
KANSAS CITY, KANSAS PUBLIC LIBRARY

WEB DOWNLOADS &
AVAILABLE

onal @ Technical m Reference

Microsoft

NO EXPERIENCE REQUIRED

;

I

|

“This series shows that it’s

pe ssible to teach newcomers

a'programming language and

good programming practices
without being boring.”

' —LOovu GRINZO,
f reviewer for Dr. Dobb’s Journal

JERRY LEE FORD, JR.

<k.

~

»

<
7

“a

*

}
;

,
~
e
k

r

B
n

e
e

B
e
e

i
l

~1—rgrcod

¢

Microsoft’ 7
Windows: ws
PowerShell
Programming —
for the Absolute |

THOMSON

© 2007 Thomson Course Technology, a division of Thomson Learning

Inc. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including cir tre recording, or by any information storage or

retrieval system wi en permission from Thomson Course

a ee ¢ the inclusion of brief quotations in a

Stine te

Tints Ws, FT oy PTR logo and related trade dress are
trademarks of Thomson Course Technology, a division of Thomson

Learning Inc., and may not be used without written permission.

Microsoft, Windows, and PowerShell are either registered trademarks

or trademarks of Microsoft Corporation in the United States and/or

other countries. Seinfeld is a copyright of Sony Pictures Entertainment.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software

support. Please contact the appropriate software manufacturer’s

technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted

throughout this book to distinguish proprietary trademarks from

descriptive terms by following the capitalization style used by the

manufacturer.

Information contained in this book has been obtained by Thomson

Course Technology PTR from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our

sources, Thomson Course Technology PTR, or others, the Publisher

does not guarantee the accuracy, adequacy, or completeness of any

information and is not responsible for any errors or omissions or the

results obtained from use of such information. Readers should be

particularly aware of the fact that the Internet is an ever-changing

entity. Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in

multiple copies or licensing of this book should contact the Publisher

for quantity discount information. Training manuals, CD-ROMs, and

portions of this book are also available individually or can be tailored

for specific needs.

ISBN-10: 1-59863-354-6

ISBN-13: 978-1-59863-354-2

Library of Congress Catalog Card Number: 2006907921

Printed in the United States of America

07 08 09 10 11 PH 10987654321

THOMSON
™

COURSE TECHNOLOGY

Professional = Technical m Reference

Thomson Course Technology PTR,

a division of Thomson Course Technology
25 Thomson Place

Boston, MA 02210

http://}www.courseptr.com

Publisher and General Manager,

Thomson Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah O’Donnell

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Mark Hughes

Acquisitions Editor:

Mitzi Koontz

Marketing Coordinator:

Adena Flitt

Project Editor:

Jenny Davidson

Technical Reviewer:

Keith Davenport

PTR Editorial Services Coordinator:

Erin Johnson

Interior Layout:

Shawn Morningstar

Cover Designer:

Mike Tanamachi

Indexer:

Sharon Shock

Proofreader:

Kate Welsh

To my wonderful children, Alexander, William, and Molly,

and my beautiful wife, Mary.

ACKNOWLEDGMENTS

This book represents the culmination of hard work from a number of individu-

als to whom I owe many thanks. For starters, there is Mitzi Koontz, for helping

me get this book started and for her support as acquisitions editor. I also owe a

special debt of gratitude to Jenny Davidson, who served as the book’s project/

copy editor and worked hard to help keep me straight and ensured that every-

thing came together like it was supposed to. Thanks also go out to Keith Davenport,

who as the book’s technical editor provided me with invaluable insight, guidance,

and advice. Finally, I’d like to thank everyone else at Thomson Course Technology

PTR for all their contributions and hard work.

ABOUT THE AUTHOR

Jerry Lee Ford, Jr. is an author, educator, and an IT professional with over 18

years of experience in information technology, including roles as an automation

analyst, technical manager, technical support analyst, automation engineer, and

security analyst. Jerry has a master’s degree in Business Administration from Vir-

ginia Commonwealth University in Richmond, Virginia. He is the author of 19

other books.and co-author of two additional books. His published works include

Microsoft Windows Shell Scripting for the Absolute Beginner, Microsoft Windows Shell

Scripting and WSH Administrator’s Guide, Perl Programming for the Absolute Beginner,

VBScript Professional Projects, Microsoft Visual Basic 2005 Express Edition Programming

for the Absolute Beginner, Beginning REALbasic, Learn VBScript in a Weekend, Learn

JavaScript in a Weekend, and Microsoft Windows XP Professional Administrator's Guide.

He has over five years’ experience as an adjunct instructor teaching networking

courses in Information Technology. Jerry lives in Richmond, Virginia, with his

wife, Mary, and their children, William, Alexander, and Molly.

2 «re he Gus .- ang Fh! 1 reg wile #6 2 pie bea gies
ile. eer ealid wpe il a Scrat, Smeeatins | 3 +f dey) > POG SBD S eR iahG ite er sotto “eedewee

5 Pane

a &a4'm,

a 11.60. peels Wig e! cus sat gerd hamlet isin
1,7 Gn 1) eet Peis Sania Uh: cot. “Bers past bt Cuexe SOS aietigy = ia ; i ; ia, yoo" ita) Say tele PRD oP terke «08 + 1m theetemiag,. :

A ae aaa iP ee ee ee eee ee
Fite = (+ PRE aa: Ieee Reena inenies, VP wctlanunniae le

el oN go! tot tee re raha y leon ih Cael hear aka rt agp 4 oe
wher] Me weph! » 2 Ge AO: SA palertegt ee sted A wal wh: 5
yh Cella ay Salute Ot celweeey Carica Ge LevitW o « Seaton a

2) eRe pase shone Panikx ae ep saeshoave Sona etl gave teat is
3 We evga? brome a 4 2 Yi, Vesiertve api . — _—

eres ‘elisha beer, cast onaterily sedi, sesadie soba t this amie:
» Pa . te — Sik ene

£

i

—

.

y

CONTENTS

Chapter lh

Chapter 2

TERCECMUUSC EI OLS ciara uiaci REMI SATE RUNS EOD sic EE av cos cases eBaceene xiii

INTRODUCING WINDOWS POWERSHELL3
Project Preview: The Knock Knock Joke Game000ccceeeeueeee 4

Getting. to Know Windows PowerShell.050 0000000 ccc cccncccccccee 7

PL str re raster Vy LESSON wo gene jaa er eee eee te C4 Ga © Pea O ee Zz

Integration: With JNELE2. 9 crate « Weeds aan Ne By os Face foe Pa sae 8

POMPE Sel Versus CMCLENG. MAINE Git PRE, PAE ss ia ane See bale 9

Installing and Configuring Windows PowerShell020005 10

Interacting with the PowerShell Command Prompt......................- 12

Starting a New: PowerShell Session eo. 0.00, Foe. nc nse ces cannes 13

Executing Powershell Cmidletstiw.t.). tite. ¢tectidecse dss. senen sienna 13

Other Types of Comiirands separ 26. rt ot. es nn ae a cas Sue sonnel 16

A.short PowerShell Workoutreitier: 1.50. Fae = vidi ane bee eta 16

Windows Powershell Scripting. svijet sue Wee end Stoo IMM ea ce thn os, os wieuws ah 20

Simplifying PowerShell Script Execution. ..5.% 2... 6c. c. ccc cee ec cee e seen 20

Back tothe Knock Knock Joke Game. Suis .)..2250 Behe ss « een e sca ees deine ae

Designing theiGame st: AG syss astas ce Nos ik dete Melee oc. cae eats nena 22

TREN AL ROSE ccinid a eisaiisenn eos LG Pete hy oF weep eee cleo 26

SUMIIALY esis cece coined TRE oe Aeon Oe hE ESAs ov Sone op tle en seep eE 28

INTERACTING WITH THE WINDOWS POWERSHELL
COMMAND LINE). tisicaisriiaeticbes steaks aes cscs ene Se
Project Preview: The Story of the Three Amigos0eeeeeetee 32

Accessing. Windows PowerShell MANS... Pa. gi estewtelte ve «a0 s%eae sen sg ewee 35

Customizing the Windows PowerShell Working Environment 36

Customizing Windows PowerShell Shortcuts...............0eeeeeeeees 36

Configuring the Windows Command Console.................+eeeeeeeees 38

Windows Command Console Customization Options.................. 38

Windows Command Console Editing Features05- 43

Windows PowerShell Edit Enhancements..... RMR oreo ee u's Sie sacs acetone 44

BADD COM ETIONL psoas ctpecapsstnnyn rape Aen MEMENM OR as se a ksi ee a's ew 44

DE GOEHISTOLY COIGIECL.,..».ss:.0:0caetaectennblsane IAG RIM 6 a ae pales e wieldlne arene 46

Navigating Hierarchical Data Stores 202.6 swccessescceenssgnees 47

Windows PowerShell Programming for the Absolute Beginner

Back to The Story of the Three AMIgOS sees cece cence eee eees 52

Creating a New Script...):0::asegs weohsnee ened crs ner hens om mens 53

Declaring Script Variables.050000 0 Beecccsnnsccsncenuessoccenses 54

Displaying the Introduction......:......02cccrcccnereerccesscrecences 54

Providing Player ImstructionS..........0.ccccsecssccccrencccccccecens 55

Prompting the Player for Input...9se sea veesee snes es Pret 56

Collecting Additional Inputs. :.< i= cease een neve cys araseeean ere 57

Displaying the Story’s Opening 77). 2200 550 26k kes os oe bee ages SO

Displaying the Rest of the Story iJ. wi). iss Pee asset cee e teen 59

SUDIMIALY «5 0:05 « naeetOeae + AUN Ae a ens ose Salen a ewe oe 62

Chapter 3 OBJECT-BASED SCRIPTING WITH .NET--63
Project Preview: The PowerShell Fortune Teller Game.................+44. 64

One Last PowerShell Customization Technique..................eeeeeeees 66

The Microsoft: NET id ramework iy fl. 607 AM Bisse es ona even ens 68

Key .NET Framework Components)... 2.20.0 0c 2 wee esc c eee c ce eee esenes 69

The,NET Class Libratyecie.c deeb eer Meee aie: = niger Saw naeeaaas 69

The Common Language Runtimen.1ns sheen sete occ nae eas a ees ee 70

Accessing .NET Framework Resources02000seeceeccccccsess 70

Executing Cmdlets:.<:..isigiset ene: Oem ea td. SACRE on vn nee nease cease 73

Windows PowerShell Plumbing a7, tani beeen Glee ees ceed ven ones 81

Working with Aliases cana sitet i RT en MIS oe acca aeons 84

Back to the PowerShell Fortune Teller Game0ccceeeeeeeees 87

Designing the Game. iia. scenic ost SR PM « Sas oP oa ick oreewaen 87

Creating a, New PowerShell Script, <.:diccoscuyec Oe «cu essex cee wees 88

Declaring and Initializing Variables; 2. cn. . vica«cesss ocak sun eee 88

Displaying the Welcome Screen’ HF VARIA SR PRG. 89

Displaying Game Instructions. AOSiak So Weer At meP ede 5. wc evn see dsa va 90

Controlling: Gameplay-iis eer de. Wal oe. Pe «cs enc cess bee 91

Displaying the Closing Screenwuas awohrtey para... 1s co sea ns 93

SUMMALY corti ied Sees) PumheclM ght egikeee.. Siw cas ceca 94

Chapter 4 WORKING WITH VARIABLES, ARRAYS, AND HASHES ..99
Project Preview: The Seinfeld Trivia Quiz p.me ee. «6 os os coe nec en 100
Windows PowerShell Language Features................eceececceceucees 102

Windows PowerShell Reserved Words0cccceccecceceuceas 102
Escape Characters ..0:,).-..0:«/0.x.¢siec echt eRe iso 2s earn ee 103
String Manipulation... «......2cee se eae ee eee ee 105

Chapter 5

Chapter 6b

Contents (x)

econ ra TiC GET Ova cea Cae Tee ial oh capeieinie'b did theie oles ole « « Mba am aw @ateaial 107

Pe aR SR ces iin. x pM ess: osbupik pWrurn ohooh w'e. vlna eed vibtnlwobars 107

a TE etd SO I eck aoa ewan nh nisin ncereig wisp aw hdindsbecccerd 114

a RLY Ch OE Grace lta dhisa, Santis crmuigie a + 01d sed arnoa ob ROO 118

BOC CRM OLTITO LCL CLEVER NIUE lio fod nenpipcaitt epaps los msinardhe: 0-0: the-ncervisce p'einn sibeee 121

Bnet Sn aN ALIGN Ree aad wine tss nid eem wide niy a oteialfw » aieiv eons win scab wre 121

RAGNAROS, Fe oo ein Whiner puaepcn ei nurdivinins tists os adn nse marae ore 131

SR ARI RELY ULV aE rete IE UI Ea ak tre euiegla teen ant Susie Vial ciav at o:05 puceldrat bs aidedhwinr a catahe 131

IMPLEMENTING CONDITIONAL LOGIC+.133
Project Preview: The Guess My Number Gameccceeeeeeee 134

Comipalinsy Vales) Sar tte ie tes Oates oaths cotb ls. eintweatereh eer oenaterie 136

Combining Pipelines and Operators.............cccccccceecceeeeceseees 137

Implementing Conditional Logics cies gases eterna Televi oa'elae vivian e a elaels 138

Comparing Data Using the if Statement...............cccceeeeceeees 139

Making Multiple Comparisons Using the switch Statement............ 144

Windows PowerShell Operators csiasc Pimete xtub ting srcnytere e's ate aiinle' ee etic 146

CODIDATISON. Operators hiererenycdry rem wines Pre ivlehep ma epee oodles alanat nate 146

LOGICAL Operators s.6 tsa o's SAAS gepursesht go ped ese 4 dain a's gee oe mee 147

Siting CompariSOnjOperatorsa sc aisra(. lie os lels'a will © Hea sideahek Shek Duh 148

Back to the Guess My Number Game0.ececeseeeceeeeceees 150

Designing tlie Crarie ais airing tive elke eee eo esheran eleven niasnisie.cinaieienuslermeens 150

Tie Pina PROS tal tae ae ae ee se Resse oops con tetee Sisson) ater ehovaronst ees atalinete 157

SUTURE Yikes ee pe ae ola ek cate nS np hnch ens sila nqeor eS. tnnaree mie nnein ots latory 162

UsING LOOPS TO PROCESS DATA0000005+ 163
Project Preview: The Rock, Paper, Scissors GAME ee eeeeeeeee 164

WOTKINGOVAL LOO DS tere atti tiaes cee ¥e ari Sht mare sede tS Paialeiy lew une le arava haretots .. 166

Setting Updo wile Looper: boa’. Saheeyie mae agree olathe sh eateries 167

Seti tipo tisith) LOOps Bie. gels eap ni ois ests palate «oe tirerwnredatorateraiatetoke« 168

Creqnngtor LOOPS eee cx asetacivoqad Avett eaten tate om ata ieee 169

Creatine fore mel LOOPS ciple io eee iia cs aiar chabert seteyerdtel a? <Asediay) a warolalatats 172

Usinge While Loops. eis tis caro nS oesisig atelereg hs vas. ieee 175

Altering’ Loop Executions. :fiiaa.cs cori api nce eis etd rewind s date ole es 176

Using the break Command.............-..-- i) os Bay Adi etatat tor sistar atte 176

Using the continue Command... 00)... cssece cece cece eee e eens 177

Back to the Rock, Paper, Scissors GaMe 6. eee e eee cece eee eens 178

Designing the, Gane i. oo hers ech cgejed noe wee ein wr tipye ose o's wiv re clea wie else el eie'e 179

ATREVEUEAEI AL RESULLE Me 0 ate Oops derek ane eah ROE ain sealed" is ain'el aa" (ale ge! es 188

(x) Windows PowerShell Programming for the Absolute Beginner

Chapter 7? ORGANIZING SCRIPTS USING FUNCTIONS-.191

Chapter &

Project Preview: The PowerShell Hangman Game++sseeeeeee 192

Changing Script Design Using Functions and Pee ss nds ded eenae 194

Improving Script Organization cece eee cece eee eee e eens 195

Creating Reusable Code. 0. ce ere esc e ence eee e eee eeeeereaeens 195

Enhancing Script Organization with Functions................ aie the Saaee 196

PUNCLLON SULUCTUIC) ociah Melee ee ra ate ei etnirs Mins 2 5 ca CRO Hees 196

Processing ATQUMENtS 2. suc... seen e essen nte rer cscesssecncruncesns 198

Processing Incoming Dataceeeeeeeeee eee cece eee eeeeeee 203

REtUIMING ARES sce es os awe ee ete sen Ore epee cn seein nws ya Re x emma 204

Restricting Variable/Scope’.. 60.2 ce cates teens css cecnnedecnnessens 205

Replacing Functions with Filters.............cceeecccceeeeeneeeeeeeeees 207

Back to the PowerShell Hangman Game eee eeeceeeeeeeees 208

Creating a New Scriptertce v1. st ere eee cee cane ee ees bwan > wind ata oum 209

Defining and Initializing Script-Level Variables- 209

Definiie Custom MuncuOnst.. ...52be.s.Me teres shea iwgediseeneacs 210

Prompting the Player to Start the Game: 0.052... eee eee eeeeee 212

Setting Up a Loop to Control Gameplay 0. eee e eee eens 213

Selecting a, Secret WOLd sous cates oc cae there Ste IN Faigle die wiRbinu sapiens 213

Setting Up a Loop to Process User Guesses 0.0 cee e eee eee 214

Collecting and Validating User Input................. ccc ceeecceeeees 214

Displaying the Results of Each Guess................ cece cece eee ee eee 216

Determining When the Game Is‘Overirs oc. res sc nesses tisevncacres 217

Challenging the Player to Play Another Game.................20e000: 219

SUMMVATY, 2. <.c. cesta wet neers) RAs estar Gn a1a esa coe als Stee ape a oe gleam ates oes 220

WORKING WITH FILES AND FOLDERS225
Project Preview: The PowerShell Tic-Tac-Toe Gamee000: 226

Using the Power of Regular Expressions20ceeccccceeeeee 228

Matching Siiple: Patterns... wo res oo eee oe skews arene oe cone 228

Matching Alternative’Patterns, Simcoe. 12 ee rete ees «ine en ee ewe 229

Working with Regular Expression Characters..................00005- 229

Working with Quantifiers cus. eakorect cs eieet ta: woe 5 smkan stereos 231

Matching Patterns Based on Rangesccccececeeeeces 231

Administering Files ana@volders*24 cue. tee ere aa cs ce cen 233

Verifying-File and Folder Existence 2+ ve. eo ois: sxe e van vadaee 233

Retrieving File and Folder Information....................0cceeeeeee 234

Copying and Moving Files and Folders ccc. cceceeeeees 235

Deleting Files‘and’Folders.5.. 30. tere ee nan Le 236

Chapter 4

Contents (xi)

REM aOI ge Piles POMOGe iyi She Pi50 i's cess ldie ks oc es cle ec sone see ve 237

ERIE INS CGS Men iekien ahha oe as) Yd Rialdack nas sadvereseuv ssa 237
Reading: from atid Writing to Piles 22SFo isi s.iccisWiiss ccs sceneccvcaveces 238

RPO MCLUS ELLOS AIC PONRETS. Sv guia vv a.9's wan ve TORU SM Es woh se deh edoad 238

eV CAGRU ONC CUEN Wa PSB Pilot csi -v auives.c.d> okies ve avian cd eeno ee 239

Retormactune omdlet Outputew ss 7.8. de OER 240

ROSCINMaroin ex tirileet © retinas, sl, Gi eiuinh Snub lose wsa'e vb dco.tee 244

prasipg Fue Contents mews. meauites, i ttewieciere§ Has caeocdcrec «sad 245

Devas eee CUCU AS TEM c eo ics MEM we A ks hn wins, cease oa 245

paving Data as:an XML Pues. 22> a oP NAN vt ee, .. oie a sinsins bear bes 245

Reading Data from an XML File.............. ccc ccceeec cece eeeeeees 247

Saving Data in a Comma-Separated Value File.................0000008 247

Reading Data from a Comma-Separated Value File..................5. 248

sending Output to the Printericccemons tw leeereas eee cess cece vasa 249

Back to the PowerShell Tic-Tac-Toe Game cc cee cece e ee eeeees 250

Designing the Gane. i) her Sea eee ee ee ee tad dee 250

nerinal Results se ae hes cook We eee od LE gone ee 263

SUMMA ask. ieee see ree cee ree! Mises oe wae 264

BASIC SYSTEM ADMINISTRATION00020+2+265
Project Preview: The PowerShell Blackjack Game00eeeeee 266

Accessing and Administering System Resourceseeeeeeeeees 268

Listing and Stopping, Processes iojiis:sjesniny aos’ cha Ole 9 s:a's oo ¥ Svea coe eens be Hs 268

Administering WindOWs SELvices 210. 5..0 sr. tr eave tale vs fos ne oun cle naene 269

ACCESSING RVEnE LOGS erie hho s 5 cles ne ht Caton ahe ved nee com nee eines 274

Retrieving System Information Using WMI-.eeee- 276

Taking Advantage of NEI-Classes se) 20 i5.e75 Vitae ide ecto ees ecw als 281

Taking Advantage of COM Objects))ssfe.cwsecsice sees ecto eteees 281

Programmatically Interacting with the Windows Registry................ 284

Back to the PowerShell Blackjack Game:c cece cee e cece eeees 288

Creating :aNew, Script Filevjird. io cees homie Ue. Naas. oes 288

Defining and Creating New Variableseeeeeeeeeeeeeeees 289

Creating the Get-Permission FUNCTION. 6. ee eee ee eee ees 289

Creating the Check-Registry Functionceeeeeeeeeeeeee 291

Creating the Play-Game Function «is (ymin tet ons ee oes oon sc 292

Creating the Deal-Hand Function........06.2ccesecesccevcevsecnsees 292

ereating the Get-Card FUNCHON ooo e. 2. os. ease ht nese ets ce ao 293

Creating the Get-ComputerHand Function.....................2.005- 293

Creating the Analyze-Results Function0eeeeeeee eee 294

(xi) Windows PowerShell Programming for the Absolute Beginner

Chapter 10

Appendix A

Appendix B

Creating the Get-PlayerHand Function:s sees ee eeeeeeeees 295

Creating the Get-NewCard Function::ee esses eeeeeneeenes 297

Adding Controlling Logic to the Main Processing Section 297

SUMIMALY .c55 00 0'0.0-5 vinragainen spe ees eee aOR a as os nes oh ek eae a 298

DEBUGGING POWERSHELL SCRIPTS3O01
Project Preview: The PowerShell Game Consoleeeeeeeeeeees 302

Understanding PowerShell Errors .0i 0c ccc tcc cece seers cere ccanvenvomecs 303

Syntax Errors tag's sacs Rahs ee ebro mers CRMs a ste i 6s Piva ee oe oe 303

Runtime Errors ass sana sees ah oe Mates aes aes 0,4 6.0 bso Vee eels 304

Logical Errors). ws. Sicteagh tan te teed he ale ate ane eee ip 4,» ane ance ne aie 305

Terminating Versus Non-Terminating Errors22eeeeeeeeeeee 306

Dissecting the Structure of Error Messages2eeeeeeeeceeee 306

Telling Windows PowerShell How to React to Errors-02000: 307

Creating‘Trap Handlevs) 4,520.2 uote a te oe «eee ee ees oda ns naw neue 308

Tracing Script BXeCution y.okk jan. oat Mee MCP e ee a tea dec teu en ee 311

Displaying Output Status Information and Tracking Variable Values .. . 311

Using PowerShell’s Debus: Mo0d@ cccuc ca. cm ce Serna oc wens ca calea’s 313

Back to the PowerShell Game Console.0cccscccsscceesstvncce 316

Designing the Gamense. 25 us ete te. cc chle foes ete ee ee ss aus tee a 316

The: Final Resultrieye.G sen Set Oe CE SURE cs ies calenee 322

SUDLMALY oistre Gee Oe eee RIN ae he ee IO 5 8 ea ae 322

WHAT’S ON THE COMPANION WEBSITE?325

WHAT: NEXT 2st), a or Pt een is es oe BOT,
Windows PowerShell: IDEs iy aie ee re eed ee tr cs buss wen oe aeeee 328

Recommendéd Reading (iv. rFii-e ya re re coved Saves ccteaman 329

Locating Microsoft PowerShell Resources Online0cceeeeuee 330
Powershell: Websités.atas sere er er eet Pek ee ON gc need kes 331
Windows PowerShell News Groupccccccccccccevececvaceas 332
PowerShell Blogsir. ts. 70s. aren ee ee ere OT, col Glee a untae ne 333
The Author's Website: R22. Nere Me) ORR se 334

GLOSSARY ES ee rk oleae i a ue rma ire. £1

INDEX vei ocn's ace ee ta a ee ee

INTRODUCTION

elcome to Microsoft Windows PowerShell Programming for the Absolute Beginner.

Windows PowerShell is a next-generation command shell for Microsoft

operating systems. A command shell or shell is a text-based interface that

sits between the user and the operating system, which most people loosely refer

to as the command prompt. In the case of the Windows PowerShell, the shell is

both a user interface and a new scripting language, both of which have been

redesigned from the ground up to facilitate the secure administration of Windows

operating systems.

The goal of this book is to teach you everything you need to know in order to

begin developing your own Windows PowerShell scripts. This will, of course,

include learning how to interact with the Windows PowerShell command line. It

will also involve learning a little about Microsoft’s .NET Framework. At the same

time, you learn how to work with other Windows technologies, such as the

Windows registry, as you learn how to become a PowerShell programmer.

WuHuyY WINDOWS POWERSHELL SCRIPTING?

Windows PowerShell is a next-generation command shell developed by Microsoft

to run on its latest generation of Windows operating systems. As a shell, you

interact with Windows PowerShell from the command line. One of the things

that makes the PowerShell different from cmd.exe, the previous Windows com-

mand shell, is that PowerShell has been redesigned as an object-based environ-

ment that is tightly integrated with Microsoft’s NET Framework. As such, the

PowerShell is far more powerful and advanced than its predecessor. At the same

time, Microsoft worked hard to make Windows PowerShell backward compatible.

The Windows shell will accept and process the same commands as the previous

Windows shell, thus preserving any knowledge and experience you may already

bring with you while also introducing you to a whole new set of capabilities.

Microsoft provides the Windows PowerShell as a free add-on to Windows operat-

ing systems. Its new scripting language has been designed from the ground up to

support object-based programming, thus providing systems administrators and

computer hobbyists with a tool for automating just about any Windows activity.

(xiv) Windows PowerShell Programming for the Absolute Beginner

Windows PowerShell makes for a great starter language for first-time programmers and hob-

byists. Professional programmers will also benefit from this new scripting technology,

which provides more robust and powerful scripting capabilities than that provided by any

other Windows scripting language. You will find that more often than not, you can develop

scripts to automate a given task much more quickly and efficiently using the Windows

PowerShell than can be done using other scripting languages, thus saving valuable time and

freeing you up to move on to tackle other tasks.

In short, whether you are interested in learning your first programming language or are

looking for an introduction to PowerShell scripting that teaches you how to develop Power-

Shell scripts with which you can leverage your existing knowledge of .NET programming,

this book should serve you well. If Windows is your operating system of choice, Windows

PowerShell scripting provides you with access to a scripting environment that is unmatched

by other scripting languages. In addition, learning Windows PowerShell scripting will pro-

vide you with a programming background from which you can then make the jump to other

.NET programming languages.

This book will teach you Windows PowerShell scripting. To help make learning fun and

interesting, you will learn how to program through the development of computer games. By

the time you have finished this book, not only will you have access to a collection of work-

ing sample scripts, but you also will have laid a foundation upon which you can move on

and begin to tackle real-world challenges.

WHO SHOULD READ THis Book?
My goals in writing this book are to show you how to interact with the Windows PowerShell,
to teach you the fundamentals of how to develop and execute PowerShell scripts, and to help
you become an effective programmer. I do not make any assumptions regarding your previ-
ous programming experience, although prior programming experience is obviously helpful.
I do, however, expect you to have a working familiarity with Windows.

I think that you will find this book’s unique approach of teaching through the development
of computer games both entertaining and highly productive. Learning through the creation
of computer games not only helps keep things fun but it also provides a unique opportunity
to experiment with a programming language.

If you are a first-time programmer or a computer hobbyist, you should find this book’s sys-
tematic building block approach to programming very helpful, allowing you to master basic
fundamentals before moving on to more advanced topics. By investing your time and energy
in learning how to program using Windows PowerShell scripting, you will develop a pro-
gramming foundation that translates well to other scripting languages such as VBScript,

Introduction (wv)

JavaScript, Python, and Perl, as well as .NET programming languages such as C#, C++, and
Visual Basic. Professional programmers will also benefit from this book by using it as a
quick start guide to PowerShell scripting.

WHAT YOU NEED To BEGIN

In order to work with Windows PowerShell, your computer must run one of the following

operating systems.

¢ Windows XP

¢ Windows Server 2003

¢ Windows Vista

When writing this book, I worked on a computer running Windows XP. Therefore, all of the

figures and examples that you will see were generated on that particular operating system.

However, everything you see should apply to Windows Server 2003 and Windows Vista as well.

In addition to running a supported operating system, your computer must also have

Microsoft .NET Framework version 2.0 or higher installed. As of the writing of this book,

Windows PowerShell was a free download provided by Microsoft and could be downloaded

and installed from the Microsoft PowerShell website located at

www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx.

If necessary, you can get the latest version of .NET by going to msdn.microsoft.com|

netframework|.

Beyond a supported version of Windows, .NET 2.0, and a copy of Windows PowerShell, you

do not need anything else to get started or to perform all the exercises outlined in this book.

Of course, you will need a text editor of some type with which you will create and save

PowerShell script files. For starters, you can user the Windows Notepad application. However,

you may find it beneficial to download and install a code editor that is specifically designed

to support PowerShell script development. If you skip ahead to Appendix B, “What Next?,”

you will find information about two such applications, both of which were free as of the

time of this writing.

How THis BOOK Is ORGANIZED

As I sat down and designed the overall structure of this book, I did so with the intention that

it be read from cover to cover. However, if you have prior programming experience, you may

instead choose to read this book by going through the first two chapters in order to learn a

few specifics about working with Windows PowerShell. You might then jump around a bit to

(xi) Windows PowerShell Programming for the Absolute Beginner

different chapters based on your specific needs and experience. However, Windows PowerShell

comes equipped with an entirely new programming language. As such, it is probably a good

idea that you spend some time reading Chapters 4 through 7, which cover the basics of the

Windows PowerShell scripting language.

Windows PowerShell Programming for the Absolute Beginner is organized into four parts. Part I is

made up of three chapters that focus on providing you with an introduction to the Power-

Shell and its capabilities. These chapters outline the basic steps involved in interacting with

the PowerShell command prompt and in creating and executing PowerShell scripts, and

they provide an overview of object-based scripting and the PowerShell’s relationship with

the .NET Framework.

The second part consists of four chapters, which together provide you with a review of the

PowerShell scripting language. Each chapter focuses on a different collection of topics. You

will learn how to store and retrieve data. You will also learn how to implement conditional

logic and to set up loops in order to automate repetitive tasks and process large collections

of data. Lastly, you will learn how to improve the overall organization of your PowerShell

scripts using functions.

The third part is made up of three chapters, each of which covers an advanced topic. These

topics include learning how to work with files and folders, developing PowerShell scripts to

automate system administration tasks, and learning how to track down and debug errors.

Finally, The fourth part consists of two appendices and a glossary. The appendices address

the material that you will find on this book’s companion website as well as provide you with

suggestions on where you can go online to learn more about Windows PowerShell. Lastly,

the glossary provides access to a comprehensive list of terms used throughout the book.

A detailed review of the information provided by each chapter of this book is provided here.

¢ Chapter 1, “Introducing Windows PowerShell.” This chapter provides you with an
introductory overview of the Windows PowerShell. You will learn about the different
technologies that make up and support Windows PowerShell, including object-oriented
programming and the .NET Framework. You will also learn how to start the PowerShell
and to interact with it using commands and cmdlets. In addition, you will learn how
to configure the PowerShell to run scripts and to develop and execute your first
PowerShell script.

¢ Chapter 2, “Interacting with the Windows PowerShell Command Line.” This chapter
provides a thorough review of how to interact with the Windows PowerShell command
line and how to work with its built-in cmdlets. You will also learn to access help
information and to formulate command input.

Introduction

Chapter 3, “Object-Based Scripting with .NET.” Windows PowerShell requires NET
in order to execute. This chapter provides an overview of .NET and its relationship to
Windows PowerShell. You will learn about the .NET class library and how to work
with structured objects.

Chapter 4, “Working with Variables, Arrays, and Hashes.” This chapter’s primary

focus is to show you different ways that you can store and retrieve data. This will

include learning how to define and access variables, arrays, and hashes. You will also

learn how to work with PowerShell’s special variables.

Chapter 5, “Implementing Conditional Logic.” In this chapter you will learn how

to apply conditional logic in order to analyze data and selectively choose between

different logical execution paths. You will learn how to evaluate strings, numbers,

and Boolean data.

Chapter 6, “Using Loops to Process Data.” This chapter shows you how to create

loops in order to efficiently execute commands over and over again, thus facilitating

the processing of large amounts of data. You will also learn how to conditionally

break out of loops when predetermined conditions occur.

Chapter 7, “Organizing Scripts Using Functions.” This chapter introduces you to

functions and explains how to use them to improve the overall organization and

readability of your PowerShell script files. This includes learning how to call on

functions for execution as well as how to pass arguments to functions for processing

and to set up functions to return data back to calling statements.

Chapter 8, “Working with Files and Folders.” This chapter will teach you how to

interact with and control files, folders, and disks. You will learn how to open and

close files and to read and write information to and from them.

Chapter 9, “Basic System Administration.” The primary focus of this chapter is to

demonstrate how to develop PowerShell scripts that automate various system adimin-

istration tasks, such as how to access system information and network resources. In

addition, you will learn how to interact with the Windows registry.

Chapter 10, “Debugging PowerShell Scripts.” This chapter focuses on teaching you

how to track down and fix any error that may occur as you work on your PowerShell

scripts. The topics covered include how to trap and recover from errors, how to pause

script execution by establishing breakpoints, and how to trace script execution using

debug mode.

Appendix A, “What’s on the Companion Website?” This appendix provides a review of

the materials that can be found on this book’s companion website (www.courseptr.com/

downloads). This material includes copies of all the PowerShell game scripts covered

in this book.

Windows PowerShell Programming for the Absolute Beginner

* Appendix B, “What Next?” This appendix is designed to provide you with suggestions

and tips for furthering your Windows PowerShell scripting education. It includes

suggestions for additional reading and points you to various PowerShell resources

available on the Internet, including PowerShell IDEs, user groups, and blogs.

° Glossary. This unit provides a glossary of terms used throughout the book.

CONVENTIONS USED IN THIS BOOK
In order to help you get the most out of this book and to help organize the material in an

efficient and comprehensive manner, I have implemented a number of conventions that

will help with the overall organization and presentation of this book’s material. These con-

ventions are outlined below.

HINT. Suggestions and ideas for different ways things can be done in order

to help you become a better and more efficient Windows PowerShell

programmer.

TRAP. Situations where mistakes and errors often are made and advice on

how to deal with these situations.

TRICK. Tips, tricks, and programming shortcuts that you can use to work
faster and more efficiently.

IN THE REAL WORLD
Explanations and demonstrations of how certain programming techniques are applied to solve

specific real-world problems.

CHALLENGES

At the end of each chapter, you will learn how to create a new computer game. I will

then present you with a series of suggestions to follow up on in order to further

enhance and improve both the chapter game project and your programming skills.

Windows PowerShell Basics

Chapter 1: Introducing Windows
PowerShell

Chapter 2: Interacting with the
Windows PowerShell

Command Line

Chapter 3: Object-Based Scripting

with .NET

bel ee —_ 4, = ~

ee ta
TRLOy . “i See By » .

>cielenihhihd i hlaseatecli hed tf ne sabAS er * -. ae
ores Pee | ein TENT ee

ae 2
4. ‘tows a? ian ih

pe eww ewobnlW
; _

‘Shs se renoDs ae aq ates Te yeogeeey ;

: Sele (a v
ied << 7

et: tf
erin oe ,

CHAPTER

INTRODUCING
WINDOWS POWERSHELL

Windows XP, Windows 2003, and Windows Vista. As a command shell,

PowerShell provides a command-line interface that administrators and

computer hobbyists can use to directly interact with and control the Windows

operating system. PowerShell also includes its own scripting language that has

been custom designed to interact with Microsoft’s .NET Framework and to take

advantage of the resources that .NET provides. In this chapter, I will introduce

you to PowerShell and PowerShell scripting. This will include learning how to

install and configure the shell as well as how to use it to execute commands and

run your first PowerShell script. By the end of this chapter, you will have created

your first PowerShell script game and have a good understanding of the steps

involved in working with PowerShell and creating and executing PowerShell scripts.

indows PowerShell is a next-generation command shell that runs on

Specifically, you will learn:

e A little bit about PowerShell’s history

¢ How to install PowerShell and configure it to run scripts

¢ About the basic components that make up PowerShell

e About cmdlets and how to use them to formulate commands and

script statements

¢ How to get help regarding different PowerShell commands

(4) Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE KNOCK KNOCK JOKE GAME
In this chapter and in each chapter that follows, you will learn how to create a computer

game using Windows PowerShell scripting. In this first game, you will create a script that

tells several knock knock jokes. The script is designed to interact with the user by prompt-

ing the user to enter input at appropriate moments.

The game begins by clearing the screen and then displaying a prompt that says Knock Knock],

as shown in Figure 1.1.

The Knock Knock

Joke game begins
by prompting the

user to guess

who is there.

As a response, the user is expected to enter the string Who is there?, exactly as shown in
Figure 1.2.

The user must

respond by typing

the string Who

is there?.

Chapter | + Introducing Windows PowerShell (s)

If the user types anything other than Who is there?, the script will continue to prompt the
user until he responds correctly, as demonstrated in Figure 1.3.

® Windows PowerShell

0 Knock?
Knock Knock?: ??
Knock Knockt: ~

If necessary, the’

game will

continue to

prompt the user

to respond

correctly.

Once the user provides the correct response, the game responds with an answer of “Orange.”

In response, the player is required to enter the string Orange who?, as demonstrated in

Figure 1.4.

® Windows PowerShell

Orange .: Orange who?

The player is

required to

respond

Orange who?.

Next, the script displays the joke’s punch line, as shown in Figure 1.5.

(s) Windows PowerShell Programming for the Absolute Beginner

x Windows PowerShell

Orange you glad you created this PowerShell script?

Finally, the joke’s

punch line is

displayed.

The game displays the punch line for five seconds before clearing the screen and starting

the process of telling another joke. In total, the game tells three jokes, pausing for five sec-

onds at the end of each joke to display a punch line. Finally, once the last joke has been told,

the information shown in Figure 1.6 is displayed for three seconds, after which the screen

is cleared and the PowerShell command is redisplayed.

~ Jerry Lee Ford, Jr-

The script ends

by displaying

information about

itself and its

author.

Now that you have had a quick preview of the operation of the Knock Knock Joke game, let’s
spend a little time learning more about PowerShell and PowerShell scripting. After this, we’ll
turn our attention back to the development of the game script at the end of the chapter.

Chapter | « Introducing Windows PowerShell (7)

GETTING TO KNOW WINDOWS POWERSHELL

Most operating systems’ command shells consist of a small number of internal commands,

which the shell runs internally when executed. Because the number of commands provided

by traditional shells is limited, large numbers of utility programs (or external commands)

are later developed to supplement built-in shell commands in order to provide missing func-

tionality. These utility programs run outside of the shell, generating their own processes.

These utility programs may or may not support a command syntax that is similar to that of

its associated command shell. The end result is a command line and shell scripting envi-

ronment that is inconsistent and difficult to learn due to syntax inconsistencies.

Throughout this book, the terms Windows PowerShell and PowerShell are used Hint
TP interchangeably.

Enter the Windows PowerShell, which provides access to well over one hundred commands

in the form of cmdlets, each of which shares a common syntax, making the command line

and scripting environment far more predictable and easy to learn. When developing Win-

dows PowerShell, one of Microsoft’s goals was to make the learning curve for PowerShell as

easy as possible. Therefore, it incorporated as many cmd.exe and UNIX shell features as it _

could into Windows PowerShell. ‘

Windows PowerShell has many other features that further differentiate it from traditional

command shells. These features include:

¢ A C#-styled syntax

Access to over one hundred cmdlets providing access to NET Framework classes

Support for regular expressions

A provider model that provides Windows PowerShell with access to hierarchical »

repositories including the Windows file system and the Windows registry

¢ The ability to shorten commands and script statements by supplying abbreviated

forms of keywords

A Little History Lesson

Going all the way back to the first version of Windows, every version of Windows has

included a command shell. The original command-line shell was named Command.com.

When Windows NT was released, Microsoft added cmd.exe as the operating system’s new

command shell. cmd.exe remained the Windows command shell when both Windows

aes or

Windows PowerShell Programming for the Absolute Beginner

2000 and Windows XP were released. As much of an improvement as cmd.exe was over

Command.com, it never provided the kind of comprehensive access to the Windows operat-

ing systems that, for example, UNIX and Linux users and administrators are accustomed to.

Windows has successfully made the leap from the Windows desktop to become a major

player in corporate data centers all around the world. However, its lack of a world-class shell

has plagued Windows administrators. When Microsoft released the Windows Script Host, or

WSH, in 1998, things improved significantly. Using the WSH, Windows administrators could

develop automation scripts using either VBScript or JScript. Later, third-party developers

released WSH-compatible scripting languages that included Perl, Rexx, and Python. Still,

when compared to UNIX, command-line access has continued to remain a major deficiency

for Windows.

By creating Windows PowerShell and providing it with an entirely new scripting language,

capable of accessing resources provided by the .NET Framework, Microsoft has provided

Windows users and administrators with access to a command shell that now has access to

resources formerly only available to GUI-based programming languages like Visual Basic .NET.

Integration with .NET
Unlike traditional command shells, which manipulate text, Windows PowerShell treats
everything as objects. An object is a self-contained resource that stores information about
itself in properties and provides program code, in the form of methods, that can be used to
interact with it. For example, a file is an object. So is a disk drive and a folder.

All objects are derived from a class that defines the object and its properties and methods.
An object’s properties describe particular features of the object. For example, a file has a
name, a file extension, and a file size, among many other properties. Objects also have built-
in collections of code, referred to as methods, which can be programmatically called upon to
access and interact with objects. For example, files can be opened, read from, written to,
closed, and deleted.

The .NET Framework provides the Windows PowerShell with access to a huge library of
classes. The NET Framework class library is a hierarchical collection of classes that defines
the data type of objects that can be instantiated using the classes as templates. Within the
framework, classes are often based on other classes, creating parent and child relationships.
A child class (or subclass) inherits base object definitions from its parent class and includes
its own modifications. These classes and subclasses are made available to the PowerShell in
the form of cmdlets, which are built-in commands that provide access to specific system
resources.

Chapter | + Introducing Windows PowerShell (9)

Classes, objects, properties, and methods can be difficult for new programmers
to understand. To help make them easier to understand, consider the following
analogy: A car manufacturer might have a library of blueprints (class library)
which are used in the making of new cars. An individual blueprint (class) defines
everything required to create a new type of car (object).

Individual cars are created or instantiated based on the blueprint. For example,
a car company might have a master set of blueprints for building a particular

model of a car. Using this one blueprint (class), the car company can create
(instantiate) as many new cars (objects) as it wishes. By default, each car pro-
duced using the same class has the same set of properties and methods. Each
car that is created from the same blueprint inherits a predefined set of attribut-

es (properties). For example, every car has a color. By modifying the value of its

color property, each car or object can be given a different color.

If the car company wants, it can pay an engineer to create a new set of blue-

prints for a new car, using the other set of blueprints as a starting point. As a

result, the new set of blueprints would represent a subclass of the parent class

and any new cars created from the new set of blueprints, though similar to cars

created by the parent class, would have their own unique subset of shared
properties and methods.

A basic understanding of objects is essential for any Windows PowerShell programmer

because the PowerShell interacts with objects in just about everything it does. As such,

Windows PowerShell scripting is often referred to as an object-based scripting language. It

is called an object-based scripting language because, unlike object-oriented programming

languages, PowerShell programmers typically work with objects that have already been cre-

ated as opposed to defining and creating entirely new objects themselves. That is not to say

that a PowerShell programmer cannot create new objects; it is just not something that is

commonly needed.

PowerShell Versus cmd.exe
On the surface there are many similarities between cmd.exe and the PowerShell. As far as

everyday tasks go, you should be able to use the PowerShell in place of cmd.exe. However,

under the covers, PowerShell is many times more advanced than its predecessor. As has

already been stated, PowerShell has direct access to resources provided by the .NET Frame-

work and a brand new scripting language specifically designed to support interaction with

.NET resources via cmdlets.

Another difference between the manner in which cmd.exe and PowerShell execute is the

manner in which data is passed between commands. Both shells support the use of pipes to

move data between commands. However, the type of data moved is completely different.

Windows PowerShell Programming for the Absolute Beginner

wint A pipe is a logical connection between two commands that supports the

TP passage of one command's output to another command where it is received

as input.

With cmd.exe, data is passed as text. Unfortunately, the output of one command often does

not come back in a format required by the second command. As such, shell script program-

mers typically have to add additional programming logic to their scripts to reformat one

command’s output into a format the other command can accept. Window PowerShell uses

an object pipeline that allows the receiving cmdlets to access properties and methods of

objects generated by other cmdlets. With object piping, the programmer is relieved of the

responsibility of formatting object data, significantly simplifying the scripting process.

Table 1.1 lists a number of additional key differences between cmd.exe and PowerShell. As

you can see, Windows PowerShell boasts many key improvements, which you will learn

more about as you work your way through this book.

I. KEY WINDOWS SHELL DIFFERENCES

Feature cmd.exe PowerShell

Regular Expressions No Yes

Exception Handling No Yes

Array Support No Yes

Functions No Yes

Script Signing No Yes

Tab Completion Limited Yes

INSTALLING AND CONFIGURING WINDOWS POWERSHELL
In order to install Windows PowerShell, your computer must meet the following require-
ments.

¢ Your computer must be running Windows XP, Windows 2003, or Windows Vista

* Microsoft .NET Framework must be installed

Chapter | + Introducing Windows PowerShell (11)

As of the writing of this book, Windows PowerShell was a free download provided by

Microsoft and could be downloaded and installed from the Microsoft PowerShell website, located

at http://www.microsoft.com/windowsserver2003/technologies/management/powershell/

default.mspx

Windows PowerShell downloads as a self-extracting executable that you can install by double-

clicking on it. If your computer is not already running version 2.0 or higher of the .NET

Framework, you must download and install it before you can install and run Windows

PowerShell. If you attempt to install Windows PowerShell without .NET installed, you will

see a popup dialog message instructing you to install it and the Windows PowerShell instal-

lation process will stop.

If necessary, you can get .NET by going to http://msdn.microsoft.com/netframework and

downloading it. Once .NET has been installed, you can install Windows PowerShell. The

install of PowerShell does not take long and ends with the addition of the Windows Power-

Shell group on the All Programs menu, as demonstrated in Figure 1.7.

err Windows PowerShell 1,0 FF) Getting Started

we) Quick Reference

#) Release Notes

Determining :

whether to trust Fy User Guide

ed pode eis EJ windows PowerShell
by Microsoft.

Although Microsoft markets the Windows PowerShell as a secure environment for both

command-line execution and scripting, the addition of a new shell and scripting language

opens up the potential for exploitation by hackers. As such, Microsoft forces you to explic-

itly decide whether you trust Microsoft as a publisher of PowerShell scripts. Your choices are

e [D] Do not run

e [R] Run once

e [A] Always run

¢ [?] Help

Responding by entering A and pressing the Enter key allows you to run Powershell scripts

developed by Microsoft. Another security feature implemented by Microsoft is the inability

to run scripts by double-clicking on them from the Windows desktop. Microsoft also forces

you to make one more decision before you can start running PowerShell script files on your

(12) Windows PowerShell Programming for the Absolute Beginner

computer by establishing an execution policy that permits PowerShell scripts to run at one

of three security levels, as outlined below.
t

¢ Allsigned. Only permits scripts that have a trusted signature to execute on your

computer.

¢ Remotesigned. Permits PowerShell scripts downloaded from the web to run only if

they are from a trusted source.

¢ Unrestricted. Allows any PowerShell script to run on your computer.

Before PowerShell will allow you to run your first PowerShell script, you will need to set one

of Windows PowerShell’s execution policy settings. For example, to allow any PowerShell

script to run on your computer, you would enter the following command at the PowerShell

command prompt.

Set-Executionpolicy Unrestricted

Your choice of what execution policy to set should be based on your scripting

needs and security requirements. If you decide later that you want to change

your Windows PowerShell execution policy, you may do so at any time by

re-executing the Set-Executionpolicy command and passing it one of the

options listed above.

INTERACTING WITH THE POWERSHELL COMMAND PROMPT

The Windows PowerShell provides programmers with access to well over 100 cmdlets

(pronounced command-lets), each of which is a .NET class that provides access to specific

system resources. Like traditional command shells, the Windows PowerShell uses pipelines

to pass data between cmdlets; however, instead of passing data as text, data is passed as

objects. The inherent advantages of this approach include:

¢ When accessed from the command line, data is returned and displayed as text

¢ When data is passed from cmdlet to cmdlet, it is passed as objects or structured data

¢ Data passed between cmdlets is automatically converted into any format that is

appropriate based on the current situation

Cmdlets also share access to a universal set of options. These options provide you with the

ability to specify how errors are handled as well as to run cmdlets using a -WHATIF option

that lets you see the effect that a command would have without actually making any

changes. Cmdlets also support a -CONFIRM option that allows you to prompt the user for

approval before execution within scripts.

Chapter | + Introducing Windows PowerShell (13)

Windows PowerShell cmdlets use a naming syntax that consists of verb-noun pairs. The verb

is always on the left-hand side and is separated from the noun by a hyphen. The verb

describes the action that is to take place and the noun identifies the target to be acted upon.

Nouns are specified in a singular form. For example, the Get -* verb is a universal verb used

to retrieve resources such as objects and properties. Using the Get-* verb and the Property

noun, you could, for example, retrieve information about a given object’s properties (e.g.,

Get-Property).

By combining the Get -* verb with the Help noun, you can execute the Get -Help cmdlet to get

help on any cmdlet. For example, Figure 1.8 demonstrates how to use the Get-Help cmdlet,

which retrieves information about other cmdlets, to get information about the Read-Host

cmdlet.

® Windows PowerShell

PS C:\> Get-Help Read-tost

NAME
Read-Hast

SYNOPSIS
Reads a line of input from the console.

SYNTAR :
Read-Host Lli-prompt 1 <Object>1! [-asSecurestring 1 {<CommonParameters >i

DETAILED DESCRIPTION ‘ é
Reads a line of input from the console. Can be used to prompt for input Fron

ure strings.

RELATED LINKS

Write-Host
ConvertFrom-SecureString

REMARKS p
| For more information. type: “get—help Read-Hest —detailed"-

for technical information. type: “get—help Read-Host -—full"-

Examining help

information about

the Read-Host

cmdlet.

Starting a New PowerShell Session

To start a new Windows PowerShell session, select on Start > All Programs > Windows

PowerShell. A new Windows command console is opened and the Windows PowerShell com-

mand prompt is displayed, as demonstrated in Figure 1.9.

Executing PowerShell Cmdlets

You interact with the PowerShell by submitting commands at the command prompt, which

typically looks something like PS C:\>, as demonstrated in Figure 1.10. PS is simply an abbre-

viation for PowerShell. C:\ represents the current working directory, and the > character

Windows PowerShell Programming for the Absolute Beginner

indicates that PowerShell is ready to receive input. You enter commands for PowerShell to

process by typing them in and pressing Enter. What happens next depends on the command

you entered. By default, any command you type is processed.and any output is returned as

text, as demonstrated in Figure 1.10.

& Windows PowerShell

Mindows PowerShell : fs 3
Copyright <C> 2@46 Microsoft Corperation. All rights reserved.

PS C:\Documents and Settings\Owner> —

Access to the

PowerShell is

provided via

the Windows

command

console.

= Windows PowerShell

§ C:\lextFiles> Get-Childiten

Directory: Microsoft .PowerShell-Core\FileSystem: :0:\TextFiles

LastWritel ime Length Name

Custemer Names .txt
@ Files .txt

TO DO List .txt
3 Vendor Accounts .t ant 742/286 © 9:

=< 7 3: 6 York Notes — #1—-@5-—26@7_txt
- "¢ 7 =3 York Notes — 6 = 7 .txt

/ 6 9 =2¢ 256 Work Netes — G1 :
—# f 5 9:25 6731 York Motes — @2- 2 z

The Get -

Childitem
cmdlet displays

the contents of

the current

working directory.

The command executed in Figure 1.10 is the Get -Childitem cmdlet, which retrieves the con-

tents of a folder. Since a path was not specified, the current working directory was used. In

order to help users and administrators make the transition to working with Windows

PowerSheli as easy as possible, Microsoft has developed a collection of cmdlet aliases that

can be used in place of actual cmdlet names. Within the Windows PowerShell, an alias is a

link to a particular cmdlet. In many cases, Microsoft has created multiple aliases for a given

cmdlet. For example, since a user or administrator may find it difficult at first to remember

Chapter | + Introducing Windows PowerShell (1s)

to use Get-Childitem in order to display the contents of a folder, Microsoft has created an
alias of dir for this cmdlet. You can therefore type dir in place of Get-Childitem and you
receive the same exact results, as demonstrated in Figure 1.11.

Windows PowerShell

PS C:\TextFiles> dir

Directory: Microsoft .PowerShe 11.Core\FileSystem: :C:\TextFiles

dir is an alias ais ee oes mest

for the y 2:01 P a viusteee
Get-Childitem 3 Sey9. Uncen decoants (txt

cmdlet provided : 43 geace s
to help Windows S7i2/2oee 8: a

users and

administrators pan GoNFe XARA AES 7

make the switch

from cmd.exe to

the Windows

PowerShell.

Recognizing that not everybody is an experienced Windows user or administrator, Microsoft

has also created an alias of 1s for the Get -Childitem cmdlet in order to help smooth the tran-

sition to Windows PowerShell for users and administrators with a Linux or UNIX back-

ground. As Figure 1.12 shows, entering 1s at the PowerShell command prompt results in the

exact same results as the previous two examples.

= Windows PowerShell

PS C:\fextFiles> Is

Directory: Microseft .PowerShe 11. Core\PileSystem::€:\TextFiles

ode LastWUriteT ime Length

9: 159 ¢
1s is an alias = @ Files.txt

FE / AB 9: 8 TO DO List txt
for the a ORG «= F=2 6a73 ts txt

<o ee -- 9/12/2086 9: 723 3
Get-Childitem Sac 9/12/2086 9 9 =3 11426

: a— 9/12/2886 = 61258
cmdlet provided — 2/12/2886 9: 67311
to help Linux and
UNIX users and PS C:\TextFiles>

administrators

make the switch

tothe Windows Ee aa aainaeame: Veena ee rea
PowerShell.

Window PowerShell provides access to over 100 cmdlets, most of which have

at Least one alias. You will find a complete List of Windows PowerShell cmdlets

in Chapter 3, “Object-Based Scripting with .NET”.

Windows PowerShell Programming for the Absolute Beginner

Other Types of Commands
It is important that I do not leave you with the impression that the only types of commands

that you can run from the Windows PowerShell command prompt are cmdlets. In fact, you

can run any executable file. One way to locate executable files is by using the Get -Command

cmdlet as demonstrated below.

Get-Command *.exe

In response, PowerShell will display a listing of all the executable files it can find. If you

examine this list you will probably see a number of executable files that you are already

familiar with. For example, you could start the Notepad application by typing notepad and

pressing Enter at the PowerShell command prompt.

A Short PowerShell Workout

The best way to become familiar with Windows PowerShell is to begin working with it. In

this section, you will get the chance to do just that. Specifically, I will provide you with a

series of command-line examples that will give you a feel for the types of cmdlets supported

by Windows PowerShell as well as the overall syntax involved in executing them.

For starters, let’s execute a command that provides a list of all active processes currently

running on the computer. This can be accomplished using the Get-Process cmdlet as

demonstrated by the following.

PS C:\Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

17 2 540 1396 25 0.03 27784 Acrotray
78 3 1948 2024 33 0.20 27212 ALCXMNTR
103 5 1132 2464 32 0.05 2020 alg
305 8 2992 1228 60 2.08 27840 BackWeb-137903
987 4 2128 396 34 225.42 28156 CFD
529 6 1636 3468 26 40.89 536 csrss
527 14 15732 24388 103 147.00 27920 explorer
91 3 1076 3244 35 0.56 1160 FINDFAST
94 3 872 2348 35 Onli 28436 hpgs2wnd
91 3 868 2228 35 0.09 28356 hpgs2wnf
78 3 1140 2540 35 0.69 27332 hpotdd0l
61 2 912 2316 31 Oe 28184 HpqCmon

Chapter | + Introducing Windows PowerShell (17)

13 j 380 1120 17 0.03 28100 hpsysdrv

17 2 496 1448 24 0.03 27312 hpwuSchd
43 2 504 1208 15 0.08 1324 HPZipm12
0 0 0 16 0 0 Idle
6613 2 904 1324 17 0.16 1880 OPXPApp
357 11 28860 28288 151 3.97 30076 powershell
104 3 896 136 34 0.09 29704 realsched
300 7 2004 3700 36 7.75 608 services
21 1 164 340 4 0.06 472 smss

154 6 6256 5228 53 3.94 1068 spoolsv
209 5 3092 3564 62 0.20 788 svchost
335 13 1872 3048 37 1.55 836 svchost

PS C:\>

In response to the Get -Process cmdlet, Windows PowerShell displays a structured table com-

plete with headings that lists each active process on the computer as well as a bunch of

other information related to each process. Most cmdlets accept parameters that you can

alter to further specify how to want them to execute. As you have already seen, by itself the

Get-Process cmdlet retrieves a list of all the processes running on your computer. This

cmdlet also support an optional -ProcessName parameter that lets you specify a process that

it should look for as demonstrated here.

PS C:\Get-Process -ProcessName Winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

216 9 j342 18192 93 1,103.81 30516 WINWORD

PS C=\>

In this example, the Get-Process command has been instructed to display information

about the Winword process (if it is running). As you can see, cmdlet parameters begin with

a hyphen followed by the name of the parameter being specified and then the actual para-

meter. Cmdlet syntax is very straightforward but also very strict. However, the extra disci-

pline also makes Windows PowerShell syntax easier to learn and remember.

The Windows PowerShell is flexible in many circumstances; often you only need to type in

as much as is required to uniquely identify a parameter from other parameters. As a result,

you could retype the previous example as shown next and Windows PowerShell will recog-

nize that the argument being passed is the Process-Name parameter.

Windows PowerShell Programming for the Absolute Beginner

PS C:\> Get-Process -p winword

Handles NPM(K) PM(K) WS(K) VM(M) CPUCs) Id ProcessName

225 10 7496 18456 99 2,004.70 30516 WINWORD

PS C:\>

Many cmdlets, including the Get-Process cmdlet, define positional parameters, allowing

you to pass arguments to the cmdlet without explicitly specifying the parameter they are

supposed to match up against. For example, since the first parameter expected by the Get-

Process cmdlet is the -ProcessName parameter, you can omit the -ProcessName or -p and sup-

ply just the name of a process. The cmdlet will automatically assume that the first

argument you pass to it is the name of a process, as demonstrated below.

PS C:\> Get-Process winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

225 10 7476 18476 99 2,031.17 30516 WINWORD

PS C:\>

Also, you can cast a somewhat wider net and view all of the processes whose names begin
with the letter w, as demonstrated here.

PS C:\> Get-Process w*

Handles — NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

67 2 1492 1172 14 0.03 1452 wdfmgr
428 46 6948 3408 51 6.08 564 winlogon
214 9 7300 18204 92 1,206.08 30516 WINWORD
32 1 328 684 15 0.03 1580 WLService
27 2 464 1568 25 0.05 27752 wsentfy
142 8 5820 8136 56 0.53 1600 WUSB54Gv4

BS Gi \2

an

Chapter | + Introducing Windows PowerShell

Most cmdlets allow you to refine their execution by passing them additional
information for processing as arguments. In the case of the preceding
Get-Process w* example, the * wildcard character was passed along with the
w character.

In this example, the Get-Process cmdlet processes retrieve a list of all active processes whose
names begin with the letter w, as specified by the w* argument that was passed to the cmdlet
for processing.

aRick The * character is a wild card character that is used in pattern matching. Its pur-

pose is to set up a match with any number of characters. For example, T*p would

match any of the following strings

e Tp

« Top

* Toooooooop

The ? character is another wildcard matching character, used to set up a pattern

match with a single character. For example, T*p would match Tip or Top but not

Toooooooop.

If you have previous command-line experience, then the examples you have just seen should

look reasonably familiar. If you don’t have a lot of command-line experience, don’t worry; you

will by the end of this book, and examples such as these will eventually become second

nature to you. Before moving on, let’s look at one more command-line example.

In this example, the Get -Process cmdlet is used to retrieve a list of all active processes whose

names begins with the letters wi. Next, using a technique known as object piping, the results

of this command are passed to the Format-Table cmdlet. The Format-Table cmdlet displays

command output in a table format, allowing you to specify a number of optional parameters.

In this example, the -groupby property is used to instruct the cmdlet to organize output by

process name, as demonstrated below.

PS C:\> Get-Process wi* | Format-Table -groupby ProcessName

ProcessName: winlogon

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

428 46 6948 3408 $1 6.08 564 winlogon

Windows PowerShell Programming for the Absolute Beginner

ProcessName: WINWORD

Handles NPM(K) PM(K) WS(K) VM(M) CPUs) Id ProcessName

224 10 7500 18484 99 2,120.91 30516 WINWORD

PS C2 Ne

WINDOWS POWERSHELL SCRIPTING

Windows PowerShell scripts are plain text files with a .ps1 file extension. These script files

are made up of one or more PowerShell script statements. Once created, PowerShell scripts

are executed like any PowerShell command or cmdlet; you just type in its name at the

PowerShell command line and optionally pass any arguments required by the script.

Windows PowerShell comes complete with its own brand-new scripting language, which

supports a full range of programming language features, including support for the following:

variables, arrays, and hashes

conditional logic statements

looping statements

e functions

error handling

You will learn about the Windows PowerShell programming language in
Chapters 3-7.

SIMPLIFYING POWERSHELL SCRIPT EXECUTION
To run a PowerShell script, all that you have to do is type in the name of the script at the
PowerShell command prompt. In response, the PowerShell will search every folder in your
default search path looking for the specified PowerShell script.

| suggest that you create a new folder named something like MyScripts and use
it as the storage location for all your PowerShell script files; this will make your
script files easy to find.

Chapter | + Introducing Windows PowerShell (21)

To see the contents of your default path, start PowerShell and type $env:path, as demon-
strated here.

PS C:\> $env:path

In response you should see output similar to this.

C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS ;C: \WINDOWS\System32\Wbem;c:\Python2

2;C:\Program Files\Windows PowerShel1\v1.0\

PS C:\Documents and Settings\Owner>

This output shows that on my computer, the PowerShell will search each of the following

folders looking for the specified PowerShell script file.

C:\Perl\bin\

C:\WINDOWS\system32

C:\WINDOWS

C:\WINDOWS\System32\Wbem

c:\Python22

C:\Program Files\Windows PowerShell\v1.0\

There are a number of different options open to you for making your Windows PowerShell

scripts easy to execute. For starters, you can store your PowerShell scripts in one of the

folders that is already listed in your default path. However, this is probably not a good idea.

It is a much better idea to store them someplace that works better for you and to run your

PowerShell scripts from there. One way to do this is to switch over to the folder where

your PowerShell scripts are stored and then precede the name of your PowerShell script with

a ./ when running them.

PS C:\> cd c:\ShellScripts

PS C:\> ./knockknock.ps1

By appending ./ in front of your PowerShell script filename, you temporarily add the cur-

rent folder to your search path, thus letting PowerShell find it. A more permanent way of

dealing with things is to permanently add your script folder to your default search path,

which you can do by right-clicking on My Computer, selecting Properties, and then select-

ing the Advanced property sheet on the System properties dialog. Next, click on the Envi-

ronment Variables button, locate the path variable in the System variables list located at the

bottom of the window, and then click on the Edit button and append a semicolon followed

by the full path name of your script folder to the end of the path string. Once you have fin-

ished making this modification, you will need to reboot your computer for the change to

take effect.

(22) Windows PowerShell Programming for the Absolute Beginner

BACK TO THE KNOCK KNOCK JOKE GAME
Okay, it is time to turn your attention back to the development of this chapter game’s project,

the Knock Knock Joke game. The creation of this script will demonstrate the mechanics

involved in creating and running PowerShell scripts. In addition, this game will demon-

strate how to develop a PowerShell script that can interact with the user by retrieving

command-line input and displaying text output. |

At this point in the book, it is not expected that you will understand what each script state-

ment does or how it works. You will learn the basics of the PowerShell scripting language

later in Chapters 4-6. For now, your primary focus should be on learning the steps involved

in script creation and execution.

Designing the Game
It is always a good idea to spend a little time planning out the design and organization of

your PowerShell scripts before you begin writing them. This will help reduce errors and

decrease the amount of time it takes to get the job done. As you saw earlier in this chapter,

the script begins by clearing the screen and then prompting the player to answer two ques-

tions correctly before displaying the punch line for the first joke. Two additional jokes are

then told in succession. The game ends after displaying a little information about itself and

its author.

As you can see, the series of steps required to tell a joke is not terribly complicated. To

develop the PowerShell script file, you will assemble it in eight steps, as outlined here:

1. Create a new script file and add an initial statement that clears the screen.

. Display the first line of the first joke and wait for the player to respond.

. Display the second line of the first joke and wait for the player to respond again.

. Displays the first joke’s punch line.

. Pause script execution to give the player a chance to enjoy the joke.

. Tell the script’s second joke

. Tell the script’s third joke

. Display closing script and author information. ON HD UW fF WwW WN

Creating a New PowerShell Script

Begin by opening your preferred text or script editor and saving a new script file named
KnockKnock.ps1. Next, add the following statement as the first line in the script file.

Clear-Host

Chapter | « Introducing Windows PowerShell (23)

pint -psl is PowerShell’s standard file extension. You will be using it for all the
Tp PowerShell game scripts you create in this book.

Clear-Host is a Windows PowerShell cmdlet. When executed, it clears out any text currently
displayed in the Windows command console, preparing it for the display of new text.

pint If you prefer, you can also clear the Windows command console by substituting
the clear or cls command for the Clear-Host command. clear and cls are both

trp aliases for Clear-Host. Window PowerShell supports well over 100 cmdlets,
most of which have at least one alias. You will find a complete List of Windows
PowerShell cmdlets in Chapter 3.

Prompting the Player to Begin the Game

Now it is time for the game to display the first joke’s opening "Knock Knock!" string and wait
for the player to respond by typing in the string Who is there?. To complete this portion of

the script, add the following statements to the end of the script file.

A string is a series of zero or more characters surrounded by double quotation wINt
Trp marks.

$userReply = ""

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

}

The first statement declares a variable named $userReply, assigning it an empty string. This

variable will be used by the while loop block that follows to store and analyze the input

keyed in by the user. The while loop has been set up to execute until the player enters the

expected response. Note that it is the single statement located inside the while loop that dis-

plays the opening "Knock Knock!" string prompt, which it does using the Read-Host cmdlet

to read a line of input from the Windows command console.

A variable is a pointer to a Location in memory where a value is stored. You will iNT
. learn more about variables in Chapter 4, “Working with Variables, Arrays, and

Hashes.” A loop is collection of one or more statements that is repeatedly

executed as a unit. You will learn more about loops in Chapter 6, “Using Loops
to Process Data.”

Windows PowerShell Programming for the Absolute Beginner

Collecting Additional Player Input

Once the player has provided the correct response to the opening "Knock Knock!" prompt,

the game needs to display the joke’s setup line, which is accomplished by adding the

following statements to the end of the script file.

Clear-Host

while ($userReply -ne "Orange who?"){

$userReply = read-host "Orange."

}

As you can see, the first statement shown here clears the Windows command console

screen. Next, a while loop executes using the Read-Host cmdlet to display a prompt of

"Orange.". The player must then respond by entering "Orange who?" in order for the game to

continue.

Displaying the Punch Line

Once the player has provided the correct response, the script displays the first joke’s punch

line. This is accomplished by adding the following statements to the end of the script file.

Clear-Host

Write-Output "Orange you glad you created this PowerShell script?"

The first statement clears the Windows command console screen. The second statement

displays a text string containing the first joke’s punch line using the Write-Output cmdlet.

By default, the Write-Output cmdlet writes a line of text to the Windows HINT
Tp command console screen.

Pausing Between Jokes

After each joke is told, the game is supposed to pause for five seconds to give the player an
opportunity to read the joke’s punch line. This is accomplished by adding the following
statement to the end of the script file.

Start-Sleep -Seconds 5

This statement executes the Start-Sleep cmdlet, telling it to pause script execution for five
seconds.

Chapter | + Introducing Windows PowerShell (25)

Telling the Second Joke

At this point, the script’s first joke has been presented to the user. Now it is time to write the

code statements required to tell the game’s second joke. The code statements required to

complete this task are almost identical to the statements that presented the first joke,

except for some slightly different content in the text strings that make up the text of the

joke. This code, shown below, must be added to the end of the script file.

Clear-Host

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Ciear-Host

while ($userReply -ne "Orange who?"){

$userReply = read-host "Orange."

Clear-Host

Write-Output "Oranges are oranges but this is PowerShell scripting!"

Start-Sleep -Seconds 5

Telling the Third Joke

The code statements responsible for telling the game’s third joke are shown next. These

statements need to be added to the end of your PowerShell script file.

Clear-Host

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Clear-Host

while ($userReply -ne "Banana who?"){

$userReply = read-host “Banana.”

Windows PowerShell Programming for the Absolute Beginner

Clear-Host

Write-Output "Orange you glad I didn't say orange?"

Start-Sleep -Seconds 5

As you can see, these code statements are almost identical to the statements that presented

the first and second jokes, except for some slightly different text string content.

Displaying Game and Author Information

The Knock Knock Joke game ends by clearing the Windows command console screen,

displaying a little information about the game and the game’s author, and, after a three-

second pause, clearing the screen and ending. The code statements that make this happen

are shown next and should be added to the end of your script file.

Clear-Host

Write-Output "The Knock Knock Joke"

Write-Output ""

Write-Output "Copyright 2006 - Jerry Lee Ford, Jr."

Start-Sleep -Seconds 3

Clear-Host

The Final Result

At this point, your new Windows PowerShell script should be complete. Since this is your
first PowerShell script and since you built it in a series of different steps, I’ve gone ahead and
laid out a full copy of the entire script here so that you can make sure that you did not miss
anything when keying your copy of the script.

Clear-Host

$userReply = ""

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Chapter { + Introducing Windows PowerShell (7)

Clear-Host

while ($userReply -ne "Orange who?"){

$userReply = read-host "Orange."

Clear-Host

Write-Output "Orange you glad you created this PowerShell script?"

Start-Sleep -Seconds 5

Clear-Host

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Clear-Host

while ($userReply -ne "Orange who?"){

$userReply = read-host "Orange."

Clear-Host

Write-Output "Oranges are oranges but this is PowerShell scripting!"

Start-Sleep -Seconds 5

Clear-Host

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Clear-Host

while ($userReply -ne "Banana who?"){

$userReply = read-host "Banana."

Windows PowerShell Programming for the Absolute Beginner

Clear-Host

Write-Output "Orange you glad I didn't say orange?"

Start-Sleep -Seconds 5

Clear-Host

Write-Output "The Knock Knock Joke"

Write-Output ""

Write-Output "Copyright 2006 - Jerry Lee Ford, dr."

Start-Sleep -Seconds 3

Clear-Host

Assuming that you have not made any typos, your Knock Knock Joke script should be ready

to run. If you run into any errors, then you have made a typo somewhere. If this is the case,

you will need to go back and review your work and find where you made a mistake.

SUMMARY
This chapter has taught you a lot about Windows PowerShell and Windows PowerShell

scripting. You learned what makes Windows PowerShell different from its predecessor and

examined its major features and components. You learned how to install and configure its

execution. You learned how to execute cmdlets and to create and run Windows PowerShell

scripts. You learned how to get help on different PowerShell commands. On top of all this,

you created your first Windows PowerShell game, the Knock Knock Joke game.

The Knock Knock Joke game is admittedly not the most advanced PowerShell script. Still, if

you are new to programming, you may not yet understand everything that you see. Don’t

worry about that for now. The important thing for you to take away from the development

of this script is a basic understanding of the mechanics involved in creating and executing

a Windows PowerShell script.

When it comes to computer games, there is always room for improvement. Before you move

on to the next chapter, I recommend that you spend a little more time working on the

Knock Knock Joke game by trying to implement the following list of challenges.

Chapter | + Introducing Windows PowerShell

CHALLENGES

!. As currently written, the Knock Knock Joke game presents players with three
somewhat bland jokes. | suggest that you replace these jokes with knock knock

jokes of your own.

. With only three jokes, the Knock Knock Joke game does not take very long to
complete. Give the player a better experience by expanding the number of jokes
that are told.

. Once you have added your own jokes to the Knock Knock Joke game, take credit

for your work by modifying the developer information that is displayed at the

end of the script.

-_

—
aut)

¢ bes yw OY Ses bes rc? >

~ » o ‘

z t area '

“og a — an

| te nea Wi hae es VARS: ee

ji ee .iMiew a: iy easing aie a yoarna eon Y bby lectin 2

1p) Meth ive cm te meal aed) Aaetyet coy desl seagyuet oe

she ea ©
> } se grw ue ae ee rin es mat lay

gates * rage oFaees ie < anberestsrstkmice =

- ae eR that) cet
ae ee et) Pe Bec 4 wl) apres ae A aos

a BA se meeslgel 3 FaMtt CMe mio! seqneowed ay a : ipo at ¥ ee

ol - ; ~ = ng A
Bernie Pic: -

= . ‘oye 2 ~

’ : : Ee ; ik vf 7;

7 eee — ee oe a ae a oor le - ac a " ee ae
a>! : een"

» me? o> & eee eee, aoe . > Cn) ct, (c08 i”, Rate 2

;
wi

s& 7» ’ leet e Pe al ween pow Meade 12 ioe =

‘
ee 7) =] 7
Toes roa ’

- - " 2 ee eae A
.

. a . ae
wen hugh FOR a vt “ae eee inate ; os a

SOG ates.) ata meee Maden PeveeBiend] aMorpls arene -

bre pe, OT. 0 od teats, ‘a eared now pelosi a at

pe ea ore Re cantina Saree aol comes :
’ ae De ‘ pried harper om oa rt

hod hel Poe srl! & “cor. > ne 4 i _

a w tines tine ta Sight
eon ¢ vas whist feat pot ee! i 1 J

peer the sonata Hing’ ft = va
PaPPinccr ris ‘aii ef ne ea gh

4 — 4 eres ol

ee, a Wr ;
— — % v ‘ d tn

igs <r phe

>
—— : . —

=

~~

INTERACTING WITH THE
WINDOWS POWERSHELL

COMMAND LINE

n order to work effectively with the Windows PowerShell and to develop

PowerShell scripts, you must have a solid understanding of how to inter-

act with Windows from the PowerShell command line. This chapter will

provide you with instruction on how to configure the Windows command con-

sole in order to create a better working environment with which to interact with

Windows PowerShell. This will include learning how to configure the command

console layout and to specify your default working directory. This chapter will also

explain how to take advantage of Windows PowerShell’s built-in tab completion

feature in order to save time and reduce errors when keying in commands. You

will also learn how to use Windows PowerShell to navigate and access different

types of system resources, including the Windows registry, environment variables,

and disk drives. On top of all this, you will learn how to create your second

PowerShell game, The Story of the Three Amigos.

Specifically, you will learn how to:

¢ Set a default working directory for your PowerShell sessions

¢ Customize the Windows command console

¢ Reduce the time required to complete commands by taking advantage of

tab completion

¢ Use Windows PowerShell to access different hierarchical data stores

(32) Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE STORY OF THE THREE AMIGOS

In this chapter you will learn how to create a new computer game that tells The Story of the

Three Amigos. Key pieces of this mad-lib styled story are collected from the user in the form

of responses to seemingly unrelated questions. The end result is a story that is never told the

same way twice. The Story of the Three Amigos begins by displaying its title page, as shown

in Figure 2.1.

| ® C:\WINDOWS\system32\WindowsPowerShell\v1 .O\powershell.exe

THE STORY

OF THE THREE AMIGOS

By Jerry Lee Ford, Jr.

The Story of the

Three Amigos

is tolda page Press Enter te continue.

ata time. on .

The Story of the Three Amigos is a mad-lib styled game in which player input is collected
and plugged into key places in the story to allow the user to participate in the story-telling
experience. Before asking any questions, the game informs the users of what is expected
from them, as shown in Figure 2.2.

| © C:AWINDOWS\system32\WindowsPowerShell\vt -O\powershell_exe

: This is an interactive mad-lib styled story. Before it can be

| told. you must answer a few questions.

The Story of the

Three Amigos is

an interactive

story that

depends on Press Enter to continue.

user input. ,

Chapter 2 « Interacting with the Windows PowerShell Command Line (33)

In total, the user is asked four questions without knowing in advance the context in which the
answers will be used. Figure 2.3 provides an example of one of the questions asked by the game.

) cAW INDOWS system 3 Z\WindowsPowerShelliv1 .O\powershell.exe

| Enter the name of a scary animal :

Users must wait .

until the story is

told to see how

their inputs

are used.

Once the game has collected all of the information that it requires, it begins telling The

Story of the Three Amigos a page at a time. The first page of the story is shown in Figure 2.4.

| & CAWINDOWS|\system3 2\WindowsPowerShelt\v1 O\powershell.exe

| Once upon a time there were three a special children
} named Alexander. William, and Molly. Alexander was the oldest
‘| and was known to be brave and strong. Molly, the youngest,
‘| was just five years old. yet she possessed an extraordinary
] sense of awareness that even the wisest sage would
i ire and respect. William. the middle child. was both brave
| and wise many times beyond his years. They lived together at
; the top of a hill, just outside the outskirts of town, where
| they potent ally watched over the townsfolk. Always together
and always locking out for each other and the people in the

| town, they were known by everyone as The Three Amigos.
FIGURE 2.4 4

The opening page

of The Story of |

the Three Press Enter to continue.

Amigos. ; .

As users read through each page of the story, they will notice how the answers they provided

have affected the manner in which the story is told, as demonstrated in Figure 2.5.

Windows PowerShell Programming for the Absolute Beginner

| = C:AWINDOWS ; i i - ershell\y1 .O\powershell. exe

One day, which started out no different than any other day, a
| great roar was heard from the center of the town. Women and
|) small children could he seen peresersy and running in panic.
| The Three Amigos climbed to the top of their watch tower and
yeaa scanning the town streets for the source of the noise
an panic. Alexander was the first to find the problem,

| spotting a gigantic tiger art ier Ab ooh ple towards the
mayor’s office. Just ahead of t tiger stood the town’s

| ite attempting is ard a a erate tyeane > itt
urry, we must go shoute lolly. “ own needs

FIGURE 2.5 Three Amigos?” In an instant Alexander, William, and Molly
dumped into an old tank, scarred _and worn by years
of Faithful service, and hurriedly raced into town. The second page

of The Story of

the Three | Press Enter to continue.

Amigos. ,

Figure 2.6 shows the next page of the story, which explains how the story’s heroes defeat

their enemy and save the townsfolk.

| & CA\WINDOWS|\system 3 2\WindowsPowerShelf\y1 O\powershell.exe

| Within minutes The Three Amigos found themselves standing in
|| the center of Main street. T town was quiet and seemed
|| almost deserted seaghd for the old Pizza Hut. where the citizens
| had vetreated once their last stand had failed. The tiger
j was standing in front of the Pizza Hut, ae to
| break in and kill the good citizens of t town.
“What do we do?" said Alexander. William looked around and
saw a pile of donuts stacked up against the town

| barbershop’s storefront. Follow me yelled William,
|] heading straight for the pile of donuts. Alexander
] and Mo ly instantly knew what to do. each grabbing a donuts
| and_hurling pieces of donuts at the tiger. Unable to
| deal with the power of the attack launched by The Three
Amigos, the tiger fled the town, never to be seen or heard

The third page of | of again.

The Story of the | Press Enter to continue.

Three Amigos.

The Story of the Three Amigos ends, like so many stories, with a happy ending, as shown in

Figure 2.7.

| C:AWINDOWS\sy

The townsfolk ran out of the Pizza Hut and began cheering for
their heroes. Once again The Three Amigos has saved the day.

The last page of

The Story of the : Press Enter to continue.

Three Amigos.

Chapter 2 « Interacting with the Windows PowerShell Command Line (5)

By the time you have finished the Windows PowerShell script that makes up The Story of

the Three Amigos, you should have a good understanding of the mechanics involved in cre-

ating and executing Windows PowerShell scripts.

ACCESSING WINDOWS POWERSHELL

As you have already seen, you can start a new Windows PowerShell session by clicking on

Start > All Programs > Windows PowerShell. When first started, the Windows command con-

sole appears and, after a moment, displays the following information.

Windows(R) PowerShel1

Copyright (C) 2006 Microsoft Corporation. All rights reserved.

PSG >

By default, Windows PowerShell displays its name and copyright information each time it

is started. The name and copyright information is followed by a blank line and the Windows

PowerShell command prompt. The command prompt displays, by default, the Windows

PowerShell’s current working directory.

There are plenty of other ways to start new Windows PowerShell sessions. For example, you

could also click on Start > Run and then type PowerShell in the Run window that appears,

as shown in Figure 2.8.

Type the name of a program, Folder, document, or
Internet resource, and Windows will open it For you.

Starting Windows

PowerShell from

the Run window.

When started from the Run window, Windows gives you the opportunity to pass arguments

to the Windows PowerShell at startup. For example, if you wanted to prevent the display

of the Windows PowerShell name and copyright information, you should type PowerShell

-nologo into the Run window and click on OK. The end result would be a new Windows

PowerShell session that starts up by displaying the PowerShell command prompt only.

Windows PowerShell Programming for the Absolute Beginner

You can also start a new PowerShell session from within a cmd.exe shell console session by

typing PowerShell at the command prompt and pressing Enter. In response, a new Power-

Shell session is started within the current command window. When done working with the

PowerShell session, you can close it and return to the cmd.exe session by typing Exit at

the PowerShell command line and pressing Enter.

Another way to start up a new Windows PowerShell session is to create a desktop shortcut

for it, which you can do by clicking on Start > All Programs, right-clicking on the Windows

PowerShell icon, then selecting Create Shortcut. This adds a PowerShell shortcut to the

Windows PowerShell group, which you can then drag and drop onto your Windows desktop.

Another way of creating a shortcut for Windows PowerShell is to right-click on

an open area of the Windows desktop and, when prompted, select New >

Shortcut. This will start a Create Shortcut wizard, whose job is to walk you

through the process of setting up new shortcuts. Type PowerShell in the Type

the Location of the Item field and click on Next. Next type Windows

PowerShell in the Type a Name for This Shortcut field and click on Finish.

CUSTOMIZING THE WINDOWS POWERSHELL WORKING
ENVIRONMENT

Regardless of how you start a Windows PowerShell session, you will find yourself working
with it from within the Windows command console application. The good news is that
the Windows command console provides you with access to a rich set of commands and
features that help give you greater control over the manner in which you interact with the
PowerShell and that can also be used to help you work faster and more efficiently.

Customizing Windows PowerShell Shortcuts
Placing a shortcut to the Windows PowerShell on your desktop provides convenient access.
One way to make the shortcut an even more convenient tool is by modifying its Start in field
to point to the folder where you have decided to store all your Windows PowerShell script
files. This way, all you have to do is double-click on your Windows PowerShell icon and a new
session will start up, using the specified folder as your current working directory.

The steps required to modify your Windows PowerShell shortcut as described above are out-
lined in the following procedure.

1. Right-click on your Windows PowerShell shortcut and select Properties. The Windows
PowerShell Properties dialog box will appear.

Chapter 2 + Interacting with the Windows PowerShell Command Line (37)

2. Type the full path name for your PowerShell script folder in the Start in field, as
demonstrated in Figure 2.9.

Windows PowerShell Properties

oe) Shortcut | Options | Font || Layout] Colors | Com

fa Windows PowerShell

Target type: Application

Target location: v1.0

Target: *SystemRoot%\:

| Start in:

Shortcut key:

Run:

Configuring your

Windows

PowerShell

shortcut in order

to specify its eS i ln ils ante pp Naa Rk

default working or)
directory.

3. Click on OK.

The next time you start up a new Windows PowerShell session using this shortcut, the

Windows command console will appear and a new PowerShell session will be started with

the specified folder set as your current working directory, as demonstrated in Figure 2.10.

X Windows PowerShell

Windows PowerShell
Copyright (€> 2886 Microsoft Corporation. ALI rights reserved.

PS €:\MyScripts> —

Starting a new

Windows

PowerShell

session using a

customized

shortcut.

Windows PowerShell Programming for the Absolute Beginner —

CONFIGURING THE WINDOWS COMMAND CONSOLE

Windows PowerShell is accessed through the Windows command console. By default, the

Windows command console displays text in a window that is 45 lines long and 120 charac-

ters wide. All text is displayed as white text on a blue background. As a Windows PowerShell

programmer, it is important that you know how to work with the Windows command con-

sole and that it is configured to suit your personal preferences.

As the sections that follow will demonstrate, the Windows command console is highly con-

figurable, allowing you to modify its appearances and behavior in a number of ways. In addi-

tion, it provides you with a number of handy editing commands for interacting with the

Windows PowerShell.

To help improve the presentation of figures in this book, | have modified my

version of the Windows command console to be 25 characters long and 80
characters wide. Also, | have set up text to display as black characters on a white

background.

Windows Command Console Customization Options

In order to customize the Windows command console, you must first open it up, which you

can do by starting a new Windows PowerShell session. Once opened, right-click on the Com-

mand Prompt icon located in the upper-left corner of the command console’s title bar and

then select Properties from the context menu that appears. This will open the Windows

PowerShell Properties dialog window. This dialog is organized into four property sheets.

Each of these sheets controls a different aspect of the Windows command console. You

configure the Windows command console’s behavior and appearance by modifying the

attribute information shown on these property sheets.

Even though this section highlights the configuration of the Windows com-

mand console using Windows XP, the information provided here should also
broadly apply to both Windows 2003 and Windows Vista.

Modifying Command Console Options

The first property sheet on the Properties window is the Options tab, as shown in Figure

2.11. From here you can modify the following Windows command console attributes:

* Cursor Size. Determines whether the command console cursor appears in a small,
medium, or large size.

Chapter 2 « Interacting with the Windows PowerShell Command Line

. ns 7
\ “Windows PowerShell" Properties {> \[K}

Options | Font | Layout | Colors |

j Guisor Size _- Display Options ——

| Buffer Size: =] | QuickEdit Mode

F 3 | Number of Buffers: [4 =34 17 Insert Mode

I Discard Old Duplicates lL.

The Options ; oe

property sheet

provides access

to console

attributes that

control cursor

size and

command history

as well as display

and edit settings.

* Command History. Determines the size of the command console’s buffers, which

affects the number of commands the command console stores and retrieves, as well

as the number of buffers in use and whether or not duplicate commands are saved as

part of the command console’s command history.

¢ Display Options. Determines whether the command console opens in its default

window view or in full-screen mode.

e Edit Options. Determines whether QuickEdit mode and Insert mode are enabled.

QuickEdit is a command console feature that supports the copying of text from

the command window and the pasting of text to the command prompt. Insert mode

controls whether text is inserted or overwritten when editing text keyed in at the

command prompt.

Modifying Command Console Font Attributes

The second property sheet on the Properties window is the Font tab, as shown in Figure 2.12.

From here you can modify the font size and font type used by the Windows command console.

Changes to font size also affect the size of the Windows command console. The Windows

Preview area provides you with visual feedback regarding the effects of making a font size

change.

Windows PowerShell Programming for the Absolute Beginner

cy “Windows PowerShell” Properties

Options Font | Layout | Colors |
Window Preview

| Lucida Console
Raster Rants

ie Cz\WINDOUS> dir Each character is: |
Configuring font | Sad <DIR> 8 screen pixels wide

« ie SYS TEM32 md <DIR> 12 screen pixels high

attributes for lararacerne cenmmmreyann a eR
the Windows

command Cancel |
console.

The Font property sheet also allows you to change the font type used by the Windows com-

mand console. The effects of a font type selection are made immediately apparent in the

Selected Font: Terminal section of the Font property sheet. Depending on the font that you

select, the Bold fonts attribute, located just above the list of available fonts, is enabled.

When enabled, console text appears bold, which, depending on your preferences, may make

console text easier to read.

Changing the Layout of the Windows Command Console

The third property sheet on the Properties window is the Layout tab, as shown in Figure 2.13.

From here you can set the Windows command console’s initial size and display location.

Changes made to Layout attributes are immediately reflected in the Window Preview por-

tion of the Layout property sheet. Configuration changes are made by modifying any of the

following settings:

¢ Screen Buffer Size. The Width setting specifies the number of characters that are dis-

played on a single line. The Height setting specifies the number of lines of text that

can be stored in memory, thus controlling the number of lines that you can scroll

back and view.

¢ Window Size. The Width setting specifies the number of characters that are dis-

played on a single line. The Height setting specifies the number of lines of text the

command console displays by default. Regardless of these settings, you can always

Chapter 2 « Interacting with the Windows PowerShell Command Line

manually resize the Windows command console like any other Windows application

by right-clicking on its edges and dragging them to a new location. It should be

noted, however, that the Windows command console cannot be resized any larger

than the height and width values set in the Screen Buffer Size section.

¢ Window Position. You can set the starting location of the Windows command console

by modifying these settings to specify the exact location where the Windows command

console should be displayed when started. Position is set by specifying the pixel count

of the left and right corner of the Windows command console’s upper-left corner. A

pixel (picture element) represents the smallest area that can be displayed or printed.

Optionally, you can allow Windows to determine the proper location for the Windows

command console by leaving the default Let System Position Window attribute selected.

Modifying

Windows

command

console default

screen size and

Windows

position.

qrict® | recommend that you set the Screen Buffer Size Height setting to three times

mh the height of the Window Size setting. This will allow you to scroll back through

ae several pages of previously executed commands and command output.

Changing Command Console Color Attributes

The fourth property sheet on the Properties window is the Colors tab, as shown in Figure

2.14. From here you can change the Windows command console’s foreground and back-

ground colors.

Windows PowerShell Programming for the Absolute Beginner

FIGURE 2.14

Modifying the

Windows

command

console

foreground and

background color

attributes.

os “Windows PowerShell? Properties

Options | Font | Layout Colors. |

@ Screen Background | Red: fi |

© Popup Text | Soe [36 =| |

pee 2

© Screen Text Selected Color Values~ :

Popup Background

eee cae) ee

C:\WVINDOWS> dir :
$ <DIR> 16-61-99

32 <DIR> 16-61-99
TVT

16-81-99
16-61-99
FR fA AO

The left side of the top portion of the Colors property sheet provides access to four different

options. To configure these options, select them one at a time and then select a color from

the color strip located in the middle of the property sheet. The four options include:

¢ Screen Text. Specifies the color used to display text.

¢ Screen Background. Specifies the color used to display the command console’s

background color.

¢ Popup Text. Specifies the color used to display the text color of the Windows

command console’s Command History dialog box.

¢ Popup Background. Specifies the color used to display the background color of the

Windows command console’s Command History dialog box.

If you prefer, you can specify a custom color instead of a selecting a color from the color strip

by selecting one of these four configuration options and then specifying various levels of

red, green, and blue using the scrollbar controls located in the Selected Color values section

in the top-right corner of the Colors property sheet.

The bottom half of the Colors tab provides a visual preview of the effect of any changes

made to the Windows command console and its Command History dialog box.

t

(ene
TW

Going forward, | have set the screen background color of the Windows com-
mand console to white and the screen text color to black. This will generate
screen figures that are more legible and easier to read for the rest of the book’s
game scripts.

Chapter 2 « Interacting with the Windows PowerShell Command Line

Windows Command Console Editing Features
Because you access and interact with the Windows PowerShell within the Windows com-

mand console, you have access to a host of helpful editing features that are built into the

console. For example, you can edit any command already typed in at the command prompt

by using the left and right arrow keys to move back and forth to locations within the com-

mand and then use the Backspace or Delete keys to remove characters from the command.

In addition to this basic command-editing capability, you can use any of the edit features

shown in Table 2.1 to take control of the command line and edit and execute commands.

TABLE 2.1 WINDOWS COMMAND CONSOLE EDIT COMMANDS

Edit Feature Result

Up Arrow Moves back one position in the command-line history buffer.

Down Arrow Moves forward one position in the command-line history buffer.

Page Up Moves to the first command stored in the command-tine history buffer.

Page Down Moves to the last command stored in the command-line history buffer.

Home Jumps the cursor to the beginning of the command Line.

End Jumps the cursor to the end of the command line.

Control+Left Moves the cursor to the left a word at a time.

Control+Right Moves the cursor to the right a word at a time.

The Windows command console maintains a list of commands that are executed

during the current working session. This list is referred to as the history buffer.

You can also view a listing of the commands stored in the Windows command

console’s history buffer by pressing the F7 key. In response, the Windows com-

mand console displays a window Like the one shown in Figure 2.15.

: Get—Process

Viewing and : Get-Help
i : Get-alias

executing : Get-Process winword
commands stored

in the Windows

command

console history

buffer.

Windows PowerShell Programming for the Absolute Beginner

Note that to the left of each command in the history buffer is a number. You can

execute any command in the list by typing its associated number and pressing

the Enter key. If the buffer contains more commands than can be displayed at

one time, you can use the up and down arrows to move up and down in the his-

tory buffer in order to locate the command you are looking for.

WINDOWS POWERSHELL EDIT ENHANCEMENTS

In addition to inheriting access to all the edit features provided by the Windows command

console, Windows PowerShell also provides you with access to a couple of PowerShell-

specific editing capabilities that you can use to work smarter and faster from the Windows

PowerShell command prompt.

Tab Completion
One powerful Windows PowerShell feature that merits explicit recognition is tab completion.

Tab completion allows you to type a part of acommand and then hit the Tab key to get assis-

tance in filling out the rest of the command. For example, if you type get- at the PowerShell

prompt and then press the Tab key, PowerShell responds by displaying the following:

Get-Acl

If this is the command you want, press Enter to accept this selection. Otherwise, press Tab

again to see the next available suggestion. If you continue to press Tab, PowerShell will con-

tinue to show you additional suggestions until it exhausts the available list, after which it

starts over again, letting you loop back through the list of suggestions. For example, if you

were to continue to press Tab in the current example, you would eventually see each of the

following suggestions.

Get-Alias

Get -AuthenticodeSignature

Get-ChildItem

Get - Command

Get -Content

Get-Credential

Get -Culture

Get-Date

Get-Eventlog

Get-ExecutionPolicy

Get-Help

Chapter 2 + Interacting with the Windows PowerShell Command Line

Get-History

Get-Host

Get-Item

Get -ItemProperty

Get-Location

Get -Member

Get-PfxCertificate

Get-Process

Get-PSDrive

Get-PSProvider

Get-PSSnapin

Get-Service

Get-TraceSource

Get-UICulture

Get-Unique

Get-Variable

Get-Wmi0bject

The obvious advantage of tab completion is that you do not have to remember all of a com-

mand to be able to key it in. You only have to remember enough to help PowerShell identify

the broad category and then start pressing Tab. Tab completion applies to more than just

helping you key in cmdlets; it can also assist you in filling in filenames based on the con-

tents of the current working directory, variable names, and property names. For example,

enter the following statements at the PowerShell command prompt and press Enter.

$x = "Once upon a time..."

This statement creates a variable named $x and assigns it a value consisting of a text string.

Next, type $x. and then press the Tab key. In response, PowerShell will display the first of a

series of possible matches based on the contents of the command being formulated. In this

example, PowerShell will display methods appropriate for working with a variable that con-

tains a text string. When a method is selected, it is appended to the end of your current com-

mand along with an opening left parenthesis, leaving it up to you to supply any additional

arguments and then the obligatory closing right parenthesis. For example, if you were to

keep pressing the Tab key until the ToLower(suggestion was displayed and then you pressed

the Enter key, you would end up with the following results.

$x. ToLower (

Windows PowerShell Programming for the Absolute Beginner

qrick
KS

The ToLower() method is used to convert all of the characters that make up a

string to all lowercase characters. To finish off the previous example, all you

would need to do is add the closing right parenthesis and then press Enter, as

demonstrated here: \

PS C:\> $x = "Once upon a time..."

PS C:\> $x.ToLower()

once upon a time...

BSaG 2

Alternatively, you could press the Enter key to select the ToLower(suggestion

and then type the closing right parenthesis and press the Enter key twice as

shown here.

PS C:\> $x = "Once upon a time..."

PS C:\> $x.ToLower(

Poe)

»>

once upon a time...

PS.C2\?

In this example, PowerShell did not execute the specified command when you

first pressed the Enter key because it knew the command was not complete.

Instead, it left you in Edit mode as indicated by the absence of the command
prompt and the presence of the >> characters on the left side of the screen.

When you supplied the required closing right parenthesis and then pressed the

Enter key, PowerShell remained in Edit mode, allowing you to add to the com-

mand if necessary. Pressing Enter a second time without entering any text

closed Edit mode and instructed PowerShell to execute your command.

The Get-History Cmdlet
You can also get your hands on entries stored in the history buffer using the Get-History

cmdlet. This cmdlet accesses history buffer commands and inserts them into the Windows

PowerShell pipeline, allowing to you programmatically access and manipulate them. For

example, using the Get-History cmdlet, you could display a list of commands stored in the

history buffer, as demonstrated here.

PS C:\MyScripts> Get-History

Id CommandLine

Chapter 2 « Interacting with the Windows PowerShell Command Line

1 Get-Process

2 Get-Alias

3 Get-Help

With this information now in your possession, you can execute any of the commands in the
history buffer using the Invoke-History cmdlet, which takes as an argument a number rep-
resenting the position of a command in the history buffer. For example, to execute the second

command listed in the previous example, you would enter the following command at the

PowerShell command prompt and press Enter.

Invoke-History 2

While this may seem like a lot of work just to find and re-execute a simple two-word cmdlet,

the real value of the Get-History and Invoke-History cmdlets comes into play when you find

yourself repeatedly executing a series of complex and lengthy commands. Not only will you

be able to work faster, but also, once you have your commands entered correctly, you can re-

execute them over and over again without making any typos.

NAVIGATING HIERARCHICAL DATA STORES

Traditional command shells are designed to interact with and navigate the computer’s file sys-

tem. The file system is a hierarchical data store made up of drives, folders, and files. In the

cmd.exe shell, the dir command is used to display the contents of the current working direc-

tory and the cd command is used to navigate the file system’s hierarchical structure. Similar

commands are available in Windows PowerShell (the Get -ChildItem and Set-Location cmdlets).

However, unlike traditional shells, Windows PowerShell does not limit itself to just the com-

puter’s file system. Instead, Windows PowerShell has the ability to access and navigate many

different hierarchical data stores, including:

e Alias commands

e Environment variables

¢ Windows PowerShell functions

¢ The Windows registry

¢ Variables

° Certificates

In order to facilitate the access of different hierarchical data stores, Windows PowerShell

implements a provider model that exposes different hierarchical data stores in a manner

that simulates a file system. As such, not only can you access these different data stores, but

you can do so using familiar commands (e.g., cd or Set-Location and dir or Get-ChildItem).

Windows PowerShell Programming for the Absolute Beginner

You can view a listing of all the providers supported by Windows PowerShell by executing

the Get-PSProvider cmdlet, as demonstrated here.

PS C:\MyScripts> Get-PSProvider

Name Capabilities Drives

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess (Ce Dea se easy

Function ShouldProcess {Function}

Registry ShouldProcess {HKLM, HKCU}

Variable ShouldProcess {Variable}

Certificate ShouldProcess {cert}

As this cmdlet shows, each provider is represented as a drive. Alternatively, you can use the

Get -PSDrive cmdlet to display a listing of available drives and the provider with which they

are associated, as demonstrated here.

PS C:\> Get-PSDrive

Name Provider Root CurrentLocation

A FileSystem A:\

Alias Alias

C FileSystem Coy

cert Certificate \

D FileSystem D<\

E FileSystem EsX

Env Environment

F FileSystem Fey

Function Function

G FileSystem G:\

H FileSystem H:\

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

I FileSystem Ts\

J FileSystem J:\

Variable Variable

Chapter 2 « Interacting with the Windows PowerShell Command Line

You can access any of the drives exposed by Windows PowerShell providers using the

Set-Location cmdlet. For example, to switch from the default C: drive to the logical Env

drive, you would type

PS C:\> cd Env:

PS Env:\>

The Env drive provides access to system environmental variables maintained wine
TP by the Windows operating system.

Once you have targeted a given drive, you can display its contents using the Get-ChildItem

cmdlet, just as if it were a physical disk drive, as demonstrated here.

PS G:\> cd Env:

PS Env:\> Get-ChildItem

Name Value

Path C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;C...

TEMP C:\DOCUME~1\0wner\LOCALS~1\Temp

SESSIONNAME Console

PATHEXT “COM: EXE:< BAT: CMD: .VBS: .VBEs Jot JSES.WOFs cm.

USERDOMAIN HP

PROCESSOR_ARCHITECTURE x86

SystemDrive Ge

APPDATA C:\Documents and Settings\Owner\Application Data

windir C:\WINDOWS

PCToolsDir C:\Documents and Settings\All Users\Start Men...

TMP C:\DOCUME~1\0wner\LOCALS~1\Temp

USERPROFILE C:\Documents and Settings\Owner

ProgramFiles C:\Program Files

FP_NO_HOST_CHECK NO

HOMEPATH \Documents and Settings\Owner

COMPUTERNAME HP

USERNAME Owner

NUMBER_OF_PROCESSORS 2

PROCESSOR_IDENTIFIER x86 Family 15 Model 2 Stepping 9, GenuinelIntel

SystemRoot C:\WINDOWS

ComSpec C:\WINDOWS\system32\cmd.exe

Windows PowerShell Programming for the Absolute Beginner

APPDATA

windir

PCToolsDir

TMP

USERPROFILE

ProgramFiles

FP_NO_HOST_CHECK

HOMEPATH

COMPUTERNAME

USERNAME

NUMBER_OF_PROCESSORS

PROCESSOR_IDENTIFIER

SystemRoot

ComSpec

LOGONSERVER

CommonProgramFiles

PROCESSOR_LEVEL

PROCESSOR_REVISION

ALLUSERSPROFILE

OS

HOMEDRIVE

PS Env:\>

C:\Documents and Settings\Owner\Application Data

C:\WINDOWS

C:\Documents and Settings\Al] Users\Start Men...

C:\DOCUME~1\0Owner\LOCALS~1\Temp

C:\Documents and Settings\Owner

C:\Program Files

NO

\Documents and Settings\Owner

HP

Owner

2

x86 Family 15 Model 2 Stepping 9, GenuineIntel

C:\WINDOWS

C:\WINDOWS\system32\cmd.exe

\\HP

C:\Program Files\Common Files

15

0209

C:\Documents and Settings\All Users

Windows_NT

C:

Because of the manner in which Windows PowerShell abstracts different hierarchical data

structures, you can access parts of the Windows registry just as easily as a physical disk drive

or the local Env drive. The Windows registry is organized into a series of high-level keys.

Windows PowerShell provides access to two of these keys, as outlined in Table 2.2.

TABLE 2.2 REGISTRY KEYS ACCESSIBLE

BY WINDOWS POWERSHELL

Registry Key Abbreviation

HKEY_LOCAL_MACHINE HKLM

Description

Stores information about system-configuration
settings that affect all users of the computer.

HKEY_CURRENT_USER HKCU Stores information about the currently logged
on user’s configuration settings.

Chapter 2 « Interacting with the Windows PowerShell Command Line Gr)

To access either of the two registry keys listed in Table 2.2, you must reference its abbrevi-

ated name, as demonstrated here.

PS.Gs\>ed HKCU

PS HKCU:\> Get-ChildItem

Hive: Microsoft.PowerShel].Core\Registry: :HKEY_CURRENT_USER

SKC VC Name

0

1

1

1

2

6

0

1

0

7

0

0

0

1

0

1

7

AppEvents

bfgt

Console

Control Panel

Environment

Identities

Network

Printers

RemoteAccess

S

Software

UNICODE Program Groups

VBGames

vivfile

Windows 3.1 Migration Status

SessionInformation

Volatile Environment

PS HKCU: \>

Property

{}

{status}

{LoadConIme}

{Opened}

{TEMP, TMP}

{Identity Ordinal, Migrated5, Last Us...

{}

{Device0ld}

{}

{AutodiscoveryFlags, DetectedInterfac...

{}

{}

{}

{(default)}

{}

{ProgramCount }

{LOGONSERVER, CLIENTNAME, SESSIONNAME...

In this example the HKEY_CURRENT_USER key has been accessed and displayed.

You will learn how to programmatically interact with the Windows registry

including how to store and retrieve data, in Chapter 9, “Basic System wint

tp Administration.”

(52) Windows PowerShell Programming for the Absolute Beginner

BACK TO THE STORY OF THE THREE AMIGOS

Okay, it is time to turn your attention back to the chapter’s main game project, The Story of

the Three Amigos. The development of this is game will demonstrate how to create a script

that can interact with the player by displaying messages, retrieving command-line input,

and applying simple programming logic to control the operation of the script.

Going forward, | plan to develop a script template file that will be used as

the basis for all new Windows PowerShell scripts. You will find a copy of this

script template, named PSTemplate.ps!, on the book’s companion website

(www.courseptr.com/downloads). The purpose of this script template is to

provide additional documentation for each new script file. For now, this tem-

plate, shown below, will provide a place to document the script’s name, version,

author, date, and description. Later, I’Ll modify the template again when cover-

ing functions in Chapter 7, “Organizing Scripts Using Functions.”

i KKKKKKKEKKEKK KK EREKKKERER ERR EKER EKER EERE RER ERK RRR ERK ER EKER EKRERERKEKEKE

Script Name:

Version:

Author:

Date:

Description:

FI KKKKKKKKKK KKK KKK KKK KKK KREKK KKK KKK KKK KKK KEK KE KK EKER EAR EERE

Note that this template consists of a series of comment lines. Comments are
text embedded within script files that helps to document the scripts, but which
is otherwise ignored when the script is executed. In Windows PowerShell, the #
character serves as a comment indicator. Anything that follows a # character in
a script is considered a comment. Comments can be placed on their own Line or
placed at the end of a script statement.

Before writing the first line of code, it is important to spend a little time planning out the
script’s overall design. The Story of the Three Amigos will begin by displaying a title page.
Next, the user is informed that her participation is required to tell the story, after which
four questions are presented. Each answer that is provided must be saved. The text that
makes up the story must then be laid out. In addition, the variables containing the user’s

Chapter 2 « Interacting with the Windows PowerShell Command Line (53)

answers must be strategically placed at specific locations within the story text. Lastly, closing

credits and copyright information should be displayed.

As you can see, the overall logical flow of The Story of the Three Amigos is fairly simple. To

set it up, you will complete its development in eight steps.

1. Create a new script file using the PowerShell template and add opening statements.

Declare variables used throughout the script file.

Display the introduction screen. ©

Display game instructions.

Collect first player input.

Collect additional player input.

Display the opening portion of the story.

© ND A WN Display the rest of the story.

Creating a New Script
The first step in creating The Story of the Three Amigos is to open the PowerShell template

file and save it as a new file named ThreeAmigos.ps1. Next, modify the comment statements

at the top of the script file, as shown here.

| KKK KKK IK KKK KKK KKK KKK KEK EKER ERK EK KKK KERR KEKE KERR ARERR KKK KKK KKKERKKEERERER

Script Name: ThreeAmigos.ps1 (The Story of the Three Amigos)

Version: 130

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script is a mad-lib styled game that tells

a humorous story using input provided by the player.

4 KIKI KKK KIKI KIKI KEK IEK IKKE KIK IRIE KAR AK ERIK ERR ER EKER EKER ER ERE EK RRERER

Next, let’s add the script’s first statement.

##Clear the Windows command console screen

Clear-Host

As you can see, the script begins by executing the Clear-Host cmdlet to clear the display area

of the Windows command console. To make things perfectly clear, I have added a comment

just above the Clear-Host command, explaining what the command will do when executed.

Windows PowerShell Programming for the Absolute Beginner

Declaring Script Variables
The next step in the development of The Story of the Three Amigos is to declare all of the

variables that will be used to store the input provided by the user when responding to each

of the game’s four questions. This is accomplished by appending the following statements

to the end of your PowerShell script file.

#Define the variables used in this script to collect player input

$animal = "" #Stores the name of an animal supplied by the player

$vehicle = """ #Stores the name of a vehicle supplied by the player

$store = "" #Stores the name of a store supplied by the player

$dessert = "" #Stores the name of a dessert supplied by the player

Note that I have assigned descriptive names to each variable that help to provide an indica-

tion of the type of data that they will store.

Displaying the Introduction
The next step in assembling your new Windows PowerShell script is to append the follow-

ing statements to the end of the script file.

#Display the game's opening screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " bo Pees Pe ee

Write-Host

Write-Host

Write-Host

Write-Host " Qik oe Lathe Cece de Hoe. Fee Nee ee
Write-Host

Write-Host

Write-Host

Write-Host " By Jerry Lee Ford, Jr."

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Chapter 2 « Interacting with the Windows PowerShell Command Line (55)

Write-Host " Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these statements consist of a number of Write-Host cmdlet statements that

display the story’s opening screen. Note the placement of the Read-Host cmdlet. When exe-

cuted, it will pause the script and wait until the user presses the Enter key.

Providing Player Instructions
Now let’s add the statements that provide the user with instructions for interacting with

the story by appending the following statements to the end of the script file.

d#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

"This is an interactive mad-lib styled story. Before it can be"

"told, you must answer a few questions."

Windows PowerShell Programming for the Absolute Beginner

Write-Host

Write-Host

Write-Host =

Write-Host

Write-Host

Write-Host " Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these first statements will clear the Windows command console screen.

Then a series of Write-Host cmdlets are executed in order to display the text containing the

game’s instruction. Lastly, the Read-Host cmdlet pauses the script to give the user a chance

to read the instructions before continuing.

Prompting the Player for Input
Now it is time to start collecting user input. The code statements required to display the

story’s first question and store the user’s answer is shown next and should be appended to

the end of the script file.

#Ask the player the first question

while ($animal -eq ""){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$animal = read-host " Enter the name of a scary animal "

}

Here, a while loop has been set up to control interaction with the user. Its main purpose is
to prevent the user from simply pressing the Enter key without first typing in something.
The user’s answer is assigned to a variable named $animal.

Chapter 2 « Interacting with the Windows PowerShell Command Line (57)

pint Don’t worry just yet about the workings of variables and while loops. These are

covered in detail in Chapter 4, “Working with Variables, Arrays, and Hashes,” and
Chapter 5, “Implementing Conditional Logic.’

Collecting Additional Inputs
Next, add the following code statements to the end of the script file. The statements are

responsible for collecting the rest of the input required to tell the story.

#Ask the player the second question

while ($vehicle -eq ""){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$vehicle = read-host " Enter the name of a transportation vehicle

}

#Ask the player the third question

while ($store -eq ""){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$store = read-host " Enter the name of your favorite store

Windows PowerShell Programming for the Absolute Beginner —

#Ask the player the fourth question

while ($dessert -eq ""){

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

$dessert = read-host " Enter the name of your favorite dessert "

}

As you can see, these statements are organized into three while loops, each of which is little

more than a simple variation of the code statements used to prompt the user to provide an

answer to the story’s first question.

Displaying the Story’s Opening
Now that the input needed to tell the story has been collected, it is time to begin displaying

the text that makes up the story. For starters, add the following statements to the end of the

script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Once upon a time there were three very special children"

Write-Host " named Alexander, William, and Molly. Alexander was the oldest”

Write-Host " and was known to be brave and strong. Molly, the youngest,"

Write-Host " was just five years old, yet she possessed an extraordinary”

Write-Host " sense of awareness that even the wisest sage would"

Write-Host " admire and respect. William, the middle child, was both brave"

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Chapter 2 « Interacting with the Windows PowerShell Command Line

and wise many times beyond his years. They lived together at"

the top of a hill, just outside the outskirts of town, where"

they faithfully watched over the townsfolk. Always together"

and always looking out for each other and the people in the"

town, they were known by everyone as The Three Amigos."

Write-Host " Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

These statements clear the screen, display some story text, and then pause script execution

until the user presses the Enter Key.

Displaying the Rest of the Story
The code statements that display the remainder of the story are shown next and should be

appended to the end of the script file.

##Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

One day, which started out no different than any other day, a"

great roar was heard from the center of the town. Women and"

small children could be seen screaming and running in panic."

The Three Amigos climbed to the top of their watch tower and"

began scanning the town streets for the source of the noise"

Windows PowerShell Programming for the Absolute Beginner —

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

and panic. Alexander was the first to find the problem,”

spotting a gigantic $animal moving quickly towards the"

mayor's office. Just ahead of the $animal ‘stood the town's"

men, attempting to make a desperate stand."

"Hurry, we must go!*" shouted Molly. "The town needs The"

Three Amigos!" In an instant Alexander, William, and Molly"

jumped into an old $vehicle, scarred and worn by years"

of faithful service, and hurriedly raced into town."

Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-host

Write-Host

Write-host

Write-Host

Within minutes The Three Amigos found themselves standing in"

the center of Main street. The town was quiet and seemed"

almost deserted except for the old $store, where the citizens"
had retreated once their last stand had failed. The $animal"
was standing in front of the $store, preparing to"

break in and kill the good citizens of the town."

“"What do we do?*" said Alexander. William looked around and"
saw a pile of $dessert stacked up against the town"

barbershop's storefront. "Follow me," yelled William,"

heading straight for the pile of $dessert. Alexander"

and Molly instantly knew what to do, each grabbing a $dessert"”
and hurling pieces of $dessert at the $animal. Unable to"

Write-Host

Write-Host

Write-host

Write-Host

Write-Host

Write-Host

Chapter 2 « Interacting with the Windows PowerShell Command Line

deal with the power of the attack launched by The Three”

Amigos, the $animal fled the town, never to be seen or heard”

of again.”

Press Enter to continue."

#Pause script execution and wait for’the player to press the Enter key

Read-Host

##Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host,

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

" The townsfolk ran out of the $store and began cheering for"

" their heroes. Once again The Three Amigos has saved the day.

en ee oo ee ND

Write-Host " Press Enter to continue."

Windows PowerShell Programming for the Absolute Beginner |

#Pause script execution and wait for the player to press the Enter key

Read-Host 7

#Clear the Windows command console screen

Clear-Host

Take note of the variable names that are embedded inside the Write-Host statements that

displayed the story text. When executed, each of these variables will automatically be

replaced with the text string input provided by the user earlier in the script file. To help

make the locations of these variables stand out, I have made them bold.

SUMMARY
This chapter has covered a number of different PowerShell topics designed to help you

develop a solid understanding of how to interact with the PowerShell command line. You

learned how to configure the Windows command console in order to customize your work-

ing environment. You learned how to configure the Window command shell to automati-

cally use your Windows PowerShell script folder as your default working directory. You also

learned how to work with tab completion and to use Windows PowerShell to navigate and

access different types of system resources, including the Windows registry and environment

variables.

Now, before you move on to Chapter 3, “Object-Based Scripting with .NET,” I suggest you set

aside a few extra minutes to work on and improve The Story of the Three Amigos by imple-

menting the following challenges.

CHALLENGES

!. For starters, consider prompting the user to provide additional inputs and use

her answers to further increase the unpredictability of the story.

2. Consider rewriting the story’s ending to make it more exciting or to give it an
unexpected and humorous twist.

3. Lastly, don’t forget to modify the author credits by using your own name.
In addition, you might want to add some additional information such as your
website’s URL or your e-mail address.

OBJECT-BASED

SCRIPTING WITH .NET

indows PowerShell is tightly integrated with Microsoft’s NET Framework,

which provides much of the supporting environment required to develop

Windows applications and scripts. In this chapter you will learn how

Windows PowerShell leverages .NET resources. You learn about the .NET class

library and common language runtime. You will learn how to execute cmdlets

and to use cmdlets to access object properties and methods. You will also review

cmdlet aliases and learn how to create your own custom aliases. On top of all

this, you will learn how to programmatically customize the Windows PowerShell

and to develop the PowerShell Fortune Teller game.

Specifically, you will learn:

¢ How to create a profile.ps1 script file and use it to customize Windows

PowerShell

* More background information regarding Windows PowerShell’s integration

with .NET

¢ How to use object pipelines to pass structured data between cmdlets

e How to create custom aliases

Windows PowerShell Programming for the Absolute Beginner |

PROJECT PREVIEW: THE POWERSHELL FORTUNE TELLER GAME
This chapter’s game project is the PowerShell Fortune Teller game. This game simulates a

session with a virtual fortune teller who listens to player questions and then provides

answers. The answers provided vary based on the fortune teller’s mood, which changes

based on the time of day that questions are asked. All questions are expected to be posed in

such a way that Yes/No styled answers can be applied.

When first started, the game displays the welcome screen shown in Figure 3.1.

Windows PowerShell

WELCOME TO THE WINDOWS

POWERSHELL FORTUNE TELLER

By Jerry Lee Ford. Jr.

The PowerShell

Fortune Teller

game's welcome i Press Enter to continue.

screen.

Pressing Enter dismisses the welcome screen. Next, instructions are displayed that provide the
player with guidance regarding the proper way to formulate questions, as shown in Figure 3.2.

Windows PowerShell

| The fortune teller is a very busy and impatient mystic. Make

your questions brief and simple and only expect to receive

| Yes / No styled answers.

Players are given

guidance on how
to formulate Press Enter to continue.

questions.

Next, the player is prompted to ask her question, as shown in Figure 3.3.

Chapter 3 + Object-Based Scripting with .NET

Players are

expected to ask

questions that

can be addressed

with Yes/No

styled answers.

In response, the game randomly selects 1 of 8 possible answers and displays it, as demon-

strated in Figure 3.4.

* Windows PowerShell

What is your question? : Will I be rich?

| Grrrr. The answer is nof

The fortune teller

responds with a

variety of Press Enter to continue.

answers. b

The player is then prompted to either press Enter to ask the fortune teller another question

or type Q to end the game, as shown in Figure 3.5.

Press Enter to ask another question or type Q@ to quit.:

Players may ask

the fortune teller

as many

questions as

they wish.

Windows PowerShell Programming for the Absolute Beginner

The game ends by displaying a message suggesting that the player return and play again, as

shown in Figure 3.6.
isc

| & Windows PowerShell

Very well then. Please return again to get all your questions
answered.

The game ends

after inviting the
player to return

and ask more Press Enter to continue.

questions.

ONE LAST POWERSHELL CUSTOMIZATION TECHNIQUE

Before we jump deep into a review of the .NET Framework and how Windows Powershell

uses cmdlets to access .NET resources, let’s spend a few more minutes taking a look at one

additional way in which you can customize Windows PowerShell. Only this time, instead of

focusing on manual configuration, we’ll look at how to programmatically script PowerShell

configuration.

As you learned in Chapter 2, “Interacting with the Windows PowerShell Command Line,”

you can customize your Windows PowerShell working environment by making changes to a

PowerShell shortcut in order to redirect it to a default working directory of your choice.

Chapter 2 also showed you how to manually configure PowerShell attributes affecting cur-

sor size, command history, font type and size, console size, as well as its color scheme.

In addition to manually configuring the Windows command console using the Windows

PowerShell Properties window, you can also programmatically configure your PowerShell

environment. To do so, you create a PowerShell script file named profile.ps1 and store it in

one of the following folders.

¢ C:\Windows \System32\WindowsPowerShell\v1.0

¢ C:\Documents and Settings\UserName\My Documents\WindowsPowerShell

If you create a profile.ps1 script and store it in the first folder listed above (C:\Windows\
system32\WindowsPowerShell\v1.0), it will automatically be run for every user of the

Chapter 3 + Object-Based Scripting with .NET

computer each time a new Windows Powershell session is started. If you create and store a

profile.ps1 script in an individual user’s My Documents\WindowsPowerShell folder, the

PowerShell script will execute each time that user starts a new Windows PowerShell session

but will not execute for other users.

By developing a profile.ps1 script, computer administrators can manage large numbers of

computers by remotely deploying the script file to any number of computers, thus elimi-

nating the need to visit and configure individual computers. For example, you might create

a PowerShell script file similar to the following example and then distribute it to the

C:\Windows \system32\WindowsPowerShell\v1.0 folder on all corporate computers to help

ensure awareness of corporate computer policy.

F] KKK KKK KEK KKK KEKE KERR ERR EKER KR EKER KERR EEK EKER KKK KEKE KEKKEKREKRRRKRERKERKKRKEKE

Script Name: Profile.psl (PowerShell Profile configuration Scripts)

Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script contains commands that customize

the Windows PowerShell execution environment.

i KKK KK KKK KKK KKK KEKE KR EERE KK ERK REE REE KK RE KK KR RE KRER EKER KEKE RK RKERKEKRERERKERERE

#Create a custom alias command

Set-Alias ds Write-Host

#Clear the Windows command console screen

Clear-Host

#Display custom greeting

ds

ds "This computer and network are private. By using this computer you agree"

ds "to all terms outlined in the company's security policy. Failure to comply"

ds "with these policies may result in criminal prosecution."

ds

Windows PowerShell Programming for the Absolute Beginner —

When executed, this script creates a custom alias named ds, which creates a shortcut to the

Write-Host cmdlet. You will learn more about aliases and how to create them later in this

chapter. Next, the screen is cleared and then, using the newly created alias, a message is dis-

played regarding the company’s security policy. Figure 3.7 demonstrates what the user will

see each time a new Windows PowerShell session is started.

| X Windows PowerShell

his computer and network are private. By using this computer you agre
o all terms outlined in the company’s security policy. Failure to comply
ith these policies may result in criminal prosecution.

PS C:\MyScripts>

Ensuring user

awareness of

security policy

at Windows

PowerShell

startup.

THE MicrosorT .NET FRAMEWORK

The .NET Framework is a core component of modern Windows PowerShell scripting. Version

2 of the .NET Framework is a requirement for PowerShell script execution. It is therefore

important that PowerShell programmers have a solid understanding of the .NET Frame-

work’s major components and the services it provides. For starters, NET is a Microsoft

framework designed to support desktop, network, and Internet-based applications and

scripts. .NET also supports the development of mobile applications for devices such as PDAs.

A framework is a collection of resources that facilitates the development of

scripts and programs. The purpose of a framework is to alleviate much of the

complexity involved in developing new programs and scripts by providing pro-

grammers access to a predefined collection of services and resources, allowing
programmers to instead focus on the higher Level logic required to solve a spe-
cific problem.

The .NET Framework is designed to support the development of applications and scripts in

conjunction with any .NET-compliant application or script-development programming

language. In fact, Microsoft has generated an entire suite of application-programming lan-

guages built around the .NET Framework. These languages include Visual Basic, C++, C#,
and J#. Microsoft is promoting the .NET Framework as a key component in all its new

Chapter 3 + Object-Based Scripting with .NET

programming languages. It should be no surprise, therefore that Microsoft decided to

integrate support for .NET Framework into Windows PowerShell, giving it and its scripting

language instant access to a enormous range of resources and commands.

Key .NET Framework Components
The .NET Framework acts as an interface between Windows PowerShell and the operating

system. .NET is responsible for translating script code into a format that can be executed on

your computer. Figure 3.8 shows the role the .NET Framework plays in supporting applica-

tion and script development.

Visual Studio Languages
Visual Basic, C++, Ci, Jt | |

{

The .NET :

Framework oe COG ee

Windows is — a ee

PowerShell no - a

scripts with J

access to system

resources and

commands for

accessing those

resources.

The .NET Framework consists of two key components, as outlined here.

¢ .NET Framework class library

¢ CLR (common language runtime)

Don’t be too worried if there are elements in Figure 3.8 that you don’t understand. I will

cover each in detail in the sections that follow.

The .NET Class Library
Traditional command shells have a very limited recognition of data, typically recognizing

only strings and numbers. However, Windows PowerShell enforces the use of tightly struc-

tured data. As a result, Windows PowerShell can work with many different types of data

including, strings, dates, integers, floating-point numbers, Boolean data, and so on.

Windows PowerShell Programming for the Absolute Beginner

Structured data is also a key feature of the .NET Framework. With .NET, structured data is

grouped into different collections to define complex structured classes. Classes are then used

as a template for creating objects, which represent things that Windows PowerShell can

access and manipulate. An object is a self-contained resource that contains information

about itself as well as the code required to access and manipulate it. For example, a file,

folder, and disk drive are all treated as objects by Windows PowerShell.

Objects have certain attributes or properties that define a particular characteristic of the

object. For example, folders have names. Objects also provide access to predefined collec-

tions of code, referred to as methods, which can be executed in order to interact with and

control the object. For example, a file object provides access to methods that can be used to

perform all sorts of actions on the file, including opening, closing, and deleting it.

The Common Language Runtime
The common language runtime or CLR is responsible for converting Windows PowerShell

scripts into an executable format that your computer can understand and run. The CLR also

provides Windows PowerShell with other services, including:

¢ Compiling

e Security

¢ Memory Management

¢ Exception Handling

Accessing .NET Framework Resources
Windows PowerShell provides access to .NET Framework resources through cmdlets.
Cmdlets provide access to .NET resources while at the same time hiding much of the com-
plexity involved. As a PowerShell programmer, you do not have to worry about specific .NET
classes or their properties and methods. All that you have to do is know which cmdlets to
use in order to get at the type of resources required by your scripts. To see what I mean, con-
sider the following series of examples.

In this first example, let’s execute the Get-ChildItem cmdlet. The Get-ChildItem cmdlet
retrieves a listing of objects representing each file and subfolder stored in the current work-
ing directory. The .NET Framework stores a lot of information, or properties, about file
objects. However, by default, Windows PowerShell only displays a few of these properties, as
demonstrated here.

PS C:\MyScripts> Get-ChildItem

Chapter 3 +¢ Object-Based Scripting with .NET (7)

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\MyScripts

Mode LastWriteTime Length Name

-a>~ 9/24/2006 4:31 PM 3416 FortuneTeller.psl

a= 9/10/2006 1:42 PM 1077 KnockKnock.ps1

ayers 9/25/2006 1:28 PM 832 profile.psl

= ote 9/23/2006 5:22 PM . 7598 ThreeAmigos.ps1l

=a7= 9/9/2006 2:10 PM 130 UserInput.ps1

PS C:\MyScripts>

Here, the Mode, LastWriteTime, Length, and Name properties for each file object are displayed.

Next, let’s focus on a specific file, as shown here.

PS C:\MyScripts> Get-ChildItem profile.psl

Directory: Microsoft.PowerShell].Core\FileSystem: :C:\MyScripts

Mode LastWriteTime Length Name

CT lee 9725/2006 | lie28 PM 832 profile.psl

PS C:\MyScripts>

In this example, profile.psl was passed as an argument to the Get-ChildItem cmdlet. As a

result, only property information for that file object is played. Now that we are focused on

the properties for a specific object, let’s poke a little deeper and see what other types of

property information .NET keeps for this object. The following example takes the output

generated by the Get -ChildItem cmdlet and passes it to the Get-Member cmdlet. The Get -Member

cmdlet is then passed an argument named -MemberType. This argument can take on differ-

ent values. In this example, a value of Property is specified. The end result is the display of

properties that the .NET Framework has for this particular file.

pint Remember that Windows PowerShell views most everything as an object and

TP objects have attributes that describe features of the object. The attributes are
commonly referred to as object properties. As the preceding example demon-

strated, most cmdlets allow you to pass data for processing in the form of argu-

ments. In addition, most cmdlets return object data as command output. In the

next example, the object data output generated by the Get -ChildItem cmdlet is

passed as an argument to the Get -Member cmdlet for further processing.

(72) Windows PowerShell Programming for the Absolute Beginner

PS C:\MyScripts> Get-ChildItem profile.ps1 | Get-Member -MemberType Property

TypeName: System.10.FileInfo

Name MemberType Definition

Attributes Property System.10.FileAttributes Attributes {get;set;}

CreationTime Property System.DateTime CreationTime {get;set;}

CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}

Directory Property System.10.DirectoryInfo Directory {get;}

DirectoryName Property System.String DirectoryName {get;}

Exists Property System.Boolean Exists {get;}

Extension Property System.String Extension {get;}

FullName Property System.String FullName {get;}

IsReadOnly Property System.Boolean IsReadOnly {get;set;}

LastAccessTime Property System.DateTime LastAccessTime {get;set;}

LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}

LastWriteTime Property System.DateTime LastWriteTime {get;set;}

LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}

Length Property System. Int64 Length {get;}

Name Property System.String Name {get;}

PS C:\MyScripts>

As you can see, the .NET Framework stores a lot of properties that are not automatically dis-

played by the Get-Childitem cmdlet. However, this information is readily available to you, as

the next example demonstrates.

PS C:\MyScripts> Get-ChildItem profile.psl | Select-Object name,extension,

directory

Name Extension Directory

profile.psl psi C:\MyScripts

PS C:\MyScripts>

In this example, the Get-ChildItem cmdlet is once again used to retrieve information about
the profile.pls file. However, this time the Select-Object cmdlet is used to retrieve and dis-
play different object properties, specifically the Name, Extension, and Directory properties.

Chapter 3 « Object-Based Scripting with .NET (73)

Note that these names of the specific properties to be retrieved were passed as a comma-

separated list of arguments.

The Select-Object cmdlet provides the ability to determine which objects being
passed through the pipeline are kept or discarded. In the previous example,

all objects returned by the Get-ChildItem cmdlet are discarded except for

profile.psl.

In short, unlike traditional command shells, which pass only a limited amount of data back

in a simple text format, Windows PowerShell cmdlets provide you with direct access to all

kinds of behind-the-scenes object information.

As previously stated, NET Framework classes define all of the properties and methods asso-

ciated with each object associated with a particular class. As such, you can also retrieve a

listing of all the methods associated with a given object, as demonstrated next.

PS C:\MyScripts> Get-ChildItem profile.ps1 | Get-Member -MemberType Method

TypeName: System.10.FileInfo

Name MemberType Definition

AppendText Method System.10.StreamWriter AppendText()

CopyTo Method System.10.FileInfo CopyTo(String destFi...

Create Method System.10.FileStream Create()

CreateObjRef Method System.Runtime.Remoting.ObjRef CreateOb...

CreateText Method System.10.StreamWriter CreateText()

Decrypt Method System.Void Decrypt()

Delete Method System.Void Delete()

Encrypt Method System.Void Encrypt()

Equals Method System.Boolean Equals(Object obj)

get_Attributes Method System.10.FileAttributes get_Attributes()

get_CreationTime Method System.DateTime get_CreationTime()

get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc()

get_Directory Method System.10.DirectoryInfo get_Directory()

get_DirectoryName Method System.String get_DirectoryName()

get_Exists Method System.Boolean get_Exists()

get_Extension Method System.String get_Extension()

get_Ful1Name Method System.String get_Ful1Name()

get_IsReadOnly Method System.Boolean get_IsReadOnly()

get_LastAccessTime Method System.DateTime get_LastAccessTime()

Windows PowerShell Programming for the Absolute Beginner

get_LastAccessTimeUtc

get_LastWriteTime

get_LastWriteTimeUtc

get_Length

get_Name

GetAccessControl

GetHashCode

GetLifetimeService

GetObjectData

GetType

InitializeLifetimeService

MoveTo

Open

OpenRead

OpenText

OpenWrite

Refresh

Replace

set_Attributes

set_CreationTime

set_CreationTimeUtc

set_IsReadOnly

set_LastAccessTime

GetLifetimeService

GetObjectData

GetType

InitializeLifetimeService

MoveTo

Open

OpenRead

OpenText

OpenWrite

Refresh

Replace

set_Attributes

set_CreationTime

set_CreationTimeUtc

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

.Void Refresh()

System.

System.

System.

System.

System.

System.

Object GetLifetimeService()

System.

System.

System.

System.

System

System

System

System

DateTime get_LastAccessTimeUtc()

DateTime get_LastWriteTime()

DateTime get_LastWriteTimeUtc()

Int64 get_Length()

String get_Name()

Security.AccessControl.FileSecur...

Int32 GetHashCode()

Object GetLifetimeService()

Void GetObjectData(Serialization...

Type GetType()

Object InitializeLifetimeService()

Void MoveTo(String destFileName)

10.FileStream Open(FileMode mode...

10.FileStream OpenRead()

I10.StreamReader OpenText()

10.FileStream OpenWrite()

I0.FileInfo Replace(String desti...

Void set_Attributes(FileAttribut...

Void set_CreationTime(DateTime v..

Void set_CreationTimeUtc(DateTim...

Void set_IsReadOnly(Boolean value)

Void set_LastAccessTime(DateTime...

Void GetObjectData(Serialization...

Type GetType()

Object InitializeLifetimeService()

Void MoveTo(String destFileName)

.10.FileStream Open(FileMode mode...

System.

System.

System.

System.

System.

.Void set_Attributes(FileAttribut...

System.

System.

I0.FileStream OpenRead()

I0.StreamReader OpenText()

I0.FileStream OpenWrite()

Void Refresh()

I0.FileInfo Replace(String desti...

Void set_CreationTime(DateTime v...

Void set_CreationTimeUtc(DateTim...

Chapter 3 + Object-Based Scripting with .NET (75)

set_IsReadOnly Method System.Void set_IsReadOnly(Boolean value)

set_LastAccessTime Method System.Void set_LastAccessTime(DateTime...

set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateT...

set_LastWriteTime Method System.Void set_LastWriteTime(DateTime ...

set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTi...

SetAccessControl Method System.Void SetAccessControl(FileSecuri...

ToString Method System.String ToString()

PS C:\MyScripts>

As you can see, in this example the value passed as the -MemberType argument to the Select -

Object cmdlet was changed from property to Method.

If all this talk about the .Net Framework, classes, objects, properties, and methods seems

confusing or overwhelming, don’t be alarmed. It takes times to fully understand and com-

prehend all this new technology. However, the good news is that as a Windows PowerShell

programmer, you needn’t be directly focused on .NET. Instead, all you have to do is become

comfortable with working with cmdlets and let the .NET Framework worry about all the

underlying complexities.

You can learn more about the .NET Framework by visiting HINT,
5 www.microsoft.com/net.

EXECUTING CMDLETS
Cmdlets are key Windows PowerShell resources that provide access to .NET Framework

resources. In total, there are over 100 cmdlets. Windows PowerShell cmdlets provide access

to a host of commands, each of which is designed to perform a singular task. Individually,

cmdlets provide access to specific resources and commands. However, the real power pro-

vided by cmdlets comes when they are used together as building blocks to formulate com-

plex tasks.

You will learn more about how Windows PowerShell lets you combine cmdlets into complex

statements in the next section. However, in order to work with the Windows PowerShell and

to write PowerShell scripts, it helps to know a little something about each of the cmdlets

that PowerShell makes available to you. To help you out, I have provided a complete list of

PowerShell cmdlets in Table 3.1, along with a brief explanation of what each cmdlet does.

Windows PowerShell Programming for the Absolute Beginner

WINDOWS POWERSHELL CMDLETS TABLE 3.1

Cmdlet

Add-Content

Add-History

Add-Member

Add-PSSnapIn

Clear-Content

Clear-Item

Clear-ItemProperty

Clear-Variable

Compare-Object

ConvertFrom-SecureString

Convert-Path

ConvertTo-Html

ConvertTo-SecureString

Copy-Item

Copy-ItemProperty

Export-Alias

Export-Clixml

Export-Console

Export-CSV

ForEach-Object

Format-Custom

Format-List

Format-Table

Format-Wide

Get-ACL

Get-Alias

Description

Adds to the content(s) of the specified item(s).

Adds entries to the session history.

Adds a user-defined custom member to an object.

Adds one or more PSSnapIn(s) (containing additional collections of
providers or cmdlets) to the current Ps console.

Removes the content from an item or file while leaving the file intact.

Sets the item(s) at the specified location to the "clear" value
specified by the provider.

Removes the property value from a property.

Removes the value from a variable.

Compares the properties of objects.

Exports a secure string to a safe, persistent format.

Converts the path of the item given from a Ps path to a provider path.

Converts the input to an HTML table.

Creates a secure string from a normal string created by Export-
SecureString.

Calls a provider to copy an item from one Location to another within
a namespace.

Copies a property between locations or namespaces.

Exports an alias List to a file.

Produces a clixml representation of a Ps object or objects.

Exports the changes made to the current console. This action
overwrites any existing console file.

Exports CSV strings from input.

Applies script blocks to each object in the pipeline.

Formats output display as defined in additions to the formatter file.

Formats objects as a list of their properties displayed vertically.

Formats the output as a table.

Formats objects as a table of their properties.

Gets the access control list (ACL) associated with a file or object.

Returns alias names for cmdlets.

Chapter 3 ¢ Object-Based Scripting with .NET (77)

TABLE 3.1 WINDOWS POWERSHELL CMDLETS (conTiNuUED)

Cmdlet

Get-AuthenticodeSignature

Get-ChildItem

Get-Command

Get-Content

Get-Credential

Get-Culture

Get-Date

Get-EventLog

Get-ExecutionPolicy

Get-Help

Get-History

Get -Host

Get-Item

Get-ItemProperty

Get-Location

Get-Member

Get-PfxCertificate

Get-Process

Get-PSDrive

Get-PSProvider

Get-PSSnapIn

Get-Service

Get-TraceSource

Get-UICulture

Get-Unique

Get-Variable

Get -Wmi Object

Description

Gets the signature object associated with a file.

Retrieves the child items of the specified Location(s) in a drive.

Retrieves basic information about a command.

Gets the content from the item at the specified location.

Gets a credential object based on a password.

Gets the culture information.

Gets the current date and time.

Gets event log data for the machine.

Gets the effective execution policy for the current shell.

Opens the help files.

Gets a listing of the session history.

Gets host information.

Returns an object that represents an item in a namespace.

Retrieves the properties of an object.

Displays the current location.

Enumerates the properties, methods, typeinfo, and property sets of
the objects given to it

Gets the PFX certificate information.

Gets a list of processes on a machine.

Gets the drive information (Drivelnfo) for the specified Ps drive.

Gets information for the specified provider.

Lists registered PSSnaplns.

Gets a list of services.

Lists properties for given trace sources.

Gets the UI culture information.

Gets the unique items in a sorted List.

Gets a Ps variable.

Produces a WMI object or the list of WMI classes available on the

system.

Windows PowerShell Programming for the Absolute Beginner

TABLE 3.1 WINDOWS POWERSHELL CMDLETS (contTiNueED)

Cmdlet

Group-Object

Import-Alias

Import-Clixml

Import-CSV

Invoke-Expression

Invoke-History

Invoke-Item

Join-Path

Measure-Command

Measure-Object

Move-Item

Move-ItemProperty

New-Alias

New-Item

New-ItemProperty

New-Object

New-PSDrive

New-Service

New-TimeSpan

New-Variable

Out-Default

Out-File

Out-Host

Out-Nul]

Out-Printer

Out-String

Pop-Location

Push-Location

Description

Groups the objects that contain the same values for a common property.

Imports an alias list from a file.

Imports a clixml file and rebuilds the Ps object.

Takes values from a CSV List and sends objects down the pipeline.

Executes a-string as an expression.

Invokes a previously executed command.

Invokes an executable or opens a file.

Combines path elements into a single path.

Tracks the running time for script blocks and cmdlets.

Measures various aspects of objects or their properties.

Moves an item from one location to another.

Moves a property from one location to another.

Creates a new cmdlet-alias pairing.

Creates a new item in a namespace.

Sets a new property of an item ata location.

Creates a new .NET object.

Installs a new drive on the computer.

Creates a new service.

Creates a timespan object.

Creates a new variable.

Sends output to the default formatter.

Sends command output to a file.

Sends the pipelined output to the host.

Sends output to a null.

Sends the output to a printer.

Sends output to the pipeline as strings.

Changes the current working location to the location specified by the
last entry pushed onto the stack.

Pushes a location to the stack.

TABLE 3.1

Cmdlet

Read-Host

Remove-Item

Remove-ItemProperty

Remove-PSDrive

Remove-PSSnapIn

Remove-Variable

Rename-Item

Rename-ItemProperty

Resolve-Path

Restart-Service

Resume-Service

Select-Object

Select-String

Set-ACL

Set-Alias

Set-AuthenticodeSignature

Set-Content

Set-Date

Set-ExecutionPolicy

Set-Item

Set-ItemProperty

Set-Location

Set -PSDebug

Set-Service

Set-TraceSource

Set-Variable

Chapter 3 ¢ Object-Based Scripting with .NET

WINDOWS POWERSHELL CMDLETS (conTINUED)

Description

Reads a line of input from the host console.

Calls a provider to remove an item.

Removes a property and its value from the Location.

Removes a drive from its Location.

Removes PSSnapIn(s) from the current console process.

Removes a variable and its value.

Changes the name of an existing item.

Renames a property at its location.

Resolves the wildcard characters in a path.

Restarts a stopped service.

Resumes a suspended service.

Selects objects based on parameters set in the cmdlet command
string.

Lets you search through strings or files for patterns.

Sets a resource's Access Control List properties.

Maps an alias to a cmdlet.

Places an authenticode signature in a Ps script or other file.

Sets the content in the item at the specified location.

Sets the system date on the host system.

Sets the execution policy for the current shell.

Sets the value of a pathname within a provider to the specified
value.

Sets a property at the specified location to a specified value.

Sets the current working location to a specified location.

Turns Ps script debugging features on and off, and sets trace level.

Makes and sets changes to the properties of a service.

Sets or removes the specified options and trace listeners from the
specified trace source instance(s).

Sets data in a variable and creates a variable if one with the

requested name does not exist.

Windows PowerShell Programming for the Absolute Beginner

WINDOWS POWERSHELL CMDLETS (CONTINUED) TABLE 3.|

Cmdlet

Sort-Object

Split-Path

Start-Service

Start-Sleep

Start-Transcript

Stop-Process

Stop-Service

Stop-Transcript

Suspend-Service

Tee-Object

Test-Path

Trace-Command

Update-FormatData

Update-TypeData

Where-Object

Write-Debug

Write-Error

Write-Host

Write-Output

Write-Progress

Write-Verbose

Write-Warning

Description

Sorts the input objects by property values.

Given a Ps path(s), it streams a string with the qualifier, parent path, or

leaf item.

Starts a stopped service.

Suspends shell, script, or runspace activity for the specified period of time.

Starts a transcript of a command shell session.

Stops a running process.

Stops a running service.

Stops the transcription process.

Suspends a running service.

Sends input objects to two places.

Returns true if the path exists; otherwise, it returns false.

Enables tracing of the specified trace source instance(s) for the duration
of the expression or command.

Updates and appends format data files.

Updates the types.ps| xml file in the Microsoft shell.

Filters the input from the pipeline, allowing operation on only certain
objects.

Writes a debug message to the host display.

Writes an error object and sends it to the pipeline.

Displays objects through the user feedback mechanism.

Writes an object to the pipeline.

Sends a progress record to the host.

Writes a string to the host's verbose display.

Writes a warning message.

Chapter 3 ¢ Object-Based Scripting with .NET

Although all the cmdlets listed in Table 3.1 are shown using initial uppercase spelling,

cmdlets are not case sensitive. Therefore, the case that you use when keying them in is

entirely up to you. While you shouldn’t try to memorize this entire list of cmdlets, it is prob-

ably a good idea to bookmark this table so that you can come back to it when you need to.

Once you have found a cmdlet that looks like it will suit the needs of your particular task,

you can use the PowerShell Get-Help cmdlet to learn more about it. For example, Figure 3.9

shows a portion of the output that you will see when using the Get-Help cmdlet to look up

information about the Write-Host cmdlet.

ywint The Get-Help cmdlet retrieves information about any cmdlet or PowerShell

topic. When executed without any parameters, this cmdlet displays a list of

TEP help topics. When passed a cmdlet name or topic, it displays information spe-

cific to that cmdlet or topic.

E 5 E Windows Powers

Write—Host

‘SYNOPSIS
F Displays objects by using the host user interface

S AR
4 Write-Host [l-object] <Object>1 [—-noNewLine] [-separator <Object>] Ee orege
E oundcolor <<Black> { <DarkBlue> | <DarkGreen> {| <DarkCyan> | <DarkRed> <D
E ~ { <DarkGray> | <Blue> | <Green> ! <Gyan

(FIGURE 3.9) E <Red> | <Magenta> | <Yellow> <White>>1 [cher byronnd elas <<Black> i <
E DarkBlue> | <DarkGreen> {| <DarkCyan> { <DarkRed> | <Dark rs baal t oe wel
E low> | <Gray> | <DarkGray> |! <Blue> | <Green> | <Cyan> | <Red> | <Magenta>

An example of f 1 <¥Yellow> | <White>>1] [<CommonParameters>]

how to use the
DETAILED DESCRIPTION

Get-Help cmdlet E Displays objects by using the host user interface. Write-Host creates a cus
f tomized host window. You can specify the color of text in that windows by u

to Look up f sing the ForegroundColor parameter and you can specify the background color
° E of the window by using the BackgroundColor parameter. The Separator parame

detailed cmdlet ! ter lets you specify a string to use to separate displayed objects.
* . XSPACE> next page; <CR> next line; Q quit
information. '

qrnict If you do not have this book handy, you can use the Get-Command cmdlet to

generate a complete list of available cmdlets. You can then use the Get-Help

command to look up detailed information on any cmdlet that you see in the List.

WINDOWS POWERSHELL PLUMBING

Object pipelines are the conduit through which cmdlets pass object data to one another.

Unlike traditional command shells, which only pass text data, Windows Powershell passes

different types of object data through its pipeline. You have already seen many examples of

PowerShell object pipelines in use. The following examples are designed to further help you

understand the versatility and power of PowerShell pipelines.

Windows PowerShell Programming for the Absolute Beginner

Let’s begin by using the Get-ChildItem cmdlet to generate a list of files and folders located

in the current working directory, as demonstrated here.

PS C:\> Get-ChildItem

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\

Mode LastWriteTime Length Name

a= 4/10/2003 1:19 AM 0 AUTOEXEC. BAT

<a> 4/10/2003 1:19 AM 0 CONFIG.SYS

Si ios 10/11/2004 9:01 PM 1810432 ffastunT.ffl

=I pd 272072006" 1:52 PM 1323 net_save.dna

A he 6/24/2005 9:39 PM 584 Plugins

Bae 3/25/2005 3:29 PM 108 PS.PS

C— 4/10/2003 1:22 AM Documents and Settings

ons 6/4/2003 8:58 PM 1386

d— 9/10/2006 3:19 PM MyScripts

a 9/9/2006 5:10 PM Program Files

ae AV21/2006 © 3353.PM temp

d— 9/15/2006 1:56 PM WINDOWS

PS Gz\?

Pipelines are created using the | character. Using pipelines, you can combine two or more

cmdlets together to compose a logical statement that takes advantage of the combined capa-

bilities of both cmdlets. For example, consider the following statement that takes the out-

put generated by the Get-ChildItem cmdlet and passes it to the Sort-Object cmdlet.

PS C:\> Get-ChildItem | Sort-Object

Directory: Microsoft.PowerShel1].Core\FileSystem: :C:\

Mode LastWriteTime Length Name

=r 4/10/2003 1:19 AM 0 AUTOEXEC.BAT

zoe 4/10/2003 1:19 AM 0 CONFIG.SYS

d= 4/10/2003 1:22 AM Documents and Settings

4a>- 10/11/2004 9:01 PM 1810432 ffastunT.ffl

d— 6/4/2003 8:58 PM 1386

d— 9/10/2006 3:19 PM MyScripts

Chapter 3 + Object-Based Scripting with .NET

a 2/20/2006 1:52 PM 1323 net_save.dna

aa 6/24/2005 9:39 PM 584 Plugins

dar 9/9/2006 5:10 PM Program Files

-a-" 3/25/2005 3:29 PM 108 PS.PS

cc 4/21/2006 3:53 PM temp

c— 9/15/2006 1:56 PM WINDOWS

PSiGs\e

pint The Sort-Object cmdlet sorts a list of objects passed to it by other cmdlets,

thus changing the order in which objects are passed down the pipeline. In the
trp previous example, the sort operation was performed using the Name property.

However, you can override this by specifying a different property. Likewise, you

can change the default sort order from ascending to descending. To learn more

about the Sort-Object cmdlet, type Get-Help Sort-Object at the Windows

PowerShell command prompt.

As you can see, the output from the Get-ChildItem cmdlet has been removed from the

pipeline, sorted, and then added back in ascending order by the Sort-0bject cmdlet. Now

that you have a sorted list of objects, let’s process them even further. In this next example,

the sorted list of objects in the pipeline is next processed by the Where-Object cmdlet.

PS C:\> Get-ChildItem | Sort | Where-Object { $_.Length -gt 200 }

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

-ar< 10/11/2004 9:01 PM 1810432 ffastunT.ffl

za-= 2/20/2006 1:52 PM 1323 net_save.dna

-a>" 6/24/2005 9:39 PM 584 Plugins

RS: Cal?

In this example, the Where-Object cmdlet, which removes objects failing to meet a specified

criteria from the pipeline, is passed an expression enclosed within matching {} brackets.

This expression takes each object passed through the pipelines, as represented by $_, and

examines the value of its Length property to see if it is greater than 200. Note the use of the

period (.) to connect the $_ to the keyword Length. This is an example of dot notation, which

is simply a syntax used to identify an object property.

Windows PowerShell Programming for the Absolute Beginner

Again, don’t get too hung up on the syntax used in the previous example to build the expres-

sion passed as an argument to the Where-Object cmdlet. You will learn everything you need

to know about PowerShell statement syntax in Chapters 4-7:For now, the important thing to

take away from this example is an understanding of pipelines and their use in passing struc-

tures between cmdlets in order to build complex logical statements.

The Where-Object cmdlet provides the ability to filter out unwanted objects

from the pipelines based on input passed to it as an argument. In the previous

example, the Where-Object cmdlet was instructed to remove any object whose

Length property was less than 200 bytes.

$_ is a special variable created and maintained by Windows PowerShell. $_ is

automatically assigned the name of the current object in the PowerShell

pipeline and, in the case of the Where-Object cmdlet, to reference each object

in a collection. In the previous example, the collection was composed of every

file in the current working directory.

WORKING WITH ALIASES

As you have already seen with the Get-ChildItem cmdlet, the Windows PowerShell provides

access to two different alias commands (dir and 1s), each of which can be executed in place

of this cmdlet in order to produce the same results. An alias is a shortcut to another cmdlet.

Microsoft developed these aliases to help ease the transition from traditional command

shells to Windows PowerShell. Table 3.2 provides you with a quick reference to all the aliases

supported by the Windows PowerShell.

You can use the Get-Alias cmdlet to display a list of all the aliases supported

by Windows PowerShell.

TABLE 3.2 WINDOWS POWERSHELL CMDLET ALIASES

Cmdlet Cmdlet

Add-Content Remove-ItemProperty

Add-PSSnapIn Remove-PSSnapIn

Clear-Content Remove-Variable

fc

fl

foreach

%

ft

fw

Chapter 3 + Object-Based Scripting with .NET

TABLE 3.2 WINDOWS POWERSHELL CMDLET ALIASES (contiNueD)

Cmdlet

Clear-Item

Clear-ItemProperty

Clear-Variable

Copy-Item

Copy-ItemProperty

Convert-Path

Compare-Object

Export-Alias

Export-Csv

Format-Custom

Format-List

ForEach-Object

ForEach-Object

Format-Table

Format -Wide

Get-Alias

Get -Content

Get-ChildItem

Get - Command cd

Get-PSDrive

Get-History cp

Get-Item h

Get-Location history

Get-Member kil]

Get-ItemProperty Ip

Get-Process 1s

Group-Object mount

Get-Service mv

Get-PSSnapIn popd

Cmdlet

Resolve-Path

Set-Alias

Start-Service

Set-Content

Select-Object

Set-Item

Set-Location

Start-Sleep

Sort-Object

Set-ItemProperty

Stop-Process

Stop-Service

Set-Variable

Tee-Object

Where-Object

Where-Object

Write-Qutput

Get-Content

Set-Location

Clear-Host

Copy-Item

Get-History

Get-History

Stop-Process

Out-Printer

Get-ChildItem

New-PSDrive

Move-Item

Pop-Location

Windows PowerShell Programming for the Absolute Beginner

TABLE 3.2 WINDOWS POWERSHELL CMDLET ALIASES (conTINUED)

Cmdlet

Get-Unique

Get-Variable

Get -Wmi0bject

Invoke-Expression

Invoke-History

Invoke-Item

Import-Alias

Import-Csv

Move-Item

Move-ItemProperty

New-Alias

New-PSDrive

New-Item

New-Variable

Out-Host

Remove-PSDrive

Remove-Item

Rename- Item

Cmdlet

Get-Process

Push-Location

Get-Location

Invoke-History

Remove-Item

Remove-Item

Write-Output

Clear-Host

Set-Location

Copy-Item

Remove-Item

Get-ChildItem

Remove-Item

Move-Item

Remove-Item

Rename-Item

Set-Variable

Get -Content

Rename-ItemProperty

As you can see in Table 3.2, the list of aliases supported by Windows PowerShell is quite

extensive. While convenient as a short-term solution for executing cmdlets, I suggest that

you resist the temptation of using these aliases and instead take the time needed to learn

the PowerShell’s cmdlet names. This will help make your PowerShell scripts easier to main-

tain and support in the long run.

Chapter 3 + Object-Based Scripting with .NET

qRict Windows PowerShell also lets you define your own custom aliases. This is
accomplished using the Get -Alias cmdlet, which requires two arguments. The
first argument is the alias to be assigned and the second argument is the name
of the cmdlet for which the alias is to be associated. For example, the following
statements create a new alias of ds for the Write-Host cmdlet.

Set-Alias ds Write-Host

You may recollect seeing an example of this in action earlier in this chapter when
you read about how to programmatically customize Windows PowerShell.

«nar _— Windows PowerShell does not perform any verification of the validity of an
alias assignment when using the Set-Alias cmdlet. It is up to you to test and

ensure that your new alias works as expected and that you did not mis-type the
name of the target cmdlet.

BACK TO THE POWERSHELL FORTUNE TELLER GAME

Okay, it is time to turn your attention back to the chapter’s main game project, the Power-

Shell Fortune Teller game. This game will involve the use of a number of programming tech-

niques, conditional logic, and looping. You will also learn how to instantiate (establish a

new instance of) a new, random object in order to generate a random number.

Designing the Game
The PowerShell Fortune Teller game begins by displaying a welcome screen and then pro-

viding the player with instructions on how to formulate questions. Next, the player is

prompted to ask a question. In response, the game will display a randomly generated answer

based on the value of the script’s randomly generated number. The specific answer dis-

played by the script will also vary based on the time of day, since the fortune teller gets a bit

cranky in the afternoon. Once the player’s question has been answered, the script will

prompt the player to either ask a new question or terminate the script’s execution. Thus the

player is allowed to ask as many questions as he wants. Once the player indicates that he

wants to terminate the script, the game ends by inviting the player to return and play again.

The development of this script will be completed in six steps, as outlined here:

1. Create a new script file and add opening comment statements.

2. Clear the screen and initialize script variables.

3. Display the opening welcome screen.

4. Display the rules for formulating questions.

Windows PowerShell Programming for the Absolute Beginner —

5. Prompt the player to ask questions and then generate answers.

6. Invite the player to play again and terminate script execution.

Creating a New PowerShell Script
The first step in the creation of the PowerShell Fortune Teller game is to create a new

PowerShell file named FortuneTeller.ps1 and add the following statements to it.

i KKK IK KIKI KK KKK II KI KK KKK AK KKK KIKI ERK EEK KEKE KEKE KKK KR KEKE REE EREREREREEK

Script Name: FortuneTeller.psl (PowerShell Fortune Teller)

Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script provides random answers to player

i questions.

Fi KK KKKKEK KK KEK KK EKER ERK KEKE KK KKK EKER EER EERE KER EERE EK EER EKER ERE KEKE KREREREKEERE

d##Clear the Windows command console screen

Clear-Host

As you can see, so far the PowerShell script file consists of comment statements that provide

high-level script documentation and execute the Clear-Host cmdlet, which is called to clear

the display area of the Windows command console.

Declaring and Initializing Variables
The next step in the creation of the PowerShell Fortune Teller game is to declare variables

used throughout the script and to assign initial values to these variables. This is accom-

plished by appending the following statements to the end of the PowerShell script file.

#Define the variables used in this script to collect player inputs

$question = "" #This variables will store the player's question

$status = "Play" #This variable will be used to control game termination

$randomNo = New-Object System.Random #This variable stores a random object

$answer = 0 #This variable stores a randomly generated number

$time = (Get-Date).Hour #This variable stores the current hour of the day

Note that I have not only provided descriptive names for each variable but I have also added

comments that document the purpose and use of each variable.

Chapter 3 « Object-Based Scripting with .NET

Displaying the Welcome Screen
The next step in the development of the PowerShell Fortune Teller game is the addition of

the statements that display the game’s welcome screen. These statements, shown next,

should be added to the end of the script file.

#Display the game's opening screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " WRESLIC DGMFES TAT Oe" TH eee Wl ow. S"

Write-Host :

Write-Host

Write-Host

Write-Host " PTOTMSE RESSHOE<Lales EGR FP UTNE? OT Ete ae

Write-Host

Write-Host

Write-Host

Write-Host " By Jerry Lee Ford, Jr."

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

The screen content is created using multiple instances of the Write-Host cmdlet. The last

statement shown above uses the Read-Host cmdlet to pause script execution until the player

presses the Enter key.

Windows PowerShell Programming for the Absolute Beginner

Displaying Game Instructions
After reading and dismissing the game’s welcome screen, instructions need to be displayed

that provide the player with guidance on how to formulate questions for the fortune teller.

This is accomplished by added the following statements to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host " The fortune teller is a very busy and impatient mystic. Make”

Write-Host

Write-Host " your questions brief and simple and only expect to receive"

Write-Host

Write-host " Yes / No styled answers."

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue.”

#Pause script execution and wait for the player to press the Enter key
Read-Host

As with the statements that generated the welcome screen, the statements that display the
game’s instructions clear the screen, write text output, and then pause the script’s execution
until the player presses the Enter key.

Chapter 3 + Object-Based Scripting with .NET

Controlling Gameplay
The programming logic that controls the core activities of the game is outlined next and

should be appended to the end of the script file.

#Continue gameplay until the player decides to stop

while ($status -ne "Stop") {

#Ask the player the first question:

while ($question -eq ""){

Clear-Host #Clear the Windows command console screen

Write-Host

$question = read-host " What is your question? "

$question = "" #Reset variable to an empty string

#Using the Random object, get a random number between 1 and 4

$answer = $randomNo.Next(1, 5)

Select an answer based on the time and random number

#If it is the afternoon the fortune teller will be a little cranky

if aCSEIMe ve gta l 2 dud

Write-Host

if ($answer -eq 1) { " Grrrr. The answer is no!" }

if ($answer -eq 2) { " Grrrr. The answer is never!" }

if ($answer -eq 3) { " Grrrr. The answer is unclear!" }

if ($answer -eq 4) { " Grrrr. The answer is yes!" }

}

#If it is morning, the fortune teller will be in a good mood

else {

Write-Host

if ($answer -eq 1) { " Ah. The answer is yes!" }

if ($answer -eq 2) { " Ah. The answer is always!" }

Windows PowerShell Programming for the Absolute Beginner —

if ($answer -eq 3) { " Ah. The answer is uncertain!" }

if ($answer -eq 4) { " Ah. The answer is no!" }

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-host

Write-Host

#Prompt the player to continue or quit

$reply = read-host " Press Enter to ask another question or type Q to quit."

Tf (Sreply, -equ=q™)” (asstatus =. *Stop7)

Chapter 3 + Object-Based Scripting with .NET

The statements that make up this portion of the script file consist of a number of program-

ming statements that will not be formally covered until later in Chapters 5 and 6. These

statements involve conditional and looping logic. Unfortunately, it is all but impossible to

develop PowerShell scripts of any real complexity without using some conditional or loop-

ing logic and there is only so much information that can be presented at one time. To make

things easier to understand, I have added many comments throughout the script file. How-

ever, because this book has not yet covered these programming constructs, I will not cover

them in great detail now. As a result, you may want to return and review this script once

you have read Chapters 5 and 6.

The overall logic that controls gameplay, allowing the player to ask as many questions as

desired, is controlled by a while loop that executes until the value of a variable named

$status is set equal to "Stop". Within this loop, another while loop is defined in order to

ensure that the player enters something, as opposed to simply pressing the Enter key when

prompted to ask the fortune teller a question.

Next, a random number is generated in the range of 1 to 4. Then a variable named $time is

checked to see if its value is greater than 12. If it is, the fortune teller is said to be tired and

cranky, thus resulting in the display of 1 of 4 less friendly answers (based on the game’s ran-

domly generated number). However, if it is still morning, a more positive set of answers is

used when retrieving the fortune teller’s answer.

Next, the selected answer is displayed and the player is prompted to either press Enter to ask

another question or to type Q to signal the script that it is time to stop executing. If the

player enters Q, the value of the $status variable is set equal to "Stop", thus halting the

while loop that controls the overall execution of the script.

Displaying the Closing Screen
Once gameplay has been finished, the player should be invited to return and ask the fortune

teller more questions. This is accomplished by adding the following statements to the end

of the script file.

##Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host " Very well then. Please return again to get all your questions"

Write-Host " answered."

Write-Host

Windows PowerShell Programming for the Absolute Beginner .

Write-Host

Write-Host

Write-Host =

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

##HClear the Windows command console screen

Clear-Host

The player dismisses this invitation to return and play again by pressing the Enter Key, after

which the screen is cleared and the script file stops executing.

Okay, that’s it. Assuming that you have not made any typos when keying in this code for the

PowerShell Fortune Teller game, everything should work as advertised.

SUMMARY

In this chapter you learned about the .NET Framework class library and common language

runtime. You learned how Windows PowerShell cmdlets allow you to access and interact

with resources exposed by the .NET Framework. You also learned how to use a number of

new cmdlets, including the Get -Help cmdlet, which you can use to get additional information

on any cmdlet or PowerShell topic. You also learned how to find out about object properties

Chapter 3 « Object-Based Scripting with .NET

and methods that are not displayed by default when executing cmdlets, but that are

nonetheless available behind the scenes. You learned more about working with aliases,

including how to create your own custom aliases. This chapter also explained how Windows

PowerShell uses object pipelines to pass structured data between cmdlets. Lastly, you learned

how to create the PowerShell Fortune Teller game.

Now, before you move on to Chapter 4, I recommend that you take a few extra minutes to

improve and enhance the PowerShell Fortune Teller game by implementing the following

challenges.

CHALLENGES

1. Consider making the game less predictable by expanding the range of answers

available to the game. You might even add a response in which the fortune teller

takes offense to a question and refuses to answer.

2. Consider further altering the fortune teller’s mood by making her even more

cranky as the day turns into night.

x ' ital! ws Mi "

~

' SS

fn ? 2 EDR “paises

5 Qe lattes nj Aihive bs 4-

Sea ag C6: ats Tt
MePperts infty Cos! P Dewi etal’

Sa Gell c cies sor ted? Dem! pekeoe risa
Ob eta eet! et eae PUY cauret fe deewaett a

——

(a 9 ene eat Sen Gg Sia tine a oe

i ‘a: o. =

Bek gs ee Howsand
Be aie + (decider ya oe shat inong Bites:

oyu pilin lied petoquet wvlin rtepe dicen unk. eget
~ sete’ 2 ewes bere suo mgs ae ‘

whe Pree Mev getter ed hones vee tet Quaragt fh pragato

4 ede s _ 4 .

Se ie eee cette araieliennated _
ay

ae, "Pints Data i<* wm eae. 7 ates A
a De et » eos

on aon rata : . aig ty | Peal 1 :

M4 Fete ti ic + Hii» - vig me ihe c _ .

H J ; akc i Ss m ne ay aT :
celacny' res

Part

‘ml!
Learning How to Write

PowerShell Scripts

Chapter

Chapter

Chapter

Chapter

4: Working with Variables,
Arrays, and Hashes

5: Implementing
Conditional Logic

L: Using Loops to Process
Data

7: Organizing Scripts
Using Functions

‘22 ldeiacV div gnbhoW +0 ge i
esrizsH t fl ane 7

“Qnitn srnelami :
bss oe

WORKING WITH

VARIABLES, ARRAYS,

AND HASHES

Windows PowerShell scripting language. In this chapter you will learn

how to store, retrieve, and modify data. You will learn how to store indi-

vidual pieces as well as coliections of data. This chapter will also cover a number

of other PowerShell language topics, including the use of keywords, escape char-

acters, and string-manipulation techniques. You will also learn how to work with

a number of PowerShell operators. On top of all this, you will get the opportunity

to create your next Windows PowerShell computer game, the Seinfeld Trivia Quiz.

T his is the first of four chapters designed to teach the fundamentals of the

Specifically, you will learn how to

¢ Create and store individual pieces of data in variables

* Store and access collections of data in arrays and hashes

¢ Access Windows PowerShell special variables

e Execute the —-Replace and Range operators

¢ Concatenate strings

¢ Format and control the display of text using escape characters

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE SEINFELD TRIVIA QUIZ

This chapter’s game project is the Seinfeld Trivia Quiz, which tests the player’s knowledge

of the popular Seinfeld TV series. The game consists of five multiple-choice questions. When

first started, the game’s welcome screen appears, as shown in Figure 4.1.

* Windows PowerShell

WELCOME TO THE SEINFELD

TRIVIA QuIZ

By Jerry Lee Ford, Jr.

The welcome

screen for the :

Seinfeld Trivia Press Enter to continue.

Quiz. j

After the player presses Enter to dismiss the welcome screen, instructions are displayed that

explain the makeup of the quiz and the grading scale, as demonstrated in Figure 4.2.

% Windows PowerShell

The Seinfeld Trivia Quiz tests your knowledge of Seinfeld

trivia. The quiz consists of five equally weighted multiple

choice questions. At the end of the quiz your answers will

| be checked and you will be assigned a skill level, using

FIGURE 4.2 the following scale.

The player is | Score: 5 correct (Expert >

awarded a ranking 3 borcece C
based on the a sheeens n
number of correct Bab <Clueless>

correctly '

answered | Press Enter to continue.

questions. :

Next, the game displays its questions, one at a time, as demonstrated in Figure 4.3.

Once the player has finished taking the quiz and presses Enter to submit her last answer,
the screen shown in Figure 4.4 appears, letting the player know that the game is about to
grade the quiz.

Chapter 4 + Working with Variables, Arrays, and Hashes

*® Windows PowerShell

What is Kramer’s first name?

A. Peterman
B. Cosmo

7 C. Puddy
1D. Peck

Type the letter representing the correct answer and press the Enter key:

Each question on

the quiz presents

the player with

four possible

answers from

which to choose.

OK, now press the Enter key to see how you did.

The game

announces that it

is now ready to

analyze the

player’s quiz

results.

After grading the quiz, the game informs the player how many questions were correctly

answered and assigns a ranking based on that value, as demonstrated in Figure 4.5.

| & Windows PowerShell

You got 4 questions correct.

| Your knowledge of Seinfeld trivia is about as good as Kramer’s.

The player

correctly

answered four

quiz questions.

Windows PowerShell Programming for the Absolute Beginner

The last screen displayed by the Seinfeld Trivia Quiz, shown in Figure 4.6, thanks the player

for taking the time to complete the quiz.

XS Windows PowerShell

Thanks for taking the Seinfeld Trivia Quizt

The game ends by

thanking the

player.

WINDOWS POWERSHELL LANGUAGE FEATURES

Although the primary focus of this chapter is on the storage and retrieval of data during

script execution, there are a few additional topics that need to be covered to help round out

your understanding of PowerShell scripting basics. These topics include:

e Reserved words

e Escape characters

¢ String manipulation

Windows PowerShell Reserved Words

Like any programming language, Windows PowerShell has a collection of reserved words

(also referred to as keywords) that have a special meaning to the language and thus are not

available for use as variable, array, associative array, and function names.

A reserved word is a keyword that Windows PowerShell has predefined as having a special

purpose. An example of a PowerShell reserved word is if, which is used to set up conditional

tests in order to evaluate when a condition is true or false and then control the logical exe-

cution of one or more script statements based on that result. As a reserved word, you must

use the if keyword according to the strict syntactical rules defined by Windows PowerShell.

Therefore, you cannot create a variable or array or any other identifier named if in your

PowerShell scripts. Table 4.1 provides a listing of PowerShell reserved words.

Chapter 4 * Working with Variables, Arrays, and Hashes

WINDOWS POWERSHELL RESERVED Worps

Keyword Keyword Keyword

break elseif if

continue filter in

do foreach return

else function : switch

Escape Characters
As you write more and more PowerShell scripts, you are going to come across situations in

which you will want to exercise detailed control over how text is displayed in the Windows

command console. As you have seen in previous script game examples, one way to do so is

to use an extra instance of the Write-Host cmdlet and embed blank spaces inside strings, as

demonstrated by the following.

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " WEE gl oti M Ee Ours Tacllotewn We ENDO e Was =

Write-Host

Write-Host

Write-Host

Write-Host " POW ERS Beds deo et aQeRol U Nee whale Bale L EORS

Write-Host

Write-Host

Write-Host

Write-Host " By Jerry Lee Ford, Jr."

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Windows PowerShell Programming for the Absolute Beginner

Write-Host

Write-Host

Write-Host " Press Enter to continue."

This example required 24 lines of code. While certainly intuitive and easy to understand,

using the Write-Host cmdlet in this manner consumes a lot of space and bloats your Power-

Shell script code. An alternative way to exercise detailed control over your text string output

is to take advantage of PowerShell’s escape characters.

An escape character is a character that has special meaning to Windows PowerShell. Escape

characters are identified by the * character (typically located just over the Tab key on most

keyboards). Using escape characters, you can insert tabs and newline feeds at any point

within a text string. For example, you can insert ‘n at any point within a string to force an

immediate newline operation, thus breaking the display of a string into two lines. Likewise,

you can insert a *t within a text string to insert a logical tab. Using just these two escape

characters, you could rework the previous example as demonstrated here.

Wrice-roste sn nnn totwce! baGi0oMD Es (ST .0m “Tod ES) Wel sNeDsotws:

Write-Host "“n'n'n°t Pi” WSERRES HEL FO Ret Uenme ab LOENBER

Write-Host "“n*n*n°t*t*t By Jerry Lee Ford, Jr."

Write-Host "“n*n°*n*n’n*n*n’n’n'n Press Enter to continue."

Believe it or not, this example provides for the exact same output in just four statements

that the previous example produced in 24 statements. Windows PowerShell supports a num-

ber of different escape characters, as outlined in Table 4.2.

To learn more about Windows PowerShell’s escape characters, execute the fol-
lowing statement at the Windows PowerShell command prompt:

Get-Help about_escape_character

When added to the end of a statement, the ~ character instructs Windows
PowerShell to continue the statement onto the next line, as demonstrated
here:

Write-Host "Once upon a time there was a little girl that lived in a
smal1" *

"house on the edge of the forest."

When displayed, the output produced by this statement will display just as if
the statement had been written on a single Line.

Chapter 4 + Working with Variables, Arrays, and Hashes

TABLE 4.2 WINDOWS POWERSHELL ESCAPE CHARACTERS

Escape Character Description

Single quote

Double quote

Nult

Alert

Backspace

Form feed

Newline

Carriage return

Horizontal tab

Vertical tab

String Manipulation
Windows PowerShell provides a number of different string-manipulation techniques that

you will find helpful when developing Windows PowerShell scripts. These techniques

include string concatenation, character repetition, and substring replacement.

Concatenation

Windows PowerShell allows you to use the += operator to concatenate or join together two

strings, as demonstrated by the following.

$x = "Once upon "

$y = "a time..."

$z = $x += $y

$z

In this example, two strings are assigned to variables named $x and $y. The third statement

uses the += operator to concatenate the values assigned to these two variables in order to

create a new string, which is assigned to a variable named $z. When executed, this example

generates the following output.

Once upon a time...

Windows PowerShell Programming for the Absolute Beginner

Windows PowerShell also allows you to concatenate two strings together using just the

+ operator, as demonstrated here.
{

$x = "Once upon "

$y = "a time..."

$z = $x + $y

$z

When executed, this example produces output that is identical to the previous example.

Repeating Character Strings

Another string-manipulation technique that you may find helpful is the ability to repeat the

display of strings using the * operator, as demonstrated here.

$x = "Ha " * 3

$x

In this example, the string "Ha " is repeated three times, resulting in the output shown here.

Ha Ha Ha

This programming technique can be useful in situations where you need to generate reports

in which you want to format report headings that use repeated characters to help visually

separate report contents, as demonstrated here.

SX 50)

Write-Host $x

Get-Date

Write-Host

Write-Host "Report Title"

Write-Host

Write-Host $x

Here, a variable named $x is assigned a string made up of 50 - characters. This variable is
displayed twice in order to provide a visual border within which a report heading, made up
of a date and title, is displayed, as shown here.

Thursday, October 05, 2006 11:39:02 PM

Report Title

Chapter 4 + Working with Variables, Arrays, and Hashes

Replacing Parts of a String

The replace operator (-rep1ace) lets you replace all or a portion of a string. To use the replace
operator, you specify the string to be manipulated followed by the replace operator and then
two operator arguments. The first argument is the part of the script that you want to replace

and the second argument is the replacement string. To see the replace operator in action,

take a look at the following example, which takes a string and replaces the word boy with

the word gir].

$x = "Once upon a time there was a little boy."

$y = $x -replace "boy", "girl"

$y

When executed, this example displays the following output.

Once upon a time there was a little girl.

qnict® Note that as the previous example demonstrates, you can display the contents

of a variable by simply referencing its name in your script.

STORING AND RETRIEVING DATA

In any programming language, programmers need a mechanism for storing and retrieving

data. You can programmatically access numerous types of data by executing cmdlets. You can

then manipulate the data that is generated using other cmdlets as the data passes through

the object pipeline. However, there are limits to this approach. In many circumstances, you

will find that you need to be able to store data for later analysis, manipulation, and display.

Windows PowerShell’s programming language provides you with several different ways of

storing data, as listed here.

¢ Variables. Store individual pieces of data.

e Arrays. Store data as an index list.

* Hashes. Store data in key-value pairs.

Variables
Variables provide you with a means of storing data within your Windows PowerShell scripts.

Using variables, you can store just about anything you want, including numbers, strings,

and objects. If you store object data returned as output by a cmdlet, PowerShell is able to

retain an awareness of the object types and therefore the properties and methods associated

with the object.

Windows PowerShell Programming for the Absolute Beginner

Naming Your Variables

Windows PowerShell variable names are not case sensitive, meaning that if you define a

variable named $username, you can later refer to it as $USERNAME and PowerShell will under-

stand what you mean. Windows PowerShell variable names can include letters, numbers,

and the underscore character (_). Windows PowerShell variable names must eae with the

$ character. Examples of valid variable names include:

e $userName

e $total

e $lstName

¢ $game_winner

Examples of invalid variable names include:

e $user Name

e $total!

© $#!,) .@%&

The first example is invalid because it includes a blank space. The second example is invalid

because it includes the ! character. Lastly, the third example is invalid because it contains a

whole slew of unsupported characters. If you forget and include an invalid variable in a Power-

Shell script, your script will most likely terminate with an error. For example, the following

variable assignment statement is invalid because it contains a number of invalid characters.

$#!,).@%& = "Winner"

If you were to try and use this variable name in a PowerShell script, the script will terminate

and display the following error.

Invalid variable reference. '$' was not followed by a valid variable name character.

Consider using ${} to delimit the name.

At C:\MyScripts\xxx.ps1:3 char:1

+ $ <<<< #!,).@%& = "Winner"

qnick If you find yourself with a strong desire to include special characters within your
variable’s name, you may do so by enclosing the variable name inside matching
{} characters, as demonstrated here.

${bang#!} = "Winner"

By enclosing variable names within {} brackets, you can include an assortment
of different characters, such as #, $, %, and *, as well as periods, commas, and
even blank spaces.

Chapter 4 + Working with Variables, Arrays, and Hashes

Defining and Initializing Variables

Windows PowerShell supports a range of data types that corresponds to data types supported
by the .NET Framework. For example, Windows PowerShell supports integers and floating-
point numbers, which you can assign to variables, as demonstrated by the following.

$x = 5

$y = 5.5

$z = "Winner"

Windows PowerShell automatically recognizes the first assignment shown above as an integer,

the second assignment as a floating-point number, and the third assignment as a string.

«RAP I strongly recommend that you assign an initial default value to any variable that

you declare within your Windows PowerShell scripts. If a script statement

attempts to access a variable that has not been assigned a value, an error is not

generated. Instead, your script will keep running and you'll end up with unpre-

dictable results.

Variable Interpolation

Up to this point in the book, all of the strings that you have seen have been placed inside

matching sets of double quotation marks. However, you are also allowed to define strings

using matching sets of single quotation marks. The difference between the two is that variable

interpolation occurs when a variable is embedded inside a string enclosed within double

quotations marks but does not occur within a string enclosed within single quotation marks.

To see how this works, consider the following example.

$x = "red"

Write-Host "The little boy held on tightly to his $x balloon"

When executed, the following output is displayed.

The little boy held on tightly to his red balloon

As you can see, Windows PowerShell automatically substituted the value of $x when gener-

ating text output. However, if you were to rework this example by placing the string inside

single quotation marks, as shown next, variable interpolation does not occur.

$x = "red"

Write-Host 'The little boy held on tightly to his $x balloon'

If you run this example, the following output will be displayed.

The little boy held on tightly to his $x balloon

Windows PowerShell Programming for the Absolute Beginner

In most cases, using double quotes to define strings is all you will need. .

Assigning Variable Values Using Expressions —

You can also assign variable values using expressions. Here, the value of 1 + 4 (i.e., 5) is

assigned to a variable named $x.

$x=1+4 # $x equals 5

In addition to the + operator, Windows PowerShell supports a wide range of arithmetic oper-

ators, as shown in Table 4.3.

TABLE 4.3 WINDOWS POWERSHELL ARITHMETIC OPERATORS

Operator Description

Adds two numbers together

Subtracts one number from another

Multiplies two numbers together

DivideS one number by another

Retrieves the remainder of a division operation (modulus)

Precedence

In Windows PowerShell scripting, like in any other programming language, mathematical

operations are executed according to a specific order of precedence, which occurs on a left-

to-right basis. Specifically, the - unary operator, which negates a number, is evaluated first.

Next, PowerShell performs multiplication and division and then remaindering. Finally,

addition and subtraction are performed. For example, consider the following expression.

An expression is a statement that is evaluated and produces a result.

§xemb ese sect 5 = 5 OFS

When executed by PowerShell, the value assigned to $x is 25, which is calculated as follows:

1. Multiplication and division occurs first, so 5 * 4 = 20, which is then divided by 2,

resulting in a value of 10. This value is then multiplied by 5 to get a new value of 50.

Chapter 4 * Working with Variables, Arrays, and Hashes (111)

2. Since multiplication and division occur before addition and subtraction, the subtrac-

tion operation, which appears next in the equation, is skipped and the multiplication

operation at the end of the statement is executed, resulting in a value of 25.

3. Finally, 25 is subtracted from 50 to produce a value of 25.

An expression like this can be difficult to read. To help clarify things, you can use paren-

theses to visually group different parts of the expression.

Sammon ye. meee, Oy = (5. * 5)

In addition to helping to visually organize the expression, you can also use parentheses to

alter the order in which the contents of the expression are executed by overriding the order

of precedence. Take, for example, the following statement:

eeeeeo ey he * 5 o= 5) *.5

As you can see, this statement is almost identical to the previous example, except that

parentheses have altered the order in which the expression is evaluated. As a result, the

expression evaluates to a value of 20, which is computed as follows:

1. The multiplication of 2 * 5 occurs first, resulting in a value of 10, from which 5 is

then subtracted.

2. Next, starting at the beginning of the expression, 5 is multiplied by 4, resulting in a

value of 20. —

3. 20 is then divided by the value computed in the first step (i.e., 5), resulting in a value of 4.

The value of 4 is then multiplied by the last number in the expression, resulting in a

value of 20.

qrnict Two arithmetic operators (+ and *) are overloaded, allowing them to work for

strings as well as numbers. Thus, as you have already seen, you can use the +

operator to concatenate two strings together. You can also use the * operator to

repeat a string a specified number of times as was demonstrated earlier in this

chapter.

PowerShell Assignment Operators

Up to this point in the book, you have seen the equal (=) operator used to make all assign-

ments. However, Windows PowerShell supports a host of different assignment operators, as

shown in Table 4.4.

(112) Windows PowerShell Programming for the Absolute Beginner

TABLE 4.4 WINDOWS POWERSHELL ASSIGNMENT OPERATORS

Operator Description

Assigns a value to a variable

Adds a value to a variable

Subtracts a value from a variable

Multiplies a variable value

Divides a variable value

Assigns the remainder of a division

$x +=5

Here, the value of $x is equal to 5 and then incremented by 5, resulting in a final value of 10.

In addition to the assignment operators shown in Table 4.4, Windows PowerShell also sup-

ports two additional operators that you can use to automatically increment and decrement

the value of a variable by 1.

¢ ++Automatically increments a value by 1.

¢ — Automatically decrements a value by 1.

As an example of how these two operators work, consider the following statements.

$x = 5

$y = $x++

wint In the previous example, $x++ is functionally equivalent to $x = $x + 1.

Here, a variable named $x is set equal to 5. Next, a variable named $y is assigned the value
assigned to $x, after $x is incremented by 1. Thus $y ends up assigned a value of 6.

Chapter 4 * Working with Variables, Arrays, and Hashes (113)

Special Variables

Windows PowerShell provides you with access to a number of variables that are always avail-

able to your PowerShell scripts. These variables provide access to commonly used informa-

tion. By making references these special variables, you save yourself the effort of having to

create and maintain your own version of these variables. Table 4.5. lists a number of com-

monly used special variables.

TABLE 4.5 WINDOWS POWERSHELL SPECIAL VARIABLES

Special Character Description

$ Represents the current pipeline object when used in script blocks such
as the Foreach-Object and the Where-Object blocks

$Error Provides access to information about recent errors

$HOME

$PSHome Indicates the name of the folder where Windows PowerShell is installed

$null

Represents the home directory of the current user

Represents a null object

You have seen the $_ special variable used a couple times already in this book. As another

example of how to use Windows PowerShell’s special variables, consider the following example.

Set-Location $home

$x = Get-ChildItem

$x

When executed, this example changes the current working directory to the home directory

of the person who runs the script and then assigns a list of all of contents of that folder to

a variable named $x.

wint To view a listing of all Windows PowerShell’s special variables and see their def-

initions, use the Get-Help cmdlet and pass it an argument of about_automatic

variables, as shown here.

Get-Help about_automatic_variables

Windows PowerShell Programming for the Absolute Beginner

Variable Scope

Within Windows PowerShell scripts, variable access depends on the location at which a vari-

able is defined. Within Windows PowerShell, access is governed by scope. PowerShell sup-

ports four different scopes, each of which can be referenced by one of the following labels.

¢ Local scope. Refers to the current scope, which can be global, private, or script.

* Global scope. A scope that is established whenever a new PowerShell session is

started.

¢ Private scope. A scope that is not visible or accessible to other scopes.

¢ Script scope. A scope that is established whenever a script is executed and which

ends when the script stops executing.

Whenever you start up a new Windows PowerShell session, you establish a global scope. Any

variable created from the command prompt during the current session is global in scope.

Global variables can be accessed from within the current scope (e.g., from the command

line as well as from child scopes). When you execute a PowerShell script, a new script scope

is created. This scope is a child scope to the global scope.

Variables defined within your PowerShell scripts (outside of any functions) are local vari-

ables and can be accessed from anywhere within the script. Within the PowerShell script,

you can define functions in order to improve the overall organization of the script and to

further refine the scope. Variables defined within a function are local to the function and

the function’s scope is a child scope of the script’s script scope.

pwint A function is a collection of statements that can be called upon to execute as a

TP unit. Functions are covered in Chapter 7, “Organizing Scripts Using Functions.”

By default, variables created in a child scope can be seen and accessed in a parent scope,

unless the variables are defined as private, in which case the variables can only be accessed

from within their own scope.

So far all of the variables that you have worked with in this book’s PowerShell game scripts

have been local in scope and as such have been accessible throughout the entire script. How-
ever, as you will see in Chapter 7, you can define variables within functions and mark them
as private, limiting access to just within the function itself.

Arrays
As has been already stated, variables can be used to store numbers, strings, and objects
of any type. Variables can also be used to store arrays. An array is an indexed list of values.

Chapter 4 * Working with Variables, Arrays, and Hashes (115)

Each element stored in an array is assigned a unique numeric index number, which can

later be used to retrieve its value. In Windows PowerShell, array indexes start at zero, so the

first element in an array has an index of 0 and the second element has an index of 1 and so on.

Creating an Array

You can create a new empty array by assigning an empty array (represented as @()) to a vari-

able, as demonstrated here.

$names = @()

You can later add new elements to the array by assigning each element using the = operator.

$names[0] = "Alexander"

$names[1] = "William"

$names[2] = "Molly"

Once populated, you can refer to any array element by referencing its index number, as

demonstrated here.

Write-Host $names[1] "is a great kid."

In this example, $x is assigned a value of Molly. Because arrays are indexed, you can process

all the elements stored in an array using a loop. You will find examples of how to do this in

Chapter 6, “Using Loops to Process Data.”

qrict In addition to referencing an array element by its index number, Windows

PowerShell also allows you to use negative numbers to reference the elements

stored at the end of an array. An index value of -1 would refer to the last elements

stored in the array; a value of -2 would represent the second to last element,

and so on.

Alternatively, you can populate an array with data at creation time, as demonstrated by the

following.

$numbers = @(1, 2, 3, 4, 5)

Write-Host $numbers

Here, an array named $numbers has been defined and populated with five numeric values.

Note that the array is identified by the @ character and the elements assigned to the array

are provided as a comma-separated list enclosed inside matching parentheses. When exe-

cuted, this example produces the following output.

r273"-4"5

Windows PowerShell Programming for the Absolute Beginner

If you want, you can use the range operator (. .) to populate an array with a range

of values. For example, the following statement can be used to create an array

named $numbers andassignit1, 2, 3, 4, \Sasits initial elements.

$numbers = @(1..5)

Modifying Element Values

You can modify the value of any element in an array by specifying its index number, as

demonstrated by the following.

$numbers = @(1, 2, 3, 4, 5)

$numbers[2] = 9

$numbers

When executed, this example produces the following output

oF O MY fF

As you can see, the value stored in the array’s third element has been changed to 9. (Remem-

ber that array indexes begin at 0 and not 1.)

Keeping Track of Array Size

Arrays have a Count property that you can use to determine the number of elements in an

array, as demonstrated here.

$names = @("Alexander", "William", "Molly")

$total $names.Count

$total

When executed, $total is assigned a value of 3.

Arrays also have a length property that you can use to retrieve the number
of elements in an array, as demonstrated next.

@("Alexander", "William", "Molly")

$names.Length

$names

$total

$total

Chapter 4 * Working with Variables, Arrays, and Hashes (17)

Combining Arrays

Windows PowerShell also allows you to combine two or more arrays to create a new larger
array using the + operator, as demonstrated by the following.

$lowNumbers = @(1, 2, 3)

$highNumbers= @(4, 5, 6)

$numbers = $lowNumbers + $highNumbers -

$numbers

In this example, two arrays, named $]owNumbers and $highNumbers, have been defined. Then

using the + operator, these two arrays are combined to create a new array named $numbers,

whose elements are 1, 2, 3, 4, 5, and 6.

Deleting and Inserting Array Elements

There is no direct way to insert an element into a particular location in an array. However,

using the range operator and the + operator, you can work around this shortcoming, as

demonstrated here.

$numbers = @(1, 2, 3, 4, 5, 6, 7)

$numbers = $numbers[0..2 + 4..6]

$numbers

In this example, the first statement defines an array named $numbers and assigns it a range

of values. The second statement reassigns the contents of the $numbers array by using the

range operator and the + operator to generate a new list of elements consisting of the first

three and last three elements in the original array. When executed, this example produces

the following output.

ND oO WP

There is no direct way to insert an element into the beginning or middle of an array.

However, by adapting the aforementioned technique, you can insert a number at any given

location within an array, as demonstrated here.

Windows PowerShell Programming for the Absolute Beginner

$numbers = @(1, 2, 3, 4, 5, 6, 7)

$numbers = $numbers[0..3] + 99 + $numbers[4..6]

$numbers

In this example, the number 99 is inserted into the middle of the array.

Associative Arrays
One shortcoming of arrays is that as they grow bigger, it becomes difficult to keep track of

where individual array elements are stored. As a result, to find a given value, you usually

have to set up a loop to search the array, examining every element in order to find the one

you want. An associative array, sometimes referred to as a hash or dictionary, provides a more

efficient and faster alternative, allowing you to store data in key-value pairs.

Creating an Associative Array

One way to create an associative array is to define it as an empty associative array, as demon-

strated next.

$ids = @{}

As you can see, the variable used to store the hash is just a regular variable, and the empty

hash table is represented by @{}.

Once defined, you can add as many key-value pairs to it as necessary, as demonstrated by the
following.

$ids[12345] = "William"

$ids[23456] = "Alexander"

$ids[34567] = "Molly"

$ids[22334] = "Mary"

$ids[55555] = "Jerry"

Each of these statements adds a new entry into the associative array. The value specified
inside the brackets is the key and the value specified to the right side of the equals sign is
the value.

Accessing Data Stored in Associative Arrays

Once created and populated with data, you can retrieve a value from the associative array,
as demonstrated here.

$x= $ids[34567]

Chapter 4 * Working with Variables, Arrays, and Hashes

Here, a value of Molly is retrieved from the associative array and assigned to a variable

named $x.

Associative arrays can be used to store any amount of data. Associative array keys and values

can be of any length. Associative array elements are stored as values and must be enclosed

inside quotation marks if they contain blank spaces. Stored values are retrieved by refer-

encing their associated key. Associated arrays can store any type of data. Data retrieval from

associative arrays is relatively fast and does not increase as more values are added.

Populating Associative Arrays at Creation Time

Associative arrays can also be populated at creation time, as demonstrated here.

$nicknames = @{Alexander = "X-Man"; William = "William-D"; Molly = "Might-One"}

$x = $nicknames["Alexander"]

As you can see, three separate key-value pairs have been defined. Key-value pairs are sepa-

rated by semicolons and enclosed inside matching brackets and preceded by the @ character.

When executed, $x is assigned a value of Alexander.

If you want, you can display the contents of an associative array from within your Power-

Shell scripts, as demonstrated by the following.

$nicknames = @{Alexander = "X-Man"; William = "William-D"; Molly = "Might-One"}

$nicknames

When executed, this example will produce the following output.

Name Value

Alexander X-Man

Molly Might-One

William William-D

Like arrays, you can combine the contents of associative arrays using the
pint
TEP + operator, as demonstrated here.

$kidNames = @{Alexander = "X-Man"; William = "William-D"; Molly =

"Might-One"}

$parentNames @{Jerry = "Daddy"; Mary = "Mommy"}

$familyNames = $kidNames + $parentNames

$familyNames

Windows PowerShell Programming for the Absolute Beginner

When executed, this example produces the following output.

Name Value

William William-D

Alexander X-Man

Jerry Daddy

Molly Might-One

Mary Mommy

Deleting a Key-Value Pair

Associative arrays provide you with access to methods that allow you to manipulate their

contents. For example, you can remove an entry from an associative array using the Remove

method, as demonstrated here.

$nicknames = @{Alexander = "X-Man"; William = "William-D"; Molly = "Might-One"}

$nicknames.Remove("Alexander")

$nicknames

When executed, this example will produce the following output.

Name Value

Molly Might-One

William William-D

Removing Associative Array Contents

Using the Clear method, you can remove the contents of an associative array, as demon-
strated by the following.

$nicknames.Clear()

ywint To learn more about hashes, use the Get-Help cmdlet to look up
TP about_Associative_Array.

Chapter 4 * Working with Variables, Arrays, and Hashes (121)

BACK TO THE SEINFELD TRIVIA QUIZ

Okay, let’s turn our attention back to the development of this chapter’s main game project,

the Seinfeld Trivia Quiz. The development of this game will demonstrate how to create an

interactive online quiz that presents the player with a series of questions that are then ana-

lyzed and graded. The primary point of focus for you as you create this game should be on

the use of variables to store and analyze data collected from the player. In addition, you

should take note of the use of Windows. PowerShell escape characters in the generation of

display output.

Designing the Game
The Seinfeld Trivia Quiz will begin by displaying a welcome screen and then displaying

instructions for taking the quiz. Next, it will present a series of five multiple-choice ques-

tions. The game should validate player answers for each question before accepting them and

store each answer for later analysis. Once the player has finished taking the quiz, the

player’s answers should be graded and a ranking should be assigned to the player based on

how well she did.

The overall steps involved in developing the Seinfeld Trivia Quiz are as follows:

1. Create a new script file and add opening comment statements.

2. Define variables used in the script to store player answers and keep track of the

number of correctly answered questions.

. Display a welcome screen.

. Display instructions for gameplay and explain the grading scale.

. Present the player with the first quiz question.

. Let the player know when all questions have been answered

. Analyze the answers provided for each quiz question.

. Assign a ranking based on the number of correctly answered questions.

10. Thank the player for taking time to take the quiz.

3

4

5

6. Display the rest of the quiz questions.

7.

8

9

Creating a New Script

The first step is creating a new PowerShell file named SeinfeldTrivia.ps1 and adding the fol-

lowing statements to it.

((22) Windows PowerShell Programming for the Absolute Beginner

=

| KKK KK IK KKK KIKI KI IK KI IK KIKI KIKI KIKI KI KK IKARIA KR KEKERRERKRKEREKK

t
Script Name: SeinfeldTrivia.psl (The Seinfield Trivia Quiz)

Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script tests the player's knowledge

i of Seinfeld trivia through the administration of

i a computer quiz made up of 5 questions.

i HIKE KK KK KKK KKK KKK KER KKK REE KERR REE RRR ERK ERR ERK KERR KEKE REE RRR EREREKEERER

##Clear the Windows command console screen

Clear-Host

As with previous game scripts, this script file has been generated using the Windows Power-

Shell template that was developed back in Chapter 2, “Interacting with the Windows PowerShell

Command Line.” In addition, the script’s first statement has been added, which executes the

Clear-Host cmdlet in order to clear the display area of the Windows command console.

Defining and Initializing Variables

The next step in the creation of the Seinfeld Trivia Quiz is to define variables used throughout

the script and to assign their initial values. This is accomplished by adding the following

statements to the end of the PowerShell script file.

#Define the variables used in this script to store player answers

$questioni = ""

$question2 = ""

$question3 = ""

$question4 = ""

$question5 = ""

#Define a variable to keep track of the number of correctly answered

#tquiz questions

$noCorrect = 0

The first set of statements shown above defines five variables that will be used to store
answers provided by the player in response to quiz questions. The last statement defines a

Chapter 4 + Working with Variables, Arrays, and Hashes (123)

variable named $noCorrrect, which will be used to keep track of the number of questions
that the player answers correctly.

Displaying the Welcome Screen

The next step in the development of the Seinfeld Trivia Quiz is the display of the game’s wel-

come screen. This is accomplished by appending the following statements to the end of the

script file.

#Display the game's opening screen

meise nese.” fh iWin. hot teWsbol C.0.M, E... 7.0... ToHak.SoE IN FELD"

WEiteshost "A an ttt ie ReLeV CICA Ore

Brite Hose A At tt By Jerry Lee Ford, Jr."

Write-Host "“n*n*n*n*n*n'n*n’n'n Press Enter to continue."

##Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, the game’s welcome screen is created using a series of Write-Host cmdlets.

In order to control the string formatting, a series of escape characters has been embedded

within each statement. Specifically, instances of the *n escape character have been added to

generate newline commands, and the “t escape character has been used to insert tab com-

mands. The last statement shown above uses the Read-Host cmdlet to pause script execution

until the player presses the Enter Key.

Displaying Instructions

After reading and dismissing the game’s welcome screen, instructions for taking the quiz

and an explanation of its ranking system need to be displayed. This is accomplished by

appending the following statements to the end of the script file.

d##Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host "*n*n The Seinfeld Trivia Quiz tests your knowledge of Seinfeld*n"

Write-Host " trivia. The quiz consists of five equally weighted multiple n"

Write-Host " choice questions. At the end of the quiz your answers will°n"

Write-Host " be checked and you will be assigned a skill level, using*n"

Write-Host " the following scale.*n°n"

Write-Host " *t Score: 5 correct = Jerry (Expert)"

Windows PowerShell Programming for the Absolute Beginner

Write-Host " “t°t 4 correct = Kramer"

Write-Host " “t*t 3 correct = Elaine”

Write-Host " “t*t 2 correct = George"

Write-Host " “t°t 1 correct = Newman"

Write-Host " “t*t 0 correct = Babo (Clueless)"

Write-Host "“n*n*n°n Press Enter to continue."

#Pause script execution and wait for the player to press the Enter key

Read-Host

The statements shown above clear the screen and display text output using a series of Write-

Host cmdlets. The script is then paused using the Read-Host cmdlet, forcing the player to

press the Enter key in order to continue the quiz.

Displaying the First Quiz Question

The next step in the creation of the Seinfeld Trivia Quiz is the presentation of the first quiz

question and the collection of the player’s answer. The code statements required to present

the game’s first question are outlined next and should be appended to the end of the script

file.

#Ask the player the first question

while (($questionl -ne "a") -and ($questionl -ne "b") ~

-and ($questionl -ne "c") -and ($questionl -ne "d")) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host " What is Kramer's first name?"

Write-Host

Write-Host " A. Peterman”

Write-Host " B. Cosmo"

Write-Host " C. Puddy”

Write-Host " D. Peck"

Write-Host

$questionl = Read-Host " Type the letter representing the correct” ~

"answer and press the Enter key”

Chapter 4 « Working with Variables, Arrays, and Hashes (128)

The overall logic of this portion of the script file is controlled by a while loop. Within the

while loop, the Read-Host cmdlet is used to prompt the player to provide an answer to the

first quiz question. The player’s answer is stored in a variable named $question1. The loop is

set up to execute until the player submits a valid answer to the first quiz question. Valid

answers are a, A, b, B, c, C, d, or D. (Remember, by default Windows PowerShell is not case-

sensitive.) If the player provides a valid answer, the loop stops executing and the script con-

tinues running. However, if the player fails to provide a valid response, the loop repeats

itself, prompting the player to answer the question.

pint The logic that makes up this portion of the script file consists of a number of

programming statements that are not formally introduced until Chapters 5 and 6.

trp Since this book has not yet covered these programming constructs, | will not
cover them in detail now. These statements require the implementation of con-

ditional and looping logic. For now, to make things a Little easier to understand,
| have added numerous comment statements to document what is occurring

in this portion of the script file. | suggest that you return and review this portion

of the script file once you have read Chapters 5 and 6.

Displaying the Remaining Quiz Questions

The statements that present the next four quiz questions and collect the player’s answers

are presented below and should be appended to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Ask the player the second question

while (($question2 -ne "a") -and ($question2 -ne "b") ~

-and ($question2 -ne "c") -and ($question2 -ne "d")) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host " What was George's favorite pretend career?"

Write-Host

Write-Host " A. Bra salesman"

Write-Host " B. Real estate”

Write-Host " C. City planner"

Write-Host " D. Architect"

Write-Host

Windows PowerShell Programming for the Absolute Beginner

$question2 = Read-Host " Type the letter representing the correct" ©

"answer and press the Enter key"

##Clear the Windows command console screen

Clear-Host

#Ask the player the third question

while (($question3 -ne "a") -and ($question3 -ne "b") ~

-and ($question3 -ne "c") -and ($question3 -ne "d")) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host " For whom did Elaine buy white socks?"

Write-Host

Write-Host "

Write-Host "

Write-Host "

Write-Host "

Write-Host

$question3 = Read-Host " Type the letter representing the correct" ~

"answer and press the Enter key"

Mr. Lippman"

Mr. Peterman"

al el gy a

Puddy" eGo)

#Clear the Windows command console screen

Clear-Host

#Ask the player the fourth question

while (($question4 -ne "a") -and ($question4 -ne "b") ~

-and ($question4 -ne "c") -and ($question4 -ne "d")) {

Clear-Host #Clear the Windows command console screen

Chapter 4 * Working with Variables, Arrays, and Hashes (127)

Write-Host

Write-Host " What is Kramer scared of?"

Write-Host

Write-Host " A. Swimming”

Write-Host " B. Fried Chicken"

Write-Host " C. Clowns”

Write-Host " D. The dentist”

Write-Host

$question4 = Read-Host " Type the letter representing the correct" ~

"answer and press the Enter key"

#Clear the Windows command console screen

Clear-Host

#Ask the player the fifth question

while (($question5 -ne "a") -and ($question5 -ne "b") ~

-and ($question5 -ne "c") -and ($question5 -ne "d")) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host " Where do Jerry's parents live?"

Write-Host

Write-Host " A. Kansas”

Write-Host " B. New York”

Write-Host " C. California”

Write-Host " D. Florida"

Write-Host

$question5 = Read-Host " Type the letter representing the correct” ©

"answer and press the Enter key"

}

As you can see, the presentation of the remaining quiz questions follows the same pattern

as the first question, except for variations in the text strings that are displayed.

Windows PowerShell Programming for the Absolute Beginner

Let the Player Know the Quiz Is Complete

Once the player has finished answering each of the quiz’s five questions, the script should

pause to let the player know that the quiz will now be graded. This is accomplished by

adding the following statements to the end of the script file.

##HClear the Windows command console screen

Clear-Host

Write-Host

Write-Host " OK, now press the Enter key to see how you did."

#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these statements use the Clear-Host cmdlet to clear the Windows command

console screen, the Write-Host cmdlet to display text, and the Read-Host cmdlet to pause

script execution until the player presses the Enter key.

Analyzing Player Answers

At this point, it is time to analyze each answer provided by the player to determine if it is

right or wrong. This is accomplished by appending the following statements to the end of

the script file.

##Clear the Windows command console screen

Clear-Host

#Grade the answers for each quiz question

if ($questionl -eq "b") { $noCorrect++ } #The answer to question 1 is "B"

if ($question2 -eq "d") { $noCorrect++ } #The answer to question 2 is "D"

if ($question3 -eq "c") { $noCorrect++ } #The answer to question 3 is "C"

if ($question4 -eq "c") { $noCorrect++ } #The answer to question 4 is "C"

if ($questiond -eq "d") { $noCorrect++ } #The answer to question 5 is "D"

Each of the five if statements shown above is designed to address one of the quiz’s ques-
tions. The first statement examines the player’s first answer, which is stored in $questionl,
to see if it is equal to b. If it is, the value of the variable named $noCorrect is incremented by
1 using the ++ operator. The next four if statements are set up to analyze the player’s
answers to the remaining quiz questions.

Chapter 4 ¢ Working with Variables, Arrays, and Hashes

Assigning a Ranking

Once the number of correctly answered quiz questions has been tabulated, the script needs

to assign the player a ranking based on the resulting value. Specifically, the ranking assign-

ment is made by comparing the value of $noCorrect to the values outlined in Table 4.6.

TABLE 4.6 RANK ASSIGNMENTS FOR THE SEINFELD TRIVIA QUIZ

Assignment Description

Babo Zero correct answers

Newman One correct answer

George Two correct answers

Elaine Three correct answers

Kramer Four correct answers

Jerry Five correct answers

#Assign a ranking based on quiz score

if ($noCorrect -eq 0) {

Write-Host

Write-Host " You did not get any questions correct."

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is no better than Babo's."

if ($noCorrect -eq 1) {

Write-Host

Write-Host " You got 1 question correct."

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is no better than" ~

"Newman's."

if ($noCorrect -eq 2) {

Write-Host

Write-Host " You got 2 questions correct."

Windows PowerShell Programming for the Absolute Beginner

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is approximately that oes

"of George's." ‘

if ($noCorrect -eq 3) {

Write-Host

Write-Host " You got 3 questions correct."

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is approximately that" ~

"of Elaine’s."

if ($noCorrect -eq 4) {

Write-Host

Write-Host " You got 4 questions correct."

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is about as good as" ~

"Kramer's."

if ($noCorrect -eq 5) {

Write-Host

Write-Host " You got 5 questions correct."

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is every bit as good" ~

"as Jerry's."

#Pause script execution and wait for the player to press the Enter key

Read-Host

The value of $noCorrect can only be equal to one of the values outlined in the five if state-

ments mentioned previously. The matching if statement displays a series of text strings

showing how many questions the player correctly answered and the ranking assigned as a

result. The code statements embedded within the four non-matching if statements are

ignored and never executed.

Chapter 4 * Working with Variables, Arrays, and Hashes ('31)

Finishing the Quiz

Once gameplay has been finished, the Seinfeld Trivia Quiz ends by thanking the player for
taking the time to complete the quiz. This is accomplished by adding the following state-
ments to the end of the script file.

#Clear the Windows command console screen

Clear-Host

#Provide the player with instructions

Write-Host

Write-Host " Thanks for taking the Seinfeld Trivia Quiz!"

#Pause script execution and wait for the player to press the Enter key

Read-Host

#Clear the Windows command console screen

Clear-Host

The player dismisses this screen by pressing the Enter key. The Windows command console

screen is then cleared and the script file stops executing.

The Final Result

Okay, this should be everything you need to finish the development of the Seinfeld Trivia

Quiz. Assuming that you have not made any typos when keying in the script file, everything

should work as expected. In the event that an error does occur, then you have made a typo

or two somewhere in the script file. In order to track down your errors, begin by analyzing

the error message that was displayed when you tried to run your script. Hopefully, there will

be enough information provided to help you track down the error. It may be that you made

a typo or left out a statement somewhere along the way when keying in the script’s state-

ments. If your script file contains more than one error, you may have to go through several

iterations before you eliminate all your errors.

SUMMARY |
This chapter showed you how to store, retrieve, and modify data. You learned how to work

with variables, arrays, and hashes. You also learned how to work with special built-in Windows

PowerShell variables. You learned how to work with the -Rep]ace operator to perform string

('32) Windows PowerShell Programming for the Absolute Beginner

substitution operations and the Range operator to generate a list of values. In addition, you

learned how to concatenate strings, variables, and hashes. You also learned how to use Windows

PowerShell escape characters to streamline and control thé formatting of text output. Lastly,

you learned how to create a new Windows PowerShell computer game, the Seinfeld Trivia Quiz.

Before you move on to the next chapter, take a few minutes to improve the Seinfeld Trivia

Quiz by completing the following list of challenges.

CHALLENGES

!. Currently, the Seinfeld Trivia Quiz is limited to five questions. Make the quiz

more challenging by adding questions of your own.

. Rather than limiting the quiz to just multiple-choice questions, add differently
formatted questions, such as true/false and fill in the blank.

. As currently written, the game displays the number of quiz questions that the

player correctly answered. However, additional detail regarding question results

would provide the player with better feedback. Consider displaying a report at

the end of the game that displays each question, the player’s answer, and the
correct answer.

IMPLEMENTING

CONDITIONAL LOGIC

he Windows PowerShell scripting language, just like every programming

language, includes language statements that provide you with the ability

to test and evaluate different conditions. Conditional logic is a funda-

mental component of programming logic and it is all but impossible to develop

a PowerShell script of any level of complexity without using it. Conditional logic

facilitates the evaluation of user, system, and file input against each other and

against system resources. Based on the results of conditional tests, your Power-

Shell scripts can exercise tight control over which statements are executed, thus

creating create dynamic scripts that adjust their execution according to the data

they encounter.

In this chapter you will learn how to:

¢ Implement conditional logic using variations of the if statement

¢ Embed if statements inside one another to build more complex logic

* Use the switch statement to create logical tests that evaluate multiple

conditions

¢ Work with different types of comparison and logical operators

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE GUESS My NUMBER GAME

In this chapter, you will learn how to create a new Windows PowerShell game called the

Guess My Number game. This game will challenge the player to guess a randomly generated

number in the range of 1 to 100 in as few tries as possible. As Figure 5.1 shows, the game

begins by displaying a welcome screen.

Windows PowerShell

WELCOME TO THE GUESS MY¥

NUMBER GAME

By Jerry Lee Ford, Jr.

The opening

screen for the

Guess My | Press Enter to continue.

Number game.

The player dismisses the welcome screen by pressing the Enter key. Next, the game displays

the message shown in Figure 5.2, prompting the player to make an initial guess.

| X Windows PowerShell

| Enter a number between 1 and 108:

The game

generates random

numbers in the

range of | to 100.

After each guess, the game analyzes the player’s input to see if it was too high, too low, or if
the player correctly guessed the game’s secret number. Figure 5.3 shows the message dis-
played by the game when the player’s guess is too low.

Chapter 5 + Implementing Conditional Logic (133)

| Windows PowerShell

; Sorry. Your guess was too low. Press Enter to guess again.

The game

provides the

player with clues

that assist in

homing in on the

secret number.

The game congratulates the player once the secret number is finally guessed, as demon-

strated in Figure 5.4.

F X Windows PowerShell

| Congratulations. You guessed my number? Press Enter to continue.

The player has

guessed the

secret number.

Next, game statistics are displayed that remind the player of the value of the secret number

and then show how many guesses it took before the player was able to guess it, as demon-

strated in Figure 5.5.

Game Statistics

| The secret number was: 94.
You guessed it in 5 guesses.

The game keeps

track of player

guesses and

presents a

summary of

activity at the

end of each

round of play.
| Press Enter to continue.

Windows PowerShell Programming for the Absolute Beginner.

After pressing the Enter key to dismiss the display of game statistics, the game invites the

player to play another round, as shown in Figure 5.6.

= Windows PowerShell

|} Would you like to play again? ¢Y¥/ND :

The player can

play as many

rounds as she

wishes without

having to restart

the game to

play again.

If the player enters Y, a new round of play is started. If the player enters N, the game ends

and the player is returned to the Windows PowerShell command prompt. Any other input

is rejected and the player is again prompted to make a decision as to whether to continue

playing.

COMPARING VALUES

Windows PowerShell provides you with the ability to compare different resources, such as

numbers and strings. To demonstrate this ability, start a new PowerShell session, type 5 -eq 5,

and press Enter, as demonstrated below.

PStGs\7..5>-eq.5

True

-eq is the PowerShell equals operator and is used in this example to determine whether two

numbers are equal. Once evaluated, Windows PowerShell displays the result of its evalua-

tion in the form of a Boolean true or false value. All comparison operations evaluate to a
value of true or false. The next example demonstrates the results returned from the com-

parison between two unequal values.

PSeCrAd 5. -eqi 10

False

You can also compare different types of values such as strings and numbers, as demon-
strated by the following.

PoC Veo seg ke

False

Chapter 5 « Implementing Conditional Logic ('37)

In order to perform this evaluation, Windows PowerShell has to convert the values being

compared to the same type. When faced with this situation, PowerShell attempts to convert

the second value to the same type as the first value. A good example of how this type of con-

version can result in a true value is provided here.

Pavtriesa =eq "5"

True

In this example, PowerShell converted the string "5" to its numeric equivalent. Windows

PowerShell allows you to compare expressions of various levels of complexity, as demon-

strated here.

Departs 5 OG Set <3: +) 3 ho8

True

Once executed, the value of the expression on the left side of the operator evaluates to 12 as

does the value of the expression on the right operator.

qrick If you find yourself working from the Windows PowerShell command Line and

ig in need of doing a quick calculation or two, there is no need to stop what you are

be doing just so you can open up the calculator application and crunch a few num-

bers. Instead, you can save yourself a Little time by using Windows PowerShell

as your calculator. For example, if all you need it to do is multiply a couple num-

bers, just type them in using the appropriate PowerShell arithmetic operator, as

demonstrated here.

PSECON 7 Sees 5

25

PS C:\>

Here, the expression 5 * 5 has been typed in at the PowerShell command

prompt. When the Enter key is pressed, PowerShell resolves the expression and

displays the result. As the following example demonstrates, you can key in

more complex mathematic expressions if need be.

PSG Now Oia *tes - (o0 Outi tS), 403

12

PS G3 \>

COMBINING PIPELINES AND OPERATORS

In addition to comparing strings and numbers, you can compare object data against differ-

ent values as it passes through the PowerShell object pipeline. This provides you with the

Windows PowerShell Programming for the Absolute Beginner

ability to select the data that you want to continue sending through the pipeline, thus dis-

carding the data you do not need to process. For example, using the -eq operator, you can

pull out the name of any currently executing processes, as demonstrated here.

PS C:\> Get-Process | Where-Object {$_.Processname -eq "Winword"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

23) YI! 7540 18992 110 5,286.61 1620 WINWORD

PS C:\>

As you can see, the Get-Process cmdlet has been executed. It generates a list of active

processes running on the computer. This list is then piped to the Where-Object cmdlet,

which evaluates each process looking for one named Winword. If found, information about

the process is displayed.

This type of evaluation is not limited to just the Get -Process cmdlet. It can be applied to the

output of any cmdlet. For example, this next set of statements processes the output gener-

ated by the Get -ChildItem cmdlet, looking for a particular folder.

PS C:\> Get-ChildItem | Where-Object {$_.Name -eq "MyScript"}

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

— 3/28/2006 1:56 PM MyScripts

Pome hs

IMPLEMENTING CONDITIONAL LOGIC
Comparison operations are a critical feature of PowerShell scripting and are required in all
but the simplest PowerShell scripts. However, to be useful, you need to include comparisons
as part of conditional statements. Windows PowerShell supports two different conditional
logic statements, as outlined below.

* if. This statement evaluates a comparison and then executes or skips the execution
of statements located in an associated code block.

* switch. This statement supports the execution of multiple comparison operations, each
of which has the ability to execute statements embedded inside associated code blocks.

Chapter 5 + Implementing Conditional Logic

Comparing Data Using the if Statement
The if statement is used to test the value of a condition and to conditionally execute state-
ments located in an associated code block based on the results of that evaluation. You have
already seen the if statement in action on numerous occasions in this book. Its syntax is
outlined here.

if (condition) {code block}

elseif (condition) {code block}

else {code block}

condition is a placeholder representing an expression that evaluates to a Boolean value of

true or false. code block is a placeholder representing any number of statements that are

executed based on the results of the test. The if statement is very flexible and supports a

number of different variations.

e]seif is an optional statement that you can include to test an alternative condition. Windows

PowerShell allows you to include as many elseif statements as you want. else is also an

optional statement that, when added, executes its associated control block whenever none of

the preceding conditional tests evaluate as being true.

The if, elseif, and else statements let you execute statements stored in code blocks based

on the evaluation of a test, such as a variable, pipeline object, or an expression. If you cre-

ate an if statement that contains multiple elseif evaluations, the code block belonging to

the first test that evaluates to true is executed and the remaining statements in the if state-

ment are skipped.

Formulating if Statements

To help you understand the basic concept behind the if statement, let’s look at an example.

Suppose you had trouble remembering to pay the rent, which is due on the 15th of every

month. To help remind yourself, you might add a few lines of code to a PowerShell script

that you run every day that checks the date and displays a message if it is the 15th of the

month. In plain English, the logic required to develop this new logic is outlined here.

Get the date

if (Today is the 15th of the month)

{

It is time to pay rent

Windows PowerShell Programming for the Absolute Beginner

}

else

{

It is ok to go out to eat

}

As you can see, this pseudocode of an if statement very clearly outlines the logic involved

using a combination of English and if statement syntax. To help highlight key syntactical

elements, I have bolded key elements that make up the statements.

Pseudocode is a term used to describe an English-like outline or sketch of some

or all of the programming logic required to develop a script. By outlining the

logic required to develop a script using pseudocode, programmers provide

themselves with a roadmap that helps to guide the overall design of their

scripts. This helps you to ensure that you know what you are going to do before

you start doing it and can be used to help prevent errors and delays that can

occur when you start working without a plan.

Using this pseudocode outline as a guide, you can then translate the English-like statements

into PowerShell statements.

$today = Get-Date

if ($today.day -eq 15)

{

Write-Host "Remember to pay the rent today."

}

else

{

Write-Host "It is OK to go out to eat!"

}

In this example, a variable named $today is assigned a value representing the current date,
which is retrieved by executing the Get-Date cmdlet. Next, an if statement has been set up
that evaluates the expression $today.day -eq 15. The first part of this expression retrieves
the day property associated with the current date. This value is then compared to a value of
15 to see if the two values are equal. If they are, the statement stored in the if statement’s
code block is executed. If these two values are not equal, the statement embedded in the
optional else statement’s code block is executed.

Chapter 5 « Implementing Conditional Logic

Single Line if Statements

In its simplest form, the if statement consists of a single statement:

if ($x -eq 10) {Write-Host "Game over!"}

In this example, the value of $x is tested to see if it is equal to 10. If this text evaluates to true,

the Write-Host cmdlet located inside the if statement’s code block is executed. This form of

the if statement is best applied to simple conditional tests that contain a single statement

in its code block. For situations where more than one statement must be executed inside the

code block, the multiline form of the if statements should be used.

Multiline if Statements

Often, you will want to execute a number of statements based on the evaluation of a condi-

tional test. In these situations, you can apply an if statement, as demonstrated here.

if ($x -eq 10) {

Clear-Host

Display-Host "Game over! Press Enter to continue."

Read-Host

}

As this example demonstrates, you can embed any number of statements in an if state-

ment’s code block. In this example, if the value of $x is equal to 10, all of the statements

inside the code block’s opening and closing brackets are executed. If, however, the value of

$x is not equal to 10, the statements located inside the code block are skipped.

Providing an Alternative Course of Action

The if statement is extremely flexible. By including an optional else statement, you can add

additional logic that provides for an alternative course of action in the event the tested con-

dition evaluates as false. For example, you might use the else statement to modify the pre-

vious example as shown here.

if ($x -eq 10) {

Clear-Host

Display-Host "Game over! Press Enter to continue."

Read-Host

}

else {

Clear-Host

Windows PowerShell Programming for the Absolute Beginner

Display-Host "Press Enter to try again."

Read-Host

}

Figure 5.7 provides a flowchart overview of the logic implemented in the previous example.

Begin
Conditional

Test

Clear-Host Clear-Host

A depiction of the Display-Host "Game over! Press Enter to continue.” Display-Host "Press Enter to try again.”

logic involved in Read-Host Read-Host

an if statement.

A flowchart is a tool used by programmers to graphically depict the logical flow

of all or part of a script. By creating a flowchart, you can visually lay out the

overall logical flow of your PowerShell scripts. Once created, you can use a

flowchart to help guide the development of the script.

tT

Testing Different Conditions

The if statement can also be expanded by including one or more optional elseif state-

ments. Each elseif statement provides you with the ability to test for different conditions,

as demonstrated here.

if ($x -eq 10) {

Clear-Host

Write-Host "Game over! Press Enter to continue."

Read-Host

}

elseif ($x -eq 20) {

Clear-Host

Write-Host "Invalid guess. Press Enter to try again."

Read-Host

Chapter 5 « Implementing Conditional Logic

}

elseif ($x -eq 30) {

Clear-Host

Write-Host "Invalid input. Press Enter to try again."

Read-Host

}

else {

Clear-Host

Write-Host "Unknown error. Press Enter to try again."

Read-Host

}

Here, three separate conditions are evaluated. Windows PowerShell begins this example by

testing the value of the first condition ($x -eq 10). If this test evaluates as being true, the

three statements in its code block are executed and the rest of the statements in the if state-

ment are skipped. If the condition evaluates as being false, the condition associated with

the first elseif statement is executed. If it evaluates as being true, the statements in its code

block are executed and the rest of the statements in the if statement are skipped. Other-

wise, the elseif statement’s code block is skipped and the next elseif statement condition

is evaluated. If its condition evaluates as true, its code block executes and the rest of the

statements in the if statement are skipped. If none of the previous tested conditions evalu-

ate as being true, the code block associated with the else statement is executed.

pint If you find yourself creating if statements that consist of numerous elseif
statements that evaluate against the same value, you may be better off using a

switch statement, discussed in the next section.

Nesting if Statements

Windows PowerShell lets you nest, or embed, one if statement within another in order to

develop complex conditional tests. Nested if statements allow you to build programming

logic that begins by testing for one condition before deciding whether to further analyze

things by performing additional tests.

As an example of the usefulness of nesting if statements, consider the following (which was

extracted from the Fortune Teller game that you developed in Chapter 3, “Object-Based

Scripting with .NET”).

Select an answer based on the time and random number

#If it is the afternoon, the fortune teller will be a little cranky

Windows PowerShell Programming for the Absolute Beginner —

if ($time -gt 12) {

Write-Host

if ($answer -eq 1) { " Grrrr. The answer is no!" }

if ($answer -eq 2) { " Grrrr. The answer is never!" }

if ($answer -eq 3) { " Grrrr. The answer is unclear!" }

if ($answer -eq 4) { " Grrrr. The answer is yes!" }

}

#If it is morning, the fortune teller will be in a good mood

else {

Write-Host

if ($answer -eq 1) { " Ah. The answer is yes!" }

if ($answer -eq 2) { " Ah. The answer is always!" }

if ($answer -eq 3) { " Ah. The answer is uncertain!" }

if ($answer -eq 4) { " Ah. The answer is no!" }

}

In this example, the if statement checks to see if $time is greater than 12. If it is, a series of

four if statements, embedded in its code block, are executed, each of which evaluates the

value of a variable named $answer, in order to determine which answer to return to the

player. If the opening if statement evaluates as being false, an else statement executes

instead. Note that four if statements have been embedded within the else statement’s code

block as well.

Making Multiple Comparisons Using the switch Statement
if statements provide you with the ability to compare two conditions. By adding elseif

statements, you can create if statements that perform additional tests. As the number of

additional tests increases, they can become difficult to formulate and understand. Windows

PowerShell provides you with access to the switch statement as an alternative. The switch

statement is used to define a collection of different test and code blocks, each of which eval-

uates against the same expression.

The syntax implemented by the switch statement is outlined here.

switch (expression)

{

{test} {code block}

value {code block}

default {code block}

Chapter 5 « Implementing Conditional Logic

The switch statement begins by defining the expression against which all comparisons

inside its code block are evaluated. The switch statement supports any of three different

types of comparison operations, as outlined here.

e Test. An expression whose value is evaluated.

¢ Value. A literal value, such as a string or number.

¢ Default. Specifies a default code block that is executed if none of the previously

defined comparisons evaluate as being true.

Unlike the if statement, switch statements do not stop executing once a matching value has

been found. Instead, every test specified within a switch statement is evaluated, thus poten-

tially resulting in some or all of the embedded code blocks being executed. The optional

default component and its associated code block are only executed in the event that none

of the previously defined tests evaluate as being true.

To get a good idea of how to work with the switch statement, consider the following example.

$today = get-date

switch ($today.Day)

{

1 {Write-Host "Payday!"}

5 {Write-Host "It is time to water the plants."}

10 {Write-Host "Remember to pay the bills."}

15 {Write-Host "Payday!"}

20 {Write-Host "It is time to water the plants."}

25 {Write-Host "It is time to clean the garage again."}

default {Write-Host "There are no calendar entries to remember today."}

}

Here, a series of six conditional tests have been defined, each of which is compared to the

value of $today.Day. Because each of the values being compared is distinct, only one can

result in a match. However, if you were to rework this example by adding additional tests as

shown next, multiple matches could occur and, as has been stated, the switch statement

will execute the code block belonging to any matching statements.

$today = get-date

switch ($today.Day)

{

Windows PowerShell Programming for the Absolute Beginner

1 {Write-Host "Payday!"}

1 {Write-Host "It is time to water the plants."}

5 {Write-Host "It is time to water the plants."}

10 {Write-Host "Remember to pay the bills."}

10 {Write-Host "It is time to water the plants."}

15 {Write-Host "Payday!"}

15 {Write-Host "It is time to water the plants."}

20 {Write-Host "It is time to water the plants."}

25 {Write-Host "It is time to clean the garage again."}

25 {Write-Host "It is time to water the plants."}

default {Write-Host "There are no calendar entries to remember today."}

}

As you can see, for all but two dates, multiple matches can occur, resulting in the execu-

tion of multiple code blocks. Even though these examples shown here have included single

statements inside each switch statement code block, there is no limit to the number of

statements that you can include.

WINDOWS POWERSHELL OPERATORS

So far, you have seen the equals (-eg) operator used extensively in this chapter as a means of

comparing different values. Windows PowerShell provides a host of additional operators

that provide you with the ability to test different relationships between values and to

reverse the logic of comparison operators.

Comparison Operators
Windows PowerShell supports a number of additional comparison operators in addition to

the -eq operator, allowing you to perform comparisons that provide you with the ability to

test different values in different ways. For example, you can also compare whether a value

is greater than or less than another value. Table 5.1 lists Windows PowerShell comparison

operators.

Unlike arithmetic operators, Windows PowerShell does not process comparison operators

according to a predefined order or precedence. Instead, each comparison operation is per-

formed in the order in which you define it, starting from left to right. You will see several

examples of these operators in action a little later when you work on the Guess My Number

game.

Chapter 5 « Implementing Conditional Logic

TABLE 5.1 WINDOWS POWERSHELL COMPARISON OPERATORS

Operator Description

-eq Equal to

ma Less than

-gt Greater than

-ge Greater than or equal to

-le Less than or equal to

-ne Not equal to

Logical Operators
Windows PowerShell provides a small set of logical operators that provides you with the

ability to modify the logical evaluation of a comparison. Table 5.2 lists Windows PowerShell

logical operators.

TABLE 5.2 WINDOWS POWERSHELL LOGICAL OPERATORS

Description

Not

Not

The -not and ! operators can be used to reverse the logic of any comparison operation, as

demonstrated here.

$x = 1

$y = 2

if (-not ($x -eq $y)) {Write-Host 'The value of $X does not equal $y.'}

if (! ($x -eq $y)) {Write-Host 'The value of $X does not equal $y."}

As you can see, to use either the -not or ! operator, you must place it just before the expres-

sion or value to be tested. When executed, these operators reverse the logic of a comparison

operation.

Windows PowerShell Programming for the Absolute Beginner —

qRAP Take note of the location and placement of the parentheses in the previous

= examples. The inclusion of the -not and ! operators require that you add an

additional set of parentheses in order to meet:the syntax requirement of the if

statement, which requires that whatever is being tested be enclosed inside

parentheses.

The -and operator, on the other hand, is used to create a comparison operation that checks

to see whether two different expressions or values both evaluate to true, as demonstrated

by the following.

$x = 1

Sy = 2

if (($x -eq 1) -and ($y -eq 2)) {Write-Host 'The variables equal the expected values.'}

In this example, the statement inside the if statement’s code block is executed only if both

expressions being tested by the if statement evaluate to true. Since both of the expressions

evaluated in the previous example evaluate as being true, the statement located inside the

if statement’s code block is executed.

To help speed up the logical processing of the -and operator, Windows PowerShell imple-

ments a process called short-circuiting, whereby the second expression is evaluated only in

the event the first expression proves true. If the first expression proves to be false, there is

no point to evaluating the second expression, since the end result of the -and logical com-

parison will result in a value of false regardless of the result of the value of the second

expression.

The -or operator is also short-circuited. This operator checks to see whether either of two

different expressions or values evaluates to true, as demonstrated here.

$x = 1

$y = 2

if (($x -eq 1) -and ($y -eq 3)) {Write-Host 'At least one value matched..'}

In the previous example, the first expression evaluates as true and the second expression
evaluates as false. As long as one of the tested expressions evaluates as true, the statement
located inside the if statement’s code block is executed.

String Comparison Operators
While you can certainly use the six comparison operators listed in Table 5.1 to compare
strings, the result is a case-insensitive comparison. As a result, PowerShell will evaluate

Chapter 5 « Implementing Conditional Logic

strings such as “abc” and “ABC” as being equal, even though that was not your intention. If
string case is important in your comparison operators, you can instead use any of the case-
sensitive string-comparison operators listed in Table 5.3.

TABLE 5.3 WINDOWS POWERSHELL STRING

COMPARISON OPERATORS

Operator Description Case-Sensitive

-jeq Equal to

a Ls. Less than

-igt Greater than

-ige Greater than or equal to

-ile Less than or equal to

-ine Not equal

-ceg Equal to

acit Less than

=cgt Greater than

=cge Greater than or equal to

-cle Less than or equal to

-cne Not equal to

As you can see, Table 5.3 contains two different categories of operators: those that perform

case-sensitive comparison and those that do not. As an example of the difference between

these two categories of string comparison operators, consider the following example.

$x = "abc"

$y = "ABC"

if ($x -ieq $y) {Write-Host 'A case-insensitive match has occurred! "}

if ($x -ceq $y) {Write-Host 'A case-sensitive match has occurred! '}

In this example, the first if statement performs a case-insensitive comparison, which results in

an evaluation of true. However, the second if statement performs a case-sensitive comparison,

which results in a value of false.

Windows PowerShell Programming for the Absolute Beginner .

BACK TO THE GUESS My NUMBER GAME

Okay, let’s turn your attention back to the chapter’s main game project, the Guess My Num-

ber game. Through the development of this game, you will get ample opportunity to focus

on the use of conditional logic in order to control the logical execution of Windows Power-

Shell scripts.

Designing the Game
The Guess My Number game begins by displaying the game’s welcome screen and then

prompts the player to guess the game’s randomly generated number, which is in the range

of 1 to 100. Each guess made by the player is evaluated to see if it is too high, too low, or if

the player has guessed the number. The game displays hints to help guide the player’s next

guess when the player’s previous guess is too high or too low. Game statistics are displayed

after the player guesses the game’s secret number and then the player is invited to play

another round.

The Guess My Number game will be completed in 12 steps, as outlined here:

. Create a new script file and add opening comment statements.

. Define and initialize the game’s variables.

. Display the opening welcome screen.

. Set up a loop to control overall gameplay.

. Generate the game’s secret number.

. Set up a loop to collect and analyze player guesses.

. Collect the player’s input.

. Analyze player input.

Oo ON DU FF WN . Display the game’s statistics.

_ oS . Prompt the player to play another game.

Hp any . Analyze the player’s answer.

— N . Clear the screen prior to terminating.

Creating a New Script

The first step in creating the Guess My Number game is to create a new PowerShell file
named GuessMyNumber.ps1 and add the following statements to it.

Chapter 5 « Implementing Conditional Logic (is!)

i KRKEKKEKERKKEKKE KER ERK KKK KEK K EKER KKK KKK KK KER KEK EKER EKER ARK KIEKEKEKRKKEK KKK KK KKK KKK RE

i

Script Name: GuessMyNumber.psl (The Guess My Number Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script -challenges the player to attempt

i to guess a randomly generated number in the range of

1 to 100 in as few guesses as possible.

i
i KKKKEKKKKKKEKKRE KKK KKK KEKE KR KEK KKK KERR ERK ERK EK KEK KKK KKK KKK KKK KKKRKKREREKRRKERE

#Clear the Windows command console screen

Clear-Host

As was the case with previous game scripts, you should begin this script using the Windows

PowerShell template developed in Chapter 2, “Interacting with the Windows PowerShell

Command Line.” In addition, you’ll notice that I have added the script’s first statement,

which executes the Clear-Host cmdlet in order to clear the display area.

Define and Initialize Game Variables

The next step in the development of the Guess My Number game is to define and initialize

variables used throughout the script. This is accomplished by appending the statements

shown below to the end of the script file.

#Define variables used in this script

$number = 0 #HKeeps track of the game's secret number

$noOfGuesses = 0 ##Keeps track of the number of guesses made

$randomNo = New-Object System.Random #This variable stores a random object

$playGame = "Yes" #HControls when to quit the game

$status = "Play" #tControls the current round of play

$guess = 0 #Stores the player's guess

$reply = "" #Stores the player's response when asked to

play again

Comments have been provided for each of the seven variables defined in order to document

and explain their purpose.

(‘s2) Windows PowerShell Programming for the Absolute Beginner

Displaying the Welcome Screen

Next, let’s set up the game’s welcome screen by adding the following statements to the end

of the script file. ;

#Display the game's opening screen

Write-Host "“n'n'n'n't WEG Oo ME T20- “TT GH eEs Gal BSS) Me

Write-Host ““n'n’n’t°t°tNUMBER GAM E"

Write-Host "“n'n'n’t°t°tBy Jerry Lee Ford, Jr."

Write-Host "“n*n'n’n’n’n*n’n'n'n Press Enter to continue.”

#Pause the game until the player presses the Enter key

Read-Host

As you can see, the game’s welcome screen consists of a series of Write-Host cmdlets whose

text is formatted using the ‘n and “t escape characters. The “n escape character generates

newline commands and the “t escape character inserts tab commands. The last statement

uses the Read-Host cmdlet to pause script execution and wait until the player presses the

Enter key.

Setting Up a Loop to Control Gameplay

The overall execution of the game is controlled by a while loop that executes until the player

decides to terminate the game. This is accomplished by adding the following statements to

the end of the script file.

#fLoop until the player decides to quit the game

while ($playGame -ne "No") {

}

As you can see, the while loop’s execution is controlled by the value assigned to the
$p]ayGame variable, which is set equal to No later in the script once the player decides to stop
playing the game. Except for the execution of the Clear-Host cmdlet at the very end of the
script file, all of the remaining code statements that make up the Guess My Number game
are going to be embedded within this while loop.

Generating a Random Number

The next task to be completed is the generation of the game’s secret number, which is gen-
erated using the random object’s Next method. This is accomplished by adding the follow-
ing statement to the beginning of the while loop that you defined in the previous section.

Chapter 5 + Implementing Conditional Logic (153)

#Generate the game's random number (between 1 - 100)

$number = $randomNo.Next(1, 101)

Setting Up a Loop to Collect and Analyze Player Guesses

The next step is to clear the screen and prompt the player to make a guess, which is accom-

plished by adding the following statements just after the previous statements.

#Clear the Windows command console screen

Clear-Host

#fLoop until the player guesses the secret number

while ($status -ne "Stop") {

}

This while loop will be used to control player input and ensure that the input is acceptable.

The loops will execute until the value of $status is set equal to Stop. The code statements

outlined in the next two sections will be embedded within this loop.

Collecting Player Input

The code statement shown next must be keyed in to the previous while loop and is respon-

sible for collecting the user’s input.

#Prompt the player to guess a number

while ($guess -eq "") {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player's guess

$guess = Read-Host " Enter a number between 1 and 100"

}

The loop is designed to repeat in the event the player presses the Enter key without enter-

ing any input. Within this loop, the screen is cleared and the Read-Host cmdlet is used to

prompt the player to take a guess. The player’s answer is then stored in a variable named

$guess.

Windows PowerShell Programming for the Absolute Beginner —

Analyzing Player Input

Now that you have added the code statements required to collect the player’s guess, you

need to add the following statements immediately after the preceding section’s statements.

#Keep track of the number of guesses made so far

$noOfGuessest+

if ($guess -1t $number) { #The player's guess was too low

Clear-Host #Clear the Windows command console screen

Write-Host "“n Sorry. Your guess was too low. Press Enter to" ~

"guess again.”

$guess = "" #Reset the player's guess

Read-Host Pause the game until the player presses the Enter key

}

elseif ($guess -gt $number) { #The player's guess was too high

Clear-Host #Clear the Windows command console screen

Write-Host "“n Sorry. Your guess was too high. Press Enter to" *

"guess again."

$guess = "" #Reset the player's guess

Read-Host ##Pause the game until the player presses the Enter key

}

else { #The player has guessed the game's secret number

Clear-Host ##Clear the Windows command console screen
Write-Host "“n Congratulations. You guessed my number! Press Enter" *

"to continue."

$status = "Stop" #Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

}

The first statement increments the value of $no0fGuesses in order to keep track of the num-
ber of guesses that the player has made thus far in the game. The rest of the statements are
organized by an if statement. The if statement is set up to test whether the value of the
player’s guess, stored in $guess, is less than the game’s random number’s which is stored in

Chapter 5 « Implementing Conditional Logic ('s3)

$number. If $guess is less than $number, then a message is displayed informing the player that

her guess was too low and $guess is set equal to an empty string ("") in order to ready it for

the player’s next guess.

Next, an elseif statement has been set up to respond in the event the player’s guess was too

high. Lastly, an else statement is defined that executes when the player correctly guesses

the game’s secret number. Note that if this is the case, the $status variable is assigned a

value of Stop in order to signal that the current round of play is over.

Displaying Game Statistics

The next set of program statements needs to be added to the end of the game’s main con-

trolling while loop.

d##Clear the Windows command console screen

Clear-Host

#Display the game's opening screen

Write-Host ""n Game Statistics"

Te

Write-Host "*n The secret number was: $number."

Write-Host "*n You guessed it in $no0fGuesses guesses. n"

Write-Host... ——__—__——

Write-Host "“n*n'*n*n'n'n*n'n'n*n*n’n*n’n Press Enter to continue."

#Pause the game until the player presses the Enter key

Read-Host ‘

As you can see, these statements are responsible for clearing the Windows command con-

sole and then displaying game statistics. These statistics are stored in the $number and

$no0fGuesses variables.

Prompting the Player to Play Again

At this point, it is time to prompt the player to play another game and to validate the

player’s response. This is accomplished by appending the following statements to the end of

the game’s while loop, just beneath the previous sets of statements.

#HClear the Windows command console screen

Clear-Host

$reply = "" #Stores the player's response when asked to play again

Windows PowerShell Programming for the Absolute Beginner

#Prompt the player to play another round

while ($reply -eq "") {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player's answer

$reply = Read-Host " Would you. like to play again? (Y/N) "

Validate player input, allowing only Y and N as acceptable responses

if (($reply -ne "Y") -and ($reply -ne "N")) {

$reply = "" #Reset the variable to its default value

}

After clearing the screen, a variable named $reply is defined. This variable is used to store

the player’s response when prompted to play another game. The Read-Host cmdlet is used to

prompt the player to play again. An if statement is then set up to validate the player’s input,

ensuring that only a response of Y or N has been provided. A value of Y indicates that the

player would like to play another game, whereas a value of N indicates that the player is

ready to terminate gameplay.

Analyzing the Player’s Response

Once valid input has been received, the game needs to respond by either resetting game vari-

ables to their default settings to prepare the game for a new round of play or by setting

$playGame equal to No, thus terminating the game’s main while loop upon its next iteration.

This is accomplished by adding the following statements to the end of the game’s main

while loop.

#fThe player has elected to play again

if ($reply -eq "Y") {

#Reset variables to their default values

$number = 0

$noOfGuesses = 0

Chapter 5 + Implementing Conditional Logic (157)

$status = "Play"

$guess = 0

}

else { #The player has decided to quit playing

$playGame = "No" #Modify variable indicating that it is time to

#Hterminate gameplay

Clearing the Screen

Finally, to finish the development of the game, add the following statements to the end of
the script file, just after the end of its main while loop.

#Clear the Windows command console screen

Clear-Host

After executing the Clear-Host cmdlet, the script will end, returning the player back to the

Windows PowerShell command prompt.

The Final Result

Ordinarily, I would write a script like Guess My Number using functions to help organize

and modularize the script’s logic into discrete units. However, because I have not covered

that topic yet, I had to take a different approach, which involved developing some fairly

complex programming logic that was embedded inside a series of while loops.

When laying out the code of this game, I chose to take the approach of having you first

define each while loop and then come back and add in its code statements as separate steps.

This helped to break the game’s code statements into smaller groupings but also required

that you be extra careful when following behind and keying in the code statements. To help

make sure that you understand what the final result should look like, I have laid out the

entire script for you here:

i KKKKKKKKKKK EKER KKK E EKER ERER ER ERE KERR EKER ERE RE REE KER EREKEKKKEKRKEKEKEKKKKK

Script Name: GuessMyNumber.psl (The Guess My Number Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Windows PowerShell Programming for the Absolute Beginner

Description: This PowerShell script challenges the player to attempt

i to guess a randomly generated number inthe range of

f 1 to 100 in as few guesses as possible.

if KKKKKKKKKKEKKKKKKEKR KKK EKER KK ERK KKK KKK KK KKK KERR RKEKKKKEEKEKKERKKEKKKKKERKEKEKEKK

#Clear the Windows command console screen

Clear-Host

#Define variables used in this script

$number = 0 #Keeps track of the game's secret number

$noOfGuesses = 0 #Keeps track of the number of guesses made

$randomNo = New-Object System.Random

1 #This variable stores a random object

$playGame = "Yes" #Controls when to quit the game

$status = "Play" #Controls the current round of play

$guess = 0 #Stores the player's guess

$reply = "" #Stores the player's response when asked to play again

#Display the game's opening screen

Write-Host "“n°n'n'n*t Vee. on 6 tO eh Pe ee Cees ome ye

Write-Host “nen nt t th UM BE R’ “GA ME

Write-Host "“n°n*n*t*t*tBy Jerry Lee Ford, Jr."

Write-Host "“n’n*n*n*n*n*n*n*n’n Press Enter to continue."

#Pause the game until the player presses the Enter key

Read-Host

#Loop until the player decides to quit the game

while ($playGame -ne "No") {

#Generate the game's random number (between 1 - 100)

$number = $randomNo.Next(1, 101)

#Clear the Windows command console screen

Clear-Host

Chapter 5 + Implementing Conditional Logic

#fLoop until the player guesses the secret number

while ($status -ne "Stop") {

##Prompt the player to guess a number

while ($guess -eq "") {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player's guess

$guess = Read-Host " Enter a number between 1 and 100"

##Keep track of the number of guesses made so far

$no0fGuessest+

if ($guess -1t $number) { #The player's guess was too low

Clear-Host #Clear the Windows command console screen

Write-Host "“n Sorry. Your guess was too low. Press Enter to" ~

"guess again."

$guess = "" #Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

}

elseif ($guess -gt $number) { #The player's guess was too high

Clear-Host #Clear the Windows command console screen

Write-Host "*n Sorry. Your guess was too high. Press Enter to" ~

"guess again.”

$guess = "" #Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

}

else { #The player has guessed the game's secret number

Windows PowerShell Programming for the Absolute Beginner

Clear-Host #Clear the Windows command console screen

Write-Host "‘n Congratulations. You guessed my number! Press Enter

"to continue."

$status = "Stop" #Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

wes.

##Clear the Windows command console screen

Clear-Host

#Display the game's opening screen

Write-Host "“n Game Statistics”

EY) CCE Re reese cna

Write-Host ""n The secret number was: $number."

Write-Host "“n You guessed it in $noQfGuesses guesses. ~n"

6620S (ee
OO A el Mr Oe

Write-Host "“n'n'n'n'n'n'n-nnnnnn'n Press Enter to continue."

#Pause the game until the player presses the Enter key

Read-Host

##Clear the Windows command console screen

Clear-Host

$reply = "" #Stores the player's response when asked to play again

#Prompt the player to play another round

while ($reply -eq "") {

Clear-Host #Clear the Windows command console screen

Write-Host

#Collect the player's answer

Chapter 5 + Implementing Conditional Logic

$reply = Read-Host " Would you like to play again? (Y/N) "

#Validate player input, allowing only Y and N as acceptable responses
if (($reply -ne "Y") -and ($reply -ne "N")) {

$reply = "" #Reset the variable to its default value

#fThe player has elected to play again

if ($reply -eq "Y") {

#fReset variables to their default values

$number = 0

$noOfGuesses = 0

$status = "Play"

$guess = 0

}

else { ##The player has decided to quit playing

$playGame = "No" #Modify variable indicating that it is time to

#terminate gameplay

##HClear the Windows command console screen

Clear-Host

Well, that’s it. As long as you did not make any typos when keying it in, your version of the

Guess My Number game should be ready to run.

Windows PowerShell Programming for the Absolute Beginner

SUMMARY
In this chapter you learned how to work with the if and switch statements to develop con-

ditional logic that controls the execution of groups of statements within your Windows

PowerShell scripts. Conditional logic facilitates the evaluation of user, system, and file input

against each other and against system resources. You also learned how to work with a host

of different PowerShell operators, including the logical -and and -or operators which fur-

ther facilitate the development of conditional logic.

Now, before you move on to Chapter 6, “Using Loops to Process Data,” why don’t you set

aside a little extra time to work on and improve the Guess My Number game by tackling the

following list of challenges?

CHALLENGES

. Asitis currently written, the Guess My Number game provides somewhat cryptic

messages when interacting with the user. Consider making the game more intu-
itive by adding additional instructions and guidance.

: Consider tracking and displaying additional game statistics. For example, you
might create a new variable that keeps track of the total number of games
played. You might also keep track of the number of low versus high guesses in
order to help players detect any trends in their methods of play (e.g., a tendency
to guess too low too often).

3. Consider modifying the game to allow the player to quit at any time, instead of

just at the end of the current round of play. For example, in addition to looking

for anumber in the range of | to 100, you might also look for the user to instead
type a 0, signaling a desire to quit.

. Rather than arbitrarily using a range of | to 100, consider giving the player the
option of specifying a different range. For example, you might offer to allow the
player to select from three different ranges, such as { to [0, | to 100. or | to 1,000.

CHAPTER

UsING LOOPS To

PROCESS DATA

essential element in most scripts, allowing you to develop programming

logic that repeats a series of statements over and over again using a min-

imal amount of code. Without loops, it would be all but impossible to develop

Windows PowerShell scripts that are designed to process large amounts of data.

Loops also provide you with a mechanism for processing collections of data passed

through the object pipeline or stored in arrays. Windows PowerShell provides

you with the ability to set up many different types of loops and also provides you

with commands for breaking out of loops when necessary. This chapter will not

only teach you how to implement loops but also guide you through the creation

of your next Windows PowerShell script, the Rock, Paper, Scissors game.

i s you have certainly noticed already in previous chapters, loops are an

Specifically, you will learn the following:

* How to set up do while and do until loops

¢ How to set up for and foreach loops

¢ How to create while loops

¢ How to use the Continue and Break keywords to alter loop execution

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE ROCK, PAPER, SCISSORS GAME
This chapter’s game project is based on the classic children’s Rock, Paper, Scissors game. In

this game, the player goes head to head against the computer. As with the previous games

that you have seen in this book, the Rock, Paper, Scissors game begins by displaying a welcome

screen, as shown in Figure 6.1.

| & Windows PowerShell

WELCOME TO THE

ROCK, PAPER, SCISSORS GAME

By Jerry Lee Ford, Jr.

The welcome

screen for the

Rock, Paper, Press Enter to continue.

Scissors game.

After dismissing the welcome screen, the player is prompted to make a move by specifying
R for rock, P for paper, or S for scissors, as shown in Figure 6.2. Alternatively, the player can
quit the game at any time by entering 0.

| 2% Windows PowerShell

Enter one of the following options:

Rock
Paper
Scissors

= Quit

Four options are

available to Make a move:

the player.

As soon as the player makes a move, the game generates the computer’s move and then
determines the winner of the current round of play, as demonstrated in Figure 6.3.

Chapter 6 * Using Loops to Process Data

| & Windows PowerShell

Results:

} The computer picked: Scissors

You picked: Rock

|] You wint

All games result

in a win, loss,

or tie.

If the player enters anything other than R, P, S, or Q, the message shown in Figure 6.4 is dis-

played. After dismissing the message, the player is again prompted to make a move.

: x Windows PowerShell

i Invalid input. Please try again.

The game

validates player

input, rejecting

any input that

does not meet its

requirements.

Game play ends when the player enters Q. In response, the game displays the screen shown

in Figure 6.5, thanking the player for playing.

% Windows PowerShell

| Game over. Thanks for playing Rock, Paper. Scissors.

The player has

decided to stop

playing Rock, Press Enter to view game stats and quit the game.

Paper, Scissors. :

Windows PowerShell Programming for the Absolute Beginner

Finally, just before ending, the game displays statistics that it has been accumulating as

demonstrated in Figure 6.6.

| 8 Windows PowerShell

Number of games played:

| Number of games won:

| Number of games lost:

{ Number of games tied:

The game keeps

track of wins,

losses, ties, and

the number of | Press Enter to continue.

games played.

WORKING WITH Loops

In order to effectively repeat a series of commands or to process large amounts of data, you

need the ability to create loops. A loop is a set of programming statements that can be repeat-

edly executed as a unit. A loop allows you to write a few lines of code and execute them over

and over in order to perform a great deal of work. Loops help to reduce the number of code

statements required to write a PowerShell script and, by centralizing a specific set of pro-

gramming logic, help to make your scripts more manageable.

Loops are a good tool for processing the contents of arrays and collections of data returned

by cmdlets. As you have already seen, loops can also be set up to repeatedly prompt a user

to supply valid input and to repeatedly execute a collection of statements until a specific

result is achieved. Windows PowerShell provides you with access to a number of different

types of loops, including:

¢ do while. Iterates as long as a specified condition is true

e do until. Iterates until a specified condition is true

¢ for. Iterates a set number of times

* foreach. Iterates through all of the elements stored in a collection or array

¢ while. Iterates as long as a specified condition is true

You will learn how to work with each of these types of loops in the sections that follow.

Chapter 6 * Using Loops to Process Data

pint In addition to the language looping statements listed previously, Windows

PowerShell also provides you with access to the Where-Object and Foreach-

trp Object cmdlets. As you have already seen, these cmdlets let you loop through
and process lists of data as they pass through the object pipeline.

Setting Up do while Loops
do while loops execute as long as, or while, the tested condition remains true. Because the

condition being tested is evaluated at the end of the loop, you can count on the loop always

executing at least one time. The syntax of the do while loop is as follows.

do {

code block

} while (condition)

condition is an expression that is tested at the end of each iteration of the loop. An example

of how to work with the do while loop is provided here.

1-1

do {

Write-Host $i

$it+

} while ($i -le 10)

In this example, a variable named $i is set equal to 1 and then used within the do while loop

that follows. Inside the loop, the value of $i is displayed and then incremented by 1. The con-

ditional test, located at the end of the loop, is then evaluated, and as long as the value of $i

remains less than 10, the loop continues executing. When run, this example displays the

following results. :

Oo ON DO LF WY Ff

ry oO

Windows PowerShell Programming for the Absolute Beginner

One of the things that you need to watch out for when developing your

PowerShell scripts is an endless loop. An endless loop is a loop that never ter-

minates and thus runs forever, draining the omputer’s resources. An endless

loop occurs when you create a loop that has no way of stopping its own execu-

tion. In other words, you either forgot to provide a means for terminating it or

applied faulty Logic allowing the loop to continue processing forever.

If, while testing a PowerShell script, you think something has gone wrong and

that an endless loop may be executing, you can break out of the loop and ter-

minate your script by pressing Ctrl + C.

Setting Up do until Loops
The do until loop executes until a test condition evaluates to true. To put it another way, the

do until loop executes as long as a condition is false. Like the do while loop, the test performed

by the do until loop is specified at the bottom of the loop, thus ensuring that the loop

always executes at least once.

The syntax of the do until loop is shown here.

do {

code block

} until (condition)

To see how to work with this type of loop, consider the following example.

$i = 1

do {

Write-Host $7

$it+

pruntat ($i ote)

This example is very similar to the do while example, except that this time the loop has been
set up to run until the value of $i is greater than 10. When executed, this example counts
to 10 exactly like the do while loop did, demonstrating that each of these two loops can be
used interchangeably. The do until loop can also be used to control the collection of user
input as demonstrated in the following example.

$response = "Play"

do {

Chapter 6 « Using Loops to Process Data

$response = Read-Host "Do you want to play again (Y/N)"

} until ($response -eq "N")

Here, a loop has been set up that prompts the user to respond with a value of Y or N. If the

user enters Y, the loop repeats. If this were a real script, the loop would include additional

logic required to perform a particular task, which would be performed again each time the

user responded with an input of Y. As is, the loop continues to run and to prompt the user

for input until the user finally enters a response of N. An example of the output generated

by this example is shown here.

Do you want to play again (Y/N):

Do you want to play again (Y/N):

Do you want to play again (Y/N):

Do you want to play again (Y/N):

Do you want to play again (Y/N):

PS eC >

pas 5 Seer” ee) Sees

Creating for Loops
The for statement is used to create a loop that runs until a specified condition becomes

true. The for loop supports a number of different variations but is generally used to execute

a specific number of times, based on the value of a variable that is used as a counter to keep

track of the number of iterations made by the loop. The value of the counter can be

increased or decreased based on the logic being implemented.

The syntax of the for loop is shown here.

for (initialization; condition; step)

{code block}

All three parameters specified above are optional. initialization is a placeholder repre-

senting a variable that will be used to control the execution of the loop. condition represents

an expression that is evaluated each time the loop iterates to determine whether the loop

should run again. As along as the value of the condition remains true, the loop will run again.

step specifies an incremental value that is added to the value specified by the initialization

placeholder. If not specified, Windows PowerShell uses a default value of 1 for step.

As the following example demonstrates, all of the parameters that make up the for loop are

optional.

For. Gost

Write-Host "Hi!."

Windows PowerShell Programming for the Absolute Beginner

When executed, this example begins looping forever as the following output demonstrates.

To terminate the loop’s executions, you must press Ctrl + C in order to force the termination

of the script. ‘=

Hi!

Hi!

Hi!

The for loop has limited value when used in this manner. Instead, it is more typical that the

for loops be set up using all of their parameters as demonstrated here.

for ($i = 1; $i -le 10; $it*)-{

Write-Host $7

}

In this example, a for loop has been set up to iterate 10, displaying the value of $i upon each

iteration. Before starting, the loop defines and initializes a variable named $i, setting it

equal to 1. The loop is set up to iterate as long as the value of $i is less than 10. The value of

$i is incremented by 1 at the end of each iteration of the loop. When executed, this exam-

ple displays the following output.

Oo OND OH FSP WM re

he Oo

As you can see, the for loop is very flexible. For example, the value assigned to the step para-
meter at the end of each iteration can be decremented instead of incremented, as demon-
strated in the following example.

for ($1 = 10; $1 -ge 1: $i-) {

Write-Host $i

Chapter 6 « Using Loops to Process Data ('71)

Here, the value of $i is initially set equal to 10 and is decremented by one each time the loop
iterates, resulting in the following output.

— oO

Pnmeworl oD ™s WO WO

The for loop can also be used to process the contents of arrays as demonstrated in the fol-

lowing example.

Snumpers = @(“a", “b", “c", “"d", "a")

for ($i = 0; $i -le $numbers.Length - 1; $i++) {

Write-Host $numbers[$i]

}

Here, an array named $numbers is created and populated with a list of 10 numbers. Next, a

for loop is defined. The value of a variable named $i is defined and initialized with a value

of 1. Next, the condition parameter is defined and consists of an expression that uses the

array’s Length property to determine the length of the array and then subtracts 1 from this

value (since arrays are zero based). Lastly, the value of $i is incremented each time the loop

iterates. The output produced when this loop executed is shown below.

Oo 2 Om

The value assigned to the step parameter does not need to always be 1. As the following

example demonstrates, you can increment (or decrement) this value by any value you want.

$numbers = @(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

for ($i = 0; $i -le $numbers.Length - 1; $i += 2) {

(\72) Windows PowerShell Programming for the Absolute Beginner

Write-Host $numbers[$i]

}

Here, the value of $i is incremented by two upon each iteration of the loop, resulting in the

following output.

oN OW

As you can see, by incrementing the value of $i by two each time the loop iterates, every

other value in the $numbers array was processed.

For more information on the for loop, enter Get-Help about_for at the Windows

PowerShell command prompt.

Creating foreach Loops
The foreach loop is designed to facilitate the processing of collections of data. It is tailor-

made to process lists, including arrays, in which you do not know in advance how many

elements are stored. While you could certainly use other types of loops to do the same thing,

the foreach loop offers a convenient way to process lists because it does not require you to

set and increment an index number.

The syntax of the foreach loop is shown here.

foreach (element in collection)

{code block}

element is a placeholder representing an element stored in the collection. Upon each itera-

tion of the loop, the value of e]ement is updated with the next item stored in the collection.

collection is the name of the array to be processed.

The following example demonstrates how to set up a foreach loop in order to process the
contents of an array.

$numbers = @Cl 02,3, 4, 5, 6. 7,..8..%, 20)

foreach ($i in $numbers) {

Write-Host $i

Chapter 6 « Using Loops to Process Data ((73)

In this example, an array named $numbers has been defined and assigned a list of 10 num-

bers. A foreach loop is then set up to process each element stored in the array. Upon the first

iteration of the loop, the first element in the array is assigned to $i and the Write-Host

cmdlet is then used to display its value. Upon the second iteration, the value of $i assigned

the value of the second array element. Processing continues until all array elements have

been processed. If executed, this example would display the output shown here.

oon ann FP WM Fe

— oO

The foreach loop can also be used to process data returned by cmdlets such as Get-Process

and Get-ChildItem that return results in the form of a collection. For example, the following

statements can be added to a Windows PowerShell script to generate a list of all services cur-

rently running on the computer.

foreach ($x in Get-Service) {

if ($x.Status -eq "Running") {Write-Host $x.Name}

}

As you can see, this example uses a foreach loop to iterate though the output generated by

the Get-Service cmdlet. Each time the loop iterates the name of a service, it is assigned to

$x. An if statement is then used to examine the Status property for each service to deter-

mine whether it is equal to Running. The Write-Host cmdlet is then used to display the name

of each running service by referencing each service’s Name property. When executed, this

example will produce output similar to the following.

ALG

AudioSrv

Browser

CryptSvc

DcomLaunch

Windows PowerShell Programming for the Absolute Beginner

Dhcp

Dnscache

ERSvc

Eventlog

EventSystem

FastUserSwitchingCompatibility

helpsvc

lanmanserver

lanmanworkstation

LmHosts

LxrSII1s

Netman

Nla

NVSvec

omniserv

PlugPlay

Pml Driver HPZ12

PolicyAgent

ProtectedStorage

RasMan

RpcSs

SamSs

Schedule

seclogon

SENS

SharedAccess

Shel 1HWDetection

Spooler

srservice

SSDPSRV

stisvc

TapiSrv

TermService

Themes

TrkWks

UMWdf

W32Time

WebClient

Chapter 6 « Using Loops to Process Data ('78)

winmgmt

WSCSVC

wuauserv

WUSB54Gv4SVC

As the preceding example demonstrates, foreach loops can be used to iterate through all of
the command output generated by any cmdlet that generates its output in the form of a col-

lection and does so without requiring that you define and maintain a counter or provide

any other controlling logic.

pint For more information on the foreach loop, enter Get-Help about_foreach at the

Windows PowerShell command prompt.

Using while Loops
The while loop is designed to create a loop that runs as long as, or while, its conditional test

remains true. The while loop has the following syntax.

while (condition)

{code block}

condition is an expression, which is evaluated each time the loop is run. If the value of

condition evaluates to true, the loop is run. Otherwise, its execution terminates. Obviously,

in order to prevent an endless loop, it is important that you include the programming logic

required to terminate the loop.

The following example demonstrates how to set up a while loop.

$Si<= 1

while ($i -le 10) {

Write-Host $i

$i++

}

Here, a variable named $i is defined and assigned an initial value of 1. Next, a while loop is

defined that executes as long as, or while, the value of $i remains less than 10.

1

2

3

4

Windows PowerShell Programming for the Absolute Beginner

wo ON DD wo

10

You will see examples of the while loop in action later when you work on this chapter’s game

script.

ywint For more information on the while loop, enter Get-Help about_while at the

Windows PowerShell command prompt.

ALTERING Loop EXECUTION

Sometimes certain conditions may occur in which you will want to prematurely terminate

the execution of a loop. For example, if you wrote a foreach loop in order to search an array

for a given element and you found that element somewhere in the middle of the array,

rather than iterating through the rest of the array just for the fun of it, you’ll probably want

to break out of the loop and get on with the business at hand. Alternatively, you may want to

prematurely stop the current iteration of a loop without actually terminating the loop

itself. Windows PowerShell supports both of these actions through the break and continue

commands.

Using the break Command
When the break command is executed, the innermost loop is terminated and processing

control jumps to the next statement that follows the end of the loop.

«RAP Loops can be a little confusing to work with when you are just starting out as a
new programmer. The reason | stated that the break command terminates the
execution of the “innermost” loop in the preceding sentence is because loops
can be embedded within one another. The break command will terminate the
inner loop in which it is embedded but will have no impact on the outer Loop.

The following example demonstrates how to use the break command to terminate the pro-
cessing of a loop.

TOF St = 15 $1 -Tetl0e Sits) -{

if, (31 -e0q°5) 4

Chapter 6 « Using Loops to Process Data ((77)

break

}

Write-Host $i

}

Here, a for loop has been set up to execute 10 times. Within the loop, an if statement has

been added that inspects the value of $i upon each iteration. Upon finding that $i equals 5,

the if statement executes the break command, thus terminating the loop and resulting in

the following output.

1

2

3

4

Using the continue Command
When the continue command is executed, the current iteration of the innermost loop is ter-

minated. However, the loop Keeps on executing, if appropriate. For example, if a PowerShell

script executed the continue command while in the middle of processing an array, and the

continue command was executed, any processing for the current array element would be

skipped and the loop would continue on processing the rest of the elements stored in the

array.

The following example demonstrates how to use the continue command to interrupt the

processing of a loop and force it to resume execution back at the beginning of the loop.

$i = 1

while ($i -le 10) {

if ($i -eq 5) {

$itt+

continue

Write-Host $i

$itt

Windows PowerShell Programming for the Absolute Beginner

Here, a while loop has been set up to execute 10 times. Within the while Ioop, an if state-

ment has been defined that executes the continue command when the value of $i becomes

equal to 5. When this occurs, the current iteration of the loop is terminated and the loop

resumes executing back at the beginning of the loop. The end result is that the fifth itera-
tion of the loop is never finished and the number 5 is not displayed in the output generated

by the example, as shown here.

Oo COON DD FP WY KF

ry oS

qnick Windows PowerShell also supports the exit command. When executed, this
command terminates the execution of the entire script, not just the current
iteration of a loop. An example of how to use the exit command is provided
here.

TE OCSX ot 100) {

Write-Host "Error - Maximum value exceeded."

exit

}

When included as part of a PowerShell script, the if statement shown above
will terminate the script’s execution if it gets executed and the value of $x
exceeds 100. If run at the Windows PowerShell command Line, the exit com-
mand will close the current PowerShell session and also close the Windows
command console window.

BACK TO THE ROCK, PAPER, SCISSORS GAME
Okay, it is time to turn your attention back to the chapter’s main game project, the Rock,
Paper, Scissors game. The development of this game will demonstrate how to control script
execution using loops to facilitate input collection as well as to control the termination of
gameplay.

Chapter 6 « Using Loops to Process Data

Designing the Game
The Rock, Paper, Scissors game challenges the player to outguess the computer by selecting
superior moves each time a new round is played, based on the scoring rules outlined in
Table 6.1.

TABLE 6.1 ROcK, PAPER, SCISSORS SCORING RULES

Player Choice Computer Choice Results

Rock Rock Tie

Rock Scissors Player Wins

Rock Paper Player Loses

Paper Paper Tie

Paper Rock Player Wins

Paper Scissors i Player Loses

Scissors Scissors Tie

Scissors Paper Player Wins

Scissors Rock Player Loses

The player’s move is specified by entering a letter corresponding to a valid move (R for Rock,

P for Paper, or S for Scissors). The computer’s move is generated based on a randomly

selected number. In addition to guiding the player through each round of play, the game

continuously collects a number of game statistics (total games played, wins, losses, and ties),

which are displayed at the end of the game.

The overall logical flow of the Rock, Paper, Scissors game is fairly simple. To set it up, we will

complete its development in twelve steps, as outlined here:

1. Create a new script file.

. Define and initialize script variables.

. Display the game’s welcome screen.

. Set up a loop to control gameplay.

. Generate the computer’s move.

non kf WwW NY . Prompt the player to make a move.

Windows PowerShell Programming for the Absolute Beginner

7. Validate the player’s move.

8. Translate the player’s move.

9. Display the computer’s and player’s moves.

10. Analyze the results of gameplay.

11. Reset variable values for a new round of play.

12. Display game statistics.

Creating a New Script File

Let’s begin the development of the Rock, Paper, Scissors game by creating a new PowerShell

file named RockPaperScissors.ps1 and adding the following statements to it.

F| KEKKEKKKKKKEKKKEKEKKKKKK EKER KKK ER KEK KEKKEK ER ERK RK KKK KKK RKKKKRERERKEKRKKKKEKKKRKKKEKKE

Script Name: RockPaperScissors.psl1 (The Rock, Paper, Scissors Game)

Version: 130

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script challenges the player to beat the

computer in a game of Rock, Paper, Scissors

i KEKKKKKKKKEKKEKK KKK KKK KK EK KEK KKK ERE KEKE KEK EK KEK EKER EKER KEKE KEK EKER EK ERE RERERERE

#Clear the Windows command console screen

Clear-Host

Defining and Initializing Script Variables

Next, let’s define and initialize variables used throughout the script by appending the fol-
lowing statements to the end of the script file.

#Define variables used in this script

$playGame = "True" #This variable controls game play

$randomNo = New-Object System.Random #This variable stores a random object
$number = 0 #This variable stores the numeric version of the

#Fcomputer's move
$guess = 0 #This variable stores the numeric version of the

#player's move

Chapter 6 « Using Loops to Process Data

$playerMove = "" #This variable stores the string version of the

#player's move

$computerMove = "" #This variable stores the string version of the

#tcomputer's move

$noPlayed = 0 #This variable keeps track of the number of games

#played .

$noWon = 0 #This variable keeps track of the number of games won

$noLost = 0 #This variable keeps track of the number of games lost

$noTied = 0 #This variable keeps track of the number of games tied

As you can see, comments were added to document the use and purpose of each variable.

Displaying the Game’s Welcome Screen

The next step is to add the programming statements that are responsible for displaying the

game’s welcome screen. These statements, provided next, should be added to the end of the

script file.

#Display the game's opening screen

Wracecnost 2 non non tt tW ELC OM ET 0. oT HE*

Write-Host "“n'n'n't R Oa cK. PoA-P ECR, Se Las ono Rase 2 Ga RPE

Write-Host ““n'n'n'tt't By Jerry Lee Ford, Jr."
Ce, tL PER So aL PE pee)

n°n Press Enter to continue."

#Pause the game until the player presses the Enter key

Read-Host

Setting Up a Loop to Control Gameplay

The overall execution of the Rock, Paper, Scissors game is controlled by a while loop. To set

it up, add the following statements to the end of the script file.

#Loop until the player guesses the secret number

while ($playGame -ne "False") {

}

As shown above, this loop is set up to execute until the value of $playGame is set equal to

false. This variable is set to true at the beginning of the game and remains that way until

the player later decides to stop playing by entering Q (for quit) when prompted to play

Windows PowerShell Programming for the Absolute Beginner

another round. The rest of the statement that makes up the Rock, Paper, Scissors game will

be added to this loop, with the exception of the statements that display game statistics at

the very end of the game. ie

Generating the Computer’s Move

As has been the case with previous game scripts, a random number must be generated. This

time, the random number will be used to select the computer move each time a new round

of play occurs. The statements responsible for generating this random number and for asso-

ciating that number with a specific move are shown in the following code, and should be

added to the beginning of the while loop (after the opening curly brace) that you created in

the previous section.

#Generate the game's random number (between 1 - 3)

#Value assignment: 1 = Rock, 2 = Paper and 3 = Scissors

$number = $randomNo.Next(1, 4)

#Translate the computer's move to English

if ($number -eq 1) {$computerMove = "Rock"}

if ($number -eq 2) {$computerMove = "Paper"}

if ($number -eq 3) {$computerMove = "Scissors"}

As you can see, the game generated a number in the range of 1 to 3. A value of 1 will repre-
sent a move of Rock. A value of 2 will represent a move of Paper, and a value of 3 represents
a move of Scissors.

Prompting the Player to Make a Move

Next, the game needs to prompt the player to make a move, which is accomplished by
appending the following statements to the end of the game’s main while loop, just before
the closing curly brace.

#Prompt the player to guess a number

while ($guess -eq "") {

Clear-Host #Clear the Windows command console screen

#Display instructions

Write-Host "“n°n"

Write-Host " Enter one of the following options: *n"

Write-Host * ————_____—_-*,"

Chapter 6 « Using Loops to Process Data

Write-Host "

Write-Host "

Write-Host " Scissors"

Write-Host " Quit*n"

write-nost. © —————_———_——-: * henna nn nnn nn"

Rock"

= Paper"

Dn VT DW

ll

#Collect the player's guess

$guess = Read-Host " Make a move"

}

Here, another while loop has been set up that prompted the player to enter one of four

menu options. The player’s input is then stored in a variable named $guess.

Validating the Player’s Move

After the player has responded to the prompt to make a move, the game needs to validate

the player’s input to ensure that it is valid. This is accomplished by appending the following

statements to the end of the game’s main while loop.

#tvalidate the player move

if ($guess -eq "Q") { #Player has decided to quit playing

Clear-Host #Clear the Windows command console screen

Write-Host "“n'n"

Write-Host " Game over. Thanks for playing Rock, Paper, Scissors."
Se eer Veet era ee A en sat IL Fa, nL TP TER OPP.

Weite-Host “nen nn nn an ann oe nnn A pn"

Write-host " Press Enter to view game stats and quit the game."

Read-Host #Pause while the player reads the screen

$playGame = "False" #Set variable to false indicating the game is over

continue #Skip the remainder of the loop

} i.

elseif (($guess -ne "R") -and ($guess -ne "P") -and ($guess -ne "S")) {

Clear-Host #Clear the Windows command console screen

Windows PowerShell Programming for the Absolute Beginner

Write-Host "“n*n*n Invalid input. Please try saath r

Read-Host #Pause while the player reads the screen :

$guess = "" #Clear out the player's previous guess

continue #Skip the remainder of the loop

}

Here, an if statement has been set up to determine if the player entered a value of Q or q. If

this is the case, a message is displayed thanking the player for playing the game and then

the value of $playGame is set equal to false. This signals the player’s decision to halt game-

play. Next, a continue command is executed, halting the current execution of the loop.

If the player did not enter Q when prompted to make a move, an elseif statement is then

executed in order to determine whether the player entered an R, a P, or an S (ie., a valid

move). If the player did not enter a valid move, an error message is displayed asking the

player to try again and the value of $guess is set to an empty string to ready the game for

another guess. Finally, the continue command is executed, forcing a new iteration of the loop.

Assuming that the player entered a valid move, the code in this if statement and its associ-

ated elseif statement is skipped and processing continues with the code statements out-

lined in the next section.

Translating the Player’s Move

Next, add the following statements to the end of the game’s main while loop. These state-

ments will execute only if the statements defined in the previous section have validated the

player’s move.

#Translate the player's move to English

if ($guess -eq "R") {$playerMove = "Rock"}

if ($guess -eq "P") {$playerMove = "Paper"}

if ($guess -eq "S") {$playerMove = "Scissors"}

As you can see, these statements consist of three if statements that assign a value of Rock,
Paper, or Scissors to the $playerMove variable based on the player’s move (as specified by the
value of $guess).

Chapter 6 « Using Loops to Process Data

Displaying the Computer’s and Player’s Moves

The next set of statements, which should be added to the end of the script’s main while loop,
begin the process of displaying the results of the current round of play. Specifically, they use

the Write-Host cmdlet to display the value of the $computerMove and $playerMove variables,

thus displaying the moves attributed to the computer and player.

Clear-Host #Clear the Windows command console screen

Write-Host " “n*n°n Results: *n"

Write-Host " ae ens 7"

Write-Host " The computer picked: $computerMove*n"

Write-Host " You picked: $playerMove*n"

cenGs~ oo

$noPlayed += 1 #lIncrement count by 1

In addition to displaying the moves made during the current round of play, the last state-

ment shown above incremented the value of $noPlayed. This variable is used to keep track of

the total number of rounds played since the Rock, Paper, Scissors game was started.

Analyzing the Results of Gameplay

Next, the game needs to figure out whether the player has won, lost, or tied the game and

then display the results of this analysis, which is accomplished by adding the following

statements to the end of the script’s main while loop.

switch ($computerMove)

{

"Rock" { #The computer picked rock

if ($playerMove -eq "Rock") {

$noTied += 1 #Increment count by 1

Write-Host " You tie!"

if ($playerMove -eq "Paper") {

$noWon += 1 #Increment count by 1

Write-Host " You win!”

Windows PowerShell Programming for the Absolute Beginner

if ($playerMove -eq "Scissors") {

$noLost += 1 #Increment count by 1

Write-Host " You lose!"

"Paper" { #The computer picked paper

if ($playerMove -eq "Rock") {

$noLost += 1 #Increment count by 1

Write-Host " You lose!"

if ($playerMove -eq "Paper") {

$noTied += 1 #Increment count by 1

Write-Host " You tie!"

if ($playerMove -eq “Scissors") {

$noWon += 1 #Increment count by 1

Write-Host " You win!"

"Scissors" { #The computer picked scissors

if ($playerMove -eq "Rock") {

$noWon += 1 #Increment count by 1

Write-Host " You win!"

if ($playerMove -eq "Paper") {

$noLost t= 1 #Increment count by 1

Write-Host " You lose!"

if ($playerMove -eq “Scissors") {

Chapter 6 * Using Loops to Process Data

$noTied += 1 #Increment count by 1

Write-Host " You tie!"

}

##Pause the game until the player presses the Enter key

Read-Host

As you can see, these statements have been organized into three tests by the switch state-

ment. The first test checks to see if the computer’s move, as indicated by $computerMove, is

equal to Rock. Likewise, the next two tests examine whether the computer’s move is Paper or

Scissors. Within each of these three tests, three if statements are defined that are respon-

sible for comparing the player’s move, as indicated by $playerMove, to the computer’s move

to determine the results of the current round of play. Based on the results of this analysis,

a message is displayed showing the results. Also, inside each if statement is a statement

that increments the value of the $noTied, $noWon, and $noLost variables as appropriate, thus

keeping track of game statistics.

Resetting Variable Values for a New Round of Play

The last set of statements to be added to the end of the game’s main while loop are outlined

below. These statements are responsible for resetting variable values to their default setting

in order to ready the game for a new round of play.

#Reset variables to prepare for a new round of play

$number = 0 #Reset the computer's guess back to zero

$guess = 0 ##Reset the numeric version of the player's guess

#tback to zero

$playerMove = "" #Reset the string version of the player's guess back

#Hto an empty string

$computerMove = "" #Reset the string version of the player's guess

#tback to an empty string

Displaying Game Statistics

The last task performed by the game before it stops running is the display of statistics collected

during gameplay. The statements that display this information are outlined in the follow-

ing code and should be added to the end of the script file below the main while loop.

188 Windows PowerShell Programming for the Absolute Beginner

##Clear the Windows command console screen

Clear-Host

#Display the game statistics

Write-Host "“n°n°’n Game Statistics *n"

Write-host, *(.=————————— 1) ©

Write-Host "“n Number of games played: $noPlayed"

Write-Host "“n Number of games won: $noWon"

Write-Host "*n Number of games lost: $noLost"

Write-Host ""n Number of games tied: $noTied*n"”

Writesnoste. ——————--——————-*

Write-Host "“n°*n*n’n’n’n'n Press Enter to continue.”

#HPause the game until the player presses the Enter key

Read-Host

##HClear the Windows command console screen

Clear-Host

As you can see, these statements clear the screen and display game statistics, stored in vari-

ables embedded inside a series of strings.

The Final Result

Well, that’s it. At this point your Rock, Paper, Scissors scripts should be ready to run. So, go

ahead and see how it works. If you run into any errors, use the error messages that are dis-

played to locate the area within your script where errors are occurring and then double-

check your typing in order to find out where you may have made a typo or two.

SUMMARY

In this chapter you learned how to set up the execution of do while, do until, for, foreach,

and while loops. Using these loops, you can create and execute programming logic that

repeatedly processes collections of statements in a centralized location in order to process

large amounts of data. Loops also serve as an effective tool for repeatedly executing a series

of commands over and over again—for example, when prompting for and validating user

input. As you have seen, you can also use loops to process data passed through the object

pipeline or stored in arrays. You also learned how to use the break and continue commands

to exercise control over the execution of loops.

Chapter 6 * Using Loops to Process Data

Now, before you move on to Chapter 7, “Organizing Scripts Using Functions,” why don’t you
set aside a little extra time to improve the Rock, Paper, Scissors game by tackling the fol-
lowing list of challenges?

CHALLENGES

1. As currently written, the Rock, Paper, Scissors game is a little cryptic. Consider
adding additional text throughout the game to provide the player with a more
user-friendly experience.

. In addition to the four options displayed at the beginning of each player turn,
consider adding an option that provides the player with access to a help screen

from which players unfamiliar with the Rock, Paper, Scissors game can learn the
rules for playing the game.

. At the end of the game, statistics are displayed that show the player the number

of games won, lost, and tied. In addition to showing the player these raw numbers,
consider doing a little arithmetic and providing the player with some percent-

ages (e.g., the percentage of games won, lost, and tied).

4. Consider providing the user with the ability to display game statistics at any point

during the game. For example, you might provide the player with the ability to

enter S in order to display the game statistics.

* : é

oratak u PORES nt ¢ i ving" & nS oT wots deanna

C: wt?s vo Sole eI? ou. Jed ot veya a a site of apyrtns: ra

i -& Seemgetsilesty 10 eid petheaa” a

a 1) > 5:3 ae : nt

“AE-SHESALT |. Bia SRNR | SERRE. A. a

Vad HSAs A tM §.*', Eek
24% a

athe! av) orth siwantshnoaet Sait eit putas tc a i
; es g “et * «) een 0) jt ee Pes eelticne cuihhe

Pa ‘cn ee ee ee

est cane ” » sande Wi raves Pee ee ee
at ere ot wi ger tae? sag sashes arog saben age” |
rr sha Se re ee ok

’ eee - rr eRe eee kp hihedeadioniee te

. jesse relied ‘ori 5 pao Obi = cat ns cae ater
enc tab ast? polvivaey tine sleet. walls pried

a WL se dbit wow seers to |

es | meng nha aUhU sw tw
: > Dieivers MRR Te, ee q

re ecard ach ateaniaie
on

ae

Pct Sie Weed snielec est ichaahisttia Ota
Best gets, B yore tun (aa gor erred ae ae
eotbnatiereh pelieine $%, ’ z 1 eed es i:

Sante anedubee
oe ittehy - i -

ORGANIZING SCRIPTS
USING FUNCTIONS

ne missing tool in your Windows PowerShell programming arsenal is the

ability to organize your PowerShell scripts into functions. Functions

allow you to write code statements once in a named code block and then

call upon them for execution as many times as necessary from anywhere in your

PowerShell script. By helping to centralize programming logic, functions make

your program code easier to maintain and understand. Functions also affect vari-

able scope, allowing you to further localize variable access, thus helping you to

write tighter code. This chapter will teach you how to work with functions. In

addition, you will also learn how to work with filters, which, although similar to

functions, provide you with a tool for handling large amounts of object pipeline

data more efficiently. You will also learn how to create your next computer game,

the PowerShell Hangman game.

Specifically, you will learn how to do the following:

e Set up functions to perform specific tasks

¢ Develop functions that accept arguments and return a result

° Use functions as a means of limiting scope

¢ Create filters in order to efficiently process object pipeline data

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE POWERSHELL HANGMAN GAME
This chapter’s game project is the PowerShell Hangman game. Although a little different

from the traditional children’s hangman game, this PowerShell game still captures the

spirit of the original. When first started, the game displays the screen shown in Figure 7.1,

welcoming the player and prompting her for permission to start a round of play.

| * Windows PowerShell

| Welcome to the

i PowerShell Hangman Game?

The PowerShell

Hangman game’s | Would you like to play? (¥/ND:

welcome screen.

After getting the player’s permission to start a new round, the game prompts the player to
make a guess, as demonstrated in Figure 7.2.

& Windows PowerShell

Enter a guess:

The player must

enter a single

character guess

and press the

Enter key.

After each guess, the game displays a screen similar to the one shown in Figure 7.3. The
player is given a maximum of 12 guesses to guess the game’s secret word, which is repre-
sented by a series of underscore characters. This screen also lists every valid guess made so
far by the player (invalid guesses, such as numbers and most special characters are not
accepted or counted against the player). This screen also keeps the player informed of how
many guesses she has left.

Chapter 7 « Organizing Scripts Using Functions

¥ Windows PowerShell

Results:

| Letters that have been guessed:

Number of guesses remaining: 11

The player has

missed her first | SonsButater to cont innat
guess.

Figure 7.4 shows how the game might look after the player has made a number of additional

guesses.

| Letters that have been guessed:

FIGURE 7-4 | Number of guesses remaining: 5

The player has

five guesses

remaining to

figure out the | Press Enter to continue:

secret word.

The game rejects guesses consisting of most special characters, numbers, or multiple letters.

For example, Figure 7.5 shows the screen that is displayed in the event the player attempts

to enter more than one letter at a time.

| & Windews PowerShell

Error: You may enter only one letter at a time.

The game

validates all || Press Enter to continue.:

input, displaying
errors explaining

why certain

guesses are not

accepted.

Windows PowerShell Programming for the Absolute Beginner

Gameplay ends when the player guesses the secret word, at which time the screen shown in

Figure 7.6 is displayed, acknowledging the player’s success and informing her how many

guesses were necessary to win.

* Windows PowerShell

Game over. You have guessed the secret word in 1@ guesses.

| The secret word was § PEA KER

The player has

won the game by

guessing the

secret number.

Gameplay also ends when the player runs out of guesses, as demonstrated in Figure 7.7.

| & Windows PowerShell

| Game over. You have exceeded the maximum allowed number of guesses.

| The secret word was BACKYARD

| The best you could do was _ACKYAR_

The player failed

to guess the

game’s secret

word before

running out

of guesses.

CHANGING SCRIPT DESIGN USING FUNCTIONS AND FILTERS
In the last couple chapters you were introduced to a number of different programming con-

structs that you can use to improve the overall organization of your Windows PowerShell

scripts. Using the if and switch statements, you learned how to set up conditional tests and

to group related sets of statements for execution when certain conditions evaluate as being

true. Using the do while, do until, for, foreach, and while loops, you learned how to group

related statements that perform a given task repeatedly, centralizing key programming

logic and reducing the overall number of code statements required to create PowerShell

scripts. Now it is time to learn about functions and filters.

Chapter 7 ¢ Organizing Scripts Using Functions

A function is a named code block that can be executed by referencing its name. When called,
all of the statements inside a code block are evaluated and executed. Functions can accept
arguments and return a result. A filter is very similar to a function. There is nothing that you

can do with a filter that you cannot do with a function. The difference between the two is

that filters are designed to more efficiently process large amounts of object pipeline data.

pint Predefined functions abound in Windows PowerShell. For example, when you

type C: or D: to switch between drives at the Windows PowerShell command

TEP prompt, you are actually executing functions that in turn make calls to the Set -

Location cmdlet.

Improving Script Organization
One of the primary benefits of functions is that they help to reduce the number of lines of

code required to write a script. Functions also facilitate the modular development of scripts

by providing you with the ability to organize code statements into named code blocks,

which can then be executed over and over again from any location within the script file.

Functions make your Windows PowerShell scripts more manageable, providing you with the

building blocks required to create larger and more complex scripts without necessarily

increasing complexity or ending up with tons of code. For example, suppose you were plan-

ning on writing a new PowerShell game that performs the following tasks.

¢ Prompts the player for permission to execute

¢ Displays a welcome screen

e Manages the collection of user input

* Displays a short story incorporating user input

¢ Prompts the player to play again

One way to develop this script would be to begin by defining any variables that are needed

followed by a series of functions, each of which is responsible for managing one of the tasks

outlined above. The rest of the script would then consist of programming logic that calls

upon these functions when needed.

Creating Reusable Code
As has already been stated, functions provide you with a way of improving the organization

of your PowerShell script files by letting you group related sets of code statements together

and then making them callable from any location within the script.

Windows PowerShell Programming for the Absolute Beginner

| strongly suggest that you use functions as the primary organizational tool

within all your Windows PowerShell scripts. Using functions to organize script

files, you can break things down into smaller and more easily manageable units.

This will help you to separate your programming logic into discrete modules,

which can be created and tested a unit at a time.

Perhaps the biggest benefit provided by functions is their ability to assist you in the devel-

opment of reusable code. As a general rule, anytime you find that you need to perform a

given task more than once, such as retrieving random numbers each time a new round of

gameplay is started, it is probably a good candidate for inclusion in a function. Once created,

you can call upon a given function as many time as necessary, using a single calling state-

ment, thus facilitating code reuse and resulting in a leaner and meaner PowerShell script.

ENHANCING SCRIPT ORGANIZATION WITH FUNCTIONS

Using functions, you can break down your Windows PowerShell scripts into manageable

blocks of code, calling on each block as appropriate. Functions provide you with the building

blocks required to build modular code, thus facilitating code maintenance. Code testing is

also simplified because, using functions, you can develop your PowerShell script in small

chunks, each of which can be individually tested and verified. Functions also result in smaller

scripts. Smaller scripts are easier to understand and maintain. After all, it is a lot easier to

modify statements located in a single function than it would be to modify that same set of

statements if they were instead used over and over again in different parts of a script file.

Function Structure

In its simplest form, a function consists of the keyword function, followed by the name

assigned to the function and then a code block, as demonstrated here.

function Write-Greeting {

Write-Host "Hello World!"

Unlike variables, there are no hard and fast rules that you must follow when
naming functions. However, it is a good idea to assign descriptive names to your
functions that help identify a function’s purpose. In this book, you see that |
have elected to follow a function naming scheme that mimics the naming
scheme used by cmdlets. Specifically, functions are assigned names that begin
with a verb, followed by the - character and then a noun. | suggest that you
develop your own naming scheme and then stick to it in all your Windows
PowerShell scripts. This will help to make you code easier to read and manage.

Chapter 7 * Organizing Scripts Using Functions

Here, a function named Write-Greeting has been created. When called, this function uses

the Write-Host cmdlet to display a text string. Of course, you can include as many state-

ments as you want within a function’s code block. You can execute this function from any-

where within the PowerShell script where it has been added by specifying its name, as

demonstrated by the following.

function Write-Greeting {

Write-Host "Hello World!"

Write-Greeting

Here, a function is defined and initialized and then executed by specifying its name.

pint | recommend that you define all your functions in a central location, at the

beginning of your PowerShell script files. This will ensure that all your func-

TP tions are defined and initialized before they are called upon. It will also help to
make your program code easier to read and will make things a lot easier to find.

As such, | suggest you modify your Windows PowerShell script template as

shown here.

i KKKKEK KEKE KKK KEKEKEK EKER ERE RE KK KR KK ER KEKERER ERR EKER EKRE KERR KERR KEREREEKE

Script Name:

Version:

Author:

Date:

Description:

i SKK KKK KEKE KKK KKK KKK KEKE KKKKRKRKKKKREKERRKE REE KER KEE RREREK ER KEKRERERERER

initialization section

functions and filters section

main processing section

Windows PowerShell Programming for the Absolute Beginner

As you can see, | have added three additional sections to thé script template.

The initialization section identifies the location within the script where script-

level variables should be defined and initialized. The functions and filters section

identifies the Location where any functions and filters will be defined. The main

processing section identifies the location where the script’s controlling logic

should be placed.

Going forward, this modified version of the template will be uSed in the devel-

opment of the book’s game scripts.

Processing Arguments
Although there is plenty of value in being able to organize groups of related statements into

named code blocks in order to be able to repeatedly execute them as a unit, functions are

even more useful when you set them up to process inputs passed to them as arguments. For

example, in the next section you will learn how to set up a function that adds together any

two numbers that are passed to it. Functions can also process output generated by cmdlets.

qnict By developing functions that accept and process inputs, referred to as arguments,

Ke you make the functions independent of the PowerShell script in which they

— reside. Therefore, you can copy and paste a function into another PowerShell

script and use it without modification, as long as it still gets called and passed

the appropriate inputs in its new script. This facilitates code reuse and over time

you should be able to develop a small library of functions, which you can use as

building blocks in the development of your Windows PowerShell scripts. This

should enable you to work smarter and faster by saving you the trouble of rein-

venting the wheel each time you start a new development project.

Passing Arguments

Windows PowerShell provides you with several different ways of passing arguments to
PowerShell scripts. One way is to specify parameters representing each argument in a comma-
separated list, enclosed in parentheses, immediately after the function name, as demon-
strated by the following.

function Add-Numbers ($x, $y) {

$z = $x + $y

Write-Host "$x + $y = $z"

Chapter 7 * Organizing Scripts Using Functions

In this example, a function named Add-Numbers has been defined that accepts two arguments,

$x and $y, which it then adds together. When this function is called for execution some-

where within a PowerShell script, you must pass two arguments that correspond to the two

parameters required by the function. You pass these arguments in much the same way that

you pass data to cmdlets, as demonstrated here.

Add-Numbers 3 4

When executed, this statement calls on the Add-Numbers function, passing it a value of 3 and 4.

The function would then execute, displaying the results shown here.

3+4=7

Another option for setting up functions to accept arguments is to use the param keyword to

define each argument. When used, the param keyword must be the first word specified

inside the function’s code block. Arguments accepted by the function must be specified as

parameters, separated by commas, all of which are enclosed within parentheses, as demon-

strated by the following.

function Add-Numbers {

param ($x, $y)

$z = $x + $y

Write-Host "$x + $y = $z"

}

This function can be called from anywhere within the PowerShell file in which it is defined,

as demonstrated here.

Add-Numbers 1 6

When executed, the Add-Numbers function generates the results shown below.

1+6=/7

qnick Like many cmdlet parameters, function parameters are positional and named.

This means that you can pass arguments to functions as comma-separated Lists,

provided that you arrange the arguments in the list to match up correctly with

corresponding parameters defined in the function, or you can pass arguments

by specifying the name of a parameter followed by the argument to be passed

to that parameter. For example, the following statement demonstrates how to

pass arguments to the Add-Number function by position.

Add-Numbers 2 2

Windows PowerShell Programming for the Absolute Beginner

Likewise, the following example demonstrates how to pass arguments to the

Add-Numbers function by name.

Add-Numbers -x 2 -y 2

A function can also access arguments passed to it via the $args special variable. The $args

variable is an array that is automatically populated with a list of all incoming arguments

that have been passed to the function, as demonstrated in the following example.

function Add-Numbers {

$z = $args[0] + $args[1]

Write-Host "The total of all arguments passed is $z"

}

Here, the Add-Numbers function has been modified to reference two arguments that it

expects to receive as $args[0] and $args[1]. For example, if called by this statement

Add-Numbers 2 5

this new version of the Add-Numbers function would generate the following output.

The total of all arguments passed is 7

Since $args is an array, you can process it using a foreach loop, as demonstrated here.

function Add-Numbers {

foreach ($i in $args) {

$z += $i

Write-Host "The total of all arguments passed is $z"

}

This version of the Add-Numbers function can be called and passed any number of arguments,
as demonstrated by the following.

Add-Numbers 1 6 3 5 4

Chapter 7 + Organizing Scripts Using Functions

Using its foreach loop, the Add-Numbers function will total up each argument passed to it and
display a result similar to that shown here.

The total of all arguments passed is 19

While you can use either the param keyword or $args special variable to access
argument data passed to functions, | suggest that you stick with the param key-
word since it requires that you explicitly identify each incoming argument, mak-
ing your code easier to read and understand.

Specifying Argument Data Type

Windows PowerShell also allows you to specify the data type of parameters in order to

ensure that only values of a specific data type are accepted. This is accomplished by speci-

fying the required data type as part of the parameter definition, as demonstrated here.

function Add-Numbers {

Param (Lint]$x, [Cint]$y)

$z = $x + $y

Write-Host "$x + $y = $z"

}

In this example, [int] was pre-appended to the beginning of each parameter definition in

order to specify that both parameters accept only integer arguments. To see how this works,

you could create this function and then call on it to execute using the following statement.

Add-Numbers -x 2 -y 2

Next, you might try calling on the function using the following statement.

Add-Numbers -x A -y 2

In response, the following error message will be displayed.

Add-Numbers : Cannot convert value "A" to type "System.Int32". Error: "Input st

ring was not in a correct format."

At C:\MyScripts\xxx.ps1:14 char:15

+ Add-Numbers -x <<<< A -y 2

As you can see from the text of the error message, Windows PowerShell was not able to con-

vert the argument of A to an integer as required by the function. Now, if you were to go back

and remove the integer requirement for both of the function’s parameters, you could call

Windows PowerShell Programming for the Absolute Beginner

on the function as shown next and this time you won’t see an error message. Instead,

PowerShell appends both arguments together.

A+ 2 = h2

Windows PowerShell supports a wide range of data types. Table 7.1 lists a number of these

data types. You can specify any of these data types when defining function arguments.

TABLE 7.1 Windows PowERSHELL DATA TYPES

Data Type Data Type

[array] [hashtable]

[bool] [int]

[byte] [long]

[char] [single]

[decimal] [string]

[double] [switch]

[float]

Assigning Default Values to Arguments

Windows PowerShell also allows you to assign default values to function arguments, thus

initializing a default value that will be used in place of an argument when that argument

is not passed as expected to the function. For example, the Add-Numbers function, shown next,

has been modified to assign a default value of zero to both of its parameters.

function Add-Numbers {

Param (Lint]$x = 0, [int]$y = 0)

$z = $x + $y

Write-Host "$x + $y = $z"

}

If you were to call on this version with the Add Numbers function as shown below, Windows

PowerShell would assign 2 as the value of the $y parameter and 0 as the value of the $x para-
meter.

Add-Numbers -y 2

Chapter 7 * Organizing Scripts Using Functions

When called as shown, the Add-Numbers function generates the following output.

G+ 2=2

Processing Incoming Data
Functions get access to pipeline data through a special variable named $input. This variable

is automatically populated with all incoming pipeline objects before the function begins to

execute. If necessary, Windows PowerShell will delay the execution of a function until all

incoming pipeline object data has been collected.

As an example of how to access incoming pipeline object data, consider the following example.

function Get-FileNames {

$input | Where-Object {$_.Name -ne "WINDOWS" } | Sort-Object

}

Here, a function named Get-FileNames has been defined. The function uses the $input vari-

able to collect any data passed to the function via the object pipeline. This data is then

passed down the pipeline to the Where-Object cmdlet. The Where-Object cmdlet then filters

out any object reference to a folder named Windows. Any remaining object data is then

passed to the Sort-0bject cmdlet.

Before running the preceding example, you need to change the current working directory

to the root of your C: drive where the Windows folder resides using the Set - Location cmdlet,

as demonstrated here.

Set-Location C:\

To run the function and insert it into the object pipeline, you could type the following state-

ment. It executes the Get-ChildItem cmdlet and then pipes its output to the Get-Filenames

function.

Get-ChildItem | Get-Filenames

When executed, the function will display output similar to the following.

Directory: Microsoft.PowerShell.Core\FileSystem: :C: \

Mode LastWriteTime Length Name

d-— 3/28/2006 1:56 PM MyModules

St he 4/10/2003

di 4/20/2006

aa 4/10/2003

= 4/10/2003

7a 10/11/2004

ee 9/8/2006

maar 10/15/2006

ene 6/4/2003

do 9/5/2005

ee 9/18/2005

oe 3/28/2006

c 10/15/2006

<a=* 2/20/2006

d= 9/15/2005

Cr 10/24/2005

"a-* 6/24/2005

Gat 9/9/2006

Bl aes 3/25/2005

d— 2/26/2006

d— 10/8/2006

d= 9/18/2006

Gq 10/6/2003

-a-* 10/15/2006

Returning a Result

1:19 AM

12:02 PM

1:19 AM

1 ane \

9:01 PM

8:16 PM

7:59 AM

8:58 PM

10:21 PM

4:28 PM

1256 0PM

11:47 AM

1:52 PM

9:04 PM

11:48 PM

9:39 PM

5:10 PM

3:29 PM

3:25 PM

2:49 PM

2:01 PM

10:20 PM

11:57 AM

1810432

119583

1801287

i323

584

108

0

Windows PowerShell Programming for the Absolute Beginner

AUTOEXEC.BAT ~

cgi-bin

.. CONFIG.SYS

Documents and Settings

ffastunT.ffl

hegames

hpfr5100.1og —
1386

ICON Collection

MyApplication

MyModules

MyScripts

net_save.dna

NVIDIA

Per]

Plugins

Program Files

PS;.PS

REALbasic CR-ROM

temp

TextFiles

Westwood

yyyy.txt

PowerShell functions are capable of returning data back to calling statements. This is

accomplished by setting a variable to the value you want to return and then making a ref-

erence to that variable in the last statement executed by the function, as demonstrated in

the following example.

function Add-Numbers {

Param (Lint]$x = 0, [int]$y = 0)

$result = $x + $y

$Result

Chapter 7 * Organizing Scripts Using Functions

In this example, the Add-Numbers function takes two integer values passed to it as arguments
and adds them together. It then returns this result back to the statement that called it by
assigning the value to be returned to the $resu1t variable, which is then referenced against the
last statement executed by the function. The following statements demonstrate how to execute
this version of the Add-Numbers function and then retrieve and display the data that it returns.

$x = Add-Numbers 2 2

Write-Host © 2 ta2ame$x"

When called, the function is passed arguments of 2 and 2. Once executed, the function

returns a value of 4, which is then assigned to the $x variable in the statement that executed

it. The proof that everything worked as expected is provided when the second statement

shown above executes and displays the following output.

2+2=4

Restricting Variable Scope
Up to this point in the book, all the examples that you have seen of variable usage have

involved the use of script-level variables, meaning that once defined, the variables could be

referenced from any location within your PowerShell scripts. However, now that functions

have been introduced, things are going to change.

As was discussed in Chapter 4, access to variables is restricted by scope. Within a PowerShell

script, any variable defined outside of a function is a script-level variable. Script-level variables

are also local variables to all parts of the script file residing outside of functions. However,

functions can still access script-level variables using a modified variable reference that

includes the script label. Specifically, script-level variables can be accessed directly by name

from any function defined within the script using the following syntax.

$JocalVariable = $script: variab]leName

pint Script-level scope is established each time a Windows PowerShell script is exe-

trp cuted and ends when the script stops running.

Here, $/0ca] Variable is the name of a new variable that is local to the function in which it

is defined. $script identifies the resource being referenced as a script-level variable and

variableName specifies the name assigned to the variable. For example, in the following

example, a script-level variable named $userName has been defined. Next, a call is made to a

function named Get-UserName. Within the function, the $userName variable is referenced and

assigned a value using the Read-Host cmdlet.

Windows PowerShell Programming for the Absolute Beginner

$userName = ""

function Get-UserName {

$script:userName = Read-Host "What is your name?"

Get-UserName

Write-Host "Hello $userName"

Variables can also be defined within functions. In this case, any such variables are local in

scope to the function. If you want, you can restrict access to these variables by declaring

them as private. Variables with a private scope can only be accessed within their current

scope. Therefore, a variable declared within a function that has a private scope can only be

accessed within its function, as demonstrated below.

function Get-UserName {

$private:x = Read-Host "What is your name?"

Write-Host "Hello $x"

Get-UserName

In this example, a variable named $x is declared inside the Get-UserName function and
assigned a value supplied by the user. The value of $x is then displayed by using the
Write-Host cmdlet, which also resides inside the function. When executed, the name supplied
by the user is displayed. For example, if the user entered William, the following output
would be displayed.

Hello William

However, if you were to modify this example by moving the Write-Host statement outside of
the function as shown below, the user’s name would not be displayed since $x has a private
scope and exists only within the function where it is defined.

function Get-UserName {

$private:x = Read-Host "What is your name?"

Chapter 7 + Organizing Scripts Using Functions

Get-UserName

write-Host "Hello $x"

When executed, this example displays the following output, regardless of the name entered

by the user:

Hello

qRAP Note that even though the value of $x does not exist outside of the script in
which it was defined, the preceding example will not generate an error because

Windows PowerShell does not force programmers to formally declare and ini-

tialize variable values prior to using them. While this may cause unexpected

problems in most scripts, in the preceding example this behavior allowed the

graceful transition.

REPLACING FUNCTIONS WITH FILTERS

A filter is very much like a function, except that instead of waiting for all incoming data to

be received and stored in $input, filters have immediate access to incoming data as it

becomes available via the $_ variable. Filters are structured exactly like functions, except

that the filter keyword is specified in place of the function keyword, as demonstrated by

the following.

filter Get-OddEven {

$x =$ % 2

if ($x -eq 1) {

$result = "Odd"

}

else {

$result = "Even"

}

$result

}

In this example, a filter named Get-OddEven has been created that determines whether a

number is odd or even. This filter takes any numeric value passed to it and divides it by two

using the modulus operator (2). If the result of this operation yields a value of one, then the

value passed to the function was an odd number; otherwise, it was an even number.

Windows PowerShell Programming for the Absolute Beginner

If called by the following statement

@(5, 4, 6) | Get-OddEven

the Get-OddEven function will display the following output.

Odd

Even

Even

In reality, filters and functions are pretty much equivalent. The difference is that filters are

able to act upon pipeline object data as soon as it becomes available through the $_

special variable, whereas functions have to wait for all incoming pipeline data to arrive and

populate the $input variable before processing. To process a large list of data objects stored

in the $input variable, you will usually have to set up a loop inside a function in order to

iterate through each object. Filters also eliminate any need to use loops to process incoming

data. As a result of these differences, filters can be more efficient and result in faster pro-

cessing than functions when large amounts of data are being passed through the object

pipeline.

Often, you can forego the creation of custom filters and instead used the Foreach-Object and

the Where-Object cmdlets to filter data from the object pipeline. However, while these

cmdlets are sufficient for simple operations, to perform complex logical operations on

pipeline data you will need to set up a filter.

BACK TO THE POWERSHELL HANGMAN GAME

Okay, it is time to turn your attention back to the chapter’s main game project, the Power-

Shell Hangman game. The PowerShell Hangman game is a word-guessing game in which the

player is challenged to guess a randomly selected secret word, a letter at a time. To win,

the player must guess each letter in the word in 12 guesses or fewer.

The overall construction of the PowerShell Hangman game will be completed in 10 steps, as
outlined here.

. Create a new script file using the PowerShell script template.

. Define and initialize game variables in the initialization section.

Define functions located in the functions and filters section.

. Prompt the player for permission to play the game.

. Create a loop to control overall gameplay.

num FW nN . Randomly select the game’s secret word.

Chapter 7 * Organizing Scripts Using Functions

7. Create a loop to control the collection and analysis of player input.

8. Collect and validate player guesses.

9. Display the result of each guess.

10. Determine when the game is over.

11. Challenge the player to play again.

Creating a New Script
The first step in the creation of the PowerShell Hangman game is to create a new script file

named Hangman.ps1 using the new version of the Windows PowerShell script template, as

shown below.

j| KKKKKKKKEKKKEKKEKKKEKKKKKERKERKEKR KEK ERK ERK ERERERERERRERERRERERRKEREKRKRRKERER

Script Name: Hangman.psl (The PowerShell Hangman Game)

Version: 1.0

Author: Jerry Lee Ford, Jr.

Date: January 1, 2007

Description: This PowerShell script challenges the player to play

i a computer version of Hangman

i KKKKKKKKKK KEKE ERE RE KERR REE KEEREREKERERERER ERR ERE RERERKKER EK EKEERERERERERERE

initialization section

functions and filters section

main processing section

Defining and Initializing Script-Level Variables

The next step in the creation of the PowerShell Hangman game is to define and initialize

script-level variables. This is accomplished by adding the following statements to the ini-

tialization section of the script file.

Define variables used in this script

$playGame = "False" #Controls gameplay and when to stop gameplay

$randomNo = New-Object System.Random #This variable stores a random object

Windows PowerShell Programming for the Absolute Beginner

$response = "" #Store the player's input when prompted to play a ganre

$number = 0 #Stores the game's randomly generated number

$secretWord = "" #Stores the secret word for the current round of play

$attempts = 0 #Keeps track of the number of valid guesses made

$status = "True" #Controls the current round of play

$guesses = "" #A list of letters by the player during gameplay

$reply #Stores player letter guesses

$tempstring #Stores a display string with hidden characters that is used

##to represent the secret word during gameplay

$validReply #Stores the player's response when prompted to play a new game

$rejectList = '~!@#$%*&-_={}]|\:;",.2/<>' #String listing unacceptable input

$GuessesRemaining #Keeps track of the number of guesses the player has left

##Create an Associative array and load it with words

$words = @{}
$words[0] = @("", "7, "™, 8h, mH nH ome owe ome ome oe ee me me)

eonace = eC", "0°, “M"0 7M", “AT CN, “O", PEt Ae RD

$words[2] = @("F", “L", "A", °G")

Byrds tes Vo Oe ce ol) A cule Soe Ls ae Bone matted

Swords, 4] = @(°Me SAM “Reet Kae SER)

BeOS OL UGC tl tC’, "To, “Ue oR. Se

Swords(6] = @("D", "E", “S", "K*)

Sorc Aa= 6G, Ly Obs ee

Swords(ol- = @(°S™,. SPY, PTEt Pe AME Ks TENET R")

SyOrds lS) el Bei A oh C Sen Kiet Veit A eR at

SWOrLS Oem OOPS: “El, PENT 2G" RL ath)

Comments have been added that describe the use and purpose of each variable. Take note

of the $words array, which is used to store 10 words from which the game will randomly

select each time a new game is played. Each element in the $words array is actually an array

itself whose elements consist of the letters that spell out a given word. Also note that

$words[0] contains a list of 10 empty strings and not the letters of a game word. This array

is used later in the script to keep track of correct player guesses.

Defining Custom Functions
The PowerShell Hangman game has one custom function, shown next, that you need to add

to the functions and filters section of the script file. The function’s name is Check-Answer

and, as its name implies, its job is to determine whether the player’s guess is correct.

Chapter 7 + Organizing Scripts Using Functions @11)

#This function determines if the player's guess is correct or incorrect

function Check-Answer {

param ($reply) #Argument containing the player's guess

#Access script-level variable representing valid users guesses and

#fadd the current guess to it

$script:guesses = $script:guesses + " " + $reply

#HLoop through each letter in the secret word (e.g., each element in the

#farray) and see if it matches the player's guess

for ($i = 0; $i -le $secretWord.length - 1; $i++) {

if ($secretWord[$i] -ne $reply) { #The guess does not match

#Place an underscore character into $word[0] in place of the letter

if ($words[OJ[$i] -eq "") {$words[OJ[$i] = "_"}

}

else { ##The guess matches

#Place the letter being guessed into $word[0]

$words[O][$i] = $reply

}

}

This function begins by defining a parameter named $rep]y, which will be used to store the

player’s most recent guess. The first thing this function does after being called is append the

letter being processed ($reply) to a script-level variable named $guesses. $guesses is used to

store a string containing all of the guesses made by the player and is displayed later in the

game to remind the player of the number of guesses that have already been made.

Next, a for loop is set up to iterate through the contents of an array named $secretWord.

This array is populated later in the script file with a copy of all the letters that make up the

game’s randomly selected secret word. The loop iterates through each letter (array element)

that makes up the secret word. If the loop finds a letter in the secret word that matches the

player’s guess, it writes that to the corresponding array element in the $word[0] array. Thus

all of the letters that make up the game’s secret word are represented by the _ characters

and since letters are guesses, the appropriate _ character is replaced by letter guessed by

the player.

@12) Windows PowerShell Programming for the Absolute Beginner

Prompting the Player to Start the Game
Before starting a new round of play, the game requires that the player give it permission to

do so. This is accomplished by adding the following statements to the beginning of the

script file’s main processing section.

#Prompt the player to guess a number

while ($playGame -ne "True") {

Clear-Host #Clear the Windows command console screen

#Display the game's opening screen

Write-Host "“n*n°n‘n"

" Welcome to the write-Host

Write-Host

Write-host

Write-host

Write-host

Write-host

Write-host

Write-host

Write-host

Write-host

PowerShell Hangman Game!

#Collect the player's guess

$response

#validate the player's input

if ($response -eq "Y"){

$playGame = "True"

}

elseif ($response -eq "N") {

Clear-Host

Write-host " “n°n Please return and play again soon."

Read-Host

exit

}

else {

Clear-Host

KAR KEEN

& *"

0 +

aris ig

| .
i \ *5

“”"

”

”

RKKKKKKN

Read-Host "“n*n*n*n*n*n*n*n Would you like to play? (Y/N)"

Chapter 7 * Organizing Scripts Using Functions @13)

Write-Host "‘n*n Invalid input. Please press Enter try again."

Read-Host

}

As you can see, this part of the script is controlled by a while loop that iterates until the value

of $p]ayGame is set equal to true. Within the loop, a text-based graphic showing the hangman

character is displayed and the player is prompted to enter a value of Y or N. If the player

responds by entering Y, the value of $playGame is set to true, and as a result, the while loop

ends and the rest of the script is executed.

If the player responds instead by entering N, the exit command is run, thus terminating the

execution of the game. If the player responds by entering anything else, the loop runs again

to prompt the player to enter a valid selection.

Setting Up a Loop to Control Gameplay
The rest of the script is controlled by a while loop that executes until the player decides to

end the game. The statements that make up this loop are shown next and should be

appended to the end of the script’s main processing section. The rest of the statements that

make up this script will be embedded within this loop.

#Prompt the player to guess a number

while ($status -eq "True") {

Selecting a Secret Word
The next step in the development of the PowerShell Hangman game is to embed the follow-

ing statements in the script’s main loop.

#fReset variables at the beginning of each new round of play

$tempString = ""
SURRdSLOT TT eu SSreMLeS) fee Genk mercee) es ose ut oee one ee se)

$attempts = 0

$guesses = ""

$reply = ""

Windows PowerShell Programming for the Absolute Beginner

#HGenerate a random number between 1 and 10

$number = $randomNo.Next(1, 11)

$secretWord = $words[$number] #Populate an array with the letters that

#imake up the game's secret word using the

#trandom number to specify the array index

A new round of gameplay begins each time this loop iterates. When this happens, numer-

ous variables need to be reset to their default values to get the game ready. Also, a random

number must be generated and used to select a new word for the player to guess.

Setting Up a Loop to Process User Guesses
Next, another loop needs to be set up to collect and process the player’s guesses. The code

statements that perform this task are shown next and should be embedded inside of the

game’s main loop, immediately after the last set of statements that you entered.

#Create a loop to collect and analyze player input

while ($reply -eq "") {

Collecting and Validating User Input
Next, you need to add the statements that are responsible for collecting and validating

player input. These statements are shown next and should be embedded within the previous
while loop.

Clear-Host ##Clear the Windows command console screen

$reply = Read-Host "“*n*n Enter a guess" #Collect the player answer

if ($reply -eq "") { #If an empty string was submitted, repeat the
continue #loop

#It is time to Validate player input

if ($reply.Length -gt 1) { #Limit input to one character at a time

Chapter 7 » Organizing Scripts Using Functions @13)

Clear-Host #Clear the Windows command console screen
Write-Host "“n*n Error: You may enter only one letter at a time."

Read-Host "“*n*n*n*n*n*n*n*n*n'n’n Press Enter to continue."

$reply = "" #Clear out the player's input

continue #Repeat the loop

}

$reply = [int]$reply #See if the user's guess can be converted to an

#integer

if ($reply.GetTypeCode() -ne "String") { #Numeric input is not allowed

Clear-Host #Clear the Windows command console screen

Write-Host "*n*n Error: Numeric guesses are not allowed.”

Read-Host "“n*n*n*n*n*n*n*n*n*n*n Press Enter to continue."

$reply = "" #Clear out the player's input

continue #Repeat the loop

if ($rejectList -match $reply) {

Clear-Host #Clear the Windows command console screen

Write-Host "“n°n Error: Special characters are not permitted."

$reply = "" #Clear out the player's input

continue #Repeat the loop

Clear-Host #Clear the Windows command console screen

$attempts++ #0nly increment for good guesses

The loop begins by prompting the player to enter a guess (i.e., a letter). The player’s input is

then assigned to a variable named $reply. A check is made to ensure that the player did not

respond by simply pressing the Enter key. If this is the case the continue command is exe-

cuted and the loop iterates and runs again.

Windows PowerShell Programming for the Absolute Beginner

pint Take note of the expression evaluated as the condition for the last two if state-
ments. The first of these two if statements uses the GetTypeCode() method.

TP This method retrieves the data type associated with a given resource. The

second of these two if statements uses the -match comparison operator to

determine whether the value of $reply can be found anywhere within the
values stored in $rejectList. You will learn more about the -match operator in

Chapter 8, “Working with Files and Folders.”

Next, a series of if statements is executed. Each if statement is responsible for helping to

validate a different aspect of the player’s input. The first if statement executes the continue

command if it finds that the player entered two or more characters as input. The second if

statement checks to see if the player entered a number instead of a letter. Note that just

before the second if statement executes, the value of $reply is converted to an integer

(Lint]$reply). If the conversion is successful, the if statement executes and the player is

informed that numeric input is not allowed. Otherwise, the second if statement’s code

block is skipped. The third if statement checks to see if the player entered a special charac-

ter instead of a letter. A list of special characters is stored in $rejectList. If a special char-

acter is found, the continue command is executed.

If none of the three if statements finds a problem with the player’s input, the player’s guess

is considered to be valid and the value of $attempts is incremented by 1. Note that since each

if statement’s code block executes the continue command when invalid input is found, the

value of $attempts is not incremented for these guesses and thus the guesses do not count

against the player.

Displaying the Results of Each Guess
Once a valid guess has been made, the game needs to process it and display the information
showing the player the current status of the game. This is accomplished by adding the fol-
lowing statements to the bottom of the previous while loop, immediately after the last set
of statements that you just added.

#Now that player input has been validated, call on the Check-Answer

#function to process the input

Check-Answer $reply

$tempString = "" #Clear out this variable used to display the

#current state of the word being guessed

#Loop through $words[0] and create a temporary display string that

#tshows the state of the word being guessed

Chapter 7 + Organizing Scripts Using Functions @17)

for ($i = 0; $i -le $words[0].length - 1; $i++) {

$tempString = $tempString + " " + $words[O][$i]

}

#Display the current state of the secret word based on the input

#tcollected from the player

Write-Host "“n*n Results: *n"

Write-Host " ———————_n"

Write-Host " $tempString*n"

Write-Host *" ———————————_————‘n‘n"

Write-Host " Letters that have been guessed: $guesses*n"

#Calculate the number of guesses that the player has left

$GuessesRemaining = (12 - $attempts)

#Display the number of guesses remaining in the current round of play

Write-Host " Number of guesses remaining: $GuessesRemaining"

The first statement shown above calls on the script’s Check-Answer function, passing it the

player’s guess as an argument. Next, a variable named $tempString is cleared out and then

assigned the contents stored in the $words[0] array, thus creating a string representing the

current state of the game’s secret word, as guessed by the player. This string is then dis-

played. The value of $guesses is also displayed, showing the player how many letters have

been guessed so far. Lastly, the value of $guessesRemaining is calculated and displayed, show-

ing the player how many guesses are left.

Determining When the Game Is Over
Now it is time to see if the game is over. Gameplay ends when either the player guesses the

game’s secret word or the number of guesses has been exhausted. To accomplish these two

checks, add the following statements to the bottom of the previous while loop, immediately

after the last set of statements that you just added.

##Pause the game to allow the player to review the game's status

Read-Host "“n*n*n*n*n*n°’n*n’n Press Enter to continue”

##The secret word has been guessed if there are no more underscore

#tcharacters left in it - therefore the player has guessed it

if ($tempString -notmatch "_") {

Windows PowerShell Programming for the Absolute Beginner

Write-Host ""n Game over. You have guessed the secret word!" ~

"in $attempts guesses. n°n"

Write-Host " The secret word was $secretWord “n°n"
Coe Se Se ®

Pen oe ena Eee Y

Read-Host #Pause gameplay

$reply = "Done" #signal the end of the current round of play

continue #Repeat the loop

#The player is only allowed 12 guesses, after which the game ends

if ($attempts -eq 12) {

Clear-Host

Write-Host "‘n Game over. You have exceeded the maximum allowed" ~

"number of guesses. nn"

Write-Host " The secret word was $secretWord “n°n"
RIS SE e A 2 Thy, Seg Rr

I SN ee ae

Read-Host #Pause the game

$reply = "Done" #signal the end of the current round of play

continue #Repeat the loop

$reply = "" #Clear out the player's input

As you can see, the statements shown above are organized into two if statements. The first

if statement checks to see if the player has won the game. If this is the case, then every let-

ter that makes up the secret word will have been guessed and the value stored in $temp-

String will not contain any underscore characters. The second if statement checks to see if

the value of $attempts is equal to 12, indicating that the player has run out of guesses with-

out discovering the game’s secret word. If either of the two conditions tested by these two

if statements provides true, the value of $reply is set equal to Done, terminating the execu-

tion of the while loop that is responsible for collecting and processing player input.

Chapter 7 ¢ Organizing Scripts Using Functions

Challenging the Player to Play Another Game
Finally, to wrap up the PowerShell Hangman game, you need to add the following state-

ments at the bottom of the game’s main while loop. These statements are responsible for

challenging the player to play another game.

$response = "" #Reset value to allow the loop to continue iterating

#it is time to prompt the player to play another round

$validReply = "False" #Set variable to ready its use in the while loop

#Loop until valid input is received

while ($validReply -ne "True") {

Clear-Host ##Clear the Windows command console screen

#Prompt the player to play a new game

$response = Read-Host "“n°n Play again? (Y/N)"

Validate the player's input ##Keep playing

if ($response -eq "Y"){

$validReply = "True"

$status = "True"

}
elseif ($response -eq "N") { #Time to quit

Clear-Host #Clear the Windows command console screen

Write-host " “n‘n Please return and play again soon."

Read-Host #Pause gameplay

$validReply = "True"

$status = "False"

}

else { #Invalid input received

Clear-Host #Clear the Windows command console screen

Write-Host "*n'n Invalid input. Please press Enter to try again."

Windows PowerShell Programming for the Absolute Beginner

#$validReply = "False"

Read-Host #Pause gameplay

}

As you can see, the player is required to provide a response of Y or N. Entering Y starts a new

round of play. Entering N results in $validReply being set to true, thus ending the execution

of the script’s main while loop, effectively terminating the script.

SUMMARY
This chapter showed you how to use functions and filters as a means of improving the overall

organization and structure of your Windows PowerShell scripts. You learned how functions

support the centralization of programming logic, reduce the overall size of scripts, and sup-

port code reuse. You learned how to define and execute functions. You learned how to pass

arguments and return results. You also learned how to insert functions in the object pipeline.

You learned how functions affect variable scope as well as how to access script-level variables

within functions. On top of all this, you learned how to develop filters as an alternative to

functions in order to more efficiently process large amounts of object pipeline data.

Now, before you move on and begin reading Chapter 8, I suggest you take a little extra time

to improve the PowerShell Hangman game by tackling the following list of challenges.

Chapter 7 * Organizing Scripts Using Functions @21)

CHALLENGES

!. As it is currently written, the PowerShell Hangman game gives the player (2
guesses to figure out the game’s secret word. To make this game work more like
the traditional children’s game, change things so that the player is only allowed
to make six incorrect guesses. This way, correct guesses will not be counted
against the player. You may also want to associate each guess with a body part.

For example, the first miss would represent a head, the second miss would rep-
resent the body, the third and fourth misses might represent arms, and the fifth
and sixth misses would represent legs. You might even try displaying a text-
based graphic, similar to that of the game’s opening menu, at the end of each
turn. You could use this graphic to represent the number of misses (e.g., after

the first missed guess the graphic would show a head, after the second missed
guess it would show the head and body, andsoon). |

Currently, the PowerShell Hangman game only has 10 words to randomly choose
from. To make the game more challenging, consider modifying the game to sup-
port 20 or 30 different words.

. As currently written, the game only has one custom function, which is responsible

for determining if the player’s guesses are correct. However, there are numerous
opportunities for further modularizing the script by reorganizing different parts

of it into functions. Review the code in the main processing section of the script

and look for opportunities to enhance its organization with functions.

. The way the PowerShell Hangman game is currently written, it is possible for the
player to figure out what the game’s secret word is too late in the game for the

player to have enough guesses left to finish supplying each of the letters that
make up the secret word. Address this situation by giving the player the option

of typing in the entire word in place of her last guess.

. As currently designed, the PowerShell Hangman game prevents the player from
entering two characters at a time, entering numeric or special characters, or

even just pressing the Enter key without keying in a guess. However, there is no

logic in place to prevent the player from accidentally entering the same valid

guess more than once. Consider modifying the script to prevent this from being

allowed.

Leg : mart yet elgitagK ss @ Om teas ae & rEeeter

s ef *
= —

—— Ser

‘ “4° i iA i dee i ae. 4

O soyaie a dew, a napaade tag se NOP. 0

au) evem) Wiese eh 7) a dd toro ss Aacrag wall ee: | fh 9 wee ee

na be ie af ii: cwitt oe egy? 2d agnerts assent t aap:

ee desisG> Wel POU [Mee encavuy epevipe eo rhea : : ee ae

.

hee avon Bar a 4 re BIBOP EC) a ha! ea fae <<?

$

tt

a 2 an
a re _"

i. | » %
arr ae et : : we Le ie oo ann t bes “age PetD <e

. cen ie Be see te, tig te Ags tM pace’ Ure " plpsncl or

4 hee UY Awe ah ae. eo fae hae ee 2 ee yds = ve i eltetatgny bre i aor =

7G Den 5's vir eet rt geno Aeriag odd Se ted of P Lettie. yee

gtreanien Ve todirain srt Jremep gos @7 stdqerg a4 9 ae a

Se pashan she rentg o2 | omni) eet ad | eet
it id ad i 0) et a Sar bate hws Nakeasany 3 he ian ks boas ald "te ee

rR or To eter. re SiBe ‘oy neil ind we ay) becrie th 30 - . i 40 vere ek) (e* rn

ses seakigeeo yoo pte Recomeperes- t ect elte bad So
re PSK, ten Sarice ha UM =) « 74 mec "eee 4 : Renee i,

Samah ail vehi in aie sins dtl es hl a naan ares
ae aa ooh aie iter aaa tieladhiale :

Gh gfdat af scia Rel aegt ometgider! nies
wea 9-21: engiedbreonisni sdb alabanants i de Mili ali ala als dehy Lips
eae wht mele a Wyte phat

rr Ane Lage te srry ha kes $1 Nido ib eae as 1 sane
a ‘ Ps i Aa ‘alas oor " ii ;

7. kop ne Te piesat st fre ci ni 7s , : + |

om wie’ ats Ie er gaiyinges ‘ae ys) veg A
a end eienty qt netsenite ain? seenbba Irvew J

trey jaa) 4211 bu souly el now

Sangh oy any inventive. ‘

cs shes lereege re shonin syrivearan feat dm
PrbEs erereh <tbad 1 oi yntyps uleltler'y ROLRSVe

great ytainoo!ose ed wens : ere 5 oF
all pipes naaonngates rate ne a f

sent neh : hese at ead ag ie
Pata 8) eit ok bak er hae

see od ves
bs

or a sae

~~.) a 7

’ > iV _
_

_ ‘ >
_ Saal

_ / var

~ ca i

4 > |
ay

’ _

7 7 5
Whig

P Xo WE Valet-Lo im Ke) 0) (oh

Chapter &@:

Chapter 4:

Chapter 10:

Working with Files and
Folders

Basic System
Administration

Debugging PowerShell
Scripts

CHAPTER

WORKING WITH FILES

AND FOLDERS

with the ability to work with files and folders in many ways. This chapter

will teach you how to develop PowerShell scripts that can create, delete,

rename, copy, move, and delete files and folders. You will learn how to determine

if files and folders exist before you attempt to work with them. This chapter will

also show you how to write to files and read data from them. You will learn how

to work with different types of files, including plain text files, CSV files, and XML

files. You will also learn how to use regular expressions to specify matching file

and folder names and to use other cmdlets that allow you to control the format of

cmdlet output and to print the output provided by cmdlets or stored in text files.

indows PowerShell provides you with access to cmdlets that provide you

Specifically, you will learn how to:

¢ Administer files and folders

* Write to and read from different types of files

¢ Use regular expressions to perform complex pattern matching

¢ Control the display of cmdlet output using formatting cmdlets

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE POWERSHELL
Tic-TAC-TOE GAME
This chapter’s game project is an implementation of the classic children’s Tic-Tac-Toe game.

This game requires two players and begins by displaying the screen shown in Figure 8.1.

{

| © Windows PowerShell

Welcome to the

TIC-TAC-TOE

GAME?

The welcome

screen for the | Mould you like to play? <¥/ND:
Tic-Tac-Toe game. .

The welcome screen also prompts players for permission to start a new game. Once that per-

mission is given, the screen shown in Figure 8.2 appears, prompting Player X to make a move.

| * Windows PowerShell

TIC - TAC -TOE

Players X is

always the first

player to make |

a move in each helavenis?srcurnt

game.

Moves are made by entering the coordinates of an available game board square, as demon-
strated in Figure 8.3

Valid moves are A1-C3. Any other moves are rejected by the game. In addition, the game
rejects moves that have already been made, thus preventing one player from selecting a
square that was already selected earlier in the game.

Gameplay ends when one player manages to line up three squares in a row, as demonstrated
in Figure 8.4.

Chapter 8 + Working with Files and Folders 27)

* Windows PowerShell

Square Cl is

being specified as

Player X’s next | Player X’s turn: Ci
move.

* Windows PowerShell

po TP RL peal va RY

1 2 3

x 0

c x 0

! !
1 !
{ !
! {
! !

B ! 0 {
! !
! {
! !
! 1 8
! !

Player O has won Game over. 0 has won. Press Enter to continue:

the game.

The game also ends once every game board square has been selected without either player

managing to win. In this case a tie is declared, as demonstrated in Figure 8.5.

~ Windows PowerShell

TIC - TAC -TOE

The game has | The game has ended in a tie. Press Enter to continue:

ended ina tie. .

Players are prompted to play again at the end of each game. If the players elect to start a new

game, the game board is cleared and Player X is prompted to make a move. Otherwise, the

players are invited to return and play again and the game closes.

Windows PowerShell Programming for the Absolute Beginner

USING THE POWER OF REGULAR EXPRESSIONS

Up to this point in the book, you have been validating data based on expected input, such

as Y or N, when prompting the user for permission to perform a given action. However, there

will be times when you are unable to strictly control the input provided to your PowerShell

scripts. Instead, you must be prepared to accept any of a host of different inputs. To accom-

modate this type of situation, you need to learn how to work with regular expressions. A

regular expression is a pattern used to describe matching data. Regular expressions have many

uses and benefits. For example, regular expressions can be used to facilitate string searches

within text documents. As this chapter’s game project demonstrates, regular expressions

are also an important tool that can be used to validate user input.

Matching Simple Patterns
Regular expressions are generally evaluated from left to right. Windows PowerShell imple-

ments regular expressions using the -match operator. Matches occur when a specified pat-

tern is found in a specified source string. Perhaps the simplest regular expression pattern is

one that defines a specific pattern made up of one or more characters, as demonstrated by

the following.

if ("Once upon a time" -match "ONCE") {

Write-Host "Match!"

}

Here, the source string "Once upon a time" is searched to see if it contains a matching pat-
tern of "ONCE". When executed, this example results in a match. By default, matches are not
case-sensitive. However, using the -cmatch operator, you can perform case-sensitive matches,
as demonstrated here.

if ("Once upon a time" -cmatch "ONCE") {

Write-Host "We have a match!"

}

In this example, a match does not occur. Windows PowerShell also makes it easy for you to
perform negative pattern matching operations by supplying you with the -notmatch opera-
tor, which can be used as demonstrated by the following.

if ("Once upon a time" -notmatch "UPON") {

Write-Host "We have a match!"

Chapter 8 * Working with Files and Folders

Here, a match occurs only if the pattern being searched for cannot be found in the specified
search string. Windows PowerShell also allows you to perform case-sensitive pattern match-
ing using the -cnotmatch operators, as demonstrated here:

if ("Once upon a time " -cnotmatch "time") {

Write-Host "We have a match!"

}

When executed, this example results in a match.

Matching Alternative Patterns
Windows PowerShell’s support for regular expressions also lets you set up pattern matches

that can look for different sets of possible matches. To specify this type of pattern match,

you use the | character in order to separate each possible matching string.

if ("mar" -match "war|mar|jar") {

Write-Host "Match!"

}

In this example, a pattern has been defined that looks for any of three matching patterns.

If any one of these patterns is found, the match is successful. To be more efficient, you could

rewrite the previous example, as demonstrated next.

if ("mar" -match "(wa|ma|ja)r") {

Write-Host "Match!"

}

In this more efficient pattern, the unique portions of each possible pattern match have been

grouped together and enclosed within parentheses and the shared portion of the pattern

match has been placed outside of the parentheses.

Working with Regular Expression Characters
Every character included as part of a regular expression will match itself. However, Windows

PowerShell supports a collection of regular expression characters, also known as metachar-

acters, that are an exception to this rule. A metacharacter is a character that alters the man-

ner in which a pattern match is evaluated. For example, consider the following example.

if ("The winner of this year's award is Mrs. Ford!" -match "Mr.") {

Write-Host "Match!"

Windows PowerShell Programming for the Absolute Beginner

In this example, a regular expression has been set up to match against the characters Mr

followed by an optional character, as represented by the . character. The . character is a

metacharacter that is used to define a pattern that matches any one character. As a result,

Mr., Mrs., and even Mrt will all match the “Mr.” pattern. If you really wanted to match the

period character as a period and not as a metacharacter, then you would need to precede it

with a \, as demonstrated below.

if ("The winner of this year's award is Mrs. Ford!" -match "Mr\.") {

Write-Host "Match!"

}

The . and \ characters used in the two previous examples are just two of a number of

metacharacters supported by Windows PowerShell. Table 8.1 provides a list of additional

regular expression characters.

TABLE 8.1 REGULAR EXPRESSION CHARACTERS

(METACHARACTERS)

Character Description Example

Matches a single character "Molly" -match "M..y"

[value] Matches at least one character "Molly" -match "MLio]lly”
specified inside brackets

[range] Matches at least one character specified "Randy" -match "[R-TJandy”
within a range

Matches any character except those "Randy" -match "[4RC]andy"
specified within brackets

Matches characters located at the "William" -match "4Wil"
beginning of a string

Matches characters located at the "William" -match "iam$"
end of a string

Matches zero or more occurrences "Daddy" -match "d*"
of the preceding character

Matches zero or one occurrence of "Daddy" -match "d?"
the preceding character

Matches the character following the "Big$" -match "Big\$"
escape (\) character

Chapter 8 *« Working with Files and Folders @3))

Working with Quantifiers
Using regular expressions, you can also set up pattern matches that match based on the
number of repeating matches. This is accomplished using the regular expression quantifiers
listed in Table 8.2.

TABLE 8.2 REGULAR EXPRESSION QUANTIFIERS

Character Description Example

Must match zero or more times 2SS “Match Awe"

_ Must match one or more times "123123123" -match "123+"

Must match no more than one time -match "\w?"

Must match n times -match "\w{2}"

Must match at least n matches -match "\w{2,}"

Must match:at least n, but not more thanmtimes " -match "\w{2,3}"

For example, the following statement demonstrates how to set up a regular expression that

matches on one or more occurrences using the + regular expression quantifier character.

if ("The winner of this year's award is Mrs. Ford!" -match "winter") {

Write-Host "Match!"

}

Here, a match occurs if the string being searched contains a substring that matches the pat-

tern of "winter". This pattern looks for the letter wi followed by one or more instances of the

letter n, followed by the letters er. Therefore, this pattern will match up against the word

winner.

Matching Patterns Based on Ranges
Regular expressions also provide you with the ability to develop a pattern that looks for a

specific type of data or that searches for a range of characters. This can be accomplished by

using the character class patterns outlined in Table 8.3.

@32) Windows PowerShell Programming for the Absolute Beginner

TABLE 8.3 CHARACTER CLASS PATTERNS

Pattern Description

[abc] Matches any of the specified lowercase characters

Labcdefghijkimnopqrstuvwxyz] Matches any lowercase letter in the alphabet |

fa = 2] Shorthand for specifying a match on any lowercase letter

[A - Z] Shorthand for specifying a match on any uppercase letter

[0123456789] Matches a number between 0-9.

[0:= 9] Shorthand specifying a match between 0-9

Note that to work with character class patterns, you must enclose them inside a pair of

matching brackets ([]), as demonstrated next.

if ("March 13th" -match "([0-9]") {

Write-Host "Match!"

}

Here, a regular expression has been set up to look for the occurrence of a numeric match

between 0 and 9. When executed, this example finds a match. However, the following exam-

ple would not find a match.

if ("March Thirteenth" -match "[0-9]") {

Write-Host "Match!"

}

Character classes are so commonly used in developing regular expressions that a series of short-

cuts, listed in Table 8.4, have been developed to make them more convenient to work with.

TABLE 8.4 CHARACTER CLASS SHORTCUTS

Shortcut Description

\d Equivalent to [0 - 9]

\w Equivalent to [0-9A-Za-z_]

\s Equivalent to[\t\f\r\n\v]

\D Matches any character besides [0 - 9]

\W Matches any character besides [0-9A-Za-z_]

\s matches any character besides [\t\f\r\n\v]

Chapter 8 « Working with Files and Folders @33)

For example, the following if statement sets up a regular expression that results in a match
as long as no numeric characters are found in the string being searched.

if ("I am forty two." -match "\D") {

Write-Host "Match!"

}

Likewise, the following example sets up a regular expression to search a string to make sure
that it contains numeric characters.

it ("] am 42." -match.."\d").{

Write-Host "Match!"

pint This review of Windows PowerShell’s support for regular expressions has been

relatively brief. An in-depth discussion about regular expressions is beyond the

TP scope of this book. To learn more, read Mastering Regular Expressions, Second

Edition (ISBN: 0596002890). You can also enter the following command at the

PowerShell command prompt.

Get-Help about_regular_expressions

ADMINISTERING FILES AND FOLDERS

Windows PowerShell provides you with many ways of administering files and folders on

your computer. It provides you with the ability to create, delete, rename, copy, move, or

delete files and folders.

qRAP If you are going to follow along with the examples provided in the sections that
follow, you will need to make sure that you have similarly named files and fold-

ers on your computer for things to work correctly.

Verifying File and Folder Existence
As was just stated, Windows PowerShell provides you with the tools needed to administer

files and folders. However, before you attempt to administer a file or folder, it is a good idea

to first check and make sure that the file or folder exists. After all, files and folders can dis-

appear for any number of reasons. For example, someone else using the computer might

delete them or rename them. To see if a file exists, you use the Test-Path cmdlet, as demon-

strated by the following.

Windows PowerShell Programming for the Absolute Beginner

$fileFound = Test-Path C:\MyScripts\Hangman.ps1

if ($fileFound -eq "True") { es

Write-Host "File found."

}

In this example, a variable named $fileFound is set to True or False based.on whether the

Test-Path cmdlet is able to find a file named hangman.ps1 in the C:\MyScripts folder. The

Test-Path cmdlet can also be used to determine whether a folder exists, as demonstrated here.

$fileFound = Test-Path C:\MyScripts

if ($fileFound -eq "True") {

Write-Host "Folder found."

}

In this example, MyScripts is a folder residing at the root of the computer’s C: drive. Once

you have used the Test-Path cmdlet to ensure that the file or folder you want to work with

exists, you can perform a host of administrative operations on the file or folder, as demon-

strated in the sections that follow.

Retrieving File and Folder Information
As the following example shows, you can use the Get-Item cmdlet to retrieve information

about a given file or folder. In this example, the Mode, LastWriteTime, Length, and Name prop-

erties of the hangmang.psi1 file are displayed.

PS C:\MyScripts> Get-Item Hangman.ps1l

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

fdas 10/15/2006 2:32 PM 10176 Hangman.ps1

Using the Get-Item cmdlet, you can easily create a script that retrieves a specific property

value for a file or folder, as demonstrated here.

$fileFound = Test-Path C:\MyScripts\Hangman.ps1l

if ($fileFound -eq "True") {

$lastWritten = $(Get-Item C:\MyScripts\hangman.ps1).LastWriteTime

}

Chapter 8 * Working with Files and Folders G33)

Here, the Test-Path cmdlet is used to make sure that the Hangman.ps1 file exists. If it does,

the Get-Item cmdlet is then passed C:\MyScripts\hangman.ps1 as an argument. Note that the

Get-Item cmdlet and its argument are enclosed within parentheses and preceded by a $ char-

acter in order to establish an object reference. Once the reference is set up, related object

properties can then be accessed using standard dot notation. When executed, this example

will generate output similar to that shown below, assuming that the specified file exists.

Sunday, January 21, 2007 2:32:14 PM

Copying and Moving Files and Folders
Windows PowerShell also provides you with the ability to copy and moves files and folders.

This is accomplished using the Copy-Item and Move- Item cmdlets. For example, the following

example demonstrates how to copy a file from one folder to another.

Copy-Item C:\System.log C:\Temp

In this example, a file named System.1log is copied from the root of the C: drive to the

C:\Temp folder. If necessary, you can use wildcard characters to copy multiple files from one

folder to another, as demonstrated here.

Copy-Item C:*.log C:\Temp

Here, any .1og files found on the root of C: are copied to C:\Temp.

You can also use the Copy-Item cmdlet to copy one folder into another folder, as demon-

strated here.

Copy-Item C:\MyScripts C:\Temp

When executed, this statement makes a copy of the C: \MyScripts folder and places it in the

C:\Temp folder. However, none of the contents of C:\MyScripts are copied, just a copy of

the folder itself. You can modify this example by passing the -recurse parameter to the

Copy-Item cmdlet in order to instruct Windows PowerShell to recursively copy a folder and

all its contents, including any subfolders, into another folder, as shown here.

Copy-Item C:\MyScripts C:\Temp -recurse

Using the Move- Item cmdlet, Windows PowerShell also lets you move files and folders. For

example, the following demonstrates how to copy a file from one folder to another.

Move-Item C:\System.log C:\Temp

Use wildcard characters to move multiple files from one folder to another, as shown here.

Move-Item C:*.log C:\Temp

Windows PowerShell Programming for the Absolute Beginner

By default, the Move-Item cmdlet will not override and replace any existing files in the des-

tination folder. However, by adding the -force parameter, you can instruct the Move-Item

cmdlet to overwrite and replace existing filenames. bis

Move-Item C:*.log C:\Temp -force

Deleting Files and Folders
Windows PowerShell provides you with the ability to delete files and folders by using the

Remove- Item cmdlet. For example, the following statement can be used to delete a file named

Report.txt located in the C:\Temp folder.

Remove-Item C:\Temp\Report. txt

Using wildcard characters, you can remove groups of files from a folder, as demonstrated here.

Remove-Item C:\Temp*. txt

You can use the Remove-Item cmdlet to delete both files and folders. For example, the fol-

lowing statement instructs PowerShell to delete all the files and folders stored in a folder

named C: \Temp\HP_WebRel ease.

Remove-Item C:\Temp\HP_WebRelease*

In response to this statement, PowerShell will display output similar to that shown next,

prompting you for permission to delete all of the folders found inside C: \Temp\HP_WebRelease.

The item at C:\Temp\HP_WebRelease\chs has children and the -recurse parameter

was not specified. If you continue, all children will be removed with the item.

Are you sure you want to continue?

[CY] Yes [A] Yes to All [EN] No [L] No to All [S] Suspend [?] Help

(defaults tse*Y")s

If you want, you can reformulate the previous command by passing any of the following

parameters to the Remove-Item cmdlet.

¢ -recurse. Bypasses the display of the previous prompt message, instructing the

Remove-Item cmdlet to recursively remove all contents.

-exclude. Allows you to include a comma-separated list of files to exclude when the

Remove-Item cmdlet executes.

¢ -include. Allows you to include a comma-separated list of files to include when the

Remove-Item cmdlet executes.

¢ -whatif. Instructs the Remove-Item cmdlet to display a list showing the files and

folder that it would have deleted had the -whatif parameter not been specified.

Chapter 8 * Working with Files and Folders @37)

Renaming Files and Folders
Windows PowerShell provides you with the ability to programmatically rename files using

the Rename-Item cmdlet as demonstrated here.

Rename-Item C:\MyScripts\Test.psl Testl.psl

Here, two arguments are passed to the Rename- Item. The first argument is the name and path

of the file to be renamed, and the second argument is the new name that is to be assigned.

You may also use the Rename- Item cmdlet to rename a folder, as demonstrated here.

Rename-Item C:\MyFolder TestFolder

Searching Files
In addition to looking for, copying, moving, renaming, and deleting files and folders, Windows

PowerShell also provides you with the ability to search inside text files and search their

contents. This is accomplished using the Get-Content and the Select-String cmdlets. For

example, let’s say you had a log file named System.log that contained the following text.

01/27/2007 08:00:01 System backup started

01/27/2007 09:16:33 System backup completed

01/28/2007 08:00:01 System backup started

01/28/2007 09:13:13 System backup completed

01/29/2007 08:00:01 System backup started

01/29/2007 08:00:05 Error code 995 - Unable to locate backup media

01/30/2007 08:00:01 System backup started

01/30/2007 09:22:11 System backup completed

The Get-Content cmdlet provides you with the ability to read lines of text from a text file.

The Select-String cmdlet gives you the ability to search a text string to see if it contains a

substring. For example, you could search the log file shown above and look for any errors

that may have occurred, as demonstrated here.

Get-Content C:\Temp\System.log | Select-String "Error"

Here, the Get-Content cmdlet is executed and passed C:\Temp\System.log as an argument.

Next, each line in the log file is passed down the object pipeline and processed by the

Select-String cmdlet, which has been told to look for the text Error inside each line. Any

lines of text that include this text are then displayed. When executed, this command will

generate the following output.

01/29/2007 08:00:05 Error code 995 - Unable to locate backup media

Windows PowerShell Programming for the Absolute Beginner

You can also use regular expressions to define a search pattern that you want to look for

when searching text files and then display a text message indicating when a match occurs.

For example, the following statements use the Get -Content ‘cmdlet to assign the contents of

a text file to an array variable named $records. Next, an if statement has been set up that

uses the -match operator in order to define a regular expression that looks for occurrences

of the words error, alert, and critical in any of the lines stored inside $records.

$records = Get-Content C:\Temp\System.log

if ($records -match "(error|alert|critical)") {

Write-Host "Match!"

READING FROM AND WRITING TO FILES

In addition to providing you with the tools required to administer files and folders, Win-

dows PowerShell also provides you with access to a number of cmdlets that you can use to

create files and folders as well as read from and write to different types of files, including

text, CVS, and XML files.

Creating Files and Folders
Windows PowerShell provides programmers with many ways to create new files. One way to

create a new text file and to write data to it is to use the > redirection operator in order to

write object pipeline data to text files.

Get-ChildItem > C:\Temp\DirectoryList.txt

When executed, this statement takes the output of the Get -ChildItem cmdlet and redirects

it to C:\Temp\DirectoryList.txt. As a result, if you open the Directory.txt file, you'll see that it

contains data similar to the following output.

Directory: Microsoft.PowerShel].Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

Bane 9/26/2006 9:14 PM 4661 FortuneTeller.psl

A eo 10/9/2006 12:11 AM 4734 GuessMyNumber.ps1

ae 10/15/2006 2:32 PM 10176 Hangman.ps1

Chapter 8 * Working with Files and Folders

qnickt If the file being written to already exists, its contents are replaced. To append to

the end of a file, use the >> pipe operator as demonstrated below.

Get-ChildItem >> C:\Temp\DirectoryList.txt

Alternatively, you can create a new file using the New-Item cmdlet. For example, the follow-

ing statement will create a new empty file named TextFile.txt in the C:\Temp folder.

New-Item C:\Temp\TestFile.txt -type file

As you can see, the first argument passed to the cmdlet is the name and path of the

resources to be created. The second argument passed to the cmdlet is the type of resource

to create (e.g., a file). You can use the New-Item cmdlet to create a new folder just as easily as

a new file, as demonstrated below.

New-Item C:\Temp\MyNewFolder -type directory

In this example a new folder named MyNewFolder is created inside the C:\Temp folder. Also

note that the second argument passed to the cmdlet specified the keyword directory and

not folder. Both terms are, of course, synonymous but PowerShell requires you to specify

directory when creating new folders.

If the file or folder you are attempting to create already exists, you will get an error message.

New-Item : The file 'C:\Temp\TestFile.txt' already exists.

At C:\MyScripts\xxx.ps1:3 char:9

+ New-item <<<< C:\Temp\TestFile.txt -type file

If you want, you can add the -force parameter to replace the file or folder with an empty

file or folder, as demonstrated here.

New-Item C:\Temp\TestFile.txt -type file -force

Writing to Text Files
Windows PowerShell provides you with a number of additional ways to create files and write

output to them. For example, you have already seen how to create and write to new text files

by redirecting object pipeline data with the > operator. Windows PowerShell also lets you

write to text files using the Set-Content, Out-File, and Add-Content cmdlets.

Writing Text

Using the Set-Content cmdlet, you can write a string to a text file, as demonstrated here.

Set-Content C:\Temp\Temp.txt "Once upon a time..."

Windows PowerShell Programming for the Absolute Beginner

Here, the first argument passed to Set -Content is the name and path of the file to be created.

The second argument is the string to be written to the text file. If a file of the same name

already exists, the Set-Content cmdlet will automatically replace its content with the speci-

fied string.

You can also use the Out-File cmdlet to send data from the object pipeline directly to a file

without seeing anything displayed in the Windows command console. For example, the fol-

lowing statement will redirect the output of the Get-ChildItem cmdlet to a file named

Temp. txt in C:\Temp.

Get-Childitem | Out-File C:\Temp\Temp.txt

Like the Set-Content cmdlet, the Out-File cmdlet overwrites the contents of any like-named

files.

Appending Text

If you want to add to an existing file when writing to it, as opposed to replacing its contents,

you can use the Add-Content cmdlet to append data to the end of a file, as demonstrated by

the following example.

Set-Content C:\Temp\Temp.txt "Once upon a time..."

Add-Content C:\Temp\Temp.txt "And they lived happily ever after."

Add-Content C:\Temp\Temp.txt ""

Add-Content C:\Temp\Temp.txt "*tThe end"

Here, a new file is created and written to using the Set -Content cmdlet. Next, the Add-Content
cmdlet is used to write additional text to the file.

Reformatting Cmdlet Output
As you have just learned, Windows PowerShell provides you with many different ways of cre-
ating and writing data to text files. You have also seen examples of how to write pipeline
object data directly into text files. In these examples, data was written using whatever for-
mat the last cmdlet applied to it. However, Windows PowerShell makes it easy to customize
cmdlet output using the Format-List and Format-Table cmdlets.

The Format-List Cmdlet

The Format-List cmdlet processes object pipeline data and reformats it into a vertical list.
Using the cmdlet’s -property parameter, you can control which object properties are dis-
played in order to create custom reports and output.

Chapter 8 * Working with Files and Folders

For example, suppose you wanted to develop a PowerShell script that generated a report that

showed a listing of all the files stored in the current working directory. This could be easily

accomplished by adding the following statements to the script.

Get-ChildItem > C:\Temp.txt

When executed, this script would create a text file named Tempt.txt in the root folder on

the computer’s C: drive.

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\MyScripts

Mode LastWriteTime Length Name

=ao> 9/26/2006 9:14 PM 4661 FortuneTeller.ps1

Hees 10/9/2006 12:11 AM 4734 GuessMyNumber.ps1

2: 10/15/2006 2:32 PM 10176 Hangman.ps1

i wed 9/10/2006 1:42 PM 1077 Workpaper.txt

=a—> 9/26/2006 12:56 PM 831 Report.log

By passing the output of the Get -ChildItem cmdlet to the Select-String cmdlet, you can filter

out all the files in the current working directory whose filenames do not include the string

ps1. You might then pass the resulting output to the Format-List cmdlet, as shown here.

Get-ChildItem | Select-String PS1 | Format-List > C:\Temp.txt

When executed, this statement saves output similar to that shown here in a file named

Temp.txt.

IgnoreCase : True

LineNumber : 3

Line : # Script Name: FortuneTeller.psl (PowerShell Fortune Teller)

Filename : FortuneTeller.psl

Path : C:\MyScripts\FortuneTeller.psl

Pattern 2 Pol

IgnoreCase : True

LineNumber : 3

Line : # Script Name: GuessMyNumber.psl (The Guess My Number Game)

Filename : GuessMyNumber.psl

Path : C:\MyScripts\GuessMyNumber.ps1

Pattern : PS1

Windows PowerShell Programming for the Absolute Beginner

IgnoreCase : True

LineNumber : 3

Line : # Script Name: Hangman.ps1 (The PowerShell. Hangman Game)

Filename : Hangman.psl .
Path : C:\MyScripts\Hangman.psl

Pattern a Pst

The output shown here was generated using a default format generated by the Format-List

cmdlet. It you prefer, you can exercise detailed control over the properties that are reported,

as demonstrated here.

Get-ChildItem | Select-String PS1 | Format-List -Property Filename, Path >

C:\Temp.txt

Here, the -property parameter has been specified and two arguments included. When exe-

cuted, this statement generates results similar to that shown here.

Filename : FortuneTeller.psl

Path : C:\MyScripts\FortuneTeller.psl

Filename : GuessMyNumber.ps1

Path : C:\MyScripts\GuessMyNumber.ps1

Filename : Hangman.psl

Path : C:\MyScripts\Hangman.ps1

The Format-Table Cmdlet

The Format-Table cmdlet is very similar to the Format-List cmdlet, except that it formats

output in a horizontal table as opposed to a vertical list. For example, you might use the

Format-Table cmdlet as shown next to formulate a statement that displays a tabular view of

the contents of the current working directory, which is then saved as a report named Temp. txt.

Get-ChildItem | Select-String PS1 | Format-Table > C:\temp\Temp. txt

When executed, this statement will generate results similar to this:

IgnoreCase LineNumber Line Filename Path Pattern

True SF Serine FortuneTe... C:\MyScri... PS1

True 3 °F Sertpt ee GuessMyNu... C:\MyScri... PS1

True Ss Semipie:. : Hangman.psl1 C:\MyScri... PS1

Chapter 8 « Working with Files and Folders

Like the Format-List cmdlet, the Format-Table cmdlet lets you override its default format by

specifying the data properties you want, as demonstrated here.

Get-ChildItem | Select-String PS1 | Format-Table Filename, Path >

C:\temp\Temp. txt

When executed, this statement will generate a report file containing output similar to that

show here.

Filename Path

FortuneTeller.psl C:\MyScripts\FortuneTeller.psl

GuessMyNumber.ps1 C:\MyScripts\GuessMyNumber.psl

Hangman.psl C:\MyScripts\Hangman.ps1

As another example of how to work with the Format-Table cmdlet, let’s write a statement

that lists all of the processes running on the computer that currently have more than 600

open handles. To begin, let’s format a statement that lists all the active processes, sorts

them, and then displays only those with more than 600 open handles, as shown here.

Get-Process | Sort-Object | Where-Object {$_.Handles -gt 300} > C:\temp\Temp.txt

When executed, this statement will produce a report containing output similar to that

shown here.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

4393 6 6080 432 46 1,256.52 2844 CFD

657 20 13888 17500 115 817.45 2484 explorer

643 17 24664 1240 231 60.38 3388 mim

1675 60 20372 17552 153 174.52 900 svchost

Now that we have the set of results we are looking for, let’s reformat the output using the

Format-Table cmdlet’s -groupby parameter to display a series of tables where processes are

grouped by process names, as shown here.

Get-Process | Sort-Object | Where-Object {$_.Handles -gt 300} | Format-Table

-groupby Processname > C:\temp\Temp.txt

wint Make sure that when you run this example and other examples like it at the

Windows PowerShell command prompt, you do so by keying it in as a single

statement.

Windows PowerShell Programming for the Absolute Beginner

When executed, this statement generates a report named Temp. txt that contains results sim-

ilar to those shown here.

ProcessName: CFD

NPM(K) PM(K)

4440 6 6096

Handles

ProcessName: powershel]

Handles NPM(K) PM(K)

606 1 22568

638 1? 50648

ProcessName: svchost

Handles NPM(K) PM(K)

637 14 1924

1673 60 20356

WS(K)

7628

WS(K)

31264

50676

WS(K)

1412

17540

VM(M)

47

VM(M)

140

168

VM(M)

SF

182

CPU(s)

Lj257 oer

CPU(s)

3.47

20.33

CPU(s)

1.9

174.52

Id ProcessName

2844 CFD

Id ProcessName

3548 powershel]

3504 powershell

Id ProcessName

832 svchost

900 svchost

Since multiple instances of some processes may be running at the same time, the -groupby

parameter groups any like-named processes with more than 600 open handles together

when formatting and displaying its output.

faa

Reading from Text Files

The Format-List and Format-Table cmdlets provide detailed control over the

display of cmdlet output. To learn more about these two cmdlets, type

Get-Help Format-List and Get-Help Format-Table at the Windows PowerShell
command prompt.

Windows PowerShell can just as easily read from a text file as it can write to it. Windows

PowerShell provides you with the ability to read from a text file using the Get-Content,

cmdlet, as demonstrated here.

Get-Content C:\Temp\Temp.txt

Chapter 8 « Working with Files and Folders

As you can see, the only argument passed to the Get-Content cmdlet is the name and path

of the text file to be read. When executed, this statement will display the contents of what-

ever has been stored in the specified text file. When executed, the Get-Content cmdlet auto-

matically creates an array into which is stored each of the lines in the specified text file,

making it possible, for example, for you to then process every line of text using a loop.

Erasing File Contents
If you want, you can programmatically erase the contents ofa file without removing the file

from the computer using the Clear-Content cmdlet. To use this cmdlet, you simply specify

the name and path of the files to be erased as an argument as demonstrated here.

Clear-Content C:\Temp\Temp.txt

qnick You can use the Clear-Content cmdlet to erase more than just the content of
text files. You can use it to clear out other types of files such as Microsoft Word

documents.

Saving Data Output as HTML
Windows PowerShell is capable of saving output in many different file formats, including

HTML. The advantage of HTML is that it can often be used to more effectively display infor-

mation, especially when used on a web server to communicate with large groups of people. To

save file output as an HTML file, you use the ConvertTo-Htm] cmdlet, as demonstrated below.

Get-Service | Where-Object { $_.status -eq "running" } |ConvertTo-HTML Name,

DisplayName, Status | Set-Content C:\Temp\Text.html

Here, the Get-Service cmdlet is used to generate a list of all processes running on the com-

puter. Next, the Where-Object cmdlet is used to filter out all non-running services. The

ConvertTo-Html cmdlet is then used to format the resulting output into an HTML file. Note

that only the Name, DisplayName, and Status properties are outputted. Finally, the resulting

HTML is written as a file named Text .htm1, as demonstrated in Figure 8.6.

Saving Data as an XML File

Windows PowerShell also provides you with the ability to save pipeline object data in the

form of an XML file. XML stands for Extensible Markup Language. Its purpose is to facilitate

the definition, storage, and transmission of data between applications. To generate an XML

file, you use the Export-Clixm] cmdlet, as demonstrated here:

Get-ChildItem | Export-Clixml C:\Temp\Test.xml

046 Windows PowerShell Programming for the Absolute Beginner

2h HTML TABLE - Microsoft Internet Explorer provided by Comcast

‘cols Help : File Edit View Favorites T

Name DisplayName “Status

ALG Application Layer Gateway Service Running

AudioSrv Windows Audio Running

BITS Background Intelligent Transfer Service Running

Browser Computer Browser Running

CryptSve Cryptographic Services Running

DeomLaunch DCOM Server Process Launcher Running

Dhep DHCP Client Running

Dnscache DNS Client Running ~ (

ERSve Error Reporting Service Running

Eventlog Event Log Running

EventSystem COM+ Event System Running

FastUserSwitchingCompatibility Fast User Switching Compatibility Running

helpsvc Help and Support Running

lanmanserver Server Running

lanmanworkstation Workstation Running

LmHosts TCP/IP NetBIOS Helper Running

P " LxrSII1s Lexar Secure IL Running

Displaying object Netman Network Connections Running

pipeline data as Nia Network Location Awareness (NLA) Running a!
AN HTML file, Canteens sangre nee SY i

Here, the Get-ChildItem cmdlet is used to generate a list of files stored in the current working

directory and then the Export-Clixm] cmdlet is used to save the resulting output in an XML

file. When executed, this statement will generate an XML file whose contents are similar to

those shown in Figure 8.7.

~ <Objs Version="1.1"
xrains="http://schemas .tnicrosoft.com/powershell /2004/04">

~ <Obj Refld="Refld-O">

~ <TN Refld="RefId-0">
<T>System.I0.FileInfo</T>

<T>System.10.FileSystemInfo</T>
<T>System.MarshalByRefObject </T>
<T>System.Object</T>

</TN>

~ <Props>

<S N="Name">FortuneTeller.ps1</S>
<I64 N="Length">4661</164>

<S N="DirectoryName">C:\MyScripts</S>
<S N="Directory">C:\MyScripts</3>
<B N="IsReadOnly">false
<B N="Exists">true

<S N="FullName*>C:\MyScripts\FortuneTeller.psi</S>

<S N="Extension">.ps1</S>
FIGURE 8.7 <DT N="CreationTime">2006-09-24715:12:14.078125-

04:00</0T>

<DT N="CreationTimeUtc">2006-09-24T19:12:14.078125Z</DT>

An example of <DT N="LastAccessTime">2006-10-22T20:42:36.955-
the output that is 04:00</0T>

<DT N="LastAccessTimeuUtc'">2006-10-23T00:42:36.955Z</DT>

produced when <DT N="LastWriteTime">2006-09-26T21:14:10.78125-
an XML file is 04:00</DT>

generated.

Chapter 8 * Working with Files and Folders

Reading Data from an XML File
Windows PowerShell also provides you with a cmdlet that lets you retrieve XML data, thus
letting you use it again as input in another PowerShell script. To open and read an XML file,
you need to use the Import-Clixm] cmdlet, as demonstrated here.

$xmlFile = Import-Clixml C:\Temp\Test.xml

$xml File

In this example, the first statement uses the Import-Clixm] cmdlet to retrieve the Test.xml
file and store a copy of its content in $xm1File. The second statement displays the contents
stored in $xmlFile, which should look like this:

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

9/26/2006 9:14 PM 4661 FortuneTeller.psl

10/9/2006 12:11 AM 4734 GuessMyNumber.ps1l

10/15/2006 2:32 PM 10176 Hangman.psl

Saving Data in a Comma-Separated Value File
One additional file format that Windows PowerShell can write to and read from is CSV.

CSV stands for comma-separated values. CSV is a file format that is used to store comma-

separated data as records separated by newlines and is commonly used by applications such

as Microsoft Excel as a means of storing data in a format that can easily be moved between

different applications.

To save pipeline object data in a CSV file, you use the Export-Csv cmdlet, as demonstrated here.

Get-ChildItem | Export-Csv C:\Temp\Test.csv

When executed, this statement will create a file containing output similar to that shown here,

readying it for use by other applications, or for use as input into another PowerShell script.

#TYPE System.10.FileInfo

PSPath, PSParentPath, PSChildName, PSDrive, PSProvider, PSIsContainer,Mode,Name,Length,Dir

ectoryName, Directory, IsReadOnly, Exists,FullName,Extension,CreationTime,CreationTimeUt

c,LastAccessTime,LastAccessTimeUtc, LastWriteTime, LastWriteTimeUtc,Attributes

Microsoft. PowerShel1].Core\FileSystem::C:\MyScripts\FortuneTeller.psl,Microsoft.PowerS

hell.Core\FileSystem: :C:\MyScripts,FortuneTeller.ps1,C,Microsoft.PowerShell.Core\File

System, False, -a--

Windows PowerShell Programming for the Absolute Beginner

,FortuneTeller.ps1,4661,C:\MyScripts,C:\MyScripts,False, True,C: \MyScripts\FortuneTel 1

er.psl,.ps1,"9/24/2006 3:12:14 PM","9/24/2006 7:12:14 PM","10/22/2006 8:42:36

PM", "10/23/2006 12:42:36 AM","9/26/2006 9:14:10 PM","9/27/2006 1:14:10 AM",Archive

Microsoft. PowerShel].Core\FileSystem: :C:\MyScripts\GuessMyNumber.psl,Microsoft.PowerS

hell .Core\FileSystem: :C:\MyScripts,GuessMyNumber.ps1,C,Microsoft.PowerShell.Core\File

System, False, -a-- ,

,GuessMyNumber.ps1,4734,C:\MyScripts,C:\MyScripts, False, True,C: \MyScripts\GuessMyNumb

er.psl,.ps1,"10/8/2006 5:37:04 PM","10/8/2006 9:37:04 PM","10/22/2006 8:42:36

PM", "10/23/2006 12:42:36 AM","10/9/2006 12:11:47 AM","10/9/2006 4:11:47 AM",Archive

Microsoft.PowerShel]l.Core\FileSystem: :C:\MyScripts\Hangman.ps1,Microsoft.PowerShel1.C

ore\FileSystem: :C:\MyScripts,Hangman.ps1,C,Microsoft.PowerShel1.Core\FileSystem, False

eae

,Hangman.ps1,10176,C:\MyScripts,C:\MyScripts, False, True,C:\MyScripts\Hangman.psl,.psl

»"10/10/2006 1:30:50 PM","10/10/2006 5:30:50 PM","10/22/2006 8:42:36 PM","10/23/2006

12:42:36 AM","10/15/2006 2:32:14 PM","10/15/2006 6:32:14 PM",Archive

Reading Data from a Comma-Separated Value File
To read a CSV file into a PowerShell script, you need to use the Import-Csv cmdlet. As demon-

strated next, this cmdlet takes one argument: the name and path of the CSV file to be

imported.

$cvsFile = Import-Csv C:\Temp\Test.csv

$cvsFile

Here, the content of the previously saved CSV files has been imported back into a variable

named $csvFile and then displayed, producing output similar to that shown here.

PSPath : Microsoft.PowerShel1.Core\FileSystem: :C:\MyScripts\FortuneT

eller.psl

PSParentPath : Microsoft.PowerShell.Core\FileSystem: :C:\MyScripts

PSChildName : FortuneTeller.psl

PSDrive He §

PSProvider : Microsoft.PowerShell.Core\FileSystem

PSIsContainer : False

Mode a nea

Name : FortuneTeller.psl

Length : 4661

DirectoryName : C:\MyScripts

Directory : C:\MyScripts

IsReadOnly : False

Chapter 8 + Working with Files and Folders

Exists : True

FullName : C:\MyScripts\FortuneTeller.psl

Extension x OS ki

CreationTime : 9/24/2006 3:12:14 PM

CreationTimeUtc : 9/24/2006 7:12:14 PM

LastAccessTime : 10/22/2006 8:42:36 PM

LastAccessTimeUtc : 10/23/2006 12:42:36 AM

LastWriteTime : 9/26/2006 9:14:10 PM

LastWriteTimeUtc : 9/27/2006 1:14:10 AM

Attributes : Archive

SENDING OUTPUT TO THE PRINTER

Before we switch tracks and begin working on the chapter’s game project, let’s learn how to

perform the last file operation: printing. Using the Out-Printer cmdlet, you can send data

to a printer. When used without any arguments, the Out-Printer cmdlet submits print out-

put to the computer’s default printer, as demonstrated here.

"This is a printer test.” | Out-Printer

Here, a text string has been piped to the Out-Printer cmdlet for printing. Similarly, you can

send a text file to the default printer, as demonstrated here.

Get-Content C:\a.txt | Out-Printer

In fact, you can redirect any pipeline object data to the printer, as shown here.

get-location | Format-List | Out-Printer

When executed, this statement will print out a document containing the following output.

Drive 20

Provider : Microsoft.PowerShell.Core\FileSystem

ProviderPath : C:\

Path Cs \,

Finally, you can also direct the Out-Printer cmdlet to submit print output to a specific

printer by passing the printer’s name as an argument.

Get-Location | Format-List | Out-Printer "hp_deskjet"

Windows PowerShell Programming for the Absolute Beginner

Here, information about the current working directory is printed to a printer named hp_deskjet.

BACK TO THE POWERSHELL TIC-TAC-TOE GAME
Okay, it’s time to turn your attention back to the chapter’s main game project, the Power-

Shell Tic-Tac-Toe game. The development of this game will demonstrate how to create a

script that can interact with the player by displaying messages, retrieving command-line

input, and applying programming logic to control the operation of the script.

Designing the Game
This game requires two players, Player X and Player O. Player X always starts off each game.

The game validates player moves and keeps track of whose turn it is. The game displays a

text-based graphic view of the Tic-Tac-Toe game board, which it updates after each player’s

turn. The game ends when one player lines up three board squares in a row (horizontally,

vertically, or diagonally), or when all game board squares have been selected without either

player being able to pull out a win.

The overall logical flow of the PowerShell script is fairly simple. To set it up, we will com-

plete its development in 17 steps, as outlined here.

1. Create a new script file and add opening comment statements.

. Define and initialize script variables.

. Develop the Clear-Board function.

. Develop the Get-Permission function.

. Develop the Display-Board function.

. Develop the Validate-Move function.

. Develop the Check-Results function.

. Develop the Display-Results function.

© ON HD UW kW WN . Ready the game for play.

— = . Create a loop to control overall execution of the script.

— fay . Create a loop to control individual games.

— N . Collect player moves.

— Ww . Validate player moves.

= » . Look for a winner.

. Look for a tie.

. Switch player turns.

-_= = N DD vi . Prompt players to start a new game.

Chapter 8 + Working with Files and Folders @s1)

Creating a New Script

The first step in the creation of the Tic-Tac-Toe game is to create a new PowerShell script file
named TicTactoe.ps1 and apply your PowerShell template to it.

i KRKKKKK ERK KER ERE KER KEK EKER ERE RR ERK KERR KEK KKK RIKKI KIRKE KIER KI KEKE KIKI KEIR

Script Name: TicTacToe.psl (The Tic-Tac-Toe Game)
Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script is a two player implementation of the

popular Tic-Tac-Toe game

i KKKKKKKKEKKR EKER KK ER EKER EKER KER KKK KEK KKK RRR EKER ERK KK RRR EKER ERERKKEKERKREKKKR

Initialization Section

Functions and Filters Section

Main Processing Section

Defining and Initializing Script Variables

Next, you need to define and initialize variables used throughout the script. This is accom-

plished by adding the following statements to the initialization section of the script file.

Note that the purpose of each variable is documented by comments that have been added

to the script statements. j

#Define variables used in this script

$startGame = "False" #Controls when the game terminates

$playGame = "True" #Controls the play of an individual round of play

$player = "X" #Specifies the current player's turn

$winner = "" #Specifies the winner

$moves = 0 #Counts the number of moves made

$move = "" #Stores the current player's move

$tie = "False" #Specifies when a tie occurs

(2) Windows PowerShell Programming for the Absolute Beginner

#Variables representing game board squares

SAL = "1"

SA2. =.".15 a?

SAS, = 71"

sol = 71"

Sbcone a)

SBSe= ***

sues 9"

+ aL iad

bs eg

Preparing the Clear-Board Function

Now it is time to begin developing custom functions used by the script to perform specific

tasks. The functions should be placed in the functions and filters section of the script file.

The code of the first function, Clear-Board, is shown below.

#This function resets variables representing variable board squares

function Clear-Board {

$script:Al =" "

$script:A2 =" "

$script:A3 =" "

sscript;sl =" *

Sscript:B2iex")?

$script:B3.=.." "

$script:Cle=" *

Sscript:c2. =."

$scriptc:cs = ""

}

When executed, this function resets the variables representing game board squares to a
string value made up of a single blank space, thus clearing out the game board and ready-
ing it for a new round of play.

Creating the Get-Permission Function

The Get -Permission function, shown next, is responsible for prompting the players for per-
mission to start a new game.

Chapter 8 + Working with Files and Folders (3)

#This function gets the player's permission to start a round of play

function Get-Permission {

#Loop until a valid reply is collected

while ($startGame -eq "False") {

Clear-Host #Clear the Windows command console screen

#Display the game's opening screen

Write-Host "“n°n*n‘n"

Write-Host " | ey

Write-Host " Welcome to the Kee Recoee is

write-Host " | [3

Write-Host " lo

mrite-Host." “Tl C-= TiANGre 70°F | fe

Write-Host " eo

Write-Host " | [s

Write-Host " GAME! |e

Write-Host " | ee

Write-Host " [eet Ag. [te eX?

Write-Host ° | be

#Collect the player's input
Se Se ee

#Walidate the player's input

if ($response -eq "Y"){ #The player wants to play a new round

$startGame = "True"

}

elseif ($response -eq "N") { #The player wants to quit

$startGame = "False"

Clear-Host #Clear the Windows command console screen

exit Terminate script execution

Windows PowerShell Programming for the Absolute Beginner

As you can see, to liven things up a bit, this function displays a text-based graphic repre-

senting a Tic-Tac-Toe board and prompts the players to enter Y to start a new game. The func-

tion validates the player’s input allowing only Y or N as valid commands. A response of N

results in the termination of the script, which occurs when the exit command is executed.

Creating the Display-Board Function

The next function to be developed is the Display-Board function, whose code statements are

shown below. This function is called in order to show the current status of gameplay and to

prompt the player whose turn it is, as specified by the $player variable, to make a move. The

player’s move is then stored in $response.

This function displays the game board, showing each player's moves

function Display-Board {

Clear-Host #Clear the Windows command console screen

#Display the game board

Write-Host "“n°n Ti: > @mKAC =.1T- 0 Eninims

Write-Host " i 2 3 n*

Write-Host " | is

Write-Host " A $Al | $A2 | $A3"

write-Host " | &

Write-Host " seme (oes 1119 war ad GT a

Write-Host " | I

Write-Host " B $B1° | $B2 | -S$B3"
Write-Host " | Ls

Write-Host " Taha

Write-Host " | [5

Write-Host " C SCL... | $2) })* *S$C3"
Write-Host " | By

#Collect player move

$move = Read-Host "“n*n*n*n Player $player's turn"

$move #Return the Player's input to the calling statement

Chapter 8 *« Working with Files and Folders @s8)

Creating the Validate-Move Function
The Val idate-Move function, shown here, is called after each player’s turn. Its job is to ensure
that only valid moves are accepted.

#This function determines if the player's input is valid
function Validate-Move {

if ($move.length -eq 2) { #Valid moves consist of 2 characters
if ($move -match "[A-C][1-3]") { #Regular expression test that looks

$result = "Valid" #ffor an instance of A, B, or C and an

} #instance of 1, 2, or 3.

else {

$result = "Invalid" #The move is invalid if it is not Al, A2, A3,

} ¥ Bl, Oe,c030G)," ce, ore cs
}

else {

$result = "Invalid" #The move is invalid if it does not consists of 2

} #characters

#Move is invalid if it has already been assigned to a player during a

previous turn

if (($move -eq "Al") -and ($Al -ne " ")) {$result = "Invalid"}

if (($move -eq "A2") -and ($A2 -ne " ")) {$result = "Invalid"}

if (($move -eq "A3") -and ($A3 -ne " ")) {$result = "Invalid"}

if (($move -eq "B1l") -and ($B1 -ne " ")) {$result = "Invalid"}

if (($move -eq "B2") -and ($B2 -ne " ")) {$result = "Invalid"}

if (($move -eq "B3") -and ($B3 -ne " ")) {$result = "Invalid"}

if (($move -eq "C1") -and ($C1 -ne " ")) {$result = "Invalid"}

if (($move -eq "C2") -and ($C2 -ne " ")) {$result = "Invalid"}

if (($move -eq "C3") -and ($C3 -ne " ")) {$result = "Invalid"}

$result #Return this value to the statement that called this function

}

This function begins by setting up an if statement to ensure that the player’s move was

specified as two characters. The first character represents a coordinate on the horizontal

pane and the second character represents a coordinate on the vertical pane. An embedded

if statement then executes a regular expression that determines whether the first character

Windows PowerShell Programming for the Absolute Beginner

supplied by the player is a A, B, or C and whether the second character is a 1, 2, or 3. If the

result of either of these two if statements evaluates as being false, the player’s move is

invalid. Next, a series of eight if statements is executed that checks to see if the move spec-

ified by the player was already made earlier in the game. The variable representing the

selected game board square is then assigned a value of X or O as appropriate. Therefore, a

variable whose value is a blank space is still available for selection and a yariable assigned

to a value of X or O is not.

Creating the Check-Results Function

At the end of each player’s turn, the Check-Results function, shown here, is called. Its job is

to see if the current player’s last move has resulted in the player winning the game. This is

accomplished by checking the values of the variable representing game-board squares. The

variables representing each row and column in the game board are checked to see if they

have all been assigned to the current player (i.e., if there are three Xs or Os in a row). In addi-

tion, the function also checks for a winner diagonally.

#This function checks the game board to see if there is a winner

function Check-Results {

$winner = "" #Always reset this value before checking

#tLook for a winner vertically

if (($Al -eq $player) -and ($A2 -eq $player) -and ($A3 -eq $player)) {
$winner = $player

}

if (($B1 -eq $player) -and ($B2 -eq $player) -and ($B3 -eq $player)) {
$winner = $player

}

if (($C1 -eq $player) -and ($C2 -eq $player) -and ($C3 -eq $player)) {
$winner = $player

}

#Look for a winner horizontally

if (($Al -eq $player) -and ($B1 -eq $player) -and ($C1 -eq $player)) {
$winner = $player

}

#Look for a winner horizontally

if (($A2 -eq $player) -and ($B2 -eq $player) -and ($C2 -eq $player)) {
$winner = $player

}

Chapter 8 * Working with Files and Folders @s7)

#tLook for a-winner horizontally

if (($A3 -eq $player) -and ($B3 -eq $player) -and ($C3 -eq $player)) {
$winner = $player

}

#Look for a winner diagonally

if (($Al -eq $player) -and ($B2 -eq $player) ‘-and ($C3 -eq $player)) {
$winner = $player

}

if (($Al -eq $player) -and ($B2 -eq $player) -and ($C1 -eq $player)) {

$winner = $player

}

$winner #Return this value to the statement that called this function

Creating the Display-Results Function

The last function that you will need to create is the Display-Results function. This function,

shown below, is called at the end of each game in order to display the final status of the

game and to identify who, if anyone, has won.

#This function displays the game board and the final results of a round

#of play

function Display-Results {

Clear-Host #Clear the Windows command console screen

#Display the game board

Write-Host "nn Tate oad AcG © Ural t. n

Write-Host " 1 2 Seis

Write-Host " | is

Write-Host " A SAL Sell GAZ | PES ABE

write-Host " | Fee

Write-Host " Aly anne i a 5 ote

Write-Host " | [*

Write-Host " B $B {0 $2) | seo"
Write-Host " | the

Write-Host " pared ee cara ngs

Write-Host " | RS

Write-Host " C $C1 | $02 ~} $C3*

Write-Host " | ["

Windows PowerShell Programming for the Absolute Beginner

if ($tie -eq "True") { #Check to see if the game resulted in a tie

Read-Host "*n*n*n‘n The game has ended in a tie. Press Enter to continue

} :

else { #If a tie did not occur, identify the winner

Read-Host "“n°n’n*n Game over. $player has won. Press Enter to continue"

}

}

In addition to displaying the game board, this function examines the value of $tie to deter-

mine whether the game has ended in a tie. If this is not the case, the appropriate player is

identified as the winner.

Clearing the Game Board and Prompting for User Permission

Now that all variables and functions have been defined, it is time to work on putting

together the programming logic that will drive the overall execution of the script. This code

goes in the script file’s main processing section. To begin, add the following statements.

Clear-Board #Call function that resets the game board

Get-Permission ##Call function that asks the players for permission to

start a new round of play

The first statement calls on the Clear-Board function to clear out any variable assignment that

may be left over from a previous game. The second statement calls on the Get-Permission

function, which prompts the players for permission to start a new game.

Creating a Loop to Control Script Execution

The rest of the logic in the main processing section is enclosed in the following loop, which
should be added to the bottom of the main processing section. This loop executes until the
value of $Terminate is set equal to True, which occurs only after the players tell the game to
close.

while ($Terminate -ne "True") { #Loop until the player decides to quit

Chapter 8 * Working with Files and Folders

Creating a Loop to Control Individual Gameplay

Within the while loop that you just added to the script file, you need to create a second

inner loop. This loop, shown below, will control the execution of individual games.

while ($playGame -eq "True") { #This loop controls the logic required to

#play a round of Tic-Tac-Toe

}

As you can see, this loop has been set up to run while the value of $playGame is set equal to

True. Once this occurs, the inner loop stops executing, returning control to the outer loop,

which will then prompt the players to play another game. If the players elect to play a new

game, the inner loop will be executed again. Otherwise, the game will be closed.

Collecting Player Moves

Next, add the following statements inside the inner loop. The first statement calls on the

Display-Board function, which displays the game board and prompts the current player to

make a move. The player’s move is then returned and assigned to $move. The second state-

ment executes the Validate-Move function. This function ensures that the move inputted by

the player was valid and returns a value indicating the results of that analysis which is then

stored in $validMove.

$move = Display-Board #Call function that displays the game board and

#tcollects player moves

$validMove = Validate-Move #Call the function that validates player moves

Validating Player Moves

Now that the player’s move has been validated, it is time to take action based on the results

of that analysis. This is accomplished by adding the following statement to the end of the

inner loop.

if ($validMove -eq "Valid") { #Process valid moves

$moves++ #Increment variable that keeps track of the number of valid moves

#Assign the appropriate game board square to the player that selected it

if ($move -eq "Al") {$Al = $player}

Windows PowerShell Programming for the Absolute Beginner

if ($move -eq "A2") {$A2 = $player}

if ($move -eq "A3") {$A3 = $player}

if ($move -eq "B1") {$B1 = $player}

if ($move -eq "B2") {$B2 = $player)}

if ($move -eq "B3") {$B3 = $player}

if ($move -eq "C1") {$Cl = $player}

if ($move -eq "C2") {$C2 = $player}

if ($move -eq "C3") {$C3 = $player}

}

else { #Process invalid moves

Clear-Host #Clear the Windows command console screen

Read-Host ""n°*n*n’*n°*n’n°n’n°*n°nInvalid Move. Press Enter to try again"

continue #Repeat this loop

}

As you can see, an if statement has been set up that either increments the value of $moves

and then assigns the appropriate game board square to the player or displays an error mes-

sage instruction to try again.

Determining if Either Player Has Won the Game

The next set of statements to be added to the inner loop are shown below. The first state-

ment executes the Check-Results function, which is responsible for determining if one of

the players has won the game. The Check-Results function returns the results of its analysis,

which is then assigned to $winner. The rest of the statements shown below are organized

into two if statements. The first if statement checks to see if Player X has won the game.

The second if statement does the same thing for Player 0.

$winner = Check-Results #Call function that determines if the game is over

#tand who, if anyone, has won

if ($winner -eq "X") { #Perform the following actions when Player X wins

Write-Host ~a #Make a beep sound

Display-Results #Call function that displays game results

$playGame = "False"

continue #Repeat this loop

Chapter 8 * Working with Files and Folders

if ($winner -eq "0") { #Perform the following actions when Player 0 wins

Write-Host *a #Make a beep sound

Display-Results #Call function that displays game results

$playGame = "False"

continue #Repeat this loop

}

In the event that one of the players has won the game, the following actions occur. First, a

beeping sound is played by passing the ‘a escape character to the Write-Host cmdlet to

notify the player that the game is over. The Display-Results function is then called. This

function displays the final results of the game, informing the players who won. The value

of $playGame is then set equal to False, which will terminate the execution of the inner loop

when the following continue command is executed.

qrick Up to this point in the book, all of the Windows PowerShell game scripts that

you have developed have had one feature in common: They have been mute.

However, if you want you can liven up your scripts a bit by adding a Little touch

of sound. Specifically, by inserting the “a escape character into a Write-Host

statement as demonstrated below, you can play a beep sound at predefined

points during the execution of your PowerShell scripts.

Write-Host ~a #Make a beep sound

The Tic-Tac-Toe game uses this feature to help notify players when a game has

been won, lost, or tied.

Determining if a Tie Has Occurred

In the event that neither player has won the game, a check should be made to see if a tie has

occurred. This is accomplished by adding the following statements to the end of the inner loop.

if ($moves -eq 9) { #Perform the following actions when a tie occurs

Write-Host ~a #Make a beep sound

$tie = "True"

Display-Results #Call function that displays game results

$playGame = "False"

continue #Repeat this loop

Windows PowerShell Programming for the Absolute Beginner

As you can see, an if statement is used to examine the value of $moves and if it is set equal

to 9, then every square on the game board has been selected and a tie is declared by setting

$tie equal to True.

Switching Between Player Turns

If a tie has not occurred and neither player has been found to have won the.game, the inner

loop executes and prompts the next player to make a move. Before doing so, the following

statements need to be executed and should therefore be added to the end of the inner loop.

#The game is not over yet so switch player turn

if ($playGame -eq "True") {

if ($player -eq "X") {

$player = "0"

}

else {

$player = "X"

}

}

As you can see, these statements toggle the value of $player between X and 0 each time they

are executed, thus controlling whose turn it is.

Prompting Players to Play a New Game

The last set of code statements to be added to the script, shown below, should be added to

the end of the outer loop. These statements set up a while loop that prompts the players to

play a new game.

#This next set of statements only runs when the current round of play

#thas ended

$response = "False" #Set default value in order to ensure the loop executes

#Loop until valid input is received

while ($response -ne "True") {

Clear-Host #Clear the Windows command console screen

#Prompt the player to play a new game

$response = Read-Host "“n'n Play again? (Y/N)"

Validate the player's input #Keep playing

Chapter 8 * Working with Files and Folders

if ($response -eq "Y") {

#Reset default variable settings to get ready for a new round of play
$response = "True"

$terminate = "False"

$playGame = "True"

Clear-Board

$player = "X"

$moves = 0

$tie = "False"

}

elseif ($response -eq "N") { #Time to quit

Clear-Host ##Clear the Windows command console screen

Write-host " “n°n Please return and play again soon."

Read-Host #Pause gameplay

$response = "True"

$terminate = "True"

}

else { #Invalid input received

Clear-Host #Clear the Windows command console screen

Write-Host "“n*n Invalid input. Please press Enter to try again."

Read-Host #Pause gameplay

}

Only user input of Y or N is accepted. A value of Y starts a new round of play by resetting the

script variables back to their initial starting values. A reply of N terminates the game and the

execution of the script.

The Final Result

Okay, that’s it. Assuming you have not made any typos in keying in the script statements

that make up the Tic-Tac-Toe game, everything should work as advertised. I suggest you take

a little time to test the game and make sure it works as expected and then find a friend to

play against and show off your programming skills to.

Windows PowerShell Programming for the Absolute Beginner

SUMMARY
In this chapter you learned the ins and outs of programmatically administering files and

folders. This included learning how to create, delete, rename, copy, and move files and fold-

ers. You also learned how to read from and write to different types of files, including text

files, CSV files, and XML files. You also learned how to use regular expressions to perform

string pattern matching. On top of all this, you learned how to take control of cmdlet out-

put using the Format-List and Format-Table cmdlets. Now, before you move on to Chapter 9,

“Basic System Administration,” I suggest you set aside a few additional minutes to improve

the Tic-Tac-Toe game by tackling the following list of challenges.

CHALLENGES

{.. Provide players with the ability to view a Help screen that explains the rules of
the Tic-Tac-Toe game. In addition, revisit the text messages displayed by the
game with an eye to making them more user friendly.

. Keep track of the number of games played as well as the number of games won,
lost, and tied by each player and make the display of this information available
at the end of each game.

. Consider modifying the game so that when it first starts it collects both player’s

names and then uses this information to inform each player, by name, whose
turn it is and who has won the game.

BASIC SYSTEM
ADMINISTRATION

he purpose of this chapter is to provide you with working examples of the

kinds of system tasks that you can perform with Windows PowerShell

scripts, as well as to give you an appreciation for the types of information

that Windows PowerShell puts at your fingertips. You will learn how to pro-

grammatically interact with the Windows registry and use it as a repository for

script-configuration settings. You will learn how to automate the management

and reporting of different Windows resources, including Windows processes and

services. This chapter will also teach you how to create and instantiate new

objects using .NET classes and COM objects, which will open up a whole new world

of programming capabilities. On top of all this, you will learn how to create a

new PowerShell game, PowerShell Blackjack.

Specifically, you will learn how to:

¢ Create registry keys and values and retrieve data stores in registry values

¢ Instantiate new objects based on .NET classes and COM objects

¢ Retrieve information about local and remote computers using WMI

¢ Administer Windows services, processes, and logs

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE POWERSHELL BLACKJACK GAME

In this chapter you will learn how to create a PowerShell version of the Blackjack card game.

In this version of the game, the player will go head to head against the computer in an effort

to get a better hand without busting by going over 21. When first started, the game’s wel-

come screen is displayed, as shown in Figure 9.1.

® Windows PowerShell

Welcome to the

POWERSHELL BLACKJACK GAME

The welcome

screen for the

PowerShell | Would you like to play? <¥/ND:

Blackjack game. a

The welcome screen is also responsible for prompting the player for permission to start a

new round of play. This game interfaces with the Windows registry by accessing a key and

value that you will set up as you work your way through this chapter. If the required key and

value are not found in the registry and the player responds to the welcome screen by enter-

ing an N, the game will display an error message before terminating. If, however, the registry

key and value are in place, the game will instead display the screen shown in Figure 9.2,

should the player decide not to play the game after starting the script.

Y Windows PowerShell

POWERSHELL BLACKJACK

Developed by Jerry Lee Ford, Jr.

FIGURE 9.2 Copyright 2007

By default, the
game ends by www .tech-publishing.com

displaying

information about

itself and its PS Ci\MyScripte>

developer.

Chapter 9 + Basic System Administration

If, instead of quitting, the player elects to play a hand, a screen similar to the one shown in
Figure 9.3 is displayed, showing the player both her and the computer’s opening card.

* Windows PowerShell

| CURRENT HAND:

Player Hand: 18

Unlike traditional —_ {| Computer Hand: 2
Blackjack, the
PowerShell

Blackjack game

starts off by

assigningacardto =|

the player and | Do you want another card? <¥/ND:
to the computer.

At the bottom of the screen, the player is prompted to take another card. In order to take a

new card, the player must type Y. To pass on the new card and to stick with her hand, the

player must enter an N. Any other input is ignored by the game. The player, at her discretion,

may continue to take new cards, as demonstrated in Figure 9.4, until the value of her hand

exceeds 21, in which case she busts.

[2 Windows PowerSiet

| CURRENT HAND:

| Player Hand: 20

} Computer Hand: 2

The player’s

objective is to get

as close to 2I as

possible without Do you want another card? ¢¥/ND:

going over.

If the player busts, the computer wins without ever having to take its own turn. Assuming

that the player does not bust, the computer goes next. The computer will continue to take

new cards as long as the total value of its hand it less than 17. Once its hand exceeds a value

of 17, the computer’s turn ends (e.g., with a value over 17 but less than or equal to 21, or with

a bust).

Figure 9.5 shows the results of a typical round of play. In this example, the player has beaten

the computer.

Windows PowerShell Programming for the Absolute Beginner

RESULTS =

Player Hand: 20

Computer Hand: 18

You Wint

The player has

won this hand.
Press Enter to play again or Q to quit:

At the end of each hand, the player is prompted to either press Enter to start a new hand or

to type 0 and press Enter to quit the game.

ACCESSING AND ADMINISTERING SYSTEM RESOURCES

Windows PowerShell provides system administrators, power users, and computer hobbyists

with access to a host of system, application, and network resources. The number of possi-

bilities is too great to cover them all in this book. Instead, this chapter will attempt to pro-

vide you with a sampling of examples that demonstrate some of the many avenues of system

administration that windows PowerShell can assist you in automating.

Listing and Stopping Processes

Windows operating systems run various processes behind the scenes that work together

to help keep your computer running smoothly. As you have already seen, you can use the

Get-Process cmdlet to get a listing of all the processes running on a computer, as demon-

strated here.

Get-Process

When executed, this statement will generate output similar to the following:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

17 2 540 180 25 0.09 3088 AcroTray

78 3 1948 184 33 0.20 2972 ALCXMNTR

102 5 1128 580 32 0.09 144 alg

334 9 4552 1360 63 6.92 3156 BackWeb-137903

2590 6 4296 5208 41 700.09 2424 CFD

Chapter 9 + Basic System Administration

549 6 1808 2380 28 244.97 540 csrss
612 18 16852 17948 103 798.88 1996 explorer
141 3 1036 2016 35 1:39 3164 FINDFAST

The amount of information returned by the Get-Process cmdlet can be a bit overwhelming.

To help streamline output, you can pass a specified process name to the cmdlet as an argu-

ment, as demonstrated next.

Get-Process PowerShell]

When executed, this statement displays process information for just the PowerShel1 process.

Assuming that the specified process is currently running, this statement will generate out-

put similar to that shown here.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

356 11 31636 31228 150 SaaS 4000 powershel]

You can also use a comma-separated list to display more than one process at a time, as

demonstrated next. You may also use wildcards to match any number of processes.

Get-Process notepad, powershel]

From time to time, things go awry on Windows. As a result, processes get hung up, misbehave,

or fail to respond. When these types of circumstances occur, you can use the Stop-Process

cmdlet to terminate these processes. For example, the following statement terminates a

process by specifying its process ID.

Stop-Process 2932

You can just as easily terminate a process by specifying its process name, as demonstrated

here.

Stop-Process -processname notepad

Administering Windows Services
Another key component of the Windows operating system is the software services that it

runs under the covers in order to provide specific services. For example, the spooler service

is responsible for managing print operations. Windows PowerShell lets you interact with

and administer Windows services via a number of different cmdlets, as listed here.

Windows PowerShell Programming for the Absolute Beginner

Get-Service. Retrieves a list of installed services.

Set-Service. Changes a service’s description, startup mode, or the display name of a

service.

Suspend-Service. Pauses the execution of a service. However, the service will continue

to serve existing connections.

Resume-Service. Resumes a paused service.

Stop-Service. Stops a service.

Start-Service. Starts a service.

Restart-Service. Stops and then restarts a service.

To give you an idea of how you might use these cmdlets, take a look at the following Pow-

erShell script. This script is a text-based Print Wizard that is designed to help the user self-

diagnose and correct common printer problems before calling on the company’s IT Help

Desk for support. Admittedly, this script is rather simplistic, offering only a limited amount

of instruction, and it lacks input validity checking, relying instead on the user to carefully

follow instructions. Still, it provides a basis upon which a more sophisticated and robust

script might be developed.

i KREKKEKKKEKRKEKEKKKEKKKERKERKEREREERERKEKRKRKRERKEERERRERKE RK ERKEREKEKERERERKERKEKKKER

Script Name: PrintWizard.ps1

Version: 10

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

t

Description: This PowerShell script is designed to assist the user in

resolving common printing problems.

i
i KRKKKKKEKKKKEKRRK KE KKK KKE EKER E KKK KKK KERER RRR KER EKER RR KEKE KKK KEKE KKK KK

Initialization Section

$response = "" #Stores user input

Functions and Filters Section

Chapter 9 * Basic System Administration @71)

function Display-ServiceStatus {

Get-Service | Where-Object {$_.Name -eq "Spooler"}

}

function Display-Thanks {

Clear-Host

Write-Host "“nThank you for using the Print Wizard."

exit

function Contact-HelpDesk {

Clear-Host

Write-Host "‘nContact the Help Desk for additional assistance."

exit

Main Processing Section

#Step 1 - Display the status of the Spooler service

Clear-Host

Write-Host "“nPRINT WIZARD*n"

Write-Host "The current status of the printer spooler service, which is"

Write-Host "responsible for managing the printing process, is: “n"

Display-ServiceStatus

Write-Host "“n°nA status of ~"Running’" generally indicates that the"

Write-Host "spooler is operating correctly and the problem lies elsewhere."

$response = Read-Host "*nnDoes this solve your problem? (Y/N)"

if ($response -eq "Y") {

Display-Thanks

}

else { #Step 2 - Check the paper supply

Clear-Host

@72) Windows PowerShell Programming for the Absolute Beginner

Write-Host "‘nDoes your printer have paper in it? If not, add new paper"

Write-Host "and see if this fixes the problem."

$response = Read-Host "*n’nDoes this solve your problem? (Y/N)"

if ($response -eq "Y") {

Display-Thanks

}

else { #Step 3 - Restart the Spooler service

Clear-Host

Write-Host "‘nSometimes stopping and starting the “"spooler’" service”

Write-Host "will fix printing problems."

$response = Read-Host "“nRestart the service? (Y/N)"

if ($response -eq "Y") {

Restart-service "Spooler"

Clear-Host

Write-Host "“nThe current status of the printer spooler service is:"”
"acne

Display-ServiceStatus

}

else {

Contact-HelpDesk

}

$response = Read-Host "“n*nDoes this solve your problem? (Y/N)"

if ($response -eq "N") {

Contact-HelpDesk

}

else {

Display-Thanks

}

}

As you can see, the script begins by defining a variable in which user input is stored, as well

as three functions, which are used to display information about the status of the spooler

server and to display text messages that are displayed as the script executes. When first

started, the script executes the Get-Service cmdlet to generate a list of active services and

then uses the Where-Object cmdlet to filter out all services except for the spooler service. The

output of this command is then displayed, as shown in Figure 9.6.

Chapter 9 » Basic System Administration @73)

| ® Windows PowerShell

PRINT WIZARD

he current status of the princes spooler service, which is
jesponsible for managing t printing process, is:

Status Name DisplayName

Running Spooler Print Spooler

Ripesiow is Gearekiny weecnctig’ond. Uke prebiin:itew alewuberes

Does this solve your problem? CY¥/N>:

The Print Wizard

displays the

status of the

spooler service.

The user is then asked to respond with a value of Y or N, depending on whether the printing

problem is still occurring. Assuming that nothing has changed and that the user enters N,

the screen shown in Figure 9.7 is displayed.

* Windows PowerShell

Does your printer have paper in it? In not. add new paper
jand see if this fixes the problem.

(Does this solve your problem? ¢¥/N>=

The Print Wizard

provides a

suggestion that

the user check on

the printer’s

paper supply.

At this point, the user is given new instructions to follow; in this case, checking the printer’s

paper supply. The script again asks the user if the printing problem has been resolved. If the

user responds by again entering N, the screen shown in Figure 9.8 is displayed. This time,

the script suggests that it may be helpful to restart the spooler service.

| ©. Windows PowerShell

Sometimes stopping and
will fix printing problems

WRestart the service? (¥/N>:

The Print Wizard

suggests

restarting the

spooler service.

Windows PowerShell Programming for the Absolute Beginner

Assuming that the user responds in the affirmative, the script executes the Restart-Service

cmdlet, passing it an argument of Spooler. The script then waits for the cmdlet to finish

executing and displays the status of the service again, as demonstrated in Figure 9.9.

» Windows PowerShell

The current status of the printer spooler service is:

Running Spooler Print Spooler

‘Does this solve your problem? <¥/N>:

The Print Wizard

redisplays the

status of the

spooler service

after restarting it.

If the user’s problem has not been corrected at this point, the script displays a message

advising the user to contact the Help Desk.

Accessing Event Logs
Windows PowerShell also provides you with the ability to work with and view event logs

stored on the computer using the Get-EventLog cmdlet. The Windows operating system

and its applications write different types of messages to these event logs providing status and

error information that can be used to track down and analyze problems. By passing an argu-

ment of -list to the Get-EventLog, you can instruct the cmdlet to generate a list of all the

event logs on your computer, as demonstrated here.

Get-EventLog -list

When executed, this statement will display output similar to this:

Max(K) Retain OverflowAction Entries Name

512 0 OverwriteAsNeeded 225 Application

15,360 0 OverwriteAsNeeded 1,485 PowerShel]

biz 0 OverwriteAsNeeded 2,103 Security

512 0 OverwriteAsNeeded 2,297 System

Once you know what event logs are stored on your computer, you can view their contents.
For example, the following statement displays a list of all the messages that have been written
to the Application event log.

Get-EventLog Application

Chapter 9 » Basic System Administration @73)

When executed, this statement will generate output similar to that shown below.

Index Time Type Source EventID Message

225 Nov 05 00:13 Erro Application Error 1001 Fault bucket 02724608.

224 Nov 05 00:13 Erro Application Error 1000 Faulting application ...

223 Nov 04 13:24 Info crypt32 7 Successful auto update..

222 Nov 03 18:27 Erro Application Hang 1002 Hanging application R..

221 Nov 03 13:12 Info ITSS 1 The description for E...

220 Nov 03 13:12 Info ITSS 1 The description for E...

219 Nov 03 13:12 Info ITSS 1 The description for E...

218 Nov 02 21:52 Erro Application Hang 1002 Hanging application i...

217) 0Ct..30 13:57 Info LoadPerf 1000 Performance counters ...

216 Oct 30 13:57 Info LoadPerf 1001 Performance counters ...

2252) 0cet; 30° 13257 Info SecurityCenter 1800 The Windows Security ...

214 Oct 29 20:46 Erro Application Error 1000 Faulting application ...

213 Oct 28 01:24 Erro Application Error 1001 Fault bucket 02724608.

Event logs can hold many thousands of messages. If you are looking for something that may

have recently occurred, you can limit the amount of data that is returned by the Get -EventLog

cmdlet by passing it the -newest parameter, which specifies how many of the most recently

recorded messages you want to view, as demonstrated here.

Get-Eventlog Application -newest 4

When executed, this statement will generate output similar to this:

Index Time Type Source EventID Message

224 Nov 05 00:13 Erro Application Error 1000 Faulting application .

223 Nov 04 13:24 Info crypt32 7 Successful auto update..

222 Nov 03 18:27 Erro Application Hang 1002 Hanging application R...

221 Nov 03 13:12 Info ITSS 1 The description for E...

You may have noticed that the data returned by the Get-EventLog is truncated, making it

pretty unusable. You can fix this using the Format-List cmdlet to generate a readable report.

Get-Eventlog application -newest 1 | Format-List > C:\Temp\Sample.txt

In this example, the last message recorded in the Application event log is retrieved and

stored as a report in a text file named Sample. txt. When opened, this file will contain infor-

mation similar to that shown here.

Windows PowerShell Programming for the Absolute Beginner

Index : 224

EntryType ER KOn

EventID : 1000 ;

Message : Faulting application game.exe, version 1.0.0.1, faulting

module game.exe, version 1.0.0.1, fault address 0x00375ac6.

Category 7 CO}

CategoryNumber md

ReplacementStrings : {game.exe, 1.0.0.1, game.exe, 1.0.0.1...}

Source : Application Error

TimeGenerated : 11/5/2006 12:13:29 AM

TimeWritten : 11/5/2006 12:13:29 AM

UserName :

It may be helpful to generate a report that contains only certain types of event messages.

For example, you might only want to see messages that have a certain EventID value or that

are generated by a particular source. This can be accomplished by piping the output of the

Get-EventLog cmdlet to the Where-0bject cmdlet, as demonstrated here.

Get-Eventlog application | Where-Object {$_.Source -eq "Userenv"}

When executed, this statement generates the following list of event messages, which you

might then decide to format and save as a report.

Index Time Type Source EventID Message

205° Oct 12 03:10 Warn Userenv 1517 Windows saved user HP...

P67 OGteu9- 2is2l Warn Userenv 1517 Windows saved user HP...

138 Sep 15 03:07 Warn Userenv 1517 Windows saved user HP...

102 Sep 06 13:28 Warn Userenv 1517 Windows saved user HP...

90 Aug 30 20:57 Warn Userenv 1517 Windows saved user HP...

WS aug 15 03207 Warn Userenv 1517 Windows saved user HP...

#1 Aug’ 10 21321 Warn Userenv 1517 Windows saved user HP...

65 Aug 01 20:23 Warn Userenv 1517 Windows saved user HP...

38 Jul 17 03:08 Warn Userenv 1517 Windows saved user HP...

Retrieving System Information Using WMI
As you have just seen, Windows PowerShell provides you with access to cmdlets that collect
information about different aspects of the computer. However, there is only a limited num-
ber of these cmdlets available. Windows PowerShell makes up for this by allowing you to use
Microsoft’s Windows Management Instrumentation (WMI) in order to tap into and access

Chapter 9 * Basic System Administration @77)

system information from a variety of different sources, including the operating system,

services, application, and hardware.

WML is a system-management interface designed to facilitate access to system information.

Windows PowerShell encapsulates its support for WMI through the Get-WmiObject cmdlet.

The amount of information that can be accessed through WMI is staggering. A complete dis-

cussion of WMI is well beyond the scope of this book. However, to give you an appreciation

of WMI and the kinds of data that you can get from it, the next several sections will provide

you with a series of examples that show how to access BIOS, processor, network, and appli-

cation information.

Retrieving BIOS Information

Using the Get-Wmi0bject cmdlet, you can retrieve system BIOS information from any Windows

computer. Computer administrators might use this information in order to determine on

which computers to apply a BIOS update in the event a BIOS-related problem is discovered

on certain models of computers.

All that you have to do to retrieve BIOS information is pass Win32-B10S as an argument to the

cmdlet.

$x = Get-Wmi0bject Win32_BI0S

$x

When executed, BIOS information is collected and stored in a variable named $x. In the pre-

ceding example, this data is then displayed. When executed, this example will display out-

put similar to that shown here.

SMBIOSBIOSVersion : 3.10

Manufacturer : American Megatrends Inc.

Name : BIOS Date: 06/27/03 20:48:31 Ver: 08.00.08

SerialNumber : MXM33409GZ NA200

Version : AMI - 6000327

Retrieving System Information

You can also use the Get-Wmi0bject cmdlet to retrieve processor information by passing it an

argument of Win32_Processor as shown next. This information might prove useful in situations

in which an administrator needs to determine if a computer’s processor meets the minimum

requirements to run a particular application. The information that is returned will include

processor name, description, manufacturer, and other processor related data.

Get-Wmi0bject Win32_Processor

Windows PowerShell Programming for the Absolute Beginner

When executed, this statement will display output similar to this:

AddressWidth

Architecture

Availability

Caption

ConfigManagerErrorCode

ConfigManagerUserConfig

CpuStatus

CreationClassName

CurrentClockSpeed

CurrentVoltage

DataWidth

Description

DeviceID

ErrorCleared

ErrorDescription

ExtClock

Family

Instal1lDate

L2CacheSize

L2CacheSpeed

LastErrorCode

Level

LoadPercentage

Manufacturer

MaxClockSpeed

Name

oye ts.

#10

mid

: x86 Family 15 Model 2 Stepping 9

Bl

: Win32_Processor

: 2599

cae

: x86 Family 15 Model 2 Stepping 9

CPG

: 200

ppl

yu

: GenuinelIntel

: 2599

Intel(R) Pentium(R) 4 CPU 2.60GHz

Due to the volume of information that this statement generates, I’ve shortened the list of

output a bit. Typically, to prevent information overload, you will want to use the Format-List

cmdlet to limit the display of processor data to just the information that you are interested in.

Get-WmiObject Win32_Processor | Format-List Name, Caption, Manufacturer

When executed, this statement displays a far more manageable list of processor information.

Chapter 9 « Basic System Administration

Name : Intel(R) Pentium(R) 4 CPU 2.60GHz

Caption : x86 Family 15 Model 2 Stepping 9

Manufacturer : GenuinelIntel

Retrieving Networking Data

WMI also provides access to network information..Computer administrators might use this

information to verify a computer network configuration or to troubleshoot network con-

nectivity problems. For example, to retrieve a list of all active network protocols, you would

pass Win32_NetworkProtocol as an argument to the Get-Wmi0bject cmdlet as shown here.

Get-Wmi0bject Win32_NetworkProtocol

When executed, this statement will display a list of information about all of the networking

protocols installed on your computer, as demonstrated by the following output:

Caption : Tcpip

GuaranteesDelivery : True

GuaranteesSequencing : True

ConnectionlessService : False

Status 0K

Name : MSAFD Tcpip [TCP/IP]

Retrieving Application Data

WMI also provides you with access to information about the applications stored on your

computer. A computer administrator might, for example, create a PowerShell script that

retrieves a listing of all the applications installed on a computer. For example, the following

statements will retrieve information about applications that have been installed using the

Windows Installer service.

Get-Wmi0bject Win32_Product

When executed, this statement will display data similar to this:

IdentifyingNumber : {2DFDD440-A33C-42E4-A366-71E6CB4246A0}

Name : Windows PowerShel]

Vendor : Microsoft Corporation

Version 741703956701

Caption : Windows PowerShel]

Windows PowerShell Programming for the Absolute Beginner

IdentifyingNumber : {AC76BA86-7AD7-1033-7B44-A70800000002}

Name : Adobe Reader 7.0.8

Vendor : Adobe Systems Incorporated bs

Version +7208

Caption : Adobe Reader 7.0.8

IdentifyingNumber : {7131646D-CD3C -40F4-97B9-CD9E4E6262EF }

Name : Microsoft .NET Framework 2.0

Vendor : Microsoft Corporation

Version se Os o0Tey

<SPACE> next page; <CR> next line; Q quit

Caption : Microsoft .NET Framework 2.0

Pulling WMI Data from Remote Computers

Assuming that you have the security permissions required to do so, the Get-Wmi0bject

cmdlet can also be used to retrieve information from remote network computers. To do so,

just append the -computername parameter to the end of your statements, as demonstrated

here.

Get-WmiObject Win32_ComputerSystem -computername HP

In this example, the Get-Wmi0bject is executed and instructed to retrieve computer system

data from a network computer named HP.

Domain : MSHOME

Manufacturer : HP Pavilion 061

Model : DF253A-ABA a250n

Name : HP

PrimaryOwnerName

TotalPhysicalMemory : 536195072

Consider as a practical example of this capability a scenario in which a computer adminis-

trator has been asked to install a new application on 20 computers residing on a company’s

local area network. Some of the computers might be behind locked doors or in rooms occu-

pied by high-level executives and thus not readily accessible during the normal course of the

day. In addition, the new application might require 500 MB of memory in order to run.

Rather than physically visiting each computer to determine the amount of memory installed

on it, the computer administrator could instead create a PowerShell script that remotely

retrieves each computer’s total physical memory. For example, the following statement could

be used to display a list of computers on the LAN and their available physical memory.

Chapter 9 + Basic System Administration

Get-Wmi0bject Win32_ComputerSystem -computername HP1, HP2, HP3 | Format-List

Name, TotalPhysicalMemory

In this example, data is retrieved from the three network computers. As you can see, the
names of each remote computer are provided to the -computername parameter as a comma-
separated list. The resulting output is then piped to the Format-List cmdlet, which displays
the name of each computer and its available physical memory, as demonstrated here.

Name Lahey

TotalPhysicalmemory : 536195072

Name : HP2

TotalPhysicalmemory : 1072390144

Name sw HPS

TotalPhysicalmemory : 536195072

Taking Advantage of .NET Classes
Windows PowerShell depends upon the .NET Framework for much of its capabilities. Numer-

ous cmdlets have been designed to manipulate .NET resources or to retrieve data provided

by .NET. However, you are not limited to just the .NET resources exposed by PowerShell

cmdlets. Thanks to the New-Object cmdlet, you can create and instantiate an instance of

other .NET classes. For example, you have already seen examples in this book of how to use

the New-Object cmdlet to instantiate an instance of the Random class, as demonstrated here.

$randomNo = New-Object System.Random

When executed, this statement creates an instance of a Random object. Once instantiated, you

have access to the properties and methods associated with this object. In the case of the

Random object, you have access to its Next method, which generates a random number within

a specified range.

$number = $randomNo.Next(1, 11)

Here, a random number (integer) is created in the range of 1 to 10 and assigned to a variable

named $number.

Taking Advantage of COM Objects ,
The New-Object cmdlet just discussed in the previous section, can also be used to instantiate

and control COM objects. COM stands for Component Object Model and is a Microsoft technology

that allows Windows PowerShell to programmatically interact with and control objects, which

includes Active X controls and various Windows applications (those that support COM).

Windows PowerShell Programming for the Absolute Beginner

As an example, the following statements demonstrate how to create a small PowerShell

script that can use COM to instantiate an instance of Microsoft Word, create a new Word

document, set a font type and font size, write output to the file, and then save it. Once the

document is saved, the new document is closed and Word is then terminated.

$processList = Get-Process #Retrieve a listing of active processes

$currentDate = Get-Date #Retrieve the current date and time

$MSWord = New-Object -ComObject "Word.Application" #Instantiate Word

$MSWord.Documents.Add() #Use the Document object's Add method to create

4a new document

$MSWord. Selection. Font.Name

$MSWord.Selection.Font.Size

"Arial" #Set the Font object's Name property

12 #Set the Font object's Size property

#Use the Selection Object's TypeText method to write output to the document

$MSWord. Selection. Typetext($ProcessList)

#Use the ActiveDocument object's SaveAs method to save the document and

#Hthen its Close method to close the document

$MSWord.ActiveDocument.SaveAs("C:\Temp\WordReport.doc")

$MSWord.ActiveDocument.Close()

#Use the application object's Quit method to terminate Microsoft Word

$MSWord.Quit()

When executed, this example displays the output shown in Figure 9.10.

In this example, I used the object model belonging to Word 97. Different applications have

different object models. Different versions of the same application may also use slightly dif-

ferent versions of the same object model. Therefore, it may take a little research (using the

application developer’s documentation) before you can learn enough about an application’s

object model to be able to programmatically interact with it.

wint The application object resides at the top of the Word object model. Once used

TP to instantiate an instance of Word, you can use other lower-level objects and
their methods and properties to automate Word tasks. To learn more about the

Word object model, visit http://msdn.microsoft.com/office.

Chapter 9 « Basic System Administration

Diagnostics Process (AcroTray) System, Diagnostics,Process
(ALCXMNTR) System. Diagnostics Process (alg) System.Diagnostics Process

‘CFD’
syste ast saties Proteee (explorer)

System.Diagnostics.Process (FINDFAST) System, Diagnostics, Process
(hpgs2wnd) System. Diagnostics Process (hpgs2wnt)
System.Diagnostics.Process (hpotdd01) System.Diagnostics.Process
(HpqCman) System.Diagnostics Process (hpsysdrv)

| Ss

(notepad) System, Diagnostics F Process (nvsvc32)
:Diagnastics. Process (omniServ) System,Diagnostics.Process

a System.Diagnostics.Process Sica everson

Sr Supt: nec ve Spenser nae
A Microsoft Word System soe

document

containing the

output generated

by the Get -

Process cmdlet.

As another example of how to work with COM objects, consider the following statements.

$InternetExplorer = New-Object -Com0bject "InternetExplorer.Application"

$InternetExplorer.Navigate("http://www.tech-publishing.com")

$InternetExplorer.Visible = "True"

When executed, this example uses the New-Object cmdlet to create an instance of

Internet Explorer. Next, Internet Explorer’s Navigate method is used to load the www.tech-

publishing.com web page. Lastly, Internet Explorer’s Visible property is set equal to True,

making the browser and the specified web page visible. Figure 9.11 shows an example of the

output that you will see if you create and run this example,

Using COM to

automate the

execution of

Internet Explorer.

Windows PowerShell Programming for the Absolute Beginner

PROGRAMMATICALLY INTERACTING WITH THE WINDOWS
REGISTRY

Another powerful capability of Windows PowerShell is its ability to interact with the Windows

registry. This means that not only can you write PowerShell scripts that can access data stored

in the Windows registry, but you can also store data in the registry.

The Windows registry is organized into five high-level keys, also referred to as hives. Registry

keys are somewhat analogous to folders on the Windows file system. Keys are used to store other

keys (or subkeys) and values. Values are analogous to files on the Windows file system. Actual

data stored in the registry is stored inside values. Of the five high-level root keys, Windows

PowerShell gives you access to the values stored in two of them, as outlined in Table 9.1.

TABLE 9.{ REGISTRY KEYS ACCESSIBLE BY THE

WINDOWS POWERSHELL

Hive Shortcut Description

HKEY_CURRENT_USER hkcu Stores information about the currently logged on user

HKEY_LOCAL_MACHINE hkim Stores global computer settings

Windows PowerShell treats registry values as properties. This lets you use the Get - ItemProperty
cmdlet to view information about a key and to list all its values, as demonstrated here.

Set-Location hklm:\SOFTWARE\Microsoft\PowerShel1\1\PowerShellEngine

Get-ItemProperty .

The first statement shown here switches from the current provider, typically the Windows
file system, to a subKey located on the HKEY_LOCAL_MACHINE hive. The second statement uses
the Get-ItemProperty cmdlet to retrieve information about the current subkey. When exe-
cuted, these statements will generate output similar to that shown next.

Windows operating systems use the registry to store data about the operating
system as well as data about the computer’s hardware, software, and user-
configuration settings. The integrity of the registry is critical to the proper oper-
ation of the computer. Therefore, it is important that you take great care when
working with it. Otherwise, if you accidentally change or delete the wrong key
or value, it can have an unpredictable impact on the operation of your computer.

Chapter 9 « Basic System Administration

PSPath : Microsoft.PowerShell.Core\Registry: :HKEY_LOCAL_MACHIN

E\SOFTWARE\Mi crosoft\PowerShel1\1\PowerShellEngine
PSParentPath : Microsoft. PowerShell] .Core\Registry: :HKEY_LOCAL_MACHIN

E\SOFTWARE\Microsoft\PowerShel1\1

PSChildName : PowerShellEngine

PSDrive : HKLM

PSProvider : Microsoft.PowerShel1.Core\Registry

ApplicationBase : C:\Program Files\Windows PowerShel1l\v1.0\

ConsoleHostAssemblyName : Microsoft.PowerShell.ConsoleHost, Version=1.0.9567.1,

Culture=neutral, PublicKeyToken=31bf3856ad364e35,

ProcessorArchitecture=msi1

ConsoleHostModuleName : C:\Program Files\Windows PowerShell\v1.0\Microsoft.

PowerShell] .ConsoleHost.d1]

PowerShel1lVersion mae WAL,

RuntimeVersion : v2.0.50727

Using the Get-ItemProperty cmdlet, you can also retrieve the data stored in a specific value,

as demonstrated here.

$PSVer = $(get-ItemProperty

hkim: \SOFTWARE\Microsoft\PowerShel1\1\PowerShel1lEngine) .PowerShel]Version

$PSVer

Here, the data stored in the PowerShel1Version value is retrieved and displayed as shown

below.

1.0

Note the syntax involved in setting up this operation. Specifically, in order to facilitate an

object reference, you had to create a variable object reference by Keying in a $ followed by

parentheses, inside which you identified the logical path to the key that contains the value.

With the object reference set up, you were then able to use familiar dot notation to identify

the specific object property that you wanted to retrieve. Remember, Windows PowerShell

treats registry values as object properties.

If you want, you can use the Regedit utility to visually verify the PowerShe11Version value and

its associated data by clicking on Start > Run and then typing Regedit and pressing the Enter

key. The Regedit utility lets you navigate the Windows registry in a manner similar to the

way that Windows Explorer lets you navigate the Windows file system, as demonstrated in

Figure 9.12.

Windows PowerShell Programming for the Absolute Beginner

i Registry Editor

C:\Program Files\Windows PowerShell\y 1.0}

Microsoft ,PowerShell.ConsoleHost, Yersion=1.0

C:\Program Files\Windows PowerShell\v1.0\Micr

| f-ZQ_RAS AutoDial sid
ie (Gal ReferenceTitles on v2,0,50727

| | | i-(3Q Remote Desktop
| | t-€) RemovalTools

Using Regedit to |e ©] RFCIIS6Agent
view registry keys oa esi —
and values stored aaa

in the hk] mM hive.

To further demonstrate PowerShell’s ability to interact with the Windows registry, let’s

develop a new PowerShell script that adds a new subkey and value to the hkcu hive. The key

that will be created is named PSBlackjack and the value will be named Credits. Credits will

be used to store a string value of true. Later, when you create this chapter’s game project,

the PowerShell Blackjack game, the game will look for the data stored in the Credits value

to determine whether to display additional information about the game and its author at

the conclusion of the game.

The code for this new PowerShell script, which you should name BJSetup.ps1, is provided

here.

i KKKEKKKKKEKKEKKRERERERERKEK KKK ER ERR ERK KER ERK KERER REE RK RR ERE KER KERR EEK ERREERER

Script Name: BJSetup.ps1 (Setup script for the PowerShell Blackjack Game)

Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script creates a registry key for the
PowerShell Blackjack game under the HKEY_CURRENT_USER hive

KRKKK KKK KER ERK KKK KKK KK ERK KR REK RE RKKRKKEKRRRRKEKRKKRRRRKEKRER KKK EK KEKREEKEEERRE

Initialization Section

$key = "PSBlackjack" Name of the registry key to be created

$value = "Credits" #Name of the registry value to be created

$type = "string" #fType of data stored in the new registry value

$data = "true" #Data to be stored in the new registry value

Chapter 9 + Basic System Administration

Functions and Filters Section

function Create-KeyAndValue {

New-Item -name $key #Create a new registry key

New-ItemProperty $key -name $value -Type $type -value $data

Main Processing Section

Set-Location hkcu:\

Create-KeyAndValue

As you can see, this is a relatively small and straightforward script. It begins by defining vari-

ables representing the key and value to be created as well as the type of data being stored

(string) and its text. Next, a function named Create-KeyAndValue is defined that, when called,

uses the New-Item cmdlet to create the new registry key and the New-ItemProperty cmdlet to

create and store the Credits value inside the key.

Lastly, the statements in the main processing section change the focus from the file system to

the hkcu hive and then create the new key and its value by executing the Create-KeyAndValue

function. Once executed, this script generates the key and value required by the PowerShell

Blackjack game, as shown in Figure 9.13.

Registry Editor iS (fe \[5)

Viewing the \d
PowerShell = E ae

Blackjack game’s ii Bae
| 8-439 Windows 3,1 Migration Status newly created ae jie

subkey and value G2] HREY_UseRS
f (2) HKEY_CURRENT_CONFIG

using the =

Regedit utility.

288 Windows PowerShell Programming for the Absolute Beginner

BACK TO THE POWERSHELL BLACKJACK GAME

Okay, now it is time to return your attention back to the chapter’s main game project, the

PowerShell Blackjack game. This PowerShell script will interact with the Windows registry,

accessing the PSBlackjack key and Credits value that were created earlier in the chapter

when you created and executed the BJSetup.ps1 script. Based on the value assigned to Credits,

the game will display or suppress the display of a screen that provides players with infor-

mation about the game and its author. The overall logical flow of the PowerShell Blackjack

game is straightforward. Its development will be completed in 12 steps, as outlined here:

. Create a new script file using the Windows PowerShell template file.

. Define and initialize script variables.

. Create the Get-Permission function.

. Create the Check-Registry function.

. Create the Get-PlayerHand function.

. Create the Deal -Hand function.

Create the Get-Card function.

. Create the Get-ComputerHand function.

won aw bt Wn me . Create the Analyze-Results function.

. Create the Get-PlayerHand function.

. Create the Get-NewCard function.

. Develop code for the main processing section. = i pe N - Oo

Creating a New Script File
To start, use your PowerShell script template to create a new script file named Blackjack.ps1
and modify its contents, as demonstrated here.

i KKKKKKKKK KKK KKK ERK KK KK KKK KKK KK KKK EKER ERK RRR KEK KE KKKK KEKE REE KK KK KG

Script Name: Blackjack.psl (The Blackjack Game)

Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script is a single player implementation of
the popular casino blackjack game

Chapter 9 * Basic System Administration

4 KRKKRKK KKK KEKE KKK KK KERR AKER EKA KRK ER KERRIER RRR RR RR Ra a a a Ra a

Initialization Section

Functions and Filters Section

Main Processing Section

Defining and Creating New Variables
Now that you have created your new script file, let’s add the following variable definitions

to the script’s initialization section.

$startGame = "False" #Variable used to determine if the game is played

$playerBusted = "False" #Variable used to track when the player busts

$randomNo = New-Object System.Random #This variable stores a random object

$playerHand = 0 #Stores the current value of the player's hand

$computerHand = 0 #Stores the current value of the computer's hand

$playAgain = "True" #controls the execution of the loop that controls the

#fexecution of logic in the main processing section

As you can see, these statements define a number of script variables and assign their initial

values. Also, as you have seen in previous game scripts, the New-Object cmdlet is used to

create a new instance of the Random object, which will be used later in the script to generate

randomly selected numbers representing game cards.

Creating the Get-Permission Function
The Blackjack game consists of a number of custom functions, each of which is designed to

perform a particular task. The first of these functions is the Get -Permission function, shown

next. Add this function, as well as the functions that will follow, to the script’s function and

filters section.

#This function gets the player's permission to begin the game

function Get-Permission {

#tLoop until a valid reply is collected

while ($startGame -eq "False") {

Clear-Host #Clear the Windows command console screen

Windows PowerShell Programming for the Absolute Beginner

#Display the game's opening screen

Write-Host "“n°n°n"

Write-Host " Welcome to the" -foregroundColor Blue

write-Host ""

Write-Host ""

Write-Host "POWERSHELL BLA CLK WO AeGaE G A ME"

-foregroundColor Blue

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

#Collect the player's input

$response = Read-Host "“n’n*n*n°*n*n’n Would you like to play? (Y/N)"

#Validate the player's input

if ($response -eq "Y"){ ##The player wants to play

$startGame = "True"

}
elseif ($response -eq "N") { #The player wants to quit

Check-Registry

exit #Terminate script execution

}

As you can see, this function uses a while loop to control the display of the script’s welcome

screen and to collect and validate the player’s response when prompted to play the game. If

the player enters Y when prompted to play the game, the value of $startGame is set equal to

"True", terminating the execution of the loop and allowing the script to continue running.

Chapter 9 + Basic System Administration

If, on the other hand, the player enters N, the Check-Registry function is called and then the

exit command is executed, thus terminating the script’s execution.

qnick Note the addition of the -ForegroundColor parameter to the Write-Host
cmdlet. This parameter provides you with the ability to specify the font color to

be used when displaying text in the Windows command console. The Write-Host

cmdlet also accepts a -BackgroudColor parameter that lets you specify the

background color when displaying text in the Windows command console.

Creating the Check-Registry Function
The Check-Registry function is responsible for determining whether or not to display a

screen at the end of the game. This screen provides a little information about the game and

its author. It accomplishes this task by checking the value of the hkcu\PSBlackjack\Credits

value stored in the Windows registry. If Credits is equal to "True", the additional screen is

displayed. Otherwise, it is not displayed.

#This function retrieves a registry value that specifies whether or not

#the script should display a splash screen if the player chooses not to

#play a game after starting the script

function Check-Registry {

Clear-Host #Clear the Windows command console screen

$currentLocation = Get-Location #Keep track of the current directory

Set-Location hkcu:\ #Change to the HKEY_CURRENT_USER hive

#Retrieve the data stored in the Credits value under the PSBlackjack

#subkey

$regkey = $(Get-ItemProperty hkcu:\PSBlackjack).Credits

if ($regkey -eq "True") { #If the registry value is set to true

#Hdisplay the closing splash screen

Write-Host " “n°n°n"

Write-Host "POWERSHELL BLACKJAC K nnn"

-foregroundColor Blue

write-Host " Developed by Jerry Lee Ford, Jr.*n°n"

Write-Host " Copyright 2007°n'n-n°n"
Free era Hoh Hey THEY

Write-Host " www.tech-publishing.com n° n-n°n°n-n"

Windows PowerShell Programming for the Absolute Beginner

Set-Location $currentLocation #Restore the current working directory

}

Note that before using the Set-Location cmdlet to change the focus from the file system to

the registry, the function sets the value of $currentLocation equal to the current working

directory. Next, the Get-ItemProperty cmdlet is used to retrieve the value stored in Credits,

which is then stored in $regkey. An if statement then analyzes the value of $regKey to deter-

mine whether to display the additional screen. Finally, the Set-Location cmdlet is executed

again, restoring the focus back to the file system.

Creating the Play-Game Function
The next function to be developed is the Play-Game function, shown below. This function’s

job is to execute other functions, as appropriate, in order to manage both the player’s and

the computer’s hand, as well as to analyze game results.

#This function controls the execution of an individual round of play

function Play-Game {

Deal-Hand #Call the function that deals the opening hands

Get-PlayerHand #Call the function that manages the player's hand

#If the player has busted the game is over, otherwise it is the

#tcomputer's turn

if ($script:playerBusted -eq "False") {

Get-ComputerHand #Call the function that manages the computer's hand

}

Analyze-Results #Call the function that analyzes game results and

#declares a winner

Creating the Deal-Hand Function
The Deal-Hand function, shown next, is called by the Play-Game function each time a new
round of play is initiated. Its job is to see to it that an initial card is retrieved for both the
player and the computer.

Chapter 9 + Basic System Administration

#This function deals the player and computer's initial hands

function Deal-Hand {

$script:playerHand = Get-Card #Assign a card to the player's hand

$script:computerHand = Get-Card ##Assign a card to the computer's hand

}

As you can see, this function makes two calls to the Get-Card function, storing the results

(i.e., cards) that are returned in script variables.

Creating the Get-Card Function
The code for the Get-Card function is shown next. When called, this function uses the Random

object’s Next method to generate a random number in the range of 1 to 13. If the random

number turns out to be a 1, it is considered to be an ace. If the number is greater than 10, it

is considered to be a face card (Jack, Queen, or King). The value of the randomly generated

number is returned to the calling statement. However, if an ace is generated (e.g., 1) a value

of 11 is returned and if a face card is generated (e.g., 11, 12, 13), a value of 10 is returned.

#This function retrieves a random number representing a card and returns

#the value of that card back to the calling statement

function Get-Card {

$number = 0

##HGenerate the game's random number (between 1 - 13)

$number = $randomNo.Next(1, 14)

if ($number -eq 1) {$number = 11} #Represents an ace

if ($number -gt 10) {$number = 10} #Represents a jack, queen, or king

$number #Return the number back to the calling statements

Creating the Get-ComputerHand Function

The Get-ComputerHand function, shown next, is responsible for playing the computer’s hand.

It does so by setting up a while loop that executes as long as the value of the computer’s

hand is less than 17.

Windows PowerShell Programming for the Absolute Beginner

#This function is responsible for managing the computer's hand

function Get-ComputerHand {

$tempCard = 0 #Stores the value of the computer's new card

#The computer continues to take hits as long as its hand's value is less

#than seventeen

while ($computerHand -1t 17) {

$tempCard = Get-Card #Get-a new card for the computer

#HAdd the value of the new card to the computer's hand

$script:computerHand = $script:computerHand + $tempCard

}

As you can see, each time the loop executes, the Get-Card function is called and the value

returned by this function is added to the $computerHand variable. This loop stops executing

as soon as the value of this variable becomes 17 or greater.

Creating the Analyze-Results Function
The Analyze-Results function, shown below, is called by the Game-P1ay function and is respon-

sible for determining whether the player or the computer won the game, or if they tied.

#This function analyzes and displays the results of each game

function Analyze-Results {

Clear-Host #Clear the Windows command console screen

#Display the player and computer's final hand

Write-Host "“n°n°n*n RESULTS: *n*n"

Write-host " Player Hand: $playerHand*n"

Write-Host " Computer Hand: $computerHand*n*n"

#See if the player busted

if ($playerBusted -eq "True") {

Write-Host "a You have gone bust." -ForegroundColor Blue

}

Chapter 9 + Basic System Administration

else { #See if the computer busted

if ($computerHand -gt 21) {

Write-host "*a The computer has gone bust." -ForegroundColor Blue

}

else { #Neither the player nor the computer busted so look for a winner

if ($playerHand -gt $computerHand) {

Write-Host "*a You Win!" -ForegroundColor Blue

if ($playerHand -eq $computerHand) {

Write-Host "a Tie!" -ForegroundColor Blue

}

if ($playerHand -1t $computerHand) {

Write-host "*a You lose." -ForegroundColor Blue

}

}

As you can see, if $playerBusted equals "True", the player has lost the game (i.e., the value of

the player’s hand has exceeded 21). If the player did not go bust, the function next looks to

see if the computer went bust. If neither the player nor the computer went bust, the value

of the player’s hand is compared to the value of the computer’s hand to determine who won

(i.e., whose hand has the higher value).

Creating the Get-PlayerHand Function
The Get-PlayerHand function, shown below, is responsible for assisting players in managing

their hands and is called by the Play-Game function.

#This function displays the value of both the player and computer's

#tcurrent hands and prompts the player to take another card

function Get-PlayerHand {

$keepGoing = "True" #Control the execution of the loop that manages

#Hthe player's hand

$response = "" #Stores the players input

#Loop until a valid reply is collected

Windows PowerShell Programming for the Absolute Beginner

while ($keepGoing -eq "True") {

Clear-Host #Clear the Windows command console screen

#Display the player and computer's current hands

Write-Host "“n°n"

Write-Host ""

write-Host " CURRENT HAND:"

Write-Host "~n"

Write-Host " Player Hand: $playerHand"

Write-Host ""

Write-Host " Computer Hand: $computerHand"

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

Write-Host ""

#Prompt the player to take another card
Nien Nina Sun, © cats an Shee:

#WValidate the player's input

if ($response -eq "Y"){

Get-NewCard #Get another card for the player

}

elseif ($response -eq "N") { #The player wants to quit

$keepGoing = "False"

Clear-Host #Clear the Windows command console screen

if ($playerHand -gt 21) { #The player has gone bust

$script:playerBusted = "True"

$keepGoing = "False"

}

Chapter 9 * Basic System Administration

This function uses a while loop to display the current value of both the player’s and the

computer’s hand and to ask the player if she would like a new card. If the player responds

in the affirmative, the Get -NewCard function is called. The loop stops executing when either

the player decides to stop asking for new cards or when her hand busts by exceeding a value

of 21.

Creating the Get-NewCard Function
The Get-NewCard function, shown below, is called whenever the player elects to add another

card to her hand. It accomplishes this by calling the Get -Card function and then adding the

value returned by that function to the $playerHand variable.

#This function is called whenever the player elects to get a new card

#tand is responsible for updating the value of the player's hand

function Get-NewCard {

$tempCard = 0 #Stores the value of the player's new card

$tempCard = Get-Card #Get a new card for the player

##Add the value of the new card to the player's hand

$script:playerHand = $script:playerHand + $tempCard

Adding Controlling Logic to the Main Processing Section

At this point, all of the script functions have been defined. All that remains is to add a little

controlling logic to the script’s main processing section. The statements that provide this

logic are outlined here.

Get-Permission #Call function that asks the players for permission to

d#start the game

#Continue playing new games until the player decides to quit the game

while ($playAgain -eq "True") {

Play-Game #Call function that controls the play of individual games

#Prompt the player to play a new game

Windows PowerShell Programming for the Absolute Beginner

$response = Read-Host ""n*n*n’n’n*n*n’n*n*n Press Enter to play"’

"again or Q to quit"

if ($response -eq "Q") { #The player wants to quit

$playAgain = "False"

Clear-Host #Clear the Windows command console screen

}

else { #The player did not enter Q so let's keep playing

$playAgain = "True"

$playerBusted = "False"

}

}

The first statement calls on the Get-Permission function, which prompts the player for per-

mission to start a new game. The rest of the statements in the main processing section are

embedded within a while loop that is responsible for prompting the player to play another

game.

That’s everything. Assuming that you did not make any typing mistakes when you Keyed in

the code statements that make up the PowerShell Blackjack game, everything should work

as expected. Go ahead and give the game a run through. Once you have verified that every-

thing works like it is supposed to, try feeding the game invalid input to ensure that the

game handles it correctly. Once you are confident that all is well, share a copy with a friend

and ask for feedback.

SUMMARY

In this chapter you were introduced to a number of different ways that you can use Windows

Powershell to access and automate Windows resources. In addition, you learned how to use

WMI to collect system information and to programmatically interact with the Windows reg-

istry. You also learned how to work with Windows processes, services, and event logs as well

as how to instantiate new objects using .NET classes and the common object model. You

even learned how to alter the presentation of text color in order to enhance the output gen-
erated by cmdlets and script commands.

Now, before you move on to Chapter 10, “Debugging PowerShell Scripts,” consider setting
aside a little extra time to enhance the PowerShell Blackjack game by addressing the fol-
lowing list of challenges.

Chapter 9 * Basic System Administration

CHALLENGES

. Using the Tic-Tac-Toe game for inspiration, consider creating text-based graphic
representations of each card assigned to the player and the computer, thus

allowing the player to view her hand as if she was handling real cards.

- Consider experimenting with the Write-Host cmdlet’s -ForegroundColor and
-BackgroundColor parameters to make the game more visually appealing.

. In this implementation of Blackjack, the player and the computer both start with

a single card. However, in most blackjack games, players start out with two

cards. Modify the game to correct this deficiency. Also, in addition to reporting

the total value of the player’s hand, consider displaying the value of each card

that is assigned.

. Modify the opening welcome screen by adding a text-based graphic that dis-

plays an ace of spades and a 10 of hearts, thus immediately identifying the game

and its purpose to players when it first starts up.

. As currently written, the PowerShell Blackjack game is a little short on descrip-

tive text. Consider adding instructions where you think it will be beneficial.

Also, consider creating a help screen that players unfamiliar with the game can

view to learn how the game is played.

. Consider adding logic to the game that tracks the total number of games won,
lost, or tied and display this information either at the end of the game or upon

demand.

. Currently, the game is hard-coded to treat a randomly generated value of ! as an
ace, automatically assigning it a value of II. Considering giving the player the

option of electing to treat aces as having a value of either | or II.

‘ 4 pasa D ae a be 4

ee

=

“
me .

& ;
tw, « - _" a os — 1 - _<

— ~ ~~ See - — reyes - — f.-mome "

~ i
~ « -

i7 ~ : ras

eis * SMWAaz. ee cn

enon. teow % j “10. Gven owt Pia tat wc gtd +

J rh cr eeriene Swe Coase tS of a* gh heearqe? ‘a

sea eet Weely 0 Nant ad gabetiia | i

ts

:

sitter’ | Pant ted’
f a Fa! r events a

' aw ary a -

| be F< Ta Apertt> -3) vane p27 aft cite: ee icin ehieles ek

i . -“ ja ” , ei ely Ae } aide. he's i easy o a4 ein wet we intra nee 7: ie 7 a —& A
4

‘a

ee ew tui) Hokies ae orrHy avai feury Sewell yy ihe wee ~

ee a er alate cidty Beenie? 08 annoy adie Gilleett id ee, ae

View Gace Se asihee oe8? gett phan + in plenee ener! € oo geig O00) OP Gmrey latoe os
; Pecryirne si tate a Se

=. ~~

~~ eagle sot ase age WiBBe Pee 6 dvb wt eet) omen, peinage a8e @ iste s

depane 6. err eagerh ee wed orn eget 4) outa inealaeanecrasget ith tL

,

we aunt Bd ypuaiae- ana Mayr a, a. bi vt olen a fa ~ wre «-

a 5 Oe enda, The eeemepetent Hod yan easee pb Rie ee a,
- i ‘ 4 _ ? Veit ohh gee rat Sever a F

: imp ror tthe cli dain wile + wal yal Pe ae
; Wad 7 7 rd Dew alas wow smart emia chat! wt ihe = oe vi
re : 4 ale wee ra TL oe es Hea

lame sa de MP Uae |

©

= a a lsh ri gta a ata Peer
ie sir aicres

/~

tu Teves Seid hd van ali cs ee ba 23 Ly }
Ae rae ®

a iss nh Nay apie heer nine 0 gainylens isin mi
pee str hm

ia) et Ae velit sree JAD ecpetar GO a BOE ONE GO) Ss
a th “Wakeeil hh whey,

Rava a xvi; aA. ha Ki . 9 Mies oa -

= : 9 ue * :

oe a rey

A Ripece. sof err mele Wis ase On na
fact apveee eorinitian see ie gorse a

all

os < «6 See

=e cw. Paro! tow le wood whee ee
oe een: fae ete aged anti ME bane

~ 3 ont Ne ea unpre ay tia Mei bas hoe
i) = ew eae 7 3 ae BS

co, Mow, Be wh 100 3 Cheyer,
7 pn

sf eae ress Osa

ures See, ee
= ° aA a earn. =

or ati ga ae Ba, 7

‘= 6

iprebice

Sywe 3

a a4 :

- ee

2

i: ae

CHAPTER

DEBUGGING

POWERSHELL SCRIPTS

occur. No matter how long you have been programming or how good you

may be, errors are going to happen. Windows PowerShell scripting is no

exception. Fortunately, as you will learn in this chapter, there are many tools at

your disposal that you can use to track down, identify, and fix errors. In this chap-

ter you will learn how to create error handlers that respond to errors and take

appropriate action. In addition to showing you how to debug your PowerShell

scripts, this chapter will also teach you how to develop your final PowerShell script,

the PowerShell Game Console.

T f there is one inevitability in programming, it is that errors can and will

Specifically, you will learn how to:

¢ Read and analyze syntax, runtime, and logical errors

e Alter the logical execution of a script when cmdlet errors occur

¢ Create error handlers that trap and respond to errors

e Trace the logical flow of your PowerShell scripts and track variable values

Windows PowerShell Programming for the Absolute Beginner

PROJECT PREVIEW: THE POWERSHELL GAME CONSOLE
In this final chapter of the book, you will learn how to develop your final Windows Power-

Shell computer game, the PowerShell Game Console. This script will provide you with a con-

sole view of all your Windows PowerShell games, allowing you to view and access them as a

list of menu items. When started, the PowerShell Game Console will display a list of all

the PowerShell scripts that it finds in the folder that you have used to store your Windows

PowerShell games, as demonstrated in Figure 10.1.

2) Windows PowerShell
! scaler

Windows PowerShell Game Console

Blackjack.psi
FortuneTeller.psi
GuessMyNumber.psi
Hangman. psi
KnockKnock.psi
RockPaperScissors.psi
SeinfeldTrivia.psi
Threefmigos .psi
TicTacToe.psi

1.
2.
“5
4.

4 5.
1 6.

7.
8.
9.

The PowerShell

Game Console

lets you start

games by

entering their

menu number.

| Enter the menu number for a game or Q to quit:

Once started, the selected PowerShell game runs within the same window as the game con-
sole, as demonstrated in Figure 10.2.

| 2) Windows PowerShell

Welcome to the

TIC-TAC-TOE

The player has

used the game

console to start

the Tic-Tac-Toe | Would you like to play? <¥/N>:

game. “ ‘

Each time the player finishes playing a selected PowerShell game, the game ends and the
PowerShell Game Console reappears, prompting the player to select another game to play.
When done playing games, the player closes the PowerShell Game Console by pressing the
Q key and pressing the Enter key. In response, the screen shown in Figure 10.3 is displayed.

Chapter 10 + Debugging PowerShell Scripts

= Windows PowesShelt

| Thank you for using the Windows PowerShell Game Console

The closing

screen of the

PowerShell game.

UNDERSTANDING POWERSHELL ERRORS

As you have doubtless seen many times, Windows PowerShell scripts are subject to many dif-

ferent types of errors. For example, errors can occur if a script attempts to access a network

resource that is not available, or if you make a typo when keying in a script statement, or if

you make a mistake in the logic used to make your script run. Each of these three types of

errors fall into a distinct category of errors, as outlined in the following list.

e Syntactical Error. An error occurring as a result of not following the syntax require-

ments of the PowerShell! scripting language.

¢ Runtime Error. An error that occurs when a script attempts to perform an illegal

action such as the division of a number by zero.

¢ Logical Error. An error that occurs when a script produces an unexpected result as the

results of faulty programming logic and not as the result of a syntax or runtime error.

Each of these types of errors is explored further in the sections that follow.

Syntax Errors
Syntax errors occur when a script is initially loaded for execution. These types of errors

occur when you make typos or if you fail to follow the syntax requirements of a command

or cmdlet. For example, a syntax error will occur if you forget to provide the required clos-

ing double quotation marks at the end of a Write-Host statement, as demonstrated here.

Write-Host “once upon a time there were three little pigs.

When executed, this statement will generate the following error, preventing the script from

executing.

Windows PowerShell Programming for the Absolute Beginner

Encountered end of line while processing a string token. .

At C:\MyScripts\xxx.psl:11 char:12

+ Write-Host " <<<< once upon a time there were three little pigs.

Syntax errors prevent PowerShell scripts from compiling and running. As such, they are easy

to identify and fix. For example, if you examine the error message that was generated by the

previous statement, you will see that it explicitly identifies the location and the text of the

statement that caused the error, making it easy to locate and fix.

Runtime Errors
Unlike syntax errors, runtime errors are not caught and flagged when your PowerShell

scripts are first started. Instead, they occur only when the statements that generate them are

executed. As a result, unless you carefully test out of all the functionality of your PowerShell

scripts, it is easy to let runtime errors sneak by. As a result, you run the risk that other people

with whom you share your scripts will find your errors.

Some runtime errors are difficult if not impossible to avoid. For example, a computer’s net-

work connection may go down or one of its hard drives may crash. Still, most runtime errors

can be eliminated by carefully testing every aspect of your PowerShell scripts, including

seldom-used functionality. Runtime errors can also be handled by taking care to incorporate

logic within your scripts to prevent errors from occurring. For example, if your script

accepts user input, you should add extra programming logic to validate the user’s input,

rejecting any input that is not valid. Likewise, if you are developing a PowerShell script that

is supposed to copy or move files, take the time to add the logic required to first ensure

that the files to be manipulated do, in fact, exist.

Another way to locate and track down runtime errors is to test your PowerShell scripts

under various conditions. For example, try to input invalid data to see if your script handles

it correctly. If your script needs to access network resources, try disconnecting your com-

puter’s network connection in the middle of your script’s execution. Proper testing is the
key to the elimination of most runtime errors.

As an example of a typical runtime error, take a look at this.

$x = 10

$y = 0

$z = $x / $y

In this example, two variables have been declared and assigned values. Next, an attempt is
made to divide one number by the other. The problem with this example is that it is illegal
to divide any number by zero. As a result, when executed, this example will generate the fol-
lowing error.

Chapter 10 + Debugging PowerShell Scripts

Attempted to divide by zero.

At C:\MyScripts\xxx.psl:13 char:10

+$z=$x / «KX $y

Had the values of $x and $y been provided by the user, instead of hard-coded, this problem

would have been avoided by validating the user’s input and rejecting a value of 0 for the

denominator.

Logical Errors
Unlike syntax and runtime errors, logical errors do not result in the display of error mes-

sages and are therefore often difficult to track down. Because logical errors represent a

breakdown of the programming logic used to develop some part of a PowerShell script, the

best way to deal with them is to prevent them from happening in the first place by carefully

planning out your script’s logic before you start writing it.

An example of a logical error is an endless loop, where a loop is started without providing a way

to break out of it. Another example of a logical error is when you enter in the wrong logic when

trying to perform a task. For example, suppose you wanted to write a script that added two

numbers together. In doing so, suppose you inadvertently keyed in the following statement.

#The total number of units sold is calculated by adding $x and $y

$z = $x - $y

Obviously, the intention here was to add the values of $x and $y together. However, instead,

the value of $y will be subtracted from $x. As a result, if the following statement was executed

later in the script, unexpected results would be displayed.

Write-Host "Total number of units sold = $z"

In this example, instead of $z equaling 15, it has been set equal to 5, as shown below.

Total number of units sold = 5

In this example, the problem did not lie in the logic that was applied to the development of

the script. Instead, the problem most likely occurred by accident, when the programmer

entered in the - operator in place of the + operator. Thus, to catch logical errors, it is also

important that you take the time to carefully analyze the results generated by your scripts

to ensure that they are working as expected. Otherwise, your PowerShell scripts will do

exactly what you tell them to do, even if it is not what you really wanted them to do. Logi-

cal errors can also be prevented by writing PowerShell scripts in a modular fashion, using

functions to organize and store related statements. This allows you to test your scripts a

module at a time as you are building them.

Windows PowerShell Programming for the Absolute Beginner

TERMINATING VERSUS NON-TERMINATING ERRORS

In addition to syntax, runtime, or logical errors, Windows PowerShell errors can also be

classified as terminating and non-terminating. A non-terminating error is an error that does

not prevent the script from continuing its execution. For example, the following script shows

a non-terminating error. When executed, an error message is displayed when the third

statement is executed. However, the script continues executing, allowing the remaining

statements to execute.

$x = 10

$y = 0

$z = $x / $y

Write-host "I got here anyway!"

A terminating error, as you would expect, is an error that halts the execution of the Power-

Shell script. As you will see later in this chapter, Windows PowerShell provides you with the

ability to override the default termination behavior for cmdlet errors.

DISSECTING THE STRUCTURE OF ERROR MESSAGES

Anytime an error occurs, PowerShell stores information about the error in an object called

ErrorRecord. This object provides you with access to a number of properties, each of which

stores information about the error. These properties include:

¢ Exception. This property doubles as an object with its own properties. One of its

properties is Message. By referencing Exception.Message, you can display a description

of an error message

¢ CategoryInfo. This is a high-level category that classifies the type of error that has

occurred.

¢ ErrorDetails. When available, this property provides additional detailed information

about an error.

* TargetObject. When available, this property identifies the object that was active

when the error was generated.

PowerShell stores information about the last error to occur (i.e., the most recent ErrorRecord
object) in a special variable named $error. $error is an array. The last error is found in
$error[0]; the second to last error in $error[1]; and so on. For example, using the properties
belonging to the ErrorRecord object, you can easily display a test message containing the
error message or the most recent error using the following statement.

Write-Host " Error: " + $error[0].exception.message

Chapter 10 » Debugging PowerShell Scripts

TELLING WINDOWS POWERSHELL How To REACT TO ERRORS
By default, Windows PowerShell will continue to run your PowerShell scripts in the event a
non-terminating error occurs. You can change this behavior by modifying the value
assigned to the special $ErrorActionPreference variable. For example, you could instruct
Windows PowerShell to stop executing a PowerShell script in the event a non-terminating
error occurs by adding the following statement at the beginning of the script.

$ErrorActionPreference = "Inquire"

Windows PowerShell allows you to assign any of the values shown in Table 10.1 to the

$ErrorActionPreference special variable.

TABLE 10.1 POWERSHELL ERRORACTION ARGUMENTS

Value Description

Continue Generates an error but allows the script to continue executing

Stop Generates an error and terminates the script

SilentlyContinue Suppresses the display of the error and allows the script to continue executing

Inquire Generates an error and asks the user how to proceed

If you want, you can specify an optional -ErrorAction argument at the end of the cmdlet

statements in order to temporarily override the default global ErrorAction setting. For

example, by default a script containing the following statement will continue executing in

the event the cmdlet is unable to connect to the specified network computer.

Get-WmiO0bject Win32_ComputerSystem -computername HP1

The script continues executing because the default value of the $ErrorActionPreference

variable is Continue. Thus, the previous statement will result in an error message being dis-

played, as demonstrated here, but the script will continue running.

Get-Wmi0bject : The RPC server is unavailable. (Exception from HRESULT: 0x80070

6BA)

At C:\MyScripts\xxx.psl:12 char:14

+ Get-Wmi0bject <<<< Win32_ComputerSystem -computername HP1

By specifying an -ErrorAction value of Stop at the end of the cmdlet statement, you can

instruct the script to instead cease execution.

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction Stop

Windows PowerShell Programming for the Absolute Beginner

When executed, the previous statement generates the following error message and the

script stops running.
t

Get-WmiObject : Command execution stopped because the shell variable

"ErrorActionPreference” is set to-Stop: The RPC server is unavailable. (Exception

from HRESULT: 0x800706BA)

At C:\MyScripts\xxx.psl:12 char:14

+ Get-WmiObject <<<< Win32_ComputerSystem -computername HP1 -ErrorAction stop

By specifying SilentlyContinue when executing the -ErrorAction argument, you can prevent

errors from being displayed, thus keeping them from view by the user, as demonstrated here.

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction

SilentlyContinue

If desired, you can specify Inquire as the value of -ErrorAction, as demonstrated below.

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction inquire

If an error occurs when this statement executes, the Windows PowerShell will display the

following prompt.

The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)

[Y] Yes [A] Yes to All. [H] Halt Command [S] Suspend [?] Help

Laenaultals "\.)%

When you assign a value of Inquire to -ErrorAction, Windows PowerShell responds by dis-

playing the list of choices defined in Table 10.2.

TABLE 10.2 POWERSHELL ERRORACTION INQUIRY OPTIONS

Value Description

Yes Allows the script to continue and process the error as
appropriate

Yes to All Automatically assumes a value of yes for any further inquiries

Halt Command Stops the execution of the cmdlet

Suspend Pauses the current pipeline and opens a new sub-shell. Allows
you to troubleshoot before typing exit to close the sub-shell
and then returns to decide which option you want to select
once pipeline processing is resumed.

Displays an explanation of the effects of each of the available
options.

Chapter 10 + Debugging PowerShell Scripts

Whenever an error occurs, Windows PowerShell generates an exception. This exception can
be trapped by an exception handler or trap handler, thus giving programmers the ability to add
logic to their PowerShell scripts that can respond to errors. An error trap can even override
the ErrorPolicy setting. Trap handlers also have access to the ErrorRecord object through the
$_ special variable.

A trap handler is a mechanism that catches errors raised during script execution, giving you

the opportunity to analyze and hopefully recover from errors. The syntax required to set up

a trap handler is outlined here.

Trap [Exception] {

Script statements

Return [Value] | Continue | Break

}

Here, Exception is an optional placeholder for an argument representing a specific type of

error to be trapped. When specified, the trap handler will ignore any errors that occur and

do not match the specified exception type. If omitted, the trap handler will fire for any

exception that occurs within its scope. You can include any number of script statements

within a trap handler. Typically, you would use $_ to access information about the exception

and determine what action, if any, is appropriate to take as well as to change the value of

ErrorPolicy when appropriate. Lastly, trap handlers can specify any of three optional termi-

nation options.

Return[Va/ue] will exit the current scope and return the specified value. Continue tells

PowerShell to continue script execution beginning with the statement that comes immedi-

ately after the statement that generated the error. Break terminates the execution of the

current scope. If none of these options is returned, PowerShell returns the value of $_.

It is important to remember that Windows PowerShell provides for different scopes. When

a script begins executing, it creates its own scope. Within the script, any functions that are

defined generate their own sub-scopes. If you place a trap handler within a function and an

error occurs within the function, the function’s trap handler will be executed. If the func-

tion does not have its own trap handler, the error will be passed back to the parent scope

and will be processed by a trap handler, if present, within this scope.

If you place a trap handler within a function and an error occurs, specifying an option of

Continue will tell PowerShell to continue executing the next statement within the function.

Windows PowerShell Programming for the Absolute Beginner

Break instructs PowerShell to terminate the current scope, allowing the parent scope to

handle the error (it the parent scope has a trap handler defined). Return [Value] instructs

PowerShell to terminate the current scope and to returir whatever value you specify to the

parent scope.

qnick If you want, you can define multiple trap handlers within each scope. In this

case, each trap handler is executed in the order that it was defined, but only the

optional Return[Va/ue]/Continue/Break statement in the last trap handler is
executed.

To get a better understanding of how to set up trap handlers, take a look at the following

example.

trap {

Clear-Host

write-Host "‘nAn unexpected error has occurred. Please record the following"

write-host "message and notify the Help Desk. *n°n"

#The following statement generates a runtime error

$x = 10

$y = 0

$z = $x / $y

In this example, a trap has been set up to trap any error that occurs within the current
scope. When executed, the trap handler displays a user-friendly error message, instructing
the user to contact the Help Desk and report the error. The statements that follow generate
a runtime error, resulting in the execution of the trap. When executed the following error
is generated.

An unexpected error has occurred. Please record the following

message and notify the Help Desk.

Attempted to divide by zero.

At C:\MyScripts\xxx.ps1:13 char:10

$Z = $x) <KK< SY

Chapter 10 * Debugging PowerShell Scripts 611)

This trap handler will execute for any error that occurs within the current scope. If you
want, you could modify the trap handler so that it only executes when a specific type of
error occurs, as demonstrated below.

trap [DivideByZeroException] {

Clear-Host

write-Host "‘nAn unexpected error has occurred. Please record the following"

write-host "message and notify the Help Desk. *n‘n"

Break

}

Here, the trap handler has been modified so that it will execute only in the event a

DivideByZeroException error occurs. In addition, the Break option has been added to the end

of the trap handler in order to instruct PowerShell to terminate the current scope and allow

the parent scope’s trap handler, if present, to handle the error.

TRACING SCRIPT EXECUTION

Often, all that you will need to track down and fix an error is the text of the error message

that PowerShell generates. However, sometimes error messages alone do not provide enough

information, especially when you are trying to track down a logical error. To track down and

eliminate some problems, it often helps to know the order in which things are executing

within your PowerShell scripts as well as the value of variables as they are accessed and

changed.

Displaying Output Status Information and Tracking Variable Values
One way of keeping an eye on the inner working of your Windows PowerShell scripts is to

place Write-Host statements at strategic points within your scripts. For example, you might

display a statement at the beginning and end of each function that notifies you when the

function is started and when it ends. You might also want to use the Write-Host statement

to display the value of key variables so that you can keep an eye on their values as they are

modified and referenced.

Because of the speed with which PowerShell processes script statements, it is also often help-

ful to place Read-Host statements after your Write-Host statements in order to pause script

execution and give you time to examine the data that is displayed. For example, you might

want to add Write-Host statements following function calls in order to be able to visually

validate that the data returned by the function is what you anticipated.

612) Windows PowerShell Programming for the Absolute Beginner —

To see an example of how you might make use of the Write-Host and Read-Host cmdlets to

track the execution flow of a PowerShell script and keep an eye on variable values, take a

look at the following example. Ps

function Display-Message {

param($x)

Write-Host $x

Write-Host "Function Display-Host now terminating"

}

Write-Host "Starting Script execution"

Foreeach «$1 tn 1:.5) 4

Write-Host "Calling the Display-Message function"

Write-Host "and passed a value of $i"

Read-Host

Display-Message $i

}

When executed, this script displays the following messages and then pauses.

Starting Script execution

Calling the Display-Message function

and passed a value of l

At this point you know that the script is about to call on the Display-Message function and

that the value of $i is equal to 1. As soon as the Enter key is pressed, the following output is

displayed.

Function Display-Host now terminating

Calling the Display-Message function

and passed a value of 2

Again, you can see that the Display-Host function is about to be called and the value of $i

is now 2. As this simple example shows, you can effectively track the execution of small

scripts or parts of larger scripts using the Write-Host and Read-Host cmdlets in order to keep

an eye on variable values. This will allow you to verify that things are executing in the order

you expect and to ensure that variables are being assigned the proper values.

If you do not want to see text messages, you might instead take advantage of the Write-Host

cmdlet’s ability to make beep sounds to let you know when something of interest has

occurred. Once you have managed to track down and fix any errors, you can either remove

the extra debugging statements that you added to the script or you can comment them out,

leaving them in place should you need to debug the script again at a later date.

Chapter 10 + Debugging PowerShell Scripts 613)

Using PowerShell’s Debug Mode
While adding strategically placed Write-Host and Read-Host cmdlets throughout a script can

be helpful in tracking down problems, this debugging technique is only suitable for small

scripts or for limited use within larger scripts. For larger scripts, you will want to use the

Set-PSDebug cmdlet to enable Windows PowerShell’s debug mode.

The Set-PSDebug cmdlet accepts a number of optional parameters, which allow you to spec-

ify the level of detail and control you want during the debug session. One parameter is

-Trace, which tells the cmdlet how much debug information you want to see. The following

choices are available.

e -Trace 0. Turn tracing off.

e -Trace 1. Display each script statement that is executed.

¢ -Trace 2. Display information on variable values and function calls and display each

script statement that is executed.

Another optional Set-PSDebug parameter is -Step, which, when specified, tells the cmdlet to

pause and display the following list of options before executing each line in the script.

e Yes. Execute the next statement.

e Yes to All. Execute all remaining statement with additional prompting.

e No. Exits the script.

e No to All. Exits the script.

¢ Suspend. Pauses script execution.

To better learn how to work with the Set-PSDebug cmdlet in order to debug your PowerShell

scripts, let’s take a look at a few examples. For starters, create and save the following

PowerShell script as PSTest.ps1.

function Display-Message {

param($x)

Write-Host $x

Foreacn’ ($1 in 17.5) {

Display-Message $i

}

Next, run the script to make sure that it correctly displays a sequence of numbers from 1 to 5,

as shown on the next page.

Windows PowerShell Programming for the Absolute Beginner

ane Ww PY Fr

Next, let’s enable PowerShell debug mode by typing the following statement at the Windows

PowerShell command prompt.

Set-PSDebug -Trace 1

Here, debug mode is enabled and a trace level of 1 is established. Now, with the debug mode

established, re-run your PowerShell script. This time, you should see the following output.

DEBUG: 1+ PSTest

DEBUG: 2+ function Display-Message {

DEBUG: Ply eforeach (Sie in 1.75). 4

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

1

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

2

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

3

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

4

DEBUG: 13+ Display-Message $i

DEBUG: 6+ Write-Host $x

5

As you can see, setting the trace level to 1 results in the display of each statement that was

executed in addition to the output normally displayed by the script. Obviously, this level of

debugging is helpful in letting you keep an eye on the exact order in which the script state-

ment and functions are executing, allowing you to determine if events are occurring in an

order that you anticipated.

If setting the trace level to 1 does not give you enough information, you can always increase

tracing to level 2 by executing the following statement directly at the Windows PowerShell

command prompt.

Set-PSDebug -Trace 2

Chapter 10 «+ Debugging PowerShell Scripts G13)

With the new debug mode setting now in place, execute the script again. This time the fol-
lowing output is displayed.

DEBUG: 1+ PSTest

DEBUG: ! CALL script 'PSTest.ps1'

DEBUG: 2+ function Display-Message {

DEBUG: 11+ ForEach ($i in 1..5) {

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function 'Display-Message' (defined in file

'C:\MyScripts\PSTest.ps1')

DEBUG: 6+ Write-Host $x

1

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function 'Display-Message' (defined in file

"C:\MyScripts\PSTest.ps1')

DEBUG: 6+ Write-Host $x

2

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function 'Display-Message' (defined in file

"C:\MyScripts\PSTest.psl')

DEBUG: 6+ Write-Host $x

3

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function 'Display-Message' (defined in file

'C:\MyScripts\PSTest.ps1')

DEBUG: 6+ Write-Host $x

4

DEBUG: 13+ Display-Message $i

DEBUG: ! CALL function 'Display-Message' (defined in file

'C:\MyScripts\PSTest.ps1')

DEBUG: 6+ Write-Host $x

5

As you can see, you now not only see each statement as it is executed, but you are also able

to identify by name functions as they are called as well as variable values each time they are

modified or referenced.

If you want, you can specify the -Step parameter when setting up debug mode, as demon-

strated here.

Windows PowerShell Programming for the Absolute Beginner

Set-PSDebug -Step

When specified, -Step automatically sets a trace level of 1. To test this debugging option out,

enter the previous statement at the Windows PowerShell command prompt and press Enter

and then run your script again. This time, PowerShell pauses the execution of your script

before each statement is executed, as demonstrated here.

Continue with this operation?

1+ XxX

[Y] Yes [A] Yes to All [NJ] No [L] No to All [S] Suspend [?] Help

(default is "Y"):

You can now specify the appropriate response to continue debugging your PowerShell script.

To learn more about the Set -PSDebug cmdlet, type Get-Help Set-PSDebug at the HINe
trp PowerShell command prompt.

BACK TO THE POWERSHELL GAME CONSOLE
Okay, it is time to turn your attention back to the chapter’s main project, the PowerShell

Game Console. In this project, you will create a text-based game console that displays a

menu of PowerShell game scripts, allowing players to start and play PowerShell games by

entering their menu number. Once players finish playing a selected game, the game ends

and the game console reappears, prompting the player to select another game to play.

Designing the Game
The PowerShell Game Console builds its menu on the fly based on the contents stored in the

folder where your PowerShell scripts are stored. Although the script automatically filters

out the display of any non-PowerShell script files, it is up to you to ensure that the folder

contains only game scripts. Other PowerShell scripts, including the PowerShell game con-

sole itself and your standard PowerShell template script, should not reside in the folder.

When executed, the PowerShell Game Console displays a numbered list of all the game

scripts in the PowerShell game folder and displays a prompt that allows players to start

scripts based on their assigned menu number. As you can see, the overall logical flow of the

PowerShell script is fairly simple. To set it up, you will complete its development in six steps,

as outlined here:

1. Create a new script using the PowerShell script template.

2. Define and initialize script variables.

Chapter 10 + Debugging PowerShell Scripts 617)

3. Create the Get-GameListing function.

4. Create the Write-MenuList function.

5. Create the End-ScriptExecution function.

6. Develop the script’s primary controlling logic.

Creating a New Script File

The first step in the creation of the PowerShell Game Console script is the creation of a new
script file named GameConsole.ps1. Create this script file using your PowerShell script tem-
plate file and then modify the new script file as shown here.

KKKKKKKKKKRKK KKK KK KK KKK KKK KKK KKK KKK ERE KKK KKK KR KEKE REE KKK RRR KEKE

Script Name: GameConsole.psl (The PowerShell] Game Console)

Version: 1.0

Author: Jerry Lee Ford, dr.

Date: January 1, 2007

Description: This PowerShell script provides a listing of PowerShell

game scripts and allows the player to play any game by

i entering its menu number.

i KRKKEKKKEKKKEREKKKRKEKEKR ERE RER ERK ER KKEKKKEKERKRRERKERKRERKKEKREREKRKRKKEKREEKRERKKEKE

Initialization Section

Functions and Filters Section

Main Processing Section

Defining and Initializing Script Variables

This script will use an array named $menuList to store a list of all the PowerShell scripts

located in the C:\MyScripts folder. In addition, the controlling logic outlined in the script’s

main processing section will be controlled by a while loop that monitors the value of

$playAgain in order to determine when to halt the execution of the PowerShell Game Con-

sole. Add the following statements to the script file’s initialization section in order to define

and initialize these two variables.

Windows PowerShell Programming for the Absolute Beginner

$menuList = @() #Stores an array containing information about script games

$playAgain = "True" #Controls the execution of a loop that controls game

#Hexecution &
Yee

Creating the Get-GameListing Function

The PowerShell Game Console script has a number of custom functions, each of which is

responsible for performing a particular task. The code for the first function is shown below.

This function, named Get-GameListing, is responsible for retrieving a list of files stored

in the C:\MyScripts folder and then storing the list in the $gameList array. Note that the

ForEach-Object cmdlet is used to filter out any non-PowerShell script before the resulting list

is stored in the $gameList array. Once populated, the contents of the array are then returned

to the statement that called upon the function.

#This function gets the player's permission to begin the game

function Get-GameListing {

$gameList = @() #Stores an array containing a list of PowerShell scripts

$i = 0 #Used to set the index value of the array when adding elements

#to it

Clear-Host #Clear the screen

Write-Host #Display a game console header

Write-Host " ———---___________—_-"

Write-Host " Windows PowerShell Game Console" -foregroundColor darkred

Write-Host * —-—-----_______________--"

Set-Location C:\MyScripts #Specify the location of the game scripts

#Load an array with a list of all the PowerShel] scripts in the

#specified folder

$gameList = Get-ChildItem . *.psl1 # | ForEach-Object -process {$i++
$gameList[$i] = $_.Name }

$gameList = Get-ChildItem . *.psl1 # | ForEach-Object -process *

{$it+; $gameList[$i] = $_.Name}

$gameList #Return the contents of the array to the calling statement

Chapter 10 * Debugging PowerShell Scripts

You will need to customize your version of this script by substituting the path

and name of the folder where you have chosen to store your Windows

PowerShell games. You will also want to make sure that this folder only con-

tains game scripts and not other PowerShell scripts that you may have devel-

oped. You will also need to add this folder to your default path as described

back in Chapter I, “Introducing Windows PowerShell.”

Take note of the use of the ; (semicolon) character to separate $i++ from

$gameList[$i] = $_.Name in the statement that loads the $gameList array. Here,

the ; character servers as an end-of-line marker, allowing you to place two

separate statements on a single Line.

Creating the Write-MenuList Function

The next function to be added to the script is the Write-MenuList function, which is outlined

below. This function is responsible for taking the list of filenames passed to it and using

them to build a numbered list of menu items.

#This function displays a menu listing of PowerShell games

function Write-MenuList {

param($list) #The list of games to be displayed is passed as an array

$Counter = 0 #Used to number each menu item

Write-Host ""

ForEach ($i in $list) { #lIterate for each script stored in the array

$countert+ #Increment the counter by 1

if ($counter -1t 10) { #Format the display of the first 9 scripts

Write-Host " $counter. $i" -foregroundColor blue

}

else { #Format the display of all remaining scripts

Write-Host " $counter. $i" -foregroundColor blue

}

i]

(eR OS en) ce ee

Windows PowerShell Programming for the Absolute Beginner

As you can see, the list of filenames passed to this function is temporarily stored in an array

named $1ist, which is then processed using a ForEach loop. Upon each iteration of the loop,

a filename is displayed, preceded by a number that uniquely identifies the file (i.e., as spec-

ified by the value of $i).

Writing the End-ScriptExecution Function

The last function to be added to the script is the End-ScriptExecution function, shown below.

This function is responsible for displaying a message that thanks the player for using the

PowerShell Game Console and then, after a three-second pause, clears the screen.

function End-ScriptExecution {

Clear-Host #Clear the screen

Write-Host "“n Thank you for using the Windows PowerShell Game Console"

Start-Sleep 3 #Pause the execution of the script for 3 seconds

Clear-Host #Clear the screen

Developing the Programming Logic for the Main Processing Section

Now it is time to wrap things up by adding the programming logic in the main processing
section that will manage the overall execution of the PowerShell Game Console. The script
statements that make up this logic are outlined here.

$response = 0 #Stores player input

#Continue playing new games until the player decides to close the

##game console

while ($playAgain -eq "True") {

#Call the function that generates an array containing a list of

#game scripts

$menuList = Get-GameListing

#Call the function that converts the contents of the array into a list
#of menu items

Write-MenuList $menuList

Chapter {0 * Debugging PowerShell Scripts 621)

#Prompt the player to pick a game to play
$response = Read-Host "*n Enter the menu number for a game or Q to quit"

#Prepare to close the game console when the user decides to quit
if ($response -eq "Q") {

$playAgain = "False" #Modify variable value in order to halt the loop
continue #Repeat the loop

}

#Convert the player's input to an integer and then validate the

#player's input

if (Lint]$response -1t 1) { Anything below 1 is not a valid menu number

Clear-Host #Clear the screen

Write-Host "“n “a*aInvalid selection."

Read-Host #Pause the script until the player presses the Enter key

continue #Repeat the loop

if (Lint]$response -gt $menuList.length) {

Clear-Host #Clear the screen

Write-Host "“n ~a°aInvalid selection."

Read-Host #Pause the script until the player presses the Enter key

continue #Repeat the loop

}

Invoke-Expression $menuList[$response -1] #Execute the selected script

Clear-Host #Clear the screen

End-ScriptExecution

As you can see, a while loop has been defined to control the overall execution of the script.

This loop executes until the player enters a menu command of 0, signaling that it is time to

close the console. Upon each iteration of the loop, the Get -GameListing function is executed

in order to generate a list of games to be displayed. Next, the Write-MenuList function is exe-

cuted in order to display the list of PowerShell scripts that has been assembled. Next the

player is prompted to select a game. The player’s input is then evaluated. Once a valid menu

selection has been specified, the Invoke-Expression cmdlet is used to start the specified

PowerShell game by specifying the array index number of the selected menu item.

622) Windows PowerShell Programming for the Absolute Beginner

The Invoke-Expression cmdlet provides you with the ability to execute other

PowerShell scripts by passing the cmdlet the name and path of the script.

be

The Final Result
Well, that is it. If all has gone according to plan, your version of the PowerShell Game Con-

sole should be ready to run. If you have made a few typos and are getting errors, use the

debugging information presented in this chapter to track down the errors.

SUMMARY

Congratulations on completing the final chapter of this book. This chapter has helped to

round out your understanding of Windows PowerShell programming by teaching you how

to track down and fix problems that inevitably occur as part of the script-development

process. You learned how to override the manner in which PowerShell responds to cmdlet

errors. You learned how to develop error handlers that trap and respond to errors. You also

learned how to trace the logical execution flow of your PowerShell scripts as well as how to

Keep an eye on the values stored in variables at various stages of script execution.

Before you put down this book and move on to tackle other opportunities, why not spend a

few final minutes tackling the following list of challenges?

CHALLENGES

1. Modify the PowerShell Game Console to give the player the ability to start new

games by entering the name of a PowerShell script in addition to specifying its
menu number.

. Currently, the name and path of the folder where PowerShell game scripts are

stored is hard-coded in the script itself. Consider enhancing the Windows Power-
Shell Game Console to use the registry to store the name and path of the game.
In addition, considering giving the player the option of specifying the name and
path of a different folder where PowerShell script games might be stored.

. If you have a website, you might consider adding an option to the PowerShell
Game Console that allows the player to automatically visit your website in order
to check on the availability of new PowerShell script games. This can be accom-
plished using the New-Object cmdlet and COM to load your website using Internet
Explorer.

Part

LV
Appendices

Appendix A: What’s onthe

Companion Website?

Appendix B: What Next?

“hs »

; — sie ORRaB

rir Ges rice »? } “Ceetrairs ¢ Mt #3 ro 2 it

eo , . ryor Ten Sete nt ts aces ie

Balto tee ~ ‘snp nee ts AW 0 ahora
@rnes ae. dee ~4 ib hide in.

tahzdoW noinsarme. | na pig = oe Sa ¥ > SeTT stig ws sare ;

ee TRS eeo wt *. ¢ the. Pellet Conan deste) ane -

;
F cea = aco ‘2x01 serlNe

on Coaytenced ig ns

<= pea eey ¢ Peas i Same fares & on Be Pere
- e by emtnrmy o* cam of 2 Boaertbal thick iv

PPE ai 3

By pers. the ke cot leh ol the Shoe aN
Simeon a OG > he a) pt Meee Conair
a Pe ees wea cane the rnp ta eeee he i
aed, or pr Laman puny er ie ’ Rd ceterry"

a vd thes > Tahaee ates Portes 18 gdues DA
‘| wah omni sable de 3 eg We a
bo thst dicot thee ’ also

\ foe naohh hiya

a ee

iC) <a a Oe

= =

eee

APPENDIX

WHAT'S ON THE

COMPANION WEBSITE?

o become proficient with any programming language, you must spend

time working with the language, developing new scripts, and experi-

menting with different programming techniques. Obviously, this means

dedicating yourself to the development of new PowerShell scripts in an effort to

push you into tackling more and more challenging tasks. It also helps to have a

collection of source code that you can use as the basis for your new scripts.

Assuming that you have created each of the sample game scripts presented in

this book as you’ve gone along, you now have a good starter set of scripts from

which you can learn and expand. However, if you did not get the chance some-

where along the way to create one or more of the sample game scripts outlined

in this book, you are in luck. Copies of every game script covered in this book

have been uploaded to the book’s companion website and are ready for you to

download. The website address is www.courseptr.com/downloads. From there,

enter the title of this book to locate the files.

I wrote this book with the intention that you would read it from cover to cover.

If you read this book in this manner, then you should already have a good idea

of what each game script does. However, just in case you found yourself skipping

around a bit and did not review each chapter’s game script, I have provided a

summary of what each script does in Table A.1.

Windows PowerShell Programming for the Absolute Beginner

TABLE A.!| POWERSHELL ScrRipT FILES LOCATED

ON THE COMPANION WEBSITE

Chapter Application Description

Chapter | Knock Knock Joke This script provides a gentle introduction to
PowerShell scripting by demonstrating the steps
involved in creating and executing a scripts that
tells knock-knock jokes.

Chapter 2 The Story of the Three Amigos _ This script demonstrates how to collect user
input and use it in the creation of a mad-lib
style story.

Chapter 3 PowerShell Fortune Teller This script provides random answers to
questions asked by a player, providing different
answers based on the time of day.

Chapter 4 The Seinfield Trivia Quiz This script demonstrates how to store and
retrieve data in variables in order to build a trivia
game that tests the player’s knowledge of
Seinfield trivia.

Chapter 5 Guess My Number This script demonstrates the implementation of
conditional logic through the development of a
number guessing game in which the player is
challenged to guess a secret number in the
lowest number of guesses.

Chapter 6 Rock, Paper, Scissors This script re-creates a command-line version of
the classic children’s game, demonstrating how
to control script execution with a loop.

Chapter 7 PowerShell Hangman This script demonstrates how to organize scripts
using functions through the development of a
hangman-style word-guessing game.

Chapter 8 PowerShell Tic-Tac-Toe This script re-creates the classic children’s
Tic-Tac-Toe game through the development of
a two-player PowerShell game.

Chapter 9 PowerShell Blackjack This script demonstrates how to create a

Blackjack-styled card game that pits the player
against the computer.

Chapter 10 PowerShell Game Console This script brings together all of the
programming concepts covered in this book
through the creation of a game console that
provides the player with easy access to the
book’s PowerShell games.

APPENDIX

WHAT NExT?

Shell provides a robust, powerful scripting environment that goes well

beyond traditional shell scripting. Windows PowerShell provides an

entirely new programming language designed from the ground up to integrate

with and leverage the capabilities provided by the .NET Framework. As this book

has demonstrated, Microsoft PowerShell is a great programming language for

first-time programmers and computer hobbyists. Yet, it is also powerful enough

to satisfy the needs of professional programmers.

i s you no doubt have concluded after reading this book, Microsoft Power-

While you have already learned a great deal about how to program using Win-

dows PowerShell scripting, there is still a lot more to be learned. Therefore,

rather than viewing this book as the end of your Windows PowerShell scripting

education, you should view it as the beginning. To become a truly effective

Microsoft PowerShell programmer, you must continue to read and learn as much

as possible. To help get you started, I have provided this appendix, where you will

find an assortment of useful Windows PowerShell information. It includes infor-

mation about a PowerShell IDE, assorted PowerShell reading materials, websites,

mailing lists, and blogs.

Windows PowerShell Programming for the Absolute Beginner

WINDOWS POWERSHELL IDES
As I was writing this book, there were two Windows PowerShell IDEs under development.

These PowerShell IDEs provide a much better script-editing and testing environment than

simply working with Notepad and the command prompt and can significantly improve your

code-development experience.

DEFINITION

An IDE, or integrated development environment, is a graphical software-development

tool that integrates a source-code editor with other application-development tools to

aid in the creation of scripts or applications.

The first PowerShell IDE is PowerShellIDE, available as a free download at www.power-

shell.com/. PowerShell IDE provides a long list of features, including:

e Statement color coding

¢ Direct command-line access

¢ Debugging features including support for breakpoints

¢ Context aware code completion

¢ Variable and property views

Figure B.1 shows an example of PowerShellIDE in action.

PowerShellIDE -wew.powershell.com

The fs ; Scolumitems = get-wmiobject ~class "Win32_LocalTime'
| | 4, ~computernane $strComputer

PowerShellIDE ' '
pyiforeach (Sobjitem in $columnitems) 7

manages the i f write-host “Today is " $objitem.Month "/"
display of script | a write-host

code, output,and sf a
variable and

property values.

Appendix B « What Next?

The other PowerShell IDE is PowerShell Analyzer, which is also available as a free download
at www.powershellanalyzer.com. Like PowerShellIDE, PowerShell Analyzer comes with lots of

bells and whistles that are designed to help you work faster and smarter when interacting

with Windows PowerShell and developing scripts. A sampling of PowerShell Analyzer features

includes:

¢ Statement color coding

¢ Direct command-line access

¢ Automatic display of keyword syntax

e Variable and property views

Figure B.2 shows an example of PowerShell Analyzer in action.

| fcolumnitems = << i —isaes "Win32_ LocalTime” -rinnserece “root\CIMve" >

The PowerShell 4) —computername $strComputer,

Analyzer provides Dg ee ee ae
easy access to tI ‘ -noet, "Today is " SobjItem.Month "/" SobjItem.Day "/" $objItem. Year

tools that help

simplify and

speed up script

development.

RECOMMENDED READING

Because PowerShell is a brand-new technology, there were no other books on the subject

published at the time that I was writing this book. However, Microsoft provides its own

PowerShell documentation in the form of a quick start and a user guide. While first-time

programmers and individuals new to PowerShell scripting may find these guides challenging,

they will serve as an excellent next step for you once you have finished reading this book.

Information on both of these guides is provided on the following page.

Windows PowerShell Programming for the Absolute Beginner

Getting Started Guide for the Windows PowerShell

by Microsoft Corporation

Available as a PDF file in the Windows PowerShell Documentation Pack that can be down-

loaded for free at:

www.nicrosoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-

EC48BFCA154F&displaylang=en

Windows PowerShell (PS) User Guide

by Microsoft Corporation

Available as a PDF file in the Windows PowerShell Documentation Pack that can be down-

loaded for free at:

www.tinicrosoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-

EC48BFCA154F&displaylang=en

LOCATING MICROSOFT POWERSHELL RESOURCES ONLINE

Despite its relatively new arrival, PowerShell already has a significant presence on the Inter-

net. A great deal of information is available at the websites described in the sections that

follow. You will want to visit them regularly in order to stay on top of the latest develop-

ments. You will also find that many of these websites provide access to free sample code,

which you can download and learn from.

The first place to start when you are ready to go online is Windows PowerShell’s official

website, which is located at www.microsoft.com/windowsserver2003/technologies/management/

powershell/default.mspx, as shown in Figure B.3.

Microsoft’s

official

PowerShell

website.

Product Information

How to Buy

Upgrading

Technical Resources

Downloads

‘Partners
Windows Server
Community

Windows Family

Microsoft Servers

Windows Small Business
Server 2003 R2

Windows Server Catalog

Windows Server 2003
orldwide

Tashnoloqy Centers

Windows PowerShell

Windows PowerShell is a new command line shell and task-based scripting technology that

provides comprehensive control and automation of system administration tasks, Windows

PowerShell allows Windows administrators to be more productive by providing over 100

system administration utilities, consistent syntax, and improved navigation of common

management data such as the registry or Windows Management Instrumentation (WMI),

Windows PowerShell also includes a scripting language which enables comprehensive

automation of Windows system administration tasks, The Windows PowerShell language is
intuitive and supports your organization’s existing scripts and command line tool

investments, Exchange Server 2007 and System Center Operations Manager 2007 will

leverage Windows PowerShell to provide improved command line automation,

For information about other Windows Server technologies and services, see the complete list

of Windows Server 2009 Technoloay Centers.

Appendix B « What Next? 631)

PowerShell Websites

Microsoft also provides online access to a collection of PowerShell sample scripts as part of its

Microsoft TechNet Script Center website. These scripts demonstrate how to automate Active

Directory, the desktop, Windows applications, and many other areas. You can learn more about

and download these sample scripts at www.microsoft.com/technet/scriptcenter/scripts/msh.

The site is shown in Figure B.4.

D the Script Center Script Repository: Sample Windows P.

The Script Center Script Repository: Sample
Windows PowerShell Scripts

a eo The Script Repository categorizes the best sample scripts designed to run on Windows

ive Directory 2000, Windows XP, and Windows Server 2003, The categories listed below connect

Ficgu RE B 4 Applications you to sample scripts written using Windows PowerShell, For sample scripts written

Compute Cluster Server using VBScript, please visit the Script Repository home page.

f) Desktop Management

Sample Other Directory Services |

PowerShell Group Policy 7 + active Directory Mpthee birectors services
(4 Hardware 4 Sample scripts for managing Active Sample scripts for managing directory

scri pts are qs cise and Active Directory services other than Active Directory.

2 ca © Printing
grouped by Messaging & Communicati © Applications Sample scripts for managing printers,

j Networking Sample scripts for managing software print jobs, print servers, and other

category in the BD Office and applications on servers and client parts of the Windows printing

Microsoft Script Operating System computers. infrastructure,

G) Printing ° Reskton Management * Scripting Techniques.
Center Script i] Scripting reais bal Sample scripts for managing such Sample scripts demonstrating a wide .
repository. i i things as desktop settings, computer variety of scripting tips, tricks, and |

There are plenty of other quality websites that provide information on PowerShell. For

example, you may want to check out the PowerShell Information Centre at www.reskit.net/

monad/, as shown in Figure B.5.

D Monad MSH (LROCKS!! - Microsoft Internet Lxplorer provided by Comeast ls ei
i File Edit View favorites Tools Help

iE ates CT https//wwworeskitsnet{monedy sss

The Menad PowerShell Information Centre

This page contains links and resources for PowerShell, Microsoft's admin scripting tool

Table of Contents

* Getting PowerShell
¢ Background and General Information

FIGURE B.5 + Web Casts
o Language Features

The PowerShell « PowerShell Related Blogs

o WMI And Netwerking with PowerShell

Information + Obtects in Powershell
Centre provides + Editor Syntax Files

« About Providers
links to ah

PowerShell

resources located

on the Internet.

632) Windows PowerShell Programming for the Absolute Beginner

Another helpful site for you to check out is channel9.msdn.com/wiki/default.aspx/Channel9.

WindowsPowerShellQuickStart. This site provides access to an online PowerShell Quick Start

guide, as shown in Figure B.6. This time-saving web page provides easy access to an online

command reference.

Summary: Windows PowerShell Language Quick Start. This contains a simple
‘overview of the key parts of the language syntax. This is not meant an alternative to
the full product manuals that will no doubt errive in due course, but is a useful
_Teference. if you know what you want to do, but just can't quite ‘remember itt

The home page for the Channel9 Windows PaverShell Wiki is Windows PowerShell Wiki.

QUICK START
Arithmetic Operators (also see Unary and String operators)
+ addition, concatenation

- subtraction

* multiplication, string repetition

| 7. division
ye z i % modulus

Fi G U RE B ui 6 Be | Array Comparison
ie i Retum all elements equal to 3: 1,2,3,5,3,2 -eq 3

: oo : Return all elements less than 3: 1,2,3,5,9,2 -It3
The Channel9 ie | Test if 2 exists: if (1, 3, 5 -eq 2)...

: | Other operators: -gt, -le, -ge

Wiki Windows = a Amays
eg _ "a™,"b*,"c array of strings

PowerShell Quick / | 42,3 array of integers
ee é sr a0 empty array

Start page. ;

Windows PowerShell News Group
Sometimes there is no better way to learn than to spend time sharing information with peers.

One way to do this is via newsgroups. Microsoft sponsors a newsgroup dedicated exclusively

to the PowerShell. You will find this newsgroup at www.microsoft.com/communities/

newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell. Figure B.7 pro-

vides a glimpse of this web page and the kinds of discussions that occur.

@ Discussions in microsolt. public, windows. powershell Microsoft internet Lxpl

: File Edt View Favorites Tools Help

crosoft. public. windows. ineteaxplor “

Icrozoft. public. vindows,inatexplor
icrosoft. public. windows,

Icrosoft. public. vindows. sse_ | @ Identifying errors in PowerShell - how? New to discussions?
1 post

@ how to get path and name of the active Script Be sure to sign in (click
Hmicrosoft, public windows, mediacent 3 posts When you are signed ii

jeuteepobiewindovermedatee. (io er he have asked, sign up for _|

Icrosoft. public. windows. mediacent

5 posts
Icrosoft. public. vindows.msi | @ BUG? Read-Host ‘oot can't read "box 2

FIGURE B 7 icrosoft. public. windows, networking ae 7 ves mn rte srafaones

mt Imicrosoft. public. windows, natworking 14 posts 9/4/2006
{ TabExpansion for... command history. And issues

rate posts in discussion

Microsoft’s eter ry a
- 9/2/2006 >

Windows Ei aisiteexpanoton nde double quoted sina ee]

Powe rShell Hmicrosoft. public, windows; 4 | How can I use the IHTMLDocument2uscripts prop... @

Newsgroup. —

Appendix B « What Next? 633)

PowerShell Blogs
Another extremely useful place for meeting fellow programmers and exchanging questions
and answers is PowerShell blog websites. One such blog is the one belonging to the Windows
PowerShell development team, located at blogs.msdn.com/PowerShell/, as shown in Figure B.8.

2B Windows PowerShell - Microsoft Internet Explorer provided by Comcast lied. 4

Blog of Windows PowerShell team. Improving the world one-liner at a time,

Saturday, September 02, 2606 6:53 2M Vitis Mog :

BizTalk Server Applications: Get/Start/Stop
About |

Tomas Restrepo has a nice script for getting/starting/stoping BizTalk

Server Applications at: pcalender 2

Aug September 2006 gc¢
cs con Wo Fs

2 2

3 4 Ss 5 7 8 9

Fi B 10 11 12 49 14 15 16 IGURE B.8 ee eee
24 25 26.27 28 29 30

The Windows

PowerShell Ee Seren

development ee |

team’s blog.

As you might imagine, this site is very popular within the PowerShell community and you

will find no shortage of technical discussion going on every day.

Another good blog website is the Monad Technology Blog, which you will find at blogs.msdn.

com/monad/archive/2005/09/02/460075.aspx, as shown in Figure B.9. As the name implies,

this blog was set up back in the early days, before Microsoft gave the PowerShell its new name.

This blog’s primary benefit is that it provides you with access to discussions dating as far

back as 2005.

object - Microsoft Internet Exploser provided by C

Welcome to MSDN Blogs Sign in | Join | Hi

Monad Technology Blog

MshObject and Methods that take object ;

Every once in a while people (including me) run into trouble calling methods About
that take object. Why? Well, as | told you earliet objects in MSH are wrapped > Email
by an invisible MshObject As if turns out that this invisible object is not tee site we sew enue

always so invisible. Take a look at the following:

USH>Skey = get-iten ° aug September 2005 oct

MSH>Shash = @{} S Mo Wt © s
oe 2) 3

MSH>Shash[Skey] = ‘foa' ge 6 7 a 9) tO

MSH>Shash{Skey] 1 12 43 15 16 17
18 19 28 22 23 24

£oa ‘ 29 36

MSH>Shash. ContainsKey(Skey)

FiGureE B.9 con

The Monad Blog.

Windows PowerShell Programming for the Absolute Beginner

One more blog worth mentioning is the PowerShelled blog at mow001.blogspot.com, as

shown in Figure B.10. '

D ANoVV PowerShelled - Microsoft Internet Explorer provided hy Comcast

{ Fle Edt View Favorites Tools Help :

‘\/\o\/\/ PowerShelled
Did you do your PowerShelling
| Microsoft Server 2003 Potizedicatane,

inass Information with Anew F voice mes: XML give:
chan: Ds aloned for ee ft Ex:

The PowerShelled

blog.

vednesday, September 06, 2006

The PowerShelled blog provides a Microsoft-independent discussion area where PowerShell

programmer’s regularly interact and share experiences and help each other solve problems.

The Author’s Website

Last but not least, you may also want to check out my website, which is located at www.

tech-publishing.com, as shown in Figure B.11. In addition to learning about my other books,

you will find information about both this book and Windows PowerShell. You might also

want to stop by just to provide feedback on this book or to provide any input you may have

on how to make it better.

* : “ah ee
al Bw

(Figure B.11) j wll Apphescaigt Studie (RE vesicript Privfrsstonail
(Fieure B.11) : : a pores te WBScript Projects ;

~:
My website at mk eck
www.tech-

publishing.com.

GLOSSARY

-NET Framework. A Microsoft developed framework designed to support the

development of desktop, network, and Internet-based applications and scripts.

.NET Framework Class Library. A hierarchical collection of classes that can be

used to instantiate objects based on those classes.

.ps1. The file extension used by Windows PowerShell scripts.

$_. A special variable created and maintained by Windows PowerShell that is

automatically assigned the name of the current object in the PowerShell pipeline

and, in the case of the Where-Object cmdlet, is used to reference each object in a

collection.

Add-Content. A Windows PowerShell cmdlet that adds to the content of the spec-

ified item.

Add-History. A Windows PowerShell cmdlet that adds entries to the session history.

Add-Member. A Windows PowerShell cmdlet that adds a user-defined custom

member to an object.

Add-PSSnapIn. A Windows PowerShell cmdlet that adds one or more PSSnapIn(s)

to the current PowerShell console.

Alias. A shortcut to another cmdlet.

Argument. Data passed to a script or function for processing.

Array. An indexed list of values.

Windows PowerShell Programming for the Absolute Beginner

Associative Array. Sometimes referred to as hash or dictionary, which provides efficient and

fast access to data stored in key-value pairs.

Classes. Templates for creating objects that Windows PowerShell can access and manipulate.

Clear-Content. A Windows PowerShell cmdlet that removes the content from an item or file

while leaving the file intact.

Clear-Item. A Windows PowerShell cmdlet that sets the item at the specified location to the

“clear” value specified by the provider.

Clear-ItemProperty. A Windows PowerShell cmdlet that removes the property value from a

property.

Clear-Variable. A Windows PowerShell cmdlet that removes a value from a variable.

Cmd.exe. The predecessor to the Windows PowerShell command shell.

Cmdlets. Predefined commands, representing .NET classes, which are designed to perform

a specific task.

Command Shell. A text-based interface that sits between the user and the operating system.

Command.com. The original Windows command line shell.

Compare-Object. A Windows PowerShell cmdlet that compares the properties of objects.

COM (Component Object Mode). A Microsoft technology that allows Windows PowerShell to

programmatically interact with and control COM objects, including ActiveX controls and

various Windows applications.

ConvertFrom-SecureString. A Windows PowerShell cmdlet that exports a SecureString to a

safe, persistent format.

Convert-Path. A Windows PowerShell cmdlet that converts the path of the item given from

a PowerShell path to a provider path.

ConvertTo-Html. A Windows PowerShell cmdlet that converts the input to an HTML table.

ConvertTo-SecureString. A Windows PowerShell cmdlet that creates a SecureString from a

normal string created by Export-SecureString.

Copy-Item. A Windows PowerShell cmdlet that calls a provider to copy an item from one

location to another within a namespace.

Copy-ItemProperty. A Windows PowerShell cmdlet that copies a property between locations.

Glossary 637)

CSV (Comma-Separated Value). A file format that is used to store comma-separated data

as records separated by newlines. This format is commonly used by applications such as

Microsoft Excel.

Do Until. A PowerShell statement that iterates until a specified condition is True.

Do While. A PowerShell statement that iterates as long as a specified condition is True.

ErrorRecord. An object that is created anytime an error occurs and which provides access

to information about the error.

Exception. An event that occurs whenever an error is discovered in a Windows PowerShell

script.

Export-Alias. A Windows PowerShell cmdlet that exports an alias list to a file.

Export-Clixml. A Windows PowerShell cmdlet that produces a Clixml representation of a

PowerShell object.

Export-Console. A Windows PowerShell cmdlet that exports the changes made to the cur-

rent console.

Export-Csv. A Windows PowerShell cmdlet that creates CSV strings from input.

Expression. A statement that is evaluated and produces a result.

Filter. A programming construct similar to a function but which is designed to more effi-

ciently process large amounts of object pipeline data.

Flowchart. A tool used by programmers to graphically depict the logical flow of all or part

of a script.

For. A PowerShell statement that iterates a set number of times.

ForEach. A PowerShell statement that iterates through all of the elements stored in a col-

lection or array.

ForEach-Object. A Windows PowerShell cmdlet that applies a script block to each object in

the pipeline.

Format-Custom. A Windows PowerShell cmdlet that formats output display as defined in

additions to the formatter file.

Format-List. A Windows PowerShell cmdlet that formats objects as a list of their properties

displayed vertically.

Format-Table. A Windows PowerShell cmdlet that formats output as a table.

Windows PowerShell Programming for the Absolute Beginner

Format-Wide. A Windows PowerShell cmdlet that formats objects as a table of properties.

Function. A collection of statements that is called and executed as a unit.

Get-Acl. A Windows PowerShell cmdlet that gets the access control list associated with a file

or an object.

Get-Alias. A Windows PowerShell cmdlet that returns alias names for cmdlets.

Get-AuthenticodeSignature. A Windows PowerShell cmdlet that gets the signature object

belonging to a file.

Get-ChildItem. A Windows PowerShell cmdlet that retrieves the child items for the specified

location on a drive.

Get-Command. A Windows PowerShell cmdlet that retrieves information about a command.

Get-Content. A Windows PowerShell cmdlet that returns the content from the item at the

specified location.

Get-Credential. A Windows PowerShell cmdlet that gets a credential object based on a password.

Get-Culture. A Windows PowerShell cmdlet that gets culture information.

Get-Date. A Windows PowerShell cmdlet that gets current date and time.

Get-EventLog. A Windows PowerShell cmdlet that gets EventLog data for the machine.

Get-ExecutionPolicy. A Windows PowerShell cmdlet that gets the effective execution policy.

Get-Help. A Windows PowerShell cmdlet that opens a help file.

Get-History. A Windows PowerShell cmdlet that gets a listing for the current session history.

Get-Host. A Windows PowerShell cmdlet that retrieves host information.

Get-Item. A Windows PowerShell cmdlet that gets an object that represents a namespace item.

Get-ItemProperty. A Windows PowerShell cmdlet that retrieves properties belonging to an

object.

Get-Location. A Windows PowerShell cmdlet that displays the current location.

Get-Member. A Windows PowerShell cmdlet that enumerates the properties, methods, and

property sets for the specified object.

Get-PfxCertificate. A Windows PowerShell cmdlet that gets the pfx certificate information.

Get-Process. A Windows PowerShell cmdlet that returns a list of active processes.

Get-PSDrive. A Windows PowerShell cmdlet that gets drive information.

Glossary

Get-PSProvider. A Windows PowerShell cmdlet that returns provider information.

Get-PSSnapIn. A Windows PowerShell cmdlet that gets a list of registered PSSnapIns.

Get-Service. A Windows PowerShell cmdlet that gets a list of services.

Get-TraceSource. A Windows PowerShell cmdlet that lists trace source properties.

Get-UICulture. A Windows PowerShell cmdlet that gets the uiculture information.

Get-Unique. A Windows PowerShell cmdlet that gets the unique items in a sorted list.

Get-Variable. A Windows PowerShell cmdlet that retrieves a PowerShell variable.

Get-WmiObject. A Windows PowerShell cmdlet that creates a WMI Object or the list of WMI

classes available on the system.

Global Scope. The scope that is established whenever a new PowerShell session is started.

Group-Object. A Windows PowerShell cmdlet that groups the objects containing the same

property value.

If. A PowerShell statement that evaluates a comparison and then executes or skips the exe-

cution of a set of statements located in an associated code block.

Import-Alias. A Windows PowerShell cmdlet that imports an alias list.

Import-Clixml. A Windows PowerShell cmdlet that imports a Clixml file.

Import-Csv. A Windows PowerShell cmdlet that extracts data from a CSV list and passes

objects down the object pipeline.

Invoke-Expression. A Windows PowerShell cmdlet that executes a string as an expression.

Invoke-History. A Windows PowerShell cmdlet that executes a previously run command.

Invoke-Item. A Windows PowerShell cmdlet that invokes an executable or opens a file.

Join-Path. A Windows PowerShell cmdlet that combines path elements into a single path.

Local Scope. Refers to the current scope, which can be global, private, or script.

Logical Error. An error that occurs when a script produces unexpected results as the result

of faulty programming logic.

Loop. A set of programming statements that is repeatedly executed as a unit.

Measure-Command. A Windows PowerShell cmdlet that tracks the runtime for script blocks

or cmdlets.

Measure-Object. A Windows PowerShell cmdlet that measures different aspects of objects.

Windows PowerShell Programming for the Absolute Beginner

Method. A predefined collection of code that can be executed in order to interact with and

control its associated object.

Move-Item. A Windows PowerShell cmdlet that moves an item from one location to another.

Move-ItemProperty. A Windows PowerShell cmdlet that moves a property from one location

to another. :

New-Alias. A Windows PowerShell cmdlet that creates a new cmdlet-alias pairing.

New-Item. A Windows PowerShell cmdlet that creates a new item in a namespace.

New-ItemProperty. A Windows PowerShell cmdlet that sets a new property for an item at a

specified location.

New-Object. A Windows PowerShell cmdlet that creates a new .NET object.

New-PSDrive. A Windows PowerShell cmdlet that sets up a new drive.

New-Service. A Windows PowerShell cmdlet that creates a new service.

New-TimeSpan. A Windows PowerShell cmdlet that creates a TimeSpan object.

New-Variable. A Windows PowerShell cmdlet that defines a new variable.

Non-terminating Error. An error that does not prevent the script from continuing its

execution.

Object. A self-contained resource that contains information about itself as well as the code

required to access and manipulate it.

Out-Default. A Windows PowerShell cmdlet that sets the default controller of output.

Out-File. A Windows PowerShell cmdlet that sends command output to a file.

Out-Host. A Windows PowerShell cmdlet that sends object pipeline data to the host.

Out-Null. A Windows PowerShell cmdlet that sends output to a null.

Out-Printer. A Windows PowerShell cmdlet that sends the output to the printer.

Out-String. A Windows PowerShell cmdlet that sends string output to the object pipeline.

Pipeline. A logical connection between two commands that supports the passage of one

command’s output to another command where it is received as input.

Pop-Location. A Windows PowerShell cmdlet that changes the current working location to

the location specified by the last entry added onto the stack.

Precedence. The order in which mathematic operations are executed.

Glossary

Private Scope. A scope that is not visible or accessible to other scopes.

Properties. Object attributes that describe particular features of the object.

Provider. A model that provides Windows PowerShell with access to hierarchical reposito-
ries including the Windows file system and the Windows registry.

Pseudocode. A term used to describe an English-like outline of all or part of a script or appli-
cation.

Push-Location. A Windows PowerShell cmdlet that pushes a location onto the stack.

Read-Host. A Windows PowerShell cmdlet that collects a line of input from the host console.

Registry. A Windows repository that stores configuration data for the operating system as

well as for hardware, software, network, and user settings.

Registry Key. Logical containers used to store registry keys and values.

Regular Expression. A pattern used to describe matching data.

Remove-Item. A Windows PowerShell cmdlet that calls a provider to remove an item.

Remove-ItemProperty. A Windows PowerShell cmdlet that removes a property and its value

from the specified location.

Remove-PSDrive. A Windows PowerShell cmdlet that removes a drive.

Remove-PSSnapIn. A Windows PowerShell cmdlet that removes PSSnapIns from the current

console.

Remove-Variable. A Windows PowerShell cmdlet that deletes a variable and its value.

Rename-Item. A Windows PowerShell cmdlet that changes an item’s name.

Rename-ItemProperty. A Windows PowerShell cmdlet that renames a property.

Reserved Word. A keyword that Windows PowerShell has predefined as having a special

purpose.

Resolve-Path. A Windows PowerShell cmdlet that resolves the wildcard characters in a path.

Restart-Service. A Windows PowerShell cmdlet that restarts a service that has been stopped.

Resume-Service. A Windows PowerShell cmdlet that resumes a service that has been sus-

pended.

Runtime Error. An error that occurs when a script attempts to perform an illegal action

such as the division of a number by zero.

Windows PowerShell Programming for the Absolute Beginner

Script Scope. The scope that is established whenever a script is executed and which ends

when the script stops executing.

Select-Object. A Windows PowerShell cmdlet that selects objects based on parameters spec-

ified in the command string.

Select-String. A Windows PowerShell cmdlet that searches through strings or files for

matching patterns.

Set-Acl. A Windows PowerShell cmdlet that sets Access Control List properties.

Set-Alias. A Windows PowerShell cmdlet that maps an alias to a cmdlet.

Set-AuthenticodeSignature. A Windows PowerShell cmdlet that places an authenticode

signature in a PowerShell script.

Set-Content. A Windows PowerShell cmdlet that sets the content in the item.

Set-Date. A Windows PowerShell cmdlet that sets the system time.

Set-ExecutionPolicy. A Windows PowerShell cmdlet that establishes execution policy.

Set-Item. A Windows PowerShell cmdlet that sets the value of a pathname within a provider

to a specified value.

Set-ItemProperty. A Windows PowerShell cmdlet that sets a property to a specified value.

Set-Location. A Windows PowerShell cmdlet that sets the current working location.

Set-PSDebug. A Windows PowerShell cmdlet that turns on PowerShell’s script debugging

features.

Set-Service. A Windows PowerShell cmdlet that makes changes to service properties.

Set-TraceSource. A Windows PowerShell cmdlet that modifies options and trace listeners

from the specified trace source instance.

Set-Variable. A Windows PowerShell cmdlet that assigns a value to a variable or creates a

variable if it does not exist.

Sort-Object. A Windows PowerShell cmdlet that sorts the input objects based on property
values.

Special Variables. A collection of variables created and managed by Windows PowerShell
that provide access to commonly used information.

Split-Path. A Windows PowerShell cmdlet that streams a string with the qualifier, parent
path, or leaf item.

Glossary

Start-Service. A Windows PowerShell cmdlet that starts a service that has been stopped.

Start-Sleep. A Windows PowerShell cmdlet that suspends shell, script, or runspace activity
for the specified amount of time.

Start-Transcript. A Windows PowerShell cmdlet that starts a transcript for a command shell
session.

Stop-Process. A Windows PowerShell cmdlet that stops an active process.

Stop-Service. A Windows PowerShell cmdlet that stops an active service.

Stop-Transcript. A Windows PowerShell cmdlet that stops the transcription process.

Subclass. A class that inherits base object definitions from its parent class and includes its

own modifications.

Suspend-Service. A Windows PowerShell cmdlet that suspends an active service.

Switch. A statement used to define a collection of different test and code blocks, each of

which evaluates against the same expression.

Syntactical Error. An error that occurs as a result of not following the syntax requirements

of the PowerShell scripting language.

Tab Completion. An editing feature that enables you to type a part of a command and then

to press the Tab key to obtain assistance in filling out the rest of the command.

Tee-Object. A Windows PowerShell cmdlet that sends input objects to two different places.

Terminating Error. An error that halts the execution of a PowerShell script.

Test-Path. A Windows PowerShell cmdlet that returns True if a path exists and False if it

does not.

Trace-Command. A Windows PowerShell cmdlet that enables the tracing of a trace source

instance.

Trace. The process of tracing the execution of script statements when executing a script.

Trap Handler. A collection of statements that are executed when an exception occurs.

Update-FormatData. A Windows PowerShell cmdlet that modifies format data files.

Update-TypeData. A Windows PowerShell cmdlet that updates the types.ps1xml file.

Values. Containers in which actual data is stored in the Windows registry.

Variable. A reference to data that is stored in memory.

Windows PowerShell Programming for the Absolute Beginner

Where-Object. A Windows PowerShell cmdlet that filters the input from the object pipeline.

While. A PowerShell statement that iterates as long as a specified condition is True.

WMI (Microsoft’s Windows Management Instrumentation). A system management inter-

face designed to facilitate access to system information.

Write-Debug. A Windows PowerShell cmdlet that writes debug messages.

Write-Error. A Windows PowerShell cmdlet that creates an error object and passes it

through the object pipeline.

Write-Host. A Windows PowerShell cmdlet that displays object data.

Write-Output. A Windows PowerShell cmdlet that adds an object to the object pipeline.

Write-Progress. A Windows PowerShell cmdlet that sends progress records to the host.

Write-Verbose. A Windows PowerShell cmdlet that writes a string to the host’s verbose

display.

Write-Warning. A Windows PowerShell cmdlet that writes warning messages.

XML. A markup language that facilitates the definition, storage, and transmission of data

between applications.

INDEX

Symbols
+ (addition) operator, 110

| (division) operator, 110

$ metacharacter, 230
* metacharacter, 230

? metacharacter, 230

\ metacharacter, 230

“ metacharacter, 230

% (modulus) operator, 110

* (multiplication) operator, 110

| (pipe) character, 82-83

- (subtraction) operator, 110

* (wild card character), 19

? (wild card character), 19

A
ac alias, 84

action arguments, error, 307-311

Add-Content cmdlet, 76

Add-History cmdlet, 76

addition (+) operator, 110

Add-Member cmdlet, 76

Add-Numbers function, 205

Add-PSSnapIn cmdlet, 76

alert escape character, 105

aliases

cmdlet, 14

hierarchical data stores, 47

list of, 85-86

allsigned security level, 12

arguments

assigning default values to, 202-203

comma-separated lists, 73

data type specification, 201-202

passing, 198-200

processing, 198-200

arithmetic operators, 110

arrays

associative

contents, removing, 120

creation, 118

data stored in, accessing, 118-119

key-value pair, deleting, 120

populating, 119-120

combining, 117

creation, 115

defined, 114

element values, modifying, 116

elements, deleting and inserting,

117-118

support, PowerShell versus cmd.exe, 10

tracking size of, 116

asnp alias, 84

associative arrays

contents, removing, 120

creation, 118

data stored in, accessing, 118-119

key-value pair, deleting, 120

populating, 119-120

author website, 334

background color, command console, 42

backspace escape character, 105

beginning of game prompt, Knock Knock

joke game, 23

BIOS information retrieval, 277

Blackjack card game

computer hand operations, 293-294

deal hand operations, 292-293

gameplay control, 292

new card functions, 297

new game prompts, 297-298

new script creation, 288-289

permissions, 289-291

Windows PowerShell Programming for the Absolute Beginner _

Blackjack card game (continued)

player hand operations, 295-297

project preview, 266-268

random number generation, 293

results, analyzing, 294-295

variables, defining and creating, 289

blogs, as resource, 333-334

break keyword, 103

break statement, 176-177

Cc
carriage return escape character, 105

case-sensitive pattern matching, 228-229

-ceq (equal to) operator, 149

certificates, hierarchical data stores, 47

-cge (greater than or equal to) operator, 149

-cgt (greater than) operator, 149

character strings, repeating, 106

child class, 8

class library, NET Framework, 8

classes, NET Framework, 70, 281

clc alias, 84

-cle (less than or equal to) operator, 149

clear command, 23

Clear method, 120

Clear-Content cmdlet, 76, 245

Clear-Host cmdlet, 23, 53, 88

Clear-Item cmdlet, 76

Clear-ItemProperty cmdlet, 76

Clear-Variable cmdlet, 76

cli alias, 85

closing screen, Fortune Teller game

example, 93-94

clp alias, 85

CLR (common language runtime), 70

cls command, 23

-clt (less than) operator, 149

clv alias, 85

cmd.exe versus PowerShell, 9-10

cmdlets

aliases, 14, 84-86

Clear-Content, 245

Clear-Host, 23, 53, 88

confirmation, 12

execution, 13-15, 75

Export-Clixml, 245-246

Export-Csv, 247

Format-List, 240-242

Format-Table, 19, 242-244

Get-ChildItem, 14-15, 49, 70-72, 83

Get-Command, 16

Get-Content, 237-238, 244-245

Get-EventLog, 274

Get-Help, 81

Get-History, 46-47

Get-Member, 71

Get-Process, 16-19, 138, 269

Get-PSDriver, 48

Get-PSProvider, 48

Get-Service, 245, 270, 272

Import-Csv, 248

Invoke-History, 47

list of, 76-80

naming syntax, 13

New-Item, 239

Out-File, 240

Out-Printer, 249

Read-Host, 13, 23, 56, 89, 153

Remove-Item, 236

Rename-Item, 237

Restart-Service, 270

Resume-Service, 270

Select-Object, 73-74

Select-String, 237, 241

Set-Content, 239-240

Set-Location, 49, 203

Set-PSDebug, 313

Set-Service, 270

Sort-Object, 83

Start-Service, 270

Start-Sleep, 24

Stop-Process, 269

Stop-Service, 270

Suspend-Service, 270

Where-Object, 83-84, 203, 272

Write-Host, 56, 62, 68, 81, 89, 103, 206

Write-Output, 24

-cne (not equal to) operator, 149

code block, 139

collections, foreach loops, 172

color attributes, command console, 41-42

COM (Component Object Model), 281-283

combining arrays, 117

command console

clearing, 23

color attributes, 41-42

command history, 39

cursor size, 38

customization options, 38-42

display options, 39

edit options, 39

editing features, 43

font attributes, 39-40

height settings, 40

Insert mode, 39

layout changes, 40-41

QuickEdit mode, 39

screen buffer size, 40

width settings, 40

Windows position, 41

windows size, 40-41

command history, Windows command

console, 39

command shell

improvements to, 7-8

overview, 7

command-lets. See cmdlets

commands. See also methods; objects

clear, 23

cls, 23

executable files, 16

exit, 178

comma-separated lists, arguments, 73

comma-separated values

reading data from, 248-249

saving data as, 247-248

common language runtime (CLR), 70

companion website, 325-326

Compare-Object cmdlet, 76

comparison operators, 146-147

compiling, CLR and, 70

Component Object Model (COM), 281-283

concatenation, 105-106

conditional logic

if statement

alternatives to, 141

data comparison, 139

different conditions, testing, 142-143

else statement and, 141

formulation, 139-140

Index

multiline, 141

nesting, 143-144

single line, 141

overview, 133

switch statement, 144-146

conditions, 167, 175

configuring PowerShell, 10-12

confirmation, cmdlets, 12

continue keyword, 103

continue statement, 177-178

Control+Left edit feature, command

console, 43

Control+Right edit feature, command

console, 43

Convert-Path cmdlet, 76

ConvertTo-Html cmdlet, 76

ConvertTo-SecureString cmdlet, 76

copying files/folders, 235

Copy-Item cmdlet, 76

Copy-ItemProperty cmdlet, 76

copyright information, 35

CovertFrom-SecureString cmdlet, 76

cpi alias, 85

cpp alias, 85

cursor size, Windows command console, 38

custom created functions, 210-211

customization options, Windows

command console, 38-42

cvpa alias, 85

D
data comparison, if statement, 139

data output, saving as HTML, 245

data, storing and retrieving, 107

data types

list of, 202

specification, 201-202

debugging

cmdlets for, 313-316

discussed, 301

errors

action arguments, 307-311

logical, 305

messages, 306

runtime, 304-305

syntax, 303-304

Windows PowerShell Programming for the Absolute Beginner

debugging (continued)

terminating versus non-terminating,

306

trap handlers, 309

output status information, 311-312

Set-PSDebug, 313

variable values, tracking, 311-312

deleting

array elements, 117-118

files/folders, 236

diff alias, 85

display options, Windows command

console, 39

division (/) operator, 110

do keyword, 103

do until loops, 168-169

do while loops, 167

double quote escape character, 105

Down Arrow edit feature, command

console, 43

edit options, command console, 39

editing features

command console, 43

Get-History cmdlet, 46-47

tab completion, 44-46

elements, foreach loops, 172

else keyword, 103

else statement, 141

elseif keyword, 103

elseif statement, 143

End edit feature, command console, 43

end of game determination, Hangman

game, 217-218

endless loops, 168

Env drive, 49

environment variables, hierarchical data

stores, 47

epal alias, 85

epcsv alias, 85

-eq (equal to) operator, 147

equal to (-ceg) operator, 149

equal to (-eq) operator, 147

equal to (-ieg) operator, 149

errors
action arguments, 307-311

logical, 305

messages, 306

runtime, 304-305

syntax, 303-304

terminating versus non-terminating, 306

trap handlers, 309

escape characters, 103-105

event logs, system administration, 274-276

exception handling

CLR and, 70

PowerShell versus cmd.exe, 10

executable files, 16

execution, cmdlets, 13-15, 75

execution policy, 12

exit command, 178

Export-Alias cmdlet, 76

Export-Clixml] cmdlet, 76, 245-246

Export-Console cmdlet, 76

Export-Csv cmdlet, 76, 247

expressions, assigning variables values

using, 110

F

fc alias, 85

files

comma-separated values

reading data from, 248-249

saving data as, 247-248

copying, 235

creating, 238-239

data output, saving as HTML, 245

deleting, 236

erasing contents of, 245

information retrieval, 234-235

moving, 235-236

renaming, 237

searching, 237-238

text files

reading from, 244-245

writing to, 239-240

verifying existence of, 233-234

XML

reading data from, 247

saving data as, 245-246

filter keyword, 103

filters

defined, 195

replacing functions with, 207-208

fl alias, 85

folders

copying, 235

creating, 238-239

deleting, 236

information retrieval, 234-235

moving, 235-236

renaming, 237

verifying existence of, 233-234

font attributes, command console, 39-40

for loops

array contents processing, 171

conditions, 169

data returned processes, 173-174

flexibility in, 170

initialization, 169

support, 169

foreach alias, 85

foreach keyword, 103

foreach loops, 172

ForEach-Object cmdlet, 76

form feed escape character, 105

Format-Custom cmdlet, 76

Format-List cmdlet, 76, 240-242

Format-Table cmdlet, 19, 76, 242-244

Format-Wide cmdlet, 76

Fortune Teller game

closing screen, 93-94

game design, 87-88

game instructions, 90

gameplay control, 91-93

new script creation, 88

project preview, 64-66

variables, declaring and initializing, 88

welcome screen, displaying, 89

ft alias, 85

function keyword, 103

functions

Add-Numbers, 205

arguments

assigning default values to, 202-203

data type specification, 201-202

Index

passing, 198-200

processing, 198-200

custom created, 210-211

defined, 195

Get-FileNames, 203

Get-UserName, 205-206

incoming data, processing, 203-204

overview, 191

PowerShell versus cmd.exe, 10

replacing with filters, 207-208

results, returning, 204-205

reusable code, 195-196

script organization, improving, 195

structure of, 196-197

variable scope, restricting, 205-207

fw alias, 85

gal alias, 85

game design

Fortune Teller game, 87-88, 91-93

Game Console game, 316-317

Guess My Number game, 150

Knock Knock joke game, 22

Rock, Paper, Scissors game, 179-180

Seinfeld Trivia Quiz, 121

Tic-Tac-Toe, 250

game instructions

Fortune Teller game, 90

Seinfeld Trivia Quiz game, 123-127

games

Blackjack

computer hand operations, 293-294

deal hand operations, 292-293

gameplay control, 292

new card functions, 297

new game prompts, 297-298

new script creation, 288-289

permissions, 289-291

player hand operations, 295-297

project preview, 266-268

random number generation, 293

results, analyzing, 294-295

variables, defining and creating, 289

Windows PowerShell Programming for the Absolute Beginner

games (continued) user guess process, 214

Fortune Teller

closing screen, 93-94

game design, 87-88

game instructions, 90

new script creation, 88

project preview, 64-66

variables, declaring and initializing, 88

welcome screen, displaying, 89

Game Console

final result, 322

game design, 316-317

game listing functions, 318

menu items, 319-320

new script creation, 317

project preview, 302

variables, defining and initializing,

317-318

Guess My Number

clearing screen, 157

final result, 157-161

game design, 150

gameplay control, 152

new script creation, 150-151

pipelines and operators, combining,

137-138

play again prompt, 155-156

player guesses, analyzing, 153

player input, analyzing, 154-155

player input, collecting, 153

player response, 156-157

project preview, 134-136

random number generation, 152-153

statistics, displaying, 155

value comparison, 136-137

variables, defining and initializing, 151

welcome screen, displaying, 152

Hangman

end of game determination, 217-218

functions, creating custom, 210-211

gameplay control, 213

guess results, 216-217

new script creation, 209

overall construction, 208

play game again prompts, 219-220

project preview, 192-194

secret word selection, 213-214

start of game prompts, 212-213

user input, collecting and validating,

214-216

‘variables, defining and initializing,

209-210

Knock Knock joke

beginning of game prompt, 23

final result, 26-28

game and author information display,

26

game design, 22

new script creation, 22-23

pausing between jokes, 24

project preview, 4-6

punch line, 24

second joke, 25

set-up line, 24

third joke, 25-26

Rock, Paper, Scissors

computer move, generating, 182

final result, 188

game design, 179-180

gameplay control, 181-182

gameplay results, analyzing, 185-186

new round of play, 187

new script creation, 180

player moves, prompting, 182-183

player moves, translating, 184

player moves, validating, 183-184

project preview, 164-166

random number generation, 182

statistics, displaying, 187-188

variables, defining and initializing,

180-181

welcome screen, displaying, 181

Seinfeld Trivia Quiz

end of quiz script, 131

final result, 131

first quiz question, 124-125

game design, 121

instructions, displaying, 123-124

new Script creation, 121-122

player answers, analyzing, 128

project preview, 100-102

quiz complete display, 128

ranking, 129-130

welcome screen, displaying, 123

The Story of Three Amigos

additional inputs, collecting, 57-58

discussed, 52

introduction, displaying, 54-55

new script creation, 53

opening of story, displaying, 58-59

player input, prompting, 56

player instructions, 55-56

project preview, 32-35

remainder of story, displaying, 59-62

script variable declaration, 54

Tic-Tac-Toe

check results functions, 256-257

clear board function, 252

final result, 263

game board, clearing, 258

game design, 250

gameplay control, 259

moves, validating, 255-256

new game prompt, 252-254, 262-263

new script creation, 251

player moves, collecting, 259

player moves, validating, 259-260

player turn prompt, 254

project preview, 226-227

results prompt, 257-258, 260-261

switching between players, 262

tie between players, determining,

261-262

variables, defining and initializing,

251-252

gc alias, 85

gci alias, 85

gcm alias, 85

gdr alias, 85

-ge (greater than or equal to) operator, 147

Get-ACL cmdlet, 76

Get-Alias cmdlet, 76

Get-AuthenticodeSignature cmdlet, 77

Get-ChildItem cmdlet, 14-15, 49, 70-72, 77,

83

Get-Command cmdlet, 16, 77

Get-Content cmdlet, 77, 237-238, 244-245

Get-Credential cmdlet, 77

Get-Culture cmdlet, 77

Get-Date cmdlet, 77

Index

Get-EventLog cmdlet, 77, 274

Get-ExecutionPolicy cmdlet, 77

Get-FileNames function, 203

Get-Help cmdlet, 77, 81

Get-History cmdlet, 46-47, 77

Get-Host cmdlet, 77

Get-Item cmdlet, 77

Get-ItemProperty cmdlet, 77

Get-Location cmdlet, 77

Get-Member cmdlet, 71, 77

Get-PfxCertificate cmdlet, 77

Get-Process cmdlet, 16-19, 77, 138, 269

Get-PSDrive cmdlet, 77

Get-PSDriver cmdlet, 48

Get-PSProvider cmdlet, 48, 77

Get-PSSnapIn, 77

Get-Service cmdlet, 77, 245, 270, 272

Getting Started Guide for the Windows

PowerShell (Microsoft Corporation),

330

Get-TraceSource cmdlet, 77

Get-UICulture cmdlet, 77

Get-Unique cmdlet, 77

Get-UserName function, 205-206

Get-Variable cmdlet, 77

Get-WmiObject cmdlet, 77

ghy alias, 85

gi alias, 85

gl alias, 85

global scope, 114

gm alias, 85

gp alias, 85

gps alias, 85

greater than (-cgt) operator, 149

greater than (-gt) operator, 147

greater than (-igt) operator, 149

greater than or equal to (-cge) operator, 149

greater than or equal to (-ge) operator, 147

greater than or equal to (-ige) operator, 149

group alias, 85

groupby property, 19

Group-Object cmdlet, 78

gsnp alias, 85

gsv alias, 85

-gt (greater than) operator, 147

gu alias, 86

Guess My Number game

clearing screen, 157

final result, 157-161

game design, 150

gameplay control, 152

new script creation, 150-151

pipelines and operators, combining,

137-138

play again prompt, 155-156

player guesses, analyzing, 153

player input, analyzing, 154-155

player input, collecting, 153

player response, 156-157

project preview, 134-136

random number generations, 152-153

statistics, displaying, 155

value comparison, 136-137

variables, defining and initializing, 151

welcome screen, displaying, 152

gv alias, 86

gwmi alias, 86

H
Hangman game

end of game determination, 217-218

functions, creating custom, 210-211

gameplay control, 213

guess results, 216-217

new script creation, 209

overall construction, 208

play game again prompts, 219-220

project preview, 192-194

secret word selection, 213-214

start of game prompts, 212-213

user guess process, 214

user input, collecting and validating,

214-216

variables, defining and initializing,

209-210

height settings, command console, 40

hierarchical data store navigation, 47-51

history

Get-History cmdlet, 46-47

Invoke-History cmdlet, 47

HKEY_CURRENT_USER registry key, 50-51, 284

HKEY_LOCAL_MACHINE registry key, 50, 284

652) Windows PowerShell Programming for the Absolute Beginner

Home edit feature, command console, 43

horizontal tab escape character, 105

HTML, saving data output as, 245

IDE (integrated development

environment), 328-329

-ieq (equal to) operator, 149

iex alias, 86

if keyword, 103, 130

if statement

alternatives to, 141

data comparison, 139

different conditions, testing, 142-143

else statement and, 141

formulation, 139-140

multiline, 141

nesting, 143-144

single line, 141

-ige (greater than or equal to) operator, 149

-igt (greater than) operator, 149

ihy alias, 86

ii alias, 86

-ile (less than or equal to) operator, 149

-ilt (less than) operator, 149

Import-Alias cmdlet, 78

Import-Clixml cmdlet, 78

Import-Csv cmdlet, 78, 248

in keyword, 103

incoming data, processing, 203-204

-ine (not equal) operator, 149

information retrieval, files/folder, 234-235

initialization, for loops, 169

Insert mode, command console, 39

insertion, array elements, 117-118

installing PowerShell, 10-12

integrated development environment

(IDE), 328-329
interpolation, variable, 109-110

introduction, The Story of Three Amigos

game example, 54-55

Invoke-Expression cmdlet, 78

Invoke-History cmdlet, 47, 78

Invoke-Item cmdlet, 78

ipal alias, 86

ipcsv alias, 86

J-K
Join-Path cmdlet, 78

keywords

how to use, 10

if, 130

list of, 103

param, 199

Knock Knock joke game

beginning of game prompt, 23

final result, 26-28

game and author information display, 26

game design, 22 ©

new script creation, 22-23

pausing between jokes, 24

project preview, 4-6

punch line, 24

second joke, 25

set-up line, 24

third joke, 25-26

L
layout, command console, 40-41

-le (less than or equal to) operator, 147

less than (-clt) operator, 149

less than (-ilt) operator, 149

less than (-lt) operator, 147

less than or equal to (-cle) operator, 149

less than or equal to (-ile) operator, 149

less than or equal to (-le) operator, 147

listing and stopping processes, system

administration, 268-269

local scope, 114

logical errors, 305

logical operators, 147-148

loops

for

array contents processing, 171

conditions, 169

data returned processes, 173-174

flexibility in, 170

initialization, 169

support, 169

break statement, 176-177

continue statement, 177-178

Index 6s3)

defined, 166

do until, 168-169

do while, 167

endless, 168

execution, altering, 176

foreach, 172

overview, 163

types of, 166

while, 23, 56, 93, 152, 155, 175

-It (less than) operator, 147

M
Measure-Command cmdlet, 78

Measure-Object cmdlet, 78

memory management, CLR and, 70

menu items, Game Console, 319-320

messages, error, 306

metacharacters, 229-230

methods. See also commands; objects

Clear, 120

defined, 8

Next, 152

Stop, 153

ToLower(), 45-46

mi alias, 86

Microsoft TechNet Script Center website,

331

minimum system requirements,

PowerShell installation, 10-12

modulus (*) operator, 110

Move-Item cmdlet, 78

Move-ItemProperty cmdlet, 78

moving files/folders, 235

mp alias, 86

multiline if statements, 141

multiplication (*) operator, 110

N
nal alias, 86

naming syntax, cmdlets, 13

naming variables, 108

navigation, hierarchical data store, 47-51

ndr alias, 86

-ne (not equal to) operator, 147

nesting if statements, 143-144

.NET Framework

class library, 8

classes, 70, 281

CLR (common language runtime), 70

components, 69

integration with, 8-9

objects, 70

resources, accessing, 70-75

structured data, 69-70

support, 68

networking data retrieval, 279

New-Alias cmdlet, 78

New-Item cmdlet, 78, 239

New-ItemProperty cmdlet, 78

newline escape character, 105

New-Object cmdlet, 78

New-PSDrive cmdlet, 78

New-Service cmdlet, 78

newsgroups, as resource, 332

New-TimeSpan cmdlet, 78

New-Variable cmdlet, 78

Next method, 152

ni alias, 86

not equal (-ine) operator, 149

not equal to (-cne) operator, 149

not equal to (-ne) operator, 147

null escape character, 105

nv alias, 86

O
object piping, 19

object-based scripting language, 9, 63

objects. See also commands; methods

basic understanding of, 9

COM (Component Object Model), 281-283
defined, 8

.NET Framework, 70

properties of, 8

oh alias, 86

online resources, 330-334

Out-Default cmdlet, 78

Out-File cmdlet, 78, 240

Out-Host cmdlet, 78

Out-Null cmdlet, 78

Out-Printer cmdlet, 78, 249

Windows PowerShell Programming for the Absolute Beginner

output status information, 311-312

Out-String cmdlet, 78

Pp

Page Down edit feature, command console,

43 ‘

Page Up edit feature, command console, 43

param keyword, 199

parameters

position, 18

Process-Name, 17-18

parent class, 8

passing arguments, 198-200

pattern matching, 19

alternative patterns, 229

case-sensitive, 228-229

range-based, 231-233

simple, 228-229

pipe (|) character, 10, 82-83

play again prompt, Guess My Number

game example, 155-156

player instructions, The Story of Three

Amigos, 55-56

player response, Guess My Number game

example, 156-157

player turn prompt, Tic-Tac-Toe game

example, 254

Pop-Location cmdlet, 78

positional parameters, 18

positioning Windows command console, 41

PowerShell

Analyzer features, 329

cmd.exe versus, 9-10

execution policy, 12

features, 7

Information Centre, 331

installing and configuring, 10-12

precedence, variable, 110-111

printing operations, 249-250

private scope, 114

processes, listing and stopping, 268-269

Process-Name parameter, 17-18

project preview

Blackjack card game, 266-268

Fortune Teller game, 64-66

Game Console game, 302

Guess My Number game, 134-136

Hangman game, 192-194

Knock Knock joke game, 4-6

Rock, Paper, Scissors game, 164-166

Seinfeld Trivia Quiz game, 100-102

The Story of Three Amigos, 32-35

Tic-Tac-Toe game, 226-227

properties

defined, 8

groupby, 19

pseudocode, 140

punch line, Knock Knock joke game, 24

Push-Location cmdlet, 78

Q
quantifiers, regular expression, 231

QuickEdit mode, command console, 39

R
random number generation

Blackjack card game example, 293

Guess My Number game example,

152-153

Rock, Paper, Scissors game example, 182

range-based pattern matching, 231-233

rdr alias, 86

Read-Host cmdlet, 13, 23, 56, 79, 89, 153

reading from comma-separated values,

248-249

reading from text files, 244-245

reading from XML files, 247

Regedit utility, 285

registry

hierarchical data stores, 47

HKEY_CURRENT_USER registry key,

50-51, 284

HKEY_LOCAL_MACHINE registry key, 50,

284

Regedit utility, 285

system administration, 284-287

regular expressions

metacharacters, 229-230

pattern matching

alternative patterns, 229

case-sensitive, 228-229

Index

range-based, 231-233

simple, 228-229

PowerShell versus cmd.exe, 10

quantifiers, 231

remotesigned security level, 12

Remove-Item cmdlet, 79, 236

Remove-ItemProperty cmdlet, 79

Remove-PSDrive cmdlet, 79

Remove-PSSnapIn cmdlet, 79

Remove-Variable cmdlet, 79

Rename-Item cmdlet, 79, 237

Rename-ItemProperty cmdlet, 79

renaming files/folders, 237

repeating character strings, 106

reserved words

how to use, 102

list of, 103

Resolve-Path cmdlet, 79

resources

blogs, 333-334

Microsoft TechNet Script Center website,

331

newsgroups, 332

online, 330-334

PowerShell Information Centre, 331

recommended reading, 329-330

Restart-Service cmdlet, 79, 270

results prompt, Tic-Tac-Toe game example,

257-258, 260-261

results, returning, 204-205

Resume-Service cmdlet, 79, 270

return keyword, 103

returned data processes, for loops, 173-174

reusable code, 195-196

ri alias, 86

rni alias, 86

rnp alias, 86

Rock, Paper, Scissors game

computer move, generating, 182

final result, 188

game design, 179-180

gameplay control, 181-182

gameplay results, analyzing, 185-186

new round of play, 187

new script creation, 180

player moves, prompting, 182-183

player moves, translating, 184

Windows PowerShell Programming for the Absolute Beginner

Rock, Paper, Scissors game (continued)

player moves, validating, 183-184

project preview, 164-166

random number generation, 182

statistics, displaying, 187-188

variables, defining and initializing,

180-181

welcome screen, displaying, 181

running scripts, 20-21

runtime errors, 304-305

Ss
saving

data

as comma-separated values, 247-248

as XML file, 245-246

scope, variable, 114

screen buffer size, command console, 40

script organization, improving, 195

script scope, 114

script signing, PowerShell versus cmd.exe, 10

script-level variables, 205

scripts

running, 20-21

storage, 21

support for, 20

variable declaration, 54

searching files, 237-238

secret word selection, Hangman game

example, 213-214
security

allsigned level, 12

CLR and, 70

remotesigned level, 12

unrestricted level, 12

Seinfeld Trivia Quiz game

end of quiz script, 131

final result, 131

first quiz question, 124-125

game design, 121

instructions, displaying, 123-124

new script creation, 121-122

player answers, analyzing, 128

project preview, 100-102

quiz complete display, 128

ranking, 129-130
remaining quiz questions, 125-127

variables, defining and initializing,

122-123

welcome screen, displaying, 123

Select-Object cmdlet, 73-74, 79

Select-String cmdlet, 79, 237, 241

sessions, starting, 13, 35-38

Set-ACL cmdlet, 79

Set-Alias cmdlet, 79

Set-AuthenticodeSignature cmdlet, 79

Set-Content cmdlet, 79, 239-240

Set-Date cmdlet, 79

Set-ExecutionPolicy cmdlet, 79

Set-Item cmdlet, 79

Set-ItemProperty cmdlet, 79

Set-Location cmdlets, 49, 79, 203

Set-PSDebug cmdlet, 79, 313

Set-Service cmdlet, 79, 270

Set-TraceSource cmdlet, 79

Set-Variable cmdlet, 79

shortcuts, session startup, 36-38

single line if statements, 141

single quote escape character, 105

size of arrays, tracking, 116

Sort-Object cmdlet, 80, 83

special variables, 113

Split-Path cmdlet, 80

start of game prompts, Hangman game

example, 212-213

starting PowerShell sessions, 13, 35-38

Start-Service cmdlet, 80, 270

Start-Sleep cmdlets, 24, 80

Start-Transcript cmdlet, 80

statements

break, 176-177

continue, 177-178

else, 141

elseif, 143

if

alternatives to, 141

data comparison, 139

difference conditions, testing, 142-143

else statement and, 141

formulation, 139-140

multiline, 141

nesting, 143-144

single line, 141

switch, 144-146

statistics, displaying

Guess My Number game example, 155

Rock, Paper, Scissors game, 187-188

Stop method, 153

stopping processes, system administration,

268-269

Stop-Process cmdlet, 80, 269

Stop-Service cmdlet, 80, 270

Stop-Transcript cmdlet, 80

storing and retrieving data, 107

string comparison operators, 148-149

string manipulation

concatenation, 105-106

repeating character strings, 106

replacing parts of strings, 107

structured data, NET Framework, 69-70

subtraction (-) operator, 110

support

.NET Framework, 68

script, 20

Suspend-Service cmdlet, 80, 270

switch keyword, 103

switch statement, 144-146

syntax errors, 303-304

system administration. See also WMI

COM objects, 281-283

event logs, 274-276

.NET classes, 281

overview, 265

processes, listing and stopping, 268-269

registry interaction, 284-287

Windows services, administering, 269-274

system requirements, PowerShell

installation, 10-12

T
tab completion

advantages of, 45

how to use, 44-46

PowerShell versus cmd.exe, 10

tables, Format-Table cmdlet, 19

tech-publishing website, 334

Tee-Object cmdlet, 80

Index 6s7)

terminating versus non-terminating

errors, 306

text colors, command console, 42

text files

reading from, 244-245

writing to, 239-240

The Story of Three Amigos

additional inputs, collecting, 57-58

discussed, 52

introduction, displaying, 54-55

new script creation, 53

opening of story, displaying, 58-59

player input, prompting, 56

player instructions, 55-56

project preview, 32-35

remainder of story, displaying, 59-62

script variable declaration, 54

Tic-Tac-Toe game

check results function, 256-257

clear board function, 252

final result, 263

game board, clearing, 258

game design, 250

gameplay control, 259

moves, validating, 255-256

new game prompt, 252-254, 262-263

new script creation, 251

player moves, collecting, 259

player moves, validating, 259-260

player turn prompt, 254

project preview, 226-227

results prompt, 257-258, 260-261

switching between players, 262

tie between players, determining, 261-262

variables, defining and initializing,

251-252

ToLower() method, 45-46

Trace-Command cmdlet, 80

trap handlers, 309

U
unrestricted security level, 12

until keyword, 103

Up Arrow edit feature, command console, 43

Update-FormatData cmdlet, 80

Update-TypeData cmdlet, 80

utility programs, 7

Windows PowerShell Programming for the Absolute Beginner

V
value comparison, Guess My Number game,

136-137

variable scope, restricting, 205-207

variables

assignment operators, 111-112

declaring and initializing

» Blackjack card game, 289

Fortune Teller game, 88

Game Console game, 317-318

: Guess My Number game, 151

i Hangman game, 209-210

’ Rock, Paper, Scissors game, 180-181

: Seinfeld Trivia Quiz game, 122-123

' ,ic-Tac-Toe game, 251-252
defined, 107

defining and initializing, 109

global scope, 114

hierarchical data stores, 47

interpolation, 109-110

local scope, 114

naming, 108

precedence, 110-111

private scope, 114

scope, 114

script-level, 205

special, 113

value assignment, using expressions, 110

values, tracking, 311-312

vertical tab escape character, 105

WwW
welcome screen, displaying

Fortune Teller game, 89

Guess My Number game, 152

Rock, Paper, Scissors game, 181

Seinfeld Trivia game, 123

where keyword, 103
Where-Object cmdlet, 80, 83-84, 203, 272

while keyword, 103

while loop, 23, 56, 93, 152, 155, 175

width settings, command console, 40

wild card characters, 19

Windows command console. See command

* console

Windows Management Instrumentation.

See WMI

Windows PowerShell (PS) User Guide

(Microsoft Corporation), 330
Windows services, system administration,

269-274

windows size, command console, 40-41

WMI (Windows Management

Instrumentation). See also system

administration

BIOS information retrieval, 277

data, pulling from remote computers,

280-281

discussed, 276

networking data retrieval, 279

Write-Debug cmdlet, 80

Write-Error cmdlet, 80

Write-Host cmdlet, 56, 62, 68, 80-81, 89, 103,

206

Write-Output cmdlet, 24, 80

Write-Progress cmdlet, 80

Write-Verbose cmdlet, 80

Write-Warning cmdlet, 80

writing to text files, 239-240

Xx
XML files

reading data from, 247

saving data as, 245-246

Velcone to the

PowerShell Hangnan Ganet y

to Learn

Microsoft"

Windows’ PowerShell
Programming [@Xe) e} (=. me} mr-) | Maal—

Would you Like to play? <¥/W>:

Microsoft PowerShell

1 shies: rst game scripts that are

; cies rof=s¥Z-1 (eo) of-te MaMa alt-m olele)
\ | { rnev ripting

bles the automation of system management Source code for all of

ion of svstem management tools. PowerShell id a= o]ge)(-le14-Milalel(elel-loMia

id l= elele) \<

Also, check out following

links to PowerShell Editors

id at-h aet-l aM al-1| eM gal-].<—)

felgelele-laalaaliale M=t-l-1(-1

PowerShelllIDE

www .powershell.com

PowerShell Analyzer

www.powershellanalyzer.cor

educator, and IT professir ; using f
than 17 years of experier

technology, including role

analyst, technical manage

analyst, automation engi

analyst. Jerry has a mast

Business Administration f

Commonwealth University i

Virginia. He is the author

FVaremororr-lU) tnlelme) mear-le leila

1 eantorinendcetie anemmmants Sc eae aanaeaaetinentaneriaadl published works include |

for the Absolute Beginne

n to Basic 2005 Expr Editio:

‘ the Absolute Beginner, VE
% ibles, arrays, and hashes Projects, Microsoft Wind

| : . 3H Administrator
Why

ript in a Weekend, Mic

li Scripting for the Al
wpe | ea ‘e Learn JavaScript in a Week

te , Windows XP Professional!
, : Guide, He has over five yea

Re : : CHIR ; USING TUNCTIONS an adjunct instructor tea:
a! courses in Information 7

Ly, s ana folder lives in Richmond, Virgini

Mary, and their children, V
k. system administration and Molly

ISBN-13: 978- be oe. ~# _ 2
ISBN-10: 1-59

THOMSON |

COURSE TECHNOLOGY ;
: User Level: Beginner

Professional = Technical m Reference Category: Programming

Wwww.courseptr.com U.S. $29.99 Can. $40.95 20398533 52999

|

