krumsee, the developer who wrote

DISKSTAT.DLL. The \DISKSTAT directory contains the following files:

DISKSTAT.EXE

DISKSTATMAK

Demonstration program for DISKSTAT.DLL

Visual BASIC project file for DISKSTAT.EXE

Companion Disk Instructions 543

DISKSTAT.BAS

DISKSTAT.FRM

Global declarations file for DISKSTAT.EXE

Form file for DISKSTAT.EXE

The default installation directory for DISKSTAT.EXE and its source

code files is D:\VB\DISKSTAT
VBRUN100.DLL and the DISKSTAT.DLL from the Recycler project

must be installed on your system before you can run DISKSTAT.EXE.
You'll need the full Visual BASIC development environment to edit its

source code files.

WinBatch 3.1

The WinBatch 3.1 files are stored in a compressed format on the Companion
Disk. CW Install will automatically decompress them as it copies them to the

destination drive. Once the files have been copied, run the WinBatch setup

program, WSETUP.EXE, using the Program Manager or File Manager File

Run command, to complete installation of WinBatch 3.1 on your system.

WSETUP.EXE will copy the WinBatch files to a new directory, so once you

have run WSETUP.EXE, you can delete the directory to which CW Install

copied the files.

The default destination directory for the WinBatch files is D:\WBSETUP.
If you prefer to copy the WinBatch 3.1 files to your destination disk man-

ually rather than use the CW Install routine, you can use the program

EXPAND.EXE, which you'll find in the root directory of the Companion
Disk, to decompress them. To do so, shell to DOS or exit from Windows, cre-

ate a directory called WBSETUP in the root directory of your destination

disk to store the expanded files, then activate the drive containing the Com-
panion Disk. From its root directory, type the following command:

EXPAND \WINBATCH*.* D:\WBSETUP

Return to Windows and run WSETUP.EXE.
Please note that WinBatch 3.1 is a shareware program. If you use it

beyond a brief trial period, you are obligated to register it with Wilson Win-

dowWare and pay a shareware fee.

INDEX

AccSys package, 521

active status line, 158-159

Agility/VB package, 521

Ami Pro (Lotus). See also DocMan

Clipboard support, 59

contacting the company, 73

macro language, 72-73

status bar font menu, 158

Ami Pro Macro Developer's Kit, 522

AND operator, 26-27

append, 23, 59

application design. See also individual

applications

and application purpose, 111-113

defining input requirements,

120-125

defining internal processing,

133-135

defining variables, 125-129

drawing a flowchart, 1 15-120

links to other applications, 121-122

nuts and bolts of, 110-135

picking development tools for,

113-114

planning data structures, 125-133

usability guidelines, 96-108

application-development tools

and application control, 59

for AutoPrint for Windows, 241

and Clipboard support, 59

for DocMan, 338-339

evaluating, 58-69

for M.M.M., 404-405

and multitasking facilities, 58-63

selecting, 54-93. 113-114

types of, 70

for The Ultimate Notepad, 181-182

for Who's Who at PC Computing,
210-211

for Windows Broker, 295-296

application macro languages. See

Macro languages

application window features, 140-144

application workspace, 143

control menu box, 140

document windows, 143-144

menu bar, 140-143

minimize and maximize buttons,

140

scroll bars, 143

title bar, 139-140

application workspace, 143

arrays, 28-29

Autodesk Animation Player for

Windows, 522

AutoPrint for Windows, 57, 238-264

application design, 111-135,

240-241

AUTOPRN.LST, 133

AUTOPRN.WBT batch file,

248-254

ExitRoutine routine, 251-252

GetFile routine, 250

PrintFile routine, 250

Start routine, 249-250

TitleCheck routine, 251

AUTOPWBT batch file, 258-264

ConfirmTime routine, 260-262

EndLoop routine, 264

GetWindTitle routine, 263

NextFile routine, 264

PrintFileLoop routine, 263

StartNow routine, 262-263

Start routine. 260

TimeCheck routine. 262

WentFine routine. 264

545

546

COPYMAC.WBT batch file,

255-258

AssocErrJump routine, 258

Main routine, 256-257

WrongApp routine, 258

data requirements, 123

data structures, 132-133

development tools, selecting, 241

files to print, obtaining, 123-124

flowchart for, 117-119

functionality, 241-243

Get File dialog box, 247

GETFILE.WBT batch file,

243-248, 252-254

AssocErrJump routine, 248

initial flowchart for, 118

later flowchart for, 119

Main routine, 244-247

Start routine, 244

WrongApp routine, 247-248

impetus behind, 239-240

Launch List menu, 252

Norton Desktop version, 243-254

obtaining a start time, 124-125

Program Manager icon for, 260

project files, 538

START.DLG dialog box, 259

WinBatch version, 254-264

WrongApp error dialog box, 258

B
backgrounds (in Spinnaker Plus), 21

1

BASICS for Windows, 85-89

batch languages, 46-47, 80-84. See also

WinBatch (Wilson

WindowWare)

Batch Runner, 241

Bridge Batch, 81-82

Bridge Toolkit, 81-82

and linking applications, 48-50

Norton Desktop for Windows, 83

PubTech BatchWorks, 83-84

batch printing utility. See AutoPrint

for Windows

Batch Runner, 241

beta testing, 174

Bonner's usability guidelines, 99-108

design for reliability, 106

design for the user's convenience,

107-108

don't delay experienced users, 107

don't overwhelm new users,

106-107

don't surprise the user, 102-104

finish the job, 105

fit applications into the current

work flow, 100-101

improve on existing methods,

101-102

keep the user informed, 103-104

make applications open-ended,

105-106

make the application wait, 104

try to delight the user, 104-105

Boolean expressions, 25-27

Boolean operators, table of, 26

Bricklin, Dan, 3-4

Bridge Batch, 81-82

Bridge Toolkit, 81-82

Bridgit package, 522

Broker. See Windows Broker

buttons

command, 144-145

radio (option), 146-147

ButtonTool package, 523

cards (in Spinnaker Plus), 21

1

cascading menus, 142-143

547

chaining statements, 29

ChartBuilder for Visual BASIC, 523

check boxes, 145-146

Clipboard (Windows), 9, 59, 122

combination boxes, 155

command buttons, 144-145

commands, 14-16

COMMDLG.DLL (Windows) file,

162

comments (nonexecutable

statements), 27-28

Companion Disk instructions, 536-543

CompuServe, and Windows Broker,

296, 320, 323-325, 328

concatenation, 24

control array, 282

control menu box (application

window), 140

cost and performance issues, 42

cross-systems applications

development, 85

CrossTalk for Windows, 74, 404

Custom Control Factory, 523

custom controls, 50-51

cut-and-paste programming, 40-53

CW Install, 536-537 ^

data formats, disk-based, 129-132

data presentation. See Who's Who at

PC/Computing

data structures

AutoPrint for Windows, 132-133

planning, 125-133

dbFast/Win, 74-75

DDE (dynamic data exchange), 4. 59,

61, 121-122.295

debugging, 169-174

decision making (program control).

29-30

designing applications. See

application design

DESQview, 5-6

detail flowcharts, 1 15

development tools. See application-

development tools

dialog box editors, 66-67

dialog boxes, 64-66, 161-162

Dialoger package, 524

disk-based data formats, 129-132

Disk (Companion Disk) instructions,

536-543

DISKSTAT.EXE file, 542-543

Distinct TCP/IP for Windows, 524

DLL support, 62-63

DocMan, 57, 336-400

ABOUTDLG.FRM, 371-372

Commandl_Click procedure,

372

Form_Paint procedure, 371-372

About DocMan dialog box, 371

ACTIONS.FRM, 362-364

button routines, 363-364

Command l_Click procedure,

363

Command l_DragDrop
procedure, 363-364

Command l_KeyUp procedure,

364

Form_Load procedure, 362

Ami Pro Document Description

dialog box. 342

Ami Pro interaction with. 393-399

application framework, 343

DCGLOBAL.BAS module.
343-346

constant declarations. 343-344

data-storage declarations.

345-346^

external In net ion declaration.

344-345

548

variable declarations, 346

Delete File confirmation box, 379

development tools, selecting,

338-339

DOCMAN2.FRM, 348-362

Command l_Click procedure,

352-353

Command2_Click procedure,

354

Description_Change

procedure, 354

FormJLinkExecute procedure,

355-358

Form_Load procedure, 348-350

Form_Paint procedure, 350

Form_Resize procedure, 359

Form_Unload procedure, 359

general and loading routines,
"

348-350

menu item routines, 360-362

Textl_Change procedure, 354

Textl_GotFocus procedure, 355

Titles_Click procedure, 351

Titles_GotFocus procedure, 351

Titles_LostFocus procedure,

351-352

Titles_MouseMove procedure,

352

user-action routines, 350-359

FileErrors message box, 383

FINDDLG.FRM, 365-371

Commandl_Click procedure,

368

Command2_Click procedure,

370

Command3_Click procedure,

370

Command3_DragDrop
procedure, 370-371

event procedures, 368-371

Form_Load procedure, 365-366

Form_Paint procedure, 366

Form_Unload procedure, 366-

368

general and loading routines,

365-368

Listl_Click procedure, 368-369

Listl_Dblclick procedure, 369

Listl_MouseMove procedure,

369

Textl_DragDrop procedure,

369-370

FindDlg screen, 340-342

Find Document dialog box, 341

FORM1.FRM, 346-347

functional requirements, 338

GLOBCODE.BAS module,

372-392

AddKeys procedure, 384-386

CenterForm procedure, 373

CleanUp procedure, 387-388

ClearFields procedure, 381

DeleteFile procedure, 378-380

DeleteRecord procedure,

380-381

ExitDocMan procedure, 387

FileErrors procedure, 382-383

FileOpener procedure, 381-382

FindRecord procedure, 388-390

Frame procedure, 373-374

GetFile procedure, 375

LaunchApp procedure, 376-377

Loaded procedure, 376

NewFile procedure, 377-378

OpenDoc procedure, 374-375

PrintFile procedure, 378

ReadSelectedRecord
procedure, 383-384

RestoreApp procedure, 376

Sub GetPath procedure,

390-391

549

TestField procedure, 390

TestLength procedure, 391-392

WaitSecs procedure, 377

WriteChangedRecord
procedure, 384

WriteKeyFields procedure,

386-387

message boxes, 390,392

modified Ami Pro File menu, 394

Next Match button enabled, 389

OpenDM screen, 339-340

form and tools palette, 339

pull-down menus, 340

opening banner, 346, 347

opening moves, 337

project files, 540-541

text highlights by input focus, 356

Titles list box icon, setting, 353

user interface, 339-343

and Visual Basic, 338

documentation, 175-176

document windows, 143-144

DoEvents loop (Visual BASIC), 273

DO-LOOP, 32-33

DOS attribute control, 268, 274

DOS Hidden attribute, 268

DOS limitations, 5-6

double-precision real variables, 17

drag-drop functions (Recycler),

277-27K

drag-drop messages, handling, 271-274

drop-down combination box, 155

drop-down list box, 155

DynaComm (FutureSoft Engineering),

44, 48-49, 295, 404-405. See

also M.M.M.: the MCI Mail

Manager; Windows Broker

Communications dialog box, 432

contacting the company. 76

data needed by, 302

dialog boxes, 64-65

macro language, 75-76

WAIT STRING command, 168

dynamic link libraries (DLLs), 50-52,

266-293

dynamic menu items, 141-142

edit boxes, 151-152

EditTool package, 524

elements of program control, 29-36

elements of programming, 13-29

email. See M.M.M.: The MCI Mail

Manager

EMS (electronic mail service)

address, 413

endless loops, 33

envelope (message), 405

error handling, 36-37

Excel (Microsoft), 48

contacting the company, 78

DDE support, 62

dialog box editor, 67

INITIATE command, 62

macro language. 77-78

OPEN command, 62

PARSE command. 308-309

REQUEST command. 62

TERMINATE command. 62

experimentation. 38. See also

Windows Broker

expressions. 13. 23-27

Express (Lotus). 43. 403

extended-selection list boxes. 153

Fast Data package. 525

file formats. 69

File Manager (Windows). .Sec

Windows File Manager

550

finger knowledge, 7

flowchart iterations, 116-118

flowcharts, drawing, 115-120

flowchart symbols, 116

folders (message lists), 406

FOR-NEXT loop, 20, 31, 128

functions, 20-23

GFA-BASIC for Windows, 85-86

global scope, 35

global variables, defining, 128-129

graphical hypertext products, 90-93

Graphics Server SDK package, 525

grayed check boxes, 145-146

graying out menu items, 141

group boxes, 147

guessing game application, 126-129

H
handlers (in Spinnaker Plus), 211

handles, 63

horizontal scroll bars, 143

hot links, 61,121

Hypercard-like tools, 210

I

icon bars, 157

icons, 148-150

IF-THEN-ELSE statements, 29-30

IF-THEN statements, 29

ImageMan package, 525

informational icons, 149-150

INI files, 131-133

initializing variables, 18-19

input focus, 60

input/output, 33-34

input/output commands, 15

input requirements, defining, 120-125

installation, documenting, 175

integer variables, 17

internal processing, defining, 133-135

interrupt handling, 7

ISAM, 521

iterative prototypes, 166-167

keyboard interface, 159-160

keyboard navigation, 159-160

keyboard operation, testing, 170-171

keyboard shortcuts, 160

key (field), 131

key name (field), 131

keyword searches, 340-341

learning to program, 38-39

libraries, dynamic link, 50-52, 266-293

linking applications, 48-50, 121-122

list boxes, 152-154

long-integer variables, 17

looping, 128

loops, 19-20, 30-33, 272-273

Lotus Ami Professional. See Ami Pro

(Lotus)

Lotus Express, 43, 403

Lotus 1-2-3 for Windows, 76

low memory conditions, testing

for, 172

low system-resource conditions,

testing for, 172-173

M
Macintosh Trash icon, 148

macro file formats, 129

macro languages, 44-46, 70-80

Ami Pro, 72-73. See also DocMan

Crosstalk for Windows, 74

dbFast/Win, 74-75

551

DynaComm, 75-76. See also

M.M.M.: the MCI Mail

Manager; Windows Broker

Excel, 77-78. See also Windows
Broker

and linking applications, 48-50

Lotus 1-2-3 for Windows, 76

Object Vision 2.0, 78-79

SuperBase4, 79-80

Word for Windows, 72, 78-79

macro sheets, 77, 304

Magnet, 323

mathematical functions, 21

MCI Mail Manager. See M.M.M.:
The MCI Mail Manager

menu bar (application window), MO-
MS

menu editors, 66-67

menu items, dynamic, 141-142

menus, 66

message boxes, 64, 149-150

message-handling loops, 272-273

MicroHelp Communications Library,

526

MicroHelp Muscle, 526

MicroHelp Network Library, 526

Microsoft Excel. See Excel

(Microsoft)

Microsoft LAN Manager Toolkit for

Visual BASIC, 527

Microsoft Word for Windows
Developer Kit, 528

Microsoft Word for Windows.

See Word for Windows
(Microsoft)

minimize and maximize buttons

(application window). 140

M.M.M.: The MCI Mail Manager,
43-44,402-519

About M.M.M. dialog box, 439

Account menu, 431-432

Add Name to... dialog box, 515

addresses, editing, 413

AUTOMCI.DCP script, 416-470

About routine, 439

Access_Num routine, 435-436

Account_Data routine, 465

account setup routines, 462-467

Ans_Button routine, 428

Ans_Set routine, 459

Auto_Freq routine, 439-440

Auto_Set routine, 436-437

Back_Up routine, 445

Check_Del routine, 452

Clear_Marks routine, 452-453

Close_and_Clear routine,

443-444

Close_Em routine, 444

Code routine, 467-470

Decode routine, 468

Delete routine, 455

Dialog_Update routine, 427

Edit_Out routine, 451-452

Edit routine, 466-467

the end of Main. 427

the end of Menu, 433

Export routine, 460

FastRest routine, 450-451

File_It routine. 466

FindRoutine routine, 458-459

For_Button routine. 428

For_Set routine, 459-460

Get_Filename routine. 458

Get_List routine, 445-446

global settings and variables,

initializing. 416-421

Main routine, 421 -427

Mark_Del routine. 453

menu-support routines. 433-441

552

message-handling commands,
423-425

message-handling routines,

456-461

Move routine, 448-450

New routine, 463-464

obtaining data, 420-421

offline and quit commands,
426-427

online commands, 425-426

Pick routine, 434

Print_Mess routine, 460-461

Pub_Book routine, 434-435

Purge_Marked routine, 454-455

Read routine, 456-457

ReadString routine, 446

Rec routine, 428-429

Restore routine, 437-438

Saveall routine, 455-456

Save_Table routine, 444-445

setting up directories, 417-418

Set Up Menu routine, 429-433

SetupMMM routines, 468-470

Setup routine, 463

Slots routine, 440-441

Sort by and View commands,
423-424

Sort routine, 446-447

sort and view commands, 422

Stat_Check routine, 461-462

Stats routine, 447-448

Table_Def_And_Load routine,

443

table-handling routines, 442-446

Table_Save routine, 444

Tables routine, 442-443

Ver_Cir routine, 429

View_Check routine, 433-434

welcome-message routines,

461-462

Welcome routine, 462

WriteString routine, 446

AutoMCI Frequency dialog box,

440

AutoMCI session status message,

509

AutoMCI Settings dialog box, 436

capabilities of, 405-407

Communications menu, 432

creating and editing messages,

405-406

development tool for, 404-405

drawing the dialog box, 421-422

drop-down combo boxes, 409-410

and Dynacomm, 404-405

Edit Account dialog box, 467

EMAIL.DCP, 489-511

Auto_Dial_Seq routine,

506-507

Auto_Main routine, 507-508

Auto_Quit routine, 510

Auto_Retrieve routine, 506

BackUpFiles routine, 510

Date_Fix routine, 503-504

Delete_File routine, 501

EMS routine, 498

Err routine, 499

Errl routine, 499

Err2 routine, 499-500

Get_cc routine, 497-498

Get_Sub routine, 500

Get_To routine, 496-497

initializing global variables,

489-490

Loginerror routine, 505

Login routine, 491

Logout routine, 504-505

Looper routine, 493-494

Loop routine, 492

553

Loop3 routine, 508

message-reception routines,

501-510

message-transmission routines,

490-501

Pickup routine, 501

Prepare_For_Next_Message
routine, 496

PR_Loop routine, 501-502

Process_Incoming_Mess

routine, 502-503

Prompts routine, 492-493

Restart routine, 508-509

Save_and_Close routine, 511

Send_Body routine, 495

Send_Handling routine,

495-496

Send_Loop routine, 494-495

Send_Message routine, 493

Send_Recv routine, 490-491

Send_To routine, 497

standard library routines,

510-511

Table_Load routine, 510-511

Table_Write routine, 505-506

Time_Set routine, 509-510

Endjt dialog box, 488

File menu, 430

functionality, 407-416

function key definition screen, 517

Mailboxes screen, 168, 408-410

action routines, 446-456

support routines, 427-429

Mailslot Names dialog box, 441

Message Addressing dialog box,

64-65,415,473

message-composition routines,

415-416,471-488

Message Editor, 416, 486

message-handling options, 41

1

messages, organizing and
managing, 406-407

M.M.M. menu, 430-431

Move Options dialog box, 450

New Account dialog box, 465

offline options, 410-411

ONLINE.DCP module, 515-518

Capture routine, 516-518

Online routine, 516

Print routine, 518

terminal routines, 516-518

on-line options, 410

Phonebook Management dialog

box, 413, 513

phonebook management routine,

412-414

PM.DCP module, 511-515

Add_Edit_Dialog routine.

513-514

Add_Name routine, 512

Delete_Name routine, 514-515

Edit_Book routine, 513

Main_Phon routine, 512

Phon_Man routine, 511-512

Up_Phone routine, 515

Print Message command, 503

Process Message dialog box. 487

project files, 541-542

prompt from SetupMMM routine.

470

prototyping, 167-169

Public phonebook location. 412

Purge Message dialog box, 453

Restore Backups dialog box, 43S

sample envelope file, 475

Set Up menu, 412

sort menu, 409

Statistics dialog box. 41

1

Terminal session, 517

554

TM.DCP module, 470-489

Add_To routine, 479

Answer_Message routine,

481-482

calling the TM module, 470-471

Change_Book routine, 481

ChangeJList routine, 480-481

Compose_Message routine, 485

Cut_Name routine, 480

Done routine, 482

Edit_Name routine, 479-480

Edit_Phbk routine, 473-475

Edit_Set routine, 474

End_It routine, 487-488

Get_Date routine, 475-476

Get_Name routine, 477-478

message-creation routines,

471-488

MoreJTos routine, 483

New_Mess routine, 471-472

Pad routine, 488-489

Pai se_Name routine, 478

Process_Message routine,

485-487

Process routine, 482-483

Readlnteger routine, 489

Shorten routine, 476, 477

To_Dialog routine, 472-473

Update routine, 479

utility routines, 488-489

Write_CC_Fields routine,

483-484

Writelnteger routine, 489

Write_Subject_and_Handling

routine, 484-485

transmitting and receiving

messages, 406

user interface, 407-416

view menu, 410

welcome message, 408

mouse and keyboard operation,

testing, 170-171

multidimensional arrays, 28-29

multiple-application processes, 7-8

multiple-document interface (MDI),
143-144

multiple-selection list boxes, 153

multitasking under Windows, 5-8

designing for, 8-11

and selecting tools, 58-63

shared facilities, 9-10

shared interface, 10-11

shared processing, 8-9

N
named subroutines, 34-36

network operation, testing for, 172

Norton Desktop version of Autoprint

for Windows, 241, 243-254

Norton Desktop for Windows, 83,

241. See also AutoPrint for

Windows

contacting the company, 83

Print dialog box, 244

Scheduler utility, 241, 253

Notepad. See Ultimate Notepad, The

NOT operator, 27

numeric expressions, 24

numeric operators, table of, 24

object linking and embedding (OLE),

42, 122

ObjectScript, 86-87

ObjectView, 87

Object Vision 2.0, 78-79

on-line help, 176

operators, 24, 26

option buttons, 146-147

OR-based keyword searches, 341

855

originality vs. standards, 1

1

OR operator, 26-27

outline flowcharts, 115

P
parameters, 14

parse, 37

Pascal for Windows, 90

PC Comnet DLL package, 529

PCContact, 323

PDQComm for Windows, 529

performance and cost issues, 42

Plus. See Spinnaker Plus

portfolio-analysis application. See

Windows Broker

PowerLibW 3.1 package, 529

PowerShoW 3.2 package, 530

predefined functions, 21

presenting data. See Who's Who at

PC Computing

printing utility. See AutoPrint for

Windows

Print Manager (Windows), 240

program control elements, 29-36

program execution, 15

programming

basics of, 12-39

cut-and-paste, 40-53

elements of, 13-29

learning, 38-39

project files (Companion Disk),

537-542

prototyping, 165-169

PubTech BatchWorks, 83-84

O&E Database Library (Pioneer

Software), 51-53

O+E Database/VB, 530

Quadbase-SQL for Windows, 531

QuickPak Professional for Windows,
531

Quick*Way (Quick & Reilly), 296,

325-333

radio buttons, 146-147

random-access files, 33, 131

Realizer package, 88-89

RealSound for Windows, 531

real variables, 17-18

Recycler, 266-293

About Recycler message box, 287

application framework, 274

basic operations, 267

bin contents in File Manager, 268

capabilities and limitations, 269-271

confirmation box for a file delete,

284

defining requirements, 271-274

development tool, selecting, 271-

273

DRAGDROPBAS, 288-293

CheckForDir function, 291

FixSize subroutine, 292-293

FixTitle subroutine, 291-292

HideFile function, 290-291

main subroutine, 288-290

Erase All confirmation box, 285

File menu, 269

file tracking, 270

FORM l.FRM, 280-288

Command l_Click procedure,

282-284

event procedures, 282-288

FileAbout_Click procedure,

287

FileEmpBin_Click procedure,

284-285

FileExit_Click procedure, 287

556

FileResAlLClick procedure,

286

Form_Resize procedure,

286-287

Form_Unload procedure,

287-288

general procedures, 282

GLOBAL.BAS, 275-280

calling DISKSTAT.DLL,
278-279

calling the drag-drop functions,

277-278

function and subroutine

definitions, 276-279

global constant and variable

definitions, 279-280

type definitions, 275-276

icon, 267

list box, 269

message loops, 272

messages, 270

project files, 538-539

Restore All confirmation box, 286

and subdirectories, 269-270

user interface, 267-270

and Visual BASIC, 272-273

window when the bin is empty, 267

revision marking (Ami Pro), 72

ribbons, 157-158

running in the background, and

testing, 173

runtime errors, 36

s
SAA Common User Access Guide,

156-157

SAA standard, 156-157

scope, 35

screen design, 68-69

screen editors, 68

screen pages, 296

scroll bars (application window), 143

sequential-access files, 33, 130

shareware, 70

single-precision real variables, 17

single-selection list boxes, 153

Software Development Kit (Windows
SDK), 56, 172

Spinnaker Plus, 91-92, 210. See also

Who's Who at PC/Computing

application-design issues, 211-214

Button Info dialog box, 213

contacting the company, 92

editing a script, 226

limitations of, 214

Object Properties dialog box, 228

Script window for a button, 214

three-dimensional frames, 215

SQL databases, 52

SQL SoftLink package, 532

stacking Notepad windows, 190

stacks (in Spinnaker Plus), 211-212

standard user-interface controls,

144-155

check boxes, 145-146

command buttons, 144-145

common extensions to the

standard, 157-159

dialog boxes, 162

edit boxes, 151-152

group boxes, 147

icons, 148-150

list boxes, 152-155

radio buttons, 146-147

static text controls, 150-151

statements, 13

static text controls, 150-151

status lines, active, 158-159

stock-trading system. See Windows
Broker

557

strategic projects, 57

string expressions, 24-25

string functions, 21-22

string variables, 17

subroutines, named, 34-36

SuperBase4 package, 79-80

Superbase Utilities 1 package, 532

SuperDialog! package, 532

tactical projects, 57

TCP/IP, 521, 524

testing and debugging, 169-174

text files, 33, 130-131

third-party code, 50-52

3-D Widgets package, 533

title bar (application window), 139-140

Toolbook (Asymmetrix), 92-93, 210

tools. See application-development

tools

transactions (of database changes), 52

Trash icon, 148

troubleshooting, documenting for, 175

TrueType, 171-172

Turbo Pascal for Windows, 90

twips, 362

type-conversion functions, 22

type mismatch error, 19

u
Ultimate Notepad, The, 43, 180-207

Control menu, 184

development tools, selecting,

181-182

"File Already Exists" warning, 195

File Opener dialog box, 186

Find dialog box, 198

Insert File dialog box. 192

NOTEPAD.WBT, 185-206

AutoIndentSub routine,

199-200

ClowerSub routine, 200-201

CupperSub routine, 200-201

dialog box routines, 204-206

DummySub routine, 195

Ender routine, 204

FastCountSub routine, 201-204

InsertWrite routine, 206

introductory lines, 185-186

MergeSub routine, 191-193

OpenerSub routine, 186-189

OpenerWrite routine, 205-206

OpenTwoSub routine, 189-191

ReplaceSub routine, 195-199

ReplaceWrite routine, 206

SaveselSub routine, 193-195

subroutine macros, 186-204

NOTEPAD.WDF, 183-185

project files, 537

prompt for a filename, 194

Replace dialog box, 196

search string not found message,

198

setting objectives, 182-183

stacking Notepad windows, 190

and WinBatch, 182

user-defined functions. 22-23

user errors, 37

user interface

advantages of Windows. 138-139

application window features,

139-144

assigning kevstroke combinations.

137

facilities, 63-69

implementing. 136-163

558

standard Windows, 138-139

user interface controls. See standard

user interface controls

user testing, 174

V
variables, 16-20

defining, 125-129

global, 128-129

initializing, 18-19

variable scoping, 35-36

VBAssist package, 533

VB/ISAM MX package, 533

VB Project Archiver package, 534

VBTools 2.0 package, 534

VBXRef package, 534

vertical scroll bars, 143

video resolutions, testing with

various, 171

Visual Architect Series, 535

Visual BASIC (Microsoft), 88-89,

272-273, 338. See also

DocMan; Recycler

APPACTIVATE command, 60

application control, 59-60

contacting the company, 89

custom controls, 50-51

defining variables, 126-129

DLL support, 52, 63

form with button and list box
controls, 280

Menu Design window, 281

menu editor, 67

RANDOMIZE statement, 126

runtime DLL files, 542

screen editor, 68

SENDKEYS command, 60

SHELL command, 59

using API functions within, 60

w
WHILE-WEND loops, 31-32

Whitewater Resource Toolkit 3.5, 535

Who's Who at PC/Computing,
208-236

card-naming conventions, 219-220

Departments pop-up menu, 232

the development tool, selecting,

210-211

drawing the interface, 212-214

Floor Plan screen, 225-230

background scripts, 226-227

buttons, 230

facilities scripts, 229

office object scripts, 228-229

tracking highlighting, 227-228

four basic cards of, 215-216

inanimate-object event handling,

229

opening screen, 216-224

Employee List List-Box script,

222-224

Floor Plan Button script,

218-219

Home Button script, 218

OpenStack script, 217-218

Organization Chart Button

Script, 220

Search Button script, 220-222

Organization Chart screen, 234-236

Organization Chart script, 235-236

Personnel Card screen, 230-234

Department field script, 232-233

Floor Plan button script,

233-234

Personnel Card Template card, 224

project files, 538

search function input box, 221

and Spinnaker Plus, 210-211

user interface, 212-216

559

WinBatch (Wilson WindowWare), 43,

84,134, 181-183. See also

AutoPrint for Windows

application control, 61

Batch Runner, 241

Clipboard support, 59

contacting the company, 84

files, 543

macro facility, 123-124

WINACTIVATE command, 61

WINBATCH.EXE, 183

WINGETACTIVE command, 61

Windows API functions, 271

Windows BASICs, 85-89

Windows batch languages. See batch

languages

Windows Broker, 48, 294-334

application framework, 296

BROKERl.DCP, 317-333

BuySell routine, 326-328

Dial routine, 320

Fail routine, 333

FixVars routine, 319

general-purpose subroutines,

321-323

GetVars routine, 318-319

GoQuotes routine, 323-325

GoQWK routine, 325-326

GoUpdate routine, 328

introductory routines, 318-321

Intro routine, 318

Messagebar subroutine, 321-322

Select_Task routine, 321

StripString subroutine, 322

task-specific routines, 323-333

Update routine, 329-333

Wait_Send subroutine. 323

BROKER l.XLM. 304-317

Buy macro, 312

ChartHLC macro, 306

ChartPrice macro, 306-307

ChartVol macro, 307

Cleanup macro, 308-311

communication macros, 307-313

Get_Prices macro, 307-308

GoJBM macro, 306

Go_Lots macro, 305-306

Home macro, 307

navigational macros, 304-307

Sell macro, 313

SetRanges macro, 31 1-312

Transaction macro, 314-317

transaction-recording macros,

313-317

Update macro, 313-314

BROKERl.XLS, 296-302

hidden data, 301-302

high-low-close chart, 298

IBMTrans range, 303

Opening screen, 297

price chart, 298, 301

stock screens, 297-298

transaction histories, 302

volume chart, 298

worksheet mechanics, 298, 301

development tools,selecting,

295-296

and DynaComm, 295

and Excel, 295

I BM.XLS, 302-304

named ranges in, 304

price data from, 303

LOTS.XLS, 302-304

named ranges in, 304

Lotus 60-day price chart. 299

Lotus 60-day volume chart, 300

I otus stock screen. 298

560

Lotus 21-day high-low-close chart,

299

main screen, 49

Opening screen, 297

origin and structure, 295-296

project files, 539-540

Properties menu for a worksheet

button, 300

and Quick*Way, 296, 325-333

transaction data storage locations,

315

Update Transactions reminder

box, 314

user interface, 296-301

Windows Clipboard, 9, 59, 122

Windows File Manager, 241

Copy dialog box, 257

list boxes, 153

modifying the Control menu, 256

and Recycler, 268

Windows interface, implementing.

See user interface

Windows Notepad, 43, 181

Windows Print Manager, 240

Windows Program Manager icon (for

Autoprint for Windows), 260

Windows Software Development Kit

(SDK), 56

Windows-specific functions, 23

WIN.INI (Windows), 123, 131-134,

241-242

WinMacro utility (WINMACRO.EXE),
183,255

Word for Windows (Microsoft)

contacting the company, 78

Edit menu, 161

macro language, 72, 78-79

XLM and XLS files, 304

Z
ZiffNet, 323

TO RECEIVE 372-INCH DISK(S)

The Ziff-Davis Press software contained on the 5V4-inch disk(s)

included with this book is also available in 3V2-inch (720k) format.

If you would like to receive the software in the 3V2-inch format,

please return the 5V4-inch disk(s) with your name and address to:

Disk Exchange

Ziff-Davis Press

5903 Christie Avenue
Emeryville, CA 94608

END-USER LICENSE AGREEMENT

READ THIS AGREEMENT CAREFULLY BEFORE BUYING THIS BOOK. BY BUYING THE BOOK AND USING
THE PROGRAM LISTINGS, DISKS, AND PROGRAMS REFERRED TO BELOW, YOU ACCEPT THE TERMS OF
THIS AGREEMENT.
The program listings included in this book and the programs included on the diskette(s) contained in the

package on the opposite page ("Disks") are proprietary products of Ziff-Davis Press and/or third party suppliers

f Suppliers "). The program listings and programs are hereinafter collectively referred to as the "Programs." Ziff-

Davis Press and the Suppliers retain ownership of the Disks and copyright to the Programs, as their respective

interests may appear. The Programs and the copy of the Disks provided are licensed (not sold) to you under the

conditions set forth herein.

License. You may use the Disks on any compatible computer, provided that the Disks are used on only one
computer and by one user at a time.

Restrictions. You may not commercially distribute the Disks or the Programs or otherwise reproduce, publish, or

distribute or otherwise use the Disks or the Programs in any manner that may infringe any copyright or other

proprietary right of Ziff-Davis Press, the Suppliers, or any other party or assign, sublicense, or otherwise

transfer the Disks or this agreement to any other party unless such party agrees to accept the terms and
conditions of this agreement. You may not alter, translate, modify, or adapt the Disks or the Programs or create

derivative works or decompile, disassemble, or otherwise reverse engineer the Disks or the Programs. This

license and your right to use the Disks and the Programs automatically terminates if you fail to comply with any

provision of this agreement.

U.S. GOVERNMENT RESTRICTED RIGHTS. The disks and the programs are provided with RESTRICTED
RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in

subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS (48 CFR
252.277-7013). The Proprietor of the compilation of the Programs and the Disks is Ziff-Davis Press, 5903
Christie Avenue, Emeryville, CA 94608.
Limited Warranty. Ziff-Davis Press warrants the physical Disks to be free of defects in materials and
workmanship under normal use for a period of 30 days from the purchase date. If Ziff-Davis Press receives

written notification within the warranty period of defects in materials or workmanship in the physical Disks, and
such notification is determined by Ziff-Davis Press to be correct, Ziff-Davis Press will, at its option, replace the

defective Disks or refund a prorata portion of the purchase price of the book. THESE ARE YOUR SOLE
REMEDIES FOR ANY BREACH OF WARRANTY.
EXCEPT AS SPECIFICALLY PROVIDED ABOVE, THE DISKS AND THE PROGRAMS ARE PROVIDED "AS IS"

WITHOUT ANY WARRANTY OF ANY KIND. NEITHER ZIFF-DAVIS PRESS NOR THE SUPPLIERS MAKE ANY
WARRANTY OF ANY KIND AS TO THE ACCURACY OR COMPLETENESS OF THE DISKS OR THE PROGRAMS
OR THE RESULTS TO BE OBTAINED FROM USING THE DISKS OR THE PROGRAMS AND NEITHER ZIFF-

DAVIS PRESS NOR THE SUPPLIERS SHALL BE RESPONSIBLE FOR ANY CLAIMS ATTRIBUTABLE TO
ERRORS, OMISSIONS, OR OTHER INACCURACIES IN THE DISKS OR THE PROGRAMS. THE ENTIRE RISK
AS TO THE RESULTS AND PERFORMANCE OF THE DISKS AND THE PROGRAMS IS ASSUMED BY THE
USER. FURTHER, NEITHER ZIFF-DAVIS PRESS NOR THE SUPPLIERS MAKE ANY REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE DISKS OR THE PROGRAMS,
INCLUDING BUT NOT LIMITED TO, THE QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE OF THE DISKS OR THE PROGRAMS. IN NO EVENT SHALL ZIFF-DAVIS PRESS OR
THE SUPPLIERS BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT THE USE OF OR INABILITY TO USE THE DISKS OR THE PROGRAMS OR FOR ANY
LOSS OR DAMAGE OF ANY NATURE CAUSED TO ANY PERSON OR PROPERTY AS A RESULT OF THE USE
OF THE DISKS OR THE PROGRAMS, EVEN IF ZIFF-DAVIS PRESS OR THE SUPPLIERS HAVE BEEN
SPECIFICALLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NEITHER ZIFF-DAVIS PRESS NOR THE
SUPPLIERS ARE RESPONSIBLE FOR ANY COSTS INCLUDING, BUT NOT LIMITED TO, THOSE INCURRED
AS A RESULT OF LOST PROFITS OR REVENUE, LOSS OF USE OF THE DISKS OR THE PROGRAMS, LOSS
OF DATA, THE COSTS OF RECOVERING SOFTWARE OR DATA, OR THIRD-PARTY CLAIMS. IN NO EVENT
WILL ZIFF-DAVIS PRESS' OR THE SUPPLIERS' LIABILITY FOR ANY DAMAGES TO YOU OR ANY OTHER
PARTY EVER EXCEED THE PRICE OF THIS BOOK. NO SALES PERSON OR OTHER REPRESENTATIVE OF
ANY PARTY INVOLVED IN THE DISTRIBUTION OF THE DISKS IS AUTHORIZED TO MAKE ANY
MODIFICATIONS OR ADDITIONS TO THIS LIMITED WARRANTY.
Some states do not allow the exclusion or limitation of implied warranties or limitation of liability for incidental

or consequential damages, so the above limitation or exclusion may not apply to you.
', •-. / " Davis ''<• ss and the Suppliers retain all rights no1 expressly granted. Nothing in this license

constitutes a waiver of the rights of Ziff-Davis Press or the Suppliers under the U.S. Copyright Act or any other

Federal or State Law, international treaty, or foreign law.

.

PC Computing CONTAINS 1 DISK

PRE

Paul Bonner

Windows 3.1 Programming for the
Nonprogrammer
Get the most from Windows 3.1 and your Windows applications, and create your own
Windows 3.1 programs—even if you have never programmed before. Paul Bonner,

respected Windows authority and a senior editor with PC/Computing, explains how you

can increase your productivity in the Windows 3.1 environment. Bonner guides you

safely through the process of customizing Windows applications using batch and macro

languages, and shows you how to customize Windows to meet your own needs. He also

describes fundamental programming concepts and then demonstrates step-by-step how to

design, build, and test your own Windows 3. 1 programs using tools like Visual BASIC.

The book guides you step-by-step through seven complete programming projects,

including...

• A print queue for Windows 3.

1

• An enhanced version of the Windows Notepad text editor

• A graphic personnel profile system

• A stock portfolio trading and analysis system

• A Windows 3.1 interface for remote e-mail utilities

The companion disk includes source code and compiled code for each of these projects.

You can use the code as is, or modify it with leading applications like Microsoft Excel,

Ami Pro, Norton Desktop for Windows, Visual BASIC, DynaComm, and more.

BOOKSHELF CATEGORY Operating Systems/Windows

Paul Bonner is a senior editor with PC/Computing and authoi

of its "Windows Project Series." He has written dozens of article

. and reviews on Windows and Windows-related topics. He

, resides ir\ Roslindale, Massachusetts.

\

ah PC Mage

Windows 3.1 is a registered trademark of Microsoft Corporation.

