
WWILEY =
TIMELY. PRACTICAL. RELIABLE.

Mastering

Shell
pting

Unix
Scri

Randal K. Michael

SS yA A NOOO xe 2X re re

EX LIBRIS

NEW YORK INSTITUTE

OF TECHNOLOGY

7 “ Xs,

5 49 48 4 4 4 40 4 4 ax¢

” SSE |

ry

SCIENCE
TECHNOLOGY
HUMANITIES

Vil" <<
_AY :

<

WILEY
Dear Valued Customer, advantag é

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new

technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective

is to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data

warehousing, software development tools, and networking — everything you need to reach your peak.

Regardless of your level of expertise, the Wiley family of books has you covered.

¢ For Dummies — The fun and easy way to learn

¢ The Weekend Crash Course —The fastest way to learn a new tool or technology

¢ Visual — For those who prefer to learn a new topic visually

¢ The Bible —- The 100% comprehensive tutorial and reference

¢ The Wiley Professional list — Practical and reliable resources for IT professionals

The book you hold now, Mastering Unix Shell Scripting, is the first book to provide end-to-end scripting

solutions that will solve real-world system administration problems for those who have to automate these
often complex and repetitive tasks. Starting with a sample task and targeting the most common Unix

systems: Solaris, Linux, AIX, and HP-UX with specific command structures, this book will save precious

time with hands-on detail. The companion Web site contains all the timesaving scripts from the book.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with you

to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to

review our complete title list and explore the other resources we offer. If you have a comment,

suggestion, or any other inquiry, please locate the “contact us” link at www.wiley.com.

Thank you for your support and we look forward to hearing from you and serving your needs again

in the future.

Sincerely,

Richard K. Swadley |
Vice President & Executive Group Publisher

Wiley Technology Publishing

Bible DUNMIES
\
Cc)
Visu al

WILEY

Wiley Publishing, Inc.
si \\ aan

aN we

ii
AN

AN

\
anne

_

F.
"4 - ;

. = oe
iis @ toe ery : Ad

i rl eww 6 oe ry

=" he vi oli f

Mastering Unix
Shell Scripting

Digitized by the Internet Archive

in 2022 with funding from

Kahle/Austin Foundation

https://archive.org/details/masteringunixsheO0000mich

Mastering Unix

Randal K. Michael

WILEY

Wiley Publishing, Inc.

WISSER MEMORIAL. LIBRARY
| / /

The L$ pf / ”v f

MSF Fes MO wee

~*~

oN

Publisher: Robert Ipsen UAVS
Executive Editor: Carol Long eet
Developmental Editor: Scott Amerman 200 >
Managing Editor: Angela Smith pas
Text Design & Composition: Wiley Composition Services Se

This book is printed on acid-free paper.

Copyright © 2003 by Randal K. Michael. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Pub-

lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:

PERMCOORDINATOR@WILEY.COM.

Limit of Liability / Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at

(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-21821-9

Printed in the United States of America

1009S 726. De ae S 2 oh

This book is dedicated to

My Wife Robin,

and the girls, Andrea and Ana

Acknowledgm
ents

The information that I gathered together in this book is the result of working with
some of the most talented UNIX professionals on the topic. I have enjoyed every

minute of my association with these UNIX gurus and it has been my pleasure to have

the opportunity to gain so much knowledge from the pros. I want to thank every one
of these experts for asking and answering questions over the last fifteen years. If my

brother, Jim, had not kept telling me, “you should write a book,” after querying me for

UNIX details on almost a weekly basis, I doubt this book would have ever been writ-
ten. So, thanks Jim!

I especially want to thank Jack Renfro at Daimler/Chrysler Corporation for giving
me my first shell scripting project so long ago. I had to start with the man pages, but

that is how I learned to dig deep to get an answer. Since then I have been on a mission

to automate, through shell scripting, everything on every system that I come in contact

with. I certainly value the years that I was able to work with Jack.
I must also thank the talented people at Wiley Publishing. Margaret Eldridge started

me on this project by letting me do my own thing, and Carol Long kept me going. Scott
Amerman kept me on schedule, and Angela Smith did the edits that make my writing

flow with ease. It has been a valuable experience for me to work with such a fine group
of professionals at Wiley. I also want to thank Carole McClendon at Waterside Produc-

tions for all of the support on this project. Carole is the best Agent that anyone could
ever ask for. She is a true professional with the highest ethics.

Of course my family had a lot to do with my success on this and every project. I

want to thank Mom, Gene, Jim, Marcia, Rusty, Mallory, and Anica. I want to thank my

Wife Robin for her understanding and support. The girls, Andrea and Ana, always

keep a smile on my face, and Steve is always on my mind.

I could not have written this book without the support of all of these people and the

many others that remain unnamed. It has been an honor!

Contents

Acknowledgments vii

Introduction xix

Chapter 1 Scripting Quick Start and Review 1
Case Sensitivity i
Unix Special Characters 2
Shells 2

Shell Scripts 3
Functions 2

A Function Has the Form 3

Running a Shell Script 2
Declare the Shell in the Shell Script 3

Comments and Style in Shell Scripts 4
Control Structures 6

Using break, continue, exit, and return 9

Here Document 9

Syntax for a Here Document 9

Shell Script Commands 10
Symbol Commands 13
Variables 13

Command-Line Arguments 13
Shift Command 14

Special Parameters $* and $@ 15
Special Parameter Definitions 1S

Double Quotes “, Forward Tics ’, and Back Tics ~ 16

Math in a Shell Script 17
Operators 7

Built-in Mathematical Functions 18

x Contents

File Permissions, suid and sgid Programs
chmod Command Syntax for Each Purpose

Running Commands on a Remote Host
Setting Traps
User Information Commands

who Command
w Command

last Command

ps Command
Communicating with Users
Uppercase or Lowercase Text for Easy Testing
Check the Return Code
Time-Based Script Execution

cron tables

Cron Table Entry Syntax

Wildcards

at Command
Output Control

Silent Running

Using getopts to Parse Command-Line Arguments

Making a Co-Process with Background Function

Catching a Delayed Command Output
Fastest Ways to Process a File Line -by Line
Mail Notification Techniques

Using the mail and mailx Commands

Using the sendmail Command to Send Outbound Mail
Creating a Progress Indicator

A Series of Dots
A Rotating Line

Creating a Psuedo-Random Number
Checking for Stale Disk Partitions in AIX
Automated Host Pinging
Highlighting Specific Text in a File
Keeping the Printers Printing

AIX “Classic” Printer Subsystem

System V Printing

Automated FTP File Transfer
Capturing a List of Files Larger than $MEG
Capturing a User’s Keystrokes
Using the be Utility for Floating-Point Math
Number Base Conversions

Using the typeset Command

Using the printf Command
Create a Menu with the select Command
Sending Pop-Up Messages to Windows
Removing Repeated Lines in a File
Removing Blank Lines from a File

18

19

20
21

72

22

DD,

22

23

23
24

25
ad

27

PH

28

28

28

28

29

30

OZ

33
34

34

34

ei)
35

35

36
37

7,

38

38

38
39

39

oh
40

40

41

41

41

42

43

43

44

Chapter 2

Chapter 3

Chapter 4

Contents

Testing for a Null Variable 44
Directly Access the Value of the Last Positional Parameter, $# 45
Remove the Columns Heading in a Command Output 45
Arrays 46

Loading an Array 46

Testing a String 47
Summary 51

Twelve Ways to Process a File Line by Line 53
Command Syntax 53

Using File Descriptors 54

Creating a Large File to Use in the Timing Test 54

Twelve Methods to Parse a File Line by Line 56
Method 1: cat $FILENAME | while read LINE 57

Method 2: while read $FILENAME from Bottom 58

Method 3: while_line_LINE_Bottom 58

Method 4: cat $FILENAME | while LINE=line* 59

Method 5: cat $FILENAME | while line LINE 60
Method 6: while LINE="line* from the Bottom 61
Method 7: cat $FILENAME | while LINE=$(line) 61

Method 8: while LINE=$(line) from the Bottom 62

Method 9: while read LINE Using File Descriptors 63

Method 10: while LINE=’line’ Using File Descriptors 64

Method 11: while LINE=$(line) Using File Descriptors 65

Method 12: while line LINE Using File Descriptors 66

Timing Each Method 66
Timing Script 67

Timing Data for Each Method 73
Timing Command Substitution Methods 77

Summary 78

Automated Event Notification 79
Basics of Automating Event Notification 79

Using the mail and mailx Commands 80

Problems with Outbound Mail 82
Create a “Bounce” Account with a .forward File 82

Using the sendmail Command to Send Outbound Mail 83

Dial-Out Modem Software 84
SNMP Traps 85
Summary 86

Progress Indicator Using a Series of Dots,
a Rotating Line, or a Countdown to Zero 87
Indicating Progress with a Series of Dots 87
Indicating Progress with a Rotating Line 89
Creating a Countdown Indicator 91
Other Options to Consider 95
Summary 96

xi

xi Contents

Chapter 5

Chapter 6

Chapter 7

File System Monitoring
Syntax
Adding Exceptions Capability to Monitoring

The Exceptions File
Using the MB of Free Space Method
Using MB of Free Space with Exceptions
Percentage Used—MB Free and Large Filesystems
Running on AIX, Linux, HP-UX, and Solaris

Command Syntax and Output Varies between
Operating Systems

Other Options to Consider
Event Notification

Automated Execution

Modify the egrep Statement

Summary

Monitoring Paging and Swap Space
Syntax

AIX Isps Command

HP-UX swapinfo Command

Linux free Command

Solaris swap Command

Creating the Shell Scripts
AIX Paging Monitor

HP-UX Swap Space Monitor

Linux Swap Space Monitor

Solaris Swap Space Monitor

All-in-One Paging and Swap Space Monitor
Other Options to Consider

Event Notification
Log File

Scheduled Monitoring
Summary

Monitoring System Load
Syntax

Syntax for uptime

AIX

HP-UX

Linux

Solaris

What Is the Common Denominator?

Scripting an uptime Field Test Solution

Syntax for iostat

AIX

HP-UX

97
98

103
103
110
113
118
128

130

143

143

143

144

144

145

146

146

147

148

148

149

149

155

160

164

169

176

177

177

177

177

179

180

180

180

181

182

183

183

184

186

186

186

Chapter 8

Chapter 9

Contents

Linux

Solaris

What Is the Common Denominator?
Syntax for sar

AIX
HP-UX
Linux

Solaris

What Is the Common Denominator?
Syntax for vmstat

AIx
HP-UX
Linux

Solaris

What Is the Common Denominator?
Scripting the Solutions

Using uptime to Measure the System Load

Scripting with the uptime Command
Using sar to Measure the System Load

Scripting with the sar Command

Using iostat to Measure the System Load

Scripting with the iostat Command
Using vmstat to Measure the System Load

Scripting with the vmstat Command
Other Options to Consider

Stop Chasing the Floating uptime Field

Try to Detect Any Possible Problems for the User
Show the User the Top CPU Hogs

Gathering a Large Amount of Data for Plotting
Summary

Process Monitoring and Enabling Preprocess, Startup,
and Postprocess Events
Syntax
Monitoring for a Process to Start
Monitoring for a Process to End
Monitor and Log as a Process Starts and Stops
Timed Execution for Process Monitoring, Showing each PID,

and Time Stamp with Event and Timing Capability
Other Options to Consider

Common Uses
Modifications to Consider

Summary

Monitoring Processes and Applications
Monitoring Local Processes
Remote Monitoring with Secure Shell

Checking for Active Oracle Databases
Checking If the HTTP Server/ Application Is Working

187

187

187

188

188

189

189

190

190

191

191

191

192

192

192

193

194

194

197

198

203

203

208

208

pay

212

213

213

214

214

215
216
216
218
aS

228

248

248

248

249

251

252

254

256

259

xiv Contents

Chapter 10

Chapter 11

Chapter 12

Other Things to Consider
Application APIs and SNMP Traps

Summary

Creating Pseudo-Random Passwords
Randomness
Creating Pseudo-Random Passwords
Syntax

Arrays

Loading an Array

Building the Password Creation Script
Order of Appearance

Define Variables

Define Functions
Testing and Parsing Command-Line Arguments

Beginning of Main
Setting a Trap

Checking for the Keyboard File
Loading the “KEYS” Array
Using the LENGTH Variable to Build a Loop List

Building a New Pseudo-Random Password

Printing the Manager’s Password Report for Safe Keeping

Other Options to Consider
Password Reports?

Which Password?

Other Uses?
Summary

Monitor for Stale Disk Partitions
AIX Logical Volume Manager (LVM)

The Commands and Methods

Disk Subsystem Commands

Method 1: Monitoring for Stale PPs at the LV Level

Method 2: Monitoring for Stale PPs at the PV Level

Method 3: VG, LV, and PV Monitoring with a resync

Other Options to Consider
SSA Disks

Log Files

Automated Execution

Event Notification

Summary

Automated Hosts Pinging with Notification
Syntax
Creating the Shell Script

Define the Variables
Creating a Trap

The Whole Shell Script

260

261

261

263

263

264

264

265

265

266

266

266

267

275

page

280

280

280

281

282

283

294

294

TALS)

290

295

297

298

298

298

2)

304

308

315

315

316

316

316

SL.

319

320

PA

321

BP)

324

Contents xv

Other Options to Consider 352
$PINGLIST Variable Length Limit Problem 332
Ping the /etc/hosts File Instead of a List File 333

Logging 333
Notification of “Unknown host” 334

Notification Method 334

Automated Execution Using a Cron Table Entry 335
Summary 335

Chapter 13. Taking a System Snapshot 337
Syntax 338
Creating the Shell Script 340
Other Options to Consider 367
Summary 367

Chapter 14 Compiling, Installing, Configuring, and Using sudo 369
The Need for sudo 369
Downloading and Compiling sudo 370
Compiling sudo O71
Configuring sudo 378
Using sudo 384
Using sudo in a Shell Script 385
The sudo Log File 389
Summary 390

Chapter 15 hgrep: Highlighted grep Script 391
Reverse Video Control 392
Building the hgrep.ksh Shell Script 398
Other Options to Consider 400

Other Options for the tput Command 400

Summary 401

Chapter 16 Print Queue Hell: Keeping the Printers Printing 403
System V versus BSD Printer Subsystems 404

AIX Print Control Commands 404
Classic AIX Printer Subsystem 404

System V Printing on AIX 408

More System V Printer Commands 412

HP-UX Print Control Commands 414

Linux Print Control Commands 417

Controlling Queuing and Printing Individually 422

Solaris Print Control Commands 425

More System V Printer Commands 429

Putting It All Together 431
Other Options to Consider 438

Logging 439

Exceptions Capability 439

Maintenance 439

Scheduling 439

Summary 439

Xvi Contents

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Automated FTP Stuff
Syntax
Automating File Transfers and Remote Directory Listings

Using FTP for Directory Listings on a Remote Machine
Getting One or More Files from a Remote System

Pre and Post Events
Script in Action

Putting One or More Files to a Remote System

Replacing Hard-Coded Passwords with Variables

Example of Detecting Variables in a Script’s Environment

Modifying Our FTP Scripts to Use Password Variables
Other Options to Consider

Use Command-Line Switches to Control Execution
Keep a Log of Activity

Add a Debug Mode to the Scripts

Summary

Finding “Large” Files
Syntax
Creating the Script
Other Options to Consider
Summary

Monitoring and Auditing User Key Strokes
Syntax
Scripting the Solution

Logging User Activity

Starting the Monitoring Session
Where Is the Repository?
The Scripts

Logging root Activity

Some sudo Stuff
Monitoring Other Administration Users

Other Options to Consider
Emailing the Audit Logs
Compression

Need Better Security?

Inform the Users

Sudoers File
Summary

Turning On/Off SSA Identification Lights
Syntax

Translating an hdisk to a pdisk

Identifying an SSA Disk

The Scripting Process
Usage and User Feedback Functions

Control Functions
The Full Shell Script

Contents xvii

Chapter 21

Chapter 22

Chapter 23

Other Things to Consider
Error Log

Cross-Reference

Root Access and sudo

Summary

Pseudo-Random Number Generation
What Makes a Random Number?
The Methods

Method 1: Creating Numbers between 0 and 32,767

Method 2: Creating Numbers between 1 and a
User-Defined Maximum

Method 3: Fixed-Length Numbers between 1 and a
User-Defined Maximum
Why Pad the Number with Zeros the Hard Way?

Shell Script to Create Pseudo-Random Numbers
Creating Unique Filenames
Summary

Floating-Point Math and the bc Utility
Syntax
Creating Some Shell Scripts Using be

Creating the float_add.ksh Shell Script

Testing for Integers and Floating-Point Numbers

Building a Math Statement for the bc Command
Using a Here Document

Creating the float_subtract.ksh Shell Script

Using getopts to Parse the Command Line
Building a Math Statement String for be

Here Document and Presenting the Result
Creating the float_multiply.ksh Shell Script
Parsing the Command Line for Valid Numbers

Creating the float_divide.ksh Shell Script
Creating the float_average.ksh Shell Script

Other Options to Consider
Remove the Scale from Some of the Shell Scripts

Create More Functions

Summary

Scripts for Number Base Conversions
Syntax

Example 23.1: Converting from Base 10 to Base 16
Example 23.2: Converting from Base 8 to Base 16
Example 23.3 Converting Base 10 to Octal
Example 23.4 Converting Base 10 to Hexadecimal

Scripting the Solution
Base 2 (binary) to Base 16 (hexadecimal) Shell Script

Base 10 (Decimal) to Base 16 (Hexadecimal) Shell Script

520
520

520

520
52k

523
523
524
525

526

527,
529
530
535
543

545

545

546

546

Boz

554

555

556

561

563

564

565

570

573

580

582

582

582

583

585

585

586

586

587

587

587

587

590

xviii Contents

Script to Create a Software Key Based on the Hexadecimal
Representation of an IP Address 594

Script to Translate between Any Number Base Oe

Using getopts to Parse the Command Line 602

Example 23.5 Correct Usage of the Equate_any_base.ksh
Shell Script 603

Example 23.6 Incorrect Usage of the Equate_any_base.ksh

Shell Script 603
Continuing with the Script 604

Beginning of Main 606

Other Options to Consider 608
Software Key Shell Script 608

Summary 608

Chapter 24 Menu Program Suitable for Operations Staff 609
Reverse Video Syntax 610

Creating the Menu 610

Creating a Message Bar for Feedback 611
From the Top 616

Other Options to Consider 617
Shelling Out to the Command Line 618
Good Cardidate for Using sudo 618

Summary 618

Chapter 25 Sending Pop-Up Messages from Unix to Windows 619
About Samba and the smbclient Command 619
Syntax 620
Building the broadcast.ksh Shell Script 621

Sending a Message to All Users 621

Adding Groups to the Basic Code 623

Adding the Ability to Specify Destinations Individually 623

Using getopts to Parse the Command Line 624

Testing User Input 627

Testing and Prompting for WINLIST Data 627

Testing and Prompting for Message Data 628

Sending the Message 629

Putting It All Together 630

Watching the broadcast.ksh Script in Action 640

Downloading and Installing Samba 642
Testing the smbclient Program the First Time 643

Other Options to Consider 644
Producing Error Notifications 645

Add Logging of Unreachable Machines 645
Create Two-Way Messanging 645

Summary 645

Appendix A What's on the Web Site 647

Index 663

Introduction

In Unix there are many ways to accomplish a given task. Given a problem to solve, we

may be able to get to a solution in any number of ways. Of course, some will be more

efficient, be more readable, use less disk space or memory, may or may not give the user
feedback on what is going on or give more accurate details and more precision to the
result. In this book we are going to step through every detail of writing a shell script to

solve real-world Unix problems and tasks. The shell scripts range from using a pseudo-

random number generator to create pseudo-random passwords to checking for full
filesystems on Unix machines and to sending pop-up messages to Windows desktops.

The details required to write these shell scripts include using good style and providing
good comments throughout the shell script by describing each step. Other details include
combining many commands into just one command statement when desirable, separat-

ing commands on several lines when readability and understanding of the concept may

be diminished, and making a script readable and easy to maintain. We will see the bene-

fit of using variables and files to store data, show methods to strip out unwanted or

unneeded data from a command output, and format the data for a particular use. Addi-
tionally, we are going to show how to write and include functions in our shell scripts and
demonstrate the benefits of functions over a shell script written without functions.

This book is intended for any flavor of Unix, but its emphasis includes AIX, Linux,

HP-UX, and Solaris operating systems. Most every script in the book is also included on

the book’s companion Web site (www.wiley.com/compbooks/michael). Many of the shell
scripts are rewritten for each different operating system, when it is necessary. Other shell

scripts are not platform dependent. These script rewrites are sometimes needed because

command syntax and output vary, sometimes in a major way, between Unix flavors. The
variations are sometimes as small as pulling the data out of a different column or using a

different command switch, or they can be as major as putting several commands together

to accomplish the same task to get similar output or result on different flavors of Unix.
In each chapter we start with the very basic concepts and work our way up to some

very complex and difficult concepts. The primary purpose of a shell script is automating

repetitive and complex functions. This alleviates keystroke errors and allows for time-
scheduled execution of the shell script. It is always better to have the system tell us that

XX Introduction

it has a problem than to find out too late to be proactive. This book will help us to be more

proactive in our dealings with the system. At every level we will gain more knowledge
to allow us to move on to ever increasingly complex ideas with ease. We are going to
show different ways to solve our real-world example tasks. There is not just one correct
way to solve a challenge, and we are going to look at the pros and cons of attacking a

problem in various ways. Our goal is to be confident and flexible problem solvers. Given
a task, we can solve it in any number of ways, and the solution will be intuitively obvi-

ous when you complete this book.

Overview of the Book and Technology

This book is intended as a learning tool and study guide to learn how to write shell

scripts to solve a multitude of problems by starting with a clear goal. While studying

with this book we will cover most shell scripting techniques about seven times, each
time from a different angle, solving a different problem. I have found this learning
technique to work extremely well for retention of the material to memory.

I urge everyone to read this book from cover to cover to get the maximum benefit.
Every script is written using Korn shell, which is the industry standard for scripting

solutions in Unix, although some may argue this point. There are several versions of

the Korn shell shipped with Unix, depending on the Unix operating system (OS) and

the version of the OS release. I have found that the shell scripts in this book will run on

any of the Korn shell versions without any modification.

This book goes from some trivial task solutions to some rather advanced concepts

that Systems Administrators will benefit from, and a lot of stuff in between. There are

several chapters for each level of complexity scattered throughout this book. The shell

scripts presented in this book are complete shell scripts, which is one of the things that

sets this book apart from other shell scripting books on the market. The solutions are

explained thoroughly, with each part of the shell script explained in minute detail

down to the philosophy and mindset of the author.

How This Book Is Organized

Each chapter starts with a typical Unix challenge that occurs every day in the comput-

ing world. With each challenge we define a specific goal and start the shell script by

defining the correct command syntax to solve the problem. When we have a goal and

the command syntax, we start building the shell script around the commands. The next

step is to filter the command(s) output to strip out the unneeded data, or we may
decide to just extract the data we need from the output. If the syntax varies between

Unix flavors we show the correct syntax to get the same, or a similar, result. When we

get to this point we go further to build options into the shell script to give the end user
more flexibility on the command line.

When a shell script has to be rewritten for each operating system, a combined shell
script is shown at the end of the chapter that joins the Unix flavor differences together
into one shell script that will run on all of the OS flavors. To do this last step we query

the system for the Unix flavor using the uname command. By knowing the flavor of
the operating system we are able to execute the proper commands for each Unix flavor

Introduction Xxi

by using a simple case statement. If this is new to you, do not worry; everything is
explained throughout the book in detail.

Each chapter targets a different real-world problem. Some challenges are very com-
plex, while others are just interesting to play around with. Some chapters hit the prob-
lem from several different angles in a single chapter, and others leave you the challenge
to solve on your own—of course, with a few hints to get you started. Each chapter
solves the challenge presented and can be read as a single unit without referencing
other chapters in the book. Some of the material, though, is explained in great detail in
one chapter and lightly covered in other chapters. Because of this variation we recom-
mend that you start at the beginning of the book and read and study every chapter to
the end of the book because this is a learning experience!

Who Should Read This Book

This book is intended for anyone who works with Unix on a daily basis from the
command line. The topics studied in the book are mainly for Unix professionals—

Programmers, Programmer-Analysts, System Operators, Systems Administrators, and

anyone who is interested in getting ahead in the support arena. Beginners will get a lot

out of this book, too, but some of the material may be a little high level, so a basic Unix

book may be needed to answer some questions. Everyone should have a good work-

ing knowledge of common Unix commands before starting this book, because we do
not explain common Unix commands at all.

I started my career in Unix by learning on the job how to be a Systems Operator. I

wish I had a book like this when I started. Having this history I wanted others to get a

jump start on their careers. I wrote this book with the knowledge that I was in your
shoes at one time, and I remember that I had to learn everything from the man pages,

one command at a time. Use this book as a study guide, and you will have a jump start
to get ahead quickly in the Unix world, which is getting bigger all of the time.

Tools You Will Need

To get the most benefit from this book you need access to a Unix machine, preferably

with AIX, HP-UX, Linux, or Solaris installed. You can run Linux and Solaris on stan-

dard PC hardware, and it is relatively inexpensive. It is a good idea to make your
default shell environment the Korn shell (ksh); the standard shell on Linux is the

Bourne Again shell (bash) shell, and some others use Bourne shell (sh) as the default.

You can find your default shell by entering echo $SHELL from the command line.
None of the shell scripts in this book requires a graphical terminal, but it sure does not

hurt to have GNOME, CDE, KDE2, or X-Windows running. This way you can work in

multiple windows at the same time and cut and paste code between windows.
You also need a text editor that you are comfortable using. Most Unix operating sys-

tems come with the vi editor, and a lot also include emacs. Remember that the editor

must be a text editor that stores files in a standard ANSII format. The CDE and other
X-editors work just fine, too. You will also need some time, patience, and an open,

creative mind that is ready to learn.

Introduction

Another thing to note is that all of the variables used in the shell scripts and func-
tions in this book are in uppercase. I did this because it is much easier to follow along

with a shell script if you know quickly where the variables are located in the code.
When you write your own shell scripts, please use lowercase for all shell script and

function variables. The reason this is important is that the operating system, and appli-
cations, use environment variables that are in uppercase. If you are not careful, you can
overwrite a critical system or application variable with your own value and hose up
the system; however this is dependent on the scope of where the variable is visible in

the code. Just a word of warning, be careful with uppercase variables!

What's on the Web Site

On the book’s companion Web site, www.wiley.com/compbooks/michael, all of the

shell scripts and most of the functions that are studied in the book can be found. The

functions are easy to cut and paste directly into your own shell scripts to make the

scripting process a little easier. Additionally, there is a shell script stub that you can

copy to another filename. This script stub has everything to get you started writing

quickly. The only thing you need to do is fill in the fields for the following: Script

Name, Author, Date, Version, Platform, Purpose, and Rev List, when revisions are

made. There is a place to define variables and functions, and then you have a

“BEGINNNG OF MAIN” section to start the main body of the shell script.

Summary

This book is for learning how to be creative, proactive, and a professional problem

solver. Given a task, the solution will be intuitively obvious to you on completion of this

book. This book will help you attack problems logically and present you with a tech-
nique of building on what you know. With each challenge presented you will see how

to take the basic syntax and turn it into the basis for a shell scripting solution. We

always start with the basics and build more and more logic into the solution before we

add other options the end user can use for more flexibility.

Speaking of end users, we must always keep our users informed about how pro-

cessing is progressing. Giving a user a blank screen to look at is the worst thing that
you can do, so for this we can create progress indicators. You will learn how to be
proactive by building tools that monitor for specific situations that indicate the begin-
ning stages of an upcoming problem. This is where knowing how to query the system
puts you ahead of the rest of your staff.

With the techniques presented in this book, you will learn. You will learn about

problem resolution. You will learn about starting with what you know about a situa-

tion and building a solution effectively. You will learn how to make a single shell script

work on other platforms without further modification. You will learn how to be proac-

tive. You will learn how to write a shell script that is easily maintained. You will learn

how to use plenty of comments in a shell script. You will learn how to write a shell
script that is easy to read and follow through the logic. Basically, you will learn to be an

effective problem solver where the solution to any challenge is intuitively obvious!

Scripting Quick Start
and Review

We are going to start out by giving a very targeted refresher course. The topics that

follow are short explanations of techniques that we always have to search the book

to find; here they are all together in one place. The explanations range from showing

the fastest way to process a file line by line to the simple matter of case sensitivity of

Unix and shell scripts. This should not be considered a full and complete list of script-

ing topics, but it is a very good starting point and it does point out a sample of the top-

ics covered in the book. For each topic listed in this chapter there is a very detailed
explanation later in the book.

I urge everyone to study this entire book. Every chapter hits a different topic using

a different approach. The book is written this way to emphasize that there is never only

one technique to solve a challenge in Unix. All of the shell scripts in this book are real-

world examples of how to solve a problem. Thumb through the chapters, and you can

see that I tried to hit most of the common (and some uncommon!) tasks in Unix. All of

the shell scripts have a good explanation of the thinking process, and we always start
out with the correct command syntax for the shell script targeting a specific goal. I hope

you enjoy this book as much as I enjoyed writing it. Let’s get started!

Case Sensitivity

Unix is case sensitive. Because Unix is case sensitive our shell scripts are also case

sensitive.

Chapter 1

Unix Special Characters

All of the following characters have a special meaning or function. If they are used in a
way that their special meaning is not needed then they must be escaped. To escape, or
remove its special function, the character must be immediately preceded with a back-

slash, \, or enclosed within ‘ ’ forward tic marks (single quotes).

Nye cee coe Scene)

Shells

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of operat-

ing systems. Each flavor of shell has its own set of recognized commands and func-
tions. This book works entirely with the Korn shell.

Korn Shell /bin/ksh OR /usr/bin/ksh

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of

execution. A good shell script will have comments, preceded by a pound sign, #,

describing the steps. There are conditional tests, such as value A is greater than value

B, loops allowing us to go through massive amounts of data, files to read and store
data, and variables to read and store data, and the script may include functions.

We are going to write a lot of scripts in the next several hundred pages, and we

should always start with a clear goal in mind. By clear goal, we have a specific purpose
for this script, and we have a set of expected results. We will also hit on some tips,
tricks, and, of course, the gotchas in solving a challenge one way as opposed to another
to get the same result. All techniques are not created equal.

Shell scripts and functions are both interpreted. This means they are not compiled.

Both shell scripts and functions are ASCII text that is read by the Korn shell command

interpreter. When we execute a shell script, or function, a command interpreter goes
through the ASCII text line by line, loop by loop, test by test and executes each state-
ment, as each line is reached from the top to the bottom.

Functions

A function is written in much the same way as a shell script but is different in that it is
defined, or written, within a shell script, most of the time, and is called within the script.

This way we can write a piece of code, which is used over and over, just once and use it
without having to rewrite the code every time. We just call the function instead.

Scripting Quick Start and Review

We can also define functions at the system level that is always available in our envi-
ronment, but this is a later topic for discussion.

A Function Has the Form

function function_name

{

commands to execute

or

function_name ()

{

commands to execute

When we write functions into our scripts we must remember to declare, or write, the

function before we use it: The function must appear above the command statement call-

ing the function. We can’t use something that does not yet exist.

Running a Shell Script

A shell script can be executed in the following ways:

ksh shell _script_name

will create a Korn shell and execute the she11_script_name in the newly created

Korn shell environment.

shell_script_name

will execute shel1l_script_name if the execution bit is set on the file (see the man page

on the chmod command). The script will execute in the shell that is declared on the first
line of the shell script. If no shell is declared on the first line of the shell script, it will

execute in the default shell, which is the user’s system-defined shell. Executing in an
unintended shell may result in a failure and give unpredictable results.

Declare the Shell in the Shell Script

Declare the shell! If we want to have complete control over how a shell script is going
to run and in which shell it is to execute, we MUST declare the shell in the very first line

3

Chapter 1

of the script. If no shell is declared, the script will execute in the default shell, defined by

the system for the user executing the shell script. If the script was written, for example,
to execute in Korn shell ksh, and the default shell for the user executing the shell script

is the C shell csh, then the script will most likely have a failure during execution. To
declare a shell, one of the declaration statements in Table 1.1 must appear on the very

first line of the shell script:

| NOTE| This book uses only the Korn shell, #! /usr/bin/ksh OR #! /bin/ksh.

Comments and Style in Shell Scripts

Making good comments in our scripts is stressed throughout this book. What is intu-

itively obvious to us may be total Greek to others who follow in our footsteps. We have
to write code that is readable and has an easy flow. This involves writing a script that

is easy to read and easily maintained, which means that it must have plenty of com-

ments describing the steps. For the most part, the person who writes the shell script is

not the one who has to maintain it. There is nothing worse than having to hack through

someone else’s code that has no comments to find out what each step is supposed to
do. It can be tough enough to modify the script in the first place, but having to figure
out the mind set of the author of the script will sometimes make us think about rewrit-

ing the entire shell script from scratch. We can avoid this by writing a clearly readable

script and inserting plenty of comments describing what our philosophy is and how
we are using the input, output, variables, and files.

For good style in our command statements, we need it to be readable. For this rea-

son it is sometimes better, for instance, to separate a command statement onto three

separate lines instead of stringing, or piping, everything together on the same line of

code; in some cases, it is more desirable to create a long pipe. In some cases, it may be

just too difficult to follow the pipe and understand what the expected result should be
for a new script writer. And, again, it should have comments describing our thinking

step by step. This way someone later will look at our code and say, “Hey, now that’s a
groovy way to do that.”

Table 1.1 Different Types of Shells to Declare

#1!/usr/bin/sh OR #!/bin/sh Declares a Bourne shell

#!/usr/bin/ksh OR #!/bin/ksh Declares a Korn sheli

#!/usr/bin/csh OR #!/bin/csh Declares a C shell

#!/usr/bin/bash OR #!/bin/bash Declares a Bourne-Again shell

Scripting Quick Start and Review

Command readability and step-by-step comments are just the very basics of a well-

written script. Using a lot of comments will make our life much easier when we have

to come back to the code after not looking at it for six months, and believe me, we will

look at the code again. Comment everything! This includes, but is not limited to,

describing what our variables and files are used for, describing what loops are doing,

describing each test, maybe including expected results and how we are manipulating

the data and the many data fields.
A hash mark, #, precedes each line of a comment.

The script stub that follows is on this book’s companion Web site at www.wiley.

com/compbooks/michael. The name is script.stub. It has all of the comments
ready to get started writing a shell script. The script .stub file can be copied to a

new filename. Edit the new filename, and start writing code. The script.stub file

is shown in Listing 1.1.

#! /usr/bin/ksh

SCRIPT: NAME of SCRIPT

AUTHOR: AUTHORS_NAME

DATE: DATE_of CREATION

REV: 1.1.A (Valid are A, B, D, T and P)

(For Alpha, Beta, Dev, Test and Production)

PLATFORM: (SPECIFY: AIX, HP-UX, Linux, Solaris

or Not platform dependent)

PURPOSE‘ Give a clear, and if necessary, long, description of the

purpose of the shell script. This will also help you stay

focused on the task at hand.

REV LIST:

DATE: DATE_of REVISION

BY: AUTHOR of MODIFICATION

MODIFICATION: Describe what was modified, new features, etc--

set -n # Uncomment to check your syntax, without execution.

NOTE: Do not forget to put the comment back in or

the shell script will not execute!

set -x # Uncomment to debug this shell script (Korn shell only)

a

HHHHPHHHHHHPHPHHERHH HHH HEH HHH HHH HH EE HH HH HE Ha

H###H#HHHHHH DEFINE FILES AND VARIABLES HERE ########## #4 4%

HHHHHEHHRHHHHHHHERE HARRAH AREER ARERR AREAS REAR RE HEHE HEH

HERHHHHHRHHHHEHHAA RHE EA EAA RER ARERR RAE RRR AR HERTHA EE HE HHH HH

Listing 1.1 script.stub shell script starter listing. (continues)

5

6 Chapter 1

HHA#HHEHHAHHHAY DEFINE FUNCTIONS HERE ####4####444 #044 84 #4

SAA AEA AAR AE ARR A AaEAEE HaA AE A HH HH

Mrevrererreve reretverreterrer rrr er rererrerrrr rrr errr

HHEHHHEFHHHHHHEEHE BEGINNING OF MAIN #####HHPHHEEHEEEHH ERR EE

HRA RRE HEAP EHS SHE AHH ESHER EEE EEE HEHE

End of script

Listing 1.1 script.stub shell script starter listing. (continued)

The shell script starter shown in Listing 1.1 gives you the framework to start writing

the shell script with sections to declare variables and files, create functions, and write

the final section, BEGINNING OF MAIN, where the main body of the shell script is

written.

Control Structures

The following control structures will be used extensively.

if ... then Statement

if [test_command]

then

commands

if ... then ... else Statement

if [test_command]

then

commands

else

commands

Scripting Quick Start and Review

if ... then ... elif ... (else) Statement

if [test_command]

then

commands

elif [test_command]

then

commands

elif [test_command]

then

commands

else (Optional)

commands

fi

for ... in Statement

for loop_variable in argument_list

do

commands

done

while Statement

while test_command_is_true

do

commands

done

until Statement

until test_command_is_true

do

7

8 Chapter 1

commands

done

case Statement

case $variable in

match_1)

commands_to_execute_for_1

match_2)

commands_to_execute_for_2

match_3)

commands_to_execute_for_3

*) (Optional - any other value)

commands_to_execute_for_no_match

esac

| NOTE The last part of the case statement:

x)

commands_to_execute_for_no_match

Ww

is optional.

Scripting Quick Start and Review

Using break, continue, exit, and return

It is sometimes necessary to break out of a for or while loop, continue in the next block

of code, exit completely out of the script, or return a function's result back to the script

that called the function.

break is used to terminate the execution of the entire loop, after completing the exe-
cution of all of the lines of code up to the break statement. It then steps down to the

code following the end of the loop.

continue is used to transfer control to the next set of code, but it continues execution

of the loop.

exit will do just what one would expect: It exits the entire script. An integer may be

added to an exit command (for example, exit 0), which will be sent as the return

code.

return is used in a function to send data back, or return a result, to the calling script.

Here Document

A here document is used to redirect input into an interactive shell script or program. We

can run an interactive program within a shell script without user action by supplying

the required input for the interactive program, or interactive shell script. This is why it

is called a here document: The required input is here, as opposed to somewhere else.

Syntax for a Here Document

program_name <<LABEL

Program_Input_1

Program_Input_2

Program_Input_3

Program_Input_#

LABEL

EXAMPLE:

/usr/local/bin/My_program << EOF

Randy

Robin

Rusty

Jim

EOF

Chapter 1

Notice in the here documents that there are no spaces in the program input lines,

between the two EOF labels. If a space is added to the input, then the here document

may fail. The input that is supplied must be the exact data that the program is expect-
ing, and many programs will fail if spaces are added to the input.

Shell Script Commands

The basis for the shell script is the automation of a series of commands. We can execute

most any command in a shell script that we can execute from the command line. (One

exception is trying to set an execution suid or sgid, sticky bit, within a shell script is not

supported for security reasons.) For commands that are executed often, we reduce
errors by putting the commands in a shell script. We will eliminate typos and missed

device definitions, and we can do conditional tests that can ensure there are not any

failures due to unexpected input or output. Commands and command structure will

be covered extensively throughout this book.

Most of the commands shown in Table 1.2 are used at some point in this book,

depending on the task we are working on in each chapter.

Table 1.2 Unix Commands Review

COMMAND DESCRIPTION

passwd Change user password

pwd Print current directory

cd Change directory

Is List of files in a directory

wildcards * matches any number of characters, ? matches a single
character

file Print the type of file

cat Display the contents of a file

pr Display the contents of a file

Pg or page Display the contents of a file one page at a time

more Display the contents of a file one page at a time

clear Clear the screen

cp or copy Copy a file

chown Change the owner of a file

chgrp Change the group of a file

chmod Change file modes, permissions

Scripting Quick Start and Review 11

Table 1.2 (Continued)

COMMAND DESCRIPTION

rm Remove a file from the system

mv Rename a file

mkdir Create a directory

rmdir Remove a directory

grep Pattern matching

egrep grep command for extended regular expressions

find Used to locate files and directories

>> Append to the end of a file

> Redirect, create, or overwrite a file

| Pipe, used to string commands together

ll Logical OR—command 1 || command2—execute command2
if command] fails

& Execute in background

&& Logical AND—command1 && command2—execute
command? if command! succeeds

date Display the system date and time

echo Write strings to standard output

sleep Execution halts for the specified number of seconds

we Count the number of words, lines, and characters in a file

head View the top of a file

tail View the end of a file

diff Compare two files

sdiff Compare two files side by side (requires 132-character
display)

spell Spell checker

Ip, lpr, enq, qprt Print a file

Ipstat Status of system print queues

enable Enable, or start, a print queue

disable Disable, or stop, a print queue

(continues)

12 Chapter 1

Table 1.2 Unix Commands Review (Continued)

COMMAND DESCRIPTION

cal Display a calendar

who Display information about users on the system

w Extended who command

whoami Display $LOGNAME or $USER environment parameter

who am | Display login name, terminal, login date/time, and where
logged in

f, finger Information about logged-in users including the users .plan
and .project

talk Two users have a split screen conversation

write Display a message on a user's screen

wall Display a message on all logged-in users’ screens

rwall Display a message to all users on a remote hast

rsh or remsh Execute a command, or log in, on a remote host

df Filesystems statistics

ps Information on currently running processes

netstat Show network status

vmstat Show virtual memory status

iostat Show input/output status

uname Name of the current operating system, as well as machine
information

sar System activity report a ee

basename Base filename of a string parameter

man Display the on-line reference manual

su Switch to another user, also known as super-user

cut Write out selected characters

awk Programming language to parse characters

sed Programming language for character substitution

vi Start the vi editor

emacs Start the emacs editor

Most of the commands shown in Table 1.2 are used at some point in this book,

depending on the task we are working on in each chapter.

Scripting Quick Start and Review

Symbol Commands

The symbols shown in Table 1.3 are actually commands.
All of the symbol commands shown in Table 1.3 are used extensively in this book.

Variables

A variable is a character string to which we assign a value. The value assigned could be
a number, text, filename, device, or any other type of data. A variable is nothing more
than a pointer to the actual data. We are going to use variables so much in our scripts
that it will be unusual for us not to use them. In this book we are always going to spec-
ify a variable in uppercase—for example, UPPERCASE. Using uppercase variable
names is not recommended in the real world of shell programming, though, because
these uppercase variables may step on system environment variables, which are also in
uppercase. Uppercase variables are used in this book to emphasize the variables and to

make them stand out in the code. When you write your own shell scripts or modify the

scripts in this book, make the variables lowercase text. To assign a variable to point to

data, we use UPPERCASE="value_to_assign" as the assignment syntax. To access

the data that the variable, UPPERCASE, is pointing to, we must add a dollar sign, $, as

a prefix—for example, $UPPERCASE. To view the data assigned to the variable, we use
echo SUPPERCASE, print $UPPERCASE for variables, or cat SUPPERCASE, if the

variable is pointing to a file, as a command structure.

Command-Line Arguments

The command-line arguments $1, $2, $3,...$9 are positional parameters, with

$0 pointing to the actual command, program, shell script, or function and $1, $2,

$3, ...$9as the arguments to the command.

Table 1.3. Symbol Commands

() Run the enclosed command in a sub-shell

()) Evaluate and assign value to variable and do math in a shell

$(()) Evaluate the enclosed expression

[] Same as the test command

[U]] Used for string comparison

$() Command substitution

‘command Command substitution

13

14 Chapter 1

The positional parameters, $0, $2, etc.,in a function, are for the function’s use and
may not be in the environment of the shell script that is calling the function. Where a

variable is known in a function or shell script is called the scope of the variable.

Shift Command

The shift command is used to move positional parameters to the left; for example,

shift causes $2 to become $1. We can also add a number to the shift command to move
the positions more than one position; for example, shift 3 causes $4 to move to the $1

position.

Sometimes we encounter situations where we have an unknown or varying number

of arguments passed to a shell script or function, $1, $2, $3... (also known as posi-
tional parameters). Using the shift command is a good way of processing each posi-
tional parameter in the order they are listed.

To further explain the shift command, we will show how to process an unknown
number of arguments passed to the shell script shown in Listing 1.2. Try to follow

through this example shell script structure. This script is using the shift command to

process an unknown number of command-line arguments, or positional parameters.

In this script we will refer to these as tokens.

#!/usr/bin/sh

SCRIPT: shifting.sh

AUTHOR: Randy Michael

DATE: 01-22-1999

REV: id A

PLATFORM: Not platform dependent

PURPOSE: This script is used to process all of the tokens which

Are pointed to by the command-line arguments, $1, $2, $3,etc...

“REV. LIST:

+

Initialize all variables

COUNT=0 # Initialize the counter to zero

NUMBER=$# # Total number of command-line arguments to process

Start a while loop

while [S$COUNT -lt SNUMBER]

Listing 1.2 Example of using the shift command.

Scripting Quick Start and Review

do

COUNT= expr SCOUNT | +2) of A little math ani the shell) script

TOKEN='$"SCOUNT # Loops through each token starting with $1

process each STOKEN

shift # Grab the next token, i.e. $2 becomes $1

done

Listing 1.2 Example of using the shift command. (continued)

We will go through similar examples of the shift command in great detail later in the

book.

Special Parameters $* and $@

There are special parameters that allow accessing all of the command-line arguments

at once. $* and $@ both will act the same unless they are enclosed in double quotes,
“ehh

Special Parameter Definitions

The $* special parameter specifies all command-line arguments.

The $@ special parameter also specifies all command-line arguments.

The "$*" special parameter takes the entire list as one argument with spaces

between.

The "$@" special parameter takes the entire list and separates it into separate

arguments.

We can rewrite the shell script shown in Listing 1.2 to process an unknown number

of command-line arguments with either the $* or $@ special parameters:

#!/usr/bin/sh

SCRIPT: shifting.sh

AUTHOR: Randy Michael

DATE: 01-22-1999

REV: brag ewe’

PLATFORM: Not platform dependent

+ OE OO HE HEHEHE HEHE PURPOSE: This script is used to process all of the tokens which

Chapter 1

Are pointed to by the command-line arguments, $1, $2, $3, etc... -

REV LIST:

Start a for loop

for TOKEN in $*

do

process each STOKEN

done

We could have also used the $@ special parameter just as easily. As we see in the

previous code segment, the use of the $@ or $* is an alternative solution to the same

problem, and it was less code to write. Either technique accomplishes the same task.

Double Quotes ”, Forward Tics ; and Back Tics ©

How do we know which one of these to use in our scripts, functions, and command

statements? This decision causes the most confusion in writing scripts. We are going to

set this straight now.

Depending on what the task is and the output desired, it is very important to use the

correct enclosure. Failure to use these correctly will give unpredictable results.

We use ", double quotes, in a statement where we want to allow character or com-

mand substitution. The "-key is located next to the Enter key on a standard USA
QWERT keyboard. Use the SHIFT "-key sequence.

We use ’, forward tics, in a statement where we do not want character or command

substitution. Enclosing in ’, forward tics, is intended to use the literal text in the variable

or command statement, without any substitution. All special meanings and functions
are removed. It is also used when you want a variable reread each time it is used; for

example, “$PWD’ is used a lot in processing the PS1 command-line prompt. The *-key
is located next to the Enter key on a standard USA QWERT keyboard. Additionally,

preceding the same string with a backslash, \, also removes the special meaning of a
character, or string.

We use ~, back tics, in a statement where we want to execute a command, or script,

and have its output substituted instead; this is command substitution. The ~-key is
located below the Escape key, Esc, in the top-left corner of a standard USA QWERT
keyboard. Command substitution is also accomplished by using the $ (command)
command syntax. We are going to see many different examples of these throughout
this book.

Scripting Quick Start and Review

Math in a Shell Script

We can do arithmetic in a shell script easily. The Korn shell let command and the
((expr)) command expressions are the most commonly used methods to evaluate
an integer expression. Later we will also cover the be function to do floating-point
arithmetic.

Operators

The Korn shell uses arithmetic operators from the C programming language (see Table
1.4), in decreasing order of precedence.

A lot of these math operators are used in the book, but not all. In this book we try to

keep things very straightforward and not confuse the reader with obscure expressions.

Table 1.4 Math Operators

OPERATOR DESCRIPTION

++ — Auto-increment and auto-decrement, both prefix and postfix

+ Unary plus

- Unary minus

| ~ | Logical negation; binary inversion (one’s complement)

*/% Multiplication; division; modulus (remainder)

+- Addition; subtraction

<<>> Bitwise left shift; bitwise right shift

=>= Less than or equal to; greater than or equal to

<> Less than; greater than

== f= Equality; inequality (both evaluated left to right)

& Bitwise AND

ms Bitwise exclusive OR

| Bitwise OR

&& Logical AND

II Logical OR

17

Chapter 1

Built-In Mathematical Functions

The Korn shell provides access to the standard set of mathematical functions. They are
called using C function call syntax. Table 1.5 shows a list of shell functions.

We do not have any shell scripts in this book that use any of these built-in Korn shell
functions except for the int function to extract the integer portion of a floating-point

number.

File Permissions, suid and sgid Programs

After writing a shell script we must remember to set the file permissions to make it exe-
cutable. We use the chmod command to change the file’s mode of operation. In addition
to making the script executable, it is also possible to change the mode of the file to
always execute as a particular user (suid) or to always execute as a member of a par-

ticular system group (sgid). This is called setting the sticky bit. If you try to suid or
sgida shell script, it is ignored for security reasons.

Table 1.5 Built-In Shell Functions

abs Absolute value

log Natural logarithm

acos Arc cosine

sin Sine ees

asin Arc sine

sinh Hyperbolic sine

cos Cosine

sqrt Square root

cosh Hyperbolic cosine

tan Tangent

exp Exponential function

tanh Hyperbolic tangent

int Integer part of floating-point number

Scripting Quick Start and Review

Setting a program to always execute as a particular user, or member of a certain
group, is often used to allow all users, or a set of users, to run a program in the proper
environment. As an example, most system check programs need to run as an adminis-
trative user, sometimes root. We do not want to pass out passwords so we can just
make the program always execute as root and it makes everyone’s life easier. We can
use the options shown in Table 1.6 in setting file permissions. Also, please review the
chmod man page.

By using combinations from the chmod command options, you can set the permis-
sions on a file or directory to anything that you want. Remember that setting a shell
script to suid or sgid is ignored by the system.

chmod Command Syntax for Each Purpose

To Make a Script Executable

chmod 754 my_script.sh

or

chmod u+rwx,g+rx,o+r my_script.ksh

Table 1.6 chmod Permission Options

4000 Sets user ID on execution.

2000 Sets group ID on execution.

1000 Sets the link permission to directories or sets the save-text
attribute for files.

0400 Permits read by owner.

0200 Permits write by owner.

0100 Permits execute or search by owner.

0040 Permits read by group.

0020 Permits write by group.

0010 Permits execute or search by group.

0004 Permits read by others.

0002 Permits write by others.

0001 Permits execute or search by others.

20 Chapter 1

The owner can read, write, and execute. The group can read and execute. The world

can read.

To Set a Program to Always Execute as the Owner

chmod 4755 my_program

The program will always execute as the owner of the file, if it is not a shell script. The

owner can read, write, and execute. The group can read and execute. The world can
read and execute. So no matter who executes this file it will always execute as if the

owner actually executed the program.

To Set a Program to Always Execute as a Member of the File Owner's Group

chmod 2755 my_program

The program will always execute as a member of the file’s group, as long as the file
is not a shell script. The owner of the file can read, write, and execute. The group can

read and execute. The world can read and execute. So no matter who executes this pro-

gram it will always execute as a member of the file’s group.

To Set a Program to Always Execute as Both

the File Owner and the File Owner's Group

chmod 6755 my_program

The program will always execute as the file’s owner and as a member of the file
owner’s group, as long as the program is not a shell script. The owner of the file can

read, write, and execute. The group can read and execute. The world can read and exe-

cute. No matter who executes this program it will always execute as the file owner and
as a member of the file owner’s group.

Running Commands on a Remote Host

We sometimes want to execute a command on a remote host and have the result

displayed locally. An example would be getting filesystem statistics from a group
of machines. We can do this with the rsh command. The syntax is rsh hostname

command_to_execute. This is a handy little tool but two system files will need to be

set up on all of the hosts before the rsh command will work. The files are . rhosts,

which would be created in the user’s home directory and have the file permissions of
600, and the /etc/hosts. equiv file.

For security reasons the . rhosts and hosts. equiv files, by default, are not set up

to allow the execution of a remote shell. Be careful! The systems’ security could be

threatened. Refer to each operating system’s documentation for details on setting up
these files.

Scripting Quick Start and Review

Speaking of security, a better solution is to use Open Secure Shell (OpenSSH) instead
of rsh. OpenSSH is a freeware encrypted replacement for rsh, telnet, and ftp, for the
most part. To execute a command on another machine using OpenSSH use the follow-
ing syntax.

ssh user@hostname command_to_execute

This command prompts you for a password if the encryption key pairs have not
been set up on both machines. Setting up the key pair relationships usually takes less
than one hour. The details of the procedure are shown in the ssh man page (man ssh).
The OpenSSH code can be downloaded from the following URL: www.openssh.org.

Setting Traps

When a program is terminated before it would normally end, we can catch an exit sig-

nal. This is called a trap. Table 1.7 lists some of the exit signals.

To see the entire list of supported signals for your operating system, enter the fol-
lowing command:

cp ea ea, eld Piha sm kaa (edn)

This is a really nice tool to use in our shell scripts. On catching a trapped signal we
can execute some cleanup commands before we actually exit the shell script. Com-

mands can be executed when a signal is trapped. If the following command statement

is added in a shell script, it will print to the screen “EXITING on a TRAPPED SIGNAL”
and then make a clean exit on the signals 1, 2,3, and 15. We cannot trapa kill -9.

trap 'echo "\nEXITING on a TRAPPED SIGNAL";exit' 1 2 3 15

We can add all sorts of commands that may be needed to clean up before exiting. As

an example we may need to delete a set of files that the shell script created before we exit.

Table 1.7 Exit Signals

0 — Normal termination, end of script

1 SIGHUP Hang up, line disconnected

2 SIGINT Terminal interrupt, usually CONTROL-C

3 SIGQUIT Quit key, child processes to die before terminating

9 SIGKILL kill -9 command, cannot trap this type of exit status

15 SIGTERM kill command's default action

24 SIGSTOP Stop, usually CONTROL-z

21

22 Chapter 1

User Information Commands

Sometimes we need to query the system for some information about users on the system.

who Command

The who command gives this output for each logged-in user: username, tty, login time,

and where the user logged in from:

rmichael pts/0 Mar 13) 10):24 LOR MORLONG

root pts/1 Mar 15 10243 (yogi)

w Command

The w command is really an extended who. The output looks like the following:

12:29PM UpmeZaday.s, 21253), 2) users). loadsavenage wl0S amelie ii elnOS

User eiy; login@ idle JCPU PCPU what

rmichael pts/0 Mon10AM 0 3:00 ait Ww

root jMESy/ al 10:42AM 37 Bygal7) Be tar

Notice that the top line of the preceding output is the same as the output of the

uptime command. The w command gives a more detailed output than the who com-
mand by listing job process time, total user process time, but it does not reveal where

the users have logged in from. We often are interested in this for security purposes. One
nice thing about the w command ’s output is that it also lists what the users are doing at

the instant the command is entered. This can be very useful.

last Command

The last command shows the history of who has logged into the system since the wtmp

file was created. This is a good tool when you need to do a little investigation of who

logged into the system and when. The following is example output:

root i@ = ¢) booboo Aug 06 19:22 - 19:23 (00:01)

root pts/3 mrranger Aug 06 18:45 still logged in.

root pts/2 mrranger Aug 06 18:45 still logged in.

root pts/1 mrranger Aug 06 18:44 still logged in.

root pts/0 mrranger Aug 06 18:44 still logged in.

BOot pts/0 mrranger Aug 06 18:43 - 18:44 (00:01)

root ftp booboo Auge 06" Leid9) — 13:20 (010):010))

root ftp booboo Aug 06 18:18 - 18:18 (00:00)

root tty0 Aug 06 18:06 still logged in.

Scripting Quick Start and Review 23

root tty0 Aug 02 12:24 - 17:59 (4+05:34)

reboot ~ Aug 02 12:00

shutdown tty0 URbUL cha Akshay}

root ftp booboo nell shah albpaliey = Bry als) (aio) (0\(o)})

root ftp bambam OU Si 2 Oa On (OOOO)

root ftp booboo Juily si 20 vA25—=— 20242" (001 00))

root ftp bambam Jul 31 20:41 - 20:42 (00:00)

The output of the last command shows the username, the login port, where the user
logged in from, the time of the login/logout, and the duration of the login session.

ps Command

The ps command will show information about current system processes. The ps com-
mand has many switches that will change what we look at. Some common command
options are listed in Table 1.8.

Communicating with Users

Communicate with the system’s users and let them know what is going on! All Sys-

tems Administrators have the maintenance window where we can finally get control and

handle some offline tasks. This is just one example of a need to communicate with the
systems’ users, if any are still logged in.

The most common way to get information to the system users is to use the

/etc/motd file. This file is displayed each time the user logs in. If users stay logged in

for days at a time they will not see any new messages of the day. This is one reason why
real-time communication is needed. The commands shown in Table 1.9 allow commu-

nication to, or between, users who are currently logged in the system.

Table 1.8 Some ps Command Options

ps The user's currently running processes

ps -f Full listing of the user’s currently running processes

ps -ef Full listing of all processes, except kernel processes

ps -A All processes including kernel processes

ps -Kf Full listing of kernel processes

ps auxw Wide listing sorted by percentage of CPU usage, %CPU

24 +#Chapter 1

Table 1.9 Commands for Real-Time User Communication

wall Writes a message on the screen of all logged-in users on the
local host.

rwall Writes a message on the screen of all logged-in users on a
remote host.

write Writes a message to an individual user. The user must currently
be logged-in.

talk Starts an interactive program that allows two users to have a
conversation. The screen is split in two, and both users can see

what each person is typing.

| NOTE When using these commands be aware that if a user is using a

program—for example, an accounting software package—and has that

program’s screen on the terminal, then the user may not get the message

or the user's screen may become scrambled.

In addition to the preceding commands, there is a script on the Web site that accom-

panies this book named broadcast .ksh that can be used to send pop-up messages

in a Windows (95, 98, and NT) environment. The script uses Samba, and it must be

installed, and enabled, for broadcast . ksh to work. The details are in Chapter 25.

Uppercase or Lowercase Text for Easy Testing

We often need to test text strings like filenames, variables, file text, and so on, for com-

parison. It can vary so widely that it is easier to uppercase or lowercase the text for ease

of comparison. The tr and typeset commands can be used to uppercase and lowercase

text. This makes testing for things like variable input a breeze. Here is an example
using the tr command:

VARIABLE VALUES

Expected input: TRUE

Real input: TRUE

Possible input: true TRUE True True, etc...

UPCASING

UPCASEVAR=$ (echo S$VARIABLE | tr '[a-z]' '[A-2Z]')

DOWNCASING

DOWNCASEVAR=S$ (echo SVARIABLE | te “LA=72 “fa az))

Scripting Quick Start and Review 25

In the preceding example of the tr command, we echo the string and use a pipe (|)

to send the output of the echo statement to the tr command. As the preceding exam-
ples show, uppercasing uses '[a-z]' '[A-Z]'

| NOTE The single quotes are required around the square brackets.

"[a-z]' '[A-Z]' Used for lower to uppercase

'[A=Z]' '‘[a-z]' Used for upper to lowercase

No matter what the user input is, we will always have the stable input of TRUE, if

uppercased, and true, if lowercased. This reduces our code testing and also helps the

readability of the script.
We can also use typeset to control the attributes of a variable in the Korn shell. In the

previous example we are using the variable, VARIABLE. We can set the attribute to
always translate all of the characters to uppercase or lowercase. To set the case attribute

of VARIABLE to always translate characters to uppercase we use:

typeset -u VARIABLE

The -u switch to the typeset command is used for uppercase. After we set the

attribute of the variable VARIABLE, using the typeset command, any time we assign
text characters to VARIABLE they are automatically translated to uppercase characters.

EXAMPLE:

typeset -u VARIABLE

VARIABLE="True"

echo $VARIABLE

TRUE

To set the case attribute of the variable VARIABLE to always translate characters to

lowercase we use:

typeset -1 VARIABLE

EXAMPLE:

typeset -l VARIABLE

VARIABLE="True"

echo SVARIABLE

true

Check the Return Code

Whenever we run a command there is a response back from the system about the last

command that was executed, known as the return code. If the command was success-

ful the return code will be 0, zero. If it was not successful the return will be something

26 Chapter 1

other than 0, zero. To check the return code we look at the value of the $? shell

variable.
As an example, we want to check if the /usr/local/bin directory exists. Each of

these blocks of code accomplishes the exact same thing:

test -d /usr/local/bin

if ["$?" -eq 0] # Check the return code

then # The return code is zero

echo '/usr/local/bin does exist'

else # The return code is NOT zero

echo '/usr/local/bin does NOT exist'

‘eal

or

if test -d /usr/local/bin

then # The return code is zero

echo '/usr/local/bin does exist'

else # The return code is NOT zero

echo '/usr/local/bin does NOT exist'

fi

or

Let [—-d) usr localli/bin. |

then # The return code is zero

echo '/usr/local/bin does exist'

else # The return code is NOT zero

echo '/usr/local/bin does NOT exist'

fea!

Notice that we checked the return code using $? once. The other examples use the

control structure’s built-in test. The built-in tests do the same thing of processing the
return code, but the built-in tests hide this step in the process. All three of the previous

examples give the exact same result. This is just a matter of personal choice and
readability.

Scripting Quick Start and Review 27

Time-Based Script Execution

We write a lot of shell scripts that we want to execute on a timed interval or run once

at a specific time. This section addresses these needs with several examples.

Cron Tables

Acron table is a system file that is read every minute by the system and will execute any
entry that is scheduled to execute in that minute. By default, any user can create a cron
table with the crontab -e command, but the Systems Administrator can control which

users are allowed to create and edit cron tables with the cron.allowand cron. deny

files. When a user creates his or her own cron table the commands, programs, or scripts

will execute in that user’s environment. It is the same thing as running the user’s

$HOME/ .profile before executing the command.

The crontab -e command starts the default text editor, vi or emacs, on the user’s

cron table.

| NOTE When using the crontab command, the current user ID is the cron table

that is acted on. To list the contents of the current user's cron table, issue the

crontab -| command.

Cron Table Entry Syntax

It is important to know what each field in a cron table entry is used for. Figure 1.1

shows the usage for creating a cron table entry.
This cron table entry in Figure 1.1 executes the script, /usr/local/bin/

somescript.ksh, at 3:15AM, January 8, on any day of the week that January 8 falls

on. Notice that we used a wildcards for the weekday field. The following cron table

entry is another example:

1031%1* /usr/bin/banner "Happy New Year" > /dev/console

Minute (0 through 29)

Hour (0 through 23)

Day of the Month (1 through 31)

Month (1 through 12)

Rese Weekday (0 - 6 for Sunday to Saturday)

15 3 8 1 * /usr/local/bin/somescript.sh 2>&1 >

/dev/null

Figure 1.1 Cron table entry definitions and syntax.

28 Chapter 1

At 1 minute after midnight on January 1, on any weekday, this cron table entry
writes to the system’s console (/dev/console) Happy New Year in large banner

letters.

Wildcards

* Match any number of characters

2? Matcha single character

at Command

Like a cron table, the at command executes commands based on time. Using the at

command we can schedule a job to run once, at a specific time. When the job is executed

the at command will send an e-mail, of the standard output and standard error, to the

user who scheduled the job to run, unless the output is redirected. As a Systems
Administrator we can control which users are allowed to schedule jobs with the

at.allow and at.deny files. Refer to each operating system’s man pages before
modifying these files and the many ways to use the at command for timed controlled

command execution.

Output Control

How is the script going to run? Where will the output go? These questions come under

job control.

Silent Running

To execute a script in silent mode we can use the following syntax:

/ PATH/script_name 2>&1 > /dev/null

In this command statement the script_name shell script will execute without any

output to the screen. The reason for this is that the command is terminated with the
following:

2>&1 > /dev/null

By terminating a command like this it redirects standard error (stderr), specified

by file descriptor 2, to standard output (stdout), specified by file descriptor 1. Then
we have another redirection to /dev/nu11, which sends all of the output to the bit
bucket.

We can call this silent running. This means that there is absolutely no output from the

script going to our screen. Inside the script there may be some output directed to files
or devices, a particular terminal, or even the system’s console, /dev/console, but

Scripting Quick Start and Review 29

none to the user screen. This is especially useful when executing a script from one of
the system’s cron tables.

In the following example cron table entry, we want to execute a script named
/usr/local/bin/systemcheck.ksh, which needs to run as the root user, every
15 minutes, 24 hours a day, 7 days a week and not have any output to the screen. There
will not be any screen output because we are going to end the cron table entry with:

2>&1 > /dev/null

Inside the script it may do some kind of notification such as paging staff or sending
output to the system’s console, writing to a file or a tape device, but output such as
echo "Hello world" would go to the bit bucket. Butecho "Hello world" >

/dev/console would go to the system’s defined console if this command statement
was within the shell script.

This cron table entry would need to be placed in the root cron table (must be logged
in as the root user) with the following syntax.

57, 207 55900) * * * * /usr/local/bin/systemcheck.ksh 251 >/dev/nuld

| NOTE Most system check type scripts need to be in the root cron table.

Of course, a user must be logged in as root to edit root's cron table.

The previous cron table entry would execute the /usr/local/bin/system

check.ksh every 15 minutes, at 5, 20, 35, and 50 minutes, each hour, 24 hours a day,

7 days a week. It would not produce any output to the screen due to the final 2>&1 >

/dev/null. Of course, the minutes selected to execute can be any. We sometimes

want to spread out execution times in the cron tables so that we don’t have a lot of

CPU-intensive scripts and programs starting execution at the same time.

Using getopts to Parse Command-Line Arguments

The getopts command is built in to the Korn shell. It retrieves valid command-line

options specified by a single character preceded by a - (minus sign) or + (plus sign). To
specify that a command switch requires an argument to the switch, it is followed by a

: (colon). If the switch does not require any argument then the : should be omitted. All

of the options put together are called the OptionString, and this is followed by some
variable name. The argument for each switch is stored in a variable called SOPTARG. If

the entire OptionString is preceded by a : (colon), then any unmatched switch
option causes a ? to be loaded into the VARIABLE. The form of the command follows:

getopts OptionString VARIABLE [Argument ...]

The easiest way to explain this is with an example. For our script we need seconds,

minutes, hours, days, and a process to monitor. For each one of these we want to supply

an argument—that is,-s 5 -m10 -p my_backup. In this we are specifying 5 seconds,

30 Chapter 1

10 minutes, and the process is my_backup. Notice that there does not have to be a

space between the switch and the argument. This is what makes getopts so great! The
command line to set up our example looks like this: i

SECS=0 # Initialize all to zero

MINUTES=0

HOURS=0

DAYS=0

PROCESS= # Initialize to null

while getopts :s:m:h:d:p: TIMED 2>/dev/null

do

case $TIMED in

s) SECS=S$OPTARG

m) ((MINUTES = SOPTARG * 60))

h) ((HOURS = SOPTARG * 3600))

dad) ((DAYS = SOPTARG * 86400)))

P) PROCESS=SOPTARG

\?) usage

exit 1

esac

done

((TOTAL_SECONDS = SECONDS + MINUTES + HOURS + DAYS))

There are a few things to note in the getopts command. The getopts command needs

to be part of a while loop with a case statement within the loop for this example. On

each option we specified, s,m, h, d, and p, we added a : (colon) after each switch. This

tells getopts that an argument is required. The : (colon) before the OptionString list

tells getopts that if an unspecified option is given, to set the $ TIMED variable to the

? character. This allows us to call the usage function and exit with a return code of

1. The first thing to be careful of is that getopts does not care what arguments it
receives so we have to take action if we want to exit. The last thing to note is that the

first line of the while loop has redirection of standard error (file descriptor 2) to the bit
bucket. Any time an unexpected argument is encountered, getopts sends a message to

standard error. Because we expect this to happen, we can just ignore the messages and
discard them to /dev/nu11. We will study getopts a lot in this book.

Making a Co-Process with Background Function

We also need to cover setting up a co-process. A co-process is a communications link

between a foreground and a background process. The most common question is why is

this needed? In one of the scripts we are going to call a function that will handle all of

Scripting Quick Start and Review 31

the process monitoring for us while we do the timing control in the main script. The
problem arises because we need to run this function in the background and it has an infinite
loop. Within this background process-monitoring function there is an infinite loop.

Without the ability to tell the loop to break out, it will continue to execute on its own

after the main script, and function, is interrupted. We know what this causes—one or

more defunct processes! From the main script we need a way to communicate with this
loop, thus background function, to tell it to break out of the loop and exit the function
cleanly when the countdown is complete and if the script is interrupted, CTRL-C. To
solve this little problem we kick off our proc_watch function as a co-process, in the

background. How do we do this, you ask? “Pipe it to the background” is the simplest way

to put it, and that is also what it looks like, too. Look at the next example code block:

HH Ht Ht HH Ht Ht OH aE HH HH HH HH HH SH SEH OH HE

function trap_exit

{

Tell the co-process to break out of the loop

BREAK OUT='Y'

print -p $BREAK_OUT # Use "print -p" to talk to the co-process

}

HEHEHE HH HE HHH HF HH HH HH OH HHH EH HH

function proc_watch

{

This function is started as a co-process!!!

while : # Loop forever

do

Some Code Here

read $BREAK OUT # Do NOT need a "-p" to read!

if [[$BREAK_OUT = 'Y']]

then

return 0

fi

done

HHEHHHHHHHFHRPHEHREHRHHEH HEHEHE

H#H#H## Start of Main #####t##

HHHHHHHHHHHHHRPHEEEEE EEE H HHH

Set a Trap ###

trap trapeexit; exit) 20253515

TOTAL_SECONDS=300

BREAK_OUT='N'

proc_watch |& # Start proc_watch as a co-process!!!!

PW_PID=$1 # Process ID of the last background job

NEW YORK INSTITUTE

OF TECHNOLOGY LIBRARY

32 Chapter 1

until ((TOTAL SECONDS == 0))

do

((TOTAL_SECONDs = TOTAL_SECONDS - 1))

sleep 1

done

BREAK_OUT='Y'

Use "print -p" to communicate with the co-process variable

print -p $BREAK OUT

kill $PW_PID # Kill the background co-process

exit 0

In this code segment we defined two functions. The trap_exit function will exe-

cute on exit signals 1, 2, 3, and 15. The other function is the proc_watch function,

which is the function that we want to start as a background process. As you can see in

proc_watch, it has an infinite loop. If the main script is interrupted then without a

means to exit the loop, within the function, the loop alone will continue to execute! To
solve this we start the proc_watch as a co-process by “piping it to the background”
using pipe ampersand , |&, as a suffix. Then when we want to communicate to this

co-process background function we use print -p $VARIABLE_NAME. Inside the co-
process function we just use the standard read $VARIABLE_NAME. This is the mech-

anism that we are going to use to break out of the loop if the main script is interrupted

on a trapped signal; of course, we cannot catch a kill -9 with a trap.

Try setting up the scenario described previously with a background function that

has an infinite loop. Then press the CTRL-C key sequence to kill the main script, and
do a ps -ef | more. You will see that the background loop is still executing! Get the PID,

and do a kill -9 on that PID to kill it. Of course, if the loop’s exit criteria is ever met, the

loop will exit on its own.

Catching a Delayed Command Output

Have you ever had a hard time trying to catch the output of a command that has a

delayed output? This can cause a lot of frustration when you just miss it! There is a lit-
tle technique that allows you to catch these delayed responses. The trick is to use an
until loop. Look at the code shown here.

OUTFILE="/tmp/outfile.out” # Define the output file

cat /dev/null > SOUTFILE # Create a zero size output file

Start an until loop to catch the delayed response

until [-s SOUTFILE]

do

Scripting Quick Start and Review 33

delayed_output_command >> SOUTFILE

done

Show the resulting output

more SOUTFILE

This code segment first defines an output file to store the delayed output data. We
start with a zero-sized file and then enter an until loop that will continue until the
SOUTFILE is no longer a zero-sized file, and the until loop exits. The last step is to

show the user the data that was captured from the delayed output.

Fastest Ways to Process a File Line by Line

Most shell scripts work with files, and some use a file for data input. The two fastest
techniques for processing a file line by line are shown in this section. The first tech-
nique feeds a while loop from the bottom. The second technique uses file descriptors.

function while _ read_LINE_bottom

{

while read LINE

do

echo "SLINE"

done < $FILENAME

}

The function shown in the previous code feeds the while loop from the bottom, after

the done.

function while _read_LINE_FD

{

exec 3<&0

exec 0< S$SFILENAME

while read LINE

do

echo "SLINE"

done

exec 0<&3

}

The function shown in the previous code uses file descriptors to process the file line

by line.

34 Chapter 1

Mail Notification Techniques

In a lot of the shell scripts in this book it is a good idea-to send notifications to users
when errors occur, when a task is finished, and for many other reasons. Some of the

email techniques are shown in this section.

Using the mail and mailx Commands

The most common notification method uses the mail and mailx commands. The basic

syntax of both these commands is shown here.

mail -s "This is the subject" S$MAILOUT_LIST < $MAIL_FILE

OR

cat $MAIL_FILE | mail -s "This is the subject" $MAILOUT_LIST

mailx -s "This is the subject" SMAILOUT_LIST < SMAIL_FILE

OR

cat $MAIL_FILE | mailx -s "This is the subject" $MAILOUT_LIST

Not all systems support the mailx command, but the systems that do have support

use the same syntax as the mail command. To be safe when dealing with multiple Unix
platforms always use the mail command.

Using the sendmail Command to Send Outbound Mail

In one shop I worked at I could not send outbound mail from the any user named root.

The from field had to be a valid email address that is recognized by the mail server, and

root is not valid. To get around this little problem I changed the command that I used

from mail to sendmail. The sendmail command allows us to add the -f switch to indi-

cate a valid internal email address for the from field. The sendmail command is in

/usr/sbin/sendmail on AIX, HP-UX, and Linux, but on SunOS the location

changed to /usr/1ib/sendmail. Look at the function in Listing 3.3.

function send_notification

{

if [-s $MAIL_FILE -a "SMAILOUT" = "TRUE"];

then

case $(uname) in

AIX|HP-UX|Linux) SENDMAIL="/usr/sbin/sendmail"

SunOS) SENDMATL="/usr/lib/sendmail"

esac

Scripting Quick Start and Review 35

echo "\nSending e-mail notification"

$SENDMAIL -f randy@$THISHOST $MAIL LIST < $MAIL FILE

ak

Both techniques should allow you to get the message out quickly.

Creating a Progress Indicator

Any time that a user is forced to wait as a long process runs, it is an excellent idea to
give the user some feedback. This section deals with progress indicators.

A Series of Dots

The echo command prints a single dot on the screen, and the backslash c, \c, specifies

a continuation on the same line without a new line or carriage return. To make a series

of dots we will put this single command in a loop with some sleep time between
each dot. We will use a while loop that loops forever with a 10-second sleep between

printing each dot on the screen.

while true

do

Echo aNce

sleep 10

done ;

A Rotating Line

The function shown here shows what appears to be a rotating line as the process runs.

function rotate_line

{
INTERVAL=1 # Sleep time between "twirls"

TCOUNT="0" # For each TCOUNT the line twirls one increment

while : # Loop forever...until this function is killed

do

TCOUNT=*‘expr $TCOUNT + 1° # Increment the TCOUNT

case STCOUNT in

Ta) echo Y='"\b\c"

sleep SINTERVAL

bela) echo DALY TE ioe

sleep SINTERVAL

"3 my echo " | \b\c"

sleep SINTERVAL

"qu) echo " J\b\c"

sleep SINTERVAL

x) TCOUNT="0" ;; # Reset the TCOUNT to "0", zero.

esac

To use this in a shell script, use this technique to start and stop the rotation.

HHH HH HH HHH HH HHH HH HHH HH HEH HE OH

HHHHHHHHHH Begin of Main ###H##H#HHHHHHH

HEHEHE HHH HH HH HH HH HH HH HH HH HH HH HH HH HH

rotate_line & # Run the function in the background

ROTATE_PID=$! # Capture the PID of the last background process

/usr/local/bin/my_time_consuming_task.ksh

Stop the rotating line function

kill -9 SROTATE PID

Cleanup...this removes the left over line.

echo) "\b\b 2

Creating a Psuedo-Random Number

There is a built-in Korn shell variable that will create a pseudo-random number called
RANDOM. The following code segment creates a pseudo-random number between 1 and

a upper limit defined by the user.

RANDOM=$$ # Set the seed to the PID of the script

UPPER_LIMIT=$1

RANDOM_NUMBER=S$ ((S$RANDOM % SUPPER_LIMIT + 1))

echo "SRANDOM_NUMBER"

If the user specified the UPPER_LIMIT to be 100 then the result would be a pseudo-
random number between 1 and 100.

Scripting Quick Start and Review 37

Checking for Stale Disk Partitions in AIX

Ideally we want the stale disk partition value to be zero, 0. If the value is greater than
zero we have a problem. Specifically, the mirrored disks in this Logical Volume are not
in sync, which translates to a worthless mirror. Take a look at the following command
statement.

LV=hd6

NUM_STALE_PP=$(lslv -L $LV | grep "STALE PP" | awk '{print $3}'

The previous statement saves the number of stale PPs into the NUM_STALE_PP

variable. We accomplish this feat by command substitution, specified by the
VARIABLE=$ (commands) notation.

Automated Host Pinging

Depending on the operating system that you are running, the ping command varies if

you want to send three pings to each host to see if the machines are up. The function
shown here can ping from AIX, HP-UX, Linux, and SunOS machines.

function ping_host
{ :

HOST=$1 # Grab the host to ping from ARG1.

PING_COUNT=3

PACKET_SIZE=54

This next case statement executes the correct ping

command based on the Unix flavor

case $(uname) in

AIX | Linux)

ping -c${PING_COUNT} S$HOST 2>/dev/null

HP-UX)

ping $HOST $PACKET_SIZE SPING_COUNT 2>/dev/null

SunOS)

ping -s $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

echo "\nERROR: Unsupported Operating System - $(uname) "

ECHO et NT Niee ee Sen NG reece \il

exc Gaal:

esac

38 Chapter 1

The main body of the shell script must supply the hostname to ping. This is usually

done with a while loop.

Highlighting Specific Text in a File

The technique shown here highlights specific text in a file with reverse video while dis-
playing the entire file. To add in the reverse video piece, we have to do some command

substitution within the sed statement using the tput commands. Where we specify the
new_string, we will add in the control for reverse video using command substitu-

tion, one to turn highlighting on and one to turn it back off. When the command sub-
stitution is added, our sed statement will look like the following:

sed s/current_string/$(tput smso)new_string$(tput rmso)/g

In our case the current_string and new_string will be the same because we

only want to highlight existing text without changing it. We also want the string to be

assigned to a variable as in the next command:

sed s/"$STRING"/S(tput smso) "$STRING"S (tput rmso)/g

Notice the double quotes around the string variable, "S$STRING". Do not forget to
add the double quotes around variables!

As an experiment using command substitution, try this next command statement to

highlight the machine’s host name in the /etc/hosts file on any Unix machine:

cat /etc/hosts | sed s/*hostname’/$(tput smso) ‘hostname $(tput rmso) /g

Keeping the Printers Printing

Keeping the printers enabled in a large shop can sometimes be overwhelming. There

are two techniques to keep the printers printing. One technique is for the AIX “classic”
printer subsystem, and the other is for System V printing.

AIX “Classic” Printer Subsystem

To keep AIX “classic” printer subsystem print queues running use either of the follow-
ing commands.

enable $(enq -AW | tail +3 | grep DOWN | awk '{print $1}') 2>/dev/null

or

enable $(lpstat -W | tail +3 | grep DOWN | awk '{print $1}') 2>/dev/null

Scripting Quick Start and Review 39

System V Printing

To keep System V printers printing use either of the following commands.

lpc enable $(lpstat -a | grep ‘not accepting' | awk '{print $1}')

lpc start $(lpstat -p | grep disabled | awk '{print $2}')

liysyes {bey ye whak # Enable all printing and queuing

It is a good idea to use the root cron table to execute the appropriate command every
15 minutes or so.

Automated FTP File Transfer

You can use a here document to script an FTP file transfer. The basic idea is shown here.

ftp -i -v -n wilma <<END_FTP

user randy mypassword

binary

lcd /scripts/download

cd /scripts

get auto_ftp_xfer.ksh

bye

END_FTP

Capturing a List of Files Larger than $MEG

Who filled up that filesystem? If you want to look quickly for large files use the fol-

lowing syntax.

Search for files > $MEG_BYTES starting at the $SEARCH_PATH

HOLD_FILE=/tmp/largefiles.list

MEG_BYTES=$1

SEARCH _PATH=S$ (pwd) # Use the current directory

find $SEARCH_PATH -type f -size +${MEG_BYTES}000000c -print > SHOLDFILE

Note that in the find command after the -size parameter there is a plus sign (+) pre-

ceding the file size, and there is a c added as a suffix. This combination specifies files

larger than $MEG_BYTES measured in bytes, as opposed to blocks.

40 Chapter 1

Capturing a User’s Keystrokes

In most large shops there is a need, at least occasionally, to monitor a user’s actions.

You may even want to audit the keystrokes of anyone with root access to the system
or other administration type accounts such as oracle. Contractors on site can pose a

particular security risk. Typically when a new application comes into the environment,

one or two contractors are on site for a period of time for installation, troubleshooting,
and training personnel on the product.

The code shown next uses the script command to capture all of the keystrokes.

TS=S$ (date +%m%dsysHsM%S) # File time stamp

THISHOST=$ (hostname|cut -f1-2 -d.) # Host name of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=$ {THISHOST} .${LOGNAME}.$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

Set the command prompt

export PS1="[SLOGNAME:$THISHOST]@"'SPWD> '

HHHHHHHHHHHPHEHEHEHHE RUN IT HERE ####HHEEH EE HEH HHH HH HH HH HH HF

chown SLOGNAME ${LOGDIR}/${LOGFILE} # Let the user own the file during

the script

chmod 600 ${LOGDIR}/$ {LOGFILE} # Change permission to RW for the

owner

script ${LOGDIR}/${LOGFILE} # Start the script monitoring session

chown root ${LOGDIR}/$ {LOGFILE} # Change the ownership to root

chmod 400 ${LOGDIR}/$ {LOGFILE} # Set permission to read-only by root

Using the bc Utility for Floating-Point Math

On Unix machines there is a utility called be that is an interpreter for arbitrary-
precision arithmetic language. The be command is an interactive program that pro-

vides arbitrary-precision arithmetic. You can start an interactive be session by typing

be on the command line. Once in the session you can enter most complex arithmetic
expressions as you would in a calculator.

The code segment shown next creates the mathematical expression for the be utility
and then uses a here document to load the expression into be.

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $NUM_LIST

do

ADD="SADD S$PLUS $X"

Scripting Quick Start and Review 41

PLUS="+"

done

HF Ht HE HE HH HH EH HE HE SE HE a HE HE HE EH EH HE EH a HH EH HE HH EH EH EH HH

Do the math here by using a here document to supply

input to the bc command. The sum of the numbers is

assigned to the SUM variable.

SUM=S$ (bc <<EOF

scale=$SCALE

(${ADD})

EOF)

This is about as simple as be gets. This is just a taste. Look for more later in the book.

Number Base Conversions

There are a lot of occasions when we need to convert numbers between bases. The code

that follows shows some examples of how to change the base.

Using the typeset Command

Convert a base 10 number to base 16

typeset -i16 BASE_16_NUM

BASE_16_NUM=47295

echo S$BASE_16_NUM

16#b8bf

Convert a base 8 number to base 16

[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=8#472521

[root@yogi:/scripts]> echo $BASE_16_NUM

16#735c9

Using the printf Command

Convert a base 10 number to base 8

printf %o 20398

47656

42 Chapter 1

Convert a base 10 number to base 16

printf %x 20398

4fae

Create a Menu with the select Command

There are many times when you just need to provide a menu for the end user to select

from, and this is where a select statement comes in. The menu prompt is assigned to

the PS3 system variable, and the select statement is used a lot like a for loop. A case
statement is used to specify the action to take on each selection.

PS3="Is today your birthday? "

Echos Nia

select menu_selections in Yes No Quit

do

case $menu_selections in

Yes) echo "\nHappy Birthday! \n"

No) print "\nIt is someone's birthday today...\

Sorry it is not yours\n"

Quit) print "\nLater tater!\n"

break

a) print "\nInvalid Answer...Please try again\n"

esac

done

Notice in this code segment the use of the select statement. This looks just like a for

loop with a list of possible values. Next is an embedded case statement that allows us

to specify the action to take when each selection is made. The output of this simple
menu is shown here with a selection of each possible answer.

./select_menu.ksh

) Yes

) No

) Quit

Is today your birthday? 4

WN

Invalid Answer...Please try again

Scripting Quick Start and Review 43

Is today your birthday? 1

Happy Birthday!

Is today your birthday? 2

It is someone's birthday today...Sorry it is not yours

Is today your birthday? 3

Later tater!

Sending Pop-Up Messages to Windows

When we need to get the word out quickly to the clients using Windows desktops, we

can use Samba on the Unix machine to send a pop-up message. A list of the Windows

machines is used in a while loop, and one by one the message is sent to each desktop
that is reachable and powered on. If a message is not sent to the target Windows
machine, no error is produced. We cannot guarantee that all of the messages were
received. The code segment to send the message is shown here.

Loop through each host in the $WINLIST and send the pop-up message

for NODE in S$WINLIST

do

echo "Sending to ==> $NODE"

echo $MESSAGE | $SMBCLIENT -M $NODE # 1>/dev/null

if (($? == 0))

then

echo "Sent OK ==> SNODE"

else

echo "FAILED to ==> $NODE Failed"

fi

done

The WINLIST variable contains a list of Windows machines. The MESSAGE contains

the message to send, and the SMBCLIENT variable contains the fully qualified path-

name to the smbclient command.

Removing Repeated Lines in a File

The unig command is used to report and remove repeated lines in a file. This is a valu-

able tool for a lot of scripting and testing. The syntax is shown here.

44 Chapter 1

If you have a file that has repeated lines named my_1ist and you want to save the

list without the repeated lines in a file called my_list_no_repeats, use the follow-

ing command:

uniq my_list my_list_no_repeats

If you want to see a file’s output without repeated lines use the following command:

cat repeat_file | uniq

Removing Blank Lines from a File

The easiest way to remove blank lines from a file is to use a sed statement. The follow-

ing syntax removes the blank lines.

cat my_file | sed /*$/d

Testing for a Null Variable

Variables that have nothing assigned to them are sometimes hard to deal with. The

following test will ensure that a variable is either Null or has a value assigned to it.
The double quotes are very important and must be used!

VAL= # Creates a NULL variable

We |i {lL eq SW PNR fet SUE e Ni ee 1

then

echo "The VAL variable is NULL"

fi

or

VAL=25

aise (iit Wee UCN Nine tek, Wie Negil ihe)]

then

echo "The VAL variable is NOT NULL"

1a

Scripting Quick Start and Review 45

Directly Access the Value of the Last
Positional Parameter, $#

To access the value of the $# positional parameter directly, use the following command:

eval '$'S#

or

eval \$$#

There are a lot of uses for this technique, as you will see later in this book.

Remove the Columns Heading
in a Command Output

There are many instances when we want to get rid of the columns heading in a com-

mand’s output. A lot of people try to use grep -v to pattern match on something unique
in the heading. A much easier and more reliable method is to use the tail command. An

example is shown with the df command output.

[root:yogi]@/scripts# df -k

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 i 32768 15796 52% 1927 12% /

/dev/hd2 1466368 62568 96% 44801 13% /usr

/dev/hd9var 53248 8112 85% O27 8% /var

/dev/hd3 106496 68996 36% 245 1% /tmp

/dev/hdl 4096 3892 5% 55 6% /home

/proc = = = = - /proc

/dev/hd10opt 655360 16420 98% 16261 10% /opt

/dev/scripts_lv 102400 24012 77% GU Sya 5% /scripts

/dev/1lv_temp 409600 147452 65% 29 1% /tmpfs

Now look at the same output with the column headings removed.

[root:yogi]@/scripts# df -k | tail +2

/dev/hd4 32768 T5796 52% LAY 12% /

/dev/hd2 1466368 62568 96% 44801 13% /usr

/dev/hd9var 53248 8112 85% 1027 8% /var

/dev/hd3 106496 68996 36% 245 1% /tmp

46 Chapter 1

/dev/hd1 4096 3892 5% 5S 6% /home

/proc - = = = ee /ADOC

/dev/hd1l0opt 655360 16420 98% 16261 10% /opt

/dev/scripts_lv 102400 24012 717% eS 7, 5% /scripts

/dev/lv_temp 409600 147452 65% 29 1% /tmpfs

Just remember to add one to the total number of lines that you want to remove.

Arrays

The Korn shell supports one-dimensional arrays. The maximum number of array ele-
ments is 1024. When an array is defined, it is automatically dimensioned to 1024 ele-

ments. A one-dimensional array contains a sequence of array elements, which are like

the boxcars connected together on a train track. An array element can be just about
anything, except for another array. I know, you're thinking that you can use an array to

access an array to create two- and three-dimensional arrays. If this can be done, it is

beyond the scope of this book.

Loading an Array

An array can be loaded in two ways. You can define and load the array in one step with
the set -A command, or you can load the array one element at a time. Both techniques
are shown here.

set -A MY_ARRAY alpha beta gamma

or

X=0 # Initialize counter to zero.

Load the array with the strings alpha, beta, and gamma

for ELEMENT in alpha gamma beta

do

MY_ARRAY [$X] =SELEMENT

((% = X + 1))

done

The first array element is referenced by 0, not 1. To access array elements use the fol-
lowing syntax:

echo ${MY_ARRAY[2] # Show the third array element

gamma

echo ${MY_ARRAY[*] # Show all array elements

alpha beta gamma

echo ${MY_ARRAY[@] # Show all array elements

alpha beta gamma

Scripting Quick Start and Review 47

echo ${#MY_ARRAY[*]} # Show the total number of array elements

3

echo ${#MY_ARRAY[@]} # Show the total number of array elements

3

echo ${MY_ARRAY} # Show array element 0 (the first element)

alpha

We will use arrays in shell scripts in two chapters in this book.

Testing a String

One of the hardest things to do in a shell script is to test the user’s input from the

command-line. This shell script will do the trick by using regular expressions to define

the string composition.

#!/bin/ksh

SCRIPT: test_string.ksh

AUTHOR: Randy Michael

REV: 1.0.D - Used for developement

DATE: 10/15/2002

PLATFORM: Not Platform Dependent

PURPOSE: This script is used to test a character

string, or variable, for its composition.

Examples include numeric, lowercase or uppercase

characters, alpha-numeric characters and IP address.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to verify syntax without any execution.

REMEMBER: Put the comment back or the script will

B # NOT EXECUTE!

cid

HHHHHHHHHH RHA H HHH HH HH HHH HH HHH HH HH

HHHHHHHHHHHHHH DEFINE FUNCTIONS HERE ##### FH HHH HHH HH

HHHHHHARHAE HAH HEHEHE EH HH HH A RE HE aH

testestring, ()

{

This function tests a character string

Must have one argument ($1)

site (CQ fie We Ey)

48 Chapter 1

then

This error would be a programming error

print "ERROR: $(basename $0) requires one*argument"

return 1

fa

Assign argl to the variable --> STRING

STRING=$1

This is where the string test begins

case S$STRING in

a COY})) StU) cae CLO I})) 22> (CL@=91)))

Testing for an IP address - valid and invalid

INVALID=FALSE

Separate the integer portions of the "IP" address

and test to ensure that nothing is greater than 255

or it is an invalid IP address.

Or a ein |S\(eCho SSTRING | |awlae—k sa Uipr ints loop sor,

do

de (XC sk Ss DSsy 3)

then

INVALID=TRUE

eal

done

case SINVALID in

TRUE) print 'INVALID_IP_ADDRESS'

FALSE) print 'VALID_IP_ADDRESS'

esac

+([0-1])) # Testing for 0-1 only

print 'BINARY_OR_POSITIVE_INTEGER'

+({0-7])) # Testing for 0-7 only

print 'OCTAL_OR_POSITIVE_INTEGER'

+([0-9])) # Check for an integer

print 'INTEGER'

+([-0-9])) # Check for a negative whole number

print 'NEGATIVE_WHOLE_NUMBER'

SC LOSOT ier =995))

3A) S)

Scripting Quick Start and Review 49

Check for a positive floating point number

print 'POSITIVE_FLOATING_POINT'

FeO Oils [red [0 =9 19)

Check for a positive floating point number

with a + prefix

print 'POSITIVE_FLOATING_POINT'

PhO Oil POO!)

Check for a negative floating point number

print 'NEGATIVE_FLOATING_POINT'

Filer 0 ull.)))

Check for a negative floating point number

print 'NEGATIVE_FLOATING_POINT'

+([{+.0-9]))

Check for a positive floating point number

print 'POSITIVE_FLOATING POINT'

+([a-f])) # Test for hexidecimal or all lowercase characters

print 'HEXIDECIMAL OR_ALL_LOWERCASE'

+([a-f]|[0-9])) # Test for hexidecimal or all lowercase characters

print 'HEXIDECIMAL OR_ALL_LOWERCASE_ALPHANUMERIC'

+([A-F])) # Test for hexidecimal or all uppercase characters

print 'HEXIDECIMAL OR_ALL_UPPERCASE'

+({A-F]|[0-9])) # Test for hexidecimal or all uppercase characters

print 'HEXIDECIMAL OR_ALL_UPPERCASE_ALPHANUMERIC'

+({a-f]|[A-F]))

Testing for hexidecimal or mixed-case characters

print 'HEXIDECIMAL _OR_MIXED_CASE'

+([a-f£]|[A-F] | [0-9]))

Testing for hexidecimal/alpha-numeric strings only

print 'HEXIDECIMAL_OR_MIXED_CASE_ALPHANUMERIC'

+([a-z] | [A-Z] | [0-9]))

Testing for any alpha-numeric string only

print 'ALPHA-NUMERIC'

+(f{a-z])) # Testing for all lowercase characters only

print 'ALL_LOWERCASE'

+([{A-Z])) # Testing for all uppercase numbers only

print 'ALL_UPPERCASE'

Fuad,

50 Chapter 1

+([a-z] | [A-Z]))
Testing for mixed case alpha strings only

Pein IMEX DACASEn

*) # None of the tests matched the string coposition

print 'INVALID_STRING_COMPOSITION'

esac

HH HHH HH HH HH HH HE HEH EHH HE HE HEH HE HE HE HE HE HE EH HH HH

usage ()

{

echo "\nERROR: Please supply one character string or variable\n"

echo "USAGE: S$THIS_SCRIPT {character string or variable}\n"

}

EHH HH HH HH HHH HH HH HH HH HH HH HH HH HH HH HH HHH HH HHH HHH HH EH HE

HHHHHHHHHHHHEH BEGINNING OF MAIN ###H#HHHHH HEH HEH HH HH HHH

HHH HHH HH HHH HH HH HH HE HH HH HHH OH HE HEH EH HE HH HH HE HH HH HHH HH OE

Query the system for the name of this shell script.

This is used for the "usage" function.

THIS_SCRIPT=$ (basename $0)

Check for exactly one command-line argument

atpse (UC Sa es al,))))

then

usage

exit 1

Eat

Everything looks okay if we got here. Assign the

single command-line argument to the variable "STRING"

STRING=$1

Call the "test_string" function to test the composition

of the character string stored in the $STRING variable.

test_string SSTRING

End of script

This is a good start but this shell script does not cover everything. Play around with
it and see if you can make some improvements.

Scripting Quick Start and Review 51

Summary

This chapter is just a primer to get you started with a quick review and some little
tricks and tips. In the next 24 chapters we are going to write a lot of shell scripts to solve

some real-world problems. Sit back and get ready to take on the Unix world!
The first thing that we are going to study is the 12 ways to process a file line by line.

I have seen a lot of good and bad techniques for processing a file line by line over the
last 10 years, and some have been rather inventive. The next chapter presents the

12 techniques that I have seen the most; at the end of the chapter there is a shell script

that times each technique to find the fastest. Read on, and find out which one wins the

race. See you in the next chapter!

Twelve Ways to Process
a File Line by Line

Have you ever created a really slick shell script to process file data and found that you

have to wait until after lunch to get the results? The script may be running so slowly

because of how you are processing the file. I have come up with 12 ways to process a

file line by line. Some techniques are very fast, and some make you wait for half a day.

The techniques used in this chapter are measurable, and I created a shell script that will
time each method so that you can see which technique suits your needs.

When processing an ASCII text/data file, we are normally inside a loop of some

kind. Then, as we go through the file from the top to the bottom, we process each line
of text. A Korn shell script is really not meant to work on text character by character,

but you can do it using various techniques. The task for this chapter is to show the line-
by-line parsing techniques. We are also going to look at using file descriptors as a pro-
cessing technique.

Command Syntax

First, as always, we need to go over the command syntax that we are going to use. The
commands that we want to concentrate on in this chapter have to deal with while

loops. When parsing a file in a while loop, we need a method to read in the entire line
to a variable. The most prevalent command is read. The read command is flexible in
that you can extract individual strings as well as the entire line. Speaking of line, the

53

54 Chapter 2

line command is another alternative to grab a full line of text. Some operating systems
do not support the line command. | did not find the line command on Linux or Solaris;

however, the line may have been added in subsequent OS releases.
In addition to the read and line, we need to look at the different ways you can use

the while loop, which is the major cause of fast or slow execution times. A while loop
can be used as a standalone loop in a predefined configuration; it can be used in a com-

mand pipe or with file descriptors. Each method has its own set of rules. The use of the
while loop is critical to get the quickest execution times. I have seen many renditions

of the proper use of a while loop, and some techniques I have seen are unique.

Using File Descriptors

Under the covers of the Unix operating system, files are referenced, copied, and moved

by unique numbers known as file descriptors. You already know about three of these
file descriptors:

0 - stdin

1 - stdout

2 - stderr

We have redirected output using the stdout (standard output) and stderr (stan-

dard error) in other scripts in this book. This is the first time we are going to use the

stdin (standard input) file descriptor. For a short definition of each of these we can

talk about the devices on the computer. Standard input usually comes into the com-

puter from the keyboard or mouse. Standard output usually has output to the screen

or to a file. Standard error is where error messages are routed by commands, programs,

and scripts. We have used stderr before to send the error messages to the bit bucket,

or /dev/nu11, and also more commonly to combine the stdout and stderr outputs

together. You should remember a command like the following one:

some_command 2>&1

The previous command sends all of the error messages to the same output device
that standard output goes to, which is normally the terminal. We can also use other file
descriptors. Valid descriptor values range from 0 to 19 on most operating systems. You

have to do a lot of testing when you use the upper values to ensure that they are not

reserved by the system for some reason. We will see more on using file descriptors in
some of the following code listings.

Creating a Large File to Use in the Timing Test

Before I get into each method of parsing the file, I want to show you a little script you
can use to create a file that has the exact number of lines that you want to process. The
number of characters to create on each line can be changed by modifying the
LINE_LENGTH variable in the shell script, but the default value is 80. This script also

uses a while loop but this time to build a file. To create a file that has 7,500 lines, you

Twelve Ways to Process a File Line by Line 55

add the number of lines as a parameter to the shell script name. Using the shell script
in Listing 2.1, you create a 7,500-line file with the following syntax:

mk_large_file.ksh 7500

The full shell script is shown in Listing 2.1.

#!/bin/ksh

SCRIPT: mk_large file.ksh

AUTHOR: Randy Michael

DATE: 03/15/2002

REM tide A

PURPOSE: This script is used to create a \text’ File ‘that

has a specified number of lines that is specified

on the command line.

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

+ + HH HHH HH HH HH FH

HHFHHHFFHEFHHEESHEPHHEEHESHHEPHEEEEEHERPRE SHE GHE

Define functions here

HHEFHHHFHHEEHHESEREPHHSEHEEHREPEEEHESHEEHEE HEHEHE

function usage {

echo "\n.w. _USAGE. BRROR WA. \n"

echo "\nUSAGE: S$SCRIPT_NAME <number_of_lines_to_create>\n"

}

HEFHFHHEHESHESEFHEHEHEAHREE REESE ES HEHEHE EH ES EHH

Check for the correct number of parameters

HEAFHHHESESHEFHEEAEHEAERE HERE AEHEHEEEHEH EHH

if ((S# '!= 1)) # Looking for exactly one parameter

then

usage # Usage error was made

exit 1 # Exit on a usage error

ei

HHHHHHHHHPHHEHREEHERPEHRAPREEPEAEHP RARER E EERE E

Define files and variables here

HEHHHHPHHEHHHEHERGHPEAEHEEEREEHEAGHPEEEHE HEHEHE HHH

LINE_LENGTH=80 # Number of characters per line

OUT _FILE=/scripts/bigfile \# New file ‘to (create

Listing 2.1 mk_large_file.ksh shell script listing. (continues)

56 Chapter 2

Initialize to a zero-sized file

Extract the name of the script

Total number of lines to create

Character counter

Character to write to the file

>$OUT_FILE

SCRIPT_NAME=$ (basename $0)

TOTAL LINES=$1

LINE_COUNT=0

CHAR=X ae St Sf Fe FE

HHPHHEHERRRRREPEEEH PARE EH EERE EEEE HERS EH HER EH

BEGINNING of MAIN

HHHHEEHEERPPEEEEE RRR EEREER HERPES EEE REE R ER HH

while ((LINE_COUNT < TOTAL _LINES)) # Specified by $1

do

CHAR_COUNT=0 # Initialize the CHAR _COUNT to zero on every new line

while ((CHAR_ COUNT < LINE _LENGTH)) # Each line is fixed length

do

echo "S${CHAR}\c" >> SOUT_FILE # Echo a single character

((CHAR_COUNT = CHAR COUNT + 1)) # Increment the character

counter

done

((LINE COUNT = \ LENE COUNT + 1)) # Increment the line counter

echo>>SOUT_FILE # Give a newline character

done

Listing 2.1. mk_large_file.ksh shell script listing. (continued)

Each line produced by the mk_large_file.ksh script is the same length. The user

specifies the total number of lines to create as a parameter to the shell script.

Twelve Methods to Parse a File Line by Line

The following paragraphs describe 12 of the parsing techniques I have commonly seen

over the years. I have put them all together in one shell script separated as functions.
After the functions are defined, I execute each method, or function, while timing the

execution using the time command. To get accurate timing results I use a file that
has 7,500 lines, where each line is the same length (we built this file using the
mk_large_file.ksh shell script). A 7,500-line file is an extremely large file to be

parsing line by line ina shell script, about 600 MB, but my Linux machine is so fast that
I needed a large file to get the timing data greater than zero!

Now it is time to look at the 12 methods to parse a file line by line. Each method uses
a while statement to create a loop. The only two commands within the loop are cat

$LINE, to output each line as it is read, and a no-op, specified by the : (colon) charac-

ter. The thing that makes each method different is how the while loop is used.

Twelve Ways to Process a File Line by Line 57

Method 1: cat $FILENAME | while read LINE

Let’s start with the most common method that I see, which is catting a file and piping

the file output to a while read loop. On each loop iteration a single line of text is read

into a variable named LINE. This continuous loop will run until all of the lines in the

file have been processed one at a time.

The pipe is the key to the popularity of this method. It is intuitively obvious that the
output from the previous command in the pipe is used as input to the next command

in the pipe. As an example, if I execute the df command to list filesystem statistics and

it scrolls across the screen out of view, I can use a pipe to send the output to the more

command, as in the following command:

af | more

When the df command is executed, the pipe stores the output in a temporary system

file. Then this temporary system file is used as input to the more command, allowing

me to view the df command output one page/line at a time. Our use of piping output

to a while loop works the same way; the output of the cat command is used as input to

the while loop and is read into the LINE variable on each loop iteration. Look at the

complete function in Listing 2.2.

function while read_LINE

{
cat $FILENAME | while read LINE

do

echo "SLINEB"

done

}

Listing 2.2 while_read_LINE function listing.

Each of these test loops is created as a function so that we can time each method
using the shell script. You could also use () C-type function definition if you wanted,

as shown in Listing 2.3.

while read_LINE ()

{
cat $FILENAME | while read LINE

do

echo "SLINE”

done

}

Listing 2.3 Using the () declaration method function listing.

58 Chapter 2

Whether you use the function or () technique, you get the same result. I tend to
use the function method more often so that when someone edits the script they will

know the block of code is a function. For beginners, the word “function” helps under-
standing the whole shell script a lot. The $F ILENAME variable is set in the main body
of the shell script. Within the while loop notice that I added the no-op (:) after the echo
statement. A no-op (:) does nothing, but it always has a 0, zero, return code. I use the

no-op only as a placeholder so that you can cut the function code out and paste it in one
of your scripts. If you should remove the echo statement and leave the no-op, the
while loop will not fail; however, the loop will not do anything either.

Method 2: while read $FILENAME from Bottom

You are now entering one of my favorite methods of parsing through a file. We still use

the while read LINE syntax, but this time we feed the loop from the bottom instead of
using a pipe. You will find that this is one of the fastest ways to process each line of a

file. The first time you see this it looks a little unusual, but it works very well.

Look at the code in Listing 2.4, and we will go over the function at the end.

function while read_LINE bottom

{

while read LINE

do

echo "$LINE"

done < SFILENAME

}

Listing 2.4 while_read_LINE_bottom function listing.

We made a few modifications to the function from Listing 2.3. The cat $FILENAME
to the pipe was removed. Then we use input redirection to let us read the file from the

bottom of the loop. By using the < $FILENAME notation after the done loop termina-
tor we feed the while loop from the bottom, which greatly increases the input through-

put to the loop. When we time each technique, this method will stand out at the top of

the list.

Method 3: while _line_LINE Bottom

As with the read command you can use the line command directly in a while loop
using the same loop technique. In this function we use the following syntax:

while line LINE

Twelve Ways to Process a File Line by Line

Whether you use this syntax in a pipe or, as in this function, feed the loop from the
bottom, you can see that the line command can be used in the same manner as a read
statement. Study the function in Listing 2.5 and we will go over the method at the end.

function while _line LINE bottom

{

while line LINE

do

echo S$LINE

done < $FILENAME

}

Listing 2.5 while_line_LINE_bottom function listing.

This method is like Method 2 except that we replace read with line. You will see in

our timing tests that both of these techniques may look the same, but you will be sur-

prised at the timing difference. You will have to wait for the timing script to see the
results.

The function in Listing 2.5 uses the line command to assign a new line of text to the

LINE variable on each loop iteration. The while loop is fed from the bottom using

input redirection after the done loop terminator, done < $FILENAME. Using this input

redirection technique keeps the file open for reading and is one of the fastest methods
of supplying input to the loop.

Method 4: cat $FILENAME | while LINE=line’

Now we are getting into some of the “creative” methods that I have seen in some shell

scripts. Not all Unix operating systems support the line command, though. I have not

found the line command in my Red Hat Linux releases, but that does not mean that it

is not out there somewhere in the open-source world.
Using this loop strategy replaces the read command from Listings 2.2 and 2.4 with

the line command in a slightly different command structure. Look at the function in
Listing 2.6, and we will see how it works at the end.

function cat_while_LINE_line

{
cat $FILENAME | while LINE=*‘line”

do

echo "SLINE"

done

}

Listing 2.6 while_read_LINE_line function listing.

59

60 Chapter 2

The function in Listing 2.6 is interesting. Because we are not using the read com-
mand to assign the line of text to a variable, we need some other technique. If your
machine supports the line command, then this is an option. To see if your Unix box has

the line command enter the following command:

which line

- The response should be something like /usr/bin/line. Otherwise, you will see
the $PATH list that was searched, followed by "line" not found.

The line command is used to grab one whole line of text at a time. The read com-

mand does the same thing if you use only one variable with the read statement; other-
wise the line of text will be broken up between the different variables used in the read

statement.

On each loop iteration the LINE variable is assigned a whole line of text using
command substitution. This is done using the LINE=‘line* command syntax. The line

command is executed, and the result is assigned to the LINE variable. Of course, I

could have used any variable name, for example:

My_LINE=~ line~

TE =nle en

Please notice that the single tic marks are really back tics (“command ~), which are

located in the top left corner of most keyboards below the ESC-key. Executing a com-
mand and assigning the output to a variable is called command substitution. Look for

the timing data for this technique when you run the timing script. This extra variable
assignment may have quite an effect on the timing result.

Method 5: cat $FILENAME | while line LINE

Why do the extra variable assignments when using the line command? You really do

not have to. Just as the read command directly assigns a line of text to the LINE vari-

able, the line command can do the same thing. This technique is like Method 1, but we

replace the read command with the line command. Check out Listing 2.7, and we will

describe the method at the end.

function while_line_ LINE

{
cat $FILENAME | while line LINE

do

echo "SLINE"

done

Listing 2.7 while_line_LINE function listing.

Twelve Ways to Process a File Line by Line

In Listing 2.7 we cat the $F ILENAME file and use a pipe (|) to use the cat $FILE-
NAME output as input to the while loop. On each loop iteration the line command

grabs one line from the $F ILENAME file and assigns it to the LINE variable. Using a pipe

in this manner does not produce very fast file processing, but it is one of the most pop-

ular methods because of its ease of use. When I see a pipe used like this, the while loop

is normally used with the read command instead of the line command.

Method 6: while LINE='line’ from the Bottom

Again, this is one of the more obscure techniques that I have seen in any shell script.

This time we are going to feed our while loop from the bottom, but this time use the

line command instead of the read statement to assign the text to the LINE variable.

This method is similar to the last technique, but we removed the cat $FILENAME to

the pipe and instead redirect input into the loop from the bottom, after the done loop

terminator.

Look at the function in Listing 2.8, and we will see how it works at the end.

function while _LINE_line_ bottom

<

while LINE="line™

do

echo "SLINE"

done < SFILENAME
} a

Listing 2.8 while_LINE_line_bottom function listing.

We use command substitution to assign the line of file text to the LINE variable as

we did in the previous method. The only difference is that we are feeding the while

loop from the bottom using input redirection of the $FILENAME file. You should be

getting the hang of what we are doing by now. As you can see there are many ways to

parse through a file, but you are going to see that not all of these techniques are very

good choices. This method is one of the poorer choices.

Next we are going to look at the other method of command substitution. The last

two methods used the line command using the syntax LINE=line*. We can also use

the LINE=$(line) technique. Is there a speed difference?

Method 7: cat $FILENAME | while LINE=$(line)

Looks familiar? This is the same method as Method 3 except for the way we use com-

mand substitution. As I stated in the beginning, we need a rather large file to parse

61

62 Chapter 2

through to get accurate timing results. When we do our timing tests we may see a dif-

ference between the two command substitution techniques.
Study the function in Listing 2.9, and we will cover the function at the end.

function while LINE_line cmdsub2

{
cat $FILENAME | while LINE=$ (line)

do

echo "SLINE"

done

;

Listing 2.9 while_LINE_line_cmdsub2 function listing.

The only thing we are looking for in the function in Listing 2.9 is a timing difference
between the two command substitution techniques. As each line of file text enters the
loop, the line command assigns the text to the LINE variable. Let’s see how Methods 4

and 7 show up in the loop timing tests because the only difference is the assignment

method.

Method 8: while LINE=$(line) from the Bottom

This method is the same technique used in Listing 2.8 except for the command substi-

tution. In this function we are going to use the LINE=$(line) technique. We are again

feeding the while loop input from the bottom, after the done loop terminator. Please

review the function in Listing 2.10.

function while LINE_line bottom_cmdsub2

{

while LINE=S (line)

do

echo "SLINE"

done < SFILENAME

}

Listing 2.10 while_LINE_line_bottom_cmdsub2 function listing.

By the look of the loop structure you might assume that this while loop is very fast

executing, but you will be surprised at how slow it is. The main reason is the variable

assignment, but the line command has a large effect, too.

Twelve Ways to Process a File Line by Line 63

Method 9: while read LINE Using File Descriptors

So far we have been doing some very straightforward kind of loops. Have you ever

used file descriptors to parse through a file? I saved the next four functions for last. The
use of file descriptors is sometimes a little hard to understand. I’m going to do my best

to make this easy! Under the covers of the Unix operating system, files are referenced
by file descriptors. You should already know three file descriptors right off the bat. The
three that I am talking about are stdin, stdout, and stderr. Standard input, or

stdin, is specified as file descriptor 0. This is usually the keyboard or mouse. Stan-

dard output, or stdout, is specified as file descriptor 1. Standard output can be your
terminal screen or some kind of a file. Standard error, or stderr, is specified as file

descriptor 2. Standard error is how the system and programs and scripts are able to

send out or suppress error messages.
You can use these file descriptors in combination with one another. I’m sure that you

have seen a shell script send all output to the bit bucket, or /dev/nul11. Look at the
following command.

my_shell_script.ksh >/dev/null 2>&1

The result of the previous command is to run completely silent. In other words,

there is not any external output produced. Internally the script may be reading and
writing to and from files and may be sending output to a specific terminal, such as

/dev/console. You may want to use this technique when you run a shell script as a
cron table entry or when you just are not interested in seeing any output.

In the previous example we used two file descriptors. We can also use other file

descriptors to handle file input and storage. In our next four timing functions we are
going to use file descriptor 0 (zero), which is standard input, and file descriptor 3. On

most Unix systems valid file descriptors range from 0 to 19. In our case we are going to

use file descriptor 3, but we could have just as easily used file descriptor 5.

There are two steps in the method we are going to use. The first step is to close file
descriptor 0 by redirecting everything to our new file descriptor 3. We use the follow-

ing syntax for this step:

exec 3<&0

Now all of the keyboard and mouse input is going to our new file descriptor 3. The
second step is to send our input file, specified by the variable $FILENAME, into file
descriptor 0 (zero), which is standard input. This second step is done using the follow-

ing syntax:

exec 0<SFILENAME

At this point any command requiring input will receive the input from the $F ILENAME
file. Now is a good time for an example. Look at the function in Listing 2.11.

64 Chapter 2

function while read_LINE_FD

iu

exec 3<&0

exec 0< SFILENAME

while read LINE

do

echo "SLINE"

done

exec 0<&3

}

Listing 2.11 ~while_read_LINE_FD function listing.

Within the function in Listing 2.11 we have our familiar while loop to read one line
of text at a time. But the beginning of this function does a little file descriptor redirec-
tion. The first exec command redirects stdin to file descriptor 3. The second exec com-

mand redirects the $FILENAME file into stdin, which is file descriptor 0. Now the

while loop can just execute without our having to worry about how we assign a line of

text to the LINE variable. When the while loop exits we redirect the previously reas-

signed stdin, which was sent to file descriptor 3, back to its original file descriptor 0.

exec 0<&3

In other words we set it back to the system’s default value.

Pay close attention to this method in the timing tests later in this chapter. We have
three more examples using file descriptors that utilize some of our previous while

loops. The next two functions are absolutely the most unusual techniques of parsing a

file that I have run across. When you first look at Methods 10 and 11 it seems that the
author had some tricks up his or her sleeve. Please make sure you compare all of the
timing results at the end of the chapter to see how these methods fare.

Method 10: while LINE='line’ Using File Descriptors

Here we go again with the line command. In this function the line command replaces
the read command; however, we are still going to use file descriptors to gain access to

the $FILENAME file as input to our while loop. We use the same technique described
in Method 9. Study the function in Listing 2.12.

function while LINE line FD

{

exec 3<&0

Listing 2.12 while_LINE_line_FD function listing.

Twelve Ways to Process a File Line by Line

exec 0< SFILENAME

while LINE=*line>

do
,

echo "SLINE"

Listing 2.12 while_LINE_line_FD function listing. (continued)

The nice thing about using file descriptors is that standard input is implied. Standard

input is there; we do not have to cat the file or use a pipe for data input. We just send

the file’s data directly into file descriptor 0, stdin. Just don’t forget to reset the file
descriptor when you are finished using it.

The first exec command redirects input of file descriptor 0 into file descriptor 3. The
second exec command redirects our $F ILENAME file into stdin, file descriptor 0. We

process the file using a while loop and then reset the file descriptor 0 back to its

default. File descriptors are really not too hard to use after scripting with them a few

times. Even though we are using file descriptors to try to speed up the processing, the
line command variable assignment will produce slower results than anticipated.

Method 11: while LINE=$(line) Using File Descriptors

This method is just like Method 10 except for the command substitution technique. We
are going to use a large file for our timing tests and hope that we can detect a difference

between the ‘command* and $ (command) command substitution techniques in over-

all run time. Please study the function in Listing 2.13.

function while LINE line cmdsub2_FD
;

exec 3<&0

exec 0< S$FILENAME

while LINE=$ (line)

do

Pring SLINE"

done

exec 0<&3

}

Listing 2.13 while_LINE_line_cmdsub2_FD function listing.

65

66 Chapter 2

The function in Listing 2.13 first redirects stdin to file descriptor 3; however,

I could have used any valid file descriptor, such as file descriptor 5. The.second step is

redirecting the $FILENAME file into stdin, which is file descriptor 0. After the file

descriptor redirection we execute the while loop, and on completion file descriptor
3 is redirected back to stdin. The end result is file descriptor 0, which again references

stdin. The variable assignment produced by the command substitution has a nega-
tive impact on the timing results.

Method 12: while line LINE Using File Descriptors

Just as in Method 9 when we used a simple while read LINE syntax with file descrip-

tors, we can use the line command in place of read. In our timing tests you will find

that these two methods may look the same, but in the speed list you may be surprised
with the results. Let’s look at the function in Listing 2.14, and we will cover the tech-

nique at the end.

function while_line LINE_FD

{

exec 3<&0

exec 0< SFILENAME

while line LINE

do

echo "SLINE”

done

exec 0<&3

}

Listing 2.14 while_line_LINE_FD function listing.

As with all of our functions using file descriptors we first set up our redirection so

that the $FILENAME file remains open for reading. The difference in this function is

the use of the while line LINE loop syntax. When using file descriptors do not
forget to reset stdin, file descriptor 0 by default, to use file descriptor 0. The last state-
ment in Listing 2.13 we reset the file descriptor 3 back to 0, zero, using the syntax: exec

0<&3.

Timing Each Method

We have created each of the functions for the 12 different methods to parse a file line by

line. Now we can set up a shell script to time the execution of each function to see
which one is the fastest to process a file. Earlier we wrote the mk_large_file.ksh

Twelve Ways to Process a File Line by Line 67

script that creates a file that has the specified number of 80 character lines of text. This
file is called bigfile, which is defined by the OUT_FILE variable. The default path
for this new file is /scripts/bigfile. If you do not havea /scripts directory or

filesystem, then you need to edit the mk_large_file.ksh shell script to define your
preferred path and filename.

The file used for our timing test is a 7,500-line file. We needed this large a file to get
accurate timing results for each of the 12 methods. Before we start the timing let’s look
at the timing shell script.

Timing Script

The shell script to time each file is not too difficult to understand when you realize

where the output will go by default. The timing mechanism is the time command. The

time command is followed by the name of the shell script or program that you want
the execution to time. The timing data is broken down to the following fields:

real 1m30.34s

user 0m35.50s

sys 0m52.13s

In the previous output we have three measurements: real, user, and sys. The

real time is the total time of execution. The user time is the time spent processing at

the user/application process level. The sys time is the time spent by the system at the
system/kernel level. Different Unix flavors produce slightly different output fields,
but the concepts are identical.

The one thing that users get confused about using the time command is where the
timing data output goes. All of the timing data goes to stderr, or standard error,

which is file descriptor 2. So the shell script or program will execute with the normal

stdin and stdout, and the timing data will go the stderr. Study the shell script in

Listing 2.15, and we will go through the script at the end. Then we are going show

some timing data for each method.

#!/usr/bin/ksh

SCRIPT: 12 ways_to_parse.ksh.ksh

AUTHOR: Randy Michael

DATE: 03/15/2001

REV: LogeA

\ ‘

PURPOSE: This script shows the different ways of reading

i a file line by line. Again there is not just one way

to read a file line by line and some are faster than

others and some are more intuitive than others.

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continues)

Chapter 2

REV LIST:

02/19/2002 - Randy Michael

Set each of the while loops up as functions and the timing

of each function to see which one is the fastest.

SF t+ OH OH OHO HOH

HHHHHHHPHHHERHHAHHHERHHHRHHPEHHER HERRERA ERA EERE ERE RHEE REE HEE EH

NOTE: To output the timing to a file use the following syntax:

12_ways_to_parse.ksh file_to_process > output_file_ name oo

The actaul timing data is sent to standard error, file

descriptor (2), and the function name header is sent

to standard output, file descriptor (1).

+: 46 4h HE GE GE FE FE oe

HHHGHEHEEESHEPEEHEHEPHEPEPEPEEHESEEEPHEH EP RERPEREEPEPHEERPEPHRHEPRES EHH EH

set -n # Uncomment to check command syntax without any execution

set -x # Uncomment to debug this script

FILENAME="$1"

TIMEFILE="/tmp/loopfile.out"

>STIMEFILE

THIS SCRIPT=$ (basename $0)

HHH H EEE EERE EH HE HH EH HH aH EH EH HH

function usage

{

echo "\nUSAGE: STHIS SCRIPT file to _process\n"

echo "OR - To send the output to a file use: ”

echo "\nS$THIS_ SCRIPT file _to_process > output_file_ name 2>&1 \n"

exit 1

}

HHEFHHEHEFHHEEHEEHEEEEEHREHEEEHE EHS EHF

function while _read_LINE

{

cat $FILENAME | while read LINE
do

echo "SLINE"

done

}

HHEHPHHEHEHEPEPESERERPEEEPHEREPESHESE SHE

function while read_LINE_bottom

{

while read LINE

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continued)

Twelve Ways to Process a File Line by Line

echo "SLINE"

done < SFILENAME

}

HHEHHEPHHHHHRAHHHPHHHHE PHBH EHH eo

function while_line LINE bottom

{

while line LINE

do

echo SLINE

done < $FILENAME

}

HHPHHRHHHHHHHERPHAEREEEHHHPH HERE oY

function cat_while LINE line

{

cat $FILENAME | while LINE=‘line>

do

echo "SLINE"

done

}

HHHPHHHEPEHREHPERRRAPRHEHHHHHHHHHH HHH

function while_line LINE

{ g

cat S$FILENAME | while line LINE

do

echo "SLINE"

done

}

HHPHHEHHHEEHHHEPHEEHPHE HEHEHE HHPH HHH HHH

function while LINE line bottom

{

while LINE="line~™

do

echo "SLINE"

done < SFILENAME

3

HHPHPHHHHHRHHHHHHHH PPE PHHPEH ERE HH

function while LINE line cmdsub2

{

cat S$FILENAME | while LINE=$ (line)

do

echo "SLINE"

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continues)

69

70 Chapter 2

done

}

HHFHHEHHPHEHEAEHEGHEHEHEEESHESES EAH SHH

function while LINE line bottom_cmdsub2

{

while LINE=S (line)

do

echo "SLINE"

done < SFILENAME

}

HEFHEFHEEHHEEHHEHHEHHESHEEHHEESH HEHE SH H HH

function while _read_LINE_FD

{

exec 3<&0

exec 0< SFILENAME

while read LINE

do

echo "SLINE"

done

exec 0<&3

}

HHHHHHEEHHEPEPHHHEEHPEEPESESHESHEH ES ES ESE

function while LINE line FD

{

exec 3<&0

exec 0< SFILENAME

while LINE=*line~

do

echo "SLINE"

done

exec 0<&3

}

HHEHFHEHEHHAEPHPHEPHESEHEPEPESHEEEHESESHE

function while LINE line cmdsub2_FD

{

exec 3<&0

exec 0< S$FILENAME

while LINE=$ (line)

do

print “SLINE"

done

exec 0<&3

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continued)

}

Twelve Ways to Process a File Line by Line

HHHPEEHHEPREREPPREPHHHHHEHPHH HEHEHE HE

function while_line LINE FD

{

exec

exec

3<&0 :

O< SFILENAME

while line LINE

do

done

exec

}

echo "SLINE"

0<&3

HHFHHHHPHREPRAEREEHEEEHHEREREHEERERERHEE HH

HHHHHHHHHHH START OF MAIN ##########44

HHEPHPHEEE EERE RRA EHEAERERPEAAEE EEE ES

Test the Input

Looking for exactly one parameter

(($# == 1)) || usage

Does the file exist as a regular file?

{i -£ $1 3} || usage

echo "\nStarting File Processing of each Method\n"

echo "Method 1:"

echo "\nfunction while read_LINE\n" >> STIMEFILE

echo "function while read LINE"

time while _read_LINE >> STIMEFILE

echo "\nMethod 2:"

echo "\nfunction while _read_LINE_bottom\n" >> S$TIMEFILE

echo "function while _read_LINE_ bottom"

time while read_LINE bottom >> STIMEFILE

echo “\nMethod 3;."

echo "“\nfunction while line LINE bottom\n" >> STIMEFILE

echo "function while line LINE bottom"

time while line LINE bottom >> STIMEFILE

echo "\nMethod 4:"

echo "\nfunction while read.LINE line\n" >> STIMEFILE

echo "function while read _ LINE line"

time while read LINE line >> STIMEFILE

echo "\nMethod 5:"

echo "\nfunction while line LINE\n" >> STIMEFILE

echo "function while_line LINE"

Listing 2.15 12 _ways_to_parse.ksh shell script listing. (continues)

71

72 Chapter 2

time

echo

echo

echo

time

echo

echo

echo

time

echo

echo

echo

time

echo

echo

echo

time

echo

echo

echo

time

echo

echo

echo

time

echo

echo

echo

time

while line LINE >> STIMEFILE

“\nMethod 6:"

"\nfunction while LINE line bottom\n" >> STIMEPILE

"function while LINE line bottom"

while LINE line bottom >> STIMEFILE

"\nMethod 7:"

"\nfunction while LINE line cmdsub2\n" >> $TIMEFILE

"function while LINE line cmdsub2"

while LINE line cmdsub2 >> STIMEFILE

"\nMethod 8:"

"\nfunction while LINE line bottom_cmdsub2\n" >> $TIMEFILE

"function while LINE line bottom _cmdsub2"

while LINE line bottom _cmdsub2 >> STIMEFILE

"\nMethod 9:"

"\nfunction while_read_LINE_FD\n" >> STIMEFILE

"function while read_LINE_FD"

while read LINE FD >> STIMEFILE

"\nMethod 10:"

"\nfunction while LINE line FD\n" >> STIMEFILE

"function while LINE line FD"

while LINE line FD >> STIMEFILE

"\nMethod 11:"

"\nfunction while LINE line cmdsub2_FD\n" >> STIMEFILE

"function while LINE line cmdsub2_FD"

while LINE line cmdsub2_FD >> STIMEFILE

"\nMethod 12:"

"\nfunction while line LINE_FD\n" >> STIMEFILE

"function while _ line LINE_FD"

while line LINE FD >> STIMEFILE

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continued)

The shell script in Listing 2.15 first defines all of the functions that we previously

covered in the Methods sections. After the functions are defined, we do a little testing

of the input. We are expecting exactly one command parameter, and it should be a
regular file. Look at the following code block in Listing 2.16 to see the file testing.

Test the Input

Looking for exactly one parameter

((:S# == 1)) || usage

Does the file exist as a regular file?

[f -£ $1 1] || usage

Listing 2.16 Code to test command input.

Twelve Ways to Process a File Line by Line

The first test checks to ensure that the number of command parameters, specified by

the $# operator, is exactly one. Notice that we used the double parentheses mathematical

test, specified as ((math test)). Additionally, we used a logical OR, specified by

| |, to execute the usage function if the number of parameters is not equal to one.

We use the same type of test for the file to ensure that the file exists and the file is a
regular file, as opposed to a character or block special file. When we do the test, notice

that we used the double bracket test for character data, specified by [[character

test]]. This is an important distinction to note. We again use the logical OR to exe-
cute the usage function if the return code from the test is nonzero.

Now we start the actual timing tests. In doing these tests we execute the Method

functions one at a time. The function’s internal while loop does the file processing, but

we redirect each function’s output to a file so that we have some measurable system

activity. As I stated before, the timing measurements produced by the time commands

go to stderr, or file descriptor 2, which will just go to the screen by default. When this

shell script executes, there are three things that go to the screen, as you will see in List-

ing 2.17. You can also send all of this output to a file by using the following command

syntax:

12_ways_to_parse.ksh /scripts/bigfile > /tmp/timing_data.out 2>&1

The previous command starts with the script name, followed by the file to parse

through. The output is redirected to the file /tmp/timing_data.out with stderr

(file descriptor 2) redirected to stdout (file descriptor 1), specified by 2>&1. Do not

forget the ampersand, &, before the 1. If the & is omitted, a file with the name 1 will be

created. This is a common mistake when working with file descriptors. The placement

of the stderr to’stdout is important in this case. If the 2>&1 is at the end of the com-
mand, you will not get the desired result, which is all of the timing data going to a data
file. In some cases the placement of the 2>&1 redirection does not matter, but it does

matter here.

Timing Data for Each Method

Now all of the hard stuff has been done. We have a 7,500-line file, /scripts/

bigfile, and we have our shell script written, so let’s look at which function is the

fastest in Listing 2.17.

Starting File Processing of each Method

Method 1:

function while read_LINE

real 1m30.34s

user 0m35.50s

sys 0m52.13's

Listing 2.17 Timing data for each loop method. (continues)

73

74 Chapter 2

eratictate eeeae a

is ‘e
ine aoe

ise me

oe : a
ae

.
i

a
eeu

eloee
cee
Saueues

meee a eee 3 ici A ce Bane ee Be eeu fe ee cee Ca ees
emer

Leen

oe i ceeds
— See
oe

nore
eens

Beare
ce

oe
re na

Peoe cea Ae eRe awa
eae ues

— ‘ ra

Sage
. oo aN

-
oe

eae oe i i

ra e
a a ‘A eG ae ae ial men SSE tae SMBS Res aa Seu Gee Aa ae eeu ieee Sislen . Te eas a eosence

:
Se nee ne a ua ue
ea es xi

LL |
2 a ee

Sa

Listing 2.17 Timing data for each loop method. (continued)

Twelve Ways to Process a File Line by Line

user 0m50.82s

sys 6m14.26s

Method 9:

function while read LINE FD

real 0m5.89s

user 0m5.53s

sys Om0.28s

Method 10:

function while_LINE line FD

real 8m25.35s

user 0m50.68s

sys 7mil5.33s

Method 11:

function while_LINE_line cmdsub2_FD

real 8m24.58s

user 0m50.04s

sys 7m16.07s

Method 12:

function while line LINE FD

real 7m54.57s

user 0m35.88s

sys 7m2.26s

Listing 2.17 Timing data for each loop method. (continued)

As you can see, all file processing loops are not created equal. Two of the methods

are tied for first place. Methods 2 and 9 produce the exact same real execution time at

5.89 seconds to process a 7,500-line file. Method 1 came in second at 1 minute and 30.34

seconds. The remaining methods fall far behind, ranging from almost 7 minutes to

over 8 minutes and 25.35 seconds. The sorted timing output for the real time is shown
in Listing 2.18.

real 0m5.89s Method 2

real 0m5.89s Method 9

real 1m30.34s Method 1

Listing 2.18 Sorted timing data by method. (continues)

75

76 Chapter 2

real 6m50. 79s Method 5

real 6m53.71s Method 3

real 7m16.87s Method 4

real 7m18.04s Method L

real 7m20.34s Method 8

real 7m20.48s Method 6

real 7m54.57s Method 12

real 8m24.58s Method 11

real 8m25.35s Method 10

Listing 2.18 Sorted timing data by method. (continued)

Let’s take a look at the code for the top three techniques. The order of appearance is

Method 2, 9, and 1.

function while read_ LINE bottom

{

while read LINE

do

echo "SLINE"

done < $FILENAME

}

Listing 2.19 Method 2: Tied for first place.

The method in Listing 2.19 is my favorite because it is quick and intuitive to write
and understand once the input redirection is explained to the beginner.

function while read_LINE_FD

{

exec 3<&0

exec O< SFILENAME

while read LINE

do

echo "SLINE”

done

exec 0<&3

}

Listing 2.20 Method 9: Tied for first place.

Twelve Ways to Process a File Line by Line

I tend not to use this method when I write shell scripts because it can be difficult to
maintain through the code life cycle. If a user is not familiar with using file descriptors,

then a script using this method is extremely hard to understand. The method in Listing

2.19 produces the same timing results, and it is much easier to understand. Listing 2.21

shows the second-place loop method.

function while _read_LINE

{

cat $FILENAME | while read LINE

do

echo "SLINE"

done

Listing 2.21 Method 1: Made second place in timing tests.

The method in Listing 2.21 is the most popular way to process a file line by line. I see

this technique in almost every shell script that does file parsing. Method 1 is 1,433 per-

cent slower than either Method 2 or 9 in execution time. The delta percentage between
first and last place is 8,479 percent. These timing tests also point out another factor: Do

not use the line command when parsing a file in a loop.

Timing Command Substitution Methods

We also want to take a look at the difference in timing when we used the two different

methods of command substitution using * command” versus $ (command).

Method 4:

function cat_while LINE_line

reals “ymi6. 87s

user 0Om51.87s

sys 6m8.54s

Method 7:

function while LINE line cmdsub2

real 7m18.04s

user 0m52.01s

sys 6m10.94s

Listing 2.22 Command substitution timing difference.

In Method 4 the command substitution technique uses backtic, * command*, which

are located in the top left corner of a standard keyboard. The command substitution

77

78 Chapter 2

technique used in Method 7 is the dollar parentheses technique, $ (command). Both
command substitution methods give the same end result, but one method is slightly
faster than the other. From the timing of each method in Listing 2.22, the backtic
method won the race by only 1.17 seconds when parsing a 7,500-line file. This differ-

ence is so small that it is really not an issue.

Summary

Through this chapter we have covered the various techniques for parsing a file line by

line that I have seen over the years. You may have seen even more oddball ways to

process a file. The two points that I wanted to make in this chapter are these: First, there

are many ways to handle any task on a Unix platform, and second, some techniques

that are used to process a file waste a lot of CPU time. Most of the wasted time is spent
in unnecessary variable assignments and continuously opening and closing the same

file over and over. Using a pipe also has a negative impact on the loop timing.

I hope you noticed the second place method in Listing 2.21 is 1,433 percent slower
than the tie for first place. On a small file this is not a big deal, but for large parsing jobs
this delta in timing can have a huge impact both on the machine resources and on the
time involved.

Automated Event Notification

To solve problems proactively, an early warning is essential. In this chapter we are

going to look at some techniques of getting the word out by automating the notifica-

tion when a system event occurs. When we write monitoring shell scripts and there is a

failure, success, or request, we need a method of getting a message to the right people.

There are really three main strategies of notification in shell scripts. The first is to send

an email directly to the user. We can also send an alphanumeric page by email to the

user for immediate notification to a pager. The third is to send a text page by dialing a

modem to the service provider. We are mainly going to look at the first two methods,

but we will also list some good software products that will send text pages by dialing

the modem and transferring the message to the pager provider.
In some shops email is so restricted that you have to use a little trick or two to get

around some of the restrictions. We will cover some of these situations, too.

Basics of Automating Event Notification

In a shell script there are times when you want to send an automated notification. As

an example, if you are monitoring filesystems and your script finds that one of the

filesystems has exceeded the maximum threshold, then most likely you want to be
informed of this situation. I always like an email notification when the backups

79

Chapter 3

complete every night—not just when there is a backup error, but when the backup is
successful, too. This way I always know the status of last night’s backup every morn-

ing just by checking my email. I also know that a major backup problem occurred if no
email was sent at all. There are a few ways to do the notification, but the most common

is through email to either a text pager or through an email account. In the next few sec-
tions we are going to look at the techniques to get the message out, even if only one

server has mail access.

Using the mail and mailx Commands

The most common notification method uses the mail and mailx commands. The basic
syntax of both of these commands is shown in the following code:

mail -s "This is the subject" SMAILOUT_LIST < S$MAIL_FILE

OR

cat S$MAIL_FILE | mail -s "This is the subject" S$MAILOUT_LIST

mailx -s "This is the subject" SMAILOUT_LIST < SMAIL_ FILE

OR

cat $MAIL_FILE | mailx -s "This is the subject" $MAILOUT_LIST

Not all systems support the mailx command, but the systems that do have support

use the same syntax as the mail command. To be safe when dealing with multiple Unix

platforms, always use the mail command.
Notice in the mail, and mailx, commands the use of the MAILOUT_LIST and

MAIL_FILE variables. The MAILOUT_LIST variable contains a list of email addresses,

or email aliases, to send the message to. The MAIL_FILE variable points to a filename
that holds the message to be sent. Let’s look at both of these individually.

Suppose we are monitoring the filesystems on a machine and the /var filesystem

has reached 98 percent utilization, which is over the 85-percent threshold, for a filesys-
tem to be considered full. The Systems Administrator needs to get a page about this sit-

uation quickly, or we may have a machine crash when /var fills up. In the monitoring

shell script there is a MAIL_FILE variable defined to point to the filename

/tmp/mailfile.out, MAIL _FILE=/tmp/mailfile. Then we create a zero-sized

mail-out file using cat /dev/null > $MAIL_FILE. When an error is found, which

in our case is when /var has reached 98 percent, a message is appended to the

SMAIL_FILE for later mailing. If more errors are found, they are also appended to the

file as the shell script processes each task. At the end of the shell script we can test the

size of the $MAIL_FILE. If the SMAIL_FILE has any data in it, then the file will have

a size greater than 0 bytes. If the file has data, then we mail the file. If the file is empty
with a 0 byte file size, then we do nothing.

To illustrate this idea, let’s study the code segment in Listing 3.1.

Automated Event Notification

MAIL FILE=/tmp/mailfile.out

Cat (dev/null> SMATIU STOR

MAIL LIST="randy@my.domain.com 1234567890@mypage_somebody.net"

check_filesystems # This function checks the filesystems percentage

if [-s $MAIL FILE]

then

mail -s "Filesystem Full" $MAIL LIST < $MAIL FILE

cal

Listing 3.1 Typical mail code segment listing.

In Listing 3.1 we see a code segment that defines the MAIL_FILE and MAIL_LIST
variables that we use in the mail command. After the definitions this code segment

executes the function that looks for filesystems that are over the threshold. If the
threshold is exceeded, then a message is appended to the $MAIL_FILE file as shown
in the following code segment:

FS=/var

PERCENT=98

THISHOST=S$ (uname -n)

echo "$THISHOST: $FS is $PERCENT" | tee -a $MAIL FILE

This code segment is from the check_filesystems function. For my machine,

this echo command statement would both display the following message to the screen
and append it to the $MAIL_FILE file:

yogi: /var is 98%

The hostname is yogi, the filesystem is /var, and the percentage of used space is 98

percent. Notice the tee command after the pipe (|) from the echo statement. In this case

we want to display the results on the screen and send an email with the same data. The
tee -a command does this double duty when you pipe the output to | tee -a $F ILENAME.

After the check_filesystems function finishes, we test the size of the

SMAIL_FILE. If it is greater than 0 bytes in size, then we send a mail message using the
mail command. The following message is sent to the randy@my.domain.com and

1234567890@mypage_somebody.net email addresses:

yogi: /var is 98%

82 Chapter 3

Problems with Outbound Mail

Before we hard-code the mail command into your shell script we need to doa little test

to see if we can get the email to the destination without error. To test the functionality,

add the -v switch to the mail or mailx command, as shown in Listing 3.2.

echo “Testing: /var is 98%" > /tmp/mailfile.out |

mail -v -s "Filesystem Full" randy@my.domain.com < /tmp/mailfile.out

AND

mail -v -s "Filesystem Full" 1234567890@mypage somebody.net \

< /tmp/mailfile.out

Listing 3.2 Testing the mail service using mail -v.

With the -v switch added to the mail command, all of the details of the delivery are

displayed on the user’s terminal. From the delivery details we can see any errors that

happen until the file is considered “sent” by the local host. If the message is not deliv-

ered to the target email address, then further investigation is needed. The next two sec-

tions look at some alternative techniques.

Create a “Bounce” Account with a .forward File

I worked at one shop where only one Unix machine in the network, other than the mail

server, was allowed to send email outside of the LAN. This presented a problem for all

of the other machines to get the message out when a script detected an error. The solu-

tion we used was to create a user account on the Unix machine that could send email

outbound. Then we locked down this user account so no one could log in remotely.

Let’s say we create a user account called bounce. In the /home/bounce directory we
create a file called /home/bounce/ .forward. Then in the . forward file we add the
email address to which we want to forward all mail. You can add as many email

addresses to this file as you want, but be aware that every single email will be for-

warded to each address listed in the . forward file.

On this single machine that has outside LAN mailing capability we added the user

bounce to the system. Then in the /home/bounce directory we created a file called

. forward that has the following entries:

randy@my .domain.com

1234567890@mypage_somebody.net

Automated Event Notification

This . forward file will forward all mail received by the bounce user to the randy@

my .domain.com and 1234567890@mypage_somebody.net email addresses. This

way I have an email to my desktop, and I am also notified by my text pager. On all of

the other machines we have two options. The first option is to edit all of the shell
scripts that send email notification and change the $MAIL_LIST variable to:

MAIL LIST="bounce@dino."

This entry assumes that the dino host is in the same domain, specified by the period
that follows the hostname dino. (dino.).

An easier way is to create some entries in the aliases file for sendmail. The

aliases file is usually located in /etc/aliases, but you may find it in /etc/

mail/aliases on some operating systems. The format of defining an alias is a name,

username, or tag, followed by one or more email addresses. The following is an exam-
ple of an aliases file:

admin: bounce@dino.,randy, brad, cindy, jon,pepe

This aliases file entry creates a new alias called admin that automatically sends

email to the bounce account on dino and also to randy, brad, cindy, jon, and pepe.

Before these changes will take effect, we need to run the newaliases command. The
sendmail -bi command works, too.

Using the sendmail Command to Send Outbound Mail

In another shop where I worked, I could not send outbound mail from any user named

root. The from field had to be a valid email address that is recognized by the mail
server, and root is not valid. To get around this little problem I changed the command

that I used from mail to sendmail. The sendmail command allows us to add the -f

switch to indicate a valid internal email address for the from field. The sendmail com-

mand isin /usr/sbin/sendmail on AIX, HP-UX, and Linux, but on SunOS the loca-

tion changed to /usr/1ib/sendmail. Look at the function in Listing 3.3, and we will

cover the details at the end.

function send_notification

{

if [-s $MAIL_ FILE -a "SMAILOUT" = "TRUE" J;

then

case $(uname) in

AIX|HP-UX|Linux) SENDMAIL="/usr/sbin/sendmail"

SunOS) SENDMAIL="/usr/lib/sendmail"

Vana

Listing 3.3 send_notification function listing. (continues)

83

84 Chapter 3

esac

echo "\nSending email notification”

$SENDMAIL -f£ randy@S$THISHOST $MAIL LIST < $MAIL_FILE

fi

}

Listing 3.3 send_notification function listing. (continued)

Notice in Listing 3.3 that we added another variable, MAILOUT. This variable is used

to turn on/off the email notifications. If the SMAILOUT variable points to TRUE, and the
$MAIL_FILE file is nonempty, then the email is sent. If the $MAILOUT variable does
not equal the string TRUE, then the email is disabled. This is just another way to con-

trol the email notifications.
In the case statement we use the output of the uname command to set the correct

command path for sendmail command on the Unix platform. For AIX, HP-UX, and

Linux the sendmail command path is /usr/sbin. On SunOS the sendmail path is

/usr/lib. We assign the correct path to the SENDMAIL variable, and we use this
variable as the command to send the mail. Once the command is defined we issue the
command, as shown here:

SSENDMAIL -f£ randy@S$THISHOST SMAIL_LIST < S$MAIL_FILE

We issue the sendmail command using the -f switch and follow the switch by a

valid email account name, which is randy@$THISHOST. Remember that we defined

the THISHOST variable to the local machine’s hostname. The from address is followed

by the list of email addresses, and the message file is used by redirecting input into the
sendmail command. We can also use the following syntax:

cat $MAIL_FILE | $SENDMAIL -f randy@STHISHOST SMAIL_LIST

Either sendmail statement will send the mail, if the mail server and firewall allow

outgoing mail.

Dial-Out Modem Software

Many good products are on the market, both freeware and commercial, that handle

large amounts of paging better than any shell script could ever do. They also have the

ability to dial the modem and send the message to the provider. A list of such products
is shown in Table 3.1.

Automated Event Notification

Table 3.1 Products That Handle High-Volume Paging and Modem Dialing

PRODUCT DESCRIPTION

FREEWARE AND SHAREWARE PRODUCTS

QuickPage Client/server software used to send messages to
alphanumeric pagers.

SMS Client Command-line utility for Unix that allows you to
send SMS messages to cell phones and pagers.

HylaFAX Faxing product for Unix that allows dial-in, dial-
out, fax-in, fax-out, and pager notifications.

COMMERCIAL PRODUCTS

EtherPage Enterprise-wide alphanumeric pager software
product made by MobileSys.

TelAlert Pager notification and interactive voice response
software made by Telamon.

FirstPAGE Supports all national paging networks using
IXO/TAP, made by Netcon Technologies.

Table 3.1 shows only a sample of the products available for paging. The nice thing

about these products is the ability to dial-out on a modem. At some level in every shop

there is a need to use a phone line for communications instead of the network. This
gives you the ability to get the message out even if the network is having a problem.

SNMP Traps

Most large shops use an enterprise monitoring tool to monitor all of the systems from

a central management console. The server software is installed on a single machine

called the management station. All of the managed/monitored machines have the

client software installed. This client software is an SNMP agent and uses a local MIB to

define the managed objects, or management variables. These managed objects define

things such as the filesystems to monitor and the trigger threshold for detecting a full

filesystem. When the managed object, which in this case is a full filesystem, exceeds

the set threshold, a local SNMP trap is generated and the management station captures

the trap and performs the predefined action, which may be to send a text page to the

System Administrator. To understand what an SNMP trap is, let’s review a short expla-

nation of each of the pieces:

85

Chapter 3

SNMP (Simple Network Management Protocol). SNMP is a protocol used
for agent communications. The most common use for the SNMP protocol is

client/server system management software.

MIB (Management Information Base). Each managed machine, or agent, in

an SNMP-managed network maintains a local database of information (MIB)

defined to the network managed machine. An SNMP-compliant MIB contains

information about the property definitions of each of the managed resources.

SNMP trap. Event notification to the management server from an agent-generated
event, called a trap. The server management station receives and sets objects in

the MIB, and the local machine, or agent, notifies the management station of

client-generated events, or traps. All of the communication between the network
management server and its agents, or management clients, takes place using the

Simple Network Management Protocol (SNMP).

The nice thing about using an enterprise management tool is that it utilizes SNMP.

With most products you can write your own shell scripts using SNMP traps. The details

vary for the specific syntax for each product, but with the software installed you can

have your shell scripts perform that same notifications that the enterprise management

software produces. Using Tivoli Netview, EcoTools, or BMC Patrol (just to name a few)

you have the ability to incorporate SNMP traps into your own shell scripts for event

notifications. Please refer to the product documentation for details on creating and

using SNMP traps.

Summary

This chapter is intended to give a brief overview of some techniques of getting critical
information out to the system management community. This chapter mainly focused

on email and some different techniques for using the mail commands.

The topics discussed here form the basics for notification of system problems. You

should be able to extend the list of notification techniques without much effort. If you

have an enterprise management solution installed at your shop, then study the vendor

documentation on using and creating SNMP traps. There are books based entirely on
SNMP, and the information is just too long to cover in this book, but it is an important

notification method that you need to be familiar with. If you have trouble getting the

email solution to work, talk with the Network Manager to find a solution.

In the next chapter we move on to look at creating progress indicators to give our

users feedback on long running processes. The topics include a series of dots as the
processing continues, a line that appears to rotate as processing continues, and a

counter that counts down to zero.

Progress Indicator Using
a Series of Dots, a Rotating

Line, or a Countdown to Zero

Giving your end users feedback that a script or program is not hung is vital on long

processing jobs. We sometimes write shell scripts that take a long time to completely

execute—for example, system backup scripts. A good way to keep everyone content is

to have some kind of progress indicator. Just about anything can be a progress indica-

tor as long as the end user gets the idea that job processing is continuing. In this chap-

ter we are going to examine the following three progress indicators, which are fairly

common:

m A series of dots

m A rotating line

m A counter counting down to zero

The dots and rotating line are more common, but the countdown method does have

its place where we want to specify a timeout period. Each of these methods can be
started as a separate script, as a function, or we can put the code loop directly in the

background. We will cover using each of these methods.

Indicating Progress with a Series of Dots

The simplest form of progress indicator is to print a period to the screen every 5 to 20

seconds. It is simple, clean, and very easy to do. As with every script we start out with

87

Chapter 4

the command syntax. All we want to do is echo a dot to the screen while continuing on

the same line.

echo ac!

The echo command prints a single dot on the screen, and the backslash c, \c, spec-
ifies a continuation on the same line without a new line or carriage return. To make a
series of dots we will put this single command in a loop with some sleep time between
each dot. We will use a while loop that loops forever with a 10-second sleep between

printing each dot on the screen.

while true

do

echow Ua \eu

sleep 10

done

If, for instance, we are running a backup script and we want to use this method to

indicate progress, we would put this while loop in the background and save the

process ID, PID, so that we could kill the background process when the backup script

is complete. First, we will just put this while loop in the background, or we can create

a function with this loop and run the function in the background. Both methods are
shown in Listings 4.1 and 4.2.

while true

do

echo" Ves

done &

BG_PID=$!

/usr/local/bin/my_backup.ksh

kill $BG_PID

Listing 4.1 Looping in the background.

To accomplish the background loop, notice that we just put an ampersand, &, after

the end of the while loop, after done. The next line uses the $! operator, which saves

the PID of the last background process, BG_PID=$!. The background loop starts the
dots ticking, and then we kick off the backup script, /usr/local/bin/

my_backup.ksh in the foreground. When the backup script is complete, we use the

kill command to stop the dots by killing the background job, specified by kill
$BG_PID. We can accomplish the same task with a function, as shown in Listing 4.2.

Progress Indicators 89 a ee

function dots

i

while true

do

echo Nove

done

HHHHERHHEHHHPREHHERPHERRHEE RHEE HH EHH

HHHHEHHH Begin of Main #######H##H##

HHFPRRRHEAEHEHERHEH HEHE EEES EERE RAHHH

dots &

BG_PID=$!

/usr/local/bin/my_backup.ksh

kill $BG_PID

Listing 4.2 Using a background function.

The script and function in Listing 4.2 accomplish the same task but use a back-

ground function instead of just putting the while loop in the background. We still cap-

ture the PID of the dots function, specified by $!,so we can kill the function when the

backup script has completed, as we did in the previous example. We could also put the

loop in a separate shell script and run the external script in the background, but this
would be overkill for three lines of code.

Indicating Progress with a Rotating Line

If a series of dots is too boring, then we could use a rotating line as a progress indica-
tor. To rotate the line we will again use the echo command, but this time we need a lit-

tle more cursor control. This method requires that we display, in a series, the forward

slash, /, then a hyphen, -, followed by a backslash, \, and then a pipe, |, and then

repeat the process. For this character series to appear seamless we need to backspace

over the last character and erase it, or overwrite it with the new character that makes

the line appear to rotate. We will use a case statement inside a while loop, as shown

in Listing 4.3.

90 Chapter 4

function rotate

{

PURPOSE: This function is used to give the end user some feedback that

“something” is running.:°2it gives a Line twirling in a circle.

This function is started as a background process. Assign its PID

to a variable using:

rotate & # To start

ROTATE PID=$! # Get the PID of the last background job

if

At the end of execution just break out by killing the S$ROTATE_PID

process. We also need to do a quick "cleanup" of the leftover

line of rotate output.

FROM: THE: SCRIPT:

kill -9 SROTATE_PID

echo "\b\b ‘

INTERVAL=1 # Sleep time between "twirls”

TCOUNT="0" # For each TCOUNT the line twirls one increment

while : # Loop forever...until this function is killed

do

TCOUNT=*expr STCOUNT + 1° # Increment the TCOUNT

case $TCOUNT in

TI echo t=" \b\er

sleep SINTERVAL

"2") echo: "\\' “\b\c"

sleep SINTERVAL

f3") echo "| \b\c"

sleep SINTERVAL

4") echo -*/\b\c"

sleep SINTERVAL

=) TCOUNTH=" Oo ey # Reset the TCOUNT to "0", zero,

esac

done

} # End of Function ~- rotate

Listing 4.3 Rotate function.

In the function in Listing 4.3 we first define an interval to sleep between updates. If
we do not have some sleep time, then the load on the system will be noticeable. We just

want to give the end user some feedback, not load the system down. At least one second

Progress Indicators

is needed between screen updates. Next we start an infinite while loop and use the

TCOUNT variable to control which part of the rotating line is displayed during the inter-

val. Notice that each time that we echo a piece of the rotating line, we also back up the
cursor with \b and continue on the same line with \c; both are needed. This way the
next loop iteration will overwrite the previous character with a new character, and

then we again back up the cursor and continue on the same line. This series of charac-
ters gives the appearance of a rotating line.

We use this function just like the previous example using the dots function in List-
ing 4.2. We start the function in the background, save the PID of the background func-

tion using the $! operator, start our time-consuming task, and kill the background

rotate function when the task is complete. We could also just put the while loop in

the background without using a function. In either case, when the rotating line is

killed, we need to clean up the last characters on the screen. To do the cleanup we just

back up the cursor and overwrite the last character with a blank space. (See Listing 4.4.)

RHEE ERE HHH HHH HRS EHS HH BERS

HHHHHHHHHH Begin of Main ########HHHHH

HHHHHHHHHHHHEREREEEEREEEEE EHP H EEE EHH

rotate &

ROTATE _PID=$!

/usr/local/bin/my_time_consuming_task.ksh

kill -9 $ROTATE_PID

Cleanup...

echo" NDN\D. 3”

End of Example

Listing 4.4 Example of rotate function in a shell script.

These scripts work well and execute cleanly, but do not forget to give some sleep

time on each loop iteration. Now we have shown the series of dots and the rotating line

methods. Another method that may sometimes be beneficial is a countdown indicator.

Creating a Countdown Indicator

There may be times when you want something to time out. If we know an approximate

amount of time that we want to allow for a task to finish, we can display a countdown

indicator; then, when the time is up, we can take some action. Use your imagination

with this one. The process we are going to use will depend on how many digits are in

91

92 Chapter 4

the current countdown, for example 0 to 9, 10 to 99, 100 to 999, and 1000 to 9999. The

number of digits must be taken into account because we want a smooth transition

between 1000 to 999 and 100 to 99 in the countdown,.as well as other digit count

changes. We also want to update the screen with a new value each second as we count
down to zero. This method will again require us to control the cursor as we back up

over the previous output and overwrite the characters with a new countdown number.

Other than the cursor control this script is not very difficult. Let’s look at the script and

explain the process afterward (see Listing 4.5).

#!/bin/ksh

SCRIPT: countdown.ksh

AUTHOR: Randy Michael - Systems Administrator

DATE: 02-29-2000

PLATFORM: Not Platform Dependent

PURPOSE: This script will do the same thing as a sleep command

while giving the user feedback as to the number of seconds

remaining. It takes input between 1 and 9999 seconds only.

SCRIPT_NAME=$ (basename $0)

HEHE HEH EE EH EHH EHH HH HH HE

HHEHHHEH DEFINE FUNCTIONS HERE ######4##4#

HEH HH HH HHH HH EHH HHH HE HH HEE EHH HE HEE HE EE

usage ()

{

echo "\nUSAGE: S$SCRIPT NAME seconds\n"

HHHHHHHEHHHPEHEEAHEHPEPESEREERPHEEHHEEEH SESH

trap exit ()

{

echo. "\n\n... EXITING on a trapped signal...\n"

HHEHHEPREEHEPHEERHPHEPPEHREEEHEEHEH HEHEHE EHS

test_string ()

{

This function tests for a positive integer!

Lie of l= 1)

then

Listing 4.5 countdown.ksh shell script.

rogress Indicators COG KESS Indicators 93

print 'ERROR’

break

bart

CTRING=S1

case SSTRING in

ACUO-O) i prank “POs. mt

Sr PIRUae NOT

esac

HHHHHETPERERHERREEREERPH HEHE ERE H HERE Ee
HHTTHHHHHH START OF MAIN ####H###HHHHEH HHH
HHFHEEHERERHEEREERAEREPHHH HEE RE HEHE HH

trap “trap exit;exit 2° 1 253° 15

ZE ((-S# f= 1 3)

then

usage

exit 1

fi

Test for a positive integer

INT_STRING=$ (test_string $1)

if [[SINT STRING != 'POS INT*]]

then

echo = \nINVALEID INPUT ==> S10 EXITING. 2 \n"

usage

exit 1

fi

Check for a valid range 1 - 9999

i ((Sl 2-0 && $1 < 10000.))

then

P

S=S1 # Total second to start the countdown from

echo "Seconds Remaining: $S\c"

while ((6S > 0.)) “# Start the Loop

do

In this loop we back over the previous countdown value

Listing 4.5 countdown.ksh shell script. (continues)

9 3

94 Chapter 4

and update the screen with a new countdown value. It

depends on how many digits the number has to determine

how many spaces to back up. :

sleep 1

Li GCS < 10)) # Form numbers 0-9

then

echo" \b\b -\b\er

elif oC S S= 20 £& S < 100 ")) # For numbers 10-99

then

echo "\b\b\b \b\b\Ve"

G@lit (CS S= 100 S&S =< 1000))° °F Ror numbers 100-999

then

echo "\b\b\b\b \b\b\b\c"

elif ((S >= 1000 && S < 10000)) # For numbers 1000-9999

then

echo "\b\b\b\b\b \D\E\b\ bie"

fo

((S = S - 1)) # Decrement the counter by 1

echo \"SsS\ce" # Update the screen with the new value

done

echo "\n" # Done - give a new line...

else

echo "Invalid input ==> $1”

echo “Range 1 - 9999 seconds"

usage

exe i

staf

Listing 4.5 countdown.ksh shell script. (continued)

Let’s review the countdown.ksh shell script in Listing 4.5 from the top. We start

the script by defining the shell script’s filename. We use the basename $0 command,

which will remove the leading directory path and leave only the filename. We need the
script’s filename for the usage function, and we never want to hard-code a filename

because we may rename the script at some point. Next, we define all of our functions.

As always, we have our usage function for incorrect command-line usage. The usage

function is where we need the shell script filename that we captured with the preced-

ing basename $0 command. If the basename command were executed in the usage

Progress Indicators

function the result would be usage instead of countdown. ksh. This subtle difference
in using the basename command is a common mistake.

Next we have the trap_exit function that will execute on trapped exit signals 1, 2,
3, and 15 (of course, we cannot trap kill -9). This trap_exit function will display

-.-EXITING on a trapped signal... as an informational message to the user.

The test_string function is used to test for an integer value greater than or equal

to 0, zero. To test for an integer we just use the regular expression + ([0-9]) inacase

statement. This regular expression will be true if the value is an integer value greater

than or equal to 0, zero. In Chapter 1 there is a very extensive test_string.ksh

shellscript that includes lowercase and uppercase characters, mixed-case strings, and

numeric and alphanumeric characters. Regular expressions are great for string tests
and are flexible to use.

We start the main part of the script by setting a trap to catch exit signals 1, 2, 3, and

15. On these exit signals we execute our trap_exit function that we previously cov-

ered. After setting the trap we check to confirm that we have exactly one command-

line argument. If we have more or less than one argument, then we run our usage
function and exit with a return code of 1.

The integer test for the command-line argument is next. To make this test we use our
test_string function and assign the output to the variable INT_STRING. The

test_string should return POS_INT, or we inform the user of the invalid value,

run the usage function, and exit the script with a return code of 1. If we have got this

far we know that we have a positive integer, so we need to make sure that the integer

is within the valid range for this shell script. The valid range is 1 to 9999 seconds, which
is 2.78 hours. If the value is out of range, then we inform the user that the value is out

of range, run the usage function, and exit the script with a return code of 1. All usage

errors exit with a return code of 1 in this shell script. Now we are ready to start the

countdown. The countdown takes place in a while loop. Within this while loop notice

the if..then..elif..elif.. control structure and the cursor control. This cursor control is

dependent on the number of digits in the current countdown value. We need to control

the cursor using this method so that we get a smooth transition between 1000 and 999,
100 to 99, and 10 to 9. If you do not handle the transition by cursor control the digit set

will move across the screen during the transitions. For the cursor control we use the

echo command with a backslash b, \b, to back the cursor one space. For three spaces
we use \b\b\b\c with the final \c keeping the cursor on the same line without a new

line and carriage return. So, in each loop iteration the cursor is controlled depending

on the current number of digits in the current countdown value.
When the countdown reaches 0, the script will output one new line and carriage

return and exit with a return code of 0.

Other Options to Consider

As with any script, we may be able to improve on the techniques. The series-of-dots
method is so simple that I cannot think of any real improvements. The rotating line is

a fun little script to play with, and I have accomplished the same result in several dif-
ferent ways. Each method I used produced a noticeable load on the system if the sleep

95

96 Chapter 4

statement was removed, so that the line twirled as fast as possible. Try to see if you can

find a technique that will not produce a noticeable load and does not require a sleep of

at least one second, using a shell script!
In the countdown indicator the actual countdown time may not be exactly accurate.

The inaccuracy is due to the variation in response time due to the load on the system.

If your system is not under any load, the countdown time will be fairly stable and accu-

rate. If you have a normally very active system, your countdown time can vary widely
depending on the load and the duration of the countdown—the longer the countdown
time, the less accurate the timing. A more accurate way to handle an exact timing is to

use an at command to kick off the job at a specific time in the future. The following at

command example will execute a script called time_out . ksh in 500 seconds:

echo time_out.ksh | at now + 500 seconds

The at command is very flexible and very accurate for timing purposes.
Another option is to use the shell variable SECONDS. This variable is extremely accu-

rate and easy to use. The first step is to initialize the SECONDS variable to 0, zero. Once

the variable is initialized you need only test the variable, which keeps track of the num-

ber of seconds since the SECONDS variable was initialized. Type the following lines in

on the command line.

SECONDS=0

(Wait 5 seconds...)

echo $SECONDS

5

Play around with each of these techniques, and always strive to keep your end users

informed. A blank or “frozen” screen makes people uncomfortable.

Summary

In this chapter we presented three techniques to help keep our script users content.

Each technique has its place, and they are all easy to implement within any shell script

or function. We covered how to save the PID of the last background job and how to put

an entire loop in the background. The background looping can make a script a little

easier to follow if you are not yet proficient at creating and using functions.
Remember, informed users are happy users!

In the next chapter we will cover monitoring a system for full filesystems. Methods

covered include a typical percentage method to the number of megabytes free, for very

large filesystems. Chapter 5 ends with a shell script that does auto detection using the
filesystem size to set the monitoring method.

File System Monitoring

The most common monitoring task is monitoring for full filesystems. On different

flavors of Unix the monitoring techniques are the same, but the commands and fields

in the output vary slightly. This difference is due to the fact that command syntax and

the output columns vary depending on the Unix system.

We are going to step through the entire process of building a script to monitor

filesystem usage and show the philosophy behind the techniques used. In scripting
this solution we will cover five monitoring techniques, starting with the most basic
monitoring—percentage of space used in each filesystem.

The next part will build on this original base code and add exceptions capability
allowing an override of the script’s set threshold for a filesystem to be considered full.
The third part will deal with large filesystems, which is typically considered to be a

filesystem larger than 2 gigabytes, 2GB. This script modification will use the megabytes,
MB, of free space technique.

The fourth part will add exception capability to the MB of free space method. The

fifth part in this series combines both the percentage of used space and MB of free
space techniques with an added auto-detect feature to decide how to monitor each
filesystem. Regular filesystems will be monitored with percent used and large filesys-
tems as MB of free space, and, of course, with the exception capability. The sixth and
final script will allow the filesystem monitor script to run on AIX, Linux, HP-UX, or

Solaris without any further modification.

97

Chapter 5

In This Chapter

In this chapter, we will cover the following six shell scripts related to filesystem

monitoring:

m Percentage of used space method

m Percentage of used space with exceptions capability

m Megabytes of free space method

m Megabytes of free space with exceptions capability

Lai) Combining percentage used and megabytes of free space with exceptions

capability

Enabling the combined script to execute on AIX, HP-UX, Linux, and Solaris

Syntax

Our first task, as usual, is to get the required command syntax. For this initial example

we are going to monitor an AIX system (HP-UX, Linux, and Solaris will be covered

later). The command syntax to look at the filesystems in kilobytes, KB, or 1024-byte

blocks, is df -k in AIX.
Let’s take a look at the output of the df -k command on an AIX 5L machine:

Filesystem 1024-blocks Free %Used Iused *Iused Mounted on

/dev/hd4 32768 16376 51% 1663 Dey

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 35 1% /tmp

/dev/hdal 4096 3916 5% 25 3% /home

/proc = = = = See LOO

/dev/hdl0opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cdd 656756 0 100% 328378 100% /cdrom

The fields in the command output that we are concerned about are column 1, the

Filesystem device, column 4, the *Used, and Mounted on in column 7. There are

at least two reasons that we want both the filesystem device and the mount point. The

first reason is to know if it is an NFS mounted filesystem. This first column will show

the NFS server name as part of the device definition if it is NFS mounted. The second

reason is that we will not want to monitor a mounted CD-ROM. A CD-ROM will

always show that it is 100 percent used because it is mounted as read-only and you

cannot write to it (I know, CD-RW drives, but these are still not the norm in business

environments).

As you can see in the bottom row of the preceding output, the /cdrom mount point
does indeed show that it is 100 percent utilized. We want to omit this from the output

File System Monitoring 99

along with the column heading at the top line. The first step is to show everything
except for the column headings. We can use the following syntax:

af -k | tail +2

This delivers the following output without the column headings:

/dev/hd4 32768 16376 51% 1663 ES

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 135 1% /tmp

/dev/hd1 4096 3916 5% 25 3% /home

/proc = = — = =e DLoOc

/dev/hd1l0opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cd0 656756 0 100% 328378 100% /cdrom

This output looks a bit better, but we still have a couple of things we are not inter-

ested in. The /cdrom is at 100 percent all of the time, and the /proc mount point has

no values, just hyphens. The /proc filesystem is new to AIX 5L, and because it has no

values, we want to eliminate it from our output. Notice the device, in column 1, for the

CD-ROM is /dev/cd0. This is what we want to use as a tag to pattern match on

instead of the mount point because it may at some point be mounted somewhere else,
for example /mnt. We may also have devices /dev/cd1 and /dev/cd2, too, if not

now perhaps in the future. This, too, is easy to take care of, though. We can expand on
our command statement to exclude both lines from the output with one egrep state-

ment, as in the following:

df -k | tail +2 | egrep -v '/dev/cd[0-9]]|/proc'

In this statement we used the egrep command with a -v switch. The -v switch means

to show everything except what it patterned matched on. The egrep is used for

extended regular expressions; in this case, we want to exclude two rows of output. To
save an extra grep statement we use egrep and enclose what we are pattern matching

on within single tic marks, ' ', and separate each item in the list with a pipe symbol,

|. The following two commands are equivalent:

af -k | tail +2 | grep -v '/dev/cd[0-9]' | grep -v '/proc'

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc'

Also notice in both statements the pattern match on the CD-ROM devices. The grep

and egrep statements will match devices /dev/cd0 up through the last device, for

example /dev/cd24, using /dev/cd[0-9] as the pattern match. Do not forget the tic
marks around '/dev/cd[0-9] ' or the grep/egrep statement may fail.

100 Chapter 5

Using egrep saves a little bit of code, but both commands produce the same output,

shown here:

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30864 43% 539 5% /var

/dev/hd3 106496 Sooe7 7% 134 1% /tmp

/dev/hdl 4096 B96 5% 25) - 3% /home

/dev/hd10opt 638976 24456 97% LSA 5y/, 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

In this output we have all of the rows of data we are looking for; however, we have

some extra columns that we are not interested in. Now let’s extract out the columns of

interest, 1, 4, and 7. Extracting the columns is easy to do with an awk statement. Using
an awk statement is the cleanest method, and the columns are selected using the posi-
tional parameters, or columns, $1, $2, $3,...,$n.As we keep building this com-

mand statement we add in the awk part of the command.

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \

| eNthe OGoreiiore Gal SM, Sah"

First, notice that we extended our command onto the next line with the backslash

character, \. This convention helps with the readability of the script. In the awk part of
the statement we placed a comma and a space after each field, or positional parameter.

The comma and space are needed to ensure that the fields remain separated by at least
one space. This command statement leaves the following output:

/dev/hd4 51% /

/dev/hd2 96% /usr

/dev/hd9var 43% /var

/dev/hd3 7% /tmp

/dev/hdl 5% /home

/dev/hdl0opt 97% /opt

/dev/scripts_lv 7% /scripts

For ease of working with our command output we can write it to a file and work

with the file. In our script we can define a file and point to the file with a variable. The
following code will work:

WORKFILE="/tmp/df.work" # af output work file

>SWORKFILE # Initialize the file to zero size

Before we go any further we also need to decide on a trigger threshold for when a

filesystem is considered full, and we want to define a variable for this, too. For our

example we will say that anything over 85 percent is considered a full filesystem, and
we will assign this value to the variable FSMAX:

FSMAX="85"

File System Monitoring 101

From these definitions we are saying that any monitored filesystem that has used

more than 85 percent of its capacity is considered full. Our next step is to loop through

each row of data in our output file. Our working data file is /tmp/df .work, which is

pointed to by the $WORKFILE variable, and we want to compare the second column,

the percentage used for each filesystem, to the $FSMAX variable, which we initialized

to 85. But we still have a problem; the SWORKFILE entry still has a %, percent sign, and

we need an integer value to compare to the $FSMAX value. We will take care of this con-

version with a sed statement. We use sed for character substitution and, in this case,

character removal. The sed statement is just before the numerical comparison in a loop

that follows. Please study Listing 5.1, and pay close attention to the bold text.

#!/usr/bin/ksh

SCRIPT: fs_mon_AIX.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: cto iP

PURPOSE: This script is used to monitor for full filesystems,

which is defined as "exceeding" the FSMAX value.

A message is displayed for all "full" filesystems.

REV LIST:

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

DEFINE FILES AND VARIABLES HERE ####

FSMAX="85" # Max. FS percentage value

WORKFILE="/tmp/df.work" # Holds filesystem data

>SWORKF ILE # Initialize to empty

OUTFILE="/tmp/df.outfile" # Output display file

>SOUTFILE # Initialize to empty

THISHOST=*hostname’ # Hostname of this machine

HHEHHHEHH START OF MAIN #####HHHHHEEE SE

Get the data of interest by stripping out /dev/cd#,

/proc rows and keeping columns 1, 4 and 7

df -k | tail +2 | egrep -v '/dev/cd[0-9] | /proc' \

| awk '{print $1, $4, $7}' > $WORKFILE

Loop through each line of the file and compare column 2

while read FSDEVICE FSVALUE FSMOUNT

Listing 5.1 fs_mon_AlX.ksh shell script. (continues)

102 Chapter 5

FSVALUE=$(echo $FSVALUE | sed s/\%//g) # Remove the % sign

typeset -i FSVALUE

if [$FSVALUE -gt $FSMAX]

then

echo "$FSDEVICE mounted on $FSMOUNT is ${FSVALUE}%" \

: >> SOUTFILE :

Li

done < $WORKFILE # Feed the while loop from the bottom! !

if [[-s $OUTFILE]]

then

echo "\nFull Filesystem(s) on $THISHOST\n"

cat SOUTFILE

print

Ly

Listing 5.1 fs_mon_AlX.ksh shell script. (continued)

The items highlighted in the script are all important to note. We start with getting

the hostname of the machine. We want to know which machine the report is relating to.

Next we load the SWORKFILE with the filesystem data. Just before the numerical test is

made we remove the % sign and then typeset the variable, FSVALUE, to be an integer.

Then we make the over-limit test, and if the filesystem in the current loop iteration has

exceeded the threshold of 85 percent, we append a message to the $OUTFILE. Notice

that the while loop is getting its data from the bottom of the loop, after done. This is

the fastest technique to process a file line by line. After processing the entire file we test

to see if the SOUTFILE exists and is greater than zero bytes in size. If it has data, then

we print an output header, with a newline before and after, and display the

SOUTFILE file followed by another blank line. In Listing 5.1 we used an assortment
of commands to accomplish the same task in a different way—for example, using
VARIABLE=$ (command) and VARIABLE=* command”, to execute a command and
assign the command’s output to a variable, and the use of the echo and print com-

mands. In both instances the result is the same. We again see there is not just one way
to accomplish the same task.

We also want to explain how we use sed for character substitution. The basic syntax
of the sed statement that we are going to use is as follows:

command | sed s/current_string/new_string/g

When we extend our command and pipe the last pipe’s output to the sed statement

we get the following:

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \

| awk '{print $1, $4, $7}' | sed s/\%//g

File System Monitoring 103

The point to notice about the preceding sed part of the command statement is that
we had to escape the %, percent sign, with a \, backslash. This is because % is a special
character in Unix. To remove the special meaning from, or to escape, the function we
use a backslash before the % sign, \%. This lets us literally use % as a text character as
opposed to its system-defined value or function. See Listing 5.2.

Full Filesystem(s) on yogi

/dev/hd2 mounted on /usr is 96%

/dev/hdl0opt mounted on /opt is 97%

Listing 5.2 Full filesystem script in action.

This script is okay, but we really are not very concerned about these filesystems

being at these current values. The reason is that /usr and /opt, on AIX, should

remain static in size. The reason is that /usr is where the OS and application code for

the system resides, and /opt, new to AIX 5L as a mount point, is where Linux code

resides. So how can we give an exception to these two filesystems?

Adding Exceptions Capability to Monitoring

The £s_mon.ksh script is great for what it is written for, but in the real world we

always have to make exceptions and we always strive to cover all of the gotchas when

writing shell scripts. Now we are going to add the capability to override the default
FSMAX threshold. Because we are going to be able to override the default, it would be

really nice to be able to either raise or lower the threshold for individual filesystems.

To accomplish this script tailoring, we need a data file to hold our exceptions. We
want to use a data file so that people are not editing the shell script every time a filesys-

tem threshold is to be changed. To make it simple, let’s use the file /usr/local/
bin/exceptions and point to the file with the EXCEPTIONS variable. Now that we
know the name of the file, we need a format for the data in the SEXCEPTIONS file. A

good format for this data file is the /mount_point and a NEW_MAX%. We will also

want to ignore any entry that is commented out with a pound sign, #. This may sound
like a lot, but it is really not too difficult to modify the script code and add a function

to read the exceptions file. Now we can set it up.

The Exceptions File

To set up our exceptions file we can always use /usr/local/bin, or your favorite
place, as a bin directory. To keep things nice we can define a bin directory for the script

to use. This is a good thing to do in case the files need to be moved for some reason. The

declarations are shown here:

104 Chapter 5

BINDIR="/usr/local/bin"

EXCEPTIONS="${BINDIR}/exceptions"

Notice the curly braces around the BINDIR variable when it is used to define the

EXCEPTIONS file. This is always a good thing to do if the variable name will have a
character, which is not associated with the variable’s name, next to the variable name

without a space. Otherwise, an error may occur that could be very hard to find!

EXCEPTIONS="SBINDIR/exceptions"

versus

EXCEPTIONS="${BINDIR}/exceptions"

In all of the ways there are to set up exceptions capability, grep seems to come up the

most. Please avoid the grep mistake! The two fields in the $EXCEPTIONS file are the
/mount_point and the NEW_MAX% value. The first instinct is to grep on the

/mount_point, but what if /mount_point is root, /? If you grep on /, and the /

entry is not the first entry in the exceptions file, then you will get a pattern match on

the wrong entry, and thus use the wrong $NEW_MAX% in deciding if the / mount point
is full. In fact, if you grep on / in the exceptions file, you will get a match on the first

entry in the file every time. Listing 5.3 shows some wrong code that made this very

grep mistake:

while read FSDEVICE FSVALUE FSMOUNT

do

‘Strip-out the s sion if 16 exists

FSVALUE=$ (echo $FSVALUE | sed s/\%//g) # Remove the % sign

if [[-s S$EXCEPTIONS]] # Do we have a non-empty file?

then # Found it!

Look for the current SFSMOUNT value in the file

#WRONG CODE, DON'T MAKE THIS MISTAKE USING grep!!

cat S$EXCEPTIONS | grep -v "*#" | grep $FSMOUNT \

| read FSNAME NEW_MAX

if [$? -eq 0] # Found it!

then

if [[S$FSNAME = SFSMOUNT]] # Sanity check

then

NEW_MAX=$ (echo SNEW_MAX | sed s/\%//g)

if [$FSVALUE -gt $NEW_MAX] # Use the new $NEW MAX

then

echo “SFSDEVICE mount on $FSMOUNT is S${FSVALUE}%" \

>> SOUTFILE

fy

elif [$FSVALUE -gt S$FSMAX] # Not in SEXCEPTIONS file

then

Listing 5.3 The wrong way to use grep.

File System Monitoring 105

echo “S$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%" \

>> SOUTFILE

fi

fa:

else # No exceptions file...use script default

if [$FSVALUE -gt $FSMAX]

then

echo "SFSDEVICE mount on $FSMOUNT is ${FSVALUE}%" \

>> SOUTFILE

bad

£1

done < S$WORKFILE

Listing 5.3. The wrong way to use grep. (continued)

The code in Listing 5.3 really looks as if it should work, and it does some of the time!

To get around the error that grep introduces, we need to just set up a function that will

look for an exact match for each entry in the exceptions file.

Now let’s look at this new technique. We want to write two functions, one to load

the $EXCEPTIONS file data without the comment lines, the lines beginning with a #,

while omitting all blank lines into a data file, and one to search through the exceptions

file data and perform the tests.

This is a simple one-line function to load the $EXCEPTIONS file data into the
SDATA_EXCEPTIONS file:

function load_EXCEPTIONS_file

{

Ignore any line that begins with a pound sign, #

and also remove all blank lines

cat $EXCEPTIONS | grep -v "4#" | sed /*$/d > $DATA_EXCEPTIONS

}

In the preceding function we use the “, caret character, along with the grep -v to

ignore any line beginning with a #, pound sign. We also use the *$ with the sed state-
ment to remove any blank lines and then redirect output to a data file, which is pointed
to by the SDATA_EXCEPTIONS variable. After we have the exceptions file data loaded,
we have the following check_exceptions function that will look in the
SDATA_EXCEPTIONS file for the current mount point and, if found, will check the

SNEW_MAX value to the system’s reported percent used value. The function will
present back to the script a return code relating to the result of the test.

function check_exceptions

{
set -x # Uncomment to debug this function

106 Chapter 5

while read FSNAME NEW_MAX # Feeding data from Bottom of Loop!!!

do

if [[$FSNAME = $FSMOUNT]] # Correct /mount_point?

then # Get rid of the % sign, if it*exists!

NEW_MAX=$(echo $NEW_MAX | sed s/\%//g)

if [$FSVALUE -gt $NEW_MAX]

then # Over Limit...Return a "0", zero

return 0 # FOUND OVER LIMIT - Return 0

else # Found in the file but is within limits

return 2 # Found OK

eae

‘fa

done < $DATA_EXCEPTIONS # Feed from the bottom of the loop!!

return 1 # Not found in File

}

This check_exceptions function is called during each loop iteration in the main

script and returns a 0, zero, if the /mount_point is found to exceed the NEW_MAX®. It

will return a 2 if the mount point was found to be OK in the exceptions data file and

return a 1, one, if the mount point was not found in the $SDATA_EXCEPTIONS file.

There are plenty of comments throughout this new script, so feel free to follow through
and pick up a few pointers—pay particular attention to the bold text in Listing 5.4.

#!/usr/bin/ksh

SCRIPT: fs_mon AIX excep.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REVies 2 iP

PURPOSE: This script is used to monitor for full filesystems,

which is defined as "exceeding" the FSMAX value.

A message is displayed for all "full" filesystems.

PLATFORM: AIX

REV LIST:

08-23-2001 - Randy Michael

Added code to override the default FSMAX script threshold

using an "exceptions" file, defined by the SEXCEPTIONS

variable, that list /mount_point and NEW _MAX%

set -n # Uncomment to check syntax without any execution

“

i

set -x # Uncomment to debug this script

Listing 5.4 fs_mon_AIX_except.ksh shell script.

File System Monitoring 107

DEFINE FILES AND VARIABLES HERE ####

FSMAX="85" # Max. FS percentage value
4

WORKFILE="/tmp/df.work" # Holds filesystem data

>SWORKFILE # Initialize to empty

OUTFILE="/tmp/df.outfile" # Output display file

>SOUTFILE # Initialize to empty

BINDIR="/usr/local/bin" # Local bin directory

THISHOST=*hostname # Hostname of this machine

EXCEPTIONS="${BINDIR}/exceptions” # Overrides $FSMAX

DATA_EXCEPTIONS="/tmp/dfdata.out" # Exceptions file w/o #, comments

###HH¢H4# DEFINE FUNCTIONS HERE #####

function load _ EXCEPTIONS file

{

Ignore any line that begins with a pound sign, #

and omit all blank lines

cat $EXCEPTIONS | grep -v "4#" | sed /*$/d > $DATA_EXCEPTIONS

}

HERR REA HHEA GHEE HERE EE EHH HHH HE

function check exceptions

{

set -x # Uncomment to debug this function

while read FSNAME NEW _MAX # Feeding data from Bottom of Loop!!!

do

if [[$FSNAME = $FSMOUNT]] # Correct /mount_point?

then # Get rid of the % sign, if it exists!

NEW_MAX=$(echo $NEW_MAX | sed s/\%//g)

if [$FSVALUE -gt $NEW_MAX]

then # Over Limit...Return a "0", zero

return 0 # FOUND OUT OF LIMITS - Return 0

£i

fi

done < $DATA EXCEPTIONS # Feed from the bottom of the loop!!

return 1 # Not found in File

}

Listing 5.4 fs_mon_AIX_except.ksh shell script. (continues)

108 Chapter 5

HEHEHE RPHEHHE REPRE EHE EEA REE HE HH RHEE ERS

HHHHHHHH START OF MAIN #######FEEEEE :

HHH HEHEHE HEH HHH HHH HH HHH HHH HH

Tf there is an exceptions file..ciload it...

[Ll -s $EXCEPTIONS]] && load EXCEPTIONS file

Get the data of interest by stripping out /dev/cd#,

/proc rows and keeping columns 1, 4, and 7

af -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \

| awk '{print $1, $4, $7}' > SWORKFILE

Loop through each line of the file and compare column 2

while read FSDEVICE FSVALUE FSMOUNT

do # Feeding the while loop from the BOTTOM!!

Strip out the % sign if it exists

FSVALUE=$(echo $FSVALUE | sed s/\%//g) # Remove the % sign

if [[-s $EXCEPLIONS]] # Do we have a non-empty file?

then # Found it!

Look for the current S$FSMOUNT value in the file

using the check_exceptions function defined above.

check_exceptions

RC=$? # Get the return code from the function

if [$RC -eq 0] # Found Exceeded in Exceptions File!!

then

echo "S$FSDEVICE mount on SFSMOUNT is ${FSVALUE}%" \

>> SOUTFILE

elif [$RC -eq 1] # Not found in exceptions, use defaults

then

if [S$FSVALUE -gt SFSMAX] # Use Script Default

then

echo "SFSDEVICE mount on $SFSMOUNT is ${FSVALUE}%" \

>> SOUTFILE

ee

£2

else # No exceptions file use the script default

if [SFSVALUE -gt SFSMAX] # Use Script Default

then

echo "$FSDEVICE mount on SFSMOUNT is S${FSVALUE}%" \

>> SOUTFILE

Listing 5.4 fs_mon_AIX_except.ksh shell script. (continued)

File System Monitoring 109

salnt

ba

done < $WORKFILE # Feed the while loop from the bottom...

Display output if anything | is \exceeded\\)\.

LEP) Ss SOUTETILE(\}

then

echo "\nFull Filesystem(s) on ${THISHOST}\n"

cat SOUTFILE

print

£2)

Listing 5.4 fs_mon_AIX_except.ksh shell script. (continued)

Notice in the script that we never acted on the return code 2. Because the mount

point is found to be OK, there is nothing to do except to check the next mount point.
The /usr/local/bin/exceptions file will look something like the script shown in

Listing 5.5.

FILE: "exceptions"

This file is used to override the SFSMAX

value in the filesystem monitoring script

fs mon _excep.ksh. The syntax to override

is a /mount-point and a NEW_MAX3:

EXAMPLE:

opt: 97

OR

/usr 96%

All lines beginning with a # are ignored as well as

the % sion, if you want to use one...

/opt 96%

/usr 97

/ 50%

Listing 5.5 Example exceptions file.

When we execute the fs_mon_AIX_excep.ksh script, with the exception file

entries from Listing 5.5, the output looks like the following on yogi (see Listing 5.6).

110 Chapter 5

Full Filesystem(s) on yogi

/dev/hd4 mount on / is 51%

/dev/hdl0opt mount on /opt is 97%

Listing 5.6 Full filesystem on yogi script in action.

Notice that we added a limit for the root filesystem, /, and set it to 50 percent, and
also that this root entry is not at the top of the list in the exceptions file so we have
solved the grep problem. You should be able to follow the logic through the preceding
code to see that we met all of the goals we set out to accomplish in this section. There
are plenty of comments to help you understand each step.

Are we finished? Not by a long shot! What about monitoring large filesystems?

Using the percentage of filesystem space used is excellent for regular filesystems, but

if you have a 10GB filesystem and it is at 90 percent you still have 1GB of free space.
Even at 99 percent you have 100MB of space left. For large filesystems we need another

monitoring method.

Using the MB of Free Space Method

Sometimes a percentage is just not accurate enough to get the detailed notification that
is desired. For these instances, and in the case of large filesystems, we can use awk on

the df -k command output to extract the KB of free space field and compare this to a

threshold trigger value, specified in either KB or MB. We are going to modify both of
the scripts we have already written to use the KB of free space field.

Remember our previous df -k command output:

Filesystem 1024-blocks Free %*Used Iused @Iused Mounted on

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 5 1% /tmp

/dev/hdl 4096 3916 5% PAS) 3% /home

/proc = = = = - /proc

/dev/hd1l0opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cd0 656756 0 100% 328378 100% /cdrom

Instead of the fourth field of the percentage used, we now want to extract the third

field with the 1024-blocks, or KB of free space. When someone is working with the

script it is best that an easy and familiar measurement is used; the most common is MB

File System Monitoring 111

of free space. To accomplish this we will need to do a little math, but this is just to have
a more familiar measurement to work with. As before, we are going to load the com-
mand output into the SWORKFILE, but this time we extract columns $1, $3, and $7.

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \

| awk '{print $1, $3, $7}' > SWORKFILE

We also need a new threshold variable to use for this method. The MIN_MB_FREE
variable sounds good. But what is an appropriate value to set the threshold? In this

example we are going to use 50MB. It could be any value, though.

MIN_MB_FREE="50MB"

Notice that we added MB to the value. We will remove this later, but it is a good idea

to add the measurement type just so that the ones who follow will know that the
threshold is in MB. Remember that the system is reporting in KB, so we have to multi-

ply our 50MB times 1024 to get the actual value that is equivalent to the system-

reported measurement. We also want to strip out the MB letters and typeset the

MIN_MB_FREE variable to be an integer. In the compound statement that follows, we
take care of everything except typesetting the variable:

((MIN_MB_FREE = $(echo $MIN_MB_FREE | sed s/MB//g) * 1024))

The order of execution for this compound command is as follows: First, the inner-

most $ () command substitution is executed, which replaces the letters MB, if they exist,

with null characters. Next is the evaluation of the math equation and assignment of the

result to the MIN_MB_FREE variable. Equating MIN_MB_FREE may seem a little con-

fusing, but remember that the system is reporting in KB so we need to get to the same
power of 2 to also report in 1024-byte blocks. Other than these small changes, the script
is the same as the original, as shown in Listing 5.7.

#!/usr/bin/ksh

SCRIPT: fs_mon_AIX_ MBFREE.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 1.5. P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as "exceeding" the FSMAX value.

A message is displayed for all "full" filesystems.

REV LIST:

Randy Michael - 08-27-2001 4b 4h 4h 4k GE Fe FE EO GE SE He

Listing 5.7 fs_mon_AIX_MBFREE.ksh shell script. (continues)

112 Chapter 5

Changed the code to use MB of free space instead of

the Used method.

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

$6 ok OE HEHEHE

DEFINE FILES AND VARIABLES HERE HHH H

MIN_MB FREE="50MB" # Min. MB of Free FS Space

WORKFILE="/tmp/df.work" # Holds filesystem data

>SWORKFILE # Initialize to empty

OUTFILE="/tmp/df.outfile" # Output display file

>SOUTFILE # Initialize to empty

THISHOST=* hostname # Hostname of this machine

HHPHHHHEH START OF MAIN #####8##EHEHEE

Get the data of interest by stripping out /dev/cd#,

/proc rows and keeping columns 1, 4 and 7

df -k | tail +2 | egrep -v '/dev/cd[0-9] | /proc' \

| awk '{print $1, $3, $7}' > $WORKFILE

Format Variables

((MIN_MB_FREE = $(echo $MIN_MB FREE | sed s/MB//g) * 1024))

Loop through each line of the file and compare column 2

while read FSDEVICE FSMB_FREE FSMOUNT

do

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the "MB"

if ((FSMB_FREE < MIN_MB FREE))

then

((FS_FREE_OUT = FSMB_ FREE / 1000))

echo "$FSDEVICE mounted on $FSMOUNT only has

${FS_FREE_OUT}MB Free" >> SOUTFILE

EZ

done < $WORKFILE # Feed the while loop from the bottom!!

if [[-s $OUTFILE]]j

then

echo "\nFull Filesystem(s) on $STHISHOST\n"

cat SOUTFILE

print

fi

Listing 5.7 fs_mon_AIX_MBFREE.ksh shell script. (continued)

File System Monitoring 113

Full Filesystem(s) on yogi

/dev/hd4 mounted on / only has 16MB Free

/dev/hd9var mounted on /var only has 30MB Free

/dev/hd1l mounted on /home only has 3MB Free

/dev/hd1l00pt mounted on /opt only has 24MB Free

Listing 5.8 Shell script in action.

This output in Listing 5.8 is padded by less than 1 MB due to the fact that we divided

the KB free column by 1000 for the output, measured in MB. If the exact KB is needed,
then the division by 1000 can be omitted. What about giving this script exception capa-

bility to raise or lower the threshold, as we did for the percentage technique? We
already have the percentage script with the check_exception function so that we
can modify this script and function to use the same technique of parsing through the
SEXCEPTIONS file.

Using MB of Free Space with Exceptions

To add exception capability to the £s_mon_MBFREE.ksh shell script, we will again
need a function to perform the search of the $EXCEPTIONS file, if it exists. This time
we will add some extras. We may have the characters MB in our data, so we need to

allow for this. We also need to test for null characters, or no data, and remove all blank

lines in the exception file. The easiest way to use the function is to supply an appropri-
ate return code back to the calling script. We will set the function up to return 1, one, if

the mount point is found to be out of limits in the $DATA_EXCEPTIONS file. It will

return 2 if the /mount_point is in the exceptions data file but is not out of limits. The
function will return 3 if the mount point is not found in the exceptions data file. This
will allow us to call the function to check the exception file, and based on the return

code, we make a decision in the main body of the script.
We already have experience modifying the script to add exception capability, so

this should be a breeze, right? When we finish, the exception modification will be

intuitively obvious.
Because we are going to parse through the exceptions file, we need to run a sanity

check to see if someone made an incorrect entry and placed a colon, :, in the file

intending to override the limit on an NFS mounted filesystem. This error should never
occur, but because a tester I know did so, I now check and correct the error, if possible.

We just cut out the second field using the colon, :, as a delimiter. Listing 5.9 shows
the modified check_exceptions function. Check out the highlighted parts in

particular.

114 Chapter 5

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

Do an NFS sanity check

echo $FSNAME | grep ":" >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d ":" -£2)

Make sure we do not have a null value

if [[! -z "$FSLIMIT" && “$FSLIMIT" != '']]

then

((FSLIMIT = $(echo SFSLIMIT | sed s/MB//g) * 1024))

if [{ SFSNAME = SFSMOUNT \}]

then

Get rid of the "MB" if it exists

FSLIMIT=$ (echo $FSLIMIT | sed s/MB//g)

Lfi<-C(. FSMB FREE =< FSLIMET <))

then

return 1 # Found out of limit

else

return 2 # Found OK

£i

hia

haat

done < $DATA EXCEPTIONS # Feed the loop from the bottom!!!

return 3 # Not found in SEXCEPTIONS file

}

Listing 5.9 New check_exceptions function.

A few things to notice in this function are the NFS and null value sanity checks as
well as the way that we feed the while loop from the bottom, after the done statement.
First, the sanity checks are very important to guard against incorrect NFS entries and

blank lines, or null data, in the exceptions file. For the NFS colon check we use the dou-

ble ampersands, &&, as opposed to if...then... statement. It works the same but is

cleaner in this type of test. The other point is the null value check. We check for both a
zero-length variable and null data. The double ampersands, &&, are called a logical

AND function, and the double pipes, | |, are a logical OR function. In a logical AND,

&&, all of the command statements must be true for the return code of the entire state-

ment to be 0, zero. In a logical OR, | |, at least one statement must be true for the return

code to be 0, zero. When a logical OR receives the first true statement in the test list it

will immediately exit the test, or command statement, with a return code of 0, zero.

File System Monitoring 115

Both are good to use, but some people find it hard to follow. Next we test for an
empty /null variable.

fe =z SESLINGITU SS SRSREMEE =v 7)

Note that in the null sanity check there are double quotes around both of the

$FSLIMIT variables, "$FSLIMIT". These are required! If you omit the double quotes

and the variable is actually null, then the test will fail and a system error message is

generated and displayed on the terminal. It never hurts to add double quotes around
a variable, and sometimes it is required.

For the while loop we go back to our favorite loop structure. Feeding the while loop

from the bottom, after done, is the fastest way to loop through a file line by line. With
the sanity checks complete, we just compare some numbers and give back a return

code to the calling shell script. Please pay attention to the boldface code in Listing 5.10.

#!/usr/bin/ksh

SCRIPT: fs_mon_AIX_MB FREE _excep.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 2.1.P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as “exceeding” the FSMAX value.

A message is displayed for all "full" filesystems.

PLATFORM: AIX

REV List:

Randy Michael - 08-27-2001

Changed the code to use MB of free space instead of

the Used method.

Randy Michael - 08-27-2001

Added code to allow you to override the set script default

for MIN MB FREE of FS Space

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

SoH OH OH OH OH OH OH OH OH OH OH OH OH OH HH OH OH OH OH OH OF OE

####4 DEFINE FILES AND VARIABLES HERE ####

MIN _MB FREE="50MB" + Min. MB Of Free FS Space

WORKFILE="/tmp/df.work" # Holds filesystem data

>SWORKFILE # Initialize to empty

OUTFILE="/tmp/df.outfile" # Output display file

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continues)

116 Chapter 5

>SOUTFILE # Initialize to empty

EXCEPTIONS="/usr/local/bin/exceptions" # Override data file

DATA_EXCEPTIONS="/tmp/dfdata.out" # Exceptions file w/o # rows

THISHOST=" hostname” # Hostname of this machine

FHtH#HHE DEFINE FUNCTIONS HERE ########

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

Do an NFS sanity check

echo $FSNAME | grep ":" >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d ":" -£2)

if [{ ! -z "$FSLIMIT" && "S$FSLIMIT" != '']] # Check for empty/null

then

((FSLIMIT = $(echo $FSLIMIT | sed s/MB//g) * 1024))

if [{ $FSNAME = $FSMOUNT }]

then

Get rid of the "MB" if it exists

FSLIMIT=$(echo $FSLIMIT | sed s/MB//g)

if ((FSMB_FREE < FSLIMIT)) # Numerical Test

then

return 1 # Found out of limit

else

return 2 # Found OK

£1

fa

iit

done < SDATA_EXCEPTIONS # Feed the loop from the bottom!!!

return 3 # Not found in SEXCEPTIONS file

+

H#HHHHHHH START OF MAIN ##H### #4444 ###

Load the SEXCEPTIONS file if it exists

if [[-s SEXCEPTIONS]]

then

Ignore all lines beginning with a pound sign, #

and omit all blank lines

cat SEXCEPTIONS | grep -v "*#" | sed /*$/d > $DATA_EXCEPTIONS

Ey

Get the data of interest by stripping out /dev/cd#,

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continued)

File System Monitoring 117

/proc rows and keeping columns 1, 4 and 7

df -k | tail +2 | egrep -v '/dev/cal0-9] | /proc' \

| awk: “(print $1, $3)$7)!) > SWORKFTLE

Format Variables for the proper MB value

((MIN_MB FREE = $(echo $MIN_MB FREE | sed s/MB//g) * 1024))

Loop through each line of the file and compare column 2

while read FSDEVICE FSMB FREE FSMOUNT

do

if [[-s $EXCEPTIONS }]

then

check_exceptions

RC="$?" # Check the Return Code!

if ((RC == 1)) # Found out of exceptions limit

then

((FS_FREE_OUT = S$FSMB FREE / 1000))

echo "S$FSDEVICE mounted on $FSMOUNT only has\

S{FS_FREE OUT}MB Free" \

>> SOUTFILE

elif ((RC == 2)) # Found in exceptions to be OK

then # Just a sanity check - We really do nothing here...

The colon, :, is a NO-OP operator in KSH

No-Op - Do Nothing!

elif ((RC == 3)) # Not found in the exceptions file

then

FSMB_FREE=$ (echo $FSMB_FREE | sed s/MB//g) # Remove the "MB"

if ((FSMB_FREE < MIN_MB FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo "$FSDEVICE mounted on $FSMOUNT only has\

${FS_FREE_OUT}MB Free" >> SOUTFILE

ime

fa

else # No Exceptions file use the script default

FSMB_FREE=$(echo $FSMB_ FREE | sed s/MB//g) # Remove the "MB"

if ((FSMB_FREE < MIN _MB FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo "$FSDEVICE mounted on S$FSMOUNT only has\

${FS_FREE_OUT}MB Free" >> SOUTFILE

fi,

£3.

done < $WORKFILE

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continues)

118 Chapter 5

if [[-s S$OUTFILE]]

then ‘

echo "\nFull Filesystem(s) on $THISHOST\n"

cat SOUTFILE

print

£1:

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continued)

The script in Listing 5.10 is good, and we have covered all of the bases, right? If you

want to stop here, you will be left with an incomplete picture of what we can accom-
plish. There are several more things to consider, and, of course, there are many more
ways to do any of these tasks, and no one is correct. Let’s consider mixing the filesys-

tem percentage used and the MB of free filesystem space techniques. With a mecha-

nism to auto-detect the way we select the usage, the filesystem monitoring script could

be a much more robust tool—and a must-have tool where you have a mix of regular and

large filesystems to monitor.

Percentage Used—MB Free and Large Filesystems

Now we're talking! Even if most of your filesystems are large file enabled or are just

huge in size, the small ones will still kill you in the end. For a combination of small and

large filesystems, we need a mix of both the percent used and MB of free space tech-

niques. For this combination to work, we need a way to auto-detect the correct usage,

which we still need to define. There are different combinations of these auto-detect
techniques that can make the monitoring work differently. For the large filesystems we

want to use the MB of free space, and for regular filesystems we use the percentage
method.

We need to define a trigger that allows for this free space versus percentage moni-

toring transformation. The trigger value will vary by environment, but this example

uses 1GB as the transition point from percentage used to MB of free space. Of course,
the value should be more like 4-6GB, but we need an example. We also need to con-

sider how the $EXCEPTIONS file is going to look. Options for the exceptions file are a

combined file or two separate files, one for percentage used and one for MB free. The
obvious choice is one combined file. What are combined entries to look like? How are
we going to handle the wrong entry type? The entries need to conform to the specific
test type the script is looking for. The best way to handle this is to require that either a

% or MB be added as a suffix to each new entry in the exceptions file. With the MB or

File System Monitoring 119

% suffix we could override not only the triggering level, but also the testing method! If
an entry has only a number without the suffix, then this exceptions file entry will be

ignored and the shell script’s default values will be used. This suffix method is the

most flexible, but it, too, is prone to mistakes in the exceptions file. For the mistakes, we

need to test the entries in the exceptions to see that they conform to the standard that
we have decided on.

The easiest way to create this new, more robust script is to take large portions of the

previous scripts and convert them into functions. We can simply insert the word function
followed by a function name and enclose the code within curly braces—for example,

function test_function { function_code }.Orif you prefer the C-type func-

tion method, we can use this example, test_function () { function_code }.
The only difference between the two function methods is one uses the word function to
define the function while the other just adds a set of parentheses after the function’s
name. When we use functions, it is easy to set up a logical framework from which to call

the functions. It is always easiest to set up the framework first and then fill in the middle.

The logic code for this script will look like Listing 5.11.

load_File System_data > SWORKFILE

if EXCEPTIONS_FILE exists and is > 0 size

then

load_EXCEPTIONS_ FILE data

£x

while read S$WORKFILE, which has the filesystem data

do

if EXCEPTIONS data was loaded

then

check_exceptions_file

RC=Get Return code back from function

case $RC in

1) Found exceeded by % method

2) Found out-of-limit by MB Free method

3) Found OK in exceptions file by a testing method

4) Not found in exceptions file

esac

else # No exceptions file

Use script defaults to compare

fo

done

if we have anything out of limits

then

display_output

an

Listing 5.11 Logic code for a large and small filesystem freespace script.

120 Chapter 5

This is very straightforward and easy to do with functions. From this logical

description we already have the main body of the script written. Now we just need to

modify the check_exceptions function to handle both types of data and create the

load_FS_data, load_EXCEPTIONS data, and display_output functions. For

this script we are also going to do things a little differently because this is a learning
process. As we all know, there are many ways to accomplish the same task in Unix;

shell scripting is a prime example. To make our scripts a little easier to read at a glance,

we are going to change how we do numeric test comparisons. We currently use the

standard bracketed test functions with the numeric operators, -1t, -le, -eq, -ne,

-ge, and -gt:

abe |[SAWZNEUE See SNR |

We are now going to use the bracketed tests for character strings only and do all of

our numerical comparisons with the double parentheses method:

aise {({(WaNsttl S= WANE)))))

The operators for this method are <, <=, ==, !=, >=, >. When we make this small

change, it makes the script much easier to follow because we know immediately that we

are dealing with either numeric data or a character string without knowing much at all

about the data being tested. Notice that we did not reference the variables with a $ (dol-

lar sign) for the numeric tests. The $ omission is not the only difference, but it is the most

obvious. The $ is omitted because it is implied that anything that is not numeric is a

variable. Other things to look for in this script are compound tests, math and math

within tests, the use of curly braces with variables, ${VAR1}MB, a no-op using a :

(colon), data validation, error checking, and error notification. These variables are a lot

to look for, but you can learn much from studying the script shown in Listing 5.12.

Just remember that all functions must be defined before they can be used! Failure to
define functions is the most common mistake when working with them. The second

most common mistake has to do with scope. Scope deals with where a variable and its

value are known to other scripts and functions. Top level down is the best way to

describe where scope lies. The basic rules say that all of a shell script’s variables are

known to the internal, lower-level, functions, but none of the function’s variables are

known to any higher-calling script or function, thus the top level down definition. We

will cover a method called a co-process of dealing with scope in a later chapter.
So, in this script the check_exceptions function will use the global script’s vari-

ables, which are known to all of the functions, and the function will, in turn, reply with

a return code, as we defined in the logic flow of Listing 5.11. Scope is a very important

concept, as is the placement of the function in the script. The comments in this script

are extensive, so please study the code and pay particular attention to the boldface text.

| NOTE Remember: You have to define a function before you can use it.

File System Monitoring 121

#!/usr/bin/ksh

SCRIPT: fs_mon_AIX_PC_MBFRER excep.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 4.3.2

PURPOSE?) This script is\\used to\moniter for full filesystems,

which is defined as "exceeding" the MAX PERCENT value.

A message is displayed for all "full" filesystems.

PLATFORM: AIX

REV LIST;

Randy Michael - 08-27-2001

Changed the code to use MB of free space instead of

the Used method.

Randy Michael - 08-27-2001

Added code to allow you to override the set script default

for MIN _MB FREE of FS Space

Randy Michael - 08-28-2001

Changed the code to handle both *Used and MB of Free Space.

It does an "auto-detection" but has override capability

of both the trigger level and the monitoring method using

the exceptions file pointed to by the SEXCEPTIONS variable

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

SEE He OSE OH SHE HEHEHE HEHEHE HEHEHE HEHEHE HE OH OHH OH HK OH OH OH OH HF

DEFINE FILES AND VARIABLES HERE ####

MIN MB FREE="100MB" # Min. MB of Free FS Space

MAX PERCENT="85%" # Max. FS percentage value

FSTRIGGER="1000MB" # Trigger to switch from % Used to MB Free

WORKFILE="/tmp/df.work" # Holds filesystem data

>SWORKFILE # Initialize to empty

OUTFILE="/tmp/df.outfile" # Output display file

>SOUTFILE # Initialize to empty

EXCEPTIONS="/usr/local/bin/exceptions" # Override data file

DATA EXCEPTIONS="/tmp/dfdata.out" # Exceptions file w/o # rows

EXCEPT FILE="N" # Assume no SEXCEPTIONS FILE

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continues)

122 Chapter 5

THISHOST= hostname # Hostname of this machine

FORMAT VARIABLES HERE #####4#

Both of these variables need to be multiplied by 1024 blocks

((MIN_MB_FREE = $(echo $MIN_MB FREE | sed s/MB//g) * 1024))

((FSTRIGGER = $(echo $FSTRIGGER | sed s/MB//g) * 1024))

##H#HHH# DEFINE FUNCTIONS HERE ########

function check exceptions

{
set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

IN_FILE="N" # If found in file, which test type to use?

Do an NFS sanity check and get rid of any ":".

If this is found it is actually an error entry

but we will try to resolve it. It will

work only if it is an NFS cross mount to the same

4h 4h fe sk te mount point on both machines.

echo $FSNAME | grep ':' >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d ':' -f2)

Check for empty and null variable

if [[! -z "$FSLIMIT" && "$FSLIMIT" {= '' }]

then

if [[$FSNAME = $FSMOUNT]] # Found it!

then

Check for "MB" Characters...Set IN_FILE=MB

echo $FSLIMIT | grep MB >/dev/null && IN_FILE="MB" \

&& ((FSLIMIT = $(echo $FSLIMIT \

| sed s/MB//g) * 1024))

check for "%" Character...Set IN _FILE=PC, for %

echo $FSLIMIT | grep "%" >/dev/null && IN_FILE="Pc" \

&& FSLIMIT=$(echo $FSLIMIT | sed s/\%//g)

case $IN_FILE in

MB) # Use Megabytes of free space to test

Up-case the characters, if they exist

FSLIMIT=$(echo $FSLIMIT | tr '[a-z]' '[A-Z]')

Get rid of the "MB" Uf ik exists

FSLIMIT=$ (echo $FSLIMIT | sed s/MB//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != '']]

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continued)

File System Monitoring 123

then

Test for a valid filesystem "MB" limit

if ((FSLIMIT >= 0 && FSLIMIT < FSSIZE)»)

then # Check the limit

} if ((FSMB_FREE < FSLIMIT))

then

return 1 # Found out of Limit

using MB Free method

else

return 3 # Found OK

‘at

else

echo "\nERROR: Invalid filesystem MAX for\

$FSMOUNT - SFSLIMIT"

echo " Exceptions file value must be\

less than or"

echo " equal to the size of the filesystem\

measured"

echo " in 1024 bytes\n"

fi

else

echo "\nERROR: Null value specified in exceptions\

file"

echo " for the $FSMOUNT mount point.\n"

£3.

PC) # Use the Percent used method to test

Strip out the % sign if it exists

PC_USED=$ (echo $PC_USED | sed s/\%//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != '']]

then

Test for a valid percentage, i.e. 0-100

if ((FSLIMIT >= 0 && FSLIMIT <= 100))

then

if ((PC_USED > FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

EL

else

echo "\nERROR: Invalid percentage for\

$FSMOUNT - $FSLIMIT"

echo " Exceptions file values must be"

echo " between 0 and 100%\n"

a8

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continues)

124 Chapter 5

N)

Pa!

£1.

done < $DATA EXC

return 4 # Not £

}

HEPEEEEEEEREEEEH

else

echo "\nERROR: Null value specified in exceptions"

echo " file for the $FSMOUNT mount point. \n"

£1

at

Test type not specified in exception file, use default

Inform the user of the exceptions file error...

echo "\nERROR: Missing testing type in exceptions file"

echo " for the $FSMOUNT mount point. A \"%\" or"

echo " \"MB\" must be a suffix to the numerical"

echo " entry. Using script default values...\n"

Method Not Specified - Use Script Defaults

if ((FSSIZE >= FSTRIGGER))

then # This is a "large" filesystem

if ((FSMB_FREE < MIN_MB FREE))

then

return 1 # Found out of limit using MB Free

else

return 3 # Found OK

£3.

else # This is a standard filesystem

PC_USED=$(echo $PC_USED | sed s/\%//g) #Remove the %

FSLIMIT=$(echo $FSLIMIT | sed s/\%//g) #Remove the %

if ((PC_USED > FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

£u

EPTIONS # Feed the loop from the bottom!!!

ound in $EXCEPTIONS file

HHRHEEHEEEEE RHEE HERES

function display output

{
if [{ -s $OUTFILE]]

then

Listing 5.12 fs_mon _AIX_PC_MBFREE_excep.ksh shell script. (continued)

File System Monitoring 125

echo "\nFull Filesystem(s) on $THISHOST\n"

cat SOUTFILE

print

£3

FHPEPEREEHE ERE ERREE HR PEREE ERR HB EE ES

function load_EXCEPTIONS data

{

Ignore any line that begins with a pound sign, #

and omit all blank lines

cat $EXCEPTIONS | grep -v "*#" | sed /*$/d > $DATA_EXCEPTIONS

}

HEHEHE HEPERRREEEREEEHREEESH HEBER HEHE

function load FS data

{

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \

| awk '{print $1, $2, $3, $4, $7}' > $WORKFILE

HERE EERE EEE REE EHH EHH EH BH EH EH EH HE

HHtHHHHHH START OF MAIN ####HHHH HEHE

HEPHEASHEPPRRREHEEEEEEH EEE HEE HH EH HE

load_FS data

Do we have a nonzero size SEXCEPTIONS file?

if [[-s $EXCEPTIONS]]

then # Found a nonempty SEXCEPTIONS file

load_ EXCEPTIONS data

EXCEP FILE="Y"

£i

while read FSDEVICE FSSIZE FSMB_FREE PC_USED FSMOUNT

do

if [[{ $EXCEP_FILE = "Y" J]

then

check exceptions

CE_RC="$?" # Check Exceptions Return Code (CE_RC)

case $CE_RC in

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continues)

126 Chapter 5

1) # Found exceeded in exceptions file by MB Method

((FS FREE OUT = FSMB FREE / 1000))

echo "SFSDEVICE mounted on SFSMOUNT has ${FS_FREE_OUT}MB\

Free" \

=> SOUTPILE

2) # Found exceeded in exceptions file by %Used method

echo "SFSDEVICE mount on SFSMOUNT is ${PC_USED}%" \

>> SOUTFILE

3) # Found OK in exceptions file

: # NO-OP Do Nothing

4) # Not found in exceptions file - Use Script Default Triggers

1£ ((FSSIZE >= FSTRIGGER))

then # This is a "large" filesystem

Remove the ®MB", 1£ it exists

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g)

typeset -i FSMB FREE

tf ((FSMB FREB < MIN MB PREE -))

then

((FPS_FREE OUT = FSMB FREE / 1000))

echo "SFSDEVICE mounted on $FSMOUNT has\

S{FS_FREE OUT}MB Free" >> SOUTFILE

fi

else # This is a standard filesystem

PC_USED=$ (echo $PC_USED | sed s/\%//g)

MAX _PERCENT=$ (echo SMAX PERCENT | sed s/\%//g)

aft ((PC_USED = MAX PERCENT })

then

echo "“SFSDEVICE mount on SFSMOUNT is ${PC_USED}%". \

>> SOUTFILE

fi

fi

esac

else # NO S$EXECPTIONS FILE USE DEFAULT TRIGGER VALUES

if ((FSSIZE >= FSTRIGGER))

then # This is a "large" filesystem - Use MB Free Method

FSMB_FREE=$ (echo $FSMB_FREE | sed s/MB//g) # Remove the "MB"

af. ((FSMB FREE < MIN MB PREE))

then

((FS FREE OUT = FSMB FREE / 1000 })

echo "SFSDEVICE mounted on $FSMOUNT has\

Listing 5.12 fs_mon_AlX_PC_MBFREE_excep.ksh shell script. (continued)

File System Monitoring 127

${FS_FREE_OUT}MB Free" >> SOUTFILE

£0)

else # This is a standard filesystem - Use % Used Method

PC_USED=$ (echo $PC_USED | sed s/\%//g)

MAX_PERCENT=$ (echo $MAX_PERCENT | sed s/\%//g)

if ((PC_USED > MAX PERCENT))

then

echo)\\"SFSDEVICE) mount) on\\SFSMOUNT is) ${PC USED} S$" \

>>) SOUTFILE

fi

3

Ea

done < $WORKFILE # Feed the while loop from the bottom!!!

display_output

End of Script

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continued)

In the script shown in Listing 5.12, we made tests to confirm the data’s integrity and

for mistakes in the exceptions file (of course, we can go only so far with mistakes!). The

reason is that we made the exceptions file more complicated to use. Two of my testers

consistently had reverse logic on the MB free override option of the script by thinking

greater than instead of less than. From this confusion, a new exceptions file was created

that explained what the script is looking for and gave example entries. Of course, all of

these lines begin with a pound sign, #, so they are ignored when data is loaded into the
$DATA_EXCEPTIONS file. Listing 5.13 shows the exceptions file that worked best with

the testers.

FILE: “exceptions” #

This file is used to override both the default

trigger value in the filesystem monitoring script

fs_mon_excep.ksh, but also allows overriding the

monitoring technique used, i.e. Max %Used and

minimum MB of filesystem space. The syntax to

override is a /mount-point and a trigger value.

EXAMPLES:

/usx 96% # Flag anything ABOVE 96%

OR

Listing 5.13 Example exceptions file. (continues)

128 Chapter 5

 # /usr 50MB # Flag anything BELOW 50 Megabytes

All lines beginning with a # are ignored.

NOTE: All Entries MUST have either "MB" or

"OE" as a Suffix!!! Or else the script

defaults are used. NO SPACES PLEASE!

/opt 95%

£2502

/usr 70MB

Listing 5.13 Example exceptions file. (continued)

The requirement for either % or MB does help keep the entry mistakes down. In case

mistakes are made, the error notifications seemed to get these cleared up very

quickly—usually after an initial run. You can find customized shell scripts for each of

the operating systems (AIX, HP-UX, Linux, and SunOS) on this book’s Web site.

Are we finished with filesystem monitoring? No way! What about the other three

operating systems that we want to monitor? We need to be able to execute this script on

AIX, Linux, HP-UX, and Solaris without the need to change the script on each platform.

Running on AIX, Linux, HP-UX, and Solaris

Can we run the filesystem scripts on various Unix flavors? You bet! Running our

filesystem monitoring script is very easy because we used functions for most of the
script. We are going to use the same script, but instead of hard-coding the loading of

the filesystem data, we need to use variables to point to the correct OS syntax and

columns of interest. Now we need a new function that will determine which flavor of

Unix we are running. Based on the OS, we set up the command syntax and command

output columns of interest that we want to extract and load the filesystem data for this
particular OS. For OS determination we just use the uname command. uname, and the
get_OS_info function, will return the resident operating system, as shown in Table 5.1.

Table 5.1 uname Command and Function Results

OPERATING SYSTEM COMMAND RESULT | ‘FUNCTION RESULT

Linux Linux LINUX

AIX AIX AIX

HP-UX HP-UX HP-UX

Solaris SunOS SUNOS

File System Monitoring 129

For the function’s output we want to use all UPPERCASE characters, which makes

testing much easier. In the following function please notice we use the typeset function
to ensure that the result is in all uppercase characters.

function get_OS_info

{

For a few commands it is necessary to know the OS to

execute the proper command syntax. This will always

return the Operating System in UPPERCASE characters

typeset -u OS # Use the UPPERCASE values for the OS variable

OS=*uname~ # Grab the Operating system, i.e. AIX, HP-UX

print $oOS # Send back the UPPERCASE value

}

To use the get_OS_info function we can assign it to a variable using command

substitution, use the function directly in a command statement, or redirect the output

to a file. For this script modification we are going to use the get__OS_info function

directly in a case statement. Now we need four different load_FS_data functions,

one for each of the four operating systems, and that is all of the modification that is

needed. Each of the load_FS_data functions will be unique in command syntax and
the column fields to extract from the df statement output, as well as the devices to

exclude from testing. Because we wrote this script using functions, we will replace the

original load_FS_data script, at the Beginning of Main, with a case statement

that utilizes the get _OS_info function. The case statement will execute the appropri-

ate load_FS_data function.

case $(get_OS_info) in

AIX) # Load filesystem data for AIX

load_AIX FS data

HP-UX) # Load filesystem data for HP-UX

load_HP_UX_FS_data

LINUX) # Load filesystem data for Linux

load_LINUX_FS_data

SUNOS) # Load filesystem data for Solaris

load_Solaris FS data

x) # Unsupported in script

echo "\nUnsupported Operating System...EXITING\n"

epiaelseah

esac

Listing 5.14 Operating system test.

130 Chapter 5

Listing 5.14 shows simple enough replacement code. In this case statement we

either execute one of the functions or exit if the OS is not in the list with a return code
of 1, one. In these functions we will want to pay attention to the command syntax for

each operating system, the columns to extract for the desired data, and the filesystems

that we want to ignore, if any. There is an egrep, or extended grep, in each statement

that will allow for exclusions to the filesystems that are monitored. A typical example

of this is a CD-ROM. Remember that a CD-ROM will always show that it is 100% uti-
lized because it is mounted as read-only and you cannot write to it. Also, some operat-

ing systems list mount points that are really not meant to be monitored, such as /proc

in AIX 5L.

Command Syntax and Output Varies between Operating Systems

The command syntax and command output varies between Unix operating systems.

To get a similar output of the AIX df -k command on other operating systems we some-

times have to change the command syntax. We also extract data from different
columns in the output. The command syntax and resulting output for AIX, Linux, HP-

UX, and SUN/Solaris are listed in the text that follows as well as the columns of inter-

est for each operating system output. Please review Tables 5.2 through 5.9.

Table 5.2 AIX df -k Command Output

1024- MOUNTED

FILESYSTEM BLOCKS _ FREE %USED IUSED %IUSED ON

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var pay:

/dev/hd3 106496 99932 7% 135 1% /tmp

/dev/hd1 4096 3916 5% 25 % /home

/proc /proc

/dev/hd10opt 638976 24456 97% 15457 10% /opt

/dev/scripts_ lv 102400 95264 7% 435 2% /scripts

/dev/cdO 656756 0 100% 328378 100% /cdrom

File System Monitoring 131

Table 5.3 AIX df Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1024 blocks, 1024-blocks

Column 3 The kilobytes of free filesystem space, Free

Column 4 The percentage of used capacity, sUsed

Column 7 The mount point of the filesystem, Mounted on

Table 5.4 Linux df -k Command Output

MOUNTED

FILESYSTEM 1K-BLOCKS USED AVAILABLE USE% ON

/dev/hda16 101089 32949 62921 34% /

/dev/hda5 1011928 104 960420 0% /backup

/dev/hdal 54416 2647 48960 5% /boot

/dev/hda8& 202220 13 191767 0% /download

/dev/hda9 202220 1619 190161 1% /home

/dev/hda12 124427 19 117984 0% /tmp

/dev/hda6 ~ 1011928 907580 52944 94% /usr =

/dev/hda10 155545 36 147479 0% /usr/local

/dev/hda11 124427 29670 88333 25%/var

Table 5.5 Linux df Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1k-blocks, 1k-blocks

Column 4 The kilobytes of free filesystem space, Available

Column 5 The percentage of used capacity, Use%

Column 6 The mount point of the filesystem, Mounted on

132 Chapter 5

Table 5.6 SUN/Solaris df -k Command Output

MOUNTED

FILESYSTEM | 4) a ee EY AVAIL CAPACITY ON

/dev/dsk/cOd0sO 192423 18206 154975 11%

/dev/dsk/cOd0s6 1015542 488678 465932 52% /ust

/proc 0 0 0 0% ~ /proc

fd 0 0 0 0% /dev/fd

mnttab 0 0 0 0% /etc/mnttab

/dev/dsk/cO0d0s3 96455 5931 80879 7% /var

swap 554132 0 55413 0% /var/run

/dev/dsk/cOd0s5 47975 1221 41957 3% /opt

swap 554428 296 554132 1% /tmp

/dev/dsk/cOd0s7 1015542 ~=«1 954598 1% /export/home

/dev/dsk/cOd0s1 BiaZ255 214843 122887 64% /usr/openwin

Table 5.7 SUN/Solaris df Ok Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS e

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1k-blocks, kbytes

Column 4 The kilobytes of free filesystem space, avail

Column 5 The percentage of used capacity, capacity

Column 6 The mount point of the filesystem, Mounted on

Table 5.8 HP-UX bdf Command Output

a A KBYTES USED AVAIL %USED MOUNTED ON

/dev/vg00/lvol3 TD ID52 89500 58669 60% if

/dev/vg00/lvol1 47829 24109 18937 56% /stand

/dev/vg00/Ivol9 1310720 860829 422636 67% /var

/dev/vg00/lvol8 972800 554392 392358 59% /usr

File System Monitoring 133

Table 5.8 (Continued)

FILESYSTEM KBYTES RY 4) AVAIL %USED MOUNTED ON

/dev/vg13/lvol1 4190208 1155095 2850597 29% /u2

/dev/vg00/lvol7 102400 4284 92256 4% /tmp

/dev/vg00/lvol13 2039808 1664073 352294 83% /test2

/dev/vg00/lvol6 720896 531295 177953 75% /opt

/dev/vg00/lvol5 409600 225464 176663 56% /home

Table 5.9 HP-UX bdf Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1k-blocks, kbytes

Column 4 The kilobytes of free filesystem space, avail

Column 5 The percentage of used capacity, used

Column 6 The mount point of the filesystem, Mounted on

Now that we know how the commands and output vary between operating sys-

tems, we can take this into account when creating the shell functions to load the correct

filesystem data for each system. Note in each of the following functions that one or

more filesystems or devices are set to be ignored, which is specified by the egrep part

of the statement.

HHH HHH EHH HHH HHH HHH HHH HHH HO EH HH

function load_AIX_FS_data

{

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \

| exe “Micrenine Sil, SA, Ss, Si, SI? = Bieludoanino

}

HHHHHARHA HHH HHH HH HHH HH HHH

function load_HP_UX_FS_data

{

bdf | tail +2 | egrep -v '/mnt/cdrom' \

(awk {prant iS) $2) S47) 9S57)9S6} 2 >) SWORKPILE

134 Chapter 5

HARE HH HE HE HE HE HEH HE a EE HEHE aE EH EH

function load_LINUX_FS_data

{

df -k | tail +2 | egrep -v '/mnt/cdrom' \

(awk “{prcamteeS 1852S 47.95) 960) US WORKER

HH HH HH HH HH HH HH HH HHH HF HH HH OHHH HE OHH

function load_Solaris_FS_data

{
df -k | tail +2 | egrep -v '/dev/fd|/etc/mnttab|/proc'\

| awk '{print $1, $2, $4, $5, $6}' > SWORKFILE

Each Unix system is different, and these functions may need to be modified for your

particular environment. The script modification to execute on all of the four operating

systems includes entering the functions into the top part of the script, where functions

are defined, and to replace the current load_FS_data function with a case statement

that utilizes the get_OS_info function. This is an excellent example of how using

functions can make life doing modifications much easier. The final script (it is never a

final script!) will look like the following code, shown in Listing 5.15. Please scan
through the boldface text in detail.

#!/usr/bin/ksh

SCRIPT: fs_mon_ALL OS.ksh

AUTHOR: Randy Michael

DATE: 08-22-2002

REV bed 2D

PURPOSE: This script is used to monitor for full filesystems,

which are defined as "exceeding" the MAX PERCENT value.

A message is displayed for all "full" filesystems.

PLATFORM: AIX, Linux, HP-UX and Solaris

REV LIST:

Randy Michael - 08-27-2001

Changed the code to use MB of free space instead of

the *Used method.

Randy Michael - 08-27-2001

Added code to allow you to override the set script default HF HE OH HEH HF HF HH HHH HH HF HF HF HF HF H HF

Listing 5.15 fs_mon_ALL_OS.ksh shell script.

File System Monitoring 135

for MIN_MB FREE of FS Space

Randy Michael - 08-28-2001

Changed the code to handle both %Used and MB of Free Space.

It does an "auto-detection" but has override Capability

of both the trigger level and the monitoring method using

the exceptions file pointed to by the S$EXCEPTIONS variable

Randy Michael - 08-28-2001

Added code to allow this script to be executed on

AIX, Linux, HP-UX, and Solaris

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

Fe $F HH FH HF HH HH He HH HH SH FH

DEFINE FILES AND VARIABLES HERE ####

MIN MB FREE="100MB" # Min. MB of Free FS Space

MAX _ PERCENT="85%" # Max. FS percentage value

FSTRIGGER="1000MB" # Trigger to switch from % Used to MB Free

WORKFILE="/tmp/df.work" # Holds filesystem data

>SWORKFILE # Initialize to empty

OUTFILE="/tmp/df.outfile" # Output display file

>SOUTFILE # Initialize to empty

EXCEPTIONS="/usr/local/bin/exceptions" # Override data file

DATA_EXCEPTIONS="/tmp/dfdata.out" # Exceptions file w/o # rows

EXCEPT FILE="N° # Assume no SEXCEPTIONS FILE

THISHOST=* hostname # Hostname of this machine

##HHH## FORMAT VARIABLES HERE ######

Both of these variables need to be multiplied by 1024 blocks

((MIN_MB FREE = $(echo $MIN_MB FREE | sed s/MB//g) * 1024))

((FSTRIGGER = $(echo $FSTRIGGER | sed s/MB//g) * 1024))

HHEEEEREEHES EEE HE EERE ERE HHH HEE HEHE

HH###H### DEFINE FUNCTIONS HERE #####4##

HRP HEHEHE HEH EH HH HH HH HE HH

function get _OS_ info

{

For a few commands it is necessary to know the OS and its level

to execute the proper command syntax. This will always return

the OS in UPPERCASE

typeset -u OS # Use the UPPERCASE values for the OS variable

OS=*uname- # Grab the Operating system, i.e. AIX, HP-UX

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continues)

136 Chapter 5

print: Sos # Send back the UPPERCASE value

}

HHERHEE EEE HEHE HEHEHE HE EHH EEE HHH EE EEF

function check exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

IN_FILE="N"

Do an NFS sanity check and get rid of any ":".

If this is found it is actually an error entry

but we will try to resolve it. It will only

work if it is an NFS cross mount to the same

mount point on both machines.

echo $FSNAME | grep ':' >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d ':' -f2)

Check for empty and null variable

if ({[! -z $FSLIMIT && $FSLIMIT != '' J]

then

if [[{ $FSNAME = S$FSMOUNT]] # Found it!

then

Check for "MB" Characters...Set IN_FILE=MB

echo $FSLIMIT | grep MB >/dev/null && IN_FILE="MB" \

&& (CO PSLIMITD = Slecho SPSEIMIT:\

| sed s/MB//g) * 1024))

check for "%$" Character...Set IN_FILE=PC, for %

echo $FSLIMIT | grep "%$" >/dev/null && IN_FILE="PC" \

&& FSLIMIT=$(echo $FSLIMIT | sed s/\%//g)

case $IN_FILE in

MB) # Use MB of Free Space Method

Up-case the characters, if they exist

FSLIMIT=$ (echo SFSLIMIT | tr '[a-z]' '[A-2]')

Get rid of the "MB" if it exists

FSLIMIT=$ (echo SFSLIMIT | sed s/MB//g)

Test for blank and null values

af -[[- !-=—2 SPSLIMIT && SFSLIMIT tS 1% }4

then

Test for a valid filesystem "MB" limit

4£°((ESLIMIT S=00) Se FSLIMIT < PSSTZE: })

then

if ((FSMB_FREE < FSLIMIT))

then

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

File System Monitoring 137

return 1 # Found out of limit

using MB Free method

else

return 3 # Found OK

' £4

else

echo "\nERROR: Invalid filesystem MAX for\

$FSMOUNT - $FSLIMIT"

echo " Exceptions file value must be less\

than or"

echo " equal to the size of the filesystem\

measured"

echo " in 1024 bytes\n"

Ey

else

echo "\nERROR: Null value specified in exceptions\

file"

echo " - for the SFSMOUNT mount point. \n"

2

PC) # Use Filesystem “Used Method

St¥ip out the @ sign if it “exrets

PC_USED=$(echo $PC_USED | sed s/\%//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != '']]

then

- # Test for a valid percentage, i.e. 0-100

if ((FSLIMIT >= 0 && FSLIMIT <= 100))

then

if (($PC_USED > $FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

£1

else

echo "\nERROR: Invalid percentage for $FSMOUNT -\

$FSLIMIT"

echo " Exceptions file values must be"

echo " between 0 and 100%\n"

£1

else

echo "\nERROR: Null value specified in exceptions\

file"

echo " for the $FSMOUNT mount point.\n"

fa)

ts

N) # Method Not Specified - Use Script Defaults

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continues)

138 Chapter 5

RE (CC RPSSIZE >= FSTRIGGER:))

then # This is a "large" filesystem

if ((FSMB_ FREE < MIN _MB FREE))

then

return 1 # Found out of limit

using MB Free method

else

return 3 # Found OK

eal

else # This is a standard filesystem

PC_USED=$(echo $PC_USED | sed s/\%//g) # Remove %

FSLIMIT=$ (echo $FSLIMIT | sed s/\%//g) # Remove %

if ((PC_USED > FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

fu

fi.

esac

£1

£3.

done < $DATA_EXCEPTIONS # Feed the loop from the bottom!!!

return 4 # Not found in $EXCEPTIONS file

}

HHFHHEFHHEHHPHHEPHEEEEHHEPHEEHERHEEHH

function display output

{

Lt [{i-s SOUTFILE J]

then

echo "\nFull Filesystem(s) on STHISHOST\n"

cat. SOUTFILE

print

£1

HEFHFHHEPHEEHHEHHEPEEPHEPHHEPHEEHEEH

function load_EXCEPTIONS data

{

Ignore any line that begins with a pound sign, #

and omit all blank lines

cat $EXCEPTIONS | grep -v "*#" | sed /4$/d > $DATA_EXCEPTIONS

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

File System Monitoring 139

HHHTHPTHERHRE EERE PERE EPH RR HHH HHH EH

H)

function load_AIX FS data

{

df -k | tail +2 | egrep -v '/dev/cd[0-9]|/proc' \
| awk '{print $1, $2, $3, $4, $7}' > $WORKFILE

HHEHHHHHERPRERPEHEHEHHHP EPH H HR EEE EH

function load_HP_UX_FS data

{

bdf | tail +2 | egrep -v '/cdrom' \

| awk '{print $1, $2, $4, $5, $6}' > $WORKFILE

FHHHHERHHERHERHEEEEEEPESSPHA BREE RHEE

function load_LINUX_FS data

{

df -k | tail +2 | egrep -v '/cdrom'\

| awk '{print $1, $2, $4, $5, $6}' > $WORKFILE

HHFHREHERREEEEREEEEEEAHHAEEERREERER SH

function load_Solaris FS data

{

df -k | tail +2 | egrep -v '/dev/fd|/etc/mnttab|/proc'\

| awk '{print $1, $2, $4, $5, $6}' > $WORKFILE

HEHRHEHERHEERREEEEREEHEE PER EE HEHEHE

HHEHHHHHEHE START OF MAIN ####H## HEHEHE

HRERHEHEEEEREEEERHRERPRAEHEEHER EH HEH

Query the operating system to find the Unix flavor, then

load the correct filesystem data for the resident OS

case $(get_OS info) in

AIX) # Load filesystem data for AIX

load_ AIX FS data

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continues)

140 Chapter 5

or

HP-UX) # Load filesystem data for HP-UX

load HP UX FS data

=e =e

LINUX) # Load filesystem data for Linux

load_LINUX_FS_data

ee
oe

SUNOS) # Load filesystem data for Solaris

load _ Solaris FS data

me me

*) # Unsupported in script

echo "\nUnsupported Operating System for this\

Script...EXITING\n"

exit 1

esac

Do we have a nonzero size SEXCEPTIONS file?

if [[-s $EXCEPTIONS j]

then # Found a nonempty SEXCEPTIONS file

load_EXCEPTIONS_data

EXCEP_FILE="Y"

fi

while read FSDEVICE FSSIZE FSMB FREE PC_USED FSMOUNT

do

1£ [[SEXCEP FILE = "yy" J]

then

check_exceptions

CE_RC="$?" # Check Exceptions Return Code (CE RC)

case $CE_RC in

1) # Found exceeded in exceptions file by MB Method

((FS_FREE_OUT = FSMB FREE / 1000))

echo "“S$FSDEVICE mounted on $FSMOUNT has ${FS_FREE_OUT}MB\

Free" >> SOUTFILE

2) # Found exceeded in exceptions file by *Used method

echo "SFSDEVICE mount on SFSMOUNT is ${PC_USED}%" \

>> SOUTFILE

3) # Found OK in exceptions file

: # NO-OP Do Nothing. A ":" is a no-op!

4) # Not found in exceptions file - Use Default Triggers

if ((FSSIZE >= FSTRIGGER))

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

File System Monitoring 141

then # This is a "large" filesystem

FSMB_FREE=$ (echo $FSMB_FREE | sed s/MB//g) # Remove the\
"MB"

if ((FSMB_FREE < MIN MB FREE))

then

Civ RSO PRES (OUT a (RSME CORRE WW hOOO\ hy

echo "$FSDEVICE mounted on $FSMOUNT has {FS FREE _OUT}MB\

Free" >> SOUTFILE

£3,

else # This is a standard filesystem

PC_USED=$ (echo $PC_USED | sed s/\%//g)

MAX_PERCENT=$ (echo $MAX PERCENT | sed s/\%//g)

if ((PC_USED > MAX PERCENT))

then

echo "SFSDEVICE mount on S$FSMOUNT is ${PC_USED}%" \

>> SOUTFILE

£1

fi

esac

else # NO SEXCEPTIONS FILE USE DEFAULT TRIGGER VALUES

if ((FSSIZE >= FSTRIGGER))

then # This is a "large" filesystem - Use MB Free Method

FSMB_FREE=$ (echo $FSMB_FREE | sed s/MB//g) # Remove the "MB"

if ((FSMB_FREE < MIN MB FREE))

then

({ FS_FREE OUT = FSMB FREE / 1000))

echo "SFSDEVICE mounted on $FSMOUNT has ${FS_FREE_OUT}MB

Free" \

=> SOUTPILE

fy

else # This is a standard filesystem - Use % Used Method

PC_USED=$(echo $PC_USED | sed s/\%//g)

MAX _PERCENT=$ (echo $MAX_PERCENT | sed s/\%//g)

if ((PC_USED > MAX_PERCENT))

then

echo "SFSDEVICE mount on $FSMOUNT is S${PC_USED}%” \

>> SOUTFILE

baal

£4.

£1

done < SWORKFILE # Feed the while loop from the bottom!!!!!

display output

End of Script

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

142 Chapter 5

A good study of the script in Listing 5.15 will reveal some nice ways to handle the

different situations we encounter while writing shell scripts. As always, it is intuitively

obvious!
The /usr/local/bin/exceptions file in Listing 5.16 is used on yogi.

FILE: “exceptions"

This file is used to override the default

trigger value in the filesystem monitoring script

fs_mon_ALL_OS_excep.ksh, but also allows overriding the

monitoring technique used, i.e. Max %Used and

MINIMUM MB FREE of filesystem space. The syntax to

override is a /mount-point and a "trigger value" with

elther "%" or "MB" as a suffix.

EXAMPLES:

/usr 96%

OR

/usr 50MB

All lines beginning with a # are ignored.

cd

=

NOTE: All Entries MUST have either "MB" or

"S"cas a suffix!!! Or else the script

defaults are used. NO SPACES PLEASE!

/opt 95%

/ 50%

/ausr 70MB

/home 50MB

Listing 5.16 Sample exceptions file.

Listing 5.16 should work, but it gives an error. If the monitoring script is executed

using these exception file entries, it will result in the following output:

ERROR: Invalid filesystem MINIMUM_MB FREE specified

for /home - 50MB -- Current size is 4MB.

Exceptions file value must be less than or equal

to the size of the filesystem measured Megabytes

Full Filesystem(s) on yogi

/dev/hd4 mount on / is 51%

/dev/hd2 mounted on /usr has 57MB Free

/dev/hdl0opt mount on /opt is 97%

File System Monitoring 143

The problem is with the /home filesystem entry in the SEXCEPTIONS file. The value
specified is 50 Megabytes, and the /home filesystem is only 4MB in size. In a case like

this the check_exceptions function will display an error message and then use the

shell script default values to measure the filesystem and return an appropriate return

code to the calling script. So, if a modification is made to the exceptions file, the script
needs to be run to check for any errors.

The important thing to note is that error checking and data validation should take

place before the data is used for measurement. This sequence will also prevent any

messages from standard error (stderr) that the system may produce.

Other Options to Consider

We can always improve on a script, and the full filesystems script is no exception.

Event Notification

Because monitoring for full filesystems should involve event notification, it is wise to

modify the display_output function to send some kind of message, whether by
page or email, or otherwise this information needs to be made known so that we can

call ourselves proactive. Sending an email to your pager and desktop would be a good

start. An entry like the statement that follows might work, but its success depends on

the mail server and firewall configurations.

echo "Full Filesystem(s) on $THISHOST\n" > SMAILFILE

cat SOUTFILE >> SMAILFILE

mailx -s "Full Filesystem(s) on $THISHOST" SMAIL LIST < S$MAILFILE

For pager notification, the text message must be very short, but descriptive enough to

get the point across.

Automated Execution

If we are to monitor the system, we want the system to tell us when it has a problem.
We want event notification, but we also want the event notification to be automated.

For filesystem monitoring, a cron table entry is the best way to do this. An interval of

about 10-15 minutes 24 x 7 is most common. We have the exceptions capability built in

so that if pages become a problem, the exceptions file can be modified to stop the

filesystem from being in error, and thus stop the paging. The cron entry that follows

will execute the script every 10 minutes, on the 5s, 24 hours a day, 7 days a week.

5,15,25,35,45,55 * * * * /usr/local/bin/fs_mon_ALL_OS.ksh 2>&1

To make this cron entry you can either edit a cron table with crontab -e or use the fol-

lowing command sequence to append an entry to the end of the cron table.

144 Chapter 5

crontab -l > /tmp/cron_hold.out

echo '5,15,25,35,45,55 * * * * /usr/local/bin/fs_mon_ALL_OS.ksh 2>&1!' \

>> /tmp/cron_hold.out

crontab /tmp/cron_hold.out

rm /tmp/cron_hold.out

For this to work, the £s_mon_ALL_OS.ksh script must be modified to send notifi-

cation by some method. Paging, email, SNMP traps, and modem dialing are the pre-
ferred methods. You could send this output to the systems console, but who would

ever see it?

Modify the egrep Statement

It may be wise to remove the egrep part of the df statement, used for filesystem exclu-
sion, and use another method. As pointed out previously, grepping can be a mistake.

Grepping was done here because most of the time we can get a unique character string

for a filesystem device to make grep and egrep work without error, but not always. If

this is a problem, then creating a list either in a variable assignment in the script or in a

file is the best bet. Then the new $IGNORE_LIST list can be searched and an exact

match can be made.

Summary

Through this chapter we have changed our thinking about monitoring for full filesys-

tems. The script that we use can be very simple for the average small shop or more

complex as we move to larger and larger storage solutions. All filesystems are not cre-

ated equal in size, and when you get a mix of large and small filesystems on mixed
operating systems, we have shown how to handle the mix with ease.

In the next chapter we will move into monitoring the paging and/or swap space. If

we run out of paging or swap space, the system will start thrashing, and if the problem
is chronic, the system may crash. We will look at the different monitoring methods for

each operating system.

Monitoring Paging
and Swap Space

Every Systems Administrator loves paging and swap space because they are the magic

bullets to fix a system that does not have enough memory. Wrong! This misconception
is thought to be true by many people, at various levels, in a lot of organizations. The

fact is that if your system does not have enough real memory to run your applications,

adding more paging and swap space is not going to help. Depending on the applica-

tion(s) running on your system, swap space should start at least 1.5 times physical

memory. Many high-performance applications require 4 to 6 times real memory so the

actual amount of paging and swap space is variable, but 1.5 times is a good place to

start. Use the application’s recommended requirement, if one is suggested, as a start-

ing point.

Some of you may be asking “What is the difference between paging space and swap
space?” It depends on the Unix flavor whether your system does swapping or paging,

but both swap space and paging space are disk storage that makes up virtual memory
along with real, or physical, memory. A page fault happens when a memory segment, or

page, is needed in memory but is not currently resident in memory. When a page fault

occurs, the system attempts to load the needed data into memory; this is called paging

or swapping, depending on the Unix system you are running. When the system is
doing a lot of paging in and out of memory we need to be able to monitor this activity.

If your system runs out of paging space or is in a state of continuous swapping, such

that as soon as a segment is paged out of memory it is immediately needed again, the

145

146 Chapter 6

system is thrashing. If this thrashing condition continues for very long, you have a risk
of the system crashing. In this chapter we are going to use the terms “paging” and

“swapping” interchangeably.
Each of our four Unix flavors, AIX, HP-UX, Linux, and Solaris, use different com-

mands to list the swap space usage; the output for each command and OS varies also.

The goal of this chapter is to create five shell scripts: one script of each of the four oper-
ating systems and an all-in-one shell script that will run on any of our four Unix fla-

vors. Each of the shell scripts must produce the exact same output, which is shown in

Listing 6.1.

Paging Space Report for yogi

Wed gun 5 21:48:16 BDT 2002

Total MB of Paging Space: 336MB

Total MB of Paging Space Used: 33MB

Total MB of Paging Space Free: 303MB

Percent of Paging Space Used: 10%

Percent of Paging Space Free: 90%

Listing 6.1 Required paging and swap space report.

Before we get started creating the shell scripts, we need the command syntax for

each operating system. Each of the commands produces a different result, so this
should be an interesting chapter in which we can try some varied techniques.

Syntax

As usual, we need the correct command syntax before we can write a shell script. As

we go through each of the operating systems, the first thing I want you to notice is the

command syntax used and the output received back. Because we want each Unix fla-

vor to produce the same output, as shown in Listing 6.1, we are going to have to do

some math. This is not going to be hard math, but each of the paging and swap space

command outputs is lacking some of the desired information so we must calculate the

missing pieces. Now we are going to see the syntax for each operating system.

AIX Isps Command

AIX does paging instead of swapping. This technique uses 4096-byte blocks pages.
When a page fault occurs, AIX has a complex algorithm that frees memory of the least

used noncritical memory page to disk paging space. When the memory has space

Monitoring Paging and Swap Space 147

available, the page of data is paged in to memory. To monitor paging space usage in
AIX, you use the lsps command, which stands for list paging space. The Isps command
has two command options, -a, to list each paging space separately, and -s, to show a
summary of all paging spaces. Both Isps options are shown here:

lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type

paging0O0 hdisk2 rootvg 1024MB (Lt yes yes lv

hd6 hdisk0O rootvg 1024MB 9 yes yes lv

lsps -s

Total Paging Space Percent Used

2048MB 10%

From the first command output, Isps -a, on this system notice that there are two

paging spaces defined, paging00 and hdé6, both are the same size at 1GB each, and

each paging space is on a separate disk. This is an important point. In AIX, paging

space is used in a round-robin fashion, starting with the paging space that has the
largest area of free space. If one paging space is significantly larger, the round-robin
technique is defeated, and the system will almost always use the larger paging space.
This has a negative effect on performance because one disk will take all of the paging
activity.

In the second output, Isps -s, we get a summary of all of the paging space usage.

Notice that the only data that we get is the total size of the paging space and the per-

centage used. From these two pieces of data we must calculate the remaining parts of

our required output, which is total paging space in MB, free space in MB, used space in
MB, percent used, and percent free. We will cover these points in the scripting section
for AIX later in this chapter.

HP-UX swapinfo Command

The HP-UX operating system uses swapping, which is evident by the command

swapinfo. HP-UX does the best job of giving us the best detailed command output so

we need to calculate only one piece of data for our required output, percent of total

swap space free. Everything else is provided with the swapinfo -tm command. The -m
switch specifies to produce output in MB, and the -t switch specifies to produce a total
line for a summary of all virtual memory. This command output is shown here.

[root@dino]/> swapinfo -tm

Mb Mb Mb PCT START/ Mb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME

dev 96 Dall US 22% 928768 = 1 /dev/dsk/c0t6d0

reserve = 46 -46

memory a5; 5 10 33%

total dork UA 37 65% = 0 =

148 Chapter 6

Notice in this output that HP-UX splits up virtual memory into three categories:

dev, reserve, and memory. For our needs we could use the summary information

that is shown in the total line at the bottom. As you can see on the total line, the

total virtual memory is 111MB, the system is consuming 72MB of this total, which

leaves 37MB of free virtual memory. The fifth column shows that the system is con-
suming 65 percent of the available virtual memory. This total row is misleading,

though, when we are interested only in the swap space usage. The actual swap space

usage is located on the dev row of data at the top of the command output. As you can

see, we need to calculate only the percent free, which is a simple calculation.

Linux free Command

Linux uses swapping and uses the free command to view memory and swap space

usage. The free command has several command switches, but the only one we are con-

cerned with is the -m command switch to list output in MB. The swap information

given by the free -m command is listed only in MB, and there are no percentages

presented in the output. Therefore, from the total MB, used MB, and free MB, we must

calculate the percentages for percentage used and percentage free. The following

shows the free -m command output:

free -m

total used free shared buffers cached

Mem: 52 byl 1 0 al 20

-/+ buffers/cache: 30 22

Swap: ORAL 9 202

The last line in this output has the swap information listed in MB, specified by the

-m switch. This command output shows that the system has 211MB of total swap

space, of which 9MB has been used and 202MB of swap space is free.

Solaris swap Command

The Solaris operating system does swapping, as indicated by the command swap. Of

the swap command switches we are concerned with only the -s switch, which pro-
duces a summary of swap space usage. All output from this command is produced in

KB so we have to do a little division by 1,000 to get our standard MB output. Like

Linux, the Solaris swap output does not show the swap status using percentages, so we
must calculate these values. The swap -s output is shown here.

Swap -s

total: 26788k bytes allocated + 7256k reserved = 34044k used, 557044k

available

This is an unusual output to decipher because the data is all on the same line, but

because Solaris attempts to create a mathematical statement we will have to use our

Monitoring Paging and Swap Space

own mathematical statements to fill in the blanks to get our required script output. The
swap -s command output shows that the system has used a total of 34MB and it has
557MB of free swap space. We must calculate the total MB, the percentage used, and
the percentage of free swap space. These calculations are not too hard to handle as we
will see in the shell scripting section for Solaris later in this chapter.

Creating the Shell Scripts

Now that we have the basic syntax of the commands to get paging and swap space sta-
tistics, we can start our scripting of the solutions. In each case you should notice which

pieces of data are missing from our required output, as shown in Listing 6.1. All of

these shell scripts are different. Some pipe command outputs to a while loop to assign

the values to variables, and some use other techniques to extract the desired data from

the output. Please study each shell script in detail, and you will learn how to handle

the different situations you are challenged with when working in a heterogeneous

environment.

AIX Paging Monitor

As we previously discussed, the AIX Isps -s command output shows only the total

amount of paging space measured in MB and the percentage of paging space that is

currently in use. To get our standard set of data to display we need to do a little math.

This is not too difficult when you take one step at a time. In this shell script let’s use a
file to store the command output data. To refresh your memory the Isps -s command

output is shown again here (this output is using a different AIX system):

lsps -s

Total Paging Space Percent Used

336MB 2%

The first thing we need to do is to remove the columns heading. I like to use the

tail command in a pipe for this purpose. The command syntax is shown in the next

statement:

Plspse—Saletadsleet2

33 6MB 2%

This resulting output contains only the data, without the columns heading. The next

step is to store these values in variables so that we can work with them for some cal-

culations. We are going to use a file for initial storage and then use a while read loop,

which we feed from the bottom using input redirection with the filename. Of course,

we could have piped the command output to the while read loop, but I want to vary

the techniques in each shell script in this chapter. Let’s look at the first part of the data

gathering and the use of the while read loop, as shown in Listing 6.2.

149

150 Chapter 6

PAGING STAT=/tmp/paging_stat.out # Paging Stat hold file

Load the SPAGING_ STAT file with data

lsps -s | tail +2 > S$PAGING_STAT

Use a while loop to assign the values to variables

while read TOTAL PERCENT

do

DO CALCULATIONS HERE

done < $PAGING_STAT

Listing 6.2 Logical view of AIX Isps -s data gathering.

Notice in Listing 6.2 that we first define a file to hold the data, which is pointed to
by the $PAGING_STAT variable. In the next step we redirect output of our paging

space status command to the defined file. Next comes a while loop where we read the

file data and assign the first data field to the variable TOTAL and the second data field

to the variable PERCENT.
Notice how the $PAGING_STAT file is used to feed the while loop from the bottom.

As you saw in Chapter 2, “Twelve Ways to Process a File Line by Line,” this technique

is one of the two fastest methods of reading data from a file. The middle of the while
loop is where we do our calculations to fill in the blanks of our required output.

Speaking of calculations, we need to do three calculations for this script, but before

we can perform the calculations on the data we currently have, we need to get rid of

the suffixes attached to the variable data. The first step is to extract the MB from the
$ TOTAL variable and then extract the percent sign, %, from the $ PERCENT variable. We

do both of these operations using a cut command in a pipe, as shown here:

PAGING_MB=$(echo $TOTAL | cut -d 'MB' -f1)

PAGING _PC=$ (echo $PERCENT | cut -d% -f1)

In both of these statements we use command substitution, specified by the

$ (command_statement) notation, to execute a command statement and assign the

result to the variable specified. In the first statement we echo the $TOTAL variable and

pipe the output to the cut command. For the cut command we specify the delimiter to

be MB, and we enclose it with single tic marks, ‘MB’. Then we specify that we want the

first field, specified by -£1. In the second statement we do the exact same thing except

that this time we specify that the percent sign, %, is the delimiter. The result of these

two statements is that we have the PAGING_MB and PAGING_PC variables pointing to
integer values without any other characters. Now we can do our calculations!

Let’s do the most intuitive calculation first. We have the value of the percent of

paging space used stored in the $PAGING_PC variable as an integer value. To get the

Monitoring Paging and Swap Space 151

percent of free paging space, we need to subtract the percent used value from 100, as
shown in the next command statement.

((PAGING_PC_FREE = 100 - PAGING_PC))

Notice that we used the double parentheses mathematical method, specified by the

((Math Statement)).I like this method because it is so intuitive to use. Also
notice that you do NOT use the dollar sign, $, with variables when using this method.

Because the double parentheses method expects a mathematical statement, any char-

acter string that is not numeric is assumed to be a variable, so the dollar sign should be

omitted. If you add a dollar sign to the variable name, then the statement may fail

depending on the OS you are running! I always remove the dollar sign, just in case.
This is a common cause of frustration when using math in shell scripts, and it is

extremely hard to troubleshoot.

The next calculation is not so intuitive to some. We want to calculate the MB of pag-

ing space that is currently in use. Now let’s think about this. We have the percentage of

paging space used, the percentage of paging space free, and the total amount of paging

space measured in MB. To calculate the ME of used paging space, we can use the value

of the total MB of paging space and the percentage of paging space used divided by

100, which converts the value of paging space used into a decimal value internally. See

how this is done in the next statement.

((MB_USED = PAGING_MB * PAGING_PC / 100))

One thing to note in the last math statement: This will produce only an integer out-

put. If you want to see the output in floating-point notation, then you need to use the

bc utility, which you will see in some of the following sections.
The last calculation is another intuitive calculation, to find the MB of free paging

space. Because we already have the values for the total paging space in MB, and the
MB of paging space in use, then we need only to subtract the used value from the total.

This is shown in the next statement.

((MB_FREE = PAGING_MB - MB_USED))

We have completed all of the calculations so now we are ready to produce the

required output for the AIX shell script. Take a look at the entire shell script shown in
Listing 6.3, and pay particular attention to the boldface type.

#!/usr/bin/ksh

SCRIPT: AIX paging_mon.ksh

AUTHOR: Randy Michael

DATE: 5/31/2002

HORE oe bP

Listing 6.3 AIX_paging_mon.ksh shell script listing. (continues)

152 Chapter 6

PLATFORM: AIX Only

PURPOSE: This shell script is used to produce ‘a report of

the system's paging space statistics including:

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

REV LIST:

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

St 4h 4k 4k GE ode FE Ge GE FE GE SR OE SEO

HAH HE HH EEE Ha EE Ha aE aE HEH HE HE aE HE Ea EE aE EHH

HHHHHHHHHHHHHHHH DEFINE VARIABLES HERE ####HHHEHPEEHEEEEHEEE

PC_LIMIT=65 # Percentage Upper limit of paging space

before notification

THISHOST=S (hostname) # Host name of this machine

PAGING _STAT=/tmp/paging_stat.out # Paging Stat hold file

HHPREEE REE EEE EH HHH BH HEHE HEE EH EEE EHH EEE REE ERE EEE

HHHHHHHHEHHH HEHEHE INITIALIZE THE REPORT ####H#HHHHHHHEHEHE HHH

echo "\nPaging Space Report for $THISHOST\n"

date

HHH EEE GE EH HEE EERE EH EP REE ERR EHH HE RE

HHHHHHHHEHHEHE CAPTURE AND PROCESS THE DATA ########E##E#EHHE EH

Load the data in a file without the column headings

lsps -s | tail +2 > $PAGING_STAT

Start a while loop and feed the loop from the bottom using

the SPAGING STAT file as redirected input, after "done"

while read TOTAL PERCENT

do

Clean up the data by removing the suffixes

PAGING_MB=$ (echo $TOTAL | cut -d 'MB' -f1)

PAGING PC=$ (echo SPERCENT | cut. -d% -£1)

Calculate the missing data: Free, MB used and MB free

((PAGING_PC_FREE = 100 - PAGING _PC))

Listing 6.3 AIX_paging_mon.ksh shell script listing. (continued)

Monitoring Paging and Swap Space _ 153

((MB_USED = PAGING_MB * PAGING PC / 100.))

((MB_FREE =, PAGING MB - MB_USED))

Produce the rest of the paging space report:

echo "\nTotal MB of Paging Space:\t$TOTAL"

echo "Total MB of Paging Space Used: \t${MB_USED}MB"

echo "Total MB of Paging Space Free:\t${MB FREE}MB"

echo "\nPercent of Paging Space Used: \t${PERCENT}"

echo "\nPercent of Paging Space Free:\t${PAGING PC FREE}%"

Check for paging space exceeded the predefined limit

if ((PC_LIMIT <= PAGING_PC))

then

Paging space is over the limit, send notification

tput smso # Turn on reverse video!

echo "\n\nWARNING: Paging Space has Exceeded the ${PC_LIMIT}% \

Upper Limit! \n"

tput rmso # Turn off reverse video

Ex

done < S$PAGING STAT

rm -f S$PAGING STAT

Add an a new line to the output

echo. "\n"

Listing 6.3 AIX_paging mon.ksh shell script listing. (continued)

There is one part of our shell script in Listing 6.3 that we have not covered yet. At the
top of the script where we define variables, I added the PC_LIMIT variable. I normally

set this threshold to 65 percent so that I will know when I have exceeded a safe system

paging space limit. When your system starts running at a high paging space level, you
need to find the cause of this added activity. Sometimes developers do not write appli-

cations properly when it comes to deallocating memory. If a program runs for a long

time and it is not written to clean up and release allocated memory, then the program

is said to have a memory leak. The result of running this memory leak program for a

long time without a system reboot is that your system will run out of memory. When

your system runs out of memory, it starts paging in and out to disk, and then your

paging space starts edging up. The only way to correct this problem and regain your

memory is to reboot the system, most of the time.

154 Chapter 6

Notice at the end of the script that there is a test to see if the percentage of paging

space used is greater than or equal to the limit that is set by the PC_LIMIT variable. If

the value is exceeded, then reverse video is turned on so the WARNING message

stands out on the screen. After the message is displayed, reverse video is turned back
off. To turn on reverse video use the tput smso command. When reverse video is on,
anything that you print to the screen appears in reverse video; however, do not forget
to turn it off because this mode will continue after the shell script ends execution if you
do not turn it off. To turn off the reverse video mode use the tput rmso command. List-

ings 6.4 and 6.5 show the shell script in action. Listing 6.4 shows a report of the system

within the set 65 percent limit, while Listing 6.5 shows the report when the system has

exceeded the 65 percent paging limit.

Paging Space Report for yogi

EVE Sun oe to 747 08 EDT 2002

Total MB of Paging Space: 336MB

Total MB of Paging Space Used: 6MB

Total MB of Paging Space Free: 330MB

Percent of Paging Space Used: 2%

Percent of Paging Space Free: 98%

Listing 6.4 AIX_paging_mon.ksh in action.

As you can see in Listing 6.4, yogi is not doing too much right now. Let’s produce

a little load on the system and set the trigger threshold in the AIX_paging_mon.ksh

shell script to 5 percent so that we can see the threshold exceeded, as shown in

Listing 6.5.

Paging Space Report for yogi

BPriJun f° 15354530 EDT 2002

Total MB of Paging Space: 336MB

Total MB of Paging Space Used: 23MB

Total MB of Paging Space Free: 313MB

Percent of Paging Space Used: 7%

Percent of Paging Space Free: 93%

WARNING: Paging Space has Exceeded the 5% Upper Limit!

Listing 6.5 AIX_paging mon.ksh exceeding a 5 percent paging limit.

Monitoring Paging and Swap Space 155

This is still not much of a load, but it does make the point of the ability to set a trig-
ger threshold for notification purposes. Of course, the reverse video of the warning
message did not come to the page; believe me, it does show up in reverse video on the
screen. Let’s move on to the HP-UX system.

HP-UX Swap Space Monitor

The HP-UX operating system does swapping, as shown by the swapinfo command. To
check the statistics of swap space you use the swapinfo -tm command. The -t com-
mand switch adds a summary total line to the output, and the -m option specifies
that the output space measurements are in MB, as opposed to the default of KB. As I

said previously, HP-UX does the best job of producing the various virtual memory sta-

tistics, so we need to calculate only one piece of our required output, the percent of free

swap space. Before we go any further, let’s look at the command output we are dealing
with, as shown in Listing 6.6.

swapinfo -tm

Mb Mb Mb PUD START/ Mb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME

dev 96 a3 TAL 24% 928768 = iL

/dev/dsk/c0t6d0

reserve = 45 =45

memory 15 6 9 40%

total aes 74 35 67% - 0 :

Listing 6.6 HP-UX swapinfo -tm command output.

As you can see, HP-UX shows paging space for devices, reserved memory, and real

memory usage. I like to use total row of output to get a good summary of what all of

the virtual memory is doing. It really does not matter if you use the dev row or the

total row to do your monitoring, but for this exercise I am going to use the dev row

to monitor only the swap space and not worry about what real memory is doing.

The easiest way to extract the data we want on the dev row in the output is to use

grep to pattern match on the string dev because dev appears on only one row of data.

Piping the swapinfo command output to a grep statement produces the following

output:

swapinfo -tm | grep dev

dev 96 25 Wak 24% 928768 - al

/dev/dsk/c0t6da0

The output that we want to extract, Total MB, Used MB, Free MB, and Percent Used,

is located in fields $2, $3, $4, and $5, respectively. From looking at this we have at least

two options to assign the field values to variables. We can use five awk statements, or

156 Chapter 6

we can pipe the preceding command output to a while read loop. Of course, the while
read loop runs for only one loop iteration. The easiest technique is to pipe to the while

loop. The following command will get us started:

swapinfo -tm | grep dev | while read junk SW_TOTAL SW_USED \

SW_FREE PERCENT_USED junk2

Notice in the while read portion of the previous statement how we assign unneeded

fields to variables named junk and junk2. The first field, specified by the j unk vari-

able, targets dev; we are not interested in saving this field so it gets a junk assignment.

The last variable, junk2, is a catch-all for anything remaining on the line of output;

specifically, "928768 - 1 /dev/dsk/c0t6d0", gets assigned to the variable

junk2 as one field. This is an extremely important part of the while read statement

because you must account for everything when reading in a line of data. Had I left out

the junk2 variable, the PERCENT_USED variable would point to the data "24%

928768 - 1 /dev/dsk/c0t6d0" when the only thing we want is 24%. The

junk2 variable catches all of the remaining data on the line and assigns it to the junk2

variable. This brings up another point. If you want to capture the entire line of data and
assign it to a single variable, you can do this too by using the following syntax:

while read DATA _ LINE

do

PARSE THE SDATA_ LINE DATA HERE

done < SDATA FILE

Using this syntax, all of the data is captured with a single variable, DATA_LINE, and

the data is separated into fields just as it appears in the command output.

Back to our previous swapinfo statement, we have the data of interest stored in the

following variables:

SW_TOTAL. Total swap space available on the system measured in MB.

SW_USED. MB of swap space that is currently in use.

SW_FREE. MB of swap space that is currently free.

PERCENT_USED. Percentage of total swap space that is in use.

The only part of our required output missing is the percentage of total swap
space that is currently free. This is an easy calculation because we already have the

$PERCENT_USED. For the calculation we need to remove the percent sign, %, in the

$PERCENT_USED variable. The following statement does the removal of the percent

sign and makes the calculation in one step.

((PERCENT_FREE = 100 - $(echo $PERCENT_USED | cut -d% -f1)))

In the preceding mathematical statement we assign 100 percent minus 24 percent to

the variable PERCENT_FREE using command substitution to remove the percent sign

Monitoring Paging and Swap Space 157

from the $ PERCENT_USED variable using the cut command. In the cut part of the state-
ment we define % to be the delimiter, or field separator, specified by -d%, then we
extract the first field, 24 in this case, using the -£1 notation. Once the command sub-

stitution is complete, we are left with the following math statement:

((PERCENT_FREE = 100 - 24))

Now let’s examine the entire shell script that is shown in Listing 6.7.

#!/usr/bin/ksh

SCRIPT: HP-UX_swap_mon.ksh

AUTHOR: Randy Michael

DATE: (5/32/2002

REVe Lie Pe

PLATFORM: HP-UX Only

PURPOSE: This shell script is used to produce a report of

the system's swap space statistics including:

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

REV LIST:

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

Se Fe OE OE OH HEHEHE SHE HEHEHE OH OHHH HEC HEHE HEHE HE

HHFHHHHHHHHHHHEEH DEFINE VARIABLES HERE ##### #44 HHS HEH HEHEHE H

PC_LIMIT=65 # Percentage Upper limit of paging space

before notification

THISHOST=S (hostname) # Host name of this machine

HRRRRHAEAHH EPPA EEREEEEERAEESS EH H HHEREH aH HERE HERE EHH EERE

HHHHHHHHEHHHHHHHE INITIALIZE THE REPORT ##HH0 7 HHPHERERREER EE

echo "\nSwap Space Report for S$THISHOST\n"

date

HEHPHAHHREEHERHRRRRAPEEEHEEEEHE ERR REHEER ERE ERE AREER REE EE EH

Listing 6.7 HP-UX_swap_mon.ksh shell script listing. (continues)

158 Chapter 6

#HEHHHHEHHHHHH CAPTURE AND PROCESS THE DATA ######H##4E0 8094

Start a while read loop by using the piped-in input from

the swapinfo -tm command output.

swapinfo -tm | grep dev | while read junk SW_TOTAL SW_USED \

SW_FREE PERCENT_USED junk2

do

Calculate the percentage of free swap space

((PERCENT_FREE = 100 - $(echo $PERCENT_USED | cut -d% -f1)))

echo "\nTotal Amount of Swap Space:\t${SW_TOTAL}MB"

echo "Total MB of Swap Space Used: \t${SW_USED}MB"

echo "Total MB of Swap Space Free: \t${SW_FREE}MB”

echo "\nPercent of Swap Space Used: \t${PERCENT_USED}"

echo "\nPercent of Swap Space Free: \t${PERCENT_FREE}%"

Check if paging space exceeded the predefined limit

if ((PC_LIMIT <= $(echo $PERCENT_USED | cut -d% -f1)))

then

Swap space is over the predefined limit, send notification

tput smso # Turn on reverse video!

echo "\n\nWARNING: Swap Space has Exceeded the\

${PC_LIMIT}% Upper Limit!\n"

tput rmso # Turn reverse video off!

fi

done

echo "\n"

Listing 6.7 HP-UX_swap_mon.ksh shell script listing. (continued)

There are a few things that I want to point out in Listing 6.7. The first point is that any

time we use the $PERCENT_USED value we always use command substitution to

remove the percent sign, 3, as shown in the following command substitution statement:

$(echo $PERCENT_USED | cut -d% -f1)

The next part I want to go over is our required report output. At the top of the shell

script we initialize the report by stating a report header including the hostname of the

Monitoring Paging and Swap Space 159

machine and the date stamp of the time the report was executed. Then we do any cal-
culation that is needed to gather any missing data for our required output. Once all of
our required data is gathered, we have a series of echo statements that add to the

report. In these echo statements we spell out the data in an easily readable list. I want

you to look at each echo statement and then look at the report output in Listing 6.8.

Swap Space Report for dino

SunNsOCk ALL S27 220 cRDry 200)

Total Amount of Swap Space: 96MB

Total MB of Swap Space Used: 24MB

Total MB of Swap Space Free: 70MB

Percent of Swap Space Used: 25%

Percent of Swap Space Free: 75%

Listing 6.8 HP-UX swap space report.

There are three thing I want you to notice in the echo statements. First is the use of

the \n when we want to add another new line to the output, which is a blank line in

this case. Second is the use of the \t to add a TAB to align the data output. And finally,

note the use of the curly braces, {VAR}, around the variable names. The curly braces
are needed because we are adding characters to the output, and these characters are

adjacent to the variable data and there is not a space, which include MB and % suffixes.

To separate the extra characters from the variable name we need to use curly braces to

ensure the separation.
At the end of the script in Listing 6.7 we compare the percent used variable to the

trigger threshold that is defined in the DEFINE VARIABLES section at the top of the
shell script. If the threshold is exceeded, then we turn on reverse video, print a warning
message, and then turn reverse video back off. The over threshold warning message is

shown in Listing 6.9.

Swap Space Report for dino

Sun O6Cbo 21157240235 EDT 2001

Total Amount of Swap Space: 96MB

Total MB of Swap Space Used: 24MB

Listing 6.9 HP-UX swap space report with over limit warning. (continues)

160 Chapter 6

Total MB of Swap Space Free: 70MB

Percent of Swap Space Used: 25%

Percent of Swap Space Free: 15%

WARNING: Swap Space has Exceeded the 20% Upper Limit! _

Listing 6.9 HP-UX swap space report with over limit warning. (continued)

I edited the shell script and changed the PC_LIMIT variable assignment to 20 per-

cent for this example. The reverse video does not show up on paper, but on the screen

it stands out so that the user will always notice the warning message. I usually set this

threshold to 65 percent. When you exceed this level of swap space usage, you really
need to find the cause of the increased swapping.

Linux Swap Space Monitor

The Linux operating system does swapping, and the command to gather swap space

statistics is the free command. The free command output by default lists swap space
usage in KB, but the -m switch is available for listing the statistics in MB. Additionally,

the free -m output does not include any statistics measured in percentages, so we must

calculate the percentage of free swap space and the percentage of used swap space.
These percentage calculations are relatively easy, but we really want to measure the

percentage using floating-point notation this time. We need to use the bc utility for the
mathematical calculations. Chapter 22 goes into great detail on floating-point math

and the use of the bc utility. First, let’s look at the following free -m output so that we
know what we are dealing with:

free -m

total used free shared buffers cached

Mem: 52 Bill 0 0 0 18

-/+ buffers/cache: 32 19

Swap: 2A 14 197

The row of output that we are interested in is the last line of output, beginning with

Swap :. This output shows that we have a total of 211MB of swap space where 14MB is
currently being used. This leaves 197MB of free swap space. We have three out of five
pieces of our required output, so we need to calculate only the percentage of free swap

space and the percentage of used space. For these calculations we need to look at the
use of the bc utility.

The bc utility is a precision calculator language that is a Unix level built-in program.

For our purposes we have two techniques for using the be utility. We can place our

Monitoring Paging and Swap Space

mathematical statement in an echo statement and pipe the output to be. The second
option is to use a here document with command substitution. For this exercise we are

going to use the second option to look at the use of a here document.

To calculate the percentage of used swap space we divide the total amount of swap
space into MB of used swap space and multiply this total by 100, as shown in the fol-
lowing statement:

(SW_USED / SSW_TOTAL) * 100

This looks simple enough, but how do we get a floating-point output in a shell
script? This is where the be utility comes in. There is an option in be called scale. The

scale indicates how many decimal places to the right of the decimal point that we want

to use in the calculation. In our case we need to set scale=4. Now you are asking, Why

four places? Because we are multiplying the result of the division by 100 we will have
only two active decimal places with data, and the last two will have zeros in the end.

Let’s look at the following example to clear up any confusion:

PERCENT_USED=$ (bc <<EOF

scale=4

(SSW_USED / SSW_TOTAL) * 100

EOF

)

From the previous values, the result of this calculation is 7.1000 percent of used

space because $SW_USED is 15MB and $SW_TOTAL is 211MB. Now let’s look more

closely at the use of the bc utility. We are using command substitution with an enclosed

here document. A here document has the following form:

command <<LABEL

Input to the command

LABEL

This is a neat way of providing input to a command that usually requires user input,

and this is why it is referred to as a here document, because the input is here, as

opposed to being entered by the user at the command line.

In our case we use the here document inside command substitution, which is speci-

fied by the $ (commands) notation. The result is assigned to the PERCENT_USED vari-

able. The calculation of the percent free is done in the same manner except that this

time we divide the MB of free space into the MB of total swap space, as shown here.

PERCENT_FREE=$ (bc <<EOF

scale=4

(SSW_FREE / SSW_TOTAL) * 100

EOF

)

162 Chapter 6

In our case, using the previously acquired data we get a result of 92.4100 percent.

With these two calculations we have all of the data required for our standard output.

We will cover the be command, and we will use it again in the next section that deals

with the Solaris swap space monitor. Take a look at the entire shell script in Listing 6.10,

and pay particular attention to the boldface type.

#!/usr/bin/ksh

SCRIPT: linux _swap_mon.ksh

AUTHOR: Randy Michael

DATE: 5/31/2002

REV kde

PLATFORM: Linux Only

PURPOSE: This shell script is used to produce a report of

the system's swap space statistics including:

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

REV LIST:

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

+ OF OH OH OH OH OH OH HF OH HH HH HH HH HK HK HH HK HK HK HT

HHEHHHEREEERPRRRRERE EERE EERE ERHEEESEPRREEEEEREREAEPE REESE HH

HHEHHHHHHEEHHHEE HE DEFINE VARIABLES HERE ###H####HHHEHHHEEPEEEE

THISHOST=S (hostname) # Host name of this machine

PC_LIMIT=65 # Upper limit of Swap space percentage

before notification

HEREEHEERERERHPPREREEEERRRREEEPEEHEEERRREEEEPEEERRERHEEHH SH

HEHEHE HHEH HEHEHE INITIALIZE THE REPORT ######HHHHHHEHEH EER HH

echo “\nSwap Space Report for S$THISHOST\n"

date

HH EE HE HE EH HE HE aE aE aE HE EE HEE HEHEHE HEHEHE HEE EE EH HE aE EE

HHEHHHEHHHEHH CAPTURE AND PROCESS THE DATA ########HES#HEEHH

free -m | grep -i swap | while read junk SW_TOTAL SW_USED SW_FREE

Listing 6.10 Linux_swap_mon.ksh shell script listing.

Monitoring Paging and Swap Space 163

do

Use the bec utility in a here document to calculate

the percentage of free and used swap space.
d

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

PERCENT_FREE=$ (bc <<EOF

scale=4

(SSW_FREE / SSW_TOTAL) * 100

EOF

)

Produce the rest of the paging space report:

echo "\nTotal Amount of Swap Space:\t${SW_TOTAL}MB”

echo "Total KB of Swap Space Used:\t${SW_USED}MB"

echo "Total KB of Swap Space Free:\t${SW_FREE}MB"

echo "\nPercent of Swap Space Used: \t${PERCENT USED} %"

echo "\nPercent of Swap Space Free:\t${PERCENT_ FREE}%"

Grab the integer portion of the percent used to

test for the over limit threshold

INT_PERCENT_USED=$ (echo $PERCENT_USED | cut -d. -f1)

if ((PC_LIMIT <= INT _ PERCENT _USED))

then

Swap space limit has exceeded the threshold, send

notification

tput smso # Turn on reverse video!

echo "\n\nWARNING: Paging Space has Exceeded the ${PC_LIMIT}%

Upper Limit! \n"

tput rmso # Turn off reverse video!

£i

done

echo "in"

Listing 6.10 Linux_swap_mon.ksh shell script listing. (continued)

Notice the while read portion of the free -m command. We use the variable junk as

a place to store the first field, which contains Swap: . This is the same technique that we

164 Chapter 6

used in the HP-UX section of this chapter. If we had additional data fields after the MB

of free swap space, we could use a junk2 variable to hold this extra unneeded data, too.

Also notice that our be calculations are done inside our while read loop. Even

though I have indented everything else inside the loop for readability, you cannot use
indention with these documents! If you do indent anything, the calculation will fail,

and this is extremely difficult to troubleshoot because it looks as if it should work.

Let’s take a look at the shell script in Listing 6.10 in action in Listing 6.11.

./linux_swap_mon.ksh

Swap Space Report for bambam

Sun dun 9 23:01:06 EDT 2002

Total Amount of Swap Space: 211MB

Total KB of Swap Space Used: 16MB

Total KB of Swap Space Free: 195MB

Percent of Swap Space Used: 7.5800%

Percent of Swap Space Free: 92.4100%

Listing 6.11 Linux_swap_mon.ksh in action.

Notice that the last two numbers in the percentage of used and free swap space are

zeros. I am leaving the task of removing these two numbers as an exercise for you to
complete. Now let’s move on to the Solaris swap space monitor.

Solaris Swap Space Monitor

The Solaris operating system does swapping, and the command to gather swap space

statistics is swap -s. The output of the swap -s command is all ona single line, which is

different from any of the previously studied operating systems. Additionally, all of the

swap space statistics are measured in KB as opposed to MB, which is our required mea-

surement. Before we go any further, let’s look at the Solaris swap -s output.

Swap -s

total: 56236k bytes allocated + 9972k reserved = 66208k used, 523884k

available

As you can see, the output is a little difficult to understand. We are interested in two

fields for our purposes, the ninth field, 66208k, and the eleventh field, 523884k. The

ninth field represents the total amount of used swap space, and the eleventh field rep-
resents the free swap space, where both are measured in KB. We are not interested in

Monitoring Paging and Swap Space 165

the amount of reserved and allocated swap space individually, but in the total, which
is located in the ninth field.

When I say the ninth and eleventh fields I am specifying that each field in the out-
put is separated by at least one blank space, also called white space. From this defini-

tion it is intuitively obvious that total :, +, =,and used are all individual fields in the

command output. This is important to know because we are going to use two awk
statements to extract the $9 and $11 fields.

As in the Linux section, we do not have any percentages given in the output so we

must calculate the percentage of free swap space and the percentage of used swap

space. If you looked at the Linux section, then you already know how to use the bc util-

ity. If you jumped to the Solaris section, we will cover this again here.

The bc utility is a precision calculator language that is a Unix level built-in program.

For our purposes, we have two techniques for using the be utility. We can place our

mathematical statement in an echo statement and pipe the output to be. The second

option is to use a here document with command substitution. For this exercise we are

going to use the second option and look at the use of a here document.

To calculate the percentage of used swap space we divide the total amount of swap

space into MB of used swap space and multiply this total by 100, as shown in the fol-

lowing statement:

(SSW_LUSED / SSW_TOTAL) * 100

This looks simple enough, but how do we get a floating-point output in a shell

script? This is where the bc utility comes in. There is an option in be called scale. The

scale indicates how many decimal places to the right of the decimal point that we want
to use in the calculation. In our case we need to set scale=4. Now you are asking, Why

4 places? Because we are multiplying the result of the division by 100, we will have

only two active decimal places with data after this multiplication, and the last two will

have zeros. Let’s look at this next example to clear up any confusion.

PERCENT_USED=$ (bc <<EOF

scale=4

(SSW_USED / SSW_TOTAL) * 100

EOF

)

From the previous values the result of this calculation is 11.2200 percent of used

space because $SW_USED is 66MB and $SW_TOTAL is 590MB. Now let’s look more
closely at the use of the bc utility. We are using command substitution with an enclosed

here document. A here document has the following form:

command <<LABEL

Input to the command

LABEL

166 Chapter 6

This is a neat way of providing input to a command that usually requires user input,

and this is why it is referred to as a here document—the input is here, as opposed to

being entered by the user at the command line.
In our case, we use the here document inside command substitution, which is spec-

ified by the $ (commands) notation. The result is assigned to the PERCENT_USED vari-

able. The calculation of the percent free is done in the same manner except that this
time we divide the MB of free space into the MB of total swap space, as shown in the
code that follows. .

PERCENT_FREE=$ (bc <<EOF

scale=4

(SSW_FREE / SSW_TOTAL) * 100

EOF

)

In our case, the percentage of used swap space is 11.220 percent, and the percentage

of free swap space is 88.7800 percent. Of course, to get the total swap space we added

the $9 and $11 fields together. The entire shell script is shown in Listing 6.12.

#!/usr/bin/ksh

SCRIPT: SUN_Swap_mon.ksh

AUTHOR: Randy Michael

DATE: 5/31/2002

Ea Se NN dea UN ig

PLATFORM: Solaris Only

ci

PURPOSE: This shell script is used to produce a report of

the system's swap space statistics including:

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

REV LIST:

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

HHPHEFHEERPHEEHHEEPPREEHEEEHHREPHER RAE PEEEEHER PRES R RHEE HH

HHHTEEHHHHEHEHEH DEFINE VARIABLES HERE ######## EHH HHREHHHH

PC_LIMIT=65 # Upper limit of Swap space percentage

Listing 6.12 SUN_swap_mon.ksh shell script listing.

Monitoring Paging and Swap Space 167

before notification

THISHOST=S (hostname) # Host name of this machine

aE aE AEE EE HE AE HEE ARE AEE HE HE HEHE aE HE aA

HHHHHHHHHHHEHHHH INITIALIZE THE REPORT ########HHHHHHHEH HHH

echo "\nSwap Space Report for $THISHOST\n"

date

HHFHHHHEHHFPHRREHREEHESHHEEHSEEHREPHEPHHEPHHREHEHEPHHEHH HHH

HHHHHHHHHHHHH CAPTURE AND PROCESS THE DATA ######8## 44 #FFHHH

Use two awk statements to extract the $9 and $11 fields

from the swap -s command output

SW_USED=$(swap -s | awk '{print $9}' | cut -dk -f1)

SW_FREE=$(swap -s | awk '{print $11}' | cut -dk -£1)

Add SW_USED to SW_FREE to get the total swap space

((SW_TOTAL = SW_USED + SW_FREE))

Calculate the percent used and percent free using the

be utility in a here documentation with command substitution

PERCENT USED=$(bc <<EOF

scale=4 :

($SW_USED / $SW_TOTAL) * 100

EOF

)

PERCENT _FREE=S (bc <<EOF

scale=4

(SSW_FREE / SSW_TOTAL) * 100

EOF

)

Convert the KB measurements to MB measurements

((SW_TOTAL_MB = SW_TOTAL / 1000))

((SW_.USED MB = SW_USED / 1000))

((SW_FREE_MB = SW_FREE / 1000))

Produce the remaining part of the report

echo "\nTotal Amount of Swap Space: \t${SwW_TOTAL_MB}MB"

echo "Total KB of Swap Space Used: \t${SW_USED_MB}MB"

Listing 6.12 SUN_swap_mon.ksh shell script listing. (continues)

168 Chapter 6

echo "Total KB of Swap Space Free:\t${SW_FREE_MB}MB"

echo "\nPercent of Swap Space Used:\t${PERCENT_USED}%"

echo "\nPercent of Swap Space Free:\t${PERCENT_FREE}%"

Grab the integer portion of the percent used

INT_PERCENT_USED=$ (echo $SPERCENT_USED | cut -—d. -£1)

Check to see if the percentage used maximum threshold

has been exceeded

et CC PC_LIMID <=" INDY PERCENTUSED! :):)

then

Percent used has exceeded the threshold, send notification

tput smso # Turn on reverse video!

echo "\n\nWARNING: Swap Space has Exceeded the ${PC_LIMIT}% Upper

Limit! \n"

tput rmso # Turn off reverse video!

Ei

echo "= \n”

Listing 6.12 SUN_swap_mon.ksh shell script listing. (continued)

Notice how we used two awk statements using two separate reads of the swap -s

command output. These two measurements occur in such a short amount of time that

it should not matter; however, you may want to change the method to a single read

and store the output in a variable or file; I’m leaving this modification task for you to

do as an exercise. In the next step we add the KB of free swap space to the KB of used
swap space to find the total swap space on the system.

With these three KB measurements we calculate the percentage of used and free
swap space using the bce utility inside a command substitution statement while using

a here document to provide input to the be command. There is still one more step

before we are ready to print the report—convert the KB measurements to MB. We only

need to divide our KB measurements by 1,000, and we are ready to go. Next the

remaining portions of the report are printed, and then the test is made to see if the per-

cent used has exceeded the threshold limit, specified by the PC_LIMIT variable. If the

percentage used limit is exceeded, then reverse video is turned on, the warning mes-

sage is displayed, and reverse video is turned back off. The SUN_swap_mon. ksh shell

script is in action in Listing 6.13.

Monitoring Paging and Swap Space 169

./SUN_swap_mon.ksh

Swap Space Report for wilma

Mon Jun 10 03:50:29 EDT 2002

Total Amount of Swap Space: 590MB

Total KB of Swap Space Used: 66MB

Total KB of Swap Space Free: 524MB

Percent of Swap Space Used: 11.2200%

Percent of Swap Space Free: 88.7800%

Listing 6.13 SUN _swap_mon.ksh script in action.

Notice that the percentages are given as floating-pointing numbers, but there are
two extra zeros. These two extra zeros are the result of specifying in the be here docu-

ment that the scale=4 and then multiplying the result by 100. As an exercise, add a

command to remove the two extra zeros. Are we finished? Not yet; we still need a sin-

gle shell script that will run on all four operating systems. Let’s move on to the all-in-
one section.

All-in-One Paging and Swap Space Monitor

Let’s put everything together by making the four previous scripts into functions and

use the uname command in a case statement to determine the Unix flavor, and thus

which function to run.

Let’s look at this combined shell script, and we will go over the details at the end.

The combined shell script is called al1l-in-one_swapmon. ksh and is shown in List-

ing 6.14.

#! /usr/bin/ksh

SCRIPT: all-in-one_swapmon.ksh

AUTHOR: Randy Michael

DATE: 6/6/2002

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continues)

170 Chapter 6

REV: 2.0.P

PLATFORM: AIX, Solaris, HP-UX and Linux Only ~

PURPOSE: This shell script is used to produce a report of

the system's paging or swap space statistics including:

Total paging space in MB, MB of Free paging space,

MB of Used paging space, % of paging space Used, and

% of paging space Free

REV LIST:

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

Sb $6 tk OH OHHH HE HEE HEHEHE OH

HHEHHRHEEHRERERERREEE RRR REAR TERRE ERE RRR EER RE EHR E EERE EERE EH

HHHHHHHHHHHHHHHH DEFINE VARIABLES HERE ####HHHHHHEEEEE HEHEHE

PC_LIMIT=65 # Upper limit of Swap space percentage

before notification

THISHOST=S$ (hostname) # Host name of this machine

HEFHHHHEEFHEPHEEEHAHEESEHEEEEEEHEEEESHHHEESERHEREEFEHEHEEE EHH

HHHHHEHHHHEFHEHHHHE INITIALIZE THE REPORT #######4#4 #FFHHHHEE EH

echo "\nSwap Space Report for STHISHOST\n"

date

HHHHHHERHEREEPRERR EERE ER RRRR RRA E RHEE ERE R SERRE EEE H RHEE EEE EH

HHEPHHHPHEEEHEHS DEFINE FUNCTIONS HERE #####4 #44 HEHEHE

function SUN_swap_mon

if

HHHHFHHEHHEHH CAPTURE AND PROCESS THE DATA ###### HH 42 #4 ###

Use two awk statements to extract the $9 and $11 fields

from the swap -s command output

SW_USED=$ (swap -s | awk '‘{print $9}' | cut -dk -f1)

SW_FREE=$ (swap -s | awk ‘{print $11}' | cut -dk -f1)

Add SW_USED to SW_FREE to get the total swap space

((SW_TOTAL = SW_USED + SW_FREE))

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

Monitoring Paging and Swap Space 171

Calculate the percent used and percent free using the

be utility in a here documentation with command substitution

4

PERCENT _USED=$ (bc <<EOF
scale=4

(SSW_LUSED / SSW_TOTAL) * 100

EOF

)

PERCENT_FREE=$ (bc <<EOF

scale=4

(SSW_FREE / SSW_TOTAL) * 100

EOF

)

Convert the KB measurements to MB measurements

((SW_TOTAL_MB

((SW_USED_MB

((SW_FREE_MB

SW_TOTAL / 1000))

SW_USED / 1000))

SW_FREE / 1000))

Produce the remaining part of the report

echo "\nTotal Amount of Swap Space:\t${SwW_TOTAL MB}MB"

echo "Total KB of Swap Space Used:\t${SwW_USED_MB}MB"

echo "Total KB of Swap Space Free:\t${SW_FREE_MB}MB"

echo "\nPercent of Swap Space Used: \t${PERCENT_USED}$%"

echo "\nPercent of Swap Space Free:\t${PERCENT_FREE}%"

Grab the integer portion of the percent used

INT_PERCENT_USED=S$ (echo SPERCENT USED | cut =a. =f)

Check to see if the percentage used maximum threshold

has been exceeded

2£((2 PC LIM? <= IND PERCENT: USED))

then

Percent used has exceeded the threshold, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Swap Space has Exceeded the ${PC_LIMIT}% Upper

Limit! \n"

tput rmso # Turn off reverse video!

£2

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continues)

172 Chapter 6

echo." \n"

}

HHHHHEHH ARREARS EERE EEE HHH HHH EH EAE HH EH EHH

function Linux_swap_mon

{

free -m | grep -i swap | while read junk SW_TOTAL SW_USED SW_FREE

do

Use the be utility in a here document to calculate

the percentage of free and used swap space.

PERCENT_USED=$ (bc <<EOF

scale=4

(S$SW_USED / SSW_TOTAL) * 100

EOF

)

PERCENT_FREE=$ (bc <<EOF

scale=4

(SSWOFREE / SSW. TOTAL): * 100

EOF

)

Produce the rest of the paging space report:

echo "\nTotal Amount of Swap Space:\t${SW_TOTAL}MB"

echo “Total KB of Swap Space Used: \t${SW_USED}MB"

echo “Total KB of Swap Space Free:\t${SW_FREE}MB"

echo "\nPercent of Swap Space Used:\t${PERCENT_USED}%"

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%"

Grab the integer portion of the percent used to

test for the over limit threshold

INT_PERCENT_USED=$ (echo $PERCENT_USED | cut -d. -f1)

2£ Cl PC LIMIT <= INP PERCENT: USED))))

then

tput smso

echo "\n\nWARNING: Paging Space has Exceeded the \

${PC_LIMIT}% Upper Limit! \n"

tput rmso

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

Monitoring Paging and Swap Space 173

£2)

done

echo," \n"

}

HHHPHHEREE PR ERE EERE ERHHAEHEHEP PEPER ER HEHEHE HEHEHE HEH HHH

function HP_UX_swap_mon

{

Start a while read loop by using the piped in input from

the swapinfo -tm command output.

swapinfo -tm | grep dev | while read junk SW_TOTAL SW_USED \

SW_FREE PERCENT_USED junk2

do

Calculate the percentage of free swap space

((PERCENT_FREE = 100 - $(echo $PERCENT_USED | cut -d% -f1)))

echo "\nTotal Amount of Swap Space:\t${SW_TOTAL}MB"”

echo "Total MB of Swap Space Used:\t${SW_USED}MB"

echo "Total MB of Swap Space Free:\t${SW_FREE}MB"

echo "\nPercent of Swap Space Used:\t${PERCENT_USED}"

echo "\nPercent of Swap Space Free:\t${PERCENT_FREE}%"

Check for paging space exceeded the predefined limit

if ((PC_LIMIT <= $(echo $PERCENT_USED | cut -d% -f1)))

then

Swap space is over the predefined limit, send notification

tput smso # Turn on reverse video!

echo "\n\nWARNING: Swap Space has Exceeded the\

${PC_LIMIT}% Upper Limit! \n"

tput rmso # Turn reverse video off!

fi

done

echo. %\n*"

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continues)

174 Chapter 6

HHERHPERPRE ERATE RARER AHHH RAE RRE EERE EE ERR HEHE HAE

function AIX_paging_mon

{

HHHHHEHHHEHHHEHHHH DEFINE VARIABLES HERE #######RHPHEEHEE EEE

PAGING STAT=/tmp/paging_stat.out # Paging Stat hold file

HHHHHHHHHHHHH CAPTURE AND PROCESS THE DATA ###H####HTHEHEEETE

Load the data in a file without the column headings

Isps -s | tail +2 > $PAGING_STAT

Start a while loop and feed the loop from the bottom using

the SPAGING STAT file as redirected input

while read TOTAL PERCENT

do

Clean up the data by removing the suffixes

PAGING MB=$ (echo S$TOTAL | cue -di'MB* fl)

PAGING_PC=$ (echo $PERCENT | cut -d% -f1)

Calculate the missing data: Free, MB used and MB free

((PAGING PC_FREE = 100 - PAGING _PC))

((\MBCUSED) =" PAGING MB *\\ PAGING. PG. 100°.))

((MB_FREE = PAGING MB - MB_USED))

Produce the rest of the paging space report:

echo "\nTotal MB of Paging Space:\t$TOTAL"

echo "Total MB of Paging Space Used:\t${MB_USED}MB"

echo "Total MB of Paging Space Free:\t${MB_FREE}MB"

echo "\nPercent of Paging Space Used:\t${PERCENT}"

echo “\nPercent of Paging Space Free:\t${PAGING PC _FREE}%"

Check for paging space exceeded the predefined limit

LEC (PCS DIMEN <= (PAGING PC)))

then

Paging space is over the limit, send notification

tput smso # Turn on reverse video!

echo "\n\nWARNING: Paging Space has Exceeded the ${PC_LIMIT}%

\

Upper Limit! \n"

tput rmso # Turn off reverse video

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

Monitoring Paging and Swap Space 175

£3:

done < $PAGING STAT

s

rm -£ SPAGING STAT

Add an extra new line to the output

echo "\n"

3

HHHHTHEPHEPEE ESE PPE RHE RHE RHE RHHE RHE RP EEE P EE HH

HHEHHEPHHHEEEEE EHH BEGINNING OF MAIN ##########HHHHHHHHH HEH

HHHPHHHPEEPEPHPEERHE RHEE HE ERE RHE EPH EPE PPE ERE H H H o

Find the Operating System and execute the correct function

case $(uname) in

AIX) AIX _paging_mon

oo HP_UX_swap_mon

ae Linux_swap_mon

ea

5 echo "\nERROR: Unsupported Operating System...EXITING...\n"

exits 1

esac

End of all-in-one_swapmon.ksh

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

As you can see, there is not much to converting a shell script into a function. The

only thing required is that you extract out of each shell script the core code that makes
up the shell script. The common code should remain in the main body of the new shell

script. In our example, the common parts are the PC_LIMIT, which defines the over

limit percentage threshold, and the hostname of the machine. Everything else is unique

to each of the four shell scripts and functions here.
To turn a shell script into a function, all you need to do is a cut and paste in your

favorite editor and copy the main body of the shell script into a new shell script. This

new function can be enclosed into a function in two ways, as follows:

176 Chapter 6

function was_a_shell_ script

{

shell_script_code_here

}

OR

was_a_shell_script ()

{

shell_script_code_here

}

I tend to use the function definition instead of the C language type definition. This
is a personal choice, but both types of function definitions produce the same result. If
you are a C programmer you will most likely prefer the C type notation. I like to use the
function definition so that a person coming behind me trying to edit the shell script
will know intuitively that this is a function because it is spelled out in the definition.

Once we have each of the four functions defined inside a single shell script, we need
to know only on which operating system that we are running and to execute the appro-

priate function. To determine the Unix flavor, we use the uname command. The fol-

lowing case statement runs the correct swap/paging function as defined by the Unix

flavor.

case $(uname) in

AIX) AIX_paging_mon

alee HP_UX_Swap_mon

ee, Linux_swap_mon

Aaa SUN_swap_mon

“ echo "\nERROR: Unsupported Operating System...EXITING...\n"

esac

Notice that if the Unix flavor is not AIX, HP-UX, Linux, or SunOS, the shell script

gives an error message and exits with a return code of 1.

Other Options to Consider

As usual, we can always improve on a shell script, and this chapter is no exception.

Each of these shell scripts could stand a little improvement one way or another because
there is not just one way to do anything! I have noted a few suggestions here.

Monitoring Paging and Swap Space 177

Event Notification

The only event notification I have included in these shell scripts and functions is a
warning message presented to the user in reverse video. I usually add email notifica-
tion to my alphanumeric pager also. Just use your preferred method of remote notifi-
cation, and you will have the upper hand on keeping your systems running smoothly.

Log File

A log file is a great idea for this type of monitoring. I suggest that any time the thresh-

old is crossed that a log file receives an appended message. This is simple to do by
using the tee -a command in a pipe. See the man page on tee for more information.

Scheduled Monitoring

If you are going to do paging /swap monitoring, it is an extremely good idea to do this

monitoring on a scheduled basis. Different shops have different requirements. I like to
monitor every 15 minutes from 6:00 A.M. until 10:00 P.M. This way I have covered every-

one from the East Coast to the West Coast. If you have locations in other time zones

around the world then you may want to extend your coverage to include these times

as well. The monitoring is up to you, but it is best to take a proactive approach and find

the problem before someone tells you about it. You may also discover some trends of
heavy system loads to help in troubleshooting.

Summary |

In this chapter we started out with a predetermined output that we had to adhere to for

any Unix flavor, and we held to it. Each operating system presented us with a new

challenge because in each instance we lacked part of the required data and we had to
do a little math to get into the correct format. Each of these shell scripts is a unique
piece of work, but in the end we combined everything into a single multi-OS function-

ing shell script that determines what the Unix flavor is and executes the proper func-
tion to get the desired result. If the Unix flavor is not AIX, HP-UX, Linux, or Solaris,

then the shell script gives an error message and exits cleanly.
In this chapter we covered various techniques to extract and calculate data to pro-

duce an identical output no matter the Unix flavor. I hope you gained some valuable

experience with dealing with the challenge of handling different types of data to pro-
duce a standard report. This type of experience is extremely important for heteroge-

neous environments. In the next chapter, we will look at some techniques to monitor

the load on a system.

Monitoring System Load

Have you ever seen a system start slowing down as the wait state and uptime stats rise,

and finally the system crashes? I have, and it is not a pretty sight when all of the heads

start popping up over the cubes. In this chapter, we are going to look at some tech-

niques to monitor the load on a Unix system. When the system is unhappy running

under a heavy load, there are many possible causes. The system may have a runaway

process that is producing a ton of zombie processes every second, or it may have been
up for more than a year due to the competition between System Administrators to see

who can run his or her system the longest without a reboot. In any case, we want to be

proactive in catching a symptom in the early stages of loading down the system.

There are really only three basic things to look at when monitoring the load on the
system. First is to look at the load statistics produced as part of the uptime command.

This output indicates the average number of jobs in the run queue over the last 5, 10,

and 15 minutes in AIX and 1, 5, and 15 minutes for HP-UX, Linux, and Solaris. The sec-

ond measurement to look at is the percentages of CPU usage for system/kernel,

user/application, I/O wait state, and idle time. These four measurements can be

obtained from the iostat, vmstat, and sar outputs. We will look at each of these com-

mands individually. The final step in monitoring the CPU load is to find the CPU hogs.

Most systems have a top like monitoring tool that shows the CPU process users in

descending order of CPU usage.
We can also use the ps auxw command that displays CPU % usage for each process

in descending order from the top. We will look at each of these in this chapter. First,
let’s look at the command syntax for the commands we use.

179

180 Chapter 7

Syntax

As usual with Unix, there is not just one way to monitor a system for load. We can use

any of the following commands to get system load statictics: uptime, iostat, sar, and

vmstat. To illustrate the ability of each of these commands, we are going to take a look

at each one of the commands individually.

Syntax for uptime
Using the uptime command is the most direct method of getting a measurement of the

system load. Part of the output of the uptime command is a direct measure of the aver-

age length of the run queue over the last 5 minutes, last 10 minutes, and the last mea-

surement is averaged over 15 minutes on AIX. For HP-UX, Linux, and Solaris the uptime

command is a direct measure of the average length of the run queue over the last 1

minute, 5 minutes, and the last measurement is averaged over 15 minutes. The length of

the run queue is a direct measurement of how busy the CPU is by the number of
runnable processes waiting for CPU time, as an average, over a period of time.

We do need to put a bit of logic into the use of the uptime command because the out-

put field positions vary depending on how long it has been since the last system reboot

and, possibly, which Unix flavor we are running. We are going to test each of these

options and produce a table of the field to extract as it relates to the Unix flavor and the

time since the last system reboot. We have five possible variations to look at in this

uptime output as you will see later. The first is 1-59 minutes, the second is 1-23 hours,

and the third measurement is when the system has been up for more than 24 hours.

After the system has been up for at least one day, then we have to consider hours and

minutes again! Believe it or not, the load fields continue to float during each day. When

the system reaches an exact hour, to the minute, of the reboot day, then an hrs field is

added; this is true for the anniversary first hour, too. In this case, the min field is added

along with the day field. Follow along through the next few sections to see how the

fields vary during these five stages.

AIX

This uptime output is shown when the AIX system has been up for 26 minutes. The

field we want is in the $9 position.

uptime

01:46PM up 26 mins, 7 users, load average: 3.11, 1.38, 0.58

This uptime output is shown when the AIX system has been up for 1 hour and 22

minutes. The field we want is in the $8 position.

uptime

01:08PM up 1:22, 6 users, load average: 2.74, 1.38, 0.59

This uptime output is shown when the AIX system has been up for 2 days, 22 hours,
and 3 minutes. The field we want is in the $10 position.

Monitoring System Load _ 181

uptime

04:59PM up 2 days, 22:03, 4 users, load average: 1.51, 1.67, 1.70

This uptime output is shown when the AIX system has been up for 21 days and

exactly 17 minutes. The field we want is in the $11 position.

uptime

09:16PM up 21 days, 17 mins, 9 users, load average: 1.31, 1.82, 1.61

This uptime output is shown when the AIX system has been up for 21 days and

exactly 6 hours. The field we want is in the $11 position.

uptime

09:16PM up 21 days, 6 hrs, 2 users, load average: 1.01, 1.62, 1.94

From these uptime command outputs on my AIX machine, notice the last three

columns. The load average is the average number of runnable processes over the pre-
ceding 5-, 10-, and 15-minute intervals. AIX is different in this respect because our

other Unix flavors show the load average over the last 1-, 5-, and 15-minute intervals.

HP-UX

This uptime output is shown when the HP-UX system has been up for 17 minutes. The

field we want is in the $9 position.

uptime

4:33am up 17 mins, 3 users, load average: 1.69, 1.36, 0.86

This uptime output is shown when the HP-UX system has been up for 1 hour and

38 minutes. The field we want is in the $8 position.

uptime

5eS4am sup 12387, 3 users, load average: 1.67, 0.60, 0.38

This uptime output is shown when the HP-UX system has been up for 1 day, 5

hours, and 32 minutes. The field we want is in the $10 position.

uptime

5:49pm up 1 day, 5:32, 3 users, load average: 4.25, 1.85, 0.76

This uptime output is shown when the HP-UX system has been up for 4 days and

exactly 22 minutes. The field we want is in the $11 position.

uptime

9:16pm up 4 days, 22 mins, 9 users, load average: 2.33, 1.99, 1.30

This uptime output is shown when the HP-UX system has been up for 4 days and

exactly 5 hours. The field we want is in the $11 position.

182 Chapter 7

uptime

9:16pm up 4 days, 5 hrs, 2 users, load average: 1.01, 1.62, 1.94

From the uptime commands output on my HP-UX machine, notice the last three
columns. The load average on an HP-UX machine shows the average number of

runnable processes over the preceding 1-, 5-, and 15-minute intervals.

Linux

This uptime output is shown when the Linux system has been up 20 minutes. The field

we want is in the $9 position.

uptime

12:17pm up 20 min, 4 users, load average: 2.29, 2.17, 1.51

This uptime output is shown when the Linux system has been up for 1 hour and 7

minutes. The field we want is in the $8 position.

uptime

1:04pm up 1:07, 4 users, load average: 1.74, 2.10, 2.09

This uptime output is shown when the Linux system has been up for 12 days, 19
hours, and 3 minutes. The field we want is in the $10 position.

uptime

4:40pm up 12 days, 19:03, 4 users, load average: 1.52, 0.47, 0.16

This uptime output is shown when the Linux system has been up for 14 days and
exactly 17 minutes. The field we want is in the $11 position.

uptime

9:16pm up 14 days, 17 mins, 9 users, load average: 1.31, 1.82, 1.61

This uptime output is shown when the Linux system has been up for 14 days and
exactly 5 hours. The field we want is in the $11 position.

uptime

9:16pm up 14 days, 5 hr, 2 users, load average: 1.01, 1.69, 1.84

From the uptime command output on my Linux machine, notice the last three

columns. The load average on a Linux machine shows the average number of runnable

processes over the preceding 1-, 5-, and 15-minute intervals. For Linux we need to

extract the $11 field from the uptime output to look at the CPU load over the last
1-minute interval.

Monitoring System Load 183

Solaris

This uptime output is shown when the Solaris system has been up 11 minutes. The
field we want is in the $9 position.

uptime

12:31pm up 11 min(s), 1 user, load average: 1.01, 0.75, 0.38

This uptime output is shown when the Solaris system has been up 1 hour and
30 minutes. The field we want is in the $8 position.

uptime

1:50pm up 1:30, 1 user, load average: 1.35, 1.87, 1.95

This uptime output is shown when the Solaris system has been up for 1 day, 5 hours,

and 41 minutes. The field we want is in the $10 position.

uptime

6:01pm up 1 day(s), 5:41, 1 user, load average: 2.70, 1.27, 0.53

This uptime output is shown when the Solaris system has been up for 2 days and
exactly 25 minutes. The field we want is in the $11 position.

uptime

9:16pm up 2 day(s), 25 mins, 9 users, load average: 3.31, 2.83, 2.40

This uptime output is shown when the Solaris system has been up for 2 days and
exactly 7 hours. The field we want is in the $11 position.

uptime

9:16pm up 2 days, 7 hrs, 2 users, load average: 2.02, 1.92, 0.97

From the uptime command output on my Solaris machine, notice the last three

columns. The load average on a Solaris machine shows the average number of

runnable processes over the preceding 1-, 5-, and 15-minute intervals.

What Is the Common Denominator?

In each case, we are interested in the newest available data, which is the last 5 minutes

on an AIX machine and the last minute on HP-UX, Linux, and Solaris machines. The

easiest way to look at this floating field is to make a table of the positional parameter’s

placement as related to the Unix flavor and the amount of time since the last system

reboot. Once we can see how the parameter is moving, we can build some logic into the
script to extract the latest load statistics. The field data is shown in Table 7.1.

184 Chapter 7

Table 7.1 Field Movement Based on Uptime and Unix Flavor

TIME SINCE

LAST REBOOT: UNIX FLAVOR

HP-UX LINUX SOLARIS |

Minutes $9 $9 $9 $9

Hours $8 $8 $8 $8

Day(s) $10 $10 $10 $10

Day(s) on the
exact reboot hour
anniversary $11 $11 $11 $11

Day(s) on the first
59 minutes of the
reboot hour anniversary $11 $11 $11 $11

As you can see in Table 7.1, the most current load field varies all the time. It looks as

if we are in luck, though, for the operating system! We do not have to worry about the

Unix flavor, but we do have to test the time since the last system reboot. From the pre-
vious uptime command outputs, did you notice anything that will help us determine

which field we need to extract? It turns out that we have an indicator for each of the
five possible field values in the uptime output. It the system has been up for less than

one hour, then we grep on min, which will pattern match on each Unix flavor output.

If the system has been up for more than 24 hours, then we grep first for day and min in

the uptime output, then day and hr, and finally just day. At the end of the chapter, I will

show you a cleaner way to do this data extraction.

Scripting an Uptime Field Test Solution

With the five defined tests we can use grep to extract the correct field from the uptime

command output. Let’s look at the code in Listing 7.1 to see how this works.

#!/bin/ksh

SCRIPT: uptime_fieldtest.ksh

AUTHOR: Randy Michael

DATE: 07/28/2002

PLATFORM: Any Unix

PURPOSE: This shell script is used to demonstrate how the

average load statistics field shifts depending on

how long it has been since the last system reboot.

Listing 7.1 uptime_fieldtest.ksh shell script listing.

Monitoring System Load 185

The options are "min", "day", "hr" and combinations.
If all other tests fail then the system has been running

for 1-23 hours.

5

echow\n") 4 merits one blank new line to the screen

Show a current uptime output

uptime

Find the correct field based on how long the system has been up.

if $(uptime | grep day | grep min >/dev/null)

then

FIELD=i1

elif $(uptime | grep day | grep hr >/dev/null)

then

FIELD=11

elif $(uptime | grep day >/dev/null)

then

FIELD=10

elif $(uptime | grep min >/dev/null)

then

FIELD=9

else # The machine has been up for 1 to 23 hours.

FIELD=8

£1

Display the correct field.

echo "\nField is $FIELD \n"

Listing 7.1 uptime_fieldtest.ksh shell script listing. (continued)

The shell script in Listing 7.1 shows a method of grepping out the four known

options and defaulting to the fifth option field if the system has been up for 1-23 hours

because there is nothing to grep on. This is the method that is used in the shell script to
monitor the system load using the uptime command. The remaining load monitoring

techniques do not require any special treatment of positional parameters in the com-

mand output.
Note: In finding the floating fields in the uptime command output, I hope you real-

ize that you need to pay careful attention to each command’s output. What looks like

a simple, normal, always-the-same output can trick you into programming errors into

a shell script without really knowing. The exact error that is produced will likely

186 Chapter 7

depend on when the system was last rebooted as related to when the shell script was

written and tested. |

Syntax for iostat

To get the CPU load statistics from the iostat command, we have to be a little flexible

between Unix flavors. For AIX and HP-UX machines, we need.-to use the -t command

switch, and for Linux and Solaris we use the -c switch. Due to the Unix flavor depen-

dency, we need to first check the operating system using the uname command. Then,

based on the OS, we can assign the proper switch to the iostat command.

Let’s look at the output of the iostat command for each of our Unix flavors, AIX, HP-
UX, Linux, and Solaris.

AIX

iostat -t 10 2

ety: tear) tout avg-cpu: % user % sys % idle % iowait

0.2 33.6 2.4 Sez 84.0 5.4

Om 1188.4 16.8 83.2 0.0 0.0

In this AIX output, notice the last four fields, user, sys, idle, and Siowait.

These four fields are the ones that we want to extract. The field positions are $3, $4, $5,

and $6, and we want just the last line of the output because the first line of data is an

average since the last system reboot. Also, notice that the rows of actual data consist

entirely of numeric characters. This will become important as we look at each operat-
ing system.

HP-UX

iostat -t 10 2

etsy; cpu

tin toute Us) nisesye La

0 A) 1 0 1 97

device bps sps msps

c0té6édod 0 0.0 1)

tty cpu

CaieOue us ni sy id

0 0 41 0 59 0

device bps sps msps

c0tédd Al Mie dl te0

Monitoring System Load 187

Notice that the HP-UX output differs greatly from the AIX iostat output. The only
thing that distinguishes the CPU data from the rest of the data is the fact that the entire
row of data is numeric. This is an important characteristic of the HP-UX data, and it
will help us extract the data that we are looking for. Notice again that the first set of
statistics is an average since the last system reboot.

Linux

lostat -c 10 2

Linux 2.4.2-2 (bambam) 07/29/2002

avg-cpu: %user *%nice %SYSs %idle

0.69 0.00 0.48 98.83

avg-cpu: %user *%nice %SYS %idle

62.80 0.00 SyIf oD) 0.00

Notice that the Linux iostat command switch for CPU statistics is -c, instead of the

-t that we used for AIX and HP-UX. In this output we have the average of the CPU load

since the last reboot, and then the current data is shown in the second command out-

put. Also notice that the actual data presented is entirely numeric. It looks as if we have
a trend.

Solaris

NOState— Ce dO 2

cpu

us sy wt id

3.14 O 83

Lose WO a2

The Solaris iostat -c output shows the load average statistics since the last system

reboot on the first line of data and the most current data on the last line. Notice again

that the actual data is a row of numeric characters. Knowing that the data is always on

a row that is numeric characters allows us to greatly simplify writing this shell script.

What Is the Common Denominator?

The real common denominator for the iostat command data between each Unix flavor

is that we have a row of numeric data only. The only thing remaining is the fields for

each OS, which vary by field and content. We want just the last line of data, which is

the most current data. From this set of criteria, let’s write a little code to see how we can

specify the correct switch and set the proper fields to extract. We can do both of these
tasks with a single case statement, as shown in Listing 7.2.

188 Chapter 7

OS=S (uname)

case §$0S in

AIX|HP-UX) SWITCH='-t'

Pio

F2=4

F3=5

F4=6

echo "\nThe Operating System is $OS\n"

Linux|SunOS) SWITCH='-c'

FLl=1

F2=2

F3=3

F4=4

echo "\nThe Operating System is $0S\n"

OO

*) echo "\nERROR: $OS is not a supported operating system\n"

echo NVEO Ext PING Sin

exnt

esac

Listing 7.2 Case statement for the iostat fields of data.

Notice in Listing 7.2 that we use a single case statement to set up the environment

for the shell script to run the correct iostat command for each of the four Unix flavors.

If the Unix flavor is not in the list, then the user receives an error message before the

script exits with a return code of 1, one. Later we will cover the entire shell script.

Syntax for sar

The sar command stands for system activity report. Using the sar command we can take

direct sample intervals for a specific time period. For example, we can take 4 samples

that are 10 seconds each, and the sar command automatically averages the results for us.

Let’s look at the output of the sar command for each of our Unix flavors, AIX,

HP-UX, Linux, and Solaris.

AIX

Hesse LOMA

AIX yogi 1 5 000125604800 07/26/02

ily) BAWneNsyal Susr Ssys Swio Sidle

17:45:04 PAS Ws) 0 0

Monitoring System Load 189

17345214 25 GES: 0

de] ae ie 26 74

7 si4 Sees a 25 ahs 0 0

Average 25 Th 0 0

Now let’s look at the average of the samples directly.

sar 10 4 | grep Average

Average 26 74 0 0

HP-UX

sar 10 4

HP-UX dino B.10.20 A 9000/7115 07/29/1002

22:48:10 Susr SSYS Swio $idle

22:48:20 40 60 0 0

22:48:30 40 60 0 0

22:48:40 te ik) 0 68

22:48:50 0 0 0 100

Average 23 35 0 42

Now let’s only look at the average of the samples directly.

sar 10 4 | grep Average

Average 25 377 0 38

Linux

sar 10 4

Linux 2.4.2-2 (bambam) 07/29/2002

TO} 05:59) (PM CPU suser nice system idle

10:02:09 PM all ORO 0.00 0.00 99.90

10:02:19 PM all 0.00 0.00 OREO 992910

HOZO2: 29) PM all 40 0.00 5.00 83.60

10:02:39 PM all 60.80 0.00 HO _ BO) 2910

Average: all 18.07 0.00 LORS Haske NE

Now let’s look at the average of the samples directly.

sar 10 4 | grep Average

Average: ayia 18.07 0.00 LORS5 TALI 58

190 Chapter 7

Solaris

sar 10 4

SunOS wilma 5.8 Generic i86pc 07/29/02

23 0Le55 Susr SSsys Swio idle

23202505 ail al 0 98

BE AAD Ae M5 We Se 0 35

Mea O22 FAs) 1S 67 0 18

BES (OAS Si) 21 58) 0 Dal

Average WY 45 0 43

Now let’s look at the average of the samples directly.

sar 10 4 | grep Average

Average A? 45 0 43

What Is the Common Denominator?

With the sar command the only common denominator is that we can always grep on

the word “Average.” Like the iostat command, the fields vary between some Unix

flavors. We can use a similar case statement to extract the correct fields for each Unix

flavor, as shown in Listing 7.3.

OS=S$ (uname)

case $OS in

AIX|HP-UX| SunOS)

Linux)

z)

Pi=2

F2=3

P3=4

F4=5

echo "\nThe Operating System is $0S\n"

af

FL=3

F2=4

B3=5

F4=6

echo "\nThe Operating System is $0S\n"

te

echo “\nERROR: $OS is not a supported operating system\n"

echo "An\t. SBAETING: . 2\n"

exit 1

a7

esac

Listing 7.3 Case statement for the sar fields of data.

Monitoring System Load

Notice in Listing 7.3 that a single case statement sets up the environment for the

shell script to select the correct fields from the sar command for each of the four Unix

flavors. If the Unix flavor is not in the list, then the user receives an error message

before the script exits with a return code of 1, one. Later we will cover the entire shell

script.

Syntax for vmstat

The vmstat command stands for virtual memory statistics. Using the vmstat command,

we can get a lot of data about the system including memory, paging space, page faults,

and CPU statistics. We are concentrating on the CPU statistics in this chapter, so let’s

stay on track. The vmstat commands also allow us to take direct samples over intervals

for a specific time period. The vmstat command does not do any averaging for us,

however, we are going to stick with two intervals. The first interval is the average of

the system load since the last system reboot, like the iostat command. The last line con-

tains the most current sample.
Let’s look at the output of the vmstat command for each of our Unix flavors, AIX,

HP-UX, Linux, and Solaris.

AIX

[root:yogi]@/scripts# vmstat 30 2

kthr memory page faults cpu

rg 19) avm Ereusceu pis pO” ofr ce GNF lis! sy cs us sy id wa

ON 0223936 580 0 0 0 0 2 OOS S27 15a 7s eee es 25667 0

de Om2S: 938 578 0 0 0 0 0 Ont 5 9942 927 3106247 oe 00

The last line of output is what we are looking for. This is the average of the CPU load

over the length of the interval. We want just the last four columns in the output. The
fields that we want to extract for AIX are in positions $14, $15, $16, and $17.

vmstat 30 2

procs memory page faults cpu

ig b w avm free re at jou exe) sag (ley) fap in sy cs us sy id

0.29 © sey 290 122 Ao 2 0 0 @ 3 128 2014 146 14 21 65

(i One OMmn D224 Sas 2 > iA 0 0 0 0 0 108 5550 379 29 43 27

The HP-UX vmstat output is a long string of data. Notice for the CPU data that HP-

UX supplies only three values: user part, system part, and the CPU idle time. The fields

that we want to extract are in positions $16, $17, and $18.

191

192 Chapter 7

Linux

vmstat 30 2

procs memory swap 10 system cpu

r b w swpd free buff cache si_ so bi bo in cs us sy id

A YO 244 1088 1676 21008 0 0 af 0) AY 72 al 1 99

o © PHN AMAR SYY SUIS, Aali)(0}ke} 0 0 0 i Bie 530 37 23 40

Like HP-UX, the Linux vmstat output for CPU activity has three fields: user part,

system part, and the CPU idle time. The fields that we want to extract are in positions

$14, $15, and $16.

Solaris

vmstat 30 2

procs memory page disk faults cpu

rbw swap free re mf pi po fr de sr cd £0 sO -- in sy cs us sy id

OO) @) Bitsy SSeS, “Sy Zisiss 2 0) @ © © OO © © Oil SOO WW 2B GO

ONO ORS 5619229992 387) 2928.08 OF 20) ONO te 0 OP OR TS Ss 272 SL ae oOe26

As with HP-UX and Linux, the Solaris vmstat output for CPU activity consists of the

last three fields: user part, system part, and the CPU idle time.

What Is the Common Denominator?

There are at least two common denominators for the vmstat command output between
the Unix flavors. The first is that the CPU data is in the last fields. On AIX the data is in

the last four fields with the added I/O wait state. HP-UX, Linux, and Solaris do not list

the wait state. The second common factor is that the data is always on a row that is

entirely numeric. Again, we need a case statement to parse the correct fields for the

command output. Take a look at Listing 7.4.

OS=S (uname)

case SOS in

AIX)

F1=14

F2=15

F3=16

F4=17

echo "\nThe Operating System is $0S\n"

pad

Listing 7.4 Case statement for the vmstat fields of data.

Monitoring System Load 193

HP-UX)

F1=16

F2=17

F3=18)\.4

Pa-1 fF) Thais)" R4=a"\\is" bogus and not ysed! for Hp-ux

echo "\nThe Operating System is $0S\n"

Linux)

F1=14

F2=15

F3S=16

F4=1 # This "F4=1" is bogus and not used for Linux

echo "\nThe Operating System is $0S\n"

SunOs)

F1=20

F2=21

F3=22

P4=] # This "F4=1" is bogus and not used for Sunos

echo "\nThe Operating System is $0S\n"

*) echo "\nERROR: $OS is not a supported operating system\n"

echo: *\n\t. .. BXITING. ..\n"

exit 1

esac

Listing 7.4 Case statement for the vmstat fields of data. (continued)

Notice in Listing 7.4 that the F4 variable gets a valid assignment only on the AIX

match. For HP-UX, Linux, and Solaris, the F4 variable is assigned the value of the $1

field, specified by the F4=1 variable assignment. This bogus assignment is made so

that we do not need a special vmstat command statement for each operating system.

You will see how this works in detail in the scripting section.

Scripting the Solutions

Each of the techniques presented is slightly different in execution and output. Some

options need to be timed over an interval for a user-defined amount of time, measured

194 Chapter 7

in seconds. We can get an immediate load measurement using the uptime command,

but the sar, iostat, and vmstat commands require the user to specify a period of time to
measure over and the number of intervals to sample the load. If you enter the sar,
iostat, or vmstat commands without any arguments, then the statistics presented are
an average since the last system reboot. Because we want current statistics, the scripts
must supply a period of time to sample. We are always going to initialize the

INTERVAL variable to equal 2. The first line of output is measured since the last system
reboot, and the second line is the current data that we are looking for.

Let’s look at each of these commands in separate shell scripts in the following
sections.

Using uptime to Measure the System Load

Using uptime is one of the best indicators of the system load. The last columns of the
output represent the average of the run queue over the last 5, 10, and 15 minutes for an

AIX machine and over the last 1, 5, and 10 minutes for HP-UX, Linux, and Solaris. A

run queue is where jobs wanting CPU time line up for their turn for some processing

time in the CPU. The priority of the process, or on some systems a thread, has a direct

influence on how long a job has to wait in line before getting more CPU time. The

lower the priority, the more CPU time. The higher the priority, the less CPU time.

The uptime command aiways has an average of the length of the run queue. The
threshold trigger value that you set will depend on the normal load of your system. My

little C-10 AIX box starts getting very slow when the run queue hits 2, but the S-80 at

work typically runs with a run queue value over 8 because it is a multiprocessor

machine running a terabyte database. With these differences in acceptable run queue

levels, you will need to tailor the threshold level for notification on a machine-by-

machine basis.

Scripting with the uptime Command

Scripting the uptime solution is a short shell script, and the response is immediate. As
you remember in the “Syntax” section, we had to follow the floating load statistics as

the time since the last reboot moved from minutes, to hours, and even days after the

machine was rebooted. The good thing is that the floating fields are consistent across

the Unix flavors studied in this book. Let’s look at the uptime_loadmon.ksh shell

shown in Listing 7.5.

#!/bin/ksh

SCRIPT: uptime _loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

Listing 7.5 uptime_loadmon.ksh shell script listing.

Monitoring System Load

PURPOSE: This shell script uses the “uptime” command to

extract the most current load average data. There

is a special need in’ this script to determine

how long the system has been running since the

last reboot. The load average field "floats"

during the first 24 hours after a system restart.

+

set -x # Uncomment to debug this shell script

set -n # Uncomment to check script syntax without any execution

EHH HH HH HH HH HH EH EE EEE HR HE HEE EE aE AEE EE EH aH

HHPHHHHHPHHEH DEFINE VARIABLES HERE #####HHHEHEEEHE

HHHPHEERHR ETHER RE RPE EREERRREEEHPEERERE REE REEE EHH EH

MAXLOAD=2 .00

typeset -i INT _MAXLOAD=$MAXLOAD

Find the correct field to extract based on how long

the system has been up, or since the last reboot.

if $(uptime | grep day | grep min >/dev/null)

then

FIELD=11

elif $(uptime’| grep day | grep hrs >/dev/null)

then

FIELD=11

elif $(uptime | grep day >/dev/null)

then

FIELD=10

elif $(uptime | grep min >/dev/nul1l)

then

FIELD=9

else

FIELD=8

£2

HHHHHPHHHHHHHHHAE RHEE RRERREE ARERR EGRET HSH EH HT

HHHH#H#H4#4# BEGIN GATHERING STATISTICS HERE #####H HH

HHHHHAHHHHHHAH HEHEHE PRE RHRRRHR ERP AE RRR EHH HH HT

echo "\nGathering System Load Average using the \"uptime\" command\n"

This next command statement extracts the latest

load statistics no matter what the Unix flavor is.

LOAD=$(uptime | sed s/,//g | awk ‘'{print $'SFIELD‘}')

Listing 7.5 uptime_loadmon.ksh shell script listing. (continues)

196 Chapter 7

We need an integer representation of the $LOAD

variable to do the test for the load going over

the set threshold defined by the $INT_ MAXLOAD

variable

typeset -i INT_LOAD=S$LOAD

If the current load has exceeded the threshold then

issue a warning message. The next step always shows

the user what the current load and threshold values

are set to. $F + +

((INT_LOAD >= INT MAXLOAD)) && echo "\nWARNING: System load has \

reached ${LOAD}\n"

echo "\nSystem load value is currently at ${LOAD}"”

echo "The load threshold is set to ${MAXLOAD}\n"

Listing 7.5 uptime_loadmon.ksh shell script listing. (continued)

There are two statements that I want to point out in Listing 7.5 that are highlighted

in boldface text. First, notice the LOAD= statement. To make the variable assignment we

use command substitution, defined by the VAR=$ (command statement) notation.

In the command statement we execute the uptime command and pipe the output to a

sed statement. This sed statement removes all of the commas (,) from the uptime out-

put. We need to take this step because the load statistics are comma separated. Once

the commas are removed, the remaining output is piped to the awk statement that

extracts the correct field that is defined at the top of the shell script by the FIELD vari-

able and based on how long the system has been running.

In this awk statement notice how we find the positional parameter that the $FIELD

variable is pointing to. If you try to use the syntax $$FIELD, the result is the current

process ID ($$) and the word FIELD. To get around this little problem of directly access-
ing what a variable is pointing to, we use the following syntax:

The $8 variable points to the value 34.

FIELD=8

Wrong usage

echo S$$FIELD

3243FIELD

Correct usage

echo $'SFIELD'

34

Monitoring System Load

Notice that the latter usage is correct, and the actual result is the value of the $8 field,

which is currently 34. This is really telling us the value of what a pointer is pointing to.

You will see other uses of this technique as we go through this chapter.

The second command statement that I want to point out is the test of the INT_LOAD

value to the INT_MAXLOAD value, which are integer values of the LOAD and MAXLOAD

variables. If the INT_LOAD is equal to, or has exceeded, the INT_MAXLOAD, then we

use a logical AND (&&) to echo a warning to the user’s screen. Using the logical AND

saves a little code and is faster than an if..then..else statement.

You can see the upt ime_loadmon.ksh shell script in action in Listings 7.6 and 7.7.

./uptime_loadmon.ksh

Gathering System Load Average using the "uptime" command

System load value is currently at 1.86

The load threshold is set to 2.00

Listing 7.6 Script in action under “normal” load.

Listing 7.6 shows the uptime_loadmon.ksh shell script in action on a machine

that is under a normal load. Listing 7.7 shows the same machine under an excessive

load—at least, it is excessive for this little machine.

./uptime_loadmon.ksh

Gathering System Load Average using the "uptime" command

WARNING: System load has reached 2.97

System load value is currently at 2.97

The load threshold is set to 2.00

Listing 7.7 Script in action under “excessive” load.

This is about all there is to using the uptime command. Let’s move on to the sar

command.

Using sar to Measure the System Load

Most Unix flavors have sar data collection set up by default. This sar data is presented

when the sar command is executed without any switches. The data that is displayed is

automatically collected at scheduled intervals throughout the day and compiled into a

197

198 Chapter 7

report at day’s end. By default, the system keeps a month’s worth of data available for

online viewing. This is great for seeing the basic trends of the machine as it is loaded
through the day. If we want to collect data at a specific time of day for a specific period

of time, then we need to add the number of seconds for each interval and the total
number of intervals to the sar command. The final line in the output is an average of all

of the previous sample intervals.
This is where our shell script comes into play. By using a shell script with the times

and intervals defined, we can take samples of the system load over small or large incre-

ments of time without interfering with the system’s collection of sar data. This can be
a valuable tool for things like taking hundreds of small incremental samples as a devel-
opment application is being tested. Of course, this technique can also help in trou-

bleshooting just about any application. Let’s look at how we script the solution.

Scripting with the sar Command

For each of our Unix flavors the sar command produces four CPU load statistics. The

outputs vary somewhat, but the basic idea remains the same. In each case, we define
an INTERVAL variable specifying the total number of samples to take and a SECS vari-

able to define the total number of seconds for each sample interval. Notice that we

used the variable SECS as opposed to SECONDS. We do not want to use the variable

SECONDS because it is a Korn shell built-in variable used for timing in a shell. As I

stated in the introduction, this book uses variable names in uppercase so the reader

will quickly know that the code is referencing a variable; however, in the real world

you may want to use the lowercase version of the variable name. It really would not
matter here because we are defining the variable value and then using it within the

same second, hopefully.

The next step in this shell script is to define which positional fields we need to
extract to get the sar data for each of the Unix operating systems. For this step we use

a case statement using the uname command output to define the fields of data. It turns

out that AIX, HP-UX, and SunOS operating systems all have the sar data located in the

$2, $3, $4, and $5 positions. Linux differs in this respect with the sar data residing in the

$3, $4, $5, and $6 positions. In each case, these field numbers are assigned to the F1, F2,

F3, and F4 variables inside the case statement.

Let’s look at the sar_loadmon.ksh shell script in Listing 7.8 and cover the remain-
ing details at the end.

#!/bin/ksh

SCRIPT: sar _loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

Listing 7.8 sar_loadmon.ksh shell script listing.

Monitoring System Load 199

PURPOSE: This shell script takes multiple samples of the CPU

usage using the "sar" command. The average of

sample periods is shown to the user based on the

Unix) operating (system) (that\this\\shelll\seript as

executing on. Different Unix flavors have differing

Qutputs andthe \fiellds\\vary too!

te

REV LIST:

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

HERE HERE HERR HRE EER EH ERE EEE EH HEHE HEE HHH EF

HHEHHHHHHHHHH DEFINE VARIABLES HERE #######HH HEHEHE

HREHRE EERE EHH EEE HERE EEE ERE EEE EERE HE EHH EF

SECS=30 # Defines the number of seconds for each sample

INTERVAL=10 # Defines the total number of sampling intervals

OS=$(uname) # Defines the Unix flavor

HPT E HEE HEHE ERE ARE EE HEE HEHEHE HE HH

SETUP THE ENVIRONMENT FOR EACH OS HERE ######

AEH HH HH HHH EH EH HE HE HEHE HE HEHEHE HE HEHEHE HE

These "F-numbers" point to the correct field in the

command output for each Unix flavor.

case $OS in

AIX|HP-UxX|Sunos)

FI=2

F263

F3=4

P4-5

echo "\nThe Operating System is $0S\n"

Linux)

Fi=3

F2=4

F3=5

F4=6

echo "\nThe Operating System is SOS\n"

*) echo "\nERROR: $OS is not a supported operating system\n"

echo “\WnVe.s BXtTING...\n"

exit 1

re

Listing 7.8 sar_loadmon.ksh shell script listing. (continues)

200 Chapter 7

esac

HHHEHHHEPHRAEHHEE HP AEEEEE AGREE EHR AH BH EE HHH ERS HE FEE

H#H##HHHH BEGIN GATHERING STATISTICS HERE ##########

HHHHHHERRPHEEHEEHPPEEHER HERR RRHEEE PRE HEE EH EER EEE EEE

echo "Gathering CPU Statistics using sar...\n"

echo "There are SINTERVAL sampling periods with"

echo "each interval lasting S$SECS seconds"

echo "\n...Please wait while gathering statistics...\n"

This “sar" command takes SINTERVAL samples, each lasting

SSECS seconds. The average of this output is captured.

sar $SECS $INTERVAL | grep Average \

| awk '{print $'$F1', $'$F2', $'S$F3', $'$F4'}' \
| while read FIRST SECOND THIRD FOURTH

do

Based on the Unix Flavor, tell the user the

result of the statistics gathered.

case $OS in

AIX |HP-UxX|Sunos)

echo "\nUser part is S{FIRST}%"

echo "System part is ${SECOND}%"

echo "I/O Wait is ${THIRD}%"

echo "Idle time is ${FOURTH}%\n"

Linux)

echo "\nUser part is ${FIRST}%"

echo "Nice part is ${SECOND}%"

echo "System part is ${THIRD}%"

echo "Idle time is ${FOURTH}%\n"

esac

done

Listing 7.8 sar_loadmon.ksh shell script listing. (continued)

In the shell script in Listing 7.8 we start by defining the data time intervals. In these

definitions we are taking 10 interval samples of 30 seconds each, for a total of 300 sec-

onds, or 5 minutes. Then we grab the Unix flavor using the uname command and
assigning the operating system value to the OS variable. Following these definitions

we define the data fields that contain the sar data for each operating system. In this
case Linux is the oddball with an offset of one position.

Monitoring System Load 201

Now we get to the interesting part where we actually take the data sample. Look at
the following sar command statement, and we will decipher how it works.

sar S$SECS SINTERVAL | grep Average \

| awk “(print S'Sri%, S$'SPr2', S$*sr3", S'sraij}> \

| while read FIRST SECOND THIRD FOURTH

We really need to look at the statement one pipe at a time. In the very first part of the
statement we take the sample(s) over the defined number of intervals. Consider the
following statement and output:

SECS=30

INTERVAL=10

sar SSECS SINTERVAL

AIX yogi 1 5 000125604800

£9

IL) e

725

Paiaye

Zor

226%

PRU

ales

BPRS

28:

IX

9

19:

£9

aIt9

19):

ihe

19

19;

Hoe

rake

24:

:00

00

30

30

Average

Susr

153

Ssys

al

iB)

28

12

26

07/31/02

%Swio idle

1 98

3 68

40 6

odode 64

0 39

0 0

2 30

9 80

5 US)

0 73

8 53

The previous output is produced by the first part of the sar command statement.
Then, all of this output is piped to the next part of the statement, as shown here:

sar $SECS SINTERVAL | grep Average

Average 13 26 53

Now we have the row of data that we want to work with, which we grepped out

using the word Average as a pattern match. The next step is to extract the positional
fields that contain the data for user, system, I/O wait, and idle time for AIX. Remem-

ber in the previous script section that we defined the field numbers and assigned them

to the F1, F2, F3, and F4 variables, which in our case results in F1=2, F2=3, F3=4, and

F4=5. Using the following extension to our previous command we get the following

statement:

sar $SECS SINTERVAL | grep Average \

| awk '{print $'$F1', $'$F2', $'S$F3', $'SF4'}'

202 Chapter 7

Notice that we continued the command statement on the next line by placing a back-
slash (\) at the end of the first line of the statement. In the awk part of the statement

you can see a confusing list of dollar signs and "F" variables. The purpose of this set of
characters is to directly access what the "F" variables are pointing to. Let’s run through

this in detail by example.
The F1 variable has the value 2 assigned to it. This value is the positional location of

the first data field that we want to extract. So we want to access the value at the $2 posi-

tion. Makes sense? When we extract the $2 data we get the value 13, as defined in the

previous step. Instead of going in this roundabout method, we want to directly access
the field that the F1 variable points to. Just remember that a variable is only a pointer to

a value, nothing more! We want to point directly to what another variable is pointing

to. The solution is to use the following syntax:

$'SF1'

OR

$\SF1

In any case, the innermost pointer ($) must be escaped, which removes the special

meaning. For this shell script we use the $'$F1' notation. The result of this notation,
in this example, is 13, which is the value that we want. This is not smoke and mirrors

when you understand how it works.
The final part of the sar command statement is to pipe the four data fields to a while

loop so that we can do something with the data, which is where we end the sar state-
ment and enter the while loop.

The only thing that we do in the while loop is to display the results based on the
Unix flavor. The sar_loadmon.ksh shell script is in action in Listing 7.9.

./sar_loadmon.ksh

The Operating System is AIX

Gathering CPU Statistics using sar...

There are 10 sampling periods with

each interval lasting 30 seconds

...Please wait while gathering statistics...

User part is 13%

System part is 26%

I/O wait state is 8%

Idle time is 53%

Listing 7.9 sar_loadmon.ksh shell script in action.

Monitoring System Load 203

From the output presented in Listing 7.9 you can see that the shell script queries the

system for its operating system, which is AIX here. Then the user is notified of the sam-

pling periods and the length of each sample period. The output is displayed to the user

by field. That is it for using the sar command. Now let’s move on to the iostat command.

Using iostat to Measure the System Load

The iostat command is mostly used to collect disk storage statistics, but by using

the -t, or -c command switch, depending on the operating system, we can see the CPU

statistics as we saw them in the syntax section for the iostat command. We are going to

create a shell script using the iostat command and use almost the same technique as we
did in the last section.

Scripting with the iostat Command

In this shell script we are going to use a very similar technique to the sar shell script in

the previous section. The difference is that we are going to take only two intervals with

a long sampling period. As an example, the INTERVAL variable is set to 2, and the

SECS variable is set to 300 seconds, which is 5 minutes. Also, because we have two

possible switch values, -t and -c, we need to add a new variable called SWITCH. Let’s

look at the iostat_loadmon.ksh shell script in Listing 7.10, and we will cover the

differences at the end in more detail.

#!/bin/ksh

SCRIPT: iostat_loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

PURPOSE: This shell script take two samples of the CPU

usage using the “iostat" command. The first set of

data is an average since the last system reboot. The

second set of data is an average over the sampling

period, or S$INTERVAL. The result of the data acquired

during the sampling period is shown to the user based

on the Unix operating system that this shell script is

i executing on. Different Unix flavors have differing

+ outputs and the fields vary too.

REV LIST:

Listing 7.10 iostat_loadmon.ksh shell script listing. (continues)

204 Chapter 7

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

HHFHHRHHHPEPEAPEEEEPEEEHPEPEE EERE EEEE HEHEHE EHH

HHHHHEHHHHHHH DEFINE VARIABLES HERE #####4#H tH HEHEHE

HHPHHHHEEEEHEEPHPEEEEAEHEERHEHPEPHRSPREEREAEHH ES EHS EE

SECS=300 # Defines the number of seconds for each sample

INTERVAL=2 # Defines the total number of sampling intervals

STATCOUNT=0 # Initializes a loop counter to 0) zero

oOs=$ (uname) # Defines the Unix flavor

HHHEHHHEEEHEEEHPEEHPEEEPPEEPEEEERREE EERE EREE HEHEHE EHS HE

SETUP THE ENVIRONMENT FOR EACH OS HERE ######

HHEHHHHHPPHHEEHHHHREEHHHSPEEEEHEAH REPRE RHEE H HE

These "F-numbers" point to the correct field in the

command output for each Unix flavor.

case $OS in

AIX| HP-UX) SWITCH='-t'

Fi=3

F2=4

F3=5

F4=6

echo "\nThe Operating System is $0S\n"

Linux|SunOS) SWITCH='-c'

Fi=1

P2=2

F3=3

F4=4

echo "\nThe Operating System is $0S\n"

re

*) echo “\NBERROR: SOS is not a supported operating system\n"

echo" \n\to -BxnTING 2 \n"

exit 1

esac

HEHE HH HHH HH HHH EH HEH EH HH EEE Ha RE HH HE EE

H#HH#HHHH BEGIN GATHERING STATISTICS HERE ##########

HEPREEREREERE ERE E HEE ERE HEE ERE HEHEHE HHH HHH

echo "Gathering CPU Statistics using vmstat...\n"

Listing 7.10 iostat_loadmon.ksh shell script listing. (continued)

Monitoring System Load 205

echo "There are SINTERVAL sampling periods with"

echo "each interval lasting $SECS seconds"

echo "\n...Please wait while gathering statistics...\n"

\

Use| “iostat" (to moniton \the CPU utilization and

remove all lines that contain alphabetic characters

and blank spaces. Then use the previously defined

field numbers, for example, F1l=4,to point directly

to the 4th position, for this example. The syntax

for JEnas techniques is. ==> \Si Seat, + OH OH OH FH

iostat $SWITCH $SECS $INTERVAL | egrep -v '[a-zA-Z]|*$' \

j awk "{print S°sri', S'Sr2", S'Sr3', S'sret}' \

| while read FIRST SECOND THIRD FOURTH

do

if ((STATCOUNT == 1)) # Loop counter to get the second set

then # of data produced by "iostat”

case $OS in # Show the results based on the Unix flavor

AIX)

echo "\nUser part is ${FIRST}%"

echo "System part is ${SECOND}%"

echo "Idle part is ${THIRD}%"

echo "I/O wait state is ${FOURTH}%\n"

HP-UX | Linux)
echo "\nUser part is ${FIRST}%"

echo "Nice part is ${SECOND}%"

echo "System part is ${THIRD}%"

echo "Idle time is ${FOURTH}%\n"

Sunos)

echo "\nUser part is ${FIRST}%"

echo "System part is ${SECOND}%"

echo "I/O Wait is ${THIRD}%"

echo “Idle time is ${FOURTH}%\n"

rn

esac

ian

((STATCOUNT = STATCOUNT + 1)) # Increment the loop counter

done

Listing 7.10 iostat_loadmon.ksh shell script listing. (continued)

The similarities are striking between the sar implementation and the iostat script

shown in Listing 7.10. At the top of the shell script we define an extra variable,

206 Chapter 7

STATCOUNT. This variable is used as a loop counter, and it is initialized to 0, zero. We
need this counter because we have only two intervals, and the first line of the output is
the load average since the last system reboot. The second, and final, set of data is the

CPU load statistics collected during our sampling period, so it is the most current data.

Using a counter variable, STATCOUNT, we collect the data and assign it to variables on

the second loop iteration, or when the STATCOUNT is equal to 1, one.

In the next section we use the Unix flavor given by the uname command in a case

statement to assign the correct switch to use in the iostat command. This is also where

the F1, F2, F3, and F4 variables are defined with the positional placement of the data

we want to extract from the command output.

Now comes the fun part. Let’s look at the iostat command statement we use to
extract the CPU statistics here.

iostat S$SWITCH SSECS SINTERVAL | egrep -v '[a-zA-Z]|*$' \

| BS Generale SIS, SYS, BUS, SO SwLs pe \

| while read FIRST SECOND THIRD FOURTH

The beginning of the iostat command statement uses the correct command switch,
as defined by the operating system, and the sampling time and the number of inter-

vals, which is two this time. From this first part of the iostat statement we get the fol-
lowing output on a Linux system.

SWITCH='-c'

SECS=300

INTERVAL=2

iostat $SWITCH $SECS SINTERVAL

Linux 2.4.2-2 (bambam) 07/31/2002

avg-cpu: %user Snice Ssys %idle

2355 0.00 26.09 50.76

avg-cpu: %user Snice Ssys Sidle

SET 0.00 PNG. AES) 46.44

Remember that the first row of data is an average of the CPU load since the last sys-

tem reboot, so we are interested in the last row of output. If you remember from the

syntax section for the iostat command, the common denominator for this output is that

the data rows are entirely numeric characters. Using this as a criteria to extract data, we

add to our iostat command statement as shown here.

iostat $SWITCH $SECS SINTERVAL | egrep -v '[a-zA-Z]|*$'

The egrep addition to the previous command statement does two things for us.

First, it excludes all lines of the output that have alphabetic characters, leaving only the
rows with numbers. The second thing we get is the removal of all blank lines from the
output. Let’s look at each of these.

Monitoring System Load 207

To omit the alpha characters we use the egrep command with the -v option, which
says to display everything in the output except the rows that the pattern matched. To
specify all alpha characters we use the following expression:

[a-zA-Z]

Then to remove all blank lines we use the expression:

*$

The caret character means begins with, and to specify blank lines we use the dollar
sign ($). If you wanted to remove all of the lines in a file that are commented out with
a hash mark (#), then use *#.

When we join these two expressions in a single extended grep (egrep), we get the
following extended regular expression:

egrep -v '[a-zA-Z]|*$'

At this point we are left with the following output:

ZS iL 0.00 26.09 Ne 1S

Sioa 0.00 PANS AS) 46.44

This brings us to the next addition to the iostat command statement in the shell

script. This is where we add the awk part of the statement using the F1, F2, F3,and F4

variables, as shown here.

iostat $SWITCH $SECS $INTERVAL | egrep -v '[a-zA-Z]|*S' \

| awk '{print $'S$F1', $'$F2', $'$F3', $'S$F4'}'

This is the same code that we covered in the last section, where we point directly to

what another pointer is pointing to. For Linux F1=1, F2=2, F3=3, and F4=4. With this

information we know that $'$F1' on the first line of output is equal to 23.15, and on

the second row this same expression is equal to 31.77. Now that we have the values

we have a final pipe to a while loop. Remember that in the while loop we have added
a loop counter, STATCOUNT. On the first loop iteration, the while loop does nothing.

On the second loop iteration, the values 31.77,0.00,21.79,and 46.44 are assigned

to the variables FIRST, SECOND, THIRD, and FOURTH, respectively.

Using another case statement with the $OS value the output is presented to the user
based on the operating system fields, as shown in Listing 7.11.

The Operating System is Linux

Gathering CPU Statistics using vmstat...

There are 2 sampling periods with

Listing 7.11 iostat_loadmon.ksh shell script in action. (continues)

208 Chapter 7

each interval lasting 300 seconds

...Please wait while gathering statistics...

User part is 39.35%

Nice part is 0.00%

System part is 31.59%

Idle time is 29.06%

Listing 7.11 iostat_loadmon.ksh shell script in action. (continued)

Notice that the output is in the same format as the sar script output. This is all there
is to the iostat shell script. Let’s now move on to the vmstat solution.

Using vmstat to Measure the System Load

The vmstat shell script uses the exact same technique as the iostat shell script in the

previous section. Only AIX produces four fields of output; the remaining Unix flavors

have only three data points to measure for the CPU load statistics. The rest of the

vmstat output is for virtual memory statistics, which is the main purpose of this com-

mand anyway. Let’s look at the vmstat script.

Scripting with the vmstat Command

When you look at this shell script for vmstat you will think that you just saw this shell

script in the last section. Most of these two shell scripts are the same, with only minor

exceptions. Let’s look at the vmstat_loadmon.ksh shell script in Listing 7.12 and
cover the differences in detail at the end.

#!/bin/ksh

SCRIPT: vmstat_loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: L..0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

=

PURPOSE: This shell script takes two samples of the CPU

usage using the "vmstat" command. The first set of

data is an average since the last system reboot. The

second set of data is an average over the sampling

Listing 7.12 vmstat_loadmon.ksh shell script listing.

Monitoring System Load 209

period, or SINTERVAL. The result of the data acquired

during the sampling perion is shown to the user based

on the Unix operating system that this shell script is

executing on. Different Unix flavors have differing

outputs and the fields vary too.

REV LIST:

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

Ss SF HF OH OH OH OH OH OH OH OH OH

HR HH HH HEH HH HE HH HH HEHE EH HEHE EE HEH HEH EE

HHHHHHHHHHHHEH DEFINE VARIABLES HERE ####H#H#HHHHHH HHH

HEH HE HE a He HEHE HE a aE HE a EH HE HE HE aE aE aaa Ea

SECS=300 # Defines the number of seconds for each sample

INTERVAL=2 # Defines the total number of sampling intervals

STATCOUNT=0 # Initializes a loop counter to 0, zero

OS=$(uname) # Defines the Unix flavor

HH HHH HHH HH HH HE HEH HE HE EH a EE

SETUP THE ENVIRONMENT FOR EACH OS HERE ######

RRR AH HH HHH HH EE HEHE EE EHH HEE EH HH

These "F-numbers" point to the correct field in the

command output for each Unix flavor.

case $0OS in

AIX) # AIX has four relative columns in the output

F1=14

B2=t5

F3=16

F4=17

echo "\nThe Operating System is $0S\n"

HP-UX) # HP-UX has only three relative columns in the output

Fil=16

F2=17

F3=i8

F4=1 # This "F4=1" is bogus and not used for HP-UX

echo "\nThe Operating System is $0S\n"

Linux) # Linux has only three relative columns in the output

F1=14

B2=15

Listing 7.12 vmstat_loadmon.ksh shell script listing. (continues)

210 Chapter 7

ES=16

F4=1 # This "F4=1" is bogus and not used for Linux

echo "\nThe Operating System is $OS\n"

SunOS) # SunOS has only three relative columns in the output

F1=20 :
F2=21

£3=22

F4=1 # This "F4=1" is bogus and not used for SunOS

echo "\nThe Operating System is $0S\n"

*) echo "\nERROR: $OS is not a supported operating system\n"

echo: "\n\t... BXETING.. \n"

expeed

esac

HHPHRREPRERHERRRHER SEER ER ER ERE E PERE RREEE ERE RHEEE EHH

H#H#HHHHH BEGIN GATHERING STATISTICS HERE ##### #44

HEPPEERPER REESE RRR E RR EE RAE REE RREERRERREERER HEE HE

echo "Gathering CPU Statistics using vmstat...\n"

echo "There are SINTERVAL sampling periods with"

echo "each interval lasting $SECS seconds”

echo "\n...Please wait while gathering statistics...\n"

Use "vmstat" to monitor the CPU utilization and

remove all lines that contain alphabetic characters

and blank spaces. Then use the previously defined

field numbers, for example F1=20,to point directly

to the 20th position, for this example. The syntax

for this technique is ==> S$'SPI'’ and points directly

to the $20 positional parameter. 4h 4h Fk FE Ok FE

vmstat $SECS $INTERVAL | egrep -v '[a-zA-2Z]|*$' \

| awk ‘{print $'$F1', $'$F2', $'S$F3', $'$F4'}' \

| while read FIRST SECOND THIRD FOURTH

do

if ((STATCOUNT == 1)) # Loop counter to get the second set

then # of data produced by "vmstat"

case $0S in # Show the results based on the Unix fiavor

AIX)

echo "\nUser part is ${FIRST}%"

Listing 7.12 vmstat_loadmon.ksh shell script listing. (continued)

Monitoring System Load 211

echo "System part is ${SECOND}3%"

echo "Idle part is ${THIRD}3%"

echo "I/O wait state is ${FOURTH}%\n"

ara

HP-UX |Linux|Sunos)

echo "\nUser part is ${FIRST}%"

echo "System part is ${SECOND}%"

echo "Idle time is ${THIRD}%\n"

esac

aes

((STATCOUNT = STATCOUNT + 1)) # Increment the loop counter

done

Listing 7.12 vmstat_loadmon.ksh shell script listing. (continued)

We use the same variables in Listing 7.12 as we did in Listing 7.10 with the iostat

script. The differences come when we define the “F” variables to indicate the fields to

extract from the output and the presentation of the data to the user. As I stated before,
only AIX produces a fourth field output.

In the first case statement, where we assign the F1, F2, F3, and F4 variables to the

field positions that we want to extract for each operating system, notice that only AIX

assigns F4 variable to a valid field. HP-UX, Linux, and SunOS all have the F4 variable

assigned the field #1, F4=1. I did it this way so that I would not have to rewrite the

vmstat command statement for a second time to extract just three fields. This method

helps to make the code shorter and less confusing—at least I hope it is less confusing!
There is a comment next to each F4 variable assignment that states that this field

assignment is bogus and not used in the shell script.

Other than these minor changes the shell script for the vmstat solution is the same

as the solution for the iostat command. The vmstat_loadmon.ksh shell script is in

action in Listing 7.13 on a Solaris machine.

./vmstat_loadmon.ksh

The Operating System is SunOS

Gathering CPU Statistics using vmstat...

There are 2 sampling periods with

Listing 7.13 vmstat_loadmon.ksh shell script in action. (continues)

212 Chapter 7

each interval lasting 300 seconds

...Please wait while gathering statistics...

User part is 14%

System part is 54%

Idle time is 31%

Listing 7.13 vmstat_loadmon.ksh shell script in action. (continued)

Notice that the Solaris output shown in Listing 7.13 does not show the I/O wait

state. This information is available only on AIX for the vmstat shell script. The output

format is the same as the last few shell scripts. It is up to you how you want to use this

information. Let’s look at some other options that you may be interested in next.

Other Options to Consider

As with any shell script there is always room for improvement, and this set of shell

scripts is no exception. I have a few suggestions, but I’m sure that you can think of a
few more.

Stop Chasing the Floating uptime Field

In the uptime CPU load monitoring shell script we did not really have to trace down
the location of the latest CPU statistics. Another approach is to use what we know

always to be true. Specifically, we know that the field of interest is always in the third

position field from the end of the uptime command output. Using this knowledge we
can use this little function, get_max, to find the total number of fields in the output. If

we subtract 2 from the total number of positions, then we always have the correct field.
The next code segment is an example of using this technique.

function get_max

{

((S# == 0)) && return -1

echo $#

}

HHEHHEHEHEH MAIN HHH HEHE HH HHH HH

MAX=S (get_max $(uptime)) # Get the total number of fields in uptime

Monitoring System Load

output

((MAX == -1)) && echo "ERROR: Function Error...EXITING..." && exit 2

TARGET_FIELD=$(((MAX - 2))) # Subtract 2 from the total

CPU_LOAD=$(uptime | sed s/,//g | awk '{print $'$TARGET_FIELD'}')

echo $CPU_LOAD

In the previous code segment the get_max function receives the output of the
uptime command. Using this input the function returns the total number of positional

parameters that the uptime command output contains. In the MAIN part we assign the

result received back from the get_max function to the MAX variable. If the returned

value is -1, then a scripting error has occurred and the script will show the user an

error and exit with a return code of 2. Otherwise, the MAX variable has 2 subtracted

from its value, and it is assigned to the TARGET_FIELD variable. The last step assigns

the most recent CPU run queue statistics to the variable CPU_LOAD.

Using a technique like this eliminates the need to track the position of the CPU sta-
tistics and reduces the code a bit. I wanted to use the method of tracking the position
in this chapter just to make a point: Glancing at a command ’s output to find a field is

not always a good idea. I did not want to leave you hanging around, though, thinking

that you always have to track data. As you know, there is more than one way to get the

same result in Unix, and this is a perfect example.

Try to Detect Any Possible Problems for the User

One thing that would be valuable when looking at the CPU load statistics is to try to
detect any problems. For example, if the system percentage plus the user percentage is

consistently greater than 90 percent, then the system may be CPU bound. This is easy

to code into any of these shell scripts using the following statement:

((SYSTEM + USER > 90)) && echo "\nWarning: This system is CPU-bound\n"

Another possible problem happens when the I/O wait percentage is consistently

over 80 percent; then the system may be I/O bound. This, too, is easy to code into the
shell scripts. System problem thresholds vary widely depending on whom you are
talking to, so I will leave the details up to you. I’m sure you can come up with some

other problem detection techniques.

Show the User the Top CPU Hogs

Whenever the system is stressed under load, the cause of the problem may be a run-

away process or a developer trying out the fork() system call during the middle of the

day (same problem, different cause!). To show the user the top CPU hogs, you can use

the ps auxw command. Notice that there is not a hyphen before auxw! Something like

the following command syntax will work.

ps auxw | head -n 15

213

214 Chapter 7

The output is sorted by CPU usage in descending order from the top. Also, most
Unix operating systems have a top like command. In AIX it is topas, in HP-UX and

Linux it is top, and in Solaris it is prstat. Any of these commands will show you real-

time process statistics.

Gathering a Large Amount of Data for Plotting

Another method is to get a lot of short intervals over a longer period of time. The sar

command is perfect for this type of data gathering. Using this method of short intervals
over a long period, maybe eight hours, gives you a detailed picture of how the load
fluctuates through the day. This is the perfect kind of detailed data for graphing on a
line chart. It is very easy to take the sar data and use a standard spreadsheet program

to create graphs of the system load versus time.

Summary

I enjoyed this chapter, but it turned out to be a lot longer than I first intended. With the
CPU load data floating based on the time since the system was last rebooted, and just

by the time of every day, it made the uptime shell script a challenge, but I love a good
challenge. This chapter did present some different concepts that are not in any other
chapter, and it is always intended that way throughout this book. Play around with
these shell scripts, and see how you can improve the usefulness of each script. It is

always fun to find a new use for a shell script by playing with the code.
In the next chapter, we are going to study some techniques to monitor a process and

wait for it to start up, stop execution, or both. We also allow for pre and post events to
be defined for the process. I hope you gained some knowledge in this chapter, and
every chapter! See you next time.

Process Monitoring and
Enabling Preprocess, Startup,

and Postprocess Events

All too often a program or script will die during execution or fail to start up. This type
of problem can be hard to nail down due to the unpredictable behavior and the timing

required to catch the event as it happens. We also sometimes want to execute some

commands before a process starts, as the process starts (or as the monitoring starts), or

as a post event when the process dies. Timing is everything! Instead of reentering the

same command over and over to monitor a process, we can write scripts to wait for a

process to start or end and record the time stamps, or we can perform some other func-

tion as a pre, startup, or post event. To monitor the process we are going to use grep to

grab one or more matched patterns from the process list output. Because we are going

to use grep, there is a need for the process to be unique in some way—for example, by

process name, user name, PID, PPID, or even a date/time.

In this chapter we cover four scripts:

™ Monitor for a process (one or more!) to start execution.

m™ Monitor for a process (one or more!) to stop execution.

m Monitor as the process(es) stops and starts and log the events as they happen

with a timestamp.

m Monitor as the process(es) starts and stops while keeping track of the current

number of active processes, giving user notification with time stamp and listing
of all of the active PIDs. We also add pre, startup, and post event capabilities.

215

216 Chapter 8

Two examples for using of one of these functions are waiting for a backup to
finish before rebooting the system and sending an email as a process starts up.

Syntax

As with all of our scripts, we start out by getting the correct command syntax. To look

at the system processes, we want to look at all of the processes, not a limited view for a

particular user. To list all of the processes, we use the ps command with the -ef switch.

Using grep with the ps -ef command requires us to filter the output. The grep com-

mand will produce two additional lines of output. One line will result from the grep
command, and the other will result from the script name, which is doing the grepping.

To remove both of these we can use either grep -v or egrep -v to exclude this output.

From this specification, and using variables, we came up with the following command

syntax:

ps -ef | grep $PROCESS | grep -v "grep $PROCESS" | grep -v $SCRIPT_NAME

The previous command will give a full process listing while excluding the shell

script’s name and the grepping for the target process. This will leave only the actual
processes that we are interested in monitoring. The return code for this command is 0,

zero, if at least one process is running, and it will return a nonzero value if no process,

specified by the $PROCESS variable, is currently executing. To monitor a process to

start or stop we need to remain in a tight loop until there is a transition from running
to end of execution, and vice versa.

Monitoring for a Process to Start

Now that we have the command syntax we can write the script to wait for a process to

start. This shell script is pretty simple because all it does is run in a loop until the

process starts. The first step is to check for the correct number of arguments, one—the

process to monitor. If the process is currently running, then we will just notify the user

and exit. Otherwise, we will loop until the target process starts and then display the

process name that started and exit. The loop is listed in Lisiting 8.1.

RC=1

until ((RC == 0)) # Loop until the return code is zero

do

Check for the S$PROCESS on each loop iteration

ps -ef | grep $PROCESS | egrep -v "grep $PROCESS" \

Listing 8.1 Process startup loop.

Process Monitoring 217

| grep -v $SCRIPT_NAME >/dev/null 2>&1

Check the Return Code!!!

4£))(($? == 0)) # Has it Started????
then

echo "$PROCESS has Started Execution... *date*\n\n"

Show the user what started!!

ps -ef | grep $PROCESS | egrep -v "grep $PROCESS" \

| grep -v $SCRIPT_NAME

echo "\n\n" # A Couple of Blank Lines Before Exit

exit 0 # Exit time...

fa:

sleep $SLEEP_TIME # Needed to reduce CPU load!! 1 Second or more

done

Listing 8.1 Process startup loop. (continued)

There are a few things to point out in Listing 8.1. First, notice that we are using the

numeric tests, which are specified by the double parentheses ((numeric_

expression)). The numeric tests can be seen in the if and until control structures.

When using the double parentheses numeric testing method, we do not reference any

user-defined numeric variables with a dollar sign—that is, $RC. If you use a §$, the test

may fail! This testing method knows the value is a numeric variable and does need to

go through the process of converting the character string to a numeric string before the
test. This convention saves time by saving CPU cycles. Just leave out the "$". We still

must use the $ reference for system variables—for example, $? and $#. Also notice

that we use double equal signs when making an equality test—for example, until ((
RC == 0)).If you use only one equal sign it is assumed to be an assignment, not an

equality test! Failure to use double equal signs is one of the most common mistakes,

and it is very hard to find during troubleshooting. Also notice in Listing 8.1 that we

sleep on each loop iteration. If we do not have a sleep interval, then the load on the
CPU can be tremendous. Try programming a loop with and without the sleep interval

and monitor the CPU load with either the uptime or vmstat commands. You can defi-

nitely see a big difference in the load on the system. What does this mean for our mon-
itoring? The process must remain running for at least the length of time that the sleep
is executing on each loop iteration. If you need an interval of less than one second, then

you can try setting the sleep interval to 0, zero, but watch out for the heavy CPU load.
Even with a 1-second interval the load can get to around 25 percent. An interval of

about 3 to 10 seconds is not bad, if you can stand the wait.

Now let’s study the loop. We initialize the return code variable, RC, to 1, one. Then

we start an until loop that tests for the target process on each loop iteration. If the

218 Chapter 8

process is not running, then the sleep is executed and then the loop is executed again.
If the target process is found to be running, then we give user notification that the
process has started, with the time stamp, and display to the user the process that actu-
ally started. We need to give the user this process information just in case the grep com-

mand got a pattern match on an unintended pattern. The entire script is on the Web site

with the name proc_wait.ksh. This is crude, but it works well. (See Listing 8.2.)

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_wait.ksh xcalc

WAITING for xcalc to start...Thu Sep 27 21:11:47 EDT 2001

xcalc has Started Execution...Thu Sep 27 21:11:55 EDT 2001

root: 26772 17866. 13° 21 -11:54 ‘pes/6 0:00 Reale

Listing 8.2 proc_wait.ksh script in action.

Monitoring for a Process to End

Monitoring for a process to end is also a simple procedure because it is really the oppo-

site of the previous shell script. In this new shell script we want to add some extra

options. First, we set a trap and inform the user if an interrupt occurred—for example,

CTRL-C is pressed. It would be nice to give the user the option of verbose mode. The

verbose mode enables the listing of the active process(es). We can use a -v switch as a

command-line argument to the shell script to turn on the verbose mode. To parse
through the command-line arguments we could use the getopts command; but for

only one or two arguments, we can easily use a nested case statement. We will show

how to use getopts later in the chapter. Again, we will use the double parentheses for
numeric tests wherever possible. For the proc_mon.ksh script we are going to list out
the entire script and review the process at the end. (See Listing 8.3.)

#!/usr/bin/ksh

SCRIPT: proc: mon. ksh

AUTHOR: Randy Michael

DATE: 02/14/2001

REVc tree

PLATFORM: Not Platform Dependent

3h Fe Fk FE FRE OSEOOHE PURPOSE: This script is used to monitor a process to end

Listing 8.3. proc_mon.ksh shell script listing.

Process Monitoring 219

specified by ARG1 if a single command-line argument is

used. There is also a "verbose" mode where the monitored

process is displayed and ARG2 is monitored.

USAGE: proc_mon.ksh {[-v] process-to-monitor

EXIT STATUS:

==> Monitored process has terminated

==> Script usage error

==> Target process to monitor is not active

==> This script exits on a trapped signal WDNr Oo

REV. LIST:

02/22/2001 - Added code for a "verbose" mode to output the

results of the 'ps -ef' command. The verbose

mode is set using a "-v" switch.

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution i i i i i a a a ee

SCRIPT_NAME="basename $0°

FHHRHHHERREERHEEHEEEEEEEEEAE EAE EE AERA ERRRER REPRE REESE

HHEHHEHEHHEHE DEFINE FUNCTIONS HERE ####H#H#HRHHHHEH HEHEHE HH

HAH RH HH EH HE EE HEH HE EH EH HH HH HH HE

function usage

{

echo "\n\n"

echo "USAGE: SSCRIPT_NAME [-v] {Process_to_monitor}"

echo "\nEXAMPLE: $SCRIPT_NAME my_backup\n"

echo "OR"

echo "\nEXAMPLE: S$SCRIPT_NAME -v my_backup\n"

echo "Try again...EXITING...\n"

HEFHHREPHREEHHREHEREEHRPEHERPHAEPHEPHREEHEGHHE SHH EHH EHH

function exit trap

{

echo! "\n.. EXTTING ‘on trapped signal...) \n"

HHHHHHHHRERREEHEES EERE REE REHEARSE TREE EH EE EEE HE

HEFHHHHHEHHHE HHH START OF MAIN#HHHEHHHHEHEFERPEEEERHE EE HEE

HEATHER RREEHHESEPEPEPEREEEEAEAEREAEEERRRREPEE ER EH EH HH

HHHHEREPEEE HE HEHE

Listing 8.3. proc_mon.ksh shell script listing. (continues)

220 Chapter 8

Set a trap...#

HHFHEHHHEHHESH HH

trap 'exit_trap; exit 3' 12 3 15

First Check for the Correct Number of Arguments ~

One or Two is acceptable

if (($# != 1 && $# I= 2))

then

usage

exit 1

Ly

Parse through the command-line arguments and see if verbose

mode has been specified. NOTICE that we assign the target

process to the PROCESS variable!!!

Embedded case statement...

case $# in

a) case Si! an

‘-v') usage

exit 1

*) PROCESS=$1

esac

2) case $1 in

'-v') continue

esac

case $2 in

'-v') usage

*) PROCESS=$2

jay

*) usage

Listing 8.3. proc_mon.ksh shell script listing. (continued)

Process Monitoring 221

esac

Check if the process is running or exit!

ps -ef | grep "SPROCESS" | grep -v "grep $PROCESS" \

| grep -v $SCRIPT_NAME >/dev/null

ge at ig (Sa eae ¢ es)

then

echo "\n\n$PROCESS is NOT an active process...EXITING...\n"

exit 2

ea

Show verbose mode if specified...

if ((S$# == 2)) && [[$1 = "-v"]]

then

Verbose mode has been specified!

echo "\n"”

Extract the columns heading from the ps -ef output

ps -ef | head -n 1

ps -ef | grep "S$PROCESS" | grep -v "grep $PROCESS" \

| grep -v $SCRIPT_NAME

£2

O.K. The process is running, start monitoring...

SLEEP TIME="1" # Seconds between monitoring

RC="0" # RC is the Return Code

echo "\n\n" # Give a couple of blank lines

echo "“SPROCESS is currently RUNNING... “date \n"

HHPHHHPPREEPREEEHPEEEEPEREAEEEEEH HEH

Loop UNTIL the $PROCESS stops...

while ((RC == 0)) # Loop until the return code is not zero

do

ps -ef | grep $PROCESS | grep -v "grep SPROCESS" \

| grep -v S$SCRIPT_NAME >/dev/null 2>&1

if (($? != 0)) # Check the Return Code!!!!!

then

echo "\n...$PROCESS has COMPLETED... date’ \n"

Listing 8.3. proc_mon.ksh shell script listing. (continues)

222 Chapter 8

exit 0

fi

sleep $SLEEP_TIME # Needed to reduce CPU Load!!!

done

End of Script

Listing 8.3 proc_mon.ksh shell script listing. (continued)

Did you catch all of the extra hoops we had to jump through? Adding command

switches can be problematic. We will see a much easier way to do this later using the

getopts command.

In Listing 8.3 we first defined two functions, which are both used for abnormal oper-
ation. We always need a usage function, and in this shell script we added a

trap_exit function that is to be executed only when a trapped signal is captured. The

trap definition specifies exit signals 1, 2, 3, and 15. Of course, you cannot trap exit sig-

nal 9. This trap_exit function will display "...EXITING on a_ trapped

signal...". Then the trap will execute the second command, exit 3. In the next

step we check for the correct number of command-line arguments, one or two, and use

an embedded case statement to assign the target process to a variable, PROCESS. If a -

v is specified in the first argument, $1, of two command-line arguments, then verbose

mode is used. Verbose mode will display the ps -ef output that the grep command did

the pattern match on. Otherwise, this information is not displayed. This is the first time

that we look to see if the target process is active. If the target process is not executing,

then we just notify the user and exit with a return code of 2. Next comes the use of ver-

bose mode if the -v switch is specified on the command line. Notice how we pull out

the ps command output columns header information before we display the process

using ps -ef | head -n 1. This helps the user confirm that this is the correct match with

the column header. Now we know the process is currently running so we start a loop.
This loop will continue until either the process ends or the program is interrupted—for
example, CTRL-C is pressed.

The proc_mon.ksh script did the job, but we have no logging and the monitoring

stops when the process stops. It would be really nice to track the process as it starts and

stops. If we can monitor the transition, we can keep a log file to review and see if we
can find a trend.

Process Monitoring 223

[root: yogi] @/scripts/WILEY/PROC_MON# ./proc_mon.ksh xcalc

xcalc is NOT an‘ active process... .EXITING...

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_mon.ksh xcalc

xcale is currently RUNNING. ./Thu Sep 27 21:14:08 EDT 2002

-..xCale has COMPLETED...Thu Sep 27 21:14:26 EDT 2001

Listing 8.4 proc_mon.ksh shell script in action.

Monitor and Log as a Process Starts and Stops

Catching process activity as it cycles on and off can be a useful tool in problem deter-

mination. In this section, we are going to expand on both of our previous scripts and

monitor for both startup and end time for a target process. We are also going to log
everything and time stamp the start and stop event. Because we are logging everything

we also want to see the same data as it happens on the screen. The log file can be
reviewed at any time; we want to see it in “real time” (at least close to real time). We are

going to make the startup and end time monitoring into functions this time, and as a

result we are going to need to capture the current tty device, which may be a pseudo-

terminal (pty), to use within these functions. The tty command will show the current

terminal, and we can save this in a variable. For concurrent display and logging within

the script we pipe our output to tee -a $LOGFILE. This tee command sends the output

to both standard output and to the file that $LOGFILE points to. But inside the func-
tions we will use the specific tty device to send our output to, which we assign to a

variable called TTY. Enough with the fluff; here is the script (in Listing 8.5), followed

by a short explanation.

224 Chapter 8

#!/bin/ksh

SCRIPT: proc_watch.ksh

AUTHOR: Randy Michael

DATE: 09-12-2001

#: REV? 12.02 P

PLATFORM: Not Platform Dependent

:

PURPOSE" This script is used to monitor and log

Hi the status of a process as it starts and stops.

REV LIST:

+

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without ANY execution

HHEHHERRRRERRERRE ERA E ERG E RARER RELEASE HEHE HHH EFF

H#H#HHHHHHH DEFINE FILES AND VARIABLES HERE #######4#

HHHHHHPPRHAHHHPPREEHHPHEEERE PRR EEE EPR R EEE SE GHEE EEE

LOGFILE="/tmp/proc)istatus -log"

[{L ! -s $LOGFILE]] && touch $LOGFILE

PROCESS="$1" # Process to Monitor

SCRIPT NAME=$(basename $0) # Script Name w/o the PATH

TTY=$ (tty) # Current tty or pty

A AEE HH HE aE EH HH HE aE HEE aE aE aE a EE EH EEE HE

HHHHHHHHHHHHH DEFINE FUNCTIONS HERE #H###HHHHEHEHHEH EHH

HH HEHE HE HEHE HEHEHE aE HE aE HE EE HE HEHE aE EE EE EE HE

usage ()

{

echo "\nUSAGE: S$SCRIPT_NAME process_to_monitor\n"

HHEHHHHPPEHHEEEPEEHEEEP HEE EE EERE REEEER ER REEEEE EEE EE

trap_exit ()

{

Log an ending time for process monitoring

TIMESTAMP=S$ (date +%D@%3T) # Get a new time stamp...

echo "MON_STOP: Monitoring for $PROCESS ended ==> STIMESTAMP" \

| tee -a $LOGFILE

Kill all functions

Listing 8.5 proc_watch.ksh shell script listing.

Process Monitoring 225

kill -9 $(jobs -p) 2>/dev/null

THHHERHTHEPPR EERE HEPRHE ERE ER PRRR RHEE HPP HHH EHH HH

mon_proc_end ()

{

END_RC="0"

until ((END_RC != 0))

do

ps -ef | grep -v "grep $PROCESS" | grep -v $SCRIPT_NAME \

| grep $PROCESS >/dev/null 2>&1

END_RC=$? # Check the Return Code!!

sleep 1 # Needed to reduce CPU load!

done

print 'N' # Turn the RUN flag off

Grab a TimeStamp

TIMESTAMP=$ (date +%D@%T)

echo "END PROCESS: $PROCESS ended ==> STIMESTAMP" >> SLOGFILE &

echo "END PROCESS: $PROCESS ended ==> $TIMESTAMP" > STTY

}

eevrevevereereereverteterrerrrrerrererrsrrerrererr s:

mon_proc_start ()

{
START_RC="-1" # Initialize to -1

until ((START_RC == 0))

do

ps -ef | grep -v "grep $PROCESS" | grep -v S$SCRIPT_NAME \

| grep $PROCESS >/dev/null 2>&1

START RC=$? # Check the Return Code!!!

sleep 1 # Needed to reduce CPU load!

done

print 'Y' # Turn the RUN flag on

Grab the Timestamp

TIMESTAMP=$ (date +%D@%T)

echo “START PROCESS: S$PROCESS began ==> STIMESTAMP" >> SLOGFILE &

Listing 8.5 proc_watch.ksh shell script listing. (continues)

226 Chapter 8

echo "START PROCESS: $PROCESS began ==> STIMESTAMP" > $TTY

HEPHHHEHRREPRRREEREEHEEEEEERAEEEAHHEAH AGHA EEE HEHEHE

HHHHHHEHHHEHHEHE START OF MAIN #######HHEHEEEE ERE EE HEH

HAA AE HE aE aR aE HE aE aE aE aE HE aE aE HE aE HE Ea aE HE EHH EHH SE HH

SET A TRAP ####

trap ‘trap exit; exit 0' 1 2 3 15

Check for the Correct Command Line Argument - Only 1

af ((S# t= 1))

then

usage

exit 1

x:

Get an Initial Process State and Set the RUN Flag

ps -ef | grep -v "grep $PROCESS" | grep -v $SCRIPT_NAME \

| grep $PROCESS >/dev/null

PROC_RC=$? # Check the Return Code!!

Give some initial feedback before starting the loop

if ((PROC_RC == 0))

then

echo “The $PROCESS process is currently running...Monitoring..."

RUN="Y" # Set the RUN Flag to YES

else

echo "The SPROCESS process is not currently running...Monitoring..."

RUN="N" # Set the RUN Flag to NO

£3:

TIMESTAMP=$ (date +%D@%T) # Grab a timestamp for the log

Use a “tee -a S#LOGFILE" to send output to both standard output

and to the file referenced by SLOGFILE

echo "MON_START: Monitoring for $PROCESS began ==> $TIMESTAMP" \

| tee -a $LOGFILE

Loop Forever!!

while :

Listing 8.5 proc_watch.ksh shell script listing. (continued)

Process Monitoring 227

do

case $RUN in

'¥y') # Loop Until the Process Ends

RUN=§ (mon_proc_end)

'N') # Loop Until the Process Starts

RUN=$ (mon_proc_start)

esac

done

End of Script

Listing 8.5 proc_watch.ksh shell script listing. (continued)

The shell script in Listing 8.5 is a nice, modular shell script. The actual monitoring

loop is the final while loop. The loop is short and tight, with all of the work being done

within the two functions, proc_mon_start and proc_mon_end. Notice that in both

functions we remain in the loop until there is a transition from run to stop or not run-

ning to process startup. On each transition we return updated run status information

back to the calling shell script with a print command, as opposed to a return code. For
the concurrent display to the screen and logging to the file we use tee -a SLOGFILE

within the shell script body, and in the functions we redirect output to the tty device

that we assigned to the $TTY variable. We use the tty device to ensure that the screen

output will go to the terminal, or pseudo-terminal, that we are currently looking at.

Otherwise we cannot be assured where standard output is pointing within the func-

tion. We again did all numeric tests with the double parentheses method. Notice that
we do not use a $ with a user-defined variable! For the while loop we are looping for-

ever. The No-Op character (while :) allows this to work (true would also work). The

proc_watch.ksh shell script will continue to run until it is interrupted—for exam-

ple, CTRL-C is pressed.
We have improved our script, but it does not let us know how many processes are

active. There is no timing mechanism for the shell script; it just runs until interrupted.
We are next going to expand on our script to do a few things differently. First, we want

to be able to time the monitoring to execute for a specific period of time. We also want
to let the user know how many processes are currently active and the PID of each

process. In addition, we want to time stamp each process startup and end time. To time
stamp each process we can count the number of processes that are running during each

loop iteration, and if the count changes we will grab a new time stamp and update the

PID list for the currently running processes. We also will give the option to run some

pre, startup, and/or post event before the process starts, as the process starts, or after

the process has ended.

228 Chapter 8

[root : yogi] @/scripts/WILEY/PROC_MON# ./proc_watch.ksh xcalc ~

The xcalc process is currently running... Monitoring. ..

MON_START: Monitoring for xcalc began ==> 09/27/01@21:09:41

END PROCESS: xcalc ended ==> 09/27/01@21:09:56

START) PROCESS: xcale began ==> 09/27/01@21-10:06

END PROCESS: xcalc ended ==> 09/27/01@21:10:25

el

MON STOP: Monitoring for xcalc ended ==> 09/27/01@G21:10:31

Listing 8.6 proc_watch.ksh shell script in action.

Timed Execution for Process Monitoring,
Showing each PID, and Time Stamp with
Event and Timing Capability

Sound like a lot? After we get through this section, each step will be intuitively obvi-

ous. In all of the previous three scripts, we had no ability to monitor each process that

matched the grepped pattern or to execute the monitoring for a specific amount of

time. Because we are using the grep command we may get multiple matches to a pat-

tern. In case of multiple matches we need to know (1) how many matches we have and

(2) each process that was matched. This information can be very beneficial if you are

monitoring a specific user’s activities or anything where we are interested in the exact
process IDs that are running.

We also want a good timing mechanism that will allow for easy, flexible timing of

the duration of the monitoring activity. Because we have no way of knowing what user

requirements may be, we want to allow for as much flexibility as possible. Let’s go to

the far side and allow timing from seconds to days, and anything in between. The easi-

est way to handle timing, but not the most accurate, is to add up all of the seconds and

count down from the total seconds to zero while sleeping for one second between
counts. We could continuously check the date/time using the date command for a very

accurate time, or—even better—we can kick off an at job to kill the script at some spe-

cific time in the future. The Korn shell variable SECONDS is also useful. For this script

we are going to use getopts to parse the command line for seconds, minutes, hours,

days, and the process to monitor. Then we add up the seconds and count down to zero

and quit. Alternatively, if the total seconds and a process are the only arguments, the

user will be able to enter these directly—for only a process and total seconds getopts

will not be used. The usage function will list two ways to use our new script.

Another nice option is the capability to run pre, startup, and/or post events. By pre,

startup, and post events we are talking about running some command, script, or func-

tion before the process starts, as the process starts, or after the process stops, or in any

Process Monitoring 229

combination. As an example, we may want to reboot the machine after a backup pro-

gram ends, or we may want to set up environment variables before some process starts

up. For the event options we also need to be as flexible as possible. For flexibility we
will just add a function for each event that contains only the no-op character, : (colon),

as a place holder. A colon does not execute anything; it does nothing and has a return

code of 0, zero. Anything that a user may want to run before startup, at startup, or after

the process has ended can be added into the appropriate function. We will use flags, or

variables, to enable and disable the pre, startup, and post events individually.

In this section we are going to do two things that may be new, using getopts to

process the command-line arguments and executing a function in the background as a

co-process. The getopts functionality is an easy and efficient way to parse through

mixed command-line arguments, and the command switches can be with or without

switch arguments. A co-process is an easy way to set up a communication link with a
background script or function and the foreground.

Let’s first look at how to use getopts to parse the command line. The getopts

command is built in to Korn shell. The command parses the command line for valid

options specified by a single character, following a - (minus sign) or a + (plus sign). To

specify that a command switch requires an argument, the switch character must be fol-
lowed by a : (colon). If the switch does not require any argument, then the : should be
omitted. All of the switch options put together are called the Opt ionString, and this

is followed by some variable name that we define. The argument for each switch is
stored in a variable called $OPTARG as the arguments are parsed in a loop one at a time.

If the entire OptionString is preceded by a : (colon), then any unmatched switch

option causes a ? to be loaded into the variable that we defined in the getopts com-

mand. The form of the command follows:

getopts OptionString Name [Argument ...]

The easiest way to explain the getopts command is with an example. For our script

we need seconds, minutes, hours, days, and a process to monitor. For each one we

want to supply an argument—for example,-s 5 -m10 -p my_backup. In this exam-
ple we are specifying 5 seconds, 10 minutes, and the process is my_backup. Notice that
there does not have to be a space between the switch and the argument. This is what
makes getopts so great! The code to set up our example looks like the following exam-

ple in Listing 8.7.

SECS=0 # Initialize all to zero

MINUTES=0

HOURS=0

DAYS=0

PROCESS= fF Inveialsze co nul)

while getopts ":s:m:h:d:p:" TIMED 2>/dev/null

do

case $TIMED in

s) SECS=SOPTARG

Listing 8.7 Example getopts command usage. (continues)

230 Chapter 8

iad

m) ((MINUTES = SOPTARG * 60))

h) ((HOURS = S$OPTARG * 3600))

ta

da) ((DAYS = $OPTARG * 86400))

Ha

p) PROCESS=SOPTARG

tard

\?) usage

exit 1

He

esac

done

(({ TOTAL SECONDS = SECS + MINUTES + HOURS + DAYS:))

Listing 8.7 Example getopts command usage. (continued)

There are a few things to note in Listing 8.7. The getopts command needs to be

part of a while loop with a case statement within the loop. On each option we speci-

fied, -s,-m,-h,-d, and -p, and we added a : (colon) after each switch character. This

tells getopts that an argument is required for that particular switch character. The :

(colon) before the OptionString list tells getopts that if an unspecified option is given

on the command line, to set the STIMED variable to the ? character. The ? allows us to

call the usage function and exit with a return code of 1 for an incorrect command-line

option. The only thing to be careful of is that getopts does not care what arguments it

receives so it is our responsibility to check each argument to ensure that it meets our

expectations; then we have to take action if we want to exit. The last thing to note in

Listing 8.7 is that the first line of the while loop has redirection of the standard error

(file descriptor 2) to the bit bucket. Any time an unexpected argument is encountered,
getopts sends a message to standard error, but it is not considered an error, just infor-

mational. Because we expect that incorrect command-line arguments may be entered,

we can just ignore the messages and discard them with redirection to /dev/nu11,

a.k.a. the bit bucket.

We also need to cover setting up a co-process. A co-process is a communications link

between a foreground and a background process. The most common question is, “Why

is this needed?” In our next script we are going to call a function that will handle all of

the monitoring for us while we do the timing control in the main script. The problem

arises because we need to run this function in the background. Within the background
process monitoring function there are two loops in which one loop is always executing.

Without the ability to tell the loop to break out of the internal loop, it will coritinue to

execute on its own after the main script, and function, have exited due to an interrupt.

We know what this causes—one or more defunct processes! From the main script we need

Process Monitoring 231

a way to communicate with the loop in the background function to tell it to break out
of the loop or exit the function cleanly when the countdown is complete and if the
script is interrupted—for example, with CTRL-C. To solve this little problem we kick
off our background proc_watch function as a co-process. “How do we do this?” you
ask. “Pipe it to the background” is the simplest way to put it, and that is also what it looks
like. Look at the next example in Listing 8.8.

function proc_watch

{

This function is started as a co-process!!!

while : # Loop forever

do

Some Code Here

read BREAK OUT # Do NOT need a "-p" to read!

if [[$BREAK_OUT = 'Yy']]

then

return 0

fi

done

}

HHHHHHEFHEHHHEHEEEEEEEHEE HEH

#H#HHH Start of Main ########

HHEEHHEFHHEEHHEEHHEEHHE SHE EH

Set a Trap HHH

trap 'BREAK='Y'; print -p $BREAK; exit 2' 1 2 3 15

TOTAL_SECONDS=300

BREAK_OUT='N'

proc watch |& # Start proc_watch as a co-process!!!!

until ((TOTAL SECONDS == 0))

do

((TOTAL _SECONDs = TOTAL SECONDS - 1))

sleep 1

done

BREAK OUT='Y'

Use "print -p" to communicate with the co-process variable

print -p $BREAK_OUT

exit 0

Listing 8.8 Example using a co-process.

232 Chapter 8

In the code block in Listing 8.8 we defined the proc_watch function, which is

the function that we want to start as a background process. As you can see, the
proc_watch function has an infinite loop. If the main script, is interrupted, then with-
out a means to exit the loop within the proc_watch background function, the loop

alone will continue to execute! To solve this we start the proc_watch as a co-process

by “piping it to the background” using pipe ampersand, | &, as a suffix. Now when we

want to communicate with the function from the main script, we use print -p

$BREAK_OUT. Inside the function we just use the standard read command, read

BREAK_OUT. The co-process is the mechanism that we are going to use to break out of

the loop if the main script is interrupted on a trapped signal, and for normal count-

down termination at the end of the script. Of course, we can never catch kill -9 with

a trap.

Try setting up the scenario just described, without a co-process, with a background

function that has an infinite loop. Then press the CTRL-C key sequence to kill the main
script and do a ps -ef | more. You will see that the background loop is still executing!

Get the PID, and do a kill -9 to kill it. Of course, if the loop’s exit criteria is ever met,

the loop will exit on its own.

Now take a look at the entire script, and see how we handled all of these extra

requirements. Pay close attention to the highlighted code in Listing 8.9.

#!/bin/ksh

SCRIPT: proc_watch_timed.ksh

AUTHOR: Randy Michael

DATE: 09-14-2001

REV: 1.0.P

PLATFORM: Not Platform Dependent

PURPOSE: This script is used to monitor and log

the status of a process as it starts and stops.

Command line options are used to identify the target

process to monitor and the length of time to monitor.

Each event is logged to the file defined by the

S$LOGFILE variable. This script also has the ability

to execute pre, startup, and post events. These are

controlled by the $RUN_PRE_EVENT, SRUN STARTUP EVENT, and

SRUN_POST_EVENT variables. These variables control execution

individually. Whatever is to be executed is to be placed in

either the "pre_event_script", startup_event_script, or the

'post event. script" functions, or in any combination. Timing

is controlled on the command line.

USAGE: $SCRIPT_NAME total_seconds target process

Se FF FF FR OF HE OH HF HF HH HF HK HK HFK HF HF HK HHS HSH HK HS HH H Will monitor the specified process for the

Listing 8.9 proc_watch_timed.ksh shell script listing.

+ OH OH HEHEHE HEHEHE HE OH OH OH OH OH

Process Monitoring 233

specified number of seconds.

USAGE: $SCRIPT_NAME [-s|-S seconds] [-m|-M minutes]

[-h|-H hours] [-d|-D days]

[-p|-P process]

Will monitor the specified process for number of

seconds specified within -s seconds, -m minutes,

-h hours, and -d days. Any combination of command

switches can be used.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without ANY execution

HEH HH HH HHH EH EHH EH HH EH HEH HEH HEE EH HE HE

HH#HHHHHHHH DEFINE FILES AND VARIABLES HERE #########

HAE TH HEHE HE HH EH HE a HEH HE EE HEE EEE EE EE EE EH

typeset -u RUN_PRE_EVENT # Force to UPPERCASE

typeset -u RUN_STARTUP_EVENT # Force to UPPERCASE

typeset -u RUN_POST_EVENT # force to UPPERCASE

RUN_PRE_EVENT='N‘' # A 'Y¥' will execute, anything else will not

RUN _ STARTUP _EVENT='Y' # A 'Y' will execute, anything else will not

RUN_POST EVENT='Y' # A 'Y' will execute, anything else will not

LOGFILE="/tmp/proc_status.log"

[{ ! -s $LOGFILE]] && touch $LOGFILE

SCRIPT NAME=$(basename $0)

TTY=$ (tty)

INTERVAL="1" # Seconds between sampling

JOBS=

HEEERHRHAHBREEERAEHE ERA AARAEHEEG HER ERE EH HEE HHH TT HF

HHPHHEHHHEHHH DEFINE FUNCTIONS HERE ####4H HEHEHE HH HH

HHPHHHHHHHHHARPHER RAHA AEE EEE ERE E HHH HH HT

usage ()

{

echo "\n\n\t*****USAGR BRROR@ 840%"

echo "\n\nUSAGE: SSCRIPT NAME seconds process"

echo "\nWill monitor the specified process for the"

echo "specified number of seconds."

echo "\nUSAGE: $SCRIPT_NAME [-s|-S seconds] [-m|-M minutes]”

echo * [-h|-H hours] [-d|-D days] [-p|-P process] \n"

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

234 Chapter 8

echo "\nWill monitor the specified process for number of"

echo “seconds specified within -s seconds, -m minutes,"

echo "-h hours and -d days. Any combination of command"

echo "switches can be used.\n"

echo "\NEXAMPLE: (SSCRIPT NAME) \(300\\\\dtcala

echo "\n\nEXAMPLE: S$SCRIPT NAME -m 5 -p dtcalc"

echo "\nBoth examples will monitor the dtcalc process"

echo "for 5 minutes. Can specify days, hours, minutes"

echo “and seconds, using -d, -h, -m and -s\n\n"

}

HHEHHHEEHPRPEHERPHEEEEPEARHPEPHEE ERPS ERE EEE PEPER EH

trap_exit ()

<

set -x # Uncommant to debug this function

Log an ending time for process monitoring

echo "INTERRUPT: (Program Received an Interrupt ERE TING ui aS nny

echo "INTERRUPT: Program Received an Interrupt...EXITING..." >> SLOGFILE

TIMESTAMP=S (date +%D@%T) # Get a new time stamp...

echo "MON_STOPPED: Monitoring for SPROCESS ended ==> STIMESTAMP\n" \

>> SONY

echo "MON STOPPED: Monitoring for SPROCESS ended ==> STIMESTAMP\n" \

>> SLOGFILE

echo "LOGFILE: All Events are Logged ==> SLOGFILE \n" > STTY

#\Kit) ald functions

JOBS=$ (jobs -p)

LE Se SUOBS See STOBS hai ih Sen SGORS eS NNO

then

kill $(jobs -p) 2>/dev/null 1>&2

£i

return 2

}

HHHFHEHHHHFHSHEHHEHHPESHEHSHHEHHSHEAEHPERPEEHE SESH E SH

pre_event_script ()

{

Put anything that you want to execute BEFORE the

monitored process STARTS in this function

No-OP - Needed as a place holder for an empty function

Comment Out the Above colon, ':'

PRE_RC=$?

return $PRE_RC

}

HHFHHEHHEAHEEHEEHHEHHREEREPHEEHHEAHRETHERHEPHHRSS HERS

startup_event script ()

£

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

Process Monitoring 235

Put anything that you want to execute WHEN, or AS, the

monitored process STARTS in this function

: # No-OP - Needed as a place holder for an empty function

Comment Out the Above colon, ';'

STARTUP_RC=$?

return $STARTUP_RC

}

HHFHHHEHPEEHEEEAEEEEPEPEPEAEEP EAE EPPA HEREEPEAEE EES SE

post_event_script ()

{

Put anything that you want to execute AFTER the

monitored process ENDS in this function

: # No-OP - Need as a place holder for an empty function

Comment Out the Above colon, ':'

POST _RC=$?

return $POST_RC

}

HEHEHE EHFEEEERSEPEESHEEPHEAEPAEHEEEHPEPHEH EH EA HH

This function is used to test character strings

test_string ()

{ EZ

tia © Sie 1)

then

echo '‘ERROR'

return

fi

C_STRING=$1

Test the character string for its composition

case $C_STRING in

+([0-9])) echo ‘POS _INT' # Integer >= 0

pee "NEG INT' # Integer < 0

+([a-z])) "LOW _CASE' # lower case text

+([A-2Z])) woke 'UP_CASE' # UPPER case text

ee echo 'MIX_CASE' # MIxed CAse text

FEE

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

236 Chapter 8

*) echo 'UNKNOWN' # Anything else

esac

}

HHHEHHPEHHPEEREAEREAPRRAREEA EAGER ERA REES EERE EES HH

proc_watch ()

{

set -x # Uncomment to debug this function

This function does all of the process monitoring!

while : # Loop Forever!!

do

case $RUN in

ty)

#: This will run the startuplevent script, which is a function

12 [| SRUN_STARTUP_EVEN? = 'Y' 1]

then

echo "STARTUP EVENT: Executing Startup Event Script..."\

> SEny

echo: "STARTUP EVENT: Executing Startup Event (Soript.:."\

>> S$LOGFILE

startup_event_script # USER DEFINED FUNCTION!!!

RC=$? # Check the Return Code!!

LE CC “SRC* == 0.))

then

echo "SUCCESS: Startup Event Script Completed RC -

S{(RC}" | > SPTry

echo "SUCCESS: Startup Event Script Completed RC -

${RC}" >> $LOGFILE

else

echo "FAILURE: Startup Event Script FAILED RC -

SERCH GS SETy

echo "FAILURE: Startup Event Script FAILED RC -

S{RC}" >> $LOGFILE

£u

£1

integer PROC_COUNT='-1' # Reset the Counters

integer LAST COUNT='-1'

Loop until the process(es) end(s)

until (("PROC_COUNT" == 0))

do

This function is a Co-Process. $BREAK checks to see if

“Program Interrupt" has taken place. If so BREAK will

be 'Y' and we exit both the loop and function.

read BREAK

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

Process Monitoring 237

if [[$BREAK = 'y']]

then

return 3

fi

PROC_COUNT=$(ps -ef | grep -v "grep $PROCESS" \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | we -1) >/dev/null 2>&1

if (("LAST_COUNT" > 0 && "LAST COUNT" != "PROC COUNT"))

then

The Process Count has Changed...

TIMESTAMP=$ (date +%D@%T)

Get a list of the PID of all of the processes

PID_LIST=$(ps -ef | grep -v "grep $PROCESS" \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | awk '{print $2}')

echo "PROCESS COUNT: SPROC_COUNT SPROCESS\

Processes Running ==> STIMESTAMP" >> $LOGFILE &

echo "PROCESS COUNT: S$PROC_COUNT SPROCESS\

Processes Running ==> S$STIMESTAMP" > $TTY

echo ACTIVE PIDS: $PID LIST >> $LOGFILE &

echo ACTIVE PIDS: $PID_LIST > $TTY

fi

LAST_COUNT=$PROC_COUNT

sleep $INTERVAL # Needed to reduce CPU load!

done

RUN='N' # Turn the RUN Flag Off

TIMESTAMP=S$ (date +%D@%T)

echo "ENDING PROCESS: $PROCESS END time ==>\

STIMESTAMP" >> $LOGFILE &

echo "ENDING PROCESS: $PROCESS END time ==>\

STIMESTAMP" > $TTY

This will run the post_event_script, which is a function

if [[$RUN_ POST EVENT = 'Y' J]

then

echo "POST EVENT: Executing Post Event Script..."\

> $TTY

echo "POST EVENT: Executing Post Event Script..."\

>> $LOGFILE &

post _event script # USER DEFINED FUNCTION!!!

integer RC=$?

if (("RC" == 0))

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

238 Chapter 8

${RC}" >

then

echo “SUCCESS: Post Event Script Completed RC —

$TTY

echo "SUCCESS: Post Event Script Completed RC -

${RC}" >> SLOGFILE

'n!)

startup..

else

echo "FAILURE: Post Event Script FAILED RC - S{RC}"\

> $TTY

echo "FAILURE: Post Event Script FAILED RC - S{RC}"\

>> $LOGFILE

£7

£1

This will run the pre event script, which is a function

if {[$RUN_PRE_EVENT = 'Y']]

then

echo "PRE EVENT: Executing Pre Event Script..." > $TTY

echo "PRE EVENT: Executing Pre Event Script..." >> $LOGFILE

pre_event_script # USER DEFINED FUNCTION!!!

RC=$? # Check the Return Code!!!

ZL °(("RC" == 0.))

then

echo "SUCCESS: Pre Event Script Completed RC - ${RC}"\

> $TTY

echo “SUCCESS: Pre Event Script Completed RC - S${RC}"\

>> SLOGFILE

else

echo “FAILURE: Pre Event Script FAILED RC - ${RC}"\

> $TTY

echo "FAILURE: Pre Event Script FAILED RC - ${RC}"\

>> $LOGFILE

fi

£1

echo "WAITING: Waiting for $PROCESS to

-Monitoring: 4."

integer PROC_COUNT='-1' # Initialize to a fake value

Loop until at least one process starts

until (("PROC_COUNT" > 0))

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

Process Monitoring 239

do

This is a Co-Process. This checks to see if a "Program

Interrupt" has taken place. If so BREAK will be 'Y' and

we exit both the loop and function

read BREAK

if {[$BREAK = 'y']]

then

return 3

i

PROC_COUNT=$(ps -ef | grep -v "grep $PROCESS” \

| grep -v $SCRIPT_NAME | grep $PROCESS | we -1) \

>/dev/null 2>&1

sleep SINTERVAL # Needed to reduce CPU load!

done

RUN='Y' # Turn the RUN Flag On

TIMESTAMP=S (date +%D@$T)

PID_LIST=$(ps -ef | grep -v "grep SPROCESS" \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | awk ‘{print $2}')

if (("PROC_COUNT"™ == 1))

then

echo "START PROCESS: SPROCESS START time ==>

STIMESTAMP" >> $LOGFILE &

echo ACTIVE PIDS: $PID_LIST >> $LOGFILE &

echo "START PROCESS: $PROCESS START time ==>

S$TIMESTAMP" > $TTY

echo ACTIVE PIDS: $PID LIST > $TTY

elif (("PROC_COUNT" > 1))

then

echo "START PROCESS: SPROC_ COUNT S$PROCESS

Processes Started: START time ==> STIMESTAMP" >> S$LOGFILE &

echo ACTIVE PIDS: $PID_LIST >> $LOGFILE &

echo "START PROCESS: $PROC_COUNT $PROCESS

Processes Started: START time ==> STIMESTAMP" > STTY

echo ACTIVE PIDS: S$PID LIST > $TTy

Ly

esac

done

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

240 Chapter 8

}

HAH A HE HE HE HE ot HE aE HE HE HEHEHE HE HE HEE aE HE HE HEE HEHEHE HEHEHE EE HE HE HEHE EE

HEHHHHHHHHEHHHE START OF MAIN #H#H#HHHHEEEHEHEEEEEE EH HH

HHFHHHERHHEPRPRPPRREPREERRPRREERREPPEE REGGE EEE HE HHH

SET A TRAP ####

trap 'BREAK='Y';print -p $BREAK 2>/dev/null;trap_exit\

2>/dev/null;exit 0' 1 2 3 15

BREAK='N' # The BREAK variable is used in the co-process proc_watch

PROCESS= # Initialize to null

integer TOTAL SECONDS=0

Check commnand line arguments

FE SCO S# > (10°11 S# <2))

then

usage

exit 1

fa

Check to see if only the seconds and a process are

the only arguments

if [(C ($# -eq 2) && ($1 != -*) && ($2 != -*)]]

then

NUM_TEST=$(test_string $1) # Is this an Integer?

if [["SNUM_TEST" = 'PpOS INT' Jj]

then

TOTAL SECONDS=$1 # Yep - It's an Integer

PROCESS=$2 # Can be anything

else

usage

exit 1

£2

else

Since getopts does not care what arguments it gets lets

do a quick sanity check to make sure that we only have

between 2 and 10 arguments and the first one must start

with a -* (hyphen and anything), else usage error

case "$#" in

{2-10]) if [{ $1 != -*]]}; then

usage; exit 1

fi

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

Process Monitoring 241

esac

HOURS=0 # Initialize all to zero

MINUTES=0 |

SECS=0

DAYS=0

Use getopts to parse the command line arguments

For each SOPTARG for DAYS, HOURS, MINUTES and DAYS check to see

that each one is an integer by using the check string function

while getopts ":h:H:m:M:s:S:d:D:P:p:" OPT LIST 2>/dev/null

do

case S$OPT_ LIST in

h|H) [[$(test_string S$OPTARG) != 'POS_INT']] && usage && exit 1

((HOURS = SOPTARG * 3600)) # 3600 seconds per hour

m|H) [[$(test_string $OPTARG) != 'POS_INT']] && usage && exit 1

((MINUTES = SOPTARG * 60)) # 60 seconds per minute

s|S) [[{ $(test_string $OPTARG) != 'POS_INT']] && usage && exit 1

SECS="SOPTARG" # seconds are seconds

a|D) [[$(test_string $OPTARG) != 'POS_INT']] && usage && exit 1

((DAYS = $OPTARG * 86400)) # 86400 seconds per day

p|P) PROCESS=SOPTARG # process can be anything

\?) usage # USAGE ERROR

exit 1

:) usage

exit 1

*) usage

exit 1

esac

done

ae

We need to make sure that we have a process that

is NOT null or empty! - sanity check - The double quotes are required!

if [[-z "$PROCcESS" || "$PROCESS" = '']]

then

usage

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

242 Chapter 8

fs:

Check to see that TOTAL SECONDS was not previously set

if ((TOTAL SECONDS == 0))

then

Add everything together if anything is > 0

if [[$SECS -gt 0 || $MINUTES -gt 0 || $HOURS -gt 0 \

|| $DAYS -gt 0 }]

then

((TOTAL_SECONDS = SECS + MINUTES + HOURS + DAYS))
fi

fa

Last Sanity Check!

if ((TOTAL_SECONDS <= 0)) || [-z $PROCESS]
then

Either There are No Seconds to Count or the

S$PROCESS Variable is Null...USAGE ERROR...

usage

exit 1

£ i

HHHHHHHHEHH START MONITORING HERE! #####8484444

echo "\nCurrently running $PROCESS processes:\n" > $TTY

ps -ef | grep -v "grep $PROCESS" | grep -v SSCRIPT_NAME \

| grep $PROCESS > $TTY

PROC RC=$? # Get the initial state of the monitored function

echo >STTY # Send a blank line to the screen

((PROC_RC != 0)) && echo "\nThere are no $PROCESS processes running\n"

if ((PROC_RC == 0)) # The Target Process(es) is/are running...

then

RUN='Y' # Set the RUN flag to true, or yes.

integer PROC_COUNT # Strips out the "padding" for display

PROC_COUNT=$ (ps -ef | grep -v "grep $PROCESS" | grep -v \

$SCRIPT_NAME | grep $PROCESS | we -1) >/dev/null 2>&1

if ((PROC_COUNT == 1))

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

Process Monitoring 243

then

echo "The $PROCESS process is currently

running...Monitoring...\n"

elif ((PROC_COUNT > 1))

then

print "There are $PROC_COUNT $PROCESS processes currently

running...Monitoring...\n"

pia

else

echo "The $PROCESS process is not currently running...monitoring..."

RUN='N' # Set the RUN flag to false, or no.

£u

TIMESTAMP=$ (date +%D@$T) # Time that this script started monitoring

Get a list of the currently active process IDs

PID_LIST=$(ps -ef | grep -v "grep $PROCESS" \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | awk '{print $2}')

echo "MON STARTED: Monitoring for $PROCESS began ==> $TIMESTAMP" \

| tee -a $LOGFILE

echo ACTIVE PIDS: $PID LIST | tee -a $LOGFILE

#H#### NOTICE ####

We kick off the "proc_watch" function below as a "Co-Process"

This sets up a two way communications link between the

"proc_watch" background function and this "MAIN BODY" of

the script. This is needed because the function has two

"infinite loops", with one always executing at any given time.

Therefore we need a way to break out of the loop in case of

an interrupt, i.e. CTRL-C, and when the countdown is complete.

The "pipe appersand", |&, creates the background Co-Process

and we use "print -p SVARIABLE" to transfer the variable's

value back to the background co-process.

HHEHRHRAEHEARHE EERE EHH HH HH EH HH

Se FE OF OHH HEHEHE HEHE

proc_watch |& # Create a Background Co-Process! !

WATCH PID=$! # Get the process ID of the last background job!

Start the Count Down!

integer SECONDS _LEFT=$TOTAL._ SECONDS

while ((SECONDS_LEFT > 0))

do

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

244 Chapter 8

Next send the current value of $BREAK to the Co-Process

proc_watch, which was piped to the background...

print -p $BREAK 2>/dev/null

((SECONDS _ LEFT = SECONDS LEFT - 1))

sleep 1 # 1 Second Between Counts

done

Finished - Normal Timeout Exit...

TIMESTAMP=$ (date +%D@%T) # Get a new time stamp...

echo "MON STOPPED: Monitoring for $PROCESS ended ==> $TIMESTAMP\n" \

| tee -a $LOGFILE

echo "LOGFILE: All Events are Logged ==> $LOGFILE \n"

Tell the proc_watch function to break out of the loop and die

BREAK='Y'

print -p $BREAK 2>/dev/null

kill $WATCH_PID 2>/dev/null

exit 0

End of Script

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

The most important things to note in Listing 8.9 are the communication link used
between the foreground main script and the background co-process function,

proc_watch, and the use of getopts to parse the command-line arguments. Some

other things to look at are the integer tests using the string_test function and the

way that the user is notified of a new process either starting or stopping by time stamp.

The updated process count and the listing of all of the PIDs and how text is sent to the
tty display within the function. As usual, we use the double parentheses numerical

test method in the control structures. (Notice again that the $ is not used to reference

the user defined variables!) This shell script is also full of good practices for using dif-
ferent control structures and the use of the logical AND and logical OR (&& and | |),

which reduces the need for if..then..else.. and case structures. One very important test

needs to be pointed out—the “null/empty” test for the PROCESS variable just after

getopts parses the command line. This test is so important because the getopts com-
mand does not care what arguments it is parsing;, nothing will “error out.” For this

reason, we need to verify all of the variables ourselves. The only thing getopts is doing is

Process Monitoring 245

matching the command switches to the appropriate arguments, not the validity of the
command-line argument! If this test is left out and invalid command line arguments are
present, then grep command errors will cover the screen during the script’s execution—
bad, very bad!

A good review of Listing 8.9 is needed to point out some other interesting aspects.
Let’s start at the top:

In the definitions of the files and variables there are three variables that control the
execution of the pre, startup, and post events. The variables are RUN_PRE_EVENT,

RUN_STARTUP_EVENT, and RUN_POST_EVENT, and for ease of testing, the variables

are typeset to UPPERCASE. A 'y' will enable the execution of the function, in which

a user can put anything that he or she wants to run. The functions are called
pre_event_script, startup_event_script, and post_event_script, but

don’t let the names fool you. We also identify the LOGFILE variable and test to see if a

log file exists. If the file does not exist, we touch the SLOGFILE variable, which creates

an empty file with the filename that the $LOGFILE variable points to. This script sec-
tion also grabs the SCRIPT_NAME using the basename $0 command, and we define the

current tty device for display purposes. An important variable is INTERVAL. This

variable defines the number of seconds between sampling the process list. It is very

important that this value is greater than 0, zero! If the INTERVAL value is set to 0, zero,

then the CPU load will be extreme and will produce a noticeable load, to say the least.

The next section in Listing 8.9 defines all of the functions used in this script. We have
a usage function that is displayed for usage errors. Then there is the trap_exit func-

tion. The trap_exit function will execute on exit codes 1, 2, 3, and 15, which we

will see in the trap statement later at “Start of Main” in the script. Next are the

pre_event_script, startup_event_script, and post_event_script func-

tions. You may ask why a function would have a name indicating it is a script. It is

done this way to encourage the use of an external script, or program, for any pre,
startup, or post event activity, rather than editing this script and debugging an internal

function. The next function is used to test character strings, thus the name

test_string. If you have ever wondered how to test a string (the entire string!) for

its composition, test_string will do the trick. We just use a regular expression test

for a range of characters. The preceding + (plus sign) is required in this regular expres-
sion to specify that all characters are of the specified type.

Then comes the main function in the script that does all of the work, proc_watch.

This function is also the one that is executed as the co-process that we have been talk-

ing so much about. The proc_watch function is an infinite loop that contains two

internal loops, where one internal loop is always executing at any given time. During

both of these internal loops we check the variable BREAK to see if the value is 'y'. The
'y' value indicates that the function should exit immediately. The BREAK variable is
updated, or changed, from the main script and is “transferred” to this co-process back-
ground function using the print -p $BREAK command within the main script. This

variable is reread, in the function, on each loop iteration using the standard read
BREAK command. This is what enables the clean exit from the background function's

loop. The word background is key to understanding the need for the co-process. If the
main script is interrupted, then the innermost loop will continue to execute even after

both the function and script end execution. It will exit on its own when the loop’s exit

246 Chapter 8

parameters are met, but if they are never met we end up with a defunct process. To get

around this problem we start the proc_watch function as a background co-process
using | & as a suffix to the function—for example, proc_watch |&. An easy way to

think of a co-process is a pipe to the background, and through this pipe we have a com-

munications link.
For the main part of the shell script, at the START OF MAIN, we first set a trap. In

the trap command we set the BREAK variable to 'Y', to indicate that the proc_watch

co-process should exit, and we make the new BREAK value known to the co-process

with the print -p $BREAK 2>/dev/null command. This command sometimes sends

error notification to the standard error, file descriptor 2, but we want all error notifica-

tion suppressed. Otherwise, the error messages would go to the screen during the

script’s execution, which is highly undesirable.

Next are the standard things of initializing a few variables and checking for the cor-

rect number of arguments. There are two ways to run this script: (1) only specifying the

total seconds and the process to monitor or (2) using the command-line switches to

specify the seconds, minutes, hours, days, and process to monitor. The latter method

will use the getopts command to parse the arguments, but we do not need getopts for

the first method. We first check to see if we are given only seconds and a process. We use

the test_string function to ensure that the $1 argument is a positive integer. The sec-
ond argument could be anything except a string that begins with a - (hyphen) or a null

string. Otherwise, we will use the getopts command to parse the command line.

Using the getopts command makes life much easier when we need to process com-

mand-line arguments; however, getopts does have its limitations. The command is

parsing the command-line arguments, but it really does not care what the arguments

are. Therefore, we need to do a sanity check on each and every argument to ensure that

it meets the criteria that is expected. If the argument fails, then we just run the usage
function and exit with a return code of 1, one. Two tests are conducted on each argu-

ment. We test the PROCESS variable to make sure that it is not null, or empty, and we

check all of the numeric variables used for timing to make sure they are positive inte-

gers, or 0, zero. The positive integer test is to ensure that at least one of the numeric

variables, SECS, MINUTES, HOURS, and DAYS, has an integer value greater than 0,

zero. If we get past this stage we assume we have creditable data to start monitoring.

The monitoring starts by getting an initial state of the process, either currently run-

ning or not running. With this information we initialize the RUN variable, which is used

as a control mechanism for the rest of the script. Once the initialization text is both

logged and sent to the screen, the proc_watch function is started as a background co-

process, again using proc_watch |&. The main script just does a countdown to 0,

zero, and exits. To make the proc_watch function exit cleanly we assign 'Y' to the

BREAK variable and make this new value known to the co-process with the print -p

$BREAK command. Then we kill the background PID that we saved in the WATCH_PID

variable and then exit the script with a return code of 0, zero. If the script is inter-

rupted, then the trap will handle stopping the co-process and exiting. See Listing 8.10.

Process Monitoring 247

{root:yogi]@/scripts/WILEY/PROC_MON# ./proc_watch_timed.ksh -m 5 -pxcalec

Currently running xcalc processes:

There are no xcalc processes running

The xcalc process is not, currently \running.).monitoring.\:

MON._ STARTED: Monitoring for xcalc began’ ==> 09/27/01@21:15:02

ACTIVE PIDS:

START: PROCESS :“xcale START time ==s 09/27 /01@2) 215.19

ACTIVE PIDS: 26190

STARTUP EVENT: Executing Startup Event Script...

SUCCESS: Startup Event Script Completed RC - 0

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:15:46

ACTIVE PIDS: 13060 26190

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:16:04

ACTIVE PIDS: 13060 18462 26190

PROCESS COUNT: 4 xcalc Processes Running

ACTIVE PIDS: 13060 18462 22996 26190

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:16:39

ACTIVE PIDS: 18462 22996 26190

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:16:56

ACTIVE PIDS: 18462 22996 24134 26190

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:17:31

ACTIVE] PIDS: 22996. 24134. 26190

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:17:41

ACTIVE PIDS: 22996 24134

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:18:39

ACTIVE PIDS: 21622: 22996 24134

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:18:58

ACTIVE PIDS + -21622 22996

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:19:04

ACTIVE PIDS:' 18180 21622) 22996

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:19:10

ACTIVE PEDS= 18180°21622 22758 22996

PROCESS COUNT: 6 xcalc Processes Running ==> 09/27/01@21:19:17

ACTIVE PIDS: T8180 21622 22758 22996 23164 26244

PROCESS COUNT: 5 xcalc Processes Running ==> 09/27/01@21 719: 37

ACTIVE PIDS: 18180 22758 22996 23164 26244

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:19:47

ACTIVE PIDS: 18180 22996 23164 2e244

PROCESS COUNT: 3 mcalc Processes Running ==>) 09/27/01¢G271: 19) 53

ACTIVE PIDS: 18180 22996 26244

=> O9/27/01G21 216.27 It

Listing 8.10 proc_watch_times.ksh shell script in action. (continues)

248 Chapter 8

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:19:55

ACTIVE PIDS: 18180 26244

PROCESS COUNT: 1 xcalc Processes Running ==> 09/27/01@21:20:05

ACTIVE PIDS: 18180

PROCESS COUNT: 0 xcalc Processes Running ==> 09/27/01@21:20:09

ACTIVE PIDS:

ENDING PROCESS: xcalc BEND ‘time \\==> 09/27 /0L1G270 20211) 4

POST EVENT: Executing Post (Event) Script...

SUCCESS: Post Event Script Completed RC - 0

MON_STOPPED: Monitoring for xcalc ended ==> 09/27/01@21:20:23

LOGFILE: All Events are Logged ==> /tmp/proc_status.log

Listing 8.10 proc_watch_times.ksh shell script in action. (continued)

Other Options to Consider

The proc_watch_timed.ksh shell script is thorough, but it may need to be tailored

to a more specific need. Some additional considerations are listed next.

Common Uses

These scripts are suited for things like monitoring how long a process runs, logging a

process as it starts and stops, restarting a process that has terminated prematurely, and

monitoring a problem user or contractor. We can also monitor activity on a particular

tty port and send an email as a process starts execution. Use your imagination.

We can start the monitoring script on the command line, or as a cron or at job, and

run it during the work day. A cron table entry might look like the following:

0 7 * * 1-5 /usr/local/bin/proc_watch_timed.ksh -h9 -p fred >/dev/null

This cron table entry would monitor any process in the process table that contained

“fred” from 7:00 A.M. Monday through Friday for nine hours. Note: The nine hours

may be much longer due to the system’s load during the day as the script counts down
to zero.

Anything in the system’s process list can be monitored from seconds to days.

Modifications to Consider

These scripts are generic, and you may want to make modifications. One option to con-

sider is to list the actual lines in the process list instead of only the PID and a process

Process Monitoring 249

count with a time stamp. You may have a different ps command that is preferred—for

example, ps aux. For a more accurate timing you may want to check the date/time at
longer intervals (as opposed to counting down); checking the time would also reduce
the CPU load. Another good idea is to get the timing data and run an at command to
kill the script at the specified time. Also, consider using the Korn shell built-in variable
SECONDS. First initialize the SECONDS variable to 0, zero and it will automatically

increment each second as long as the parent process is executing. The pre, startup, and

post events are something else to look at, the startup in particular. The startup_
event_script currently executes only when (1) the monitoring starts and the target

process is running and (2) when the very first, if more than one, process starts, not as

each process starts. You may want to modify this function’s execution to run only as
each individual process starts and not to execute when monitoring starts and the tar-

get process is already running. Additionally, depending on what is to be executed for

any of these events, some sleep time might be needed to allow for things to settle
down. As we can see, there are many ways to do all of this, and everyone has different

expectations and requirements. Just remember that we never have a final script; we just

try to be flexible!

Summary

In this chapter we started with a very basic idea of monitoring for a process to start or

stop. We quickly built on user options to monitor the process state for a specified

period of time and added time stamps. We also allowed the user to specify pre, startup,

and post events to execute as an option. Never try to do everything at once. Build a

short shell script that does the basic steps of your target goal and expand on the base

shell script to build in the nice-to-have things. I use the proc_mon.ksh and

proc_wait.ksh shell scripts almost daily for monitoring system events and they sure do

save a lot of time reentering the same command over-and-over again.

In the next chapter we are going to expand on our monitoring to include applica-
tions. We always want to know if an application or database has gone down during the
day. As you watch the heads popping up above all of the cubicles it is always nice to be

proactively informed and not be surprised by the application group.

Monitoring Processes
and Applications

The most critical part of any business is ensuring that applications continue to run

without error. In this chapter, we are going to look at several techniques for monitoring

applications and critical processes that the applications rely on. The problem with try-

ing to write this chapter is that there are so many applications in the corporate world

that the techniques to monitor them vary widely.

From the lowest level we can ping the machine to see if it is up. A ping, though, is

not an operating system response, but rather a machine response to confirm that the

network adapter is configured. At a higher level, we can look at the processes that are
required for the application to run properly, but this too does not completely confirm,

100 percent, that the application is working properly. The only way to ensure the appli-

cation is working properly is to interact with the application. As an example, if we have

a database that the application requires we can do a simple SQL query to ensure that
the database is working properly. For interactive applications we can try to use a here

document to log in to the application and maybe even perform a small task. Applica-

tions work differently, so the solution to ensure that the application is up and running

properly will vary widely.
We are going to look at monitoring local processes, remote monitoring using Secure

Shell (SSH), checking for active Oracle databases, and checking an application URL

and HTTP server status in this chapter.

251

252 Chapter 9

Monitoring Local Processes

Above pinging a host machine, the most common application monitoring technique is
to look for the critical processes that are required for the application to work properly.

This is also a good practice when we have a flaky application that has a process that
dies intermittently. The basic technique is to use the ps -ef | grep target_process | grep

-v grep command syntax. If you have more than one required process, then this com-

mand statement needs to be executed for each of the processes individually. We do not
want to use egrep in place of grep in this case. If egrep is used, then we get a positive

result if any of the processes are currently running.
The key to making this technique work is to find a unique string pattern that repre-

sents the target process. The PID is no good because the process may have a child or

parent process that has the same PID somewhere in the ps -ef output. Finding a unique

string pattern that works with the grep command is key. This is easily tested by using

the following command syntax on the command line.

ps -ef | grep Appserver | grep -v grep

This command statement assumes that we are looking for a process called
Appserver. Notice that we always pipe (|) the last pipe’s output to | grep -v grep. This
last grep on grep is needed so that the system will not report on the grep Appserver

process. In the process table each part of the command statement that has a pipe will

have a separate PID.

Then there is another thing to consider if this command is executed in a sheil script.

The shell script name may show up in the grep output, depending on how the shell

script is written. To get around this little problem we need to query the system to cap-

ture the shell script’s filename and add a third grep to the ps -ef command statement

using the following syntax:

SCRIPT_NAME=$(basename $0)

ps -ef | grep target_process | grep -v grep | grep -v $SCRIPT_NAME

Now we have a command that will work if, and only if, a unique character string can

be found that separates the target process from all other processes. This usually takes a
few tries for each application that we want to monitor.

In Listing 9.1 we have a code segment from a shell script that monitors an applica-

tion service, using a unique character string. This particular application service is

defined by the APPSVC variable. If this service is not currently running, there is an
attempt to restart the application service and an email is sent to my text pager and my

regular email account. Follow the code segment in Listing 9.1.

Monitoring Processes and Applications 253

HHEHEPHEEHHHHHHHEHPH EERE PHPH HEHEHE PHHEHEEHHHHHHHHHHHHHPERHEHEHSE

FHEHHHHHHHHHH DEFINE VARIABLES HERE ####H###HH#HHHHH HHH

HHHHHHEEHPHEHHEEHREEPPEEREEHHHHERHHHHHHHHHHHHHHR HEHEHE

APPSVC="/usr/local/sbin/appstrt_ul"

MATLLIST="1234567890@mypage.provider.abc randy@my.domain.com"

MATILFILE="/tmp/mailfile.out"

TIMESTAMP=S (date +%m%d%y%H$M%S)

APPS_LOG="/usr/local/log/appsvc.log

[=s SAPP_LOG] || touch’ SAPP _LoG

HHRFRHRREEE SERRE ARERR REE RRRRRHRRR EERE ARERR EERE RE EE

HHHHHHEHHHHH HERE START OF MAIN ###H#HRRHHEHEEHHHEEEHH

HEPPREEHEHE EERE RARE ERR RRR ER SEH EEE EHH EH HE EH EE

Check to see if the APPSVC process(es) is/are running

APPSVC_COUNT=$(ps -ef | grep $APPSVC | grep -v grep \

| grep -v $SCRIPT_NAME | we -1)

If the count is zero then we need to attempt to restart the service

if (($APPSVC_COUNT == 0))

then

Need to attempt an Application server restart.

echo "SVC-Al - APPSVC: Attempting Restart" > $MAILFILE

Send email notification

sendmail -f rmichael@my.domain.com $MAILLIST < $MAILFILE

Make a log entry

echo "ERROR: STIMESTAMP - Appsvc DOWN - Attempting Restart">>

SAPP_LOG

Make another log entry

echo "STARTING APPLICATION SERVER - S$TIMESTAMP" >>SAPPS_LOG

Attempt the restart!!!

su - appsve -c '/usr/local/sbin/appsvce start 2>&1' >> SAPP_LOG

baat

Listing 9.1 Code segment to monitor an application process.

In the code segment in Listing 9.1 notice that we defined a unique string for the

process, which in this case is the fully qualified pathname, to the APPSVC variable.

Because this application server can have multiple instances running at the same time,

254 Chapter 9

we need to get a count of how many of these processes are running. If the process count

is 0, zero, a restart of the application server is attempted.

During the restart effort an email notification is sent to reflect that the application

service is down and the script is attempting a restart. This information is also logged in
the SAPP_LOG file before the restart command. Notice the restart command at the end

of the script segment. This monitoring script is executed from the root crontab every
10 minutes. Because the script is running as root it is easy to use the su (switch user)
command to execute a single command as the appsvc user for the restart. If you are not

familiar with this technique, then study the syntax in Listing 9.1 and study the man

page for the su command.

Remote Monitoring with Secure Shell

In the previous section we studied a “local” shell script. No one said, though, that you
could not run this same script from a remote machine. This is where Open Secure Shell
(OpenSSH) comes into play.

Open Secure Shell is a freeware encryption replacement for telnet, ftp, and rsh, for

the most part. When we use the ssh command we establish a connection between two

machines, and a secure tunnel allows encrypted communication between two trusted

machines. Using ssh we can log in to another trusted machine in the network, we can

copy files between the machines in an encrypted state, and we can run commands on

a remote trusted machine. OpenSSH can be downloaded at the following URL:

http: //www.openssh.com

To establish password-free encrypted connections, an encryption key pair must be

created on both machines. This encryption key is located on both machines in the

user’s SHOME/ .ssh directory. All of the details to set up the password-free encrypted

connections are shown in great detail in the ssh man page (man ssh).

Let’s look at a couple of examples of using ssh. The first example shown in Listing
9.2 shows a simple login without the key pair created.

ssh randy@dino

The authenticity of host ‘dino (10.10.10.6)" can't be established.

RSA key fingerprint is ¢c5:19:37:b9:59:ad:3a:18:6b:45:57:2d:ab:b8:df:bb.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'dino (10.10.10.6)' (RSA) to the list of

known

hosts.

randy@dino's password:

Last unsuccessful login: Tue Jul 2 13:58:18 EDT 2002 on /dev/pts/24 from

bambam

Listing 9.2 Sample secure shell login.

Monitoring Processes and Applications 255

Last login: Wed Aug 7 10:28:00 EDT 2002 on /dev/pts/18 from bambam

RRR RR RR RR RRR OK KKK RK KOK KK KK KK KK KK RK KEK RK KKK KKK KE KKK EKKKEEK

*

i
*

* Welcome to dino!

*

*

* Please see the README file in /usr/lpp/bos for information pertinent

* to this release of the AIX Operating System.
*

*

*

RARKKRK KK KKK KKK KKK KE KK KKK KK KE KK KKK KKK KKK KR KEK KKK KKK KKK KK KEKE KER KEK KEK KE KEKKERE

[YOU HAVE NEW MATL]

[randy@dino] §$

Listing 9.2 Sample secure shell login. (continued)

Notice in Listing 9.2 that the login to dino required a password, which indicates that

the systems do not have the encryption key pairs set up. This does get a bit annoying
when you are trying to run a command on a remote machine using an ssh tunnel. With

the key pairs created on both machines we can monitor remote machines using encryp-

tion, and no password is required. As an example, suppose I need to check the filesys-
tem usage on dino and I am logged into yogi. By adding the command that we want

to execute on dino to the end of the ssh login statement, we establish a trusted connec-

tion between the two machines, and the command executes on the remote machine

with the output going to the local machine. Of course, this is equivalent to a remote

shell, rsh, except that the information is encrypted using ssh in place of rsh. A simple
example of this technique is shown in Listing 9.3.

[randy@yogi] ssh randy@dino df -k

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 196608 66180 67% 2330 Sky

/dev/hd2 1441792 488152 67% 29024 9% (ust

/dev/hd9var 2162688 1508508 31% 868 16) var

/dev/hd3 131072 106508 19% Bot 2%. /tmp

Listing 9.3. Example of running a remote command. (continues)

256 Chapter 9

/dev/hdl 589824 235556 61% 15123 11% /home

/dev/local_lv BIZ 216 81384 80% 2971 oe 4s /usr/loecal

/dev/oracle_lvx 1507328 307388 80% 5008 2% foracle

/dev/arch_lvx 13631488 8983464 35% 44 1% /oradata

Listing 9.3 Example of running a remote command. (continued)

Notice in the output in Listing 9.3 that there was no prompt for a password and that
the result was presented back to the local terminal. Once the key pairs are set up you

can do remote monitoring with ease, as long as your security staff does not find any

bugs in the ssh code. Let’s move on to Oracle now.

Checking for Active Oracle Databases

I wanted to have at least one example of interacting with an application in this chapter,

and I picked an Oracle database as the example using a SQL+ database query. We will

look at three steps to check the Oracle database status. The first step is to list all of the

Oracle instances defined in the /etc/oratab file. This file is colon-separated (:) with

the Oracle instance name(s) in the first field, $1. The function shown in Listing 9.4 first

checks to see if a /etc/oratab file exists. If the file is not found, then a notification

message is displayed on the user’s terminal and the function returns a 3 for a return

code. Otherwise, the /etc/oratab file is parsed to find the Oracle instance name(s).

Removing all of the lines that begin with comments, specified by beginning with a

hash mark (#), in the file is done using a sed statement in combination with the “#

notation. Removing the comment lines is easy using the sed statement, as shown here

witha /etc/hosts file as an example.

cat /etc/hosts | sed /4#/b > /etc/hosts.without_beginning_comments

The output of the previous command shows all of the IP address and hostname

entries, except that the commented-out lines have been removed. The *# is the key to
finding the commented lines, which translates to begins with a #.

Check out the function in Listing 9.4 to see how we use this technique to parse the

Oracle instances from the /etc/oratab file.

function show_oratab instances

{

if [! -£ "SORATAB"]

then

echo "\nOracle instance file SORATAB does not exist\n"

return 3

else

cat S$ORATAB | sed /‘#/b | awk -F: '{print $1}'

fi

}

Listing 9.4 show_oratab_instances function listing.

Monitoring Processes and Applications 257

The output of the show_oratab_instances function in Listing 9.4 is a list of all
of the Oracle instances defined on the system. We have already removed the lines that
are comments; next comes the awk statement that extracts the first field, specified by
awk -F: '{print $1}'.In this awk statement the -F: specifies that the line is field
separated by colons (:). Once we know the field separator we just extract the first field
($1), which is the Oracle instance name.

Now we are going to use the same function shown in Listing 9.4 to get the status of
all of the defined Oracle instances by checking for the process for each instance. This
technique is shown in Listing 9.5.

function show_all_ instances status

{

for INSTANCE in $(show_oratab instances)

do

ps -ef | grep ora | grep $INSTANCE | grep -v grep >/dev/null 2>&1

if (($? != 0))

then :

echo "\nSINSTANCE is NOT currently running $(date) \n"

else

echo "\nSINSTANCE is currently running OK $(date)\n"

got

done

Listing 9.5 show_all_instances_status function listing.

Notice in Listing 9.5 that we use the function from Listing 9.4 to get the list of Ora-

cle instances to query the system for. In this case, all we are doing is using the ps -ef

command again. This time we narrow the list down with a grep on the string ora. This

output is piped (|) to another grep statement, where we are looking for the instance

name for the current loop iteration, specified by $INSTANCE. Of course, we need to
strip out any grep processes from the output so we add one more grep -v grep. If the

return code of the entire ps -ef statement is 0, zero, then the instance is running; if the

return is anything other than 0, zero, then the instance is not running.

We are still looking at the process level. I have seen cases when the instance

processes are running, but I still could not log in to the database. For a final test we

need to do an actual SOL query of the database to interact with Oracle. This just needs
to be a very simple query to prove that we can interact with the database and get data

back.
To actually query the Oracle database we can use a simple SQL+ statement, as

shown in Listing 9.6. This two-line SQL script is used in the function simple_

SQL_query, shown in Listing 9.6 using the sqlplus command.

select * from user users;

exit

Listing 9.6 my_sql_query.sql SQL script listing.

258 Chapter 9

As you can see in Listing 9.6, this is not much of a query, but it is all that we need.
This SQL script, my_sql_query.sql, is used in the sqlplus function in Listing 9.7.

Notice in this function, simple_SQL_query, that the sqlplus command statement

requires a username, password, and an Oracle SID name to work. See the function

code in Listing 9.7.

function simple SQL query

if

USER=oracle

PASSWD=oracle

SID=yogidb

sqlplus ${USER}/${PASSWD}@SSID @my_sql_ query.sql

}

Listing 9.7 simple SQL query function listing.

The function shown in Listing 9.7 can be shortened further, if you are logged in to
the system as the oracle user or executing a script as the oracle user. If these conditions

are met then you can run a simpler version of the previous sqlplus, as shown in List-

ing 9.8, with the output of the query; however, the Oracle Listener is not tested as in the

previous sqlplus statement in Listing 9.7. The sqlplus command in Listing 9.8 should

be run on the local machine.

{oracle@yogi] sqlplus / @/usr/local/bin/mysql _query.sql

SQL*Plus: Release 8.1.7.0.0 - Production on Wed Aug 7 16:07:30 2002

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:

Oracle8i Enterprise Edition Release 8.1.7.4.0 - Production

With the Partitioning option

JServer Release 8.1.7.4.0 - Production

USERNAME USER_ID ACCOUNT_STATUS

TEMPORARY_ TABLESPACE CREATED INITIAL _RSRC_CONSUMER_GROUP

Listing 9.8 Example of an SQL+ Oracle query.

Monitoring Processes and Applications 259

OPSSORACLE ' 940 OPEN
USERS

TEMP 18-APR-2002

Disconnected from Oracle8i Enterprise Edition Release 8.1.7.4.0 -

Production

With the Partitioning option

JServer Release 8.1.7.4.0 - Production

Listing 9.8 Example of an SQL+ Oracle query. (continued)

This is about as simple as it gets! You can check the return code from the sqlplus

command shown in Listing 9.8. If it is zero, then the query worked. If the return code

is nonzero, then the query failed and the database should be considered down. In any

case, the Database Administrator needs to be notified of this condition.

Checking If the HTTP Server/Application Is Working

Some applications use a Web browser interface. For this type of application we can use

a command-line browser, such as linx, to attempt to reach a specific URL, which in

turn should bring up the specified application Web page. The function shown in List-

ing 9.9 utilizes the linx command-line browser to check both the HTTP server and the
Web page presented by the specified URL, which is passed to the function in the $1

argument.

check HTTP _server ()

{

LINX="/usr/local/bin/lynx" # Define the location of the linx program

URL=$1 # Capture the target URL in the S$) position

URLFILE=/tmp/HTTP.$$ # Define a file to hold the URL output

HHEHHEHEHPRHABHEREGEE EAE EE EHH EH HHH HH HE

$LINX "SURL" > SURLFILE # Attempt to reach the target URL

Ee CUS? f=:0)) # If the URL is unreachable - No Connection

Listing 9.9 check_HTTP_server function listing. (continues)

260 Chapter 9

then

echo "\nSURL - Unable to connect\n"

cat SURLFILE

else # Else the URL was found

while read VER RC STATUS # This while loop is fed from the bottom

after the "done" using input

redirection

do

case $RC in # Check the return code in the $URLFILE

200|401|301|302) # These are valid return codes!

echo “\nHTTP Server is OK\n"

*) # Anything else is not a valid return code

echo "\nERROR: HTTP Server Error\n"

esac

done < $URLFILE

fa:

rm -£ SURLFILE

i

Listing 9.9 check_HTTP_server function listing. (continued)

This is a nice function in Listing 9.9 for checking the status of a Web server and also

to see if an application URL is accessible. You should test this function against doing

the same task manually using a graphical browser. This has been tested on an applica-

tion front-end, and it works as expected; however, a good test is recommended before

implementing this, or any other code, in this book. You know all about the disclaimer

stuff. (I am really not even here writing this book, or so the disclaimer says.)

Other Things to Consider

As with any code that is written, it can always be improved. Each of the functions and

code segments presented in this chapter are just that, code segments. When you are

monitoring applications, code like this is only one part of a much bigger shell script, at

least it should be. The monitoring should start at the lowest level, which is sending a

ping to the application host to ensure that the machine is powered on and booted.
Then we apply more layers as we try to build a script that will allow us to debug the

problem. I have presented only a few ideas; it is your job to work out the details for
your environment.

Monitoring Processes and Applications 261

Application APIs and SNMP Traps

Most enterprise management tools come with application program interfaces (APIs)
for the more common commercial applications; however, we sometimes must write
shell scripts to fill in the gaps. This is where SNMP traps come in. Because the enter-
prise management tool should support SNMP traps, the APIs allow the application to
be monitored using the SNMP MIB definitions on both the management server and the
client system.

When an enterprise management tool supports SNMP traps, you can usually write
your own shell scripts that can use the tool’s MIB and SNMP definitions to get the mes-

sage out from your own shell scripts. As an example, the command shown here utilizes

a well-known monitoring tool’s SNMP and MIB data to allow a trap to be sent.

/usr/local/bin/trapclient SMON_HOST S$MIB_ NUM S$TRAP_NUM STRAP _TEXT

In the previous command the MON_HOST variable represents the enterprise man-

agement workstation. The MIB_NUM variable represents the specific code for the MIB

parameter. The TRAP_NUM variable represents the specific trap code to send, and the

TRAP_TEXT is the text that is sent with the trap. This type of usage varies depending

on the monitoring tool that you are using. At any rate, there are techniques that allow

you to write shell scripts to send traps. The methods vary, but the basic syntax remains
the same for SNMP.

Summary

This is one of those chapters where it is useless to write a bunch of shell scripts. I tried
to show some of the techniques of monitoring applications and application processes,
but the details are too varied to cover in a single chapter. I have laid down a specific

process that you can utilize to build a very nice tool to monitor your systems and appli-
cations. Always start with a ping! If the box is unpingable, then your first job is to get
the machine booted or to call hardware support.

In the next steps you have several options, including interacting with the applica-

tion, as we did with a SQL+ query of an Oracle database. We also covered monitoring

specific processes that are a little flaky and die every once in a while. I have two appli-

cations that I have to monitor this way, and I have not had even one phone call since I
put this tool in place. The key is to keep the business in business, and the best way to
do that is to be very proactive. This is where good monitoring and control shell scripts

make you look like gold.
Remember, no one ever notices an application except when it is down!

In the next chapter, we move on to study creating pseudo-random passwords. The

scripts include the use of arrays in shell scripts and a practical use for computer-
generated pseudo-random numbers in a shell script. See you in the next chapter!

Creating Pseudo-Random
Passwords

Got security? Most of the user community does not know how to create secure pass-

words that are not easy to guess. Users tend to have several passwords that they rotate.

The problem with these “rotating” passwords is that they are usually easy to guess. For

example, users find that birth dates, social security numbers, addresses, department

names/numbers, and so on make good passwords that are easy to remember. Some-

times they even use words found in any dictionary, which is a starting point for any

cracker. In this chapter we are going to create a shell script that creates pseudo-random
passwords.

Randomness

If you look at Chapter 21, “ Pseudo-Random Number Generator,” you can see the exercise

that we used to create pseudo-random numbers. These numbers are not true random

numbers because of the cyclical nature of how “random numbers” are created on a
computer system. For example, if you always start a random number sequence with

the same seed, or first number, you will always have the same sequence of numbers. In

Chapter 21 we used the process ID (PID) of the current process, which was the shell

script, as the seed for creating pseudo-random numbers. This use of the PID is good

because PIDs are created by the system in a somewhat random nature. Now that I have

lost you in random numbers you are asking, “What does a random number have to do
with a password?” As we proceed, the answer will be intuitively obvious.

263

264 Chapter 10

Creating Pseudo-Random Passwords

We started this chapter with a discussion on randomness because we are going to use

computer-generated pseudo-random numbers, then use these generated numbers as

pointers to specific array elements of keyboard characters, which are stored in the
array KEYS. In this chapter you get a practical use for generating random numbers,

and you thought Chapter 21 was a waste of time!

The script idea goes like this: We use an external file that contains keyboard characters,
one character per line. You can put any keyboard characters in this file that you want. I

just went down the rows on the keyboard from left to right, starting on the top row of
keys with numbers. As I went through all of the keyboard keys I then added a second set
of numbers from the number keypad, as well as all of the uppercase and lowercase

characters. The nice thing about this strategy is that you have the ability to specify the

exact group of characters that make a valid password in your shop. Country-specific

keyboards, which use characters other than those of the U.S. keyboards, also benefit from

this strategy.

Once we have the keyboard file created, we load the keyboard data into an array.
Don’t panic! Korn shell arrays are easy to work with, as you will see in the scripting

section as well as in the array introduction section. When we have all of the array ele-

ments loaded, then we know how many total elements we have to work with. Using
techniques described in Chapter 21, we create pseudo-random numbers between one

and the total number of array elements, n. With an array pointer, which is nothing more

than a pseudo-random number, pointing to an individual character, we add the spe-

cific character to build a text string. The default length of this character string, which is

the password we are creating, is eight characters; however, this can be changed on the

command line to make the password longer or shorter by adding an integer value
specifying the new password length.

The final step is to print the password to the screen. We also add two command-line

switch options, -n and -m. The -n switch specifies that the user wants to create a new

keyboard data file. The -m switch specifies that the user wants to print a password page.

In our shop we are required to put some passwords, such as root, in multiple security

envelopes to be locked in a safe, just in case. To remove the risk of typos, I print the

password page, which has three copies of the password data on the same page, and cut

the sheet up into three pieces. I then fold each of the three slips of paper and seal each

one in a security envelope and give them to my Admin Manager.

As you can see, creating passwords is not something that I take lightly! Weak pass-

words make for a real security risk, and as a Systems Administrator you need to take a

proactive approach to create secure passwords that are as random as you can make them.

This chapter is a valuable asset to any security team as well as for the common user.

Syntax

As with any of our scripting sessions we first need the correct syntax for the primary

commands that we are going to use in the shell script. In this case we need to introduce

Creating Pseudo-Random Passwords 265

arrays and the commands that are used to work with the array and the array elements.

There is a lot more than loading an array to creating this shell script. When we get to

the scripting section you will see the other tasks that I have in mind, and you can pick

up a pointer or two from the chapter.

Arrays

In a Korn shell we can create one-dimensional arrays. A one-dimensional array con-

tains a sequence of array elements, which are like the boxcars connected together on a

train track. An array element can be just about anything, except for another array.
I know, you're thinking that you can use an array to access an array to create two- and

three-dimensional arrays. If this can be done, it is beyond the scope of this book.

For our task we are going to load our array with single-character array elements that

are loaded into the array from an external file. An array element can be a text string,

number, line of text, print queue name, or just about anything you can list.

Loading an Array

An array can be loaded in two ways. You can define and load the array in one step with
the set -A command, or you can load the array one element at a time. Both techniques

are shown here.

La i

Defining and Loading Array “KEYS” in One Step

Kate AN MONS) Kite Gy ae te yy Ul Gk Gia WI Ni) GS wh ie ey iy 5) Se NG

Notice in this preceding list that the characters [,], and $ have been escaped to

remove their special function by adding a backslash character. If we had not escaped

these characters, then errors, and strange behavior, may occur as you tried to load or

display the array elements. You will see this on a larger scale in the shell script. Also
remember that if you enclose a list in double quotes or single tic marks it is treated as

a single array element, not as individual array elements.

Loading Array “KEYS” One Array Element at a Time

The second option for loading the array KEYS is to use a while read loop and use a file

as input to the while loop. In this example we load the array elements one at a time

using a counter to index the KEYS array.

X=0

while read ARRAY_ELEMENT

do

C= xe 1p)

KEYS [$X] =SARRAY_ELEMENT

done < SARRAY_ELEMENT_FILE

266 Chapter 10

The first loading option, which uses the set -A command, requires that you hard-

code the keyboard layout into the shell script, which removes much of the flexibility
that you want when restricting or expanding password content. Using the while loop

method we can use an external file and load this file with any characters that we want,
and we can have as many or as few characters defined for passwords as we like. We

can also duplicate characters and change the order of the characters any way we wish.
As the counter is incremented on each while loop iteration, we load the array ele-

ments in sequential order, starting with array elements 1, KEYS[1]. When we get to

the end of the file, we know how many elements we have loaded in the array by the

value of the array counter, $X. To see the specific value of array element 22, you can

use the following syntax:

echo ${KEYS[22] }

,

As you can see from the response, the 22nd array element that was loaded is a semi-

colon character (;). We can also display the number of array elements using either of

the following two options:

echo S{#KEYS[*])

echo S{#KEYS[@])

Notice that we started with array element 1, one. The Korn shell also supports array

element 0, zero, but the pseudo-random numbers we create start with one, not zero. We

will look at arrays more closely as we write our shell script.

Building the Password Creation Script

I want to explain this shell script one step at a time, and we have a lot to cover, so let’s

get started. First, you need to understand the order of execution and each task that is
involved in this script.

Order of Appearance

As usual, we start out by defining the variables that are required for this script. The fol-

lowing section shows the variables that are defined for this shell script.

Define Variables

LENGTH=8 # Default password length.

NOTIFICATION_LIST=<Manager notification list> # Persons to notify

if the password is revealed or the “glass has been broken.”

DEFAULT_PRINTER=<printer or queue name> # Default printer to print

the password report.

Creating Pseudo-Random Passwords 267

SCRIPT=$(basename $0) #The name of this shell script with the directory
path removed.

OUTFILE=/tmp/tmppwd.out # Temporary hold file for the printer report.

KEYBOARD_FILE=/scripts/keyboard.keys # File containing keyboard

characters.

PRINT_PASSWORD_MANAGER_REPORT=<TRUE or Anything else> # Print

report flag.

RANDOM=$$_ # Initializes the random seed to the PID of the shell script, which is
pretty random.

The purpose of each of these variables is shown after the pound sign (#) on each line.

Define Functions

We have six functions to go through in this section. The functions described here are

listed in their order of appearance in the shell script, mk_passwd.ksh. In each of the
function descriptions there is a function listing for you to follow through.

in_range_random_number Function Description

The Korn shell provides an environment variable called—you guessed it—RANDOM.

This pseudo-random number generator uses a seed as a starting point to create all

future numbers in the sequence. The initial seed is used to create a pseudo-random
number. This resulting number is used for the next seed to create the next random

number, and so on. As you would expect, if you always start generating your numbers

with the same seed each time, you will get the exact same number sequence each time.

To change the repeatability we need to have a mechanism to vary the initial seed each
time we start generating numbers. I like to use the current process ID (PID) of the shell

script because this number will vary widely and is an easy way to change the seed

value each time we start generating numbers.

We often want to limit the range of numbers not to exceed a user-defined maximum.

An example is creating lottery numbers between 1 and the maximum number, which

might be 36. We are going to use the modulo arithmetic operator to reduce all numbers

to a fixed set of numbers between [0..N-1], which is called modulo N arithmetic. We are

going to use this pseudo-random number to index array elements in the KEYS array.
For our number range we need a script-defined maximum value, which we will

assign to a variable called UPPER_LIMIT. This UPPER_LIMIT variable is defined
when the KEYS array has been loaded because it represents the total number of ele-

ments that are contained in the KEYS array. The modulo operator is the percent sign
(%), and we use this operator the same way that you use the forward slash (/) in divi-

sion. We still use the RANDOM Korn shell variable to get a new pseudo-random number.

This time, though, we are going to use the following equation to limit the number to
not exceed the script-defined maximum.

RANDOM_NUMBER=$ ((SRANDOM % SUPPER_LIMIT + 1))

268 Chapter 10

Notice that we added one to the result. Using the preceding equation will produce a
pseudo-random number between 1 and the script-defined $UPPER_LIMIT, which is

the total number of elements in the KEYS array. The function using this equation is

in_range_random_number and is shown in Listing 10.1.

function in_range_random_number

{

Create a pseudo-random number less than or equal

to the SUPPER_LIMIT value, which is defined in the

main body of the shell script.

RANDOM_NUMBER=S$ (($RANDOM % SUPPER_LIMIT + 1))

echo "SRANDOM_NUMBER"

}

Listing 10.1 in_range_random_number function listing.

The function in Listing 10.1 assumes that the RANDOM variable seed has been initial-

ized in the main body of the shell script and that a script-defined UPPER_LIMIT variable
has been set. This function will produce numbers between 1 and the script-defined
maximum value.

load_default_keyboard Function Description

As it turns out, you can add as many, or as few, characters to the $KEYBOARD_FILE

file. What if the user wants a quick startup and an easy way to create this required file?

This is the reason why I added this function to the mk_passwd.ksh shell script.

There are two mechanisms for loading a default keyboard layout. The first way is

when the shell script is unable to locate the $KEYBOARD_FILE on the system. In this

case the user is prompted to load the default keyboard layout. The second option is to

add -n as acommand-line switch. We will get to parsing command-line switches later

in this chapter. In either of the two situations the user is still prompted before the
$KEYBOARD_FILE is loaded with default keyboard layout.

Other than prompting the user to load the default keyboard layout, we need to sup-

ply a list of keyboard characters to load into the file. At this point let’s look at the func-

tion code in Listing 10.2 and cover the details at the end.

function load _default_keyboard

{

If a keyboard data file does not exist then the user

is prompted to load the standard keyboard data into the

SKEYBOARD FILE, which is defined in the main body of

Listing 10.2 load_default_keyboard function listing.

Creating Pseudo-Random Passwords 269

the shell script.

clear # Clear the screen

echo "\nLoad ithe: default keyboard data file?) (Y/N): \c"

read REPLY

case SREPLY in

Vix)

*) echo "\nSkipping the load of the default keyboard file...\n"

return

esac

cat /dev/null > SKEYBOARD FILE

echo "\nLoading the Standard Keyboard File...\c"

Loop through each character in the following list and

append each character to the $KEYBOARD FILE file. This

produces a file with one character on each line.

for CHAR in \ 123456789 0. \- \e \\ auwoexrtyudio\

PAENIas GEG h FEL NN so kev bon mM NEN

NONE AN TNS NENG AR NOONE NY ONE Ne NUN) Ne NTN

QWERTY ULIOP N\A S DF GH ORE \Vsoxn'\

ZX CV EN M Na \> VPN] ONS 0 12131495 67 8:9 \7 4

Ve \e N+

do

echo "$CHAR" >> SKEYBOARD FILE

done

echo \"\n\n\bo, Dones. \n"

sleep 1

Listing 10.2 load_default_keyboard function listing. (continued)

Now I want to direct your attention to the for loop in Listing 10.2, which is in bold-

face text. The idea is to loop through each character one at a time and append the char-

acter to the SKEYBOARD_FILE. The result is a file that contains the keyboard layout,

listed one character per line. The file shows one character per line to make it easier to
load the file and the KEYS array.

In the list of characters please notice that most of the nonalphanumeric characters are

preceded by a backslash (\), not just the Korn shell special characters. As we discussed
previously, this backslash is used to escape the special meaning of these characters.

270 Chapter 10

When you precede a special character with the backslash, you are able to use the char-
acter as a literal character, just like the alphanumeric characters, and if a backslash pre-

cedes the other non-alphanumeric characters, it is ignored. The list of characters that

are escaped is shown here:

Lert SSS NS Celie roth Jnl)

On each loop iteration one character is appended to the $KEYBOARD_FILE using

the following command:

echo "SCHAR" >> $SKEYBOARD_FILE

When the file is loaded, which happens extremely fast, we notify the user that the
load is complete and then sleep for one second. I added this sleep 1 at the end of this

function because the load happened so fast that the user needed a second to see the

message.

check_for_and_create_keyboard_file Function Description

Is this function name descriptive enough? I like to know exactly what a function is

used for by reading the name of the function.

The purpose of this function is to check for the existence of the $KEYBOARD_FILE

and to prompt the user to load the default keyboard layout into the

$KEYBOARD_FILE. The user has the option to load the default data or not to load it. If

the user declines to load the keyboard data file, then this script will not work. To get
around this little problem, we just notify the user of this ERROR and exit the shell
script.

When the user gets the error message, he or she is also informed of the name of the

missing file and a description of what the script expects in the file—specifically, one

keyboard character per line. The full function is shown in Listing 10.3.

function check_for_and_create_keyboard_file

u

If the SKEYBOARD FILE does not exist then

ask the user to load the "Standard" keyboard

layout, which is done with the load_default_keyboard

function.

if [! -s $KEYBOARD FILE]

then

echo "\n\nERROR: Missing Keyboard File"

echo "\n\nWould You Like to Load the”

echo "Default Keyboard Layout?"

echo "“\A\VE(Y/N)\: Vc"

typeset -u REPLY=FALSE

read REPLY

if [[$REPLY != Y]]

then

Listing 10.3 check_for_and_create_keyboard_file function listing.

Creating Pseudo-Random Passwords 271

echo "\n\nERROR: This shell script cannot operate"

echo “without a keyboard data file located in"

echo)\"\n==>))\SKEYBOARD \FTUB\n"

echo "\nThis file expects one character per line."

sTollava Shea SNUG DD: G1 LS HN BEAM ahh

CxEt) Ss

else

load_default_ keyboard

echo "\nPress ENTER when you are you ready to continue: \c"

read REPLY

clear

sig

pa

Listing 10.3 check_for_and_create_keyboard_file function listing. (continued)

To check for the existence of the SKEYBOARD_FILE, we use the -s test in an if state-

ment, an shown here:

if [! -s SKEYBOARD FILE]

then

£2

Notice that we negated the test by adding an exclamation point (! -s). This is

actually a test to see if the file is not greater than zero bytes in size or that the

$KEYBOARD_FILE does not exist. If either of these conditions is met, then we display

some messages to the user and ask the user if the default keyboard layout should be
loaded.

If the user acknowledges the question with a “Y” or a “y,” then we execute the

load_default_keyboard function, which we studied in the last section,

“load_default_keyboard Function Description.” After the keyboard data is loaded into

the SKEYBOARD_FILE, we stop and ask the user to press ENTER to continue. Once the
user presses ENTER, the script creates a pseudo-random password, which we will

cover in a later section.

build_manager_password_report Function Description

You may be asking, “Why do you want to print a password?” There are a lot of reasons

to print a password, but only one of the answers is valid! For security reasons. Now, I

really lost you! How cana printed password be good for security? It’s simple: The root

password needs to be protected at all costs. Our machines do not have direct login

access to root, but we use an auditing script that captures every keystroke of the root

user. If a machine has failed and you need to log on to the system on the console, you
are definitely going to need access to the root password. For this reason we keep three
copies of the root password in secure envelopes, and they get locked up for safe keeping.

272 Chapter 10

The build_manager_password_report function creates a file, pointed to by the

SOUTFILE variable, that has three copies of the same information on a single page.

Look at the function shown in Listing 10.4 to see the message.

function build_manager_password_ report

{

Build a file to print for the secure envelope

(

echo "\n RESTRICTED USE!!!

echo "\n\n\tImmediately send an e-mail to:\n"

echo " SNOTIFICATION LIST"

echo "\n\tif this password is revealed!"

echo "\n\tAIX root password: $PW\n"

echo: T\n\n"

echo "\n RESTRICTED USE!!!"

echo "\n\n\tImmediately send an e-mail to:\n"

echo " SNOTIFICATION_LIST”

echo "\n\tif this password is revealed!"

echo "\n\tAIxX root password: © SPW\n"

echo "\n\n"

echo! Vn RESTRICTED USE!!!"

echo "\n\n\tImmediately send an e-mail to:\n"

echo " SNOTIFICATION_LIST"

echo "\n\tif this password is revealed!"

echo "\n\tAIX root password: $PW\n"

) > $OUTFILE

Listing 10.4 build_manager_password_report function listing.

Notice that the entire message is enclosed in parentheses, with the final output redi-

rected to the SOUTFILE file using the following syntax:

(echo statements....) > SOUTFILE

Creating Pseudo-Random Passwords

This method runs all of the echo commands as a separate shell and sends the result-
ing output to the SOUTFILE using output redirection.

Also notice the SNOTIFICATION_LIST variable. This variable is set in the main

body of the script. This variable contains the list of people who must be notified if the

password is ever released, as stated in the message in the function.

When I get one of these printouts, I always run to get it as soon as the page comes

out of the printer. This is an extremely important piece of paper! I take it to my desk

and cut the page into three pieces and seal each one in a secure envelope and have it

locked up for safe keeping.

A sample manager’s password report is shown in Listing 10.5.

RESTRICTED USE!!!

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

if this password is revealed!

AIX root password: E-,6Kc11

RESTRICTED USE!!!

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

if this password is revealed!

Alx root password: &~,6kell

RESTRICTED USE!!!

Listing 10.5 Password report printout. (continues)

273

274 Chapter 10

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

if this password is revealed!

AIX root password: E-, 6Kcil

Listing 10.5 Password report printout. (continued)

You need to edit this function and change the message to suit your environment.

If you do not need this functionality, then never use the -m switch, or reply “No” when

asked to confirm the printing.

usage Function Description

It is always a good idea to show the user a USAGE: statement when incorrect or insuf-

ficient input is detected (we will get to detecting input errors later in this chapter). For

our mk_passwd.ksh shell script we have four options and several combinations.
We can execute the mk_passwd.ksh script with no arguments, and you can execute

the mk_passwd.ksh shell script with the -n and -m command-line switches. The -n

switch loads the default keyboard layout into the $KEYBOARD_FILE file. We can also
change the length of the password, which is defined as eight characters by default. Any

combination of these command options can be executed. Please look closely at the
USAGE: statement shown in Listing 10.6.

function usage

{

echo "\nUSAGE: $SCRIPT [-m] [-n] [password_length] \n"

echo " Where:

-m Creates a password printout for Security

-n Loads the default keyboard data keys file

password _length Integer value that overrides

the default 8 character

password length. \n"

Listing 10.6 usage function listing.

Creating Pseudo-Random Passwords 275

When a usage error is detected, the script executes the usage function that displays
the following message:

USAGE: $SCRIPT [-m] [-n] [password_length]

Where:

-m Creates a password printout for Security

-n Loads the default keyboard data keys file

password_length Integer value that overrides

the default 8 character

password length. \n"

trap_exit Function Description

This function, trap_exit, is executed only when an exit signal is trapped. You will see

how to set a trap a little later. The purpose of this function is to execute any com-

mand(s) that are listed in the function. In our case, we want to remove the SOUTFILE

before exiting the shell script. Additionally, we do not want to see any messages sent to

stderr if the file does not exist. The statement is shown in the following code.

function trap_exit

{

rm -f SOUTFILE >/dev/null 2>&1

}

Notice that we redirect the stderr output to stdout, which is specified by the

2>&1 notation, but not before we send everything to the bit bucket, specified by

>/dev/null.

That is it for the functions. The next section covers the testing and parsing required
for the command arguments.

Testing and Parsing Command-Line Arguments

Because this shell script has command-line options to control execution, we need to

test the validity of each command-line argument and then parse through each one to

set up how the script is to be executed. We have four tests that need to be performed to
validate each argument.

Validating the Number of Command-Line Arguments

The first step is to ensure that the number of command-line arguments is what we are
expecting. For this script we are expecting no more than three arguments. To test the

number of arguments, we use the echo $# command to display the number of

command-line arguments. The result is greater than or equal to 0, zero. This test code

is shown here.

276 Chapter 10

Check command line arguments - $# < 3

if (($# > 3))

then

usage

exit 1

ea

Notice that we used the mathematical test here. One thing to note about the syntax

of this test is that for user-, or script-defined variables we do not use the dollar sign ($)

in front of the variable. For shell variables you must use the shell notation here, too. If

the number of arguments on the command line exceeds three, then we display the
usage function and exit the shell script with a return code of 1, one.

Test for Valid Command-Line Arguments

We really have only three valid command-line arguments. Because -n and -m are

lowercase alphabetic characters, we may as well add their uppercase counterparts for

people who love to type uppercase characters. Now we have only five valid command-

line arguments:

m Any Integer

m -nand -N to indicate creating anew $KEYBOARD_FILE

m -m and -M to indicate that the manager’s password report is to be printed

This seems easy enough to test for using a case statement to parse through the

command-line arguments using the $@ values, which is a list of the command-line
arguments separated by a single space. Look at the block of code in Listing 10.7 for

details.

Test for valid command line arguments -

Valid auguments are "-n, -N, -m, -M, and any integer

if (($# != 0))

then

for CMD_ARG in $@

do

case $CMD ARG in

+([-0-9]))

The '+([-0-9]))' test notation is looking for

an integer. Any integer is assigned to the

length of password variable, LENGTH

LENGTH=$CMD_ARG

tt

-n|-N) : # The colon (:) is a no-op, which does nothing

Listing 10.7 Code for testing for command-line arguments.

Creating Pseudo-Random Passwords 277

-m|-M) : # The colon (:) (1s a no-op, (which does nothing

*) # Invalid Command-Line Argument, show usage and

exit :

usage

exit i

esac

done

£2

Listing 10.7 Code for testing for command-line arguments. (continued)

Before we test the validity of each argument, we ensure that there is at least one

command-line argument to test. If we have some arguments to test, we start a case

statement to parse through each argument on the command line. As the arguments are
parsed, the value is assigned to the CMD_ARG variable.

Notice the very first test, + ([0-9]). This regular expression is testing for an integer

value. When we add this integer test to the case statement, we need to add the last

close parentheses ,), for the case statement. If the test is true, we know that an integer

has been supplied that overrides the default eight-character password length, speci-
fied by the LENGTH variable.

The tests for -n, -N, -m, and -M are do nothings, or no-ops in this case. A no-op is

specified by the colon character (:). The no-op does not do anything, but it always has

a 0, zero, return code. When our valid command options are found, the case statement

goes to the next argument on the command line.

When an invalid command-line option is detected, the function displays the usage

message and exits the script with a return code of 1, one, which is defined as a usage

error.

Ensuring the $LENGTH Variable Is an Integer

As a final sanity check of the $LENGTH variable, I added this extra step to ensure that

it is assigned an integer value. This test is similar to the test in the previous section, but

it is restricted to testing the LENGTH variable assignment. This test code is shown in

Listing 10.8.

Ensure that the SLENGTH variable is an integer

case $SLENGTH in

+([0-9])) : # The '+([0-9]))‘* test notation is looking for

#-an integer. Ii it as an integer then the

Listing 10.8 Testing $LENGTH for an integer value. (continues)

278 Chapter 10

no-op, specified by a colon, (Do Nothing)

command is executed, otherwise this Script

exits with a return code (of 1, one, after

displaying the usage message

*) usage

exit 1

esac

Listing 10.8 Testing $LENGTH for an integer value. (continued)

If the LENGTH variable does not have an integer assignment, then the usage mes-

sage function is shown, and the script exits with a return code of 1, which is defined as

a usage error.

Parsing Command-Line Arguments with getopts

The getopts function is the best tool for parsing through command-line arguments.

With the getopts function we can take direct action or set variables as a valid

command-line arguments is found. We can also find invalid command-line arguments,

if they are preceded with a minus sign (-).

The getopts function is used with a while loop that contains a case statement. The

basic syntax is shown in Listing 10.9.

while getopts ":n N V: m M" AUGEMENT 2>/dev/nuli 2>&1

do

case SARGUMENT in

n|N) # Do stuff for -n and -N

m|M) # Do stuff for -m and -M

V) # The colon (:) after the V, V:, specifies

that -V must have an option attached on the command line.

rant

\?) # The very first colon (:n) specifies that any unknown

argument (-A, for example) produces a question mark (?) as

output. For these unknown arguments we show the usage

message and exit with a return code of 1, one.

esac

done

Listing 10.9 Basic syntax for using the getopts function.

Creating Pseudo-Random Passwords 279

As you can see, using getopts to parse command-line arguments is an easy way to
catch invalid command-line arguments and also to assign values or tasks to specific
arguments. The nice thing about this method is that we do not have to worry about the
order of the arguments on the command line.

Let’s look at the code for parsing the command line for this shell script, as shown in
Listing 10.10.

Use the getopts function to parse the command-

line arguments.

while getopts ":n N m M" ARGUMENT 2>/dev/null

do

case SARGUMENT in

n|N)

Create a new Keyboard Data file

load_default_keyboard

echo "\nPress ENTER when you are you ready to continue: \c"

read REPLY

clear

m|™M)

Print the Manager Password Report

PRINT_PASSWORD_MANAGER REPORT=TRUE

\?) # Show the usage message

usage

exit 1

esac

done

Listing 10.10 getops command line parsing.

In our getopts statement, located on the line with the while loop, notice that there is

only one colon (:) in the listing. This specifies that any invalid option is to be assigned
the question mark (?), specifying an unknown option. We do not have any colons after

any options so we are not expecting any values to be assigned to any arguments.

In the case of the -n and -N options the load_default_keyboard function is exe-

cuted. For the -m and -M options the printer variable is set to TRUE. Any other options
result in the script exiting with a return code of 1, one.

Beginning of Main

Now that we have defined all of the variables and functions and verified all of the
command-line arguments, we are ready to start the main part of the mk_passwd.ksh

shell script.

280 Chapter 10

Setting a Trap

The first thing to do is to set a trap. A trap allows us to take action before the shell script

or function exits, if an exit signal is trappable and defined. We can never trap a kill -9

exit. This kill option does not do anything graceful; it just removes the process from

the system process table, and it no longer exists. The more common exit signals are 1,

2,3, and 15. For a complete list of exit signals see Chapter 1, or enter kill -1 (that’s ell)

on the command line.

Our trap is shown here:

ieageye) Noiesjonicbiahies epcsbic Mr GL ay sp abs)

When a trapped exit signal is detected, in this case signals 1, 2, 3, or 15, the trap exe-

cutes the two commands enclosed within the single tic marks,(' commands _ '). The

commands include running the trap_exit function that removes the $OUTFILE file;

then the script exits with a return code of 2, which has been defined as a trap exit for

this shell script.

Checking for the Keyboard File

This shell script is useless without a keyboard data file and cannot execute anything.
To check for the existence of the $KEYBOARD_FILE, we execute the check_for_

and_create_keyboard_file function. As we previously saw, this function checks
to see if a keyboard data file is on the system. If the file is not found, then the user is

prompted to automatically load the default keyboard layout, which is a standard 109

key QWERT keyboard. This functionality allows for a quick start for new users and an

easy recovery if the file is deleted. When we want to load a custom keyboard layout, all

that is needed is to replace the default keyboard file with a new keyboard layout file.

Loading the “KEYS” Array

Once we have a $KEYBOARD_FILE we are ready to load the KEYS array with the key-

board characters. For this shell script we are loading the KEYS array with file data. The
easiest way to do this is to use a while loop to read each line of the file, which in this

case is a single character, while feeding the loop from the bottom, as shown in Listing
Toate

X=0 # Initialize the array counter to zero

Load the array called "KEYS" with keyboard elements

located in the S$KEYBOARD_FILE.

while read ARRAY ELEMENT

do

Listing 10.11 Code to load the KEYS array.

Creating Pseudo-Random Passwords

((X = X + 1)) # Increment the counter by 1

Load an array element in the array

py

KEYS [$X] =SARRAY_ELEMENT

done < $KEYBOARD_ FILE

UPPER_LIMIT=$X # Random Number Upper Limit

Listing 10.11 Code to load the KEYS array. (continued)

In Listing 10.11 we initialize a loop counter, X, to zero. This counter is used to index

each array element in sequential order. Next we start the while loop to read each line

of data, a single character, and assign the value to the ARRAY_ELEMENT variable on
each loop iteration.

Inside of the while loop the counter is incremented as the loop progresses, and the
KEYS array is assigned a new array element on each loop iteration until all of the file

data is loaded into the KEYS array. Notice the command syntax we use to load an array
element.

KEYS [$X] =SARRAY_ELEMENT

At the bottom of the while loop after done, notice the input redirection into the

loop. This is one of the fastest ways to parse a file line by line. For more information on

this and other file parsing methods, see Chapter 2. The last task is to define the

UPPER_LIMIT variable. This variable is used to create the pseudo-random numbers

that are used to point to the KEYS array elements when creating a new pseudo-random

password.

Using the LENGTH Variable to Build a Loop List

A for loop needs a list of something to loop through, which is defined on the for loop

declaration line. This next section of code uses the $LENGTH value to create a list of
numbers to loop through. This list of numbers represents the length of the password.
The default list is 1 2 3 45 6 7 8. The code to build this list is shown in Listing 10.12.

Produce the "for" loop list of elements that represent

thelength ofthe passwordi"1/ 2.3.4 56.78") as

the default “for" Loop list.

FOR COUNT=$ (

Listing 10.12 Code to build a for loop list of numbers. (continues)

281

282 Chapter 10

xK=0

while ((X < LENGTH))

do

Build the list here

((% = X + 1))

echo "$X "

done

)

Listing 10.12 Code to build a for loop list of numbers. (continued)

Notice how the command substitution is used in Listing 10.12. The entire while loop

is enclosed within a command substitution, specified by the MY_LIST=$(all of my

commands) syntax.

The while loop is interesting. This is a good way to build a list. The process consists

of incrementing a counter and then using an echo or print command to print the char-

acter, followed by a blank space. The result is a list of characters separated by a single

space.

Building a New Pseudo-Random Password

The code to build a new password is short and relatively easy to understand. The code
is shown in Listing 10.13. After the code listing, we will cover the details.

Create the pseudo-random password in this section

clear # Clear the screen

PW= # Initialize the password to NULL

Build the password using random numbers to grab array

elements from the KEYS array.

for i in $FOR_COUNT

do

PW=${PW}S{KEYS[$(in_range random number $UPPER_LIMIT)]}

done

Done building the password

Listing 10.13 Building a new pseudo-random password code.

Creating Pseudo-Random Passwords 283

We first initialize the password variable (PW) to a null value, specified by PW= , when

you make a variable assign to nothing, then you set the variable to NULL. Next we use

a for loop to loop through the numbers we previously created and assigned to the

FOR_COUNT variable. The default value for this variable is 1234567 8.

Inside the for loop we use a single command to build the password by adding a new

pseudo-random character as we go through each loop iteration. Building the password

works like this. We start with a NULL variable, Pw. On each loop iteration we assign

the PW variable the previous PW assignment, which it had from the last loop iteration.

Then we add to this current character string a new character, which we generate using

the in_range_random_number function inside the KEYS array element assignment

using command substitution. The in_range_random_number function expects as

input the SUPPER_LIMIT value, which is 109 keys for the default keyboard layout in
this script. Using this method we use the function directly in the KEY array element

assignment. This is a good way to build a list.

Printing the Manager's Password Report for Safe Keeping

This last section of code will create a temporary report file for printing purposes. The

only time this section of code is executed is when the -m or -M command-line arguments

are present. In the getops command-line parsing section, the PRINT_PASSWORD_

MANAGER_REPORT variable is assigned the value TRUE. Any other value disables the

printing option.

This section of code, shown in Listing 10.14, tests the printing variable and if TRUE,

executed the build_manager_password_report function. The user is then

prompted to print to the default printer, which is listed in the text. The user has a

chance to change the printer/queue at this point or to cancel the printing completely.

If the SOUTFILE is printed, the lp command adds the -c switch to make a copy of the

file in the spooler. This method allows us to immediately delete the password report

file from the system. We just do not want this report file sitting on the system for very

long.

Print the Manager's password report, if specified

on the command with the -m command switch.

if [$PRINT_PASSWORD_MANAGER_ REPORT = TRUE]

then

typeset -u REPLY=N

echo "\nPrint Password Sheet for the Secure Envelope? (Y/N)? \c"

Listing 10.14 Code to create and print the password report. (continues)

284 Chapter 10

read REPLY

if [| SREPLY = '¥' 7]

then

build manager _password_report

REPLY= # Set REPLY to NULL

echo "\nPrint to the Default Printer ${DEFAULT_PRINTER} (Y/N)? \c"

read REPLY

$e SREP Ee Se

then

echo "\nPrinting to SDEFAULT_PRINTER\n"

lp -c -d $DEFAULT_PRINTER SOUTFILE

else

echo "\nNEW PRINT QUEUE: \c"

read DEFAULT_PRINTER
echo "\nPrinting to S$DEFAULT_PRINTER\n"

lp -c -d $DEFAULT_PRINTER SOUTFILE

£2

else

echo "\n\n\tO.K. - Printing Skipped..."

£4:

bin

HHHHHHHPRPEHHREEEEEPPEPEREEPREPHEAEHPEREREE HH EH HE EH

Remove the SOUTFILE, if it exists and has a size

greater than zero bytes.

{ -s SOUTFILE] && rm -f£ SOUTFILE

Listing 10.14 Code to create and print the password report. (continued)

The last two things that are done at the end of this shell script are to remove the

$OUTFILE, if it exists, and then prompt the user to press ENTER to clear the screen and

exit. We do not want to leave a password on the screen for anyone to read.
That is it for the steps involved to create the mk_passwd.ksh shell script. The entire

shell script is shown in Listing 10.15. Pay particular attention to the boldface text
throughout the mk_passwd.ksh shell script.

#!/usr/bin/ksh

AUTHOR: Randy Micahel

SCRIPT: mk_passwd.ksh

Listing 10.15 mk_passwd.ksh shell script listing.

Creating Pseudo-Random Passwords 285

DATE: 11/12/2001

FuREV whe

PLATFORM: Not Platform Dependent

PURPOSE: This script is used to create pseudo-random passwords.

An external keyboard data file is utilized, which is

defined by the KEYBOARD_FILE variable. This keyboard

file is expected to have one character on each line.

These characters are loaded into an array, and using

pseudo-random numbers generated, the characters are

"randomly" put together to form a string of characters.

By default, this script produces eight-character passwords,

but this length can be changed on the command line by

adding an integer value after the script name. There are

two command-line options, -n, which creates the default

KEYBOARD_FILE, and -m, which prints the manager's

password report. This password report is intended

to be locked in a safe for safe keeping.

EXIT CODES:

0 - Normal script execution

1 - Usage error

2 - Trap exit

3 - Missing Keyboard data file

REV List:

6/26/2002: Added two command-line options, -n, which

creates a new SKEYBOARD FILE, and -m, which prints

the manager's password report.

set -x # Uncomment to debug

set -n # Uncomment to check syntax without any command execution

Se 46 FF FF Fk HF OH OH OH OH OH OH OH OH OHHH HEHE OHH HE OH OH OH

HHHHHHHHHHEHHEHEHHHEHHEHEHHHEPRAEEEAGEH ESHER EH EH EEH HE

H#HHHHHHHHH DEFINE SOME VARIABLES HERE ####H#HH HHH #4 #

HHHHHHHHHHHHEHHEHHEHE EHP RE EES EHH HH EE EH HH HH HHH

LENGTH=8 # Default Password Length

Notification List for Printing the Manager's

Password Report for Locking Away Passwords

Just in Case You Are Unavaliable.

NOTIFICATION LIST="Donald Duck, Yogi Bear, and Mr. Ranger"

Define the Default Printer for Printing the Manager's

Password Report. The user has a chance to change this

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

286 Chapter 10

printer at execution time.

DEFAULT _PRINTER="hp4@yogi"

SCRIPT=S (basename $0)

OUTFILE="/tmp/tmppdw. file"

KEYBOARD _FILE=/scripts/keyboard.keys

PRINT_PASSWORD_MANAGER_ REPORT="TO_BE_SET"

RANDOM=$$ # Initialize the random number seed to the

process ID (PID) of this shell script.

HEH HEE HEE EH HH EH HEE EE EB EE EH EEE ERE

HHEHHHHEHH DEFINE FUNCTIONS HERE ########EHEEEREE EEE

HAH AH HEE EAE EH ESE EEE HEE EH EH HEH HE HE

function in_range_ random number

{

Create a pseudo-random number less than or equal

to the SUPPER_LIMIT value, which is defined in the

main body of the shell script.

RANDOM _NUMBER=$ ((S$RANDOM % SUPPER_LIMIT + 1))

echo "SRANDOM_ NUMBER"

}

HHEHFHEHEHHEHEHEHEEPHEEHPHPEPHEHRHESHEEPHEAHPEES EE EEE

function load_default_keyboard

{

If a keyboard data file does not exist then the user

prompted to load the standard keyboard data into the

SKEYBOARD_FILE, which is defined in the main body of

the shell script.

clear # Clear the screen

echo "\nLoad the default keyboard data file? (Y/N): \c"

read REPLY

case SREPLY in

y|Y)

*) echo "\nSkipping the load of the default keyboard file...\n"

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

Creating Pseudo-Random Passwords 287

return

ii

esac
)

cat /dev/null > $KEYBOARD FILE

echo "\nLoading the Standard Keyboard File...\c"

Loop through each character in the following list and

append each character to the $KEYBOARD FILE file. This

produces a file with one character on each line.

for GHAR Ime \ 121345556 FB OVO eS AV agiwie fF ey a do \

DAV Mia sab Gg ny eee Nee Oye aan Ney

Ve NEON NOME NG \GONS NS ASN NR GN) Na NEN

QWERTY Ut OP VEN AS DR GH RVs Ny

ZeCV BN M Vee Ve N01 O34 5 6 .t 8 o Vy

NN

do

echo "$CHAR" >> $KEYBOARD FILE

done

echo "\n\n\t... Done. -\n"

sleep 1

}
A

HHFHHEHEHHEHEHEHEAHEEEPRERPEEAEAHEGHESEHHEHEE HEHEHE

function check_for_and_create_keyboard_file

{

If the SKEYBOARD_ FILE does not exist then

ask the user to load the "standard" keyboard

layout, which is done with the load_default_keyboard

function.

if [! -s SKEYBOARD_FILE]

then

echo "\n\nERROR: Missing Keyboard File"

echo "\n\nWould You Like to Load the"

echo "Default Keyboard Layout?”

echo “\n\t (Y/N): \c"

typeset -u REPLY=FALSE

read REPLY

Tf [| SREPLY. f=) ¥]

then

echo "\n\nERROR: This shell script cannot operate"

echo "without a keyboard data file located in"

echo "\n==> SKEYBOARD FILE\n"

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

288 Chapter 10

echo "\nThis file expects one character per line."

ecko *\AVE.. CEXIPING oo \n" .

exit 3

else

load_default_keyboard

echo "\nPress ENTER when you are you ready to continue:

read REPLY

clear

gal

£3,

}

HHPHHHHEEHHEAHREAPREEPEEEPEEAPRREPEES PREPRESS EES E HEH

function build _manager_password_report

{

Build a file to print for the secure envelope

(

echo "\n RESTRICTED USE!!!"

echo "\n\n\tImmediately send an e-mail to:\n"

echo " SNOTIFICATION_LIST"

echo "\n\tif this password is revealed!"

echo "\n\tAIX root password: S$PW\n"

echo: “\n\n"

echo "\n RESTRICTED USE!!!"

echo "\n\n\tImmediately send an e-mail to:\n"

echo" SNOTIFICATION_LIST”

echo "\n\tif this password is revealed!"

echo "\n\tAIX root password: $PW\n"

echo "\n\n"

echo "\n RESTRICTED (USE Eh?

echo "\n\n\tImmediately send an e-mail to:\n"

echo == SNOTIFICATION_LIST"

echo "\n\tif this password is revealed!"

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

\c"

Creating Pseudo-Random Passwords 289

echo "\n\tAIX root password: $PW\n"

} > SOUTER IEE

}

HHPHHEPHHHHHPHEPPEAPHHHHHHHHHHHHHHEH HEE HR oH

function usage

<

echo "\nUSAGE: $SCRIPT [-m] [-n] [password_length]\n"

echo " Where:

-m Creates a password printout for Security

-n Loads the default keyboard data keys file

password_length - Interger value that overrides

the default 8 character

password length.\n"

}

HHHHHEHHHHEEHEHEPEEHESEPHEEEHHEEEEHESHEEHESEAHHESHSH EHH

a

function trap_exit

{ 55)

rm -f SOUTFILE >/dev/null 2>&1

3)

HR HH HEHE HE HHH HH EH HEE EEE EEE HH

H#HHHHHH HH END OF FUNCTION DEFINITIONS #####HHH4HH##

HHHHEEPEREREEEREREEEE THEE RRR RRR EERE EHH RHEE HEH HH HH

HEHE EEE RHEE ER EAE HHH EG EEE EE HEE EPH HEH EE EEE EEE

H###### VALIDATE EACH COMMAND LINE ARGUMENT ######H##

HHFHHHHEHEPHREREEEREREAEERERERARRER RHEE EE EHH HEHE HHH

Check command line arguments - S$# < 3

if (($# > 3))

then

usage

exit 1

By:

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

290 Chapter 10

HHAHHHHPHHHHHHHEEEEER BEBE EH HEHHHHEH RHEE EERE RHEE BH

.

Test for valid command line arguments -

Valid auguments are "-n, -N, -m, -M, and any integer

if (($# t= 0))

then

for CMD_ARG in $@

do

case $CMD_ARG in

+([-0-9]))

The '+([-0-9]))" test notation is looking for

an integer. Any integer is assigned to the

length of password variable, LENGTH

LENGTH=$CMD_ARG

-n)

-N)

—m)

—M)

=)

usage

exit]

esac

done

fi

HHHHFHHRPHEHEPHEEHEEEH ERE EHEEEHEEEESHEEPHESHREEHES

Ensure that the $LENGTH variable is an integer

case $LENGTH in

+([0-9])) # The ‘+([-0]))" test notation is looking for

an integer. If an integer then the

no-op, specified by a colon, (Do Nothing)

command is executed, otherwise this script

exits with a return code of 1, one.

*) usage

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

Creating Pseudo-Random Passwords 291

exit

An

SHULORSEEELERAUAEEEEAUL EAA EROAREGESEENSSAHUONEOLEIA

Use the getopts function to parse the command-

line arguments.

while getopts ":n N m M" ARGUMENT 2>/dev/null

do

case SARGUMENT in

n|N)

Create a new Keyboard Data file

load_default_keyboard

echo "\nPress ENTER when you are you ready to continue: \c"

read REPLY

clear

m|M)

Print the Manager Password Report

PRINT_PASSWORD_MANAGER_REPORT=TRUE

\?) # Show the usage message

usage

exit 1

esac

done

HHHREERREREEEREREEERERPPRPRRRREERRREEREEEHEEH HEHEHE

HEFHHEEHEEREEEE HEHE START OF MAIN #######HHEHHHHEEHE HEHE

HEPHHEHERREEE EERE EEEEEEA REPRE RPEERRHEEREEEEHEH HHH

Set a trap

trap trap exitsexit | 20) 253° 15

HHPHFHREHHPHEEEEHEEAHPHEHEESHEPHESHEREEHHAHPE ESE H EH EHH

Check for a keyboard data file

check for _and_ create _keyboard_file

HHHHEHEHEEEEEEREAE EEE E EERE REPRESS ER EERE RRR EEE EH

HHHHHHEHHHHHHHH LOAD THE ARRAY ####H#HFEREHEEREEE HEH

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

292 Chapter 10

HHEHPEHHEEERPEAPEREPEEPHPEAEHPEPEPEHERPEPESERERP EE EEE

X=0 # Initialize the array counter to zero

Load the array called "KEYS" with keyboard elements

located in the $KEYBOARD FILE.

while read ARRAY ELEMENT

do

((X = X +:1)) # Increment: the counter by 1

Load an array element in the the array

KEYS [$X] =SARRAY_ELEMENT

done < $KEYBOARD_ FILE

UPPER_LIMIT=$X # Random Number Upper Limit

HHHHHHEHEHHHHPHPHPHEPHESHEH HH HH HH EH HH eH HH EH EH SH EH

Produce the "for" loop list of elements that represent

the length of the password: ‘1 2.3.4 5 6 7 8 is

#ithe detault: "for" Loop: Lise.

FOR_COUNT=S (

x= 0

while ((X < LENGTH))

do

Build the list here

ES Fs)

echo ("Ski

done

)

HHHEHEHEHHPEFHEHEPHEEEHEAHREEEHPEEHEAEPHEPHEPESHEEEH HE

Create the pseudo-random password in this section

clear # Clear the screen

PW= # Initialize the password to NULL

Build the password using random numbers to grab array

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

Creating Pseudo-Random Passwords 293

elements from the KEYS array.

for i in $FOR_COUNT

do '

PW=${PW}${KEYS[$(in_ range random number $UPPER LIMIT)]}

done

Done building the password

HHPHFHHTHEHHEHEPHEHEARPEPHREEPEEPHEEHS RHEE EHH SH HH HH

Display the new pseudo-random password to the screen

echo "\n\n The new $LENGTH character password is:\n”

echo "\n ${PW}\n"

HHEHHFHHFHEHHPHEHESHEEESH EH EHEPHPHESEEHPHPREHE EH EHH

Print the Manager's password report, if specified

on the command with the -m command switch.

if [$PRINT_PASSWORD_MANAGER_ REPORT = TRUE]

then

typeset -u REPLY=N

echo "\nPrint Password Sheet for the Secure Envelope? (Y/N)? \c"

read REPLY

if [[$REPLY = 'Y']]

then

build manager _password_report

REPLY= # Set REPLY to NULL

echo "\nPrint to the Default Printer ${DEFAULT PRINTER} (Y/N)? \c"

read REPLY

Ze C\SREPLY SY" 7]

then

echo "\nPrinting to SDEFAULT PRINTER\n"

lp -c -d $DEFAULT_PRINTER $OUTFILE

else

echo "\nNEW PRINT QUEUE: \c"

read DEFAULT_PRINTER

echo "\nPrinting to SDEFAULT_PRINTER\n"

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

294 Chapter 10

lp -c -d $DEFAULT_PRINTER SOUTFILE

EE

else

echo “\n\n\t0.K. = Brinting Skipped...

gel

nal

HHHERAHHHHHHEPHEREEPHEA RHEE A EAGER PHS EH EEEH EHH GH EES FH

Remove the SOUTFILE, if it exists and has a size

greater than zero bytes.

[-s $OUTFILE] && rm -f£ SOUTFILE

HHHHHHHHHHHHHHHHHEHPHHHPHP PEPER EEE E HEBER ERE EH EE

Clear the screen and exit

echo "\n\nPress ENTER to Clear the Screen and EXIT: \c"

read X

clear

End of mk_passwd.ksh shell script

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

This was an interesting shell script to create. I hope you picked up some pointers in

this chapter. I tried to add as many script options to this script as desirable but not

make the script too difficult to understand.

Other Options to Consider

As with any script, improvements can be made. I cannot think of anything to add to the

script, but you may want to remove some of the functionality for the common user

community.

Password Reports?

Do you need to create password reports for your Manager and Directors? If not, you

should disable the ability to create any file that contains any password and disable

printing any passwords. This is easy to disable by commenting out the getopts parsing

for the -m and -M command-line options.

Creating Pseudo-Random Passwords

Which Password?

You certainly do not have to accept the first password that is produced by this script. It

usually takes me 5 to 10 tries to get a password that I may be able to remember. Don’t

stop at the first one—keep going until you get a password that you like but is not
guessable.

Other Uses?

Sure, there are other uses for this shell script. Any time that you need a pseudo-random

list of keyboard characters, you can use this shell script to create the list. License key is
the first thing that comes to mind. If you are selling software and you need to create
some unguessable keys, run the script and specify the length of the key as an integer
value.

Summary

This was an excellent exercise in creating pseudo-random numbers and using a func-
tion directly in a command assignment. We used arrays to store our keyboard data so

that any element is directly accessible. This chapter goes a long way in making any task

intuitively obvious to solve. We love a good challenge.

In the next chapter we are going to study how to monitor for stale disk partitions on

an AIX system. I’ll see you in the next chapter!

295

Monitor for Stale
Disk Partitions

Monitoring for stale disk partitions is an AIX thing. To understand this chapter you

need to be familiar with the Logical Volume Manager (LVM) that is at the heart of the

AIX operating system. We will get to the LVM in the next section. At the high level a

stale disk partition means that the mirrored disks are not in sync. Sometimes when you

find stale disks partitions you can resync the mirrors, and all is well. If the mirrors will

not sync up, you may be seeing the first signs of a failing disk.

In this chapter we are going to look at three methods of monitoring for stale partitions:

m Monitoring at the Logical Volume (LV) level

m™ Monitoring at the Physical Volume (PV), or disk, level

m Monitoring at the Volume Group (VG), PV, and LV levels to get the full picture

All three methods will report the number of stale disk partitions, but it is nice to
know the VG, PV, and the LV that are involved in the unsynced mirrors. We are going

to step through the entire process of building these shell scripts, starting with the com-

mand syntax required to query the system. Before we start our scripting effort, I want to

give you a high-level overview of the AIX LVM and the commands we are going to use.

297

298 Chapter i1

AIX Logical Volume Manager (LVM)

Unlike most Unix operating systems, IBM manages disk resources using a program

called the Logical Volume Manager (LVM). The LVM consists of the following compo-

nents, starting with the smallest.

Each Physical Volume (PV), or disk, in the system is broken down into small parti-

tions called Physical Partitions (PP). The default size of a PP is 4MB, but it can be larger

depending on the size of the disk.

The LVM uses groups of these PPs to create a logical map to point to the actual PPs on
the disk. These mapped partitions are called Logical Partitions (LP). The sizes of an LP

and PP are exactly the same because an LP is just a pointer to a PP.

At the next level we have the Logical Volume (LV). An LV consists of one or more

LPs. The LV can span multiple PVs, and this is what differentiates AIX from other fla-
vors of Unix. This is the level at which the Systems Administrator creates the mirrors.

When an LV is first created, the LV is considered raw, meaning that it does not have a

Filesystem mount point. Raw LVs are commonly used for databases.
On top of an LV we can create a Filesystem, which has a mount point—for example,

/scripts. The LV does not require a Filesystem if you want the LV to remain raw, but

you can create one.
Volume Group (VG) is a collection of one or more Physical Volumes (PV), or disks.

A PV is listed on the system as an hdisk#, where # is an integer value. A VG is the

largest component of the LMV. The VG contains one or more LVs, so this is the mecha-

nism that allows an LV to span multiple PVs.

That is the high-level overview of the LVM and its components. For this chapter we

are going to focus our attention at the VG, PV, LV, and PP levels, and we are concerned

only with disks in a mirrored configuration. If you want more information on the AIX

LVM there are plenty of books that go into great detail about AIX system management.

The Commands and Methods

As usual, we need the command syntax before we can write a shell script. We will

work with three LVM commands in this chapter. Each of these commands queries the
system for specific information on the components and status of the disk subsystem.

Before we proceed, it is important to know what each of these commands is used for
and what type of information can be gathered from the system.

Disk Subsystem Commands
The Isvg command queries the system for VG information. To see which VGs are

varied-on, or active, we add the -o switch to the Isvg command. We also have the -I flag

that allows the Isvg command to query the system for the contents of a specific VG. We

are interested in one of the fields in the lsvg <VG_name> command output called
STALE_PPs:, which has a value representing the number of stale PVs in the target VG.
Ideally we want this number to be zero.

Monitor for Stale Disk Partitions 299

Then we move to the LV command, Islv. The Islv command will query the system

for the status information of a specific LV, which is entered as a command parameter.

One of the fields in the output of the Islv <LV_name> command is STALE PP:. This

output shows the number of stale PPs for the LV specified on the command line. Ideally,

we want this number to be 0, zero. If we add the -1 flag to the Islv command, we can

see which PVs are associated with the LV in the first column of the command output.

Next we can move down to the PV, or disk, level. The Ispv command queries the

system for information on a specific PV, which is passed as a command parameter to

the Ispv command. Like Islv, the lspv command also reports the number of STALE
PARTITIONS: as a field in the output.

You will see the output of each of these commands as we write the scripts for this

chapter. We have the commands defined so we are now ready to start creating our first

shell script to monitor for stale disk partitions.

Method 1: Monitoring for Stale PPs at the LV Level

The easiest, but not always the quickest, method of checking for stale disk partitions is

to work at the LV level of the LVM structure. Querying the system for LV stale partition

information gives the high-level overview for each LV. If however, the LV spans more

than one PV, or disk, then another step must be taken to find the actual mirrored disks

that are not in sync. We will get to this finer granularity of monitoring in the next sec-

tion of this chapter.

We start our monitoring by issuing an LVM query to find each of the active VGs on

the system, or the VGs that are varied online. For this step we use the Isvg -o command.

The -o flag tells the Ilsvg command to list only the volume groups that are currently var-

ied online. Many more VGs may exist on the system, but if they are not varied online

we cannot check the status of any of the logical volumes that reside within the

VG because the entire VG is inactive. Let’s assign the VG list to a variable called

ACTIVE -VGLLIST:

ACTIVE_VG_LIST=$ (1lsvg -o)

My test machine has two VGs, and both are active:

rootvg

appvg2

The previous command saves the active Volume Groups in a variable. Using the

ACTIVE_VG_LIST variable contents we next create a list of active LVs on the system.

Each VG will have one or more LVs that may or may not be active, or open. Using the

$ACTIVE_VG_LIST data we can query the system to list each active LV within each

active VG. The Isvg -1$VG command queries the system at the VG level to display the

contents. Listing 11.1 shows the output of Isvg -1 appvg2 rootvg command on my test

machine.

300 Chapter 11

appvg2: .

LV NAME TYPE LPs PPS PVs) LV STATE MOUNT POINT

tel_lv jfs 2 2 i open/syncd /ausr/telalert

oracle_lv jis 128 128 ae open/syncd /oracle

oradata_lv Jes 128 128 1 open/syncd /oradata

any JES 16 16 au open/syncd jusn/ar

remp_tmp01 368 128 128 il open/synced - /remd_tmp01

export_lv jfs 100 100 iE open/syncd /export

loglv00 JeEslog 1 ua al open/syncd N/A

remp2.ctl01 jts 1s a i open/syncd frend ctlo0l

remp2_ct102 jis 1 tf 1 open/syncd /remd_ct102

remp2_ct103 jfs 1 di i open/syncd /remd_ct103

rempR2_ dat01l jfis 192 192 1 open/syncd /remd_dat01

R2remedy_lv jfs 1G 10 ib open/syncd /usr/remedy

remp2_logla jfs iL 1 f open/syncd /remd_logia

remp2_logib jfs 1 HG aK open/syncd /remd_logib

remp2_log2a jfis al al ¢ open/syned /remd_log2a

remp2_log2b wis ab ag 1 open/syncd /remd_log2b

remp2_log3a jEs cE 1 1 open/syncd /remd_log3a

remp2_log3b jis ae . r open/syncd /remd_log3b

remp2_log4a 7£S A ul a open/syncd /remd_log4a

remp2_log4b jis 1 1 1 open/syncd /remd_log4b

remp2_log5a jtis i: 1 i open/syncd /remd_log5a

remp2_log5b jfs ib ay ae open/syncd /remd_log5b

remp2_rbs01 jfs 47 47 Bt open/syncd /remad_rbs01

remp2_sys01 jfs 4 4 35 open/syncd /remd_sys01

arlogs_lv jfs 35 35 ab open/syned /usr/ar/logs

remp2_usr01 jis 6 6 ul open/syncd /remd_usr01

rootvg:

LV NAME TYPE LPs PPs PVs - LV: STATE MOUNT POINT

hd5 boot L 2 2 closed/syncd N/A

hd6é paging 80 160 2 open/syncd N/A

hds j£islog 1 y) 2 open/syncd N/A

hd4 jfs 4 8 2 open/syncd re

hd2 jis 40 80 2 open/syncd /usx

hd9var jfis 10 20 w, open/syncd /var

hd3 jis 10 20 2 open/syncd / tmp

hdl jfs 5 6 2 open/syncd /home

local_lv jfs 9 18 2 open/syncd /usr/local

Listing 11.1 Output of the lsvg -1 appvg2 rootvg command.

The list of LVs is shown in column one. Notice the sixth column in the output in List-

ing 11.1, LV STATE. Most of the LVs are open/synced, but one LV, hd5, is closed/

synced. The hd5 LV that is closed is the boot logical volume and is active only when the

system is booting up. Because we want only active LVs all we need to do is to grep on

Monitor for Stale Disk Partitions 301

the string open and then awk out the first column. The next command saves the list of
currently active LVs in a variable called ACTIVE_LV_LIST.

ACTIVE_LV_LIST=$ (lsvg -1 $ACTIVE_VG_LIST | grep open | awk '{print $1}')

In the previous command, we use our $ACTIVE_VG_LIST as a command parame-
ter for the Isvg -1 command. Then we pipe (|) to grep the Isvg output for only the
rows that contain the string open. Next, another pipe is used to awk out the first col-
umn, specified by awk '{print $1}'. The result is a list of currently active LV names. If
you think about an array, the grep command works on the rows and the awk command
works on the columns.

The only thing left to do is to query each LV for the number of stale PPs, specified by
the STALE PP: field. To check every LV we need to set up a for loop to run the same
command on each LV in the active list. The command we use to query the LV is Islv -L
$LV_NAME. The output for a single LV is shown in Listing 11.2.

LOGICAL VOLUME: remp_tmp01 : VOLUME GROUP: appvg2

LV IDENTIFIER: 00011151b819f83a.5 PERMISSION: read/write

VG STATE: active/complete LV STATE: opened/syncd

TYPE: JS WRITE VERIFY: oft

MAX LPs: 512 PRE Slab: 32

megabyte (s)

COPIES: us SCHED POLICY: parallel

LPs: 128 PPs: 128

STALE PPs: 0 BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: middle UPPER BOUND: 32

MOUNT POINT: /remd_tmp01 LABEL: /remd_tmp01

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

Listing 11.2 LV statistics for the remp_tmpO1 logical volume.

Notice in the command output in Listing 11.2 the ninth row, where the field STALE
PP: is listed. The second column of this row contains the number of stale partitions in
the logical volume. Ideally, we want this value to be zero, 0. If the value is greater than

zero we have a problem. Specifically, the mirrored disks associated with this LV are not

in sync, which translates to a worthless mirror. Looking at this output, how are we sup-

posed to get the number of stale disk partitions? It turns out that this is a very simple
combination of grep and awk. Take a look at the following command statement.

NUM_STALE_PP=$(lslv -L $LV | grep "STALE PP" | awk '{print $3}'

The previous statement saves the number of stale PPs into the NUM_STALE_PP

variable. We accomplish this feat by command substitution, specified by the

VARIABLE=$(commands) notation. The way to make this task easy is to do the

302 Chapter 11

parsing one step at a time. First, the row containing the STALE PP string is extracted
and is provided as input to the next command in the pipe. The next command in the
pipe is an awk statement that extracts only the third field, specified by '{print $3}'.
At this point you may be asking why we used the third field instead of the second. By
default, awk uses white space as a field separator, and because STALE PPs: 0 con-

tains two areas of white space, we need the third field instead of the second.
Now that we have all of the commands, all we need to do is set up a loop to run the

previous command against each logical volume stored in the SACTIVE_LV_LIST vari-
able. A little for loop will work just fine for this script. The loop is shown in Listing 11.3.

THIS HOST=S (hostname)

for LV in $(echo SACTIVE_LV_LIST)

do

NUM_STALE_PP=$(lslv -L $LV | grep "STALE PP” | awk ‘forint $3) °

if ((NUM_STALE_PP > 0))

then

echo "\n${THIS_HOST}: SLV has SNUM_STALE PP stale PPs"

Jase

done

Listing 11.3 Loop to show the number of stale PPs from each LV.

I want to point out several things in Listing 11.3. First, notice that we save the host-

name of the machine in a variable called THIS_HOST. When creating any type of report

we need to know which machine we are reporting on. When you have more than 100

machines, things can get a little confusing if you do not have a hostname to go with the
report.

A for loop needs a list of items to loop through. To get the list of active LVs, we use

command substitution to echo the contents of the $SACTIVE_LV_LIST to provide our

for loop with a list. Actually, the echo is not necessary, but I warited to show you a var-

ied approach. The next step is to run the Islv -L command for each LV listed and extract

the field that shows the number of stale PPs. For this command we again use command

substitution to assign the value to a variable called NUM_STALE_PP. Using this saved

value we do a numeric test in the if statement. Notice that we did not add a dollar sign
($) in front of the NUM_STALE_PP variable. Because we used the double parentheses

numeric test method, the command assumes that every nonnumeric string is a variable

so the dollar sign ($) is not needed; in fact, the test may give an error if the $ was added.

If we find that the number of stale PPs is greater than zero, then we use an echo

statement to show the hostname of the machine followed by the LV name that has stale

partitions and, last, the number of stale partitions that were found. These steps are fol-

lowed for every active LV in every active VG on the entire system. The full shell script
is shown in Listing 11.4.

Monitor for Stale Disk Partitions 303

#!/bin/ksh

SCRIPT: stale _LV_mon.ksh

AUTHOR: Randy Michael

DATE: 01/22/2002

REEVE hd Pp

PLATFORM: AIX only

for stale PPs in every active LV within every active

VG.

REVISION LIST:

i

ae

PURPOSE: This shell script is used to query the system

A

te

=

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

THIS HOST=*“hostname” # Hostname of this machine

STALE_PP_COUNT=0 # Initialize to zero

Find all active VGs

echo "\nGathering a list of active Volume Groups"

ACTIVE_VG_LIST=$(lsvg -o)

Find all active LVs in every active VG.

echo "\nCreating a list of all active Logical Volume"

ACTIVE_LV_LIST=$ (lsvg -l SACTIVE_VG_LIST | grep open | awk ‘ {print $1}")

Loop through each active LV and query for stale disk partitions

echo "\nLooping through each Logical Volume searching for stale PPs"

echo "...Please be patient; this may take several minutes to

complete..."

for LV in Séecho SACTIVE LV. LIST)

do

Extract the number of STALE PPs for each active LV

NUM STALE PP="Islv -L SLV | grep "STALE PP" | awk '‘{print $3) '”

Check for a value greater than zero

Z£ ((NUM STALE PP'> 0))

then

Increment the stale PP counter

(C STALE PP COUNT = SSTALE! PP COUNT +)1))

Report on all LVs containing stale disk partitions

echo "\n${THIS HOST}: S$LV has SNUM_STALE PP PPs"

Listing 11.4 stale_LV_mon.ksh shell script listing. (continues)

304 Chapter 11

fi

done

Give some feedback if no stale disk partitions were found

Li ((STALE PP COUNT == 0))

then ;

echo "\nNo stale PPs were found in any active LV...EXITING...\n"

ee

Listing 11.4 stale_LV_mon.ksh shell script listing. (continued)

Notice in the script in Listing 11.4 that we added notification at each step in the
process. As always, we need to let the user know what is going on. Before each com-

mand I added an echo statement to show the user how we progress through the shell

script. I also added a STALE_PP_COUNT variable to give feedback if no stale PPs were
found. Now let’s move on to searching for stale PPs at the PV level instead of the LV

level.

Method 2: Monitoring for Stale PPs at the PV Level

Checking for stale disk partitions at the LV level will let you know that one or more LVs

have stale PPs. To get a better picture of where the unsynced mirrors reside we need to
look at the hdisk level. In this section we are going to change the query point for

searching for stale Physical Partitions, or PPs, from the Logical Volume to the Physical

Volume, or disk level. The time saving in execution time between these two methods is

threefold in favor of working directly with the disks by my measurements. On my test

machine, an H-80 RS/6000, the LV query took 40.77 seconds in real time, 0.36 seconds

of system time, and 0.02 seconds of user time. Using the PV query method I reduced

the execution time to 12.77 seconds in real time and 0.17 seconds of system time, and I

had the same 0.02 seconds for user time. To understand the LV and PV configuration

I have 18 mirrored disks, which are 9 mirror pairs of 9.1GB disk drives, and a total of

32 LVs. Because an LV query takes longer to execute than a PV query, it is understand-

able that the PV query won. Depending on the system configuration, this timing

advantage may not always hold.

In the PV monitoring method we still are concerned only with the hdisks that are in

currently varied-on Volume Groups (VGs), as we did in the LV method using the Isvg -o

command. Using this active VG list we can query each active VG and extract all of the

hdisks that belong to each VG. Once we have a complete list of all of the hdisks we can
start a loop and query each of the PVs independently. The output of a PV query is sim-

ilar to the LV query statistics in Listing 11.2. Take a look at the PV query of hdisk5

using the Ispv -! hdisk5 command in Listing 11.5.

Monitor for Stale Disk Partitions 305

PHYSICAL VOLUME: hdisk5 VOLUME GROUP: appvg2

PV IDENTIFIER: 00011150e33¢c3f14 VG IDENTIFIER 00011150e33ce9bb

PV STATE: active

STALE PARTITIONS: 0 ALLOCATABLE: yes

PP SIZE: ' 16 megabyte(s) LOGICAL VOLUMES: 2

TOTAL PPs: 542 (8672 megabytes) VG (DESCRIPTORS: cf

FREE PPs: 397 (6352 megabytes)

USED PPs: 145 (2320 megabytes)

PREE) DISTRIBULION SB OOO NOL eB AOS

USED) DISTRIBUTIONS (20 POSS tr O00 00

Listing 11.5 PV statistics for the hdisk5 physical volume.

In the output in Listing 11.5 the STALE PARTITIONS: field in row four and its value

are the third field in the row. If the stale partition value ever exceeds zero, then we use

the same type of reporting technique that we used in the LV query in Method 1. If no
stale partitions are found, then we can give the “all is well” message and exit the script.

Because we have the basic idea of the process, let’s take a look at the shell script in

Listing 11.6. We will explain the technique in further detail at the end of the code listing.

#!/usr/bin/ksh

SCRIPT: stale_PP_mon.ksh

AUTHOR: Randy Michael

DATE: 01/29/02

+ REY: 2.2.2

&

PLATFORM: AIX only

PURPOSE: This shell script is used to query the system for stale PPs.

The method queries the system for all of the currently

varied-on volume groups and then builds a list

of the PVs to query. If a PV query detects any stale

partitions notification is sent to the screen. Each step in

the process has user notification

REVISION LIST:

Listing 11.6 stale_PP_mon.ksh shell script listing. (continues)

306 Chapter 11

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

THIS HOST=$ (hostname) # Hostname of this machine

HDISK LIST= # Initialize to NULL

STALE PP _COUNT=0 # Initialize to zero

Inform the user at each step

echo "\nGathering a list of hdisks to query\n"

Loop through each currently varied-on VG

for VG in $(lsvg -o)

do

Build a list of hdisks that belong to currently varied-on VGs

echo "Querying SVG for a list of disks"

HDISK_LIST="$HDISK LIST $(lsvg -p $VG |grep disk \

| awk '{print $1}')"

done

echo "\nStarting the hdisk query on individual disks\n"

Loop through each of the hdisks found in the previous loop

for HDISK in $(echo $HDISK_LIST)

do

Query a new hdisk on each loop iteration

echo "Querying SHDISK for stale partitions"

NUM_STALE_PP=$(lspv -L $HDISK | grep "STALE PARTITIONS:" \

| awk “(print $3}')

Check to see if the stale partition count is greater than zero

if ((NUM_STALE PP > 0))

then

This hdisk has at least one stale partition - Report it!

echo "\n${THIS_HOST}: SHDISK has SNUM_STALE PP Stale

Partitions"

Build a list of hdisks that have stale disk partitions

STALE _HDISK_LIST=$(echo $STALE_HDISK_LIST; echo S$HDISK)

Ei

done

If no stale partitions were found send an "all is good" message

((NUM_STALE PP > 0)) \

| | echo "\n${THIS_HOST}: No Stale PPs have been found...EXITING...\n"

Listing 11.6 stale _PP_mon.ksh shell script listing. (continued)

Monitor for Stale Disk Partitions 307

We totally changed our viewpoint in our search for stale disk partitions. Instead of
working at each LV we are scanning each disk, or PV, independently. The search time

on my test machine was three times faster, but my machine configuration does not
mean that your system query will be as fast. I want to start at the top of our
stale_PP_mon.ksh shell script in Listing 11.6 and work to the bottom.

We start off the script by initializing three variables, THIS_HOST (the hostname of
the reporting machine), HDISK_LIST (the list of PVs to query, which we initialize to
NULL), and STALE_PP_COUNT (the total number of stale disk partitions on all disks,
which is initialized to zero). We will show how each of these variables is used as we

progress through the script.

The next step is to use the list of currently varied-on VGs (using the Isvg -o com-
mand) to create a list of currently available hdisks—at least they should be available.

We do this in a for loop by appending to the HDISK_LIST variable during each loop
iteration. Once we have a list of available system disks, we start a for loop to query

each hdisk individually. During the query statement:

NUM_STALE_PP=$(lspv -L $HDISK | grep "STALE PARTITIONS:" \

| awk '{print $3}')

we capture the number of stale disk partitions by using grep and awk together in the

same statement. Just remember that the grep command acts on the rows and the awk

statement acts on the columns. On each loop iteration we check the value of the
$SNUM_STALE_PP variable. If the count is greater than zero we do two things: report

the disk to the screen, and append to the STALE_HDISK_LIST variable. Notice how

we append to a variable that currently has data in it. By initializing the variable to

NULL (specified by VARIABLE=), by creating an assignment to nothing, we can

always append to the variable using the following syntax:

VARIABLE="$VARIABLE $NEW_VALUE"

Because the $VARIABLE has an initial value of nothing, NULL, then the first value
assigned is a new value, and all subsequent values are appended to the VARIABLE

variable on each loop iteration.
At the end of the script we test the $NUM_STALE_PP variable, which has a running

count of all stale disk partitions. If the value is zero, then we let the end user know that
everything is OK. Notice how we do the test. We do a numerical test on the
$NUM_STALE_PP variable to see if it is greater than zero. If the value is one or more,

then the statement is true. On a true statement the logical OR (| |) passes control to
the second part of the statement, which states “No stale PPs have been found.” The

logical OR saves an if statement and is faster to execute than an if statement.
Now that was a fun little script. We can improve on both scripts that have been pre-

sented thus far. There is a procedure to attempt to resync the disks containing stale par-

titions. In the next section we are going to combine the LV and PP query methods and
add in a VG query as the top-level query to search for stale disk partitions. We will also

attempt to resync all of the stale LVs that we find, if the ATTEMPT_RESYNC variable is

set to TRUE.

308 Chapter 11

Method 3: VG, LV, and PV Monitoring with a resync

We have looked at stale disk mirrors from two angles, but we can look for stale disk

partitions at a higher level, the VG level. By using the Isvg command we can find

which VG has disks that have stale PPs. Using the Ilsvg <VG_name> command we can
shorten our queries to a limited number of disks, although with Murphy’s Law work-

ing, it just might be the largest VG on the planet!
The strategy that we want to follow is first to query each active VG for stale PVs,

which we find using the lsvg <VG_name> command. Then, for each VG that has the

STALE PV: field greater than zero, we query the current VG in the loop to get a list of

associated PV, or disks. Using a list of all of the PVs that we found, we conduct a query
of each disk to find both the list of LVs the PV is associated with and the value of the
STALE PARTITIONS: field. For each PV found to have at least one stale partition, we

query the PV for a list of LVs that reside on the current PV. Please don’t get confused
now! The steps involved are a natural progression through the food chain to the

source. The final result of all of these queries is that we know which VG, PV, and LV

have unsynced mirrors, which is the complete picture that we want.

The process that we follow in this section is faster to execute and easier to follow, so

let’s start. The commands we are going to use are shown in Listing 11.7.

lsvg -o Produces a list of active VGs

lsvg $VG_NAME Queries the target VG for status information

lsvg -p $VG_NAME Produces a list of hdisks that belong to the VG

lspv $PV_NAME Queries the hdisk specified by $PV_NAME

lspv -1l $PV_NAME Produces a list of LVs on the target hdisk ~

lslv $LV_NAME Queries the target LV for status information

syncvg SHDISK_LIST Synchronizes the mirrors at the hdisk level

synevg -1 SLV_LIST Synchronizes the mirrors at the LV level

varyonvg Synchronizes only the stale partitions

Listing 11.7 Command summary for the Method 3 shell script.

Using the nine commands in Listing 11.7 we can produce a fast-executing shell
script that produces the full picture of exactly where all of the unsynced mirrors reside,

and we can even attempt to fix the problem!

For this shell script I want to present you with the entire script; then we will step

through and explain the philosophy behind the techniques used. In studying Listing
11.8 pay close attention to the bold text.

#! /usr/bin/ksh

t

SCRIPT: stale_VG_PV_LV_PP_mon.ksh

AUTHOR: Randy Michael

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing.

Monitor for Stale Disk Partitions 309

DATE: 01/29/02

REVS 2 te

PLATFORM: ATX only

PURPOSE: This shell script is used to query the system for stale PPs.

The method queries the system for all of the currently

varied-on volume groups and then builds a list of the PVs to

query. If a PV query detects any stale partitions notification

is sent to the screen. Each step in the process has user

notification.

REVISION LIST:

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

==> Normal execution or no stale PP were found

=> Trap EXIT

=> Auto resyncing failed

EXIT CODES: 0

ak

2 i)

Se HE HEHEHE HEHEHE HEHEHE OHH OH OH OH KH OH HH OH OH OH tH

HEHEHE RREER EEE EERE EREEREEEEEE ERE AREER EEERE EEE EEE HEHE RHEE HEHEHE HH

H#HHHPHHHHE DEFINE VARIABLES HERE ####HHEHEEEEEEE EEE HH

ATTEMPT RESYNC=FALSE # Flag to enable auto resync, "TRUE" will resync

LOGFILE="/tmp/stale_PP_log" # Stale PP logfile

THIS HOST=S$ (hostname) Hostname of this machine

STALE _PP_COUNT=0 Initialize to zero

STALE _PV_COUNT=0

HDISK_LIST=

INACTIVE_PP_LIST=

STALE _PV_LIST=

STALE LV_LIST=

STALE VG_LIST=

RESYNC_LV_LIST=

PV_LIST=

Initialize to zero

Initialize to NULL

Initialize to NULL

Initialize to NULL

Initialize to NULL

Initialize to NULL

Initialize to NULL

Enitialize to NULL Se SE Sk OR FE FE OE OR OE OE

HHERHHEEHPERRRRREREAEEESEE EERE HEH HHH

INITIALIZE THE LOG FILE ####

>S$LOGFILE #\ Initialize the log file to empty

date >> SLOGFILE # Date the log file was created

echo "\nSTHIS HOST \n" >> SLOGFILE # Hostname for this report

DEFINE FUNCTIONS HERE ####### #44 4 #

Listing 11.8 stale VG_PV_LV_PP_mon.ksh shell script listing. (continues)

310 Chapter 11

Trap Exit function

function trap exit

{

echo “\n\t...EXITING on a TRAPPED signal...\n"

HHEEFHEAEHEAEPREEEEESESEGHEAESEARSESH EHH

Set a trap...

trap ‘trap exit; exit 1' 1:23 °5 15

HHHHHHHHEHEHEEPEAPHEEEAEESEHPEEEEEREEE EH

H#HHHHHHH BEGINNING OF MAIN ######44 444

HEFHEFHHEFHEHHEPHEEHEEHEPSHESHEEH EEE H EH

Inform the user at each step

Loop through each currently varied-on VG and query VG for stale PVs.

For any VG that has at least one stale PV we then query the VG

for the list of associated PV and build the $PV_LIST

echo "\nSearching each Volume Group for stale Physical Volumes...\c" \

| tee -a $LOGFILE

Search each VG for stale PVs, then build a list of VGs and PVs

that have stale disk partitions

for VG in $(lsvg -o)

do

NUM_STALE_PV=$(lsvg $VG | grep 'STALE PVs:' | awk ‘{print $3}')

if ((NUM_STALE PV > 0))

then

STALE VG LIST="$STALE VG LIST $vG"

PV_LIST="$PV_LIST $(lsvg -p $vG | tail +3 | awk ‘{print $1}')"

((STALE_PV_COUNT = STALE _PV_COUNT + 1))

gel

done

Test to see if any stale PVs were found, if not then

exit with return code 0

if ((STALE_PV_COUNT == 0))

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continued)

Monitor for Stale Disk Partitions 311

then

echo “\nNo Stale Disk): Mirrors|\Found!:\ EXITING.» \\n" | tee -a

SLOGFILE

exit 0

else '

echo "\nStale Disk Mirrors Found!...Searching each hdisk for stale

PPS cca NGK iN

| tee -a $LOGFILE

£i

Now we have a list of PVs from every VG that reported stale PVs

The next step is to query each PV to make sure each PV is in

an “active" state and then query each PV for stale PPs.

If a PV is found to be inactive then we will not query

the PV for stale partitions, but move on to the next PV in

the $PV_LIST.

for HDISK in $(echo $PV_LIST)

do

PV_STATE=$(lspv $HDISK | grep 'PV STATE:' | awk '{print $3}')

Teall SPV STATE l= Yactive’:))]

then

INACTIVE PV_LIST="S$INACTIVE_PV_LIST $HDISK"

£i

if ! $(echo $INACTIVE_PV_LIST | grep $HDISK) >/dev/null 2>&1

then

NUM_STALE_PP=$(lspv S$HDISK | grep 'STALE PARTITIONS:' \

l-awk. | {print.$3}')

if ((NUM_STALE PP > 0))

then

STALE PV LIST="SSTALE PV LIST. SHDISK"

((STALE PP: COUNT “= "SSTALE: PP COUNT) +) 1))

fi

£2

done

Now we have the list of PVs that contain the stale PPs.

Next we want to get a list of all of the LVs affected:

echo "\nSearching each disk with stale PPs for associated LVs\c" \

| tee -a $LOGFILE

for PV in $(echo $STALE_PV_LIST)

do

STALE LV _LIST="$STALE_LV_LIST $(lspv -1l $PV | tail +3 \

| awk '{print $1}')"

Listing 11.8 stale VG_PV_LV_PP_mon.ksh shell script listing. (continues)

312 Chapter 11

done

Using the STALE LV_LIST variable list we want to query

each LV to find which ones need to be resynced

echo "\nSearch each LV for stale partitions to build a resync LV list\c"

\

| tee -a SLOGFILE

for LV in $(echo $STALE LV LIST)

do

LV_NUM_STALE_PP=$(lslv $LV | grep "STALE PPs:" | awk '{print $3}')

(($LV_NUM STALE PP == 0)) & RESYNC_LV_LIST="S$RESYNC_LV_ LIST $LVv"

done

If any inactive PVs were found we need to inform the user

of each inactive PV

Check for a NULL variable

if [[-n "$INACTIVE_PV_LIST" && "SINACTIVE_PV_LIST" != '']]

then

for PV in $(echo $INACTIVE_PV_LIST)

do

echo "\nWARNING: Inactive Physical Volume Found:" | tee -a

SLOGFILE

echo "\nSPV is currently inactive;\n" | tee =a SLOGFILE

echo “\nThis' script ‘is not Suitable to to correct this

problemcio\

| tee -a $LOGFILE

echo " .. CALL IBM SUPPORT ABOUT S{PV}..5" Leena

SLOGFILE

done

aa

echo "\nStale Partitions have been found on at least one disk!" \

| tee -a $LOGFILE

echo "\nThe following Volume Group(s) have stale PVs:\n" \

| tee -a $LOGFILE

echo $STALE_VG_LIST | tee -a $LOGFILE

echo "\nThe stale disk(s) involved include the following:\n" \

| tee -a $LOGFILE

echo $STALE_PV_LIST | tee -a $LOGFILE

echo "\nThe following Logical Volumes need to be resynced:\n" \

| tee -a $LOGFILE

echo $RESYNC_LV_LIST | tee -a $LOGFILE

if [{ SATTEMPT RESYNC = "TRUE"]4

Listing 11.8 stale _VG_PV_LV_PP_mon.ksh shell script listing. (continued)

Monitor for Stale Disk Partitions 313

then

echo, "\nAttempting to resyne the LVs\\on\SRESYNC PV LIST 2) \ni?\

| tee -a $LOGFILE

syncvg -1 $RESYNC_LV_LIST | tee -a $LOGFILE 2>&1

LEC oS = O)\)

then

echo’ "\nResyneing) all) of (the LVs\ SUCCESSFUL: “BXTTING) 7" \

| tee -a $LOGFILE
else

echo "\nResyncing FAILED... .EXITING...\n" | tee -a SLOGFILE

exit 2

cane

else

echo "\nAuto resync is not enabled...set to TRUE to automatically

resync\n" \

| tee -a $LOGFILE

echo "\n\t...EXITING...\n" | tee -a $LOGFILE

fi

echo "\nThe log file is: $LOGFILE\n"

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continued)

The shell script in Listing 11.8 is interesting because of the techniques used. As we

start at the top of the shell script, notice the first variable definition, ATTEMPT_

RESYNC. I initialize this variable to FALSE because resyncing at the LV level can cause

a significant system load. A better method is to run the varyonvg command without

any arguments. This method will only resync the stale partitions. Because of the possi-
bility of loading the system down and slowing production response time, I initialize

this variable to FALSE. If I am working on a test/development or sandbox machine, I

usually set the ATTEMPT_RESYNC variable to TRUE, in uppercase. The TRUE setting
will attempt to resync, at the LV level, of every stale LV.

The remaining variables initialize the LOGFILE and THIS_HOST variables to the log

filename and hostname, respectively. A couple of counters are initialized to zero, and

seven other variables are initialized to NULL. In the next section we initialize the
$LOGFILE with header information.

The only function in this script is the trap_exit function. The trap_exit func-

tion displays only to the screen ...EXITING on a TRAPPED signal... when a trap is

captured. The trap is set for exit codes 1, 2, 3, 5, and 15 and then the script exits with

return code 1. This functionality is just a notification measure for the user. Now we are

at BEGINNING OF MAIN in our script.

At each step through this shell script we want to give the user feedback so that he or

she will know what is going on. When writing shell scripts you need to do two things:
Comment everything and give your users feedback so that they know what is going on.

In our first query we inform the users that we are searching each VG for stale PVs. For

this step we use the Isvg -o command to get a list of currently varied-on volume

314 Chapter 11

groups. Using this active VG list, we use a for loop to loop through each active VG and

query for the STALE PVs: field using the lsvg $VG command to extract the number
of stale PVs in each VG using both grep and awk. When any stale PVs are detected, the

VG is added to the STALE_VG_LIST variable, all of the PVs in the VG are then added

to the PV_LIST variable, specified by the Isvg -p $VG command. Next the STALE_

PV_COUNT variable is incremented by one for each PV using the math notation
((STALE_PV_COUNT = STALE_PV_COUNT + 1)). At this point we have a list of all
of the volume groups that have stale physical volumes and a list of all of the PVs in

all of the VGs that have stale PVs identified.
If the STALE_PV_COUNT variable is zero, there are no stale disk partitions to report

in the system for the currently varied-on volume groups. If the count is zero, we inform

the user that no stale disk mirrors were found, and we exit the script with a return code

of 0, zero. If no stale disk partitions exist, this shell script executes in seconds. If the

count is greater than zero, then we inform the user that stale disk mirrors were found,
and we continue to the next step, which is to query each PV in the $PV_LIST search-

ing for stale disk partitions.
To query each PV that is part of a VG that has stale PVs identified, we use a for loop

to loop through each hdisk assigned to the $PV_LIST variable. Before we can query

the disk, we need to ensure that the PV is in an active state. If the disk is inactive, then

we cannot query that disk. In this section of the shell script we use the lspv $HDISK

command within the for loop twice. The first time we are ensuring that the disk is
active, and in the second step we query the disk for value of the STALE PARTITIONS:

field. If the disk is found to be inactive, then we just add the disk to the

INACTIVE_PV_LIST variable. If the disk is in an active state and the query detects any

stale partitions, we add the hdisk to the STALE_PV_LIST variable. Notice in this sec-

tion the if statement syntax that is used to check for inactive PVs before the disk query
is initiated:

if ! $(echo $INACTIVE_PV_LIST | grep $HDISK) >/dev/null 2>&1

The previous test ensures that the disk is not listed in the $SINACTIVE_PV_LIST

variable. The nice thing about using this syntax is that we use the if statement to check

the return code of the enclosed command. We also negate the response so that we are

testing for the disk not being listed in the variable by using the ! operator. To stop any
screen output, the command is redirected to the bit bucket, and standard error is redi-

rected to standard output, specified by the 2>&1 notation. Through the process of this
for loop we populate the STALE_PV_LIST variable, which is a list of each of the active

disks on the system that have stale disk partitions. We also keep a running count of the
stale PPs found.

In the next section we use the populated $STALE_PV_LIST variable to get a list of
all of the logical volumes that are part of each disk in the stale disk list. In this step we
use another for loop to loop through each stale PV and populate the STALE_LV_LIST

variable using the Ispv -1 $PV command. Then we use this newly populated

$STALE_LV_LIST to query each LV to find which ones have stale PPs. For this section

we query each LV using the Islv $LV command and extract the value of the STALE

Monitor for Stale Disk Partitions 315

PP: field using a combination of grep and awk commands in a pipe. Each LV found to
have at least one stale PP is added to the RESYNC_LV_LIST variable, which is used

later to resync each of the LVs, if enabled, and in the log report.

Now we use the list of inactive PVs, using the $INACTIVE_PV_LIST variable, to
produce notification to the user of each inactive PV found on the system. We start with

an if statement and test for the $INACTIVE_PV_LIST variable being NULL, or empty.

If the variable is not NULL, then we loop through each PV in the list and issue a warn-

ing message to the user for each inactive PV. This information is also logged in the
$LOGFILE using a pipe to the tee -a command to append to the $LOGFILE and display
the information to the screen at the same time.

In the next step, we give the user a list of each VG, PV, and LV that is affected by the

stale disk partitions. After this notification is both logged and displayed we attempt to

resync the mirrors at the LV level. Sometimes there are just one or two LVs ona PV that

have stale disk partitions, so the LV is where we want to attempt to resync. We will

attempt a resync only if the SATTEMPT_RESYNC variable is initialized to TRUE. Any

other value will cause this step to be skipped, but the user is notified that the resync
option is disabled. If a resync is enabled, the synevg -1 $RESYNC_LV_LIST command

is executed. The return code is checked for a zero value, indicating a successful resync

operation. If the return code is not zero, you need to call IBM support and replace the

disk before it goes dead on you. The steps involved in replacing a disk are beyond

the scope of this book. We can also use the varyonvg command to resync only the stale

partitions.

Other Options to Consider

As usual, any shell script can be improved, and this set of shell scripts is no exception.

SSA Disks

The ssaxlate command is used with a type of disk developed by IBM known as Serial
Storage Architecture (SSA). The SSA disks not only use the hdisk# but also have an

associated pdisk#. Normally the hdisk# and the pdisk# differ on the system. The

ssaxlate command gives a cross-reference between the two disk representations. It is

always a good idea to have this extra information if we are dealing with SSA disks,
especially if you are replacing an SSA disk. To use the ssaxlate command, you need to
know the specific hdisk# to translate to the corresponding pdisk#, or vice versa. As an

example, we want to know what pdisk# translates to hdisk36. The command syntax to

do the translation is shown here:

ssaxlate -1 hdisk36

pdisk32

In this example, hdisk36 translates to pdisk32. From this you can imply that hdisk0

through hdisk3 are not SSA disks. Usually the first few disks on an AIX system are

316 Chapter 11

SCSI disk drives. You can also translate a pdisk# into the corresponding hdisk# by

running the ssaxlate command against the pdisk#.

Log Files

In the first two shell scripts in this chapter we did not use a log file as we did in Method 3.

It is always nice to have a log file to look at after the fact when you are running any

type of system query. Creating a log file is a simple process of defining a variable to

point to a filename that you want to use for a log file and appending output to the log
file variable. If your system tends to fill up the /tmp filesystem, then I recommend cre-

ating a log directory, maybe in /usr/local/logs, or creating a separate filesystem just for
log files. You can still have the mount point /usr/local/logs, or anything you want. If

/tmp fills up, then you will not be able to write anything to the log file. You may also
want to keep a month’s worth of log files to review in case of system problems. To do

this you can add a date stamp as a filename extension and remove all files older than

30 days with the find command.

Automated Execution

You can make a cron entry in the root cron table to execute this shell script to automate
running the script daily. Asample cron table entry is shown here:

05 23 * * * /usr/local/bin/stale_PP_mon.ksh >/dev/null 2>&1

The previous cron table entry will execute the stale_PP_mon.ksh shell script

every day at 11:05 p.M., 365 days a year. The output is redirected to the bit bucket, but

the log file will be created for review the next day.

Event Notification

If you use the previous cron table entry to execute the shell script every day, you may

want to get some kind of notification by way of an email or a page. The easiest way is

to email the log file to yourself every day. You can also modify the shell script to pro-

duce a very short message as a page. As an example, you could send one of the fol-
lowing text messages to an alphanumeric pager:

STHIS_HOST: stale PP check OK

STHIS_HOST: stale PP check FAILED

These are short messages to get the point across, and you will know which machine
the page came from.

Monitor for Stale Disk Partitions

Summary

In this chapter we looked at a logical progression of creating a shell script by starting

at the basics. I hope you have gained at least some knowledge of the AIX Logical Vol-

ume Manager (LVM) through this experience. As you can see in this chapter, the first

attempt to solve a challenge may not always be the best, or fastest, method; but this is

how we learn. If we take these small steps and work up a full-blown shell script with

all of the bells and whistles, we have learned a great deal. I know a lot of you do not

work on AIX systems but this is still a valuable exercise.

In the next chapter we look at some techniques of automating the ping process to

ensure that the machines can communicate, at least at the lowest level of a ping. This

is just another step toward being proactive and looking like gold. See you in the next

chapter!

317

Automated Hosts Pinging
with Notification

In every shop there is a critical need to keep the servers serving. For system availability,

the quicker you know that a system is unreachable, the quicker you can act to resolve

the problem and reduce company losses. At the lowest level of system access we can

ping each machine in the “critical machine” list. If the ping works it will tell you if the

network adapter is working, but it does not guarantee that the machine and applica-

tions are working. For this level of checks you need to actually access the application
or operating system.

In this chapter we are going to create a shell script that will ping hosts using a list of

machines, which is stored in a separate file that is easily edited. Other options to this

scenario include pinging all of the machines in the /etc/hosts file, using ftp to trans-

fer a file, and querying the database, to name a few. Our interest in this chapter is to

work at the lowest level and use the ping command to ensure that the machines are

reachable from the network. When a machine is found unreachable we send notifica-

tion to alert staff that the machine is down. Due to the fact that in some shops the net-

work can become saturated with network traffic, we are going to add an extra level of

testing on a failed ping test, which we will get into later in this chapter. But before we

go any further let’s look at the command syntax for each of our operating systems
(AIX, HP-UX, Linux, and Solaris) to see if we can find a command syntax that will pro-

duce the same output for all of the operating systems that we are working with.

319

320 Chapter 12

Syntax

As always, we need the correct command syntax before we can write a shell script. Our

goal is to find the command syntax for each operating system that produces the same
output. For this shell script we want to ping each host multiple times to ensure that the
node is reachable; the default is three pings. The standard output we want to produce

on each OS is shown here.

ping -c3 dino

PING dino: (10.10.10.4): 56 data bytes

64 bytes from 10.10.10.4: icmp_seq=0 tt1l=255 time=2 ms

64 bytes from 10.10.10.4: icmp_seq=1 tt1l=255 time=1 ms

64 bytes from 10.10.10.4: icmp_seq=2 tt1l=255 time=1 ms

----dino PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 1/1/2 ms

This is the command, and the output is from an AIX machine. Notice the PING

Statistics at the bottom of the command output, where I have highlighted 3

packets received. This is the output line that we are interested in for every oper-

ating system. Now, how do we produce the same output for each OS? Instead of leav-
ing you in the dark I am just going to list each one in Table 12.1, showing you how to

ping the host dino.

In Table 12.1, notice that AIX and Linux have the same command syntax. For HP-UX

and Solaris notice the two numbers, 56 and 3. The 56 specifies the packet size to send

on each ping, and the 3 is the number of times to try to reach the host. For a packet size
56 is a standard packet, and we are not going to change from this standard. It is impor-
tant to know the differences in command structure for each operating system because

we are creating one shell script and we will ping each node using a function, which

selects the correct command to execute based on the Unix flavor. To find the OS we use
the uname command. Using the output of the uname command in a case statement we

are assured that the correct command is executed on any of the four operating systems.

This is really all we have for the syntax, but we need to do some checks and create

some variables, so we are going to build the shell script around these commands listed

in Table 12.1.

Table 12.1 Ping Command for Each Operating System

OPERATING SYSTEM “PING COMMAND :

AIX # ping -c3 dino

HP-UX # ping dino 56 3

Linux # ping -c3 dino

Solaris # ping -s dino 56 3

Automated Hosts Pinging with Notification

Creating the Shell Script

In scripting this solution we want to add a couple of options for convenience. The first

option is to have a means of stopping the pinging without interrupting the scheduled
script execution, which is usually executed through a cron table entry. The second
option is to have a means of stopping the notification for nodes that are unreachable.

For each of these we can use a flag variable that must have a value of TRUE to enable

the option. There are many times where you want to disable these two options, but the
main reason is during a maintenance window when many of the machines are

unreachable at the same time. If you have only one or two machines that are down,
then commenting out the node name(s) in the ping. list file, which contains a list of

nodes to ping, is preferable. You can also comment out the cron table entry to disable

the test alogether.

Now we need to define the pinging technique that we want to use. I like to use a
two-level approach in checking for a system’s reachability. In a two-level testing sce-

nario, when a node is unreachable we go to sleep for a few seconds and try the test

again. We do this to eliminate “false positives” due to a heavy network load. This is a
major concern at some shops where I have worked, and finger pointing back and forth

between the network team and the Systems Administrators always happens, and I try

to stay out of this argument. This second-level test adds just a few seconds to the test-

ing window for each unreachable node. This is a relatively simple shell script to create,

so keep reading!

Define the Variables

The first thing that we want to do in almost any shell script is to define the variables

and files that are used in the script. We have already discussed two variables, which

enable pinging and notification. For pinging we use the PINGHOSTS variable and
MAILOUT as the variable to permit or disable notification. Additionally, for ease of test-

ing we are going to typeset both of these variables to force all text assignments to these

variables to uppercase, as shown here.

typeset -u PINGHOSTS

typeset -u MAILOUT

PINGHOSTS=TRUE

MAILOUT=TRUE

We can also typeset the variables and assign the values in the same step, as shown

here.

typeset -u PINGHOSTS=true

typeset -u MAILOUT=true

Notice that I assign a lowercase “true” to both variables, but when you print or

test the variables you will see that the assignments have been changed to uppercase

characters.

321

322 Chapter 12

echo SMAILOUT

TRUE

There are a few more variables that we also need to define, including PING_COUNT
and PACKET_SIZE that specify the number of times to ping the target host and the

packet size for each packet, which we discussed earlier.

integer PING_COUNT=3

integer PACKET_SIZE=56

Notice the integer notation used to define these variables as integers. This notation
produces the exact same results that the typeset -i command produces.

Next we need the Unix flavor that this shell script is running. This shell script rec-
ognizes AIX, HP-UX, Linux, and Solaris. For this step we use the uname command, as

shown here.

UNAME=$ (uname)

In this UNAME assignment we used command substitution to assign the result of the

uname command to the variable UNAME.

The next two steps in this definition section involve defining the PINGFILE and

MAILFILE file assignments. The PINGFILE contains a list of nodes that we want to
ping. The shell script is expecting one node, or hostname, per line. If you no longer

want to ping a node in the list file, then you can comment the node out using a pound

sign (#). For this shell script I specified that the ping list is located in /usr/local/
bin/ping.1list. Similarly, the MAILFILE has a list of email addresses that are to be

notified when a node is not reachable. This email list is located in /usr/local/
bin/mail.1list. The variable assignments are shown here.

PINGFILE="/usr/local/bin/ping.list" # List of nodes to ping

MAILFILE="/usr/local/bin/mail.list" # List of persons to notify

For these two files we are going to check for a nonzero length file, which implies the
file exists and its size is greater than zero bytes. If the $PINGFILE does not exist, then

we need to send an ERROR message to the user and exit the shell script because we do
not have a list of nodes to ping. If the SMAILFILE does not exist we are just going to

notify the user that there will not be any email notification sent for unreachable nodes.

We also need a file to hold the data that is emailed out when a node is unreachable.
The file is located in /tmp/pingfile.out and is assigned to the PING_OUTFILE

variable.

PING_OUTFILE="/tmp/pingfile.out" # File for e-mailed notification

>S$PING_OUTFILE # Initialize to an empty file

Notice how we created an empty file by redirecting nothing to the file, which is
pointed to by the $PING_OUTFILE variable. You could also use cat /dev/null to
accomplish the same task, as shown here.

Automated Hosts Pinging with Notification 323

cat /dev/null > $PING_OUTFILE

Next we need three variables that are to hold numeric values—at least we hope they
are numeric. The first variable is called INTERVAL, and it contains a value specifying
the number of seconds to sleep before trying to ping an unreachable node for the sec-
ond time. I like to use three seconds.

integer INTERVAL="3" # Number of seconds to sleep between retries

As we discussed before, in our standard ping output we are interested in the PING
Statistics line of output. Specifically, we want to extract the numeric value for the

"3packets received", which should be greater than zero if the node is reachable.

To hold the value for the number of pings received back we need two variables, one for
the first try and one for the second attempt, in case the node is unreachable the first

time. These two variables are PINGSTAT and PINGSTAT2 and are initialized to NULL,

as shown here.

PINGSTAT= # Number of pings received back from pinging a node

PINGSTAT2= # Number of pings received back on the second try

The last variable we need to assign is the hostname of the machine that is running

this script. We need the hostname because we may have two nodes pinging each node

in case one pinging node fails. For this variable we again use command substitution, as
shown here.

THISHOST=* hostname~ # The hostname of this machine

Notice that this time we used the back tics (‘command”) instead of the dollar-

double parentheses method ($ (command)) for command substitution. Both command
substitution options produce the same result, which is yogi on this machine.

Creating a Trap

To start out our shell script we are going to set a trap, which allows us to take some

kind of action when an exit signal is captured, such as a user pressing CTRL-C. We can
capture most exit signals except for kill -9. The only action that we want to take in this

shell script is to inform the user that the shell script has detected an exit signal and the
script is exiting. This trap is added in this shell script so that you get used to putting
traps in all of your shell scripts. We are going to capture exit signals 1, 2, 3, 5, and

15 only. You can add many more, but it is overkill in this case. For a complete list of sig-
nals use the kill -l (-ell) command. The command syntax for the trap is shown here.

EGaDNechow \nExdting ona trapped signal aN yrexit: Lu te 25355815

Using this trap command statement, the following message is displayed before the

shell script exits with exit signal 1.

Exiting on a trapped signal...

324 Chapter 12

The Whole Shell Script

We have all of the initializations complete and know what the ping syntax is for each

operating system, so let’s look at the whole shell script and cover some other issues at
the end of Listing 12.1. Pay close attention to the boldface text.

#!/usr/bin/ksh

SCRIPT: pingnodes.ksh

AUTHOR: Randy Michael

DATE: 02-20-2001

PURPOSE: This script is used to ping a list of nodes and

send email notification (or alphanumeric page) of any unreachable

nodes.

REV DOA

REV. GIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

+ + + H+ HH HH HH OH HH HF HK HF HF HSH HK HK HS

HHEHHERRRRE REE E ERR EAERERREEREEER PERERA E PR EGEEES ERE REEEH

Set a trap and clean up before a trapped exit...

REMEMBER: you CANNOT trap "kill -9"

trap ‘echo "\n\nExiting on trapped signal...\n" \

rexte tt 2g 15

HHEHHHHEERERERRREREEE GARE EEHEE RSE EHERRPEREREESEE EHH HEHE

Define and initialize variables here...

PING COUNT="3" # The number of times to ping each node

PACKET _SIZE="56" # Packet size of each ping

typeset -u PINGNODES # Always use the UPPERCASE value for SPINGNODES

PINGNODES="TRUE" # To enable or disable pinging FROM this node -

"TRUE"

typeset -u MAILOUT # Always use the UPPERCASE value for SMAILOUT

Listing 12.1 pingnodes.ksh shell script listing.

Automated Hosts Pinging with Notification 325

MAILOUT="TRUE" # TRUE enables outbound mail notification of

events

UNAME=$ (uname) # Get the Unix flavor of this machine
}

PINGFILE="/usr/local/bin/ping.list" # List of nodes to ping

if [-s $PINGFILE]

then

Ping all nodes in the list that are not commented out and blank

PINGLIST=$ (cat $PINGFILE | grep -v '“#')

else

echo "\nERROR: Missing file - S$PINGFILE"

echo "\nList of nodes to ping is Unknown... EXITING. ..\n"

exit 2

of

MAILFILE="/usr/local/bin/mail.list" # List of persons to notify

if [-s $MAILFILE]

then

Ping all nodes in the list that are not commented out and

blank

MAILLIST=$ (cat $MAILFILE | egrep -v '*#')

else

echo "\nERROR: Missing file - $MAILFILE"

echo "“AnList of persons to notify is: unknown). .\n"

echo "No one will be notified of unreachable nodes...\n"

£1

PING_OUTFILE="/tmp/pingfile.out" # File for emailed notification

>S$PING_OUTFILE # Initialize to an empty file

integer INTERVAL="3" # Number of seconds to sleep between retries

Initialize the next two variables to NULL

PINGSTAT= # Number of pings received back from pinging a node

PINGSTAT2= # Number of pings received back on the second try

THISHOST= hostname - # The hostname of this machine

FHHPHEHHPEEEEEPEEERERERERRREEEEH ER E REARS EEE ER EE EHH EH HE

HHHHHHHHHHEH DEFINE FUNCTIONS HERE #######H HEHEHE HH

HHAHHHEEHHHPRREREEEHEEEHEA HESS PRE REEEPREREREREEE REE HH

function ping host

{

Listing 12.1 pingnodes.ksh shell script listing. (continues)

326 Chapter 12

This function pings a single node based on the Unix flavor

set -x # Uncomment to debug this function

set -n # Uncomment to check the syntax without any execution

Look for exactly one argument, the host to ping

if (($# != 1))
then

echo "\nERROR: Incorrect number of arguments - $#"

echo " Expecting exactly one argument\n"

echo: "\G..-. BXLTING.. .\n"

exit 1

fi.

HOST=$1 # Grab the host to ping from ARG1.

This next case statement executes the correct ping

command based on the Unix flavor

case SUNAME in

AIX| Linux)

ping -c${PING_COUNT} SHOST 2>/dev/null

HP-UX)

ping SHOST $PACKET SIZE SPING_COUNT 2>/dev/null

SunOs)

ping -s SHOST SPACKET SIZE SPING COUNT 2>/dev/null

*)

echo "\nERROR: Unsupported Operating System - $(uname) "

echo 2\n\ G22 ExT TING. 33 \n"

exit 1

esac

HHH EH HH HH HEH EH HEHE HEH HEHE EE HH HEH HH HH EE HE

function ping _nodes

{

HHHHHHHEHHEHEHEHEHESHEPEPHES EHH HPHEHEHHEPHPE PEEP HHH SH EHH

Ping the other systems check

This can be disabled if you do not want every node to be pinging all

Listing 12.1 pingnodes.ksh shell script listing. (continued)

Automated Hosts Pinging with Notification 327

of the other nodes. It is not necessary for all nodes to ping all

other nodes although you do want more than one node doing the pinging

just in case the pinging node is down. To activate pinging the

"SPINGNODES" variable must be set to "TRUE". Any other value will

disable pinging from this node.

+ OH OH HE

set -x # Uncomment to debug this function

+ Ot set -n # Uncomment to check command syntax without any execution

if [[$PINGNODES = "TRUE"]]

then

echo # Add a single line to the output

Loop through each node in the $PINGLIST

for HOSTPINGING in $(echo $PINGLIST) # Spaces between nodes in the

list are assumed

do

Inform the user what is going on

echo "Pinging --> ${HOSTPINGING}...\c"

If the pings received back is equal to "0" then you have a

problem.

Ping SPING_COUNT times, extract the value for the pings

received back.

PINGSTAT=$ (ping host $HOSTPINGING | grep transmitted \

| awk '{print $4}')

If the value of $PINGSTAT is NULL, then the node is

unknown to this host

if [{[{ -z "SPINGSTAT" && "S$PINGSTAT" = '']]

then

echo "Unknown host"

continue

oi

if ((PINGSTAT == 0))

then # Let's do it again to make sure it really is

unreachable

echo "Unreachable...Trying one more time...\c"

sleep SINTERVAL

Listing 12.1 pingnodes.ksh shell script listing. (continues)

328 Chapter 12

PINGSTAT2=$(ping host $HOSTPINGING | grep transmitted \

| awk '{print $4}')

if ((PINGSTAT2 == 0))

then # It REALLY IS unreachable...Notify!!

echo "Unreachable"

echo "Unable to ping $HOSTPINGING from $THISHOST" \

| tee -a $PING_OUTFILE

else

echo "OK"

fi

else

echo "OK"

Fa.

done

HHEREHR EHH HERE EEE HH EHH EHH EHH EPH HEHE HE EHH

function send_notification

{
if [-s $PING_OUTFILE -a "SMAILOUT" = "TRUE"];

then

case $UNAME in

AIX|HP-UX|Linux) SENDMAIL="/usr/sbin/sendmail"

SunOS) SENDMATIL="/usr/lib/sendmail"

esac

echo "\nSending e-mail notification"

$SENDMAIL -f£ randy@$THISHOST $MAILLIST < $PING OUTFILE

£2

HHHEEHPREREEEERRE REET ERE EEEEEEREEH EEE REEEH HEHE HH

HHHHHHHHEHEHE START Of MAIN ####HHHEEEFEEEHHEEEHEEEES

HEPHHERREREE RPE REEE RARER EER REESE EEE RH HEHE

ping nodes

send notification

End of script

Listing 12.1 pingnodes.ksh shell script listing. (continued)

Automated Hosts Pinging with Notification 329

Now we get to the fun stuff! Let’s start out with the three functions because they do
all of the work anyway. The first function is ping_host. The idea here is to set up a
case statement, and based on the response from the uname command, which was
assigned to the UNAME variable in the definitions section, we execute the specific ping
command for the particular Unix flavor. If an unlisted Unix flavor is given, an ERROR

message is given to the user, and this shell script exits with a return code 1. We must do
this because we have no idea what the correct syntax for a ping command should be
for an unknown operating system.

The ping_host function is called from the ping_nodes function on every loop

iteration. Inside the ping_nodes function we first ensure that the $PINGNODES vari-

able is set to TRUE; otherwise, the pinging of nodes is disabled.

We use the $PINGFILE file to load a variable, PINGLIST, with a list of nodes that

we want to ping. This extra step is done to give the user the ability to comment out spe-

cific node(s) in the $ PINGFILE. Without this ability you would leave the user ina state

of annoyance for all of the notifications because of a single node being down for a

period of time. The command to strip out the commented lines and leave the remain-

ing nodes in the list is shown here.

PINGLIST=$ (cat $PINGFILE | grep -v '*#')

Notice how this command substitution works. We cat the $ PINGFILE and pipe the

output to a grep command. In the grep part of the statement we use the -v switch. The

-v switch tells grep to list everything except for the following pattern, which is "*#" in

this case. Now let’s look at the *# part. When you put a carat character (*) in front of a

pattern in this grep statement, we are ignoring any line that begins with a pound sign

(#). The carat (*) means begins with.

A for loop is started using the $PINGLIST variable as a list, which contains each

node in the /usr/local/bin/ping.1list file that is not commented out. For each

node in the listing we echo to the screen the target node name and call the ping_host

function inside of a command substitution statement on each loop iteration, which is

shown here.

echo "Pinging --> ${HOSTPINGING}...\c"

PINGSTAT=$ (ping_host SHOSTPINGING | grep transmitted | awk '{print $4}')

For each node in the $PINGLIST the echo statement and the command substitution

statement are executed. There are three possible results for the command substitution

statement, and we test for two; the last one is assumed. (1) The PINGSTAT value is 0,

zero. If the packets received are 0, zero, then we sleep for $ INTERVAL seconds and try

to reach the node again, this time assigning the packets received to the PINGSTAT2
variable. (2) The PINGSTAT value is NULL. This results when you try to ping a node

that is unknown to the system. In this case we echo to the screen Unknown host and
continue to the next node in the list. (3) The PINGSTAT value is nonzero and non-

NULL, which means that the ping was successful. Please study each of these tests in

the ping_nodes function.

330 Chapter 12

Notice the tests used in the if statements. Each of these is a mathematical test so we

use the double parentheses method of testing, as shown here.

if ((PINGSTAT == 0))

There are two things to notice in this if statement. The first is that there is no dollar
sign ($) in front of the PINGSTAT variable. The dollar sign is not needed in a mathe-

matical test when using the double parentheses method because the shell assumes that
any nonnumeric string is a variable for this type of mathematical test. I have had cases
where I added the dollar sign ($) in front of the variable, and it took me four days to
figure out why the script was failing. In other cases I have seen the dollar sign used and
the script worked without error. I always remove the dollar sign, just in case. This

problem is extremely hard to find should an error occur.

The second point I want to make in the previous if statement is the use of the dou-
ble equal signs (==). Using this type of mathematical test, a single equal sign is an

assignment, not an equality test. This sounds a little strange, but you can actually assign
a value to a variable in a test. To test for equality, always use double equal signs (==

with this test method.
The last function in this shell script is the send_notification function. This

function is used to send an email notification to each address listed in the

/usr/local/bin/mail.1list file, which is pointed to by the MAILFILE variable.

Before attempting any notification the function tests to see if the $PING_OUTFILE file
has anything in it or if its size is greater than zero bytes. The second test is to ensure

that the MAILOUT variable is set to TRUE. If the $PING_OUTFILE has some data and
the MAILOUT variable is set to TRUE, then the function will attempt to notify each

email address in the $MAILFILE.
In the send_notification function notice that I am using the sendmail com-

mand, as opposed to the mail or mailx commands. I use the sendmail command

because I worked at a shop where I had a lot of trouble getting mail through the fire-

wall because I was sending the mail as root. I found a solution by using the sendmail

command because I can specify a valid nonroot user as the person who sent the email.
The command I use is shown here.

sendmail -f randy@STHISHOST SMAILLIST < S$PING_OUTFILE

In this statement the -f <user@host> specifies who is sending the e-mail. The
$MAILLIST is the list of persons who should receive the email, and the <

$PING_OUTFILE input redirection is the body text of the email, which is stored in a

file. I still have one little problem, though. The sendmail command is not always
located in the same directory, and sometimes it is not in the $PATH. On AIX, HP-UX,

and Linux the sendmail command is located in /usr/sbin. On Solaris the sendmail

command is located in the /usr/1ib directory. To get around this little problem we
need a little case statement that utilizes the SUNAME variable that we used in the

ping_host function. With a little modification we have the function shown in List-

ing 12.2.

Automated Hosts Pinging with Notification 331

function send_notification

<

if [-s $PING_OUTFILE -a "SMAILOUT" = "TRUE" Ne

then

case $UNAME in

AIX|HP-UX|Linux) SENDMAIL="/usr/sbin/sendmail"

SunOS) SENDMAIL="/usr/lib/sendmail"

ii

esac

echo "\nSending e-mail notification"

$SENDMAIL -f randy@$THISHOST $MAILLIST < $PING OUTFILE

fi

Listing 12.2 send_notification function listing.

Notice that we used a single line for AIX, HP-UX, and Linux in the case statement.

At the end of the function we use the $SENDMAIL variable to point to the correct full

path of the sendmail command for the specific operating system.

Let’s not forget to look at the pingnodes.ksh shell script in action! In the follow-

ing output, shown in Listing 12.3, the node dino is unknown to the system, and the

mrranger node is powered down so there is no response from the ping to the system.

./pinghostfile.ksh.new

Pinging --> yogi...OK

Pinging --> bambam...OK

Pinging --> booboo...OK

Pinging --> dino...Unknown host

Pinging —-> wilma...OK

Pinging --> mrranger...Unreachable...Trying one more time...Unreachable

Unable to ping mrranger from yogi

Sending e-mail notification

Listing 12.3 pingnodes.ksh shell script in action.

From the output in Listing 12.3, notice the result of pinging the node dino. I com-

mented out the hostname dino in the /etc/hosts file. By doing so I made the node

332 Chapter 12

unknown to the system because DNS is not configured on this system. The mrranger
node is powered down so it is known but not reachable. Notice the difference in the

outputs for these two similar, but very different, situations. Please study the code

related to both of these tests in the ping_nodes function.

Other Options to Consider

As always, we can improve on any shell script, and this one is no exception. I have

listed some options that you may want to consider.

$PINGLIST Variable Length Limit Problem

In this scripting solution we gave the user the capability to comment out specific nodes

in the $PINGFILE. We assigned the list of nodes, which is a list without the comments,
to a variable. This is fine for a relatively short list of nodes, but a problem arises when

the maximum variable length, which is usually 2048 characters, is exceeded. If you

have a long list of nodes that you want to ping and you notice that the script never gets
to the end of the ping list, you have a problem. Or if you see a funny-looking node

name, which is probably a hostname that has been cut off by the variable limit and

associated with a system error message, then you have a problem. To resolve this issue,

define a new file to point to the PINGLIST variable, and then we will use the file to
store the ping list data instead of a variable. To use PINGLIST as a file, add/

change the following lines:

ADD THIS LINE:

PINGLIST=/tmp/pinglist.out

CHANGE THIS LINE:

PINGLIST=$(cat $PINGFILE | grep -v '*#')

TO THIS LINE:

cat SPINGFILE | grep -v '“#' > $PINGLIST

CHANGE THIS LINE:

for HOSTPINGING in $(echo $PINGLIST)

TO THIS LINE:

for HOSTPINGING in $(cat S$PINGLIST)

Automated Hosts Pinging with Notification 333

Using the file to store the ping list data changes the limit to the maximum file size
that the system supports or when the filesystem fills up, which should be plenty of
space for anyone. This modified shell script is located on this book’s companion Web
site. The script name is pingnodes_using_a_file.ksh.

Ping the /etc/hosts File Instead of a List File

This may be overkill for any large shop, but it is easy to modify the shell script to
accomplish this task. You want to make the following change to the shell script after
completing the tasks in the previous section “$ PINGLIST Variable Length Limit Prob-
lem” to the shell script shown in Listing 12.1.

CHANGE THESE LINES:

if [-s $PINGFILE]

then

PINGLIST=$ (cat $PINGFILE | grep -v '*#')

TO THESE LINES:

Lf [=—s /etc/hosts |]

then

Ping all nodes in the /etc/hosts file

cat /etc/hosts | sed /*#/d | sed /*$/d | grep -v 127.0.0.1 \

| awk "{print $2}" > SPINGLIST

In this changed code we cat the /etc/hosts file and pipe the output to a sed
statement, sed /”*#/d. This sed statement removes every line inthe /etc/hosts file

that begins with a pound sign (#). The output of this sed statement is then piped to
another sed statement, sed /*S/d, which removes all of the blank lines in the

/etc/hosts file (the blank lines are specified by the *$). This sed output is sent to a

grep command that removes the loopback address from the list. Finally, the remaining

output is piped to an awk statement that extracts the hostname out of the second field.

The resulting output is redirected to the $PINGLIST file. This modified shell script to
ping the /etc/hosts file is included on the Web site that accompanies the book. The
filename is pinghostsfile.ksh.

Logging

I have not added any logging capability to this shell script. Adding a log file, in addi-
tion to user notification, can help you find trends of when nodes are unreachable.

Adding a log file is not too difficult to do. The first step is to define a unique log file-

name in the definitions section and assign the filename to a variable, maybe LOGFILE.

In the script test for the existence of the file, using a test similar to the following state-

ment will work.

334 Chapter 12

ADD THESE LINES:

LOGPATH=/usr/local/log

LOGFILE=$ {LOGPATH} /pingnodes.log

if [! -s SLOGFILE]

then

if [! -d $LOGPATH]}

then

echo "\nCreating directory ==> $LOGPATH\c"

mkdir /usr/local/log

aise (CC Se eS Oh 9)

then

echo "\nUnable to create the S$LOGPATH directory. ..EXITING

Nn

exit 1

feat

chown SUSER /usr/local/log

chmod 755 SLOGPATH

echo

fear:

echo "\nCreating Logfile ==> $LOGFILE\c"

cp /dev/null > $LOGFILE

chown SUSER SLOGFILE

echo

seal

After adding these lines of code, use the tee -a $LOGFILE command in a pipe to
both display the text on the screen and log the data in the $LOGFILE.

Notification of “Unknown Host”

You may want to add notification, and maybe logging too, for nodes that are not

known to the system. This usually occurs when the machine cannot resolve the node
name into an IP address. This can be caused by the node not being listed in the

/etc/hosts file or failure of the DNS lookup. Check both conditions when you get
the Unknown host message. Currently, this shell script only echoes this information
to the screen. You may want to add this message to the notification.

Notification Method

In this shell script we use email notification. I like email notification, but if you have a
network failure this is not going to help you. To get around the network down problem

with email, you may want to set up a modem, for dial-out only, to dial your alpha-
numeric pager number and leave you a message. At least you will always get the

message. I have had times, though, when I received the message two hours later due to

a message overflow to the modem.

Automated Hosts Pinging with Notification 335

You may just want to change the notification to another method, such as SNMP
traps. If you execute this shell script from an enterprise management tool, then the
response required back to the program is usually an SNMP trap. Refer to the docu-
mentation of the program you are using for details.

Automated Execution Using a Cron Table Entry

I know you do not want to execute this shell script from the command line every 15

minutes yourself! I use a root cron table entry to execute this shell script every 15 min-

utes, 24 hours a day, Monday through Saturday, and 8:00 A.M. to midnight on Sunday;

of course, this requires two cron table entries. Because weekly backups and reboots

happen early Sunday morning, I do not want to be awakened every Sunday morning

when a machine reboots, so I have a special cron entry for Sunday. Both root cron table
entries shown execute this script every 15 minutes.

5,20,35,50 * * * 1-6 /usr/local/bin/pingnodes.ksh >/dev/null 2>&1

Dy ZUR SDD OUNS 255 and) /usr/local/bin/pingnodes.ksh </dev/null 2>&1

The first entry executes the pingnodes.ksh shell script at 5, 20, 35, and 50 minutes

of every hour from Monday through Saturday. The second entry executes the

ping-nodes.ksh shell script at 5, 20,35, and 50 minutes from 8:00 A.M. until 11:59 P.M.,

with the last ping test running at 11:50 P.M. Sunday night.

Summary |

In this chapter we took a different approach than that of some other shell scripts in this

book. Instead of creating a different function for each operating system, we created a
single shell script and then used a separate function to execute the correct command

syntax for the specific operating system. The uname command is a very useful tool for

shell scripting solutions for various Unix flavors in a single shell script.
I hope you enjoyed this chapter. I think we covered some unique ways to solve the

scripting problems that arise when programming for multiple Unix flavors in the same
script. In the next chapter we will dive into the task of taking a system snapshot. The
idea is to get a point-in-time system configuration for later comparison if a system

problem has you puzzled. See you in the next chapter!

Vy ah 1

alte ,

ry - 4 uy 1 a e 7
:

Ss aire © _ , an me

pine.) FST ipo hes ere
d » &! as ' del ;

* S
; :

-

a
=

—

-
_

i

'

f

)
if

>. a
=

Taking a System Snapshot

Have you ever rebooted a system and it came up in an unusual state? Any time you

reboot a system you run a risk that the system will not come back up properly. When

problems arise it is nice to have before and after pictures of the state of the machine. In

this chapter we are going to look at some options for shell scripts that execute a series
of commands to take a snapshot of the state of the machine. Some of the things to con-
sider for this system snapshot include filesystems that are mounted, NFS mounts,

processes that are running, network statistics and configuration, and a list of defined

system resources, just to name a few. This is different from gathering a snapshot of

performance statistics, which is gathered over a period of time. All we are looking for
is system configuration data and the system’s state at a point in time, specifically

before the system is rebooted or when it is running in a normal state with all of the

applications running properly.
With this information captured before a system reboot, you have a better chance of

fixing a reboot problem quickly and reducing down time. I like to store snapshot infor-
mation in a directory called /usr/local/reboot with the command names used for

filenames. For this shell script all of the system information is stored in a single file

with a section header added for each command output. Overall, this is not a difficult

shell script to write, but gathering the list of commands that you want to run can some-
times be a challenge. For example, if you want to gather an application’s configuration

you need to find the commands that will produce the desired output. I always prefer

having too much information, rather than not enough information, to troubleshoot a

problem.

337

338 Chapter 13

In this chapter I have put together a list of commands and created a bunch of func-
tions to execute in the shell script. The commands selected are the most critical for trou-
bleshooting an AIX machine; however, you will need to tailor this set of commands to

suit your particular needs, operating system, and environment. Every shop is different,

but they are all the same in some sense, especially when it comes to troubleshooting a
problem. Let’s look at some commands and the syntax that is required.

Syntax

As always, we need the commands and the proper syntax for these commands before
we can write a shell script. The commands presented in this section are just a sample of

the information that you can gather from the system. This set of commands is for an
AIX system, but most apply to other Unix flavors with modified syntax. The list of AIX

commands is shown in Listing 13.1.

Hostname of the machine

hostname

OR

uname -n

#) Unix flaver

uname -s

AIX OS version

oslevel

AIX maintenance level patch set

instfix -i | grep AIX_ML

OR

oslevel -r

Time zone for this system

cat /etc/environment | grep TZ | awk -F'=' '‘{print $2}'

Real memory in the system

echo "$(bootinfo -r) KB"

OR

lsattr -El -a realmem | awk ‘{print $2}'

Machine type/architecture

uname -M

OR - Depending on the architecture

uname -p

List of defined system devices

lsdev -C

Long directory listing of /dev

ls -1 /dev

List of all defined disks

ilsdev -Cc disk

List of all defined pdisks for SSA disks

lsdev -Cc pdisk

List of defined tape drives

Listing 13.1 System snapshot commands for AIX.

Taking a System Snapshot 339

lsdev -Cc tape

List of defined CD-ROMs

lsdev -Cc cdrom

List of all defined adapters

lsdev -Cc adapter

List of network routes

netstat) '-rn

Network adapter statistics

netstat -i

Filesystem Statistics

df -k

AND

mount

List of defined Volume Groups

isvg {| sort -r

List of varied-on Volume Groups

lsvg -o | sort -r

List of Logical Volumes in each Volume Group

for VG in $(lsvg -o | sort -r)

do

lsvg -l1 S$VG

done

Paging space definitions and usage

isps -a

AND

isps -s

List of all hdisks in the system

lspv

Disk drives listed by Volume Group assignment

for VG in $(lsvg -o | sort -r)

do

lsvg -p $VG

done

List the HACMP configuration, if installed

if {[-x /usr/sbin/cluster/utilities/clisif. |

then

/usr/sbin/cluster/utilities/cllsif

echo ("\n"

fi

if [-x /usr/sbin/cluster/utilities/clshowres]

then

/usr/sbin/cluster/utilities/clshowres

£4

List of all defined printers

lpstat -wW | tail +3

AND

cat /etc/qconfig

Listing 13.1 System snapshot commands for AIX. (continues)

340 Chapter 13

List of active processes

ps -ef

Show SNA configuration, if installed

sna’ -d's

De CCS t= 20))

then

issre -s sna -1

En:

List of udp and x25 processes, if any

ps -ef | egrep ‘udp|x25' | grep -v grep

Short listing of the system configuration

lscfg

Long listing of the system configuration

lscfg -vp

List of all system installed filesets

lslpp -L

List of broken or inconsistant filesets

lppchk -v 2>&1

Last of the last 100 users to log in tothe ‘system

last | tail -100

Listing 13.1 System snapshot commands for AIX. (continued)

As you can see in Listing 13.1, we can add anything that you want to the snapshot

shell script to get as much detail as needed to troubleshoot a problem. Every environ-

ment is different, so this list of commands should be modified, or added to, to suit the

needs of your shop. Additional tests include a list of databases that are running, appli-

cation configurations, specific application processes that are critical, and a ping list of

machines that are critical to the operation of any applications. You can add anything

that you want or need here. Always try to gather more information than you think you
may need to troubleshoot a problem.

Using this snapshot technique allows us to go back and look at what the system
looked like under normal conditions and load. By looking at the snapshot script out-

put file, the problem usually stands out when comparing it to the currently running
system that has a problem.

Creating the Shell Script

For this shell script we are going to take the commands shown in Listing 13.1 and cre-

ate a function for each one. Using functions greatly simplifies both creating and modi-

fying the entire shell script. When we want to add a new test, or configuration output,

We just create a new function and add the function-name in the main body of the shell

script exactly where we want it to run. In this shell script all of the function definitions
use the C-like function statement, as shown here.

Taking a System Snapshot 341

get_last_logins ()

{

Commands to execute

}

A lot of script programmers like this function definition technique. I prefer defining
a function using the function statement method, as shown here.

function get_last_logins

{

Commands to execute

}

This last method of defining a function is more intuitive to understand for the peo-
ple who will follow in your footsteps and modify this shell script. I hope you noticed

the use of the word will in the last sentence. No matter what the shell script does, there

is always someone who will come along, after you have moved on to bigger and better

things, who will modify the shell script. It is usually not because there is a problem
with the script coding, but more likely a need for added functionality. For the people

who follow me, I like to make sure that the shell script is easy to follow and under-

stand. Use your own judgment and preference when defining functions in a shell

script; just be consistent.
Because we have all of the commands listed in Listing 13.1 let’s look at the entire

shell script in Listing 13.2 and see how we created all of these functions.

#!/bin/ksh

SCRIPT: AIXsysconfig.ksh

AUTHOR: Randy Michael

REV: 2.1.~P

DATE: 06/14/2002

PLATFORM: AIX only

PURPOSE: Take a snapshot of the system for later comparision in the

cid event of system problems. All data is stored in

/usr/local/reboot in the file defined to the $SYSINFO_FILE

variable below.

a

REV LIST:

7/11/2002; Changed this script to use a single output file

that receives data from a series of commands

Within a bunch of functions:

Listing 13.2 AlXsysconfig.ksh shell script listing. (continues)

342 Chapter 13

set -x # Uncomment to debug this script 8

set -n # Uncomment to verify command syntax without execution
4

HHAHHHSHEEHHEEEES HERS REESE HRESERPREER ERE EEREEEE EH

H#EHHHHHEH DEFINE VARIABLES HERE ####H#4### $408 HEHE

HHEFHHHHEEEPEEPEEEEEEAE EASES SERA ERAEEEPEEPEEE EH

THISHOST=S$ (/usr/bin/hostname)

DATETIME=$ (/usr/bin/date +%m%d%y_SH%M%S)

WORKDIR="/usr/local/reboot"

SYSINFO_FILE="${WORKDIR}/sys_snapshot .${THISHOST} . SDATETIME"

aa HE HH HE HEHEHE HE aE EE HEHE EE aE HE EEE EE

HHEPHHPHHHHH DEFINE FUNCTIONS HERE ###F###EEEHHE EH

HRT A EH EERE HH HEHE a EH HEE RHE HHH EE EH EE

get_host ()

{

Hostname of this machine

hostname

uname -n works too

}

HEHHHPHEPHREHHEHEPHEEPERPHEPHEESHERHHEEHEEPEE EH HEF

get_Os ()

{

Operating System - AIX or exit

uname -s

}

HEH EH HH EHH HH HHH HH HEHE HEE EEE EE EHH EH EH HHH HE HHH

get_OS_level ()

{

Query for the operating system release and version level

oslevel

}

HHHPHEHHEHHPHPHPHEHEHEPEPHPHEHEPEPHEHEPEEHEE HEPES

get_ML_for_AIxX ()

{

Query the system for the maintenance level patch set

instfix -i | grep AIX_ML

Listing 13.2 AlXsysconfig.ksh shell script listing. (Continued)

Taking a System Snapshot 343

echo "\n"

oslevel -r

}

FESR AEE AEE A EAE EE EA AE

get. TZ ()

{

Get the time zone that the system is operating in.

cat /etc/environment | grep TZ | awk -F'=" '{print $2}'

}

FHPHHPHERPHEHESEHEH REP EEAERPEERPH EERE ERHHHEP REESE

get_real_mem ()

{

Query the system for the total real memory

echo "$(bootinfo -r) KB"

lsattr -El sys0 -a realmem | awk '{print $2}' Works too

::

HHEFHHEFHHEPHEEEHHEEHEPPHEPPHESHHEPHEEHESHERHHEE EH

get_arch ()

{

Query the system for the hardware architecture. Newer

machines use the -M switch, and the older Micro-Channel

architecture (MCA) machines use the -p option for

the "uname" command.

ARCH=$ (uname -M)

tf 1 (—2 “SARCH" && *SARCH" = 3t' >]]

then

ARCH=$ (uname -p)

£i

echo "SARCH"

:

HERA HA RGR AEEHEA EHH EH EH HEE HEE HE HH EE HS EH HE HHH

get_devices ()

is

Query the system for all configured devices

lsdev -C

}

HEHEHE HHHHHEA HPA RHEE RAAREE REE REE EH RRE HE ERE HF

Listing 13.2 AlXsysconfig.ksh shell script listing. (continues)

344 Chapter 13

get_long_devdir_listing ()

{

Long listing of the /dev directory. This shows the

device major and minor numbers and raw device ownership

is -L /dev

}

HHFHPHEHHEAHEAS EES SEES AERA RES RASERHS EHS EHH EHH HH

get_defined_disks ()

{

List of all defined disks

isdev -Cc disk

}

HHHHHHEEEHESH EHH HEHE HEH aH HE HH EH EH EH EH HE EH HH

get_defined_pdisks ()

{

List of all defined pdisks for SSA disks

lsdev -Cc pdisk

}

HHHHHEHHHHPHEGAPHEEEHEEHHEPHPHPHEHEPESHPE EEE HERE EH

get_tape_drives ()

{

Query the system for all configured tape drives

lsdev -Cc tape

‘

HHHHFHHHEHHHPESHEPEPHESEHEERPHEEEEEEAEHEAES HEHE HE

get_cdrom ()

‘

Query the system for all configured CD-ROM devices

lsdev -Cc cdrom

}

HHEFHHHHHEHHEPHAEPHESHEEHEEHHEEHEREEPHEEHHEPHHESHHRES

get_adapters ()

{

List all configured adapters in the system

lsdev -Cc adapter

}

Listing 13.2 AlXsysconfig.ksh shell script listing. (continued)

Taking a System Snapshot 345

Hea AE HE aE AE AE aE HE ARE HE a HE Ha HE HH HE EH a

get_routes ()

t

Save the network routes defined on the system

netstat -rn

}

FHEHHHRHPHREHHEPR REPRE RRHAHHHEHP HEHE RHEE HHH HH

get_netstats ()

{

Save the network adapter statistics

netstat -i

}

HHHPEHHHEHFHSETEEEEEEPESEHPHAEHEHHHHEHHHEHEHHPEHHHSE

get_fs_stats ()

{

Save the file system statistics

di -k

echo "\n"

mount

}

HHHHFHEHHEHEPHEHEHHEHEPEPEEPEPHEPHEHEAHESEHES EES HE

get_VGs ()

{

List all defined Volume Groups

Isvg | sort -r

y

HEHEHE EREEERERREREAEE GREE E RHEE EEE HH HH

get_varied_on_VGs ()

{

List all varied-on Volume Groups

isvg-o | sort “1

}

HEHHHHEHRPHAAHEAEAH EAE HGH HHH EH HEH HE HH HEH

get LV into: \()

{

Listing 13.2 AlXsysconfig.ksh shell script listing. (continues)

346 Chapter 13

List the Logical Volumes in each varied-on Volume Group

for VG in $(get_varied_on_VGs)

do

lsvg -l $VG

done

}

Ha HH aE EH EH HH HE a HEHE HE a aE EE HE EEE EE EH EE EH HH

get_paging_space ()

{

List the paging space definitions and usage

lsps -a

echo "\n"

lsps -s

}

HAH EE EE ER EEE HEH GRRE EHH EH HEHE EHH HH

get_disk_info ()

‘

List of all "hdisk"s (hard drives) on the system

ilspv

}

HHHHHHPRERERE PR ERRRERPRERS PERE ARE HH EH EE HH

get_VG_disk_info ()

{

List disks by Volume Group assignment

for VG in $(get_varied_on_VGs)

do

isvg -p $VG

done

}

HEHFHFHHHFHEAEEHSHEHPHEPEPHS HEHEHE RPHBH SHEE EEE SH

get_HACMP_info ()

{

If the System is running HACMP then save the

HACMP configuration

if [=x /usr/sbin/cluster/utilities/clisi£ j

then

/usr/sbin/cluster/utilities/cllsif

echo "\n\n"

Listing 13.2 AlXsysconfig.ksh shell script listing. (continued)

Taking a System Snapshot 347

fa

if [-x /usr/sbin/cluster/utilities/clshowres]

then

/usr/sbin/cluster/utilities/clshowres

fa:

}

FHEHHHPHEPHAHHHRRR ERE EHHHHPHHEHPHHH HEHEHE HER HY

get_printer_info ()

{

Wide listing of all defined printers

lpstat -W | tail +3

echo "\nPrint Queue Configuration File Listing\n"

cat /etc/qconfig | grep -v **

}

HHEHHPEEPPHEHEHEEPEREAEPEREREPRHREEEHHHHHEHHHHHHH HHS

get_process_info ()

{

List of all active processes

ps -ef

}

HEPHEHEPEEHESHEHEREHEHEPHEEEHEGHEEEPEGHPHEPREEEREEH

ger sua into U

{

If the system is using SNA save the SNA configuration

sna -ds # Syntax for 2.x. SNA

Le CC Set 0)

then

issre =s snail # must be SNA 1.x

£1

i)

HHEHHHEHHEPEEEHEEERPEERPEAEEEE EEE H HEH SH

get udp x25 proces ()

{

Listang Of all. "udp" and "x25"""processes, 2f

any are running

ps -ef | egrep ‘udp|x25' | grep -v grep

}

HHHHHHHHPHEAHE PRET PREHE REE AE EHS EE EH EE HE EE EEE HH

Listing 13.2 AlXsysconfig.ksh shell script listing. (continues)

348 Chapter 13

get sysuct¢

{

Short listing of the system configuration

lscfg

}

HHHHHHHHHEHESHESESEESEH ERAS ERAS PARHEH APES EH HES EH

get_long_sys_config ()

{

Long detailed listing of the system configuration

lscfg -vp

}

HHHHHEHHHHHHEEHHEHEHEHEPESHEPEPHPHEPHEEHPEPHEH ESE EH

get_installed_filesets ()

{

Listing of all installed LPP filesets (system installed)

isipp: ik

}

HAH HH HH EH HE HE HH HH HH HH HH EE HH HE EH HEHE HE HE HH HE

check_for_broken_filesets ()

{

Check the system for broken filesets

lppchk -v 2>&1

}

HHHHHEHHHEHPHPHEHEREHHEHEPEEESHPHPHEHEPHEHEH HEH EH HEH

last_logins ()

{

List the last 100 system logins

last | head -100

}

HEHHHHHHHEHHEREEHHPERREHRREEERRER RAH EERE EHH HE RHE HH

HHHHHEHHHHHHEHE START OF MAIN ####HHRHHERHHHH HH EH

HHH EEE RHEE EEE HH RH HH HH EH HH HEH HHH HHH

Check for AIX as the operating system

HE Pies (get 0S) = Area

then

Listing 13.2 AlXsysconfig.ksh shell script listing. (continued)

Taking a System Snapshot 349

echo "\nERROR: Incorrect operating system. This

shell script, 1s, written for ATK. \n"

[Schou (NN Ves MExOT NG LG \a8

exit 1
sy

fu

HHHHHHHHHPHPPPHPHHERPRER EER REEEHEH HEHEHE HHH HHH HHH

Define the working directory and create this

directory if it does not exist.

PE fo ho -d\\ SWORKDIR |]

then

mkdir -p SWORKDIR >/dev/null 2>&1

LES US 0))

then

echo "\nERROR: Permissions do not allow you to create the

SWORKDIR directory. This script must exit.

Please create the S$WORKDIR directory and

execute this script again.\n"”

echo "\n\t.. -EXITING.’. .\n"

exit 2

£3.

ir

HERG HHH HEHE EH EH HH HH FE HH EEE EE EH EH EH

{ # Everything enclosed between this opening bracket and the

later closing bracket is both displayed on the screen and

also saved in the log file defined as SSYSINFO_ FILE.

echo "\n\n[$(basename $0) - $(date)]\n"

echo "Saving system information for S$THISHOST..."

echo "\nSystem: \t\t\tS (get host)"

echo "Time Zone:\t\t$(get_TZ) "

echo "Real Memory: \t\t$ (get_real_mem) "

echo "Machine Type: \t\t$ (get_arch) "

echo "Operating System:\t$(get_OS) "

echo "OS Version Level:\t$(get_OS level)"

echo "\nCurrent OS Maintenance Level: \n$(get_ML_ for ATX) "

echo "\n##HFHFHFHFEEEHHHFHAAFEAEHPEPEHESPHEEHHEEPHP EH EERE Do

echo “Installed and Configured Devices\n"

get_devices

Listing 13.2 AlXsysconfig.ksh shell script listing. (continues)

350 Chapter 13

echo "\n#t#HHHFHFFHFEFFHFEEEFESPESEPES PERE EEEEPEEEEPES EES \ 1"

echo "Long Device Directory Listing - /dev\n"”

get_long_devdir_listing

echo "\n#HHFHFFFFHFEFEFFESEFESFESEFPEPEPEH PEPE EEPEPEE HEED"

echo "\nSystem Defined Disks\n"

get_defined_disks

echo "\n#tttFHPHFPHEEFEAEETEAEESEPEEEETEEEEEEPEH EEG EPEE RHE \ TO"

echo "\nSystem Defined SSA pdisks\n"

get_defined_pdisks

echo "\n##tHHFHFFHFEFEFFEFEEEHEEFFEEEHEEPEAEEEEEEHES HEE

echo "System Tape Drives\n"

get_tape_drives

echo "\n#tHHHFHFHFFEFEHEEFEFEEPESEEPEPEEERPEEEEPEPEEEHEEH \D"

echo "System CD-ROM Drives\n"

get_cdrom

echo "\n#t#tHHFHHFHFEEFEHFEPEEEEESFEPEPEEEHPEEEEPEPEEEH EE \ 1"

echo "Defined Adapters in the System\n"

get_adapters

echo "\n##ttHHFHHHHFHEHFHHHEEHEFHTHEEHEEPHEHEHESHPHEHHEH HHS \ 1"

echo "Network Routes\n”

get_routes

echo "\n#HHHFHHEHHEFEFEHEFHEFHEEFHEFHHEAHEEHHPHHEEHEEHHEEE \ 1

echo "Network Interface Statistics\n"

get_netstats

echo "\n###H#F#HHFHHFEFHFEFHEEHHHHESHESEPESEPHEHEHESHEEHE EES H \ Di"

echo "Filesystem Statistics\n"

getufsvstats

echo "\n#ttFHFHHHEHEFHPHEFEFEEHEFEFHEEEESEEEPEPEEHESEPEEHESE \ 1"

echo "Defined Volume Groups\n"

get_VGs

echo "\n#ttttHHHHPEEHHTEFFETEEPEFEEPEFEEPEEEFEHPEEEHPEEEHH \ DO"

echo "Varied-on Volume Groups\n"

get_varied_on_VGs

echo "\n#HHHFHFFHHEFHEEHETEEEHEETHEFHEEPHEEHHEEHEEHERSHHEE \ 1"

echo "Logical Volume Information by Volume Group\n"

get_LV_info

echo “\n####FFHFHFHEFEHEFHFEFHEFEFHEEHEHEEEEHEESHEHEHHAHEPE EH"

echo "Paging Space Information\n"

get_paging_space

echo "\n#t#HHFHHHHFHEHEHEHEPEFHTEEHEPEPHEEEHEEHPHEHESHESHEH \ 1"

echo "Hard Disks Defined\n"

get_disk_info

echo "\nttHFHHHHEEFEHEEHEETHESEEEEPEEEEPHEEHPEPEPEEEES REESE \

echo "Volume Group Hard Drives\n"

get_VG_disk_info

echo "\n#ttHHFHHFHPHHHEEEHTEFEEEEFESEEEEPEEEEPEEEEERHES EHS \"

echo "HACMP Configuration\n"

get_HACMP_info

Listing 13.2 AlXsysconfig.ksh shell script listing. (continued)

Taking a System Snapshot 351

echo "\n##HHHHHHHHHHHHPHHHHHHHEHHHHHHEHHPE PHPBB HERR HH 0

echo “Printer Information\n"

get_printer_info

Scho "\n##HHHHHHHHHHHEFHEHPHHHAHHHHHHHHHHHHHHEHHHRHHH HHH HH 0

echo "Active ‘Process List\n"

get_process_info

[cho "\n#tHHHHHHHHEETHHHPEEREHEHHHEHHHEHHHEHHREHHHHHH HHH HH 0

echo "SNA Information\n"

get_sna_info

Scho "\n#HHHHHEHHHFREEEHHERHEHPHHHHPHHHHHHHPHRE PEPER HH \ yo

echo "x25 and udp Processes\n"

get_udp_x25_procs

Scho "\n##HHHEHEHTHEEHEFEPEEFEPERHEHHHHHEHHHEHHEHEH ERE H HH \ yt

echo "System Configuration Overview\n"

get_sys_cfg

echo "\n##HH#HHHFHHEFHEEFHEEEEHEREEEHEHHEEHHHHHHEHHHHHHEHH AT"

echo "Detailed System Configuration\n"

get_long_sys_config

Scho "\n#t#FHHFHHFEEHEFFHEEEFHEFEESHEHE HSH EHHH EHH EHHHEHEHSH \ 0

echo "System Installed Filesets\n"

get_installed_filesets

echo "\n#tttHHHHFHFHFEEFFHEFEEEEEEEEEEEFEPSEREREHHEHHH HEHEHE \

echo "Looking for Broken Filesets\n"

check_for_broken_filesets

echo "\n#t#HFHFHFHHFHFHEEEFHEEFEEEEEEHESEEEHS HEHEHE EHHEHEH DD"

echo "List of the last 100 users to log in to $THISHOST\n”

last_logins ~

echo "\n\nThis report is save in: $SYSINFO_ FILE \n"

Send all output to both the screen and the $SYSINFO_FILE

using a pipe to the “tee -a" command"

} | tee -a SSYSINFO_FILE

Listing 13.2 AlXsysconfig.ksh shell script listing. (continued)

As you can see in Listing 13.2, we have a lot of functions in this shell script. When I

created these functions I tried to place each one in the order that I want to execute in

the shell script. This is not necessary as long as you do not try to use a function before

it is defined. Because a Korn shell script is interpreted, as opposed to compiled, the

flow goes from the top to the bottom. It makes sense that you have to define a function
in the code above where the function is used. If we slip up and the function is defined

below where it is used, then we may or may not get an error message. Getting an error

message depends on what the function is supposed to do and how the function is exe-

cuted in the shell script.

352 Chapter 13

From the top of the shell script in Listing 13.2 we first define the variables that we
need. The hostname of the machine is always nice to know, and it is required for the
report-file definition and in the report itself. Next we create a date/time stamp. This

$DATATIME variable is used in the report-file definition as well. We want the date and
time because this script may be executed more than once in a single day. Next we

define the working directory. I like to use /usr/local/reboot, but you can use any
directory that you want. Finally, we define the report-file, which is assigned to the

$SYSINFO_FILE variable. ;

The next section is where all of the functions are defined. Notice that some of these
functions contain only a single command, and some have a bit more code. In a shell
script like this one it is a good idea to place every command in a separate function.
Using this method allows you to change the commands to a different operating system

simply by editing some functions and leaving the basic shell script operation intact.
There are too many functions in this shell script to go over them one at a time, but an

output of this shell script is shown in Listing 13.3. For details on the specific AIX com-

mands please refer to the AIX documentation and man pages on an AIX system.

At START OF MAIN we begin the real work. The first step is to ensure that the oper-

ating system is AIX. If this shell script is executed on another Unix flavor, then a lot of

the commands will fail. If a non-AIX Unix flavor is detected, then the user receives an

error message and the script exits with a return code of 1, one. Step two is to test for the

existence of the SWORKDIR directory, which is defined as /usr/local/reboot in this

shell script. If the directory does not exist, an attempt is made to create the directory.
Not all users will have permission to create a directory here. If the directory creation

fails, then the user receives an error message and is asked to create the directory man-

ually and run the shell script again.

If the operating system is AIX and the SWORKDIR exists, then we create the report-

file and begin creating the report. Notice that the entire list of functions and commands
for the report is enclosed in braces, { code }. Then, after the final brace, at the end of

the shell script, all of the output is piped to the tee -a command. Using this pipe to the
tee -a command allows the user to see the report as it is being created and the output is

written to the $SYSINFO_FILE file. Enclosing all of the code for the report within the
braces saves a lot of effort to get the output to the screen and to the report file. The basic
syntax is shown here.

{

report command

report command

report command

} | tee -a $SYSINFO_FILE

Within the braces we start by setting up the report header information, which includes

the hostname, time zone, real memory, machine type, operating system, operating sys-

tem version, and the maintenance level patch set of the operating system version.

Taking a System Snapshot

When the header is complete then the script executes the functions listed in the

DEFINE FUNCTIONS HERE section. As I stated before, I tried to define the functions

in the order of execution. Before each function is executed, a line of hash marks is writ-

ten out to separate each report section, and then some section header information is

written for the specific task. At the end, and just before the ending brace, the report file-

name is shown to the user to indicate where the report file is located.

Let’s take a look at an abbreviated report output in Listing 13.3.

{: AIXsysconfigiksh:= \Thudul)25 09:46:58 BpT) 2002 °)

Saving system information for yogi...

System:

Time Zone:

Real Memory:

Machine Type:

Operating System:

OS Version Level:

yogi

EST5EDT

231072KB8

powerpc

AIX

Sels0.0

Current OS Maintenance Level:

Not all filesets for 5.0.0.0_AIX ML were found.

Not all filesets for 5.1.0.0_AIX ML were found.

HERRERA RHE RRA AEHE EERE GREE HERE EH REE REE EE HF

Installed and Configured Devices

sys0

sysplanar0

ioplanar0O

siod

hdisk0O

hdisk1

rmt0

cdo

proc0

mem0

mem1

mem2

mem3

£d0

ilvdd

tty0

rootvg

hd5

hd6

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Available

Defined

Defined

Defined

00-00

00-00

00-00

00-00

00-00-0S-0,0

00-00-05-1,0

00-00-0S-5,0

00-00-0S-6,0

00-00

00-0A

00-0B

Q0-0¢C

00-0D

00-00-0D-00

00-00-S1-00

System Object

System Planar

I/O Planar

Standard I/O Planar

2-0 GB SCSI Disk Drive

2.0 GB SCSI Disk Drive

5.0 GB 8mm Tape Drive

SCSI Multimedia CD-ROM Drive

Processor

32 MB Memory SIMM

32 MB Memory SIMM

32 MB Memory SIMM

32 MB Memory SIMM

Diskette Drive

LVM Device Driver

Asynchronous Terminal

Volume group

Logical volume

Logical volume

Listing 13.3 AlXsysconfig.ksh shell script in action. (continues)

353

354 Chapter 13

HHEHERHE HEE HEE R REE HH HEHEHE EE HEHE EH EH EHH FE

Long Device Directory Listing - /dev

total 24

crw-rw-rw- Lo root system 19) 0 Uun 23°15: 23 emc0

crw-rw-rw- Lai eOot system 1950 2 Mar: 29°13: 49 emg0 ot

crw-rw-rw- 1 LOot system 195°) 2 dul 26-2008 me0e?

crw-rw-rw- AD) Sarerons: system 19) Sumi 26 2001) = omedes

crw-Yrw-rw- Nee rone system 19,24 dul: 26 2001 emto.4

crw-rw-rw- Deroot system 19) S Jul 26 2001. rmed.5

Crw-rw-rw- 1 root system 197 6 26 20On) rms 6

crw-rw-Lrw- 1 root system 195.7 Jul 26 2001 6 ymtG s

crw-rw---- Lo root system 10,;2.°0 Jul 26 2001" rootvg

crw-rw---- LO root system 10, 10 Jul 29 2001: rscripts iy

crw-rw-rw- Paroot system 13) 24 Gul 26 2000 | ead

brw-rw---- i eOO system 10, 10 Jul 29 2001 scripts. iv

crw-rw-rw- INPoot system TL Onde 26 2001 scoid

crw-rw-rw- Te coot system 13,215: Jul 26.2008 slog

crw-rw-rw- i eoOot system 13,30 Jul 26 2004. Spx

crw------- I root system 1, 0 Sul 26-2001 sysaump

crw------- Dh roots system Tt, dk dul 26-2001: syedumpetL

crw------- 1 root system 7, 3 Jud 26 2001 . sysdumptite

erw------- ivaneeyeye system 7, 2 Jul 26 2001 sysdumpnull

crw-rw-rw- 1 root system 5, 0 dul 26 2001 svstrace

crw-rw-rw- Loot system 5, Lb dul 26-2001. systrcel

crw-rw-rw- DE OOKE system dj 0 dul 24. 2 5s ety.

CYrw--~w--w- 1 root system 182-0 Jul 2451758 tryo

crw-rw-rw- hi root system 18, 2 Jun 23-15-18 ttyl

crw-rw-rw- i root system 26; 0 dul 26 2001) -ttypo

crw-rw-rw- LOot system 26,1 Jul 26 200b Etype

crw-rw-rw- Proot system 2, 3 dul 26 2001. zero

HHEHHHHEPHEPPEEHPHEEPEEEHPEAEPHPESPEPEPES PEPER RH

System Defined Disks

hdiskO Available 00-00-0S-0,0 2.0 GB SCSI Disk Drive

hdiski Available 00-00-0S-1,0 2.0 GB SCSI Disk Drive

FHRPEEPRTHEPRHEREES EERE REEE RHEE EEES HEHEHE EEE H

Listing 13.3. AlXsysconfig.ksh shell script in action. (continued)

System Defined SSA pdisks

Taking a System Snapshot 355

HHEHRHHEHPHHHE HARRAH HHH HHH HEHEHE HHA HHH HH HHH

System Tape Drives

rmt0O Available 00-00-0S-5,0 5.0 GB 8mm Tape Drive

HE TREE HH HH EH RARE HHH EH EE A EHH

System CD-ROM Drives

cd0 Available 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive

HHHHHHHEEPERRRPRRREEREEREREEEREEPREPRERPERERH EH HH

Defined Adapters

siod Available

fdad Available

sioka0 Available

sad Available

sal Available

scsi0 Available

siota0 Available

sioma0 Available

ppad Available

entod Available

in the System

00-00

00-00-0D

00-00-0K

00-00-S1

00-00-S2

00-00-0S

00-00-0T

00-00-0M

00-00-0P

00-03

Standard

Standard

Keyboard

Standard

I/O Planar

I/O Diskette Adapter

Adapter

/0 Serial Port).

Standard 1/0 Serial’ Port 2

Standard SCSI I/O Controller

Tablet Adapter

Mouse Adapter

Standard 1/0 Parallel Port Adapter

Ethernet High-Performance LAN Adapter (8ef5)

HHP RPREEEAERE HAAR AAEEE HH EEE EH EE PEE HH HH PE EH

Network Routes

Routing tables

Destination Gateway Flags Refs Useu it PMTU Exp

Groups

Route Tree for Protocol Family 2 (Internet):

default LOCO now UGce 0 0 end — -

20. 10716 LOC TOU LO a U ay 135807 \\\end - -

T2758 P2700. Oud U 5 Zea TOO - -

Route Tree for Protocol Family24\ (Internet v6):

Listing 13.3 AlXsysconfig.ksh shell script in action. (continues)

356 Chapter 13

UH 0 Oto 16696 <=

FERRER REHEERREEEHEEEHEAAEEES SHEESH EE HERR REE HEE HERS

Network Interface Statistics

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll

end 1500 link#2 2,60.8¢.20./5.b1 112330 0 108697 0 0

eno 1500: 10-20 yogi £12330 0 108697 0 0

100 16896 link#1 28302 0 28304 0 0

100 16896 127 loopback 28302 Q 28304 0 0

1o0 16896. 22 28302 0 28304. 0 0

HEPHHHEPEHREPREERE EERE GREER ERE PEE ERE GHEE HEHE EH EF

Filesystem Statistics

Filesystem 1024-blocks Free %Used

/dev/hd4 32768 10924 67%

/dev/hd2 1449984 61680 96%

/dev/hnd9var 53248 10568 81%

/dev/hd3 106496 70184 35%

/dev/hdl 4096 3892 53

/proc - - -

/dev/hdl0opt 655360 16460 98%

/dev/scripts_lv 102400 25296 76%

/dev/1v_temp 409600 350456 15%

node mounted mounted over

options

/dev/hd4 £ jfs

/dev/hd2 /usr jfs

/dev/hd9var /var jfs

/dev/hd3 /tmp jis

/dev/hdi /home jfs

/proc /proc procfs

/dev/hdi0opt /opt ALS

/dev/scripts_lv /scripts jfs

/dev/lv_temp /tmpfs jfs

Iused %Iused Mounted on

1854 12% /

40941 12% (USE:

673 6% /var

223 1% /tmp

55 /home

/proc

/opt

/scripts

/tmpfs

rw, Llog=/dev/hd8

rw, log=/dev/hd8

rw, log=/dev/hd8

rw, log=/dev/hd8

rw, log=/dev/hd8

rw

rw, log=/dev/hd8

rw, log=/dev/hd8

rw, log=/dev/hd8

23

23

ERE RGEH EE EEE HE HEE HHH EHH EH HH HEH HEHE HH

Defined Volume Groups

rootvg

Listing 13.3 AlXsysconfig.ksh shell script in action. (continued)

Taking a System Snapshot 357

HHREERHHEPHEHHPHREEEHPREEEHHHHHEHEHHHH HHH HH

Varied-on Volume Groups

rootvg

HHTHHETHH EERE EEHEEPEERPPHRR PTH ETERPHERHPEE HEHE HEH

Logical Volume Information by Volume Group

rootvg:

LV NAME TYPE LPs PPs PYs\\ LV STATE MOUNT

POINT

hd5 boot 2 2 su closed/syncd N/A

hd6 paging 84 84 1 open/syncd N/A

hd8 jfislog al: 1. 1 open/syncd N/A

hd4 jfis 8 8 ak open/syncd i

hd2 jts 354 354 2 open/syncd /usr

hd9var jfs aS. a3 2 open/syncd /var

hd3 jfs 26 26 at open/syncd /tmp

hd1 j£s 1 1 a open/syncd /home

hd1l0opt jfs 160 160 2 open/syncd /opt

scripts_lv jfs 25 25 ak open/syned /scripts

lv_temp jfs 100 100 a open/syncd /tmpfis

HHEEHHHEEHHA PERE R REET RR RHEE EHHEEHEE HEHEHE EH HHH

Paging Space Information

Page Space Physical Volume Volume Group Size %Used Active Auto Type

hd6 hdisko rootvg 336MB 10 yes yes iv

Total Paging Space Percent Used

336MB 10%

HEAR EE HEHEHE HHH EEE HHH HEH HH HHH HH HHH

Hard Disks Defined

00003677c£068b62

000125608a48c132

hdisko rootvg

hdiski rootvg

HEHHHHHEHHEHHAEHEHERAEPRARHESREERPEEEEHES HEHEHE HE HH

Volume Group Hard Drives

Listing 13.3 AlXsysconfig.ksh shell script in action. (continues)

358 Chapter 13

rootvg:

PV_NAME PV STATE TOTAL PPs FREE PPs

hdisk0 active 479 0

hdisk1 active 479 184

HHEEHEERREE HERE REE ERR E EGRET EERE EERE

HACMP Configuration

HEREHEHREREREREEEGREREREEERRERRERRRERER EERE HEE HHH

Printer Information

hp4 1p0d READY

hp4-ps 1p0d READY

hp4-gl 1p0 READY

yogi hp4. 1 1po READY

yogi_hp4_1ps 1po READY

Print Queue Configuration File Listing

hp4:

device = l1p0

1po:

file = /dev/1p0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

hp4-ps:

device = lp0d

lpo:

file = /dev/1p0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

hp4-gl:

device = 1p0

1po:

file = /dev/1p0

header = never

trailer = never

access = both

Listing 13.3 AlXsysconfig.ksh shell script in action. (continued)

FREE DISTRIBUTION

00..00..00. .00..00

92. .00..00..00..92

Taking a System Snapshot 359

backend = /usr/lib/lpd/piobe

yogi_hp4_1:

device = 1p0

1pod:

file = /dev/1p0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

yogi_hp4_ips:

device = 1p0

lpo:

file = /dev/1p0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

HEHHHAAHHAAPAHHHAAHHHAS PRAHA PEHHH PRAHA EHH Eee

Active Process List

UID PID: PPrLD (ee STIME TEY TEN CMD

root aE 0 0 wu 23 = 017 (ere lannt

root 1950 aL 0 Jul 23 = 0500 /usp/sbin/sremstr

root 2672 2 0 Jul 23 = 0.00: /usr/lib/errdemon

root 3140 £ 0 ous 23 - 2:04 /usr/sbin/syned 60

Loot — 3642 24644 Oey 221-220 =. 0200 (rpc. thdbserver P000383 I

root —3882° 4950 0 Jul 23 - 0:04 sendmail: accepting

connections

root 4168 1950 0 Jul 23 = 0:00. /usr/sbin/syslogd

root, 4388 21950 0 oul 23 - 0:00 /usr/sbin/portmap

root 4644 1950 0 tl 23 = 10:00" /usr/sbin/inetd

nobody 4906 5418 0 Wak 23 = O:0L /usr/sbin/tttpd in

daemon 8798 1950 0 Vul 23 =) 0500 /usr/sbin/rpc.statd

root 9034 1950 0 gut 23 =. 0:00 /usr/sbin/biiod 6

root 9296 51950 0 wut 223 == 0:00 /usr/sbiny/ntsd. 3891

root 9554. 1950 0 Jub 23 = \0;00° /usr/sbin/rpc mountd

root 9814 1950 0 Jul’ 23 =e Oc OO s/Uer/ sbin/jmpe, Lockd

root 10336 ue 0 ond 23 EVO. 00" (wer /Ssbin/Uuprinted

root 10588. 1950 0 Jul 23 = (0:00; qdaecmon

root 10842 HS 0 Ua 23 = 0.02 “/usrysban/ cron

Foot 11360. 1950 0 Ju 23 - 0:00 /usr/sbin/writesrv

root 11616 1 0 Jul 23 aie O00

/usr/lpp/diagnostics/bin/diagd

root. 16820. 15/72 O.27511 339) pts 0 OOS \dtrite

Listing 13.3 AlXsysconfig.ksh shell script in action. (continues)

360 Chapter 13

root 17540 16538 0 21:16:59" pts/3\ 0:00) /usr/bin/ ksh

HHHHHHHHEEHESPHEEREEHPREEEHRPR EES HES HEHEHE HHH EE

SNA Information

0513-085 The sna Subsystem is not on file.

HAE HEHE HE EH RHE HE a EE EH HE EH EH aE EEO

x25 and udp Processes

HHFHFHHEHESHRPHEPHEPHEEPHEPHEPHEEPEEGHERHH EHH EH

System Configuration Overview

INSTALLED RESOURCE LIST

The following resources are installed on the machine.

+/- = Added or deleted from Resource List.

x = Diagnostic support not available.

* sys0 00-00 System Object

+ sysplanar0 00-00 System Planar

+ ioplanar0 00-00 1/0: Planar

+ hdisk0 00-00-0S-0,0 2.0 GB SCSI Disk Drive

+ hdisk1l 00-00-0S-1,0 2.0 GB SCSI Disk Drive

+ rmto 00-00-0S-5,0 5.0 GB 8mm Tape Drive

+ cdo 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive (650

+ procd 00-00 Processor

+ mem0 OO-OA 32 MB Memory SIMM

+ mem 00-0B 32 MB Memory SIMM

+ mem2 00-0C 32 MB Memory SIMM

+ mem3 00-0D 32 MB Memory SIMM

* sysunito 00-00 System Unit

HHREHEEH EERE GEERT EAE RRRERERPE EHS EAEEEEPEESEEE HE HEHE

Detailed System Configuration

Listing 13.3 AlXsysconfiz.kch shell script in action. (continued)

Taking a System Snapshot 361

INSTALLED RESOURCE LIST WITH VPD

The following resources are installed on your machine.
}

sys0 00-00 System Object

sysplanar0 00-00 System Planar

Pare NUM Dee aN AG 06568317

SHO eS! ce EEG Oa aN ae 00D28027

Processor Identification... .00012560

ROS Level and ID. TPLVERL 3S LVES 0106568318

Processor Component ID...... 0800004800000050

Device’ SpecrE1e. (20) co 000000

Device: Specifies (Zl} ere 000000

Device Speci fiesl7?) cass a. 000000

Device Specific 423) os ss 000000

Device Specific (Za) eS. 000000

Device: Specifics (25\e eee 000000

Device Specifies 26). 2 000000

Device Specific (Zh). 2. e., 000000

Device Speci fie (Ze8\os5 28 000000

Device Speci fie (29)... oe: 000000

ROS Level-and 1D) eo. es OCS (00000C54)

ROS bevel and 1Ds eee SEEDS (28040203)

hdisk0 si 00-00-0S-0,0 20GB SCSE Disk Drive

Manufachurer. 6 2 aie ee IBMRISC

Machine Type and Model...... 0664M1H

Part: Number i143 ee i et 86F0101

ROS Level and-iDiie aus cs 5. 5A

Serial Number. 215i 00.0 pot 00221833

BS UOVEL ee i ee 895186

PRU: NUMDEN sca lg oes Ss 86F0118

Device Specific (20) 20. 000002029F00001E

Device Spectlic. (41) ccc. 75G3644

Device Specific. (22) 002. 0983

Device SpecrEre. (43) 5 2: 95123

Device Specific. (24)cec vee 0002

Device: Spéeifire (75) Ve 22

Device Specific. (276)..0 se SIS L712

rmto 00-00-0S-5,0 5.0 GB 8mm Tape Drive

Manufacturers ose EXABYTE

Listing 13.3 AlXsysconfig.ksh shell script in action. (continues)

362 Chapter 13

Machine Type and Model...... IBM-8505

Device Specripe (Ady ees: 807A

Pah NUM S Caen ae 8191044

Seriak! NUMDO Rae mene eo 082737

Device \Specr Eso QuL was 00000001

BEC Me Ved oe Me ienceaieca shennan ete ite D48098

FRU NUMDe Rea he NN BOS TS 9 "

Device SpectEre (20) Ua wey 0180020283000010

cdo 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive (650

MB)

Manvifacturent i ee cas IBM

Machine Type and Model...... CDRM00203

ROS Levels ang Decic new nes 8B08

Device SpecreEray (ZO oa 058002028F000018

Part NUMbEeR GG cao aan 73H2600

BO MSVved eas Shas D75458A

BROW NEMS eee MEER 73H2601

siota0 00-00-0T Tablet Adapter

sa0 00-00-S1 Standard I/O Serial Port 1

tty0 OO-00-St-00 Asynchronous Terminal

sal 00-00-S2 Standard) T/O Serial (Port 2

ttyl 00-00-S2-00 Asynchronous Terminal

procd 00-00 Processor

mem0O OO-OA 32 MB Memory SIMM

SPAS a ealeel Saciane cuaeste ye vacacomereea ers 32

Device (SpedciEre (43) ones 90000000

BCCHEVeu oe ka eee anaes 00

mem1 00-OB 32 MB Memory SIMM

SAWS Sy Oe UNi ae: cat Cite te gaa 32

Device (Specivhicw(as) ees 90000000

BOW DS Ved yee Wa oe she ee Ceenar 00

HEFHHHHHFHHEHEEPHEEHHEEHEEPHEPHEEPREPHEREHE EHH EHH SE

System Installed Filesets

Fileset Level State Type Description

(Uninstaller)

Listing 13.3. AlXsysconfig.ksh shell script in action. (continued)

Taking a System Snapshot 363

Tivoli_Management_Agent.client.rte

S200 iC F Management Agent

runtime"

X11.Dt.ToolTalk Ske One0 (es F AIX CDE ToolTalk

Support

xi Dt adt 5d 0U00 ce F AIX CDE Application

Developers'

Toolkit

X11.Dt.bitmaps 51.0.0 G F AIX CDE Bitmaps

X11.Dt.compat 5 O20) Cc F AIX CDE Compatibility

X11.Dt.helpinfo 521200 eS F AIX CDE Help Files

and Volumes

X11.Dt.helpmin Back eo (a F AIX CDE Minimum Help

Files

X11.Dt.helprun 5 A102 0 c F AIX CDE Runtime Help

Mie Dt 115 54050 Cc EF AIX CDE Runtime

Libraries

X11.Dt.rte 520: 0 C F AIX Common Desktop

Environment :

(CDE) 1.0

X11.Dt.xdt2cde Spee ee) (e F AIX CDE Migration

Tool

X11.adt.bitmaps 522202 0 ce F AlIXwindows

Application

Development Toolkit

Bitmap Files

X11.adt.imake 5 we) Cc F AlIXwindows

Application

Development Toolkit

imake

X11.adt.include ye er Oi 6) C EF AlXwindows

Application

Development Toolkit

Include

Files

X11l.adt.1lib 510.0 ce F AIXwindows

Application

Development Toolkit

Libraries

X11.adt.motif 50:20 c F AIXwindows

Application

Development Toolkit

Motif

X11.apps.xterm B00 c F AlXwindows xterm

Application

Listing 13.3 AlXsysconfig.ksh shell script in action. (continues)

364 Chapter 13

X11.base.common 5. O20

Common

X11.base.lib 5.25020

Libraries

X11.base.rte Seailele el

Environment

bos.acct Be 0 20

bos.adt.base Seok

Development

bos.adt.debug Soy Ook

Development

bos.adt.include 5 a 1

Development

bos.adt.lib 520.0

Development

bos.adt.libm 5.00. 0

Development

bos.alt_disk_install.boot_images

Be 00)

Installation Disk

bos alt: disk: install rte 5k 05 0

Installation

bos.diag.com

Diagnostics

bos.diag.rte

bos.diag.util

Utilities

bos.msg.en_US

U.S. English

bos.msg.en_US.

Runtime

bos.msg.en_US

Subsystem

English

bos.msg.en_US

U.S. English

-net.tcp.client

5700.0

rte Sy 00

.Svprint Siege (OA 6)

-sysmgt.nim.master_gui

AS Oe O

AlXwindows Runtime

Directories

AlXwindows Runtime

AlXwindows Runtime

Accounting Services

Base Application

TOOLKIE

Base Application

Debuggers

Base Application

Include Files

Base Application

Libraries

Base Application

Math Library

Alternate Disk

Boot Images

Alternate Disk

Runtime

Common Hardware

Hardware Diagnostics

Hardware Diagnostics

TCP/IP Messages -

Base Operating System

Msgs - U.S. English

System V Print

Messages - U.S.

NIM GUI Messages -

Listing 13.3. AlXsysconfig.ksh shell script in action. (continued)

Taking a System Snapshot 365

bos.msg.en_US.txt.tfs Shun Gs F Text Formatting

Services

Messages - U.S.

English ‘

bos.net.ate SV OO Cc F Asynchronous Terminal

Emulator

bos.net.ipsec.rte SAO c F IP Security

bos.net.ncs SONG Gi F Network Computing

System 1.5.1

bos.net.nfs.adt SOO iC F Network File System

Development

Toolkit

bos.net.nfs.cachefs Sicko sO Cc F CacheFS File System

bos.net.nfs.client Soa A F Network File System

Client

bos.net.nfs.server SiO) 0 ie F Network File System

Server

bos.net.nis.client Sot 00 c F Network Information

Service

State codes:

A -- Applied.

Be-= Broken

Cc -- Committed.

O -- Obsolete. (partially migrated to newer version)

? -- Inconsistent State...Run lppchk -v.

Type codes:

F -- Installp Fileset

PS] "Product

Cc -- Component

P= Peatune

R --~ RPM Package

HHPHHHHHPHEHEAP HEHEHE EHERAEEEP EERE EAHA HH HH EE

Looking for Broken Filesets

lppchk: The following filesets need to be installed or corrected to

bring the system to a consistent state:

vVac.C. readme. tbm ‘4.4.0.1 (not installed; requisite fileset)

HEHHFHHEREHHEHEPHEPEPHEPHEHEHHEPHEPEPHHEH EHH ES HEH

Listing 13.3. AlXsysconfig.ksh shell script in action. (continues)

366 Chapter 13

List of the last 100 users to log in to yout

root ftp booboo Jul 25 13228 = 139229 (00.00)

root ftp booboo Jul 25 12:17 - 12:18 (00:00)
root tty0 Jul 2a tyes 5 still Logged in.

root ftp booboo Wul 24:0 7235 5) 27235. (002. 00)

root pes/ 1 mrranger wu 2a. yeis still logged in:

root pts/0 mrranger Jul 24 27:41 Still Logged in.

root pts/0 mrranger cul. 24 07:09 >= 1 7b? (00201)

root ftp booboo Jul: 23° 21353 — 21-53 (00-00)

shutdown tty0 Jul 20 00225

root ftp booboo Jub 09: 23°4At = 23-48 (00200)

reboot ~ Jul 09 19:38

reboot ~ Jun 27° hoe:07

root pts/3 mrranger Jun 26° 20:55 — 20:56. (00:00)

root pts/2 mrranger Jun 26 20:55 = 20:56. -(00=00)

root pes/ 1 mrranger Uun 26° 20555: - 20256 9 (00.00)

wtmp begins Jul 31° 28-20

This report is saved in:

/usr/local/reboot/sys_snapshot.yogi.072502_094658

Listing 13.3. AlXsysconfig.ksh shell script in action. (continued)

From Listing 13.3 you can see that we collected a lot of information about the system

configuration. This is just a sample of what you can collect, and I will leave the

specifics of the information you gather up to you. For each function that you add or
change, be sure to test the response. Sometimes you may be surprised that you do not

see any output. Some of the command output shown in Listing 13.3 does not have any
output because my little system does not have the hardware that the query is looking

for. If you expect output and there is not any, try redirecting standard error to standard

output by using the following syntax:

command 2>&1

Many commands send information type output to standard error, specified by file

descriptor 2, instead of standard output, specified by file descriptor 1. First try the
command without this redirection.

Taking a System Snapshot 367

Other Options to Consider

There can always be improvements to any shell script. The shell script presented in this
chapter is intended to be an example of the process of gathering system information.
You always want to query the system for as much information as you can. Notice that

I did not add any database or application configuration/statistics gathering here. The
amount of information gathered is up to you. As I said before, every shop is different,

but they are all the same when troubleshooting a problem. The AIXsysconfig.ksh
shell script looks only at system-level statistics and configuration, so there is a large
gap that you need to fill in. This gap is where your specific application comes into play.

Look at your database and application documentation for the best method of gather-

ing information about these products. By running the configuration gathering script at

least once a week, you will save yourself a lot of effort when a problem arises.

Summary

In this chapter we strictly looked at AIX. The process is the same for any Unix flavor,

but the information gathered will vary in each shop. No rocket science is needed here,

but you do need a good understanding of how your system is configured. You need to

understand the applications and databases and what determines a failed application.

You may be looking for a set of processes, or it could be a database query with an SQL
statement. These are the things that need research on your part to make this type of
shell script really beneficial.

In the next chapter we are going to move on to installing, configuring, and using

sudo. The sudo program stands for super user do, and it allows us to set up specific

commands that a user can execute as root. I hope you enjoyed this chapter, and I'll see

you in the next chapter!

Compiling, Installing,
Configuring, and Using sudo

The main job of any good Systems Administrator is to protect the root password. No

matter how firm and diligent we are about protecting the root password we always

have the application support group and DBAs wanting root access for one reason or

another. But, alas, there is a way to give specific users the ability to run selected com-

mands as the root user without the need to know the root password. Facilitating this

restricted root access is a free software program called sudo, which stands for superuser

do. In this chapter we are going to show how to compile, install, configure, and use the

sudo program. The current distribution can be downloaded by following the link on
the Web site that accompanies the book, and I will list some Web other sites where you

can download the program in this chapter.
Because sudo is not a shell script you may be asking, “Why is sudo included in this

book?” Iam including the sudo chapter because I have not found any reference to sudo

in any scripting book, and it is a nice tool to use. We will cover a short shell script at the
end of this chapter showing how to use sudo in a shell script.

The Need for sudo

In Unix the root user is almighty and has absolutely no restrictions. All security is
bypassed, and anyone with root access can perform any task, with some possibly

resulting in major damage to the system, without any restrictions at all. Unix systems

369

370 Chapter 14

do not ask “Are you sure?”; they just run the command specified by the root user and
assume you know what you are doing. The sudo program allows the Systems Admin-

istrator to set up specific commands (or all commands) to be executed as the root user
and specify only certain users (or groups of users) to execute the individual com-
mands. In addition, all commands and command arguments are logged either to a

defined file or the system syslog. The logging allows the Systems Administrator to have
an audit trail and to monitor user sudo activities as well as failed sudo attempts! The
user executes a restricted command by preceding the command with the word sudo.

For example:

sudo chmod 600 /etc/sudoers

Password:

When a user executes the preceding command, a password prompt is displayed. The

password that the sudo program is asking for is not the root password but the user’s

password that wants root access. When the password is entered, the /etc/sudoers

file is searched to determine if root authority should be granted to run the specified
command. If both the system password is correct and the /etc/sudoers search

grants access, then the command will execute with root authority. After this initial

sudo command, the user may submit more sudo commands without the need for a

password until a sudo timeout, typically five minutes without issuing another sudo

command. After the timeout period the user will again be prompted for his or her pass-

word when a sudo command is entered.

Downloading and Compiling sudo

The sudo program is included on the Web site that accompanies the book and can be

downloaded from various FTP mirror sites. The main sudo Web site is located at

www.courtesan.com/sudo. The sudo program is free software and is distributed under

a BDS-style license. As of this writing the current version of sudo is 1.6.6 and was
released April 25, 2002. Todd Miller currently maintains the sudo program, and if you

would like to tip Todd for his fine work you may do so at PayPal, which can be
accessed from a link on the sudo main page. You can download sudo from any of the
Web sites shown in Listing 14.1.

http://www. courtesan.com/sudo/dist/ (Main site in Boulder, Colorado USA)

http: //www.rge.com/pub/admin/sudo/ (Rochester, New York USA)

http://sudo.stikman.com/ (Los Angeles, California USA)

http: //www.cOr3dump.com/sudo/ (Edmonton, Canada)

http://core.ring.gr.jp/archives/misc/sudo/ (Japan)

http://www.ring.gr.jp/archives/misc/sudo/ (Japan)

http://sudo.cdu.elektra.ru/ (Russia)

Listing 14.1 Web sites to download the sudo program.

Compiling, Installing, Configuring, and Using sudo 371

There are two ways to download the files. You can download the precompiled bina-

ries for your Unix flavor and version or download the source code distribution and

compile the sudo program for your particular machine. I always download the source
code and compile it on each individual system. The process takes just a few minutes,
and you can be assured that it will run on your system. If you have a boatload of sys-

tems to install, you may want to consider using the precompiled binaries and pushing

the binaries out to each system, or writing a shell script to push and install the product!

Either way you choose, you will need only about 4MB of free space to work with. Once

sudo is installed you can remove the downloaded files if you need to regain the disk
space. In this chapter we are going to download the source code and compile sudo for

a particular system.

Compiling sudo

You will need a C compiler; cc is preferred but gcc normally works fine and is free to

download. I say gece normally works fine because I have found instances where gcc had

compiler errors and cc did not have any problems. The source code distribution is in a

compressed tar format, where gzip is used for compression. The gzip file has a .gz

extension—for example, sudo-1.6.6.tar.gz. When you download the file, put the

software distribution in a directory that has about 4MB of free space. In our example
we will use /usr/local, which is a separate filesystem from /usr on my machine.

You must have root access to compile, install, and configure sudo!
After the sudo distribution file is placed in a work directory, the first step is to unzip

the compressed file. The gunzip command uncompresses a gzipped file, as shown in

the next example:

gunzip sudo-1.6.6.tar.gz

After the file is uncompressed, you are left with the following tar archive file:

sudo-1.6.6.tar

When we untar the archive, a subdirectory will be created called sudo-1.6.6 that

will contain all of the source code, LICENSE, README, manuals, configure, and

Makefile. In the directory containing the sudo-1.6.6.tar file, in our case

/usxr/1local, issue the following command:

EAGLE XViEeSudo—LeoOnomtar

After the program distribution file is uncompressed and untarred we can proceed to

the installation process. This is not a difficult process so if you have never worked with

the make command and Makefile before, don’t worry. The first step is to configure

the Makefile for your system. As you might expect, this is done with the configure

command. First change directory to where the source code is located, in our example

/usr/local/sudo-1.6.6, and run the configure command.

372 Chapter 14

cd /usr/local/sudo-1.6.6

./configure

The configure command goes through system checks and builds a Makefile and

the config.h file used to build sudo for your system. The configure command out-

put for my system is shown in Listing 14.2.

Configuring Sudo version 1.6.6

checking

checking

syslog

checking

checking

checking

checking

checking

checking

checking

no

checking

no

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

again...

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

checking

Listing 14.2

whether to lecture users the first time they run sudo... yes

whether sudo should log via syslog or to a file by default...

which syslog facility sudo should log with..: local2

at which syslog priority to log commands... notice

at which syslog priority to: log fallures.\) badpri

how long a line in the log file should be... 80

whether sudo should ignore! 2" or. in SPATH Vo no

whether to send mail when a user is not in sudoers... yes

whether to send mail when user listed but not for this host...

whether to send mail when a user tries a disallowed command...

who should get the mail that sudo sends... root

for bad password prompt... Password:

for bad password message... Sorry, try again.

whether to expect fully qualified hosts in sudoers... no

for umask programs should be run with... 0022

for default user to run commands as... root

for editor that visudo should use... vi

whether to obey EDITOR and VISUAL environment variables... no

number of tries a user gets to enter their password... 3

time in minutes after which sudo will ask for a password

5

time in minutes after the password prompt will time out... 5

whether to use per-tty ticket files... no

whether to include insults... no

whether to override the user's path... no

whether to get ip addresses from the network interfaces... yes

whether to do user authentication by default... yes

whether to disable running the mailer as root... no

whether to disable use of POSIX saved ids... no

whether to disable shadow password support... no

whether root should be allowed to use sudo... yes

whether to log the hostname in the log file... no

whether to invoke a shell if sudo is given no arguments... no

whether to set SHOME to target user in shell mode... no

whether to disable ‘command not found' messages... no

for egrep... egrep

Command output—./configure.

Compiling, Installing, Configuring, and Using sudo 373

checking for gcc... no

checking for eo \\\ee

checking for C compiler default OUEDUE CU Waioute

checking whether) the ¢ compiler works)).\\wes

checking whether we are cross)compr ing no

checking for executable suffix...

checking for object. suffix) \\\o

checking whether we are using the GNU C CompIr ler. i. n}

checking whether cc accepts -g... (cached) no

checking for POSIXized ISC... no

checking for cc option to accept ANSI C... none needed

checking how to run the C preprocessor... cc -E

checking for uname... uname

checking for tr sos tx

checking for sed... sed

checking for nroff... nroft

checking build system type... powerpc-ibm-aix5.1.0.0

checking host system type... powerpc—ibm-aix5.1.0.0

checking for getspnam... no

checking for getspnam in -lgen... no

checking for getprpwnam... no

checking for an ANSI C-conforming const... yes

checking for working volatile... yes

checking for bison... no

checking for byacc... no

checking for mv... /usr/bin/mv

checking for bourne shell... /bin/sh

checking for sendmail... /usr/sbin/sendmail

cheeking for vi... /usr/bin/vi

checking for ANSI C header files... yes

checking for dirent.h that defines DIR... yes

ehecking for opendir in’ -ldir.) no

checking for malloc.h... yes

checking for paths.h... yes

checking for whime.h.i yes

checking for netgroup.h... no

checking for sys/sockio.h... no

checking for sys/bsdtypes.h... no

checking for sys/select.h... yes

checking POSIX termios... yes

checking for sys/types.h... yes

checking for sys/stat.h... yes

checking for stdlib.h... yes

checking for: string hoi \yes

checking for memory hy. yes

checking ‘for strings. .h... yes

checking for anttypes hol. yes

Listing 14.2 Command output—./configure. (continues)

374 Chapter 14

checking: for stdint fh] no

checking for unistd no. ves

checking for mode_t... yes

checking for uid_t in sys/types.h... yes

checking for sig atomic t..s yes

ehecking for: sigactionm t= .=2 no

checking for size it... yes

checking for ssize tt... yes

checking for dev_t... yes

checking for ino_t... yes

checking for full void implementation... yes

checking max Length of wad. t. 2. 10

checking for long long support... yes

checking for sa_len field in struct sockaddr... yes

checking return type of signal handlers... void

checking for strchr... yes

checking for strrchr... yes

checking for memchr... yes

checking for memcpy... yes

checking for memset... yes

checking for sysconf... yes

checking for tzset..5 yes

checking for seteuid... yes

checking for setegid... yes

checking for strftime... yes

checking for setrlimit... yes

checking for initgroups... yes

checking for fstat... yes

checking for setreuid... yes

checking for getifaddrs... no

checking for getcwd... yes

checking for lockf... yes

checking for waitpid... yes

checking for innetgr... yes

checking for getdomainname... yes

checking for lsearch... yes

checking for utime... yes

checking for POSIX utime... yes

checking for working fnmatch with FNM_CASEFOLD... no

checking for isblank... yes

checking for strerror... yes

checking for strcasecmp... yes

checking for sigaction... yes

checking for snprintfi... yes

checking for vsnprintf... yes

checking for asprintf... no

checking for vasprintf... no

Listing 14.2. Command output—./configure. (continued)

Compiling, Installing, Configuring, and Using sudo 375

checking for icnypety). wives

checking for socket... yes

checking (for inet addr.) yes

checking for syslog... yes

checking for log file location. .)\\ /var/adm/sudo: log

checking for timestamp file location... /tmp/.odus

configure: creating ./config.status

config.status: creating Makefile

config.status: creating sudo.man

config.status: creating visudo.man

config.status: creating sudoers.man

config.status: creating config.h

config.status: creating pathnames.h

Listing 14.2 Command output—./configure. (continued)

After the configure command completes without error, you have a customized

Makefile for your system. You can, if you need to, edit the Makefile and change the

default paths and the compiler to use. Now that we have a new customized Makefile
we can now compile the sudo program on the system. Issue the following command,

assuming you are still in the /usr/local/sudo-1.6.6 directory:

make

The make command is located in /usr/bin/make on most systems, and it uses

the Makefile in the current directory to compile, in our case /usr/local/

sudo-1.6.6. The make command output is shown in Listing 14.3. Notice that my

system uses the cc compiler.

ce -c -I. -I. -D_XOPEN_EXTENDED_ SOURCE -

D_PATH SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers.tmp\”

-DSUDOERS UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 check.c

ce -c -I. -I. -D_XOPEN _EXTENDED_SOURCE.. -

D PATH SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers.tmp\"

-~DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 env.c

eG -c -f. .-1... —~D: XOPEN EXTENDED SOURCE: (=

D PATH SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS TMP=\"/etc/sudoers.tmp\"

~DSUDOERS. UID=0 -DSUDOERS GID=0 -DSUDOERS_MODE=0440 getspwuid.c

CC -C -LecHl.. -D XOPEN EXTENDED SOURCE: =

D_ PATH SUDOERS=\"/etc/sudoers\" -D_PATH _SUDOERS_TMP=\"/etc/sudoers.tmp\"

-DSUDOERS UID=0 -DSUDOERS GID=0 -DSUDOERS MODE=0440 goodpath.c

Listing 14.3 Command output—make command. (continues)

376 Chapter 14

CO He =f. 051.7 2 =D XOPEN, EXTENDED USOURCE. =

D_ PATH SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS_TMP=\"/etc/sudoers.tmp\"

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

GC =¢ =i. -=1: — -D XOPEN: EXTENDED: SOURCE =

D_PATH SUDOERS=\"/etc/sudoers\" -D_ PATH SUDOERS TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

CCC =E. Sl. =D XOPEN EXTENDED SOURCE =

D_PATH_ SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

6C -G -l, =1...-D_XOPEN_ EXTENDED SOURCE. ==

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

6G =o =f. =f. —-D_XOPEN BXTENDED SOURCH 2 =

D_PATH SUDOERS=\"/etc/sudoers\" -D PATH SUDOERS TMP=\"/etc/sudoers.

fileops.c

find path.c

interfaces.c

logging.¢

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 parse.c

CG =e) a Hf = DA XAOPEN EXTENDED: SOURCHiC=

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH _SUDOERS TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

CG ser. it. | D_XOPEN _BATENDED JSOURGE «=

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

CC) =CeTs (on. =D XOPEN: BXTENDED “SOURCE =

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

SCeo et =t. =D UXOPEN. BX TENDED SOURCE. = (—

set_perms.c

sudo.c

tgetpass.c

tmp \"

Emp \:"

tmp\"

tmp\"

tmp \ nr

tmp\"

tmp\"

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers.tmp\"

./auth/sudo_auth.c -DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

6c Sc: 1. =f. -=DUXOPEN EXTENDED SOURCE ==

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS_TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_ MODE=0440

CO =C +l. =-L. =D XOPEN_ EXTENDED SOURCE: =

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS. TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

CC =-C st. =... =D _XOPEN EXTENDED SOURCE -

./auth/passwd.

sudo.tab.c

D_PATH,SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS TMP=\"/etc/sudoers

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

ec -c -1. =1. —D_XOPEN, EXTENDED SOURCE =

lex.yy.c

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

CC S¢G--1. =). ED: AOPEN _BATENDED SOURCE. =

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH_SUDOERS_TMP=\"/etc/sudoers.

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

ce =c =1L. -1. -D_XOPEN_EXTENDED SOURCE ~—

alloc:e

Gefaults.c

D_PATH_SUDOERS=\"/etc/sudoers\" -D PATH SUDOERS TMP=\"/etc/sudoers

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

CC =C el. -L =DeROPEN_EX TENDED SOURCE | (=

fnmatch.c

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS_TMP=\"/etc/sudoers

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440

Listing 14.3. Command output—make command. (continued)

snprintf.c

tmp \ "

“np

tmp \"

Emp \"

emp \i!

SEM) \"

Compiling, Installing, Configuring, and Using sudo 377

ec -o sudo check.o env.o getspwuid.o goodpath.o fileops.o

find_path.o interfaces.o logging.o parse.o set_perms.o sudo.o

tgetpass.o sudo_auth.o passwd.o sudo.tab.o lex.yy.o alloc.o defaults.o

fnmatch.o snprintf.o -Wl,-bI:./aixcrypt.exp

(SONI cal cole ANGI -D_XOPEN. EXTENDED! SOURCE -

D_PATH_SUDOERS=\"/etc/sudoers\" -D_PATH SUDOERS_TMP=\"/etc/sudoers.tmp\"

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 visudo.c

cc -o visudo visudo.o fileops.o goodpath.o find_path.o sudo.tab.o

lex.yy.o alloc.o defaults. o. Enmatch.o \snprintf so

Targets "alias ip bo date

Listing 14.3. Command output—make command. (continued)

After the make command completes, we have custom compiled code for your

system, but we still have one more installation step to complete before we are ready to

configure sudo. This last step is to install the compiled files created with the make

command. The next command handles the installation of sudo:

make install

Remember that the make command is usually located in /usr/bin and should be
in your $PATH. The output of the make install command for my machine is shown in

Listing 14.4.

/bin/sh ./mkinstalldirs /usr/local/bin /usr/local/sbin /etc

/usr/local/man/man8 /usr/local/man/man5

f/pin/sh«./install-sh -—c>-O 0 -G' 0 -M 4111 —s\‘sudo

/usr/local/bin/sudo

/bin/sh ./install-sh -c -O 0 -G 0 -M 0111 -s visudo

/usr/local/sbin/visudo

fest -£ /éte/sudoers || /bin/sh ./install-sh -c’-0'0 -G 0°-M 0440

./sudoers /etc/sudoers

/bin/sh ./install-sh -c -O 0 -G 0 -M 0444 ./sudo.man

/usx/local/man/man8/sudo.8

/bin/sh ./install-sh -c -O 0 -G 0 -M 0444 ./visudo.man

/usr/local/man/man8/visudo. 8

/bin/sh ./install-sh -c -0O 0 -G 0 -M 0444 ./sudoers.man

/usr/local/man/man5/sudoers.5

Target “install” is up to date.

Listing 14.4 Command output—make install.

If you did not have any failures during the compilation and installation processes,

then sudo is installed but not yet configured. In the next section we will look at two

sample configuration files.

378 Chapter 14

Configuring sudo

Configuring sudo is where a lot of people get a bit confused. The configuration is not
too difficult if you take small steps and test each part as you build the configuration
file. If you look in /etc after the installation is complete, you will see a file called

sudoers. The sudoers file is used to configure the commands and users for the sudo
program. Be very careful to never directly edit the sudoers file! A special program is

supplied that has a wrapper around the vi editor called visudo, or vi sudo.

The visudo program resides in /usr/1local/sbin by default. The nice thing about

visudo is that it checks the /etc/sudoers file for any errors before saving the file. If
errors are detected, the visudo program will tell you exactly what the error is and in

most cases the line the error is on. If you directly edit the /etc/sudoers file and you
make a mistake, the editor will just let you save the file, with the mistake, and it can be

difficult to find the error. The visudo program checks for the correct file format and

ensures that the command /user references are consistent. If you make a mistake with

a user name, the visudo editor will not catch the mistake, but this type of error should

be easy to find and correct after an initial run.

Iam enclosing two samples of a /etc/sudoers file for you to use as a template in
Listings 14.5 and 14.6.

| NOTE The sudoers file in Listing 14.5 is used with the permission of Todd

Miller at www.courtesan.com and is included in the sudo distribution as a

sample. Thank you, Todd!

Sample /etc/sudoers file.

This file MUST be edited with the 'visudo' command as root.

See the sudoers man page for the details on how to write a sudoers

file.

User alias specification

User_Alias FULLTIMERS = millert, mikef, dowdy

User_Alias PARTTIMERS = bostley, jwfox, crawl

User_Alias WEBMASTERS = will, wendy, wim

Ht

Runas alias specification

Listing 14.5 Sample /etc/sudoers file #1.

Compiling, Installing, Configuring, and Using sudo 379

Runas_Alias OP root,|\\openator

Runas_Alias DB = oracle, sybase

\

Host alias specification

Host_Alias SPARC = bigtime, eclipse, moet, anchor: \

SGI = grolsch, dandelion, black:\

ALPHA = widget, thalamus, foobar: \

HPPA = boa, nag, python

Host_Alias CUNETS LOS OhS 820 0/255 2550000

Host_Alias CSNETS =" 128. 139'3 24300) Tons 2040/24, 128138 242.0

Host_Alias SERVERS = master, mail, www, ns

Host_Alias CDROM = orion, perseus, hercules

Cmnd alias specification

Cmnd_Alias DUMPS = /usr/sbin/dump, /usr/sbin/rdump, /usr/sbin/restore,

\

/usr/sbin/rrestore, /usr/bin/mt

Cmnd_Alias KILL = /usr/bin/kill

Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm

Cmnd_Alias SHUTDOWN = /usr/sbin/shutdown

Cmnd_ Alias HALT = /usr/sbin/halt, /usr/sbin/fasthalt

Cmnd_Alias REBOOT = /usr/sbin/reboot, /usr/sbin/fastboot

Cmnd_Alias SHELLS /usv/bin/sh, /usr/bin/csh, /usr/bin/ksh, \

/usrc/lLocal/bin/tcsh, /usr/bin/esh,\

/usr/local/bin/zsh

Cmnd_Alias su = /usr/bin/su

Cmnd_Alias VIPW = /usr/sbin/vipw, /usr/bin/passwd, /usr/bin/chsh,. \

/usy/bin/chin

Override builtin defaults

iid

Defaults syslog=auth

Defaults: FULLTIMERS tlecture

Defaults:millert lauthenticate

Defaults@SERVERS log_year, logfile=/var/log/sudo.log

User specification

root and users in group wheel can run anything on any machine

as any user

Listing 14.5 Sample /etc/sudoers file #1. (continues)

380 Chapter 14

root ALL = (ALL) ALL

%wheel ALL = (ALL) ALL

full time sysadmins can run anything on any machine without a password

FULLTIMERS ALL = NOPASSWD: ALL

part time sysadmins may run anything but need a password

PARTTIMERS ALL = ALL

jack may run anything on machines in CSNETS

jack CSNETS = ALL

lisa may run any command on any host in CUNETS (a class B network)

lisa CUNETS = ALL

operator may run maintenance commands and anything in /usr/oper/bin/

operator ALL = DUMPS, KILL, PRINTING, SHUTDOWN, HALT, REBOOT, \

/usr/oper/bin/

joe may su only to operator

joe ALL = /usr/bin/su operator

pete may change passwords for anyone but root on the hp snakes

pete HPPA = /usr/bin/passwd [A-z]*, !/usr/bin/passwd root

bob may run anything on the sparc and sgi machines as any user

listed in the Runas Alias "OP" (ie: root and operator)

bob SPARC = (OP) ALL : SGI = (OP) ALL

jim may run anything on machines in the biglab netgroup

jim +biglab = ALL

users in the secretaries netgroup need to help manage the printers

as well as add and remove users

+secretaries ALL = PRINTING, /usr/bin/adduser, /usr/bin/rmuser

fred can run commands as oracle or sybase without a password

fred ALL = (DB) NOPASSWD: ALL

on the alphas, john may su to anyone but root and flags are not

allowed

john ALPHA = /usr/bin/su [!-]*, !/usr/bin/su *root*

jen can run anything on all machines except the ones

in the "SERVERS" Host_Alias

Listing 14.5 Sample /etc/sudoers file #1. (continued)

Compiling, Installing, Configuring, and Using sudo 381

jen ALL, !SERVERS = ALL

Ril can run’ any commands in’ the directory /usr/bin/, except for

those in the SU and SHELLS aliases.

jill SERVERS = /usr/bin/, !SU, !SHELLS

steve can run any command in the directory /usr/local/op_commands/

as user operator.

steve CSNETS = (operator) /usr/local/op_commands/

matt needs to be able to kill things on his workstation when

they get hung.

matt valkyrie = KILL

users in the WEBMASTERS User_Alias (will, wendy, and wim)

may run any command as user www (which owns the web pages)

or simply su to www.

WEBMASTERS www = (www) ALL, (root) /usr/bin/su www

anyone can mount/unmount a CD-ROM on the machines in the CDROM alias

ALL CDROM = NOPASSWD: /sbin/umount /CDROM, \

/sbin/mount -o nosuid\,nodev /dev/cd0a /CDROM

Listing 14.5 Sample /etc/sudoers file #1. (continued)

sudoers file.

This file MUST be edited with the 'visudo' command as root.

+

See the sudoers man page for the details on how to write a sudoers

file.

Users Tdentification:

All ROOT access:

47742 - Michael

Restricted Access to: mount umount and exportfs

Listing 14.6 Sample /etc/sudoers file #2. (continues)

382 Chapter 14

Restricted Access to: Start and stop Fasttrack Web Server

a3920 - Park

d7525 — Brinker

d7794 - Doan

Restricted OPERATIONS access

d6331 = Sutter

d6814 - Martin

d8422 - Smith

a9226 - Milando

a9443 - Summers

ad640 - Lawson

d2105 - Fanchin

a2188 - Grizzle

dgd3408 - Foster

d3551 - Dennis

a3883 - Nations

d6290 - Alexander

d2749 - Mayo

d6635)— Wright

d3916 - Chatman

G67 82 Scott

dad6810 - Duckery

dad6811 - Wells

a6817 - Gilliam

d5123) -“Cryniek

a7504 - Davis

a7505 - McCaskey

a7723 - Rivers

See Se OE OE HEHE HEHEHE CHRO SHE HEHEHE HEHEHE HOH OH OH OH OH OH OH HE OE SE HH HH OH OH Host alias specification

Host Alias LOCAL=yogi

User alias specification

User_Alias NORMAL=47742,07537,07526,d6029,d7204,d1076,d7764,d7808

User_Alias ADMIN=e17742,d7211,d6895,d8665,d7539,b003

User_Alias ORACLE=d7742

User_Alias SAP=407742

User_Alias OPERATOR=d7742,d6895,d6331,d6814,d8422,d9226,d9443,d0640,

d2105,d2188,d3408,d3551,d3883 ,d6290,d2749,d6635,d3916,da6782, d6810,

Listing 14.6 Sample /etc/sudoers file #2. (continued)

Compiling, Installing, Configuring, and Using sudo 383

6811, a6817,d5123)) a7 504\)avs05..a7v23

User_Alias FASTTRACK=d3920,d7525,a7794

Cmnd alias, specification

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

MNT=/usr/bin/mount

UMNT=/usr/bin/umount

EXP_FS=/usr/bin/exportfs

KILL=/usr/bin/kill

ROOT_SU=/usr/bin/su -

SU_ROOT=/usr/bin/su - root

SUROOT=/usr/bin/su root

ORACLE_SU=/usr/bin/su - oracle

SAP_SU=/usr/bin/su - sap

TCPDUMP=/usr/sbin/tcpdump

ERRPT=/usr/bin/errpt

SVRMGRL=/oracle/product/8.0.5/bin/svrmgrl

RSH_UPDATE=/usr/local/bin/rsh_update.ksh

START_FT YOGI=/usr/netscape/httpd-yogi/start

STOP_FT_YOGI=/usr/netscape/httpd-yogi/stop

START _ FT _DINO=/usr/netscape/httpd-dino/start

STOP_FT_DINO=/usr/netscape/httpd-dino/stop

START WSADM=/usr/netscape/start-admin

STOP_WSADM=/usr/netscape/stop-admin

User privilege specification

FULL ROOT ACCESS! !!!!! (BE CAREFUL GRANTING FULL ROOT! !!!!!1!)

root ALL=(ALL) ALL

d7742 ALL=(ALL) ALL # Michael

Only mount, umount and exportfs

NORMAL LOCAL=MNT, UMNT, EXP_FS

Some Limited Sys Admin Functions

ADMINLOCAL=MNT, UMNT, KILL, ORACLE _SU,SAP_SU,TCPDUMP, ERRPT, ROOT_SU:

LOCAL=SU_ROOT, SUROOT,EXP_FS

Some Operator Functions

OPERATOR LOCAL=RSH_ UPDATE

Some FastTrack/WebAdm Functions

FASTTRACK

LOCAL=START FT H1,STOPPT BL, START FT B2, STOP LPT BQ, START WSADM,

Listing 14.6 Sample /etc/sudoers file #2. (continues)

384 Chapter 14

STOP_WSADM

Override Defaults

Change the default location of the SUDO log file

Defaults logfile=/var/adm/sudo.log

Listing 14.6 Sample /etc/sudoers file #2. (continued)

As you can see by the two sample /etc/sudoers files, you can get as detailed as
you want. As you look at these files, notice that there are four kinds of aliases:

User_Alias, Runas_Alias, Host_Alias, and Cmd_Alias. The use of each alias

type is listed next.
A User_Alias isa list that can contain any combination of usernames, UID (with

a “#” prefix), system groups (with a “%” prefix), netgroups (with a “+” prefix), and

other user-defined aliases. Any of these can be prefixed with the NOT operator, “!”, to

negate the entry.
A Runas_Alias can contain any of the same elements as the User_Alias; the

only difference is that you use Runas_Alias instead of User_Alias in the configu-

ration. The Runas_Alias allows execution of a command as a user other than root.

AHost_Alias isa list of hostnames, IP addresses, or netgroups (with a “+” prefix).

The Host_Alias also supports the NOT operator, “!”, to negate an entry. You will

need to use the fully qualified DNS name if the hostname command on any machine

returns the name of the machine in a fully qualified DNS format. The visudo editor
will not catch this “error.”

A Cmnd_Alias is list of one or more commands specified by a full pathname, not

just the filename. You can also specify directories and other aliases to commands. The

command alone will allow command arguments to the command, but you can disable

command arguments using double quotes (” ”). If a directory is specified a user can

execute any command within that directory, but not any subdirectories. Wildcards are

allowed, but be very careful to ensure that the wildcard is working as expected.

I am not going to discuss every piece of sudo because very detailed documentation

is included with the sudo distribution, and I need to limit my page count in this book.

Our next step is to look at how to use sudo and how to use sudo in a shell script.

Using sudo

We use sudo by preceding the command that we want to run with the word sudo. As
an example, if my user ID is rmichael and I want to gain root access for the first time,

I will follow these steps:

Compiling, Installing, Configuring, and Using sudo 385

PATH=$PATH: /usr/local/bin

export PATH

sudo su - root

)

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these two things:

#1) Respect the privacy of others.

#2) Think before you type.

Password:

yogi@/#

Listing 14.7 Using sudo for the first time.

Notice the short lecture that is displayed in Listing 14.7. This lecture message is dis-
played only the first time that sudo is used by each user. In the password field the user
responds with his or her normal user account password, not the root password. You

should be careful granting full root permission like this. Allowing a user to su to root

via the sudo program does not leave an audit trail of what the user did as root! You

should still have the root history file if the user did not delete or edit the file. Also

notice in Listing 14.7 that I added /usr/local/bin to my $PATH. By default the
sudo command is located in the /usr/local/bin directory, but most shops do not
add this directory to the $PATH environment variable as a normal path when setting

up user accounts. Just make sure that all sudo users have the sudo command in the

$PATH or that they need to provide the full pathname to the sudo command.

Using sudo in a Shell Script

We can also use sudo in a shell script. As you create the shell script add the sudo com-
mand as a prefix to each command that you want to execute as root. The script in List-

ing 14.8 uses the sudo command to allow our Operations Team to reset passwords.

On an AIX system you can manage user passwords with the pwdadm command. In

this particular shell script we want our Operations Team to be able to change a user’s

password from a menu selection in a shell script. The bold text shown in Listing 14.8

points out the use of sudo and also the use of the tput command for reverse video,
which we will study further in Chapter 15.

386 Chapter 14

#!/usr/bin/ksh

SCRIPT: chpwd_menu.ksh

AUTHOR: Randy Michael

DATE: 11/05/2001

PLATFORM: AIX

REVs cd Doe

PURPOSE: This script was created for the Operations Team

to change user passwords. This shell script uses

"sudo" to execute the "“pwdadm"” command as root.

Each member of the Operations Team needs to be

added to the /etc/sudoers file. CAUTION: When

editing the /etc/sudoers file always use the

/ausr/local/sbin/visudo program editor!!!

NEVER DIRECTLY EDIT THE sudoers FILE!!!!

REV: LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

te Sh Se HF OH OH HE HH HH HH HH HH OH OH OH OF OH OS

HARPER EEAR EEE GEER EEE EA EHH HEHE EHH HEH HEH EEE HEH HEH

DEFINE FUNCTIONS HERE

HEHEHE HHH HHH EHH HEH HH HHH EHH EH EE EH EH EHH HEE EH

function chg_pwda

{

USER_NAME="$1"

echo "\nThe next password prompt is for YOUR NORMAL PASSWORD"

echo "NOT the new password..."

The next command turns off the checking of the password history

/usr/local/bin/sudo /usr/bin/pwdadm -£ NOCHECK S$USER_NAME

it [$? -ne' 0]

then

echo "\nERROR: Turning off password history failed..."

usage

exit 1

fi

The next command changes the user's password

/usr/local/bin/sudo /usr/bin/pwdadm $USER_NAME

Listing 14.8 chpwd_menu.ksh shell script listing.

Compiling, Installing, Configuring, and Using sudo 387

VES me ON}

then

echo "\nERROR: Changing SUSER_NAME password failed..."

usage

exit 1

EL

The next command forces the user to change his or her password

at the next login.

/usr/local/bin/sudo /usr/bin/pwdadm -£ ADMCHG $USER_NAME

return 0

}

HH EH EH HEE BH HH EH EEE EE HH HH HEE HEH EEE EE HE

START OF MAIN

HEE HEHEHE HEH aE HEH HEHE HEH EE HEHE HEHE HE EH EE EE EEE

OPT=0 # Initialize to zero

clear # Clear the screen

white [| SOP [= -99°]] # Start’ a Loop

do

Draw reverse image bar across the top of the screen

with the system name.

clear

tput smso

echo " $ (hostname) La

tput sgr0

echo ""

Draw menu options.

echo "\n\n\n\n\n\n\n"

print "10. Change Password"

echo) "\n\n\n\n\n\n\n\n\n"

print "99. Exit: Menu"

Draw reverse image bar across bottom of screen,

Listing 14.8 chpwd_menu.ksh shell script listing. (continues)

388 Chapter 14

with error message, if any. ee

tput smso

echo " $MsG “

tput sgr0

Prompt for menu option.

read OPT

Assume invalid selection was taken. Message is always

displayed, so blank it out when a valid option is selected.

MSG=" Invalid option selected :

Option 10 - Change Password

Pe sOPr eq 10.4

then

echo "\nUsername for password change? \c"

read USERNAME

grep SUSERNAME /etc/passwd >/dev/null 2>&1

eS ese Oc]

then

chg_pwd SUSERNAME

af [S$? -eq 0]

then

MSG="SUSERNAME password successfully changed"

else

MSG="ERROR: SUSERNAME password change failed"

fa:

else

MSG=" ERROR: Invalid username SUSERNAME 4

fi

£4

End of Option 99 Loop

done

Brase menu from screen upon exiting.

clear

Listing 14.8 chpwd_menu.ksh shell script listing. (continued)

The chpwd_menu.ksh shell script in Listing 14.8 displays a menu on the screen that

has only two options, change a user’s password or exit. This shell script uses the sudo
program to execute the pwdadm command as the root user. The pwdadm command is

Compiling, Installing, Configuring, and Using sudo 389

used for password administration in AIX and has options to turn password history
checking off and to force password changes on the next login attempt. The pwdadm
command is executed three times in the chg_pwd function within the shell script. The

first time pwdadm is executed as root we turn off the checking of the password history.

Notice that I added a comment to the staff that the next password prompt is for their

normal user password, not the new user password. I turn off the history checking

because the password that the Operation Team is going to enter is a temporary pass-

word. The next time the user logs in, the system will prompt for a new password, and

at this stage the password history will be checked. The second time that pwdadm is

executed, the password is actually changed by the Operations Team member. The third

time pwdadm is executed, the user is forced to change his or her password the next

time they log in. Each time sudo is used to execute pwdadm as root.
Also notice the tput commands. The tput command has many options to control the

cursor and the terminal. In this script we are using reverse video to display the host-

name of the machine in the menu title bar at the top and to display messages at the

bottom of the menu. There is much more on the tput command options in Chapter 15.

The sudo Log File

Before we end this chapter I want to show you what the sudo log file looks like. Each

time that sudo is executed, an entry is made in the specified log. Logging can be to a

file or to the system syslog. I specify a log file in the /etc/sudoers, but you may

prefer the syslog. A short version of my sudo log file is shown in Listing 14.9.

Nov’ 9 10:07:44 +: d7742 : TYY=pts/2 ; PWD=/usr/local.; USER=root. ;

COMMAND=/usr/bin/ftp bambam

Nov — 9-10:09-13: - d7/42-: _-TTY=pts/2.; PWD=/usr/ local; USER=root |;

COMMAND=/usr/bin/ftp dino

Nov 23 10:10:48 : d7742 °°: TTY=pts/0 ; PWD=/home/gquest’ ;) USER=root ;

COMMAND=/usr/bin/whoami

dul 23 17-35:47 -: d7996 : TTY=pts/3.; PWD=/home/quest |; USER=root |;

COMMAND=/usr/sbin/mount /usr/local/common

Oct 2 09:29-33 . d7742 : TTY=pts/1l ; Pwh=/home/d/742\; \USER=root)|;

COMMAND=/usr/bin/su -

Nov 14 16:01:31 : d7742 : TTY=pts/0 ; PWD=/home/d7742 ; USER=root ;

COMMAND=/usr/bin/su - root

Nov 14 16:03:58 : rmichael : TTY=pts/0 ; PWD=/home/rmichael ; USER=root

COMMAND=/usr/bin/su - root

Nov £5 127931-32): d7742. = TTY=pts/0 . PWD=/scripts | USER=root ;

COMMAND=/usr/bin/pwdadm -f NOCHECK rmichael

Nov 15 21:31-32 3 d/742 3 PRY=pts/0 3 PWO=/scripts,; USER-=root |;

COMMAND=/usr/bin/pwdadm rmichael

Nov 15 2330-325 AN740 = tT y=pts/0.; PWO=/scripts ; USER=root'\;

Listing 14.9 Sample sudo log file. (continues)

390 Chapter 14

COMMAND=/usr/bin/pwdadm -f£ ADMCHG rmichael :

Nov 15 14:58:49 : root : TTY=pts/0 ; PWD=/usr/local/sudo-1.6.3p7 ;
USER=root ; COMMAND=/usr/bin/errpt

Nov 15 14:59:50 : a7742 : 3 incorrect password attempts ; TTY=pts/0 ;

PWD=/home/d7742 ; USER=root ; COMMAND=/usr/bin/errpt

Listing 14.9 Sample sudo log file. (continued)

In Listing 14.9 notice the last line of output. This line shows three incorrect password
attempts. You can set up sudo to send an email on each password failure if you want

immediate notification of misuse. The shell script in Listing 14.8 produced three log
entries on each password change. I have highlighted several other entries for ftp and

su to root to show you how the log entries look.

Summary

Through this chapter we have shown how to compile, install, configure, and use the

sudo program. We all know that protecting the root password is one of our main tasks
as a Systems Administrator, and sudo makes the job a little less difficult. When you use
sudo in a shell script, it is important that each user is familiar with sudo and has used

it at least once from the command line. Remember that on the first use the lecture mes-
sage is displayed and you do not want a lecture in the middle of a menu! In the sudo

distribution there are several files that you should review. The README file has valu-

able information in installation and a lot of OS-specific problems and workarounds.

The FAQ file answers the most frequently asked questions. The Sudoers Manual is a

must read! This manual describes the many options in configuring your sudoers file.

Finally, we have the Visudo Manual that explains how to use the visudo editor and

lists the command options and possible error conditions. Again, I want to thank Todd
Miller at www.courtesan.com for allowing me to use his material in this chapter.

In the next chapter we are going to create a highlight grep script. If you have ever

wanted to find a text string in a large file, you will really appreciate this script! The

command syntax is exactly the same as the grep command, but instead of extracting

the line that the grep command pattern matched on, we display the entire file and use
reverse video to highlight the text within the file.

hgrep: Highlighted grep Script

Ever want to find text in a large file easily? The larger the text file, the more you will

appreciate this shell script. We can use reverse video in shell scripts for more than just

making pretty menus. What about highlighting text in a file or ina command’s output?
In this chapter we are going to show an example of using reverse video in a shell script

that works similar to the grep command. Instead of displaying the line(s) that match

the pattern, we are going to display the entire file, or command output, with the
matched pattern highlighted in reverse video. I like to call this hgrep.

In the process of creating this shell script, an initial test script was developed that

ended up being very complicated. It started by grepping each line for the specified pat-

tern. If the pattern was found in the line, then a scan of the line, character by character,

was started to locate the exact pattern in the line for highlighting, then we grepped
again for the pattern in remaining line of text, and so on. This initial code had quite a

few problems, other than the complicated nature of the script, caused by Unix special
characters making the output do some very interesting things when scanning shell
script code. Regular text files worked fine, but the script was very slow to execute.

Then there was the revelation that sed should somehow be able to handle the pat-
tern matching—and do so a lot faster than parsing the file with a shell script. A Korn
shell script is really not meant to work on a file line by line and character by character; it

can be done, but this is what Perl is for! The problem to resolve using sed was how to
add in the highlighting control within a sed command statement. After thinking about

using sed and command substitution for a while, I had a working script in about 15
minutes (we might have a record!), and the following is what I came up with.

391

392 Chapter 15

Reverse Video Control

There are two commands that control reverse video: tput smso turns soft reverse video
on, and tput rmso turns highlighting back off. The tput command has many other
options to control the terminal, but tput sgr0 (sgr-zero) will turn every tput option off.
To highlight text we turn reverse video on, print whatever we want highlighted, and

then turn reverse video off. We can also save this output, with the highlighted text, in

a file. To display the file with highlighted text we can use pg, or page, and on some

operating systems more will work. The more command did not work on either AIX or

HP-UX operating systems. Instead, the more command displayed the characters that
make up the escape sequence for the highlighted text, not the highlighted text itself. You

would see the same result using the vi editor. On Solaris both commands displayed the

highlighted text, but not all operating systems have the pg and page commands.

There is one common mistake that will prevent this shell script from working, not

double quoting the variables, for example "$STRING". The double quotes have no

effect on a single-word pattern match, but for multiword string patterns the variables

must be double quoted or standard error will produce command usage errors within

the script. The errors are due to the fact that each word that makes up the string pattern

will be interpreted as a separate argument instead of one entity. The double quotes are

very important when working with string variables. Forgetting the double quotes is a
very hard error to find when troubleshooting code!

The sed command is next. Remember the basic sed syntax that we use in this book:

cat $FILENAME | sed s/current_string/new_string/g

In our script we want to take the sed command statement and redirect output to a

file, then display the file with pg, page, or more.

cat $FILENAME | sed s/current_string/new_string/g > $OUTPUT_FILE

pg SOUTPUT_FILE

Sa MSN GSK

more SOUTPUT_FILE

To add in the reverse video piece we have to do some command substitution within

the sed statement using the tput commands—this is the part that had to be worked out.

Where we specify the new_string we will add in the control for reverse video using

command substitution, one to turn highlighting on and one to turn it back off. When

the command substitution is added, our sed statement will look like the following:

sed s/current_string/$(tput smso)new_string$(tput rmso)/g

In our case, the current_string and new_string will be the same because we

only want to highlight existing text without changing it. We also want the string to be
assigned to a variable, as in the next command:

sed s/"$STRING"/S(tput smso) "$STRING"S (tput rmso) /g

hgrep: Highlighted grep Script 393

Notice the double quotes around the string variable, "$STRING". Do not forget to
add the double quotes around variables!

As an experiment using command substitution, try this next command statement on
any Unix machine:

cat /etc/hosts | sed s/*‘hostname’/$(tput smso) ‘hostname*$(tput rmso) /g

In the preceding command statement notice that we used both types of command
substitution, enclosing the command within back tics, ~command*, and the dollar

parentheses method, $ (command) . The previous statement will cat the /etc/hosts
file and highlight the machine’s hostname in reverse video each time it appears in the

file. Now try the same command, but this time pipe the command to more. Try the

same command again using pg and page instead of more, if your machine supports

the page commands. If your machine does not have the pg command, then the more

command should work. If your operating system has both pg and more, notice that

using more may not display the string pattern in reverse video—it will display the

characters that make up the escape sequence that the tput commands create, but
Solaris is an exception. We will need to consider this when we display the result on dif-

ferent operating systems.

To make this script have the same look and feel as the grep command, we want to be

able to supply input via a file, as a command-line argument, or as standard input from

a command pipe. When supplying a filename to the script as a command-line argu-

ment, we need to ensure that the file exists, its size is greater than zero bytes, it is read-

able by this script, and the string pattern is matched in the file. We could leave out the
last step, but if the pattern is not in the file then it would be nice to let the user know. If

we are getting input from standard input instead of a file specified as an argument—

for example, cat /etc/hosts | hgrep.ksh ~hostname*—then we need to

check for the string pattern in the output file instead of the input file. Then we can still
inform the user if the pattern is not found.

Building the hgrep.ksh Shell Script

Now that we have the basic command syntax, let’s build the hgrep.ksh shell script.

There are two types of input for this script, file input and standard input. For the file
input we need to do some sanity checks so that we don’t get standard error messages
from the system. We also want to give the user some feedback if there is something that

will cause an error using the specified file as input—for example, the file does not exist
or is not readable by the script because of file permissions. The command syntax using

the hgrep.ksh script should be the same as the grep command, which is:

grep pattern [filename]

By looking at this we can determine that we will sanity-check the file only when we

have two command-line arguments; otherwise, we are using piped-in standard input,

which implies that we check the file only when $# is equal to 2. We begin with checking

the command-line arguments and making assignments of the arguments to variables.

394 Chapter 15

if [$# -eqi1]

then

Input coming from standard input

PATTERN="$1" # Pattern to highlight

F [TLENAME= # Assign NULL to FILENAME

elif [$# -eq 2]

then

Input coming from $FILENAME file

PATTERN="$1" # Pattern to highlight

FILENAME="$2" # File to use as input

else

Incorrect number of command-line arguments

usage

exit. 1

alt

We should now have enough to get us started. If we have a single command-line
argument, then we assign $1 to PATTERN and assign the FILENAME variable a NULL
value. If there are two command-line arguments, then we assign $1 to PATTERN and

$2 to FILENAME. If we have zero or more than two arguments, then we display the

usage message and exit with a return code of 1, one. The function for correct usage is
listed here:

function usage

{

echo "\nUSAGE: $SCRIPT_NAME pattern [filename] \n"

}

Follow through the hgrep.ksh script in Listing 15.1, and the process will be
explained at the end of the shell script.

#! /usr/bin/ksh

SCRIPT: hgrep.ksh

AUTHOR: Randy Michael

DATE: 03/09/2001

REV 2-1.2

PLATFORM: Not Platform Dependent...(Not very platform dependent)

There is a slight "more" command issue that has been

=

resolved

i PURPOSE: This script is used to highlight text in a file or standard

Listing 15.1 hgrep.ksh shell script.

hgrep: Highlighted grep Script 395

Anput. Given ia text, strang (and \a\ file, on standard input, the

script will search for the specified string and highlight each

occurrence of the string using command substitution within a

sed statement) to) turn)on and off the reverse video. "tput smso”

turns on reverse video and CEDULLEMSOM WHE turn tore... This

script is a "highlighted grep" command.

set -x # Uncomment to debug

set -n # Uncomment to check command syntax without execution

EXIT CODES:

=> Script exited normally 0

1 ==> Usage error

2 s=>- input iti lecserror

3 ==> Pattern not: found in the’ file

REV LIST: ‘

03/12/2001 - Randy Michael - Sr. Sys. Admin.

Added code fo just exit 1f the string de not, in

the target file.

03/13/2001 - Randy Michael - Sr. Sys. Admin.

Added code to ensure the target file is a readable "regular"

non-zero file.

03/13/2001 - Randy Michael - Sr. Sys. Admin.

Added code to highlight the text string and filename

in the error and information messages.

08-22-2001 - Randy Michael - Sr. Sys. Admin

Changed the code to allow this script to accept standard

input from a pipe. This makes the script work more like the

S$ 46 $F HF OH OH OH OH HE HEHEHE HEHEHE HEHEHE OH OH OH OH OH HE HF HH OH OH OH OH HH HF TH grep command

SCRIPT NAME="basename $0°

HHHHBRHHHEHHEHEHHHEHHEHEHH EPH REE H HHH HH SEH HEH HH HE

HHHHHHHHHHH DEFINE FUNCTIONS HERE ####8 ttt HHH

HHHHHHHRHHHHEEHHERRH RARER REA GEH AE HHH RH

function usage

{

echo "\nUSAGE: S$SCRIPT NAME pattern [filename] \n"

HHRAHHHARHAH HARARE RAE EE EHH HH HE

HHHHHHHHHHH CHECK COMMAND SYNTAX #### HEHE HTH HH

Listing 15.1 hgrep.ksh shell script. (continues)

396 Chapter 15

aa Ha RA EEE HE HE HE HEHE HE HE HEE EE HEE HEHEHE HEHEHE HE

LE {

then

elif

then

$# -eq 1]

Input coming from standard input

PATTERN="$1" # Pattern to highlight

FILENAME= # Assign NULL to FILENAME

[$# -eq 2]

Input coming from $FILENAME file

PATTERN="$1" # Pattern to highlight

FILENAME="$2" # File to use as input

Perform sanity checks on the file!!!

Does the file exist as a "regular" file?

if [[! -£ $FILENAME]]

then

echo -"“\nBRRORs: \o"

tput smso

echo "${FILENAME}\c" # Highlight the filename

tput rmso

echo." does not: exist as a régquiar ‘file. oo \n"

usage

exit 2

Pi:

Is the file empty?

if [{[! -s $FILENAME]]

then

echo "\nERROR: \c"

tput smso

echo "${FILENAME}\c" # Highlight the filename

tput rmso

echo " file size is zero...nothing to search\n"

usage

exit 2

£i:

Is the file readable by this script?

if [[! -xr $FILENAME]]

then

Listing 15.1 hgrep.ksh shell script. (continued)

hgrep: Highlighted grep Script 397

echo "\nERROR: \c"

tput smso

echo "${FILENAME}\c" # Highlight the filename

tput, rmso

echo "is not readablie|\tol\this program. |. \n'"

usage

exit 2

sel

Is the pattern anywhere in the file?

grep "S$PATTERN" $FILENAME >/dev/null 2>&1

if [$? -ne 0]}

then

echo: “\nSORRY: The string. \c"

tput smso

echo "${PATTERN}\c” # Highlight the pattern

tput rmso ‘

echo “ was not found in \c"

tput smso

echo "${FILENAME}\c" # Highlight the filename

tput rmso

echo n\n. BRI DING. a \nY

exit 3

£i

else

Incorrect number of command line arguments

usage

exit 1

fi

RAE HEH HH EE HH EH HE aE aE EE aE HE HH HE HH HH EH HH HH

HHEHHEHHEHH DEFINE VARIABLES HERE ######44 #444

HERR RRRERREE ERE EEE REE HEHE HERES HEHEHE HH

OUTPUT_FILE="/tmp/highlightfile.out"

>SOUTPUT_FILE

HHHPHHEEREERPEREREEPREEE EEE EEE EHH EHH HH HS HF

HHEHHHEHEHEHE START OF MAIN ###HHHEEEEEREEEHE HH

REHASH ERE E HAE HEE EH EERE HE HH

If the $FILENAME varaible is NULL then input is from a command pipe

Testing for NULL assigned to $FILENAME.

if [{[! -z "$FILENAME" && "$FILENAME" != '' }j]

then

Listing 15.1 hgrep.ksh shell script. (continues)

398 Chapter 15

Using $FILENAME as input

MUST USE DOUBLE QUOTES AROUND $PATTERN!!! -> "SPATTERN"

cat "S$FILENAME" \

| sed s/"${PATTERN}"/$(tput smso) "${PATTERN}"$(tput rmso)/g \

> $OUTPUT FILE

else

Input is from standard input...

MUST USE DOUBLE QUOTES AROUND S$PATTERN!!! -> "SPATTERN"

sed s/"${PATTERN}"/S$(tput smso)"${PATTERN}"$(tput rmso)/g \

> S$OUTPUT_FILE

Check to see if the pattern was in the standard input

grep "$PATTERN" SOUTOUT FILE >/dev/null 2>&1

if [$? -ne 0]

then

echo "\nSORRY: The string \c"

tput smso

echo "S${PATTERN}\c"

tput rmso

echo" was mot found in standard input \e"

echouw"An\n. 2. BALTING.. .\n"

exit 3

fa

eet

Check the operating system, on AIX and HP-UX we need to

use the "pg", or "page” command. The "more" command does

not work to highlight the text, it will show only the

characters that make up the escape sequence. All

other operating systems use the "more" command.

case $(uname) in

AIX | HP-UX)

¢# This is a fancy "pg" command. (lt acts (similarly to the

"more" command but instead of showing the percentage

displayed it shows the page number of the file

/usr/bin/cat $OUTPUT_FILE | /usr/bin/pg -csn -p"Page %d:"

*)

Listing 15.1 hgrep.ksh shell script. (continued)

hgrep: Highlighted grep Script 399

/usr/bin/cat $OUTPUT_FILE | /usr/bin/more

esac

5

rm -f£ SOUTPUT_FILE # End of Script Cleanup

Listing 15.1 hgrep.ksh shell script. (continued)

In the shell script in Listing 15.1 we first check for the correct number of command-

line arguments; either one or two arguments are valid. Otherwise, the script usage

message is displayed, and the script will exit with a return code 1. If we have the cor-

rect number of arguments, then we assign the arguments to variables. If we have two

command-line arguments, then an input file is specified in $2—at least it is supposed

to be a file. We need to do some sanity checking on this second command-line argu-

ment by first checking to see that the file exists as a regular file. We do not want to do

anything with the file if it is a block or character special file, a directory, or any other

nonregular file. Next we make sure that the file is not empty. Then we ensure that the

script can read the file, and finally we grep for the pattern in the file to see if we have

anything to highlight. If all of the tests are passed, then we can proceed.

By checking if the $F ILENAME variable is null, or empty, we know which type of

input we are dealing with. A null or empty $FILENAME variable means we use stan-
dard input, which is input from a pipe in this case. If $F ILENAME is not null, then we

have a file specified as input to the script on the command line. The only difference

in handling an input file versus standard input is that we will supply the "cat

SFILENAME |" if there is an input file specified. Otherwise, the input is already com-

ing in from a pipe directly into the sed statement—it’s that simple. We have one more

check before displaying the output. If we are using piped-in standard input, then we
grep for "SPATTERN" in the $F ILENAME to see if it exists. If not, we display a string not

found message and exit.
The output display is interesting because more will not work on HP-UX or AIX to dis-

play the highlighted text. For HP-UX and AIX we use pg instead of more. To determine
which flavor of Unix we are running, we use the uname command in a case statement. If

the OS is either AIX or HP-UX, we used a fancy pg command, which has output that

appears similar to the more output. Using pg -csn -p"Page %d:" will display the page
number of the file, where more displays the percentage of file. All other Unix flavors will

use more to display the output file.
The script in Listing 15.1 is a good example of how a little ingenuity can greatly sim-

plify a challenge. We sometimes make things more complicated than they need to be,
as in my initial test script that parsed through the file line by line and character by char-

acter, searching for the pattern. We live and learn!

400 Chapter 15

Other Options to Consider

As with every script there is room for improvement or customization, however you

want to look at it.

Other Options for the tput Command

The only tput command option that we worked with was the tput smso command,

which is used to turn on highlighting. The tput command has many other options to
control terminal display. In our example we did a highlight of not only the text but also
the surrounding block for each character. We could also highlight only the text piece,
double video the entire text block, underline with other options—for example, we

could have underlined bold text. The tput command is fun to play with. The short list

of command options is shown in Table 15.1.

Table 15.1 Options for the tput Command

tput bell Ring the bell

tput blink Start blinking mode

tput bold Start double intensity (much brighter than reverse video)

tput civis Turn the cursor off (make the cursor invisible)

tput cnorm Make the cursor normal again

tput cr Send a carriage to the terminal

tput cwis Make the cursor very bright

tput dim Start one-half intensity mode

tput ed Clear to the end of the display

tput el Clear to the end of the line

tput flash Send a visible bell (good to send a flash to someone's screen)

tput invis Start invisible text mode

tput prot Start protected mode

tput rc Restore the last saved cursor position (paved by tput sc)

tput rev Begin reverse video mode (bright!)

tput rmso End the standout mode (reverses tput smso)

tput rmul Ends the underline (underscore) mode

tput sc Save the cursor position

hgrep: Highlighted grep Script

Table 15.1 (Continued)

tput sgrO Turn off all video modes

tput smso Start the standout mode (soft reverse video we used in
this chapter)

tput smul Start the underline (underscore) mode

tput Underscore one character and move to the next character

Table 15.1 is only an abbreviated listing of the tput command options. As you can

see, we can do a lot with the text on the screen. Use your imagination, and play around

with the commands.

Summary

In this chapter we introduced using reverse video to highlight text within our output.

Also we showed how to do command substitution inside a sed command statement.
There are many more options for the tput command to control the terminal; for exam-

ple, we could have underlined the matching pattern. The nice thing about the tput

command is that it will let you mix things up, too.
In the next chapter we are going to look at how to keep the printers in the landscape

printing. If you do not automate this function you could spend all of your time doing

printer management instead of doing any real work. See you in the next chapter!

401

Print Queue Hell: Keeping
the Printers Printing

If you have worked in a large systems environment for very long you already know

how frustrating it can be to keep the printer farm happy. In my contracting days I

worked in several shops that consistently had problems with the printers. In most cases,

the print queues went down because of network timeouts and extended device waits.

In this kind of environment you have two choices: keep answering the calls from the

help desk or write a shell script to monitor the printer queues and reenable the queues

as they drop offline.

I prefer the second method. Like every other Systems Administrator, I like to be

proactive in my approach to solving the little problems as well as the big ones. The

shop I remember the best was a hospital. This hospital has more than 30 satellite clin-

ics around town and only one 100MB/Sec pipe coming in to the hospital from the out-

side world. Most of the clinics have between three and five printers, with at least one

printer active most of the day. When I came on board, the first problem I encountered
was the huge volume of calls to the help desk about printer problems. What caught my
eye was the fact that all of the calls came from the clinics, not from inside the hospital.

I knew immediately that a shell script was in order! In this chapter we are going to look

at two methods of bringing up the print queues, enabling individual queues and bring-
ing up the whole lot. Because Unix flavors vary on handling printers and queues, we

first will look at the differences between the Unix flavors.

403

404 Chapter 16

System V versus BSD Printer Subsystems

Depending on the Unix flavor, the commands vary to control the printers and queues
because some use the System V subsystem and others use BSD. With AIX you have an

ever more confusing situation beginning with AIX 5L. Starting with this release, AIX

now supports both the “classic” AIX printer subsystem and the System V printer ser-

vice. Another problem is that some commands do not provide the full print queue

name if the queue name exceeds seven characters. I have come up with some ways to
get around the long queue names, and on most systems you do not have to worry
about long queue names too much if you want to control all of the printers at once.

In this book we are covering AIX, HP-UX, Linux, and Solaris. For no other reason

that I can think of, let’s cover the printer systems in alphabetical order.

AIX Print Control Commands

AIX is the most interesting of the bunch with its new support for the System V printer

service starting with AIX 5L. Although the AIX classic printer subsystem wiil still be

supported for many years, the move seems to be going to System V for printing service.

Classic AIX Printer Subsystem

Most AIX Systems Administrators still prefer to use the classic AIX printer subsystem.
This is the primary printing that I have supported for years. With the AIX printer sub-

system you do not have the detailed control that the System V service offers. For exam-

ple, you do not control forms and user priorities at a granular level, and you cannot

manage the printers independently of the print queues easily. With this printer sub-

system anyone can print on any printer, and the print queue is either UP, allowing you

to print, or DOWN, disabling all printing. The shell scripts we are going to write for the
classic AIX printer subsystem work at the print queue level.

The two commands we are going to use are Ipstat and eng -A. Both commands pro-
duce the same output, but some administrators seem to like one over the over. As I stated

earlier, we need to be aware that sometimes print queues are created with queue names

longer than seven characters, which is the default that can be displayed with both of
these commands. I guess IBM noticed this little problem and added the -W switch to give

a wide character output. Look at Listings 16.1 and 16.2 to see the different outputs.

Ipstat

Queue Dev Status Job Files User PP % Biks Co Rnk

hp4 1pod READY

hp4-gl 1p0d READY

yogi_hp l1p0 DOWN

yogi_hp 1l1p0 DOWN

Listing 16.1 Output using Ipstat or eng -A.

Print Queue Hell: Keeping the Printers Printing 405

Ipstat -W

Queue Dev Status \wobl \\Pahes User Pee Binks Op ioRak

hp4 io po) READY
hp4-ps lp0 READY

hp4-gl 1po READY

yogi_hp4_1 1lpO DOWN

yogi_hp4_i1ps 1pod DOWN

Listing 16.2 Output using Ipstat -W or eng -AW.

As you can see in Listing 16.1, the long queue names are cut off at the seventh char-

acter when using the Ipstat or enq -A commands. By adding the -W switch to these

commands we see the entire long queue name. This is important because you cannot
control a print queue if you do not have the exact, and full, queue name.

There are two methods to script using either Ipstat -W or eng -AW. One method is

to loop through each queue that is reported DOWN; the other is to use one long com-
pound command. We are first going to look at the looping method.
A little for loop can be used to extract out the queue names of the printers in a

DOWN state. The list used for the for loop comes from either of the following command
statements:

lpstat -w | tail +3 | grep DOWN | awk '‘{print $1}'

or

eng -AW | tail +3 | grep DOWN | awk '{print $1}'

Both of the previous statements produce the same output. Notice that tail +3 is the

second command in pipe, just after the lpstat and eng commands. We use tail +3 in this
statement to remove the two lines of header information. This method is much cleaner
than trying to grep out some unique character in both of the header lines.

Notice that the number of lines, specified by +3, is one larger than the actual num-
ber of lines that we want to remove. Using the tail command this way, we are telling
tail to start listing at the third line, so two lines are removed at the top of the output.

The third command in the pipe is where we grep for DOWN, looking for disabled
printers, as shown in Listing 16.2. The output from this stage of the command is only

the lines of the enq and Ipstat output that contains the word DOWN. Using these lines as

input for the next command in the pipe, we are ready to extract the actual queue

name(s) of the disabled printers, as shown in the output here.

yogi_hp4_1 1p0 DOWN

yogi_hp4_1ps 1p0 DOWN

406 Chapter 16

The awk command, as we use it, is used to extract the field that we want to work

with, which is the first field, the queue name. Using the previous output as input to our
awk statement we extract out the first field using the following syntax:

command | awk '{print $1}'

You can extract any valid field using awk as well as different fields at the same time.

For example, if we want to extract fields 1 and 3, specified by $1 and $3, the following

awk statement will take care of the task.

command | awk '{print $1, $3}!'

Notice that Iadded a comma between $1 and $3. If the comma is omitted, then there

will not be a space between the two strings. Instead the output will be two strings
appended together without a space.

For our for loop we can first send the Ipstat and enq command output to a file and

process the file in a loop, or we can use command substitution to add the statement
directly into the for loop to create the list of objects to loop through. Let’s look at our
for loop structure.

for Q in $(eng -AW | tail +3 | grep DOWN | awk '{print $1}')

do

Do something here.

done

Using this loop command statement, the for loop will loop through yogi_hp4_1

and yogi_hp4_1ps print queue names, which is equivalent to the following for loop
structure:

for Q in yogi_hp4_1 yogi_hp4_ips

do

Do something here.

done

Because we never know which queues may be down, we need to parse through the
output of the actual queue names of the printers in a disabled state. The shell script in
its entirety is shown in Listing 16.3.

#!/bin/ksh

SCRIPT: enable AIX classic.ksh

AUTHOR: Randy Michael

DATE: 03/14/2002

#2 REV soles Pp

Listing 16.3 For loop to enable “classic” AIX print queues.

Print Queue Hell: Keeping the Printers Printing 407

PLATFORM: AIX Only

PURPOSE: This script is used to enable print queues on AIX systems.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

+ HH HH H+ HH HH H+

for Q in $(eng -AW | tail +3 | grep DOWN | awk '{print $1}')

do

enable $Q

(($? == 0)) || echo "\n$Q print queue FAILED to enable.\n"

done

Listing 16.3 For loop to enable “classic” AIX print queues. (continued)

Inside the for loop we attempt to enable each print queue individually. If the return

code of the enable command is not zero we echo an error message indicating that the

queue could not be enabled. Notice the highlighted lines in Listing 16.3. We use the

mathematical test, specified by the double parentheses, ((math test)). Using this

math test you normally do not add a dollar sign, $, in front of a numeric variable.

When the variable is produced by the system, such as $?, the dollar sign is required.

Testing for equality also requires using the double equal signs, ==, because the single

equal sign, =, is meant as an assignment, not a test.

After the test to check for a zero return code, we use a logical OR, specified by the
double pipes, | |. This logical OR will execute the next command only if the return
code of the enable $Q command is nonzero, which means that the command failed.

There is also a logical AND that is used by placing double ampersands, &&, in a com-

mand statement. A logical AND does just the opposite; it would execute the succeeding

command if the test is true, instead of false. Both the logical OR and logical AND are
used as replacements for if..then..else.. statements.

We can also accomplish this task by using a single compound command statement.

Just as we used command substitution in the for loop, we can use command substitu-

tion to produce command parameters. For example, we can use our for loop command

to create command parameters to the enable command. To see this more clearly, look

at the following two commands.

enable $(enq -AW | tail +3 | grep DOWN | awk '‘{print $1}') 2>/dev/null

or

enable $(lpstat -w | tail +3 | grep DOWN | awk '{print $1}') 2>/dev/null

408 Chapter 16

Both of the previous compound command statements produce the same result,

enabling all of the print queues on the system. The only problem with using this tech-

nique is that if you execute this command and all of the printers are already enabled,

then you will get the following output from standard error:

usage: enable PrinterName ...

Enables or activates printers.

As you can see, I sent this output to the bit bucket by adding 2>/dev/nu11 to the
end of the statement, but the return code is still nonzero if all of the printers are already

enabled. This should not be a problem unless you want to create some notification that

a printer failed to enable. In our for loop in Listing 16.3 we used the return code from

the enable command to produce notification. I will leave the technique that you use

up to you. If you do not want to see any output, then you could add the single com-

pound statement as a cron table entry or use the for loop technique in a shell script to

redirect the failure notification to a log file. If you use a log file you may want to add a

date stamp.

System V Printing on AIX

Beginning with AIX 5L, IBM supports System V printing. I find that Solaris has the

closest command usage and output. With only a few differences between AIX and

Solaris System V printing in the output produced, you could use the shell scripts inter-

changeably. Because people tend to read only the parts of a technical book that they
need to, I will devote this entire section to AIX System V printing.

To switch your AIX system from the “classic” AIX printer subsystem to System V

printing, refer to your AIX reference manual. This section expects that you are already
running System V printing.

Like Solaris, AIX uses the System V Ipc (line printer control) command to control the

printers and print queues. The nice thing about this print service is that you can con-

trol the queues and the printers independently. The main commands that we are inter-

ested in for AIX queuing and printing include the following options and parameters to

the Ipc command, as shown in Table 16.1.

Table 16.1. AIX lpc Command Options

LPC COMMAND “COMMAND RESULT

disable (printer[@host] | all) Disables queuing

stop (printer[@host] | all) Disables printing

down (printer[@host] | all) Disables printing and queuing

enable (printer[@host] | all) Enables queuing

start (printer[@host] | all) Enables printing

up (printer[@host] | all) Enables printing and queuing

Print Queue Hell: Keeping the Printers Printing 409

As you can see in Table 16.1, the granularity of printer control is excellent, which
gives us several options when creating shell scripts. To control all of the printing and

queuing at one time you really do not need a shell script. The following two commands

can start and stop all printing and queuing on all print queues at the same time.

lpc down all # Disable all printing and queuing

lpc up all # Enable all printing and queuing

To keep all of the printers printing and queuing you only need the Ipc up all com-

mand entered into a cron table. I placed an entry in my root cron table to execute this
Ipc command every 10 minutes, as shown here:

Le ROD PAO Dbl ese (sii lipoceup sald >/devi/nulds 2> 61!

This cron table entry enables all printing and queuing on all printers on the 5s, 24
hours a day, 7 days a week. With AIX System V printing, the data we are interested in

is separated on three lines of output when we use the Ipc status all command to mon-

itor the printer service. The same command executed on AIX , Linux, and Solaris is

shown here.

AIX SYSTEM V OUTPUT

lpc status all

hp4v:

queuéing is enabled

printing is disabled

5 entries in spool area

LINUX SYSTEM V OUTPUT

lpc status

Printer Printing Spooling Jobs Server Subserver Redirect

Status/ (Debug)

hp4@localhost enabled disabled 0 none none

SOLARIS SYSTEM V OUTPUT

lpc status all

bambam_hp4:

queueing is enabled

printing is enabled

no entries

Of these three outputs Linux is the one that differs. With the data we are interested

in for AIX residing on three separate lines for each print queue, we need a different

410 Chapter 16

strategy to get the exact data the we want. First notice that at the beginning of each
stanza a queue name has a colon, :, appended to the name of the queue. Because this

character occurs only in the queue name, we can use the colon character as a tag for a
grep statement. Following the queue name entry, the next two lines contain the data
that we are interested in pertaining to the status of the queuing and printing.

Because we have some unique tag for each entry, it is easy to extract the lines of data

that we are interested in by using an extended grep, or egrep, statement, as shown here:

lpc status all | egrep ':|printing|queueing' | while read LINE

The egrep command works the same way as the grep command except that you can

specify multiple patterns to match. Each pattern is separated by a pipe without any

spaces! If you add spaces on either side of the search pattern, the egrep statement will

fail to make a match. The entire list of patterns is then enclosed within single forward

tic marks, ‘pattern1|pattern2|pattern3’. The output produced has the queue

name on the first line, the printing status on the second line, and the queuing status on
the third line.

The last part of the previous command is where the output is piped to a while loop.

On each read the entire line of data is loaded into the variable LINE. Inside of the while
loop we use the following case statement to assign the data to the appropriate variable.

case SLINE in

*=) (Q=Si(echo SLINE | cut =d "2" =£1)

printing*)

PSTATUS=$ (echo SLINE | awk '{print $3}')

queueing*)

QSTATUS=$ (echo $LINE | awk '{print $3}')

esac

Notice that if $LINE begins with *: then we load the Q variable. If $LINE begins
with printing* we load the PSTATUS variable with the third field, which should be

either enabled or disabled. We do the same thing in loading the QSTATUS variable

with the third field of the value that the SLINE variable points to.

The trick in this script is how to load and process three lines of data and then load
and process three more lines of data, and so on. The most intuitive approach is to have

a loop counter. Each time the loop counter reaches three we process the data and reset

the loop counter back to zero. Take a look at the entire script in Listing 16.4 to see how
this loop count works. Pay close attention to the bold type.

Print Queue Hell: Keeping the Printers Printing 411

#!/bin/ksh

PNSCRIPTRsVorimt UP SySVNAT Xx keh:

i

AUTHOR: Randy Michael

DATE: 03/14/2002

FRE Ss OLD

PLATFORM: AIX System V Printing

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on AIX and Solaris systems.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

He aE HE HE aE aE HEHE HE HE aE HEH HE a HEHE HE HE aE EE HE aaa aE aE HH HH

LOOP=0 # Loop Counter - To grab three lines at a time

lpe status all | egrep ':|printing|queueing' | while read LINE

do

Load three unique lines at a time

case $LINE in

*2) O=s (echo: SLINE |; cut -d %:" =£1)

printing*)

PSTATUS=$ (echo SLINE | awk ‘{print $3}')

queueing*)

QSTATUS=$ (echo SLINE | awk (print: $3.)")

esac

Increment the LOOP counter

((LOOP = LOOP + 1))

if ((LOOP == 3)) # Do we have all three lines of data?

then

Check printing status

case $PSTATUS in

Listing 16.4 print_UP_AIX.ksh shell script listing. (continues)

412 Chapter 16

disabled) lpe start $Q >/dev/null :

(($2? == 0)) && echo “\nSO printing re-started\n”

enabled|*) : # No-Op - Do Nothing

esac

Check queuing status

case S$QSTATUS in

disabled) Ipe enable $Q >/dev/null

(($? == 0)) && echo "\n$Q queueing re-enabled\n"

enabled|*) : # No-Op - Do Nothing

esac

LOOP=0 # Reset the loop counter to zero

£3

done

Listing 16.4 print_UP_AIX.ksh shell script listing. (continued)

Notice that we grab three lines at a time. The reason that I say that we are grabbing

three lines at a time is because I use the case statement to specify unique tags for each

line of data. I know that the queue name will have a colon, :, as a suffix. I know that

the printing status line will begin with printing*, and I know that the queuing line

will begin with queueing*. We load only one variable on each loop iteration. So, to

get three pieces of data (queue name, printing status, and queuing status), we need to

go through the while loop three times for each printer queue. Once we pass the initial

case statement, we increment the LOOP counter by one. If the $LOOP variable is equal

to 3 then we have all of the data that we need to process a single printer queue. After

processing the data for this printer queue, we reset the LOOP variable to zero, 0, and

start gathering data for the next printer queue.

Sounds simple enough? This same technique works for any fixed set of lines of data

in command output or in a file. The only changes that are needed to use this method

include creating unique tags for the data you are interested in and setting the SLOOP

equality statement to reflect the number of lines in each set of data.

More System V Printer Commands

We have been looking at only the Ipe command thus far. We also need to look at two

command parameters to the Ipstat command in this section. The -a parameter lists the

status of queuing, and the -p command parameter lists the status of printing. The nice

thing about these two command options is that the output for each queue is on a sin-
gle line, which makes the data easier to parse through. See Table 16.2.

Print Queue Hell: Keeping the Printers Printing 413

Table 16.2 System V lpstat Command Options

COMMAND DESCRIPTION

lpstat -a Show status of queuing on all printers

lpstat -p Show status of printing on all printers

Other than having to query the printer service twice, having to use separate com-

mands for monitoring printing and queuing is not so bad. The separation is built in
because the -a and -p command parameters are mutually exclusive, which means that

you cannot use -a and -p at the same time. Output from each command option is

shown here:

Ipstat -a

hp4 accepting requests since May 07 07:02 2002

yogi_hp4_lps accepting requests since May 07 07:02 2002

long_queue not accepting requests since Tue May 7 07:02:23 EDT 2002 -

Ss_q nam not accepting requests since Tue May 7 07:02:23 EDT 2002 -

Ipstat -p

printer long queue disabled since Tue May 7 07:02:01 EDT 2002.

available.

stopped by user

printer s_q_nam disabled since Tue May 7 07:02:01 EDT 2002. available.

stopped by user

printer hp4 unknown state. enabled since May 07 07:30 2002. available.

printer yogi_hp4_1ps unknown state. enabled since May 07 07:30 2002.

available.

Listing 16.5 |pstat -a and Ipstat -p command output.

Notice in Listing 16.5 that the output from each command option has a unique set of

status information for each printer on each line of output. We want to use the unique-

ness of the status information as tags in a grep statement. The terms make sense, too. A

queue is either accepting new requests or is not accepting new requests, and a printer is

either enabled for printing or is disabled from printing. Because we are interested only in

the disabled and not-accepting states, we can create a simple script or a one-liner.

We need to know two things to enable printing and to bring up a print queue to

accept new requests, the printer /queue name and the state of the queue or printer. The

first step is to grep out the lines of output that contain our tag. The second step is to

414 Chapter 16

extract the printer/queue name from each line of output. Let’s first look at using a

while loop to bring everything up, as shown in the Listing 16.6.

lpstat -a | grep 'not accepting’ | while read LINE

do

Q=$(echo SLINE | awk ‘{print $1) ')

lpc enable $Q

done

lpstat -p | grep disabled | while LINE

do

P=$(echo $LINE | awk '‘{print $2}')

lpe start $P

done

Listing 16.6 Scripting the Ipstat command using -a and -p.

Notice in Listing 16.6 that we have to work on the print queues and printers sepa-

rately, by using two separate loops. In the first while loop all of the queuing is started.

In the second loop we enable printing for each of the printers. The down side to this

method occurs when you have hundreds of printers and scanning through all of the

printers twice can take quite a while. Of course, if you have hundreds of printers you

should use Ipc up all to bring everything up at once.
As I said before, we can also make a one-liner out of the two loops in Listing 16.6. We

can combine the grep and awk commands on the same line and use command substi-

tution to execute the Ipc command. The following two commands replace the two
while loops.

lpc enable $(lpstat -a | grep ‘not accepting' | awk '{print $1}')

lpe start $(lpstat -p | grep disabled | awk '{print $2}')

The first command enables queuing, and the second command starts printing. The

command substitution, specified by the $ (command) notation, executes the appropri-
ate Ipstat command, then greps on the tag and extracts the printer/queue name out.

The resulting output is used as the parameter to the Ipc commands.

HP-UX Print Control Commands

Of the Unix operating systems, HP-UX has a unique Ipstat command output. We do

not have to do anything special to see the full print queue names, and if a queuing is

disabled or printing is stopped, we get a Warning: message. With a warning message

for each printer on a single line we can use grep and awk to find the printer/ queue

name and the status in a case statement. Let’s first look at the lpstat output when both

rinting and queuing is up, as shown here:

Print Queue Hell: Keeping the Printers Printing 415

lpstat

printer queue for hp4_yogi_1

printer queue for yogi_hp4_1ps

If print requests were queued up they would be listed below the queue name. Now
let’s disable printing on the hp4_yogi_1 print queue.

disable hp4_yogi_1

printer "hp4 _yogi_1" now disabled

Now look at the output of the lpstat command:

Ipstat

printer queue for hp4_yogi_1

dino: Warning: hp4 yogi_1 is down

printer queue for yogi_hp4_1ps

The warning message tells us that the printer is down; however, notice that the

queue status is not listed here. Now let’s bring down the hp4_yogi_1 print queue and

see what this does.

reject hp4_yogi_1

destination "hp4_yogi_1" will no longer accept requests

To see only queuing status we use the Ipstat -a command, as shown here:

lpstat -a

hp4_yogi_1 not accepting requests since Oct 1 05:45 -

reason unknown

yogi_hp4_lps accepting requests since Sep 26 04:23

Because hp4_yogi_1 now has printing disabled and queuing stopped, I would

expect that we should see some queue status output in the Ipstat command output for

the first time.

Ipstat

printer queue for hp4_yogi_1

416 Chapter 16

dino: Warning: hp4_yogi_1 queue is turned off

dino: Warning: hp4_yogi_1 is down

printer queue for yogi_hp4_lips

Just what we expected. From this little exercise we have determined that queuing is

reported only when the queuing is stopped on the queue using the Ipstat command
alone. For our scripting effort let’s stick to the Ipstat output. We want to use the word

Warning as a tag for our grep statement. Then we can further grep this extracted line

to check printing and queuing status. If the string 'queue is turned off' is

present we know that queuing is turned off, and if the string 'is down' appears on

the line we know that printing is disabled. The only thing left to extract is the
printer /queue name, which is always located in the third field.

To script this we can use the code in Listing 16.7. Pay attention to the bold type, and

we will cover the script at the end.

#!/bin/ksh

SCRIPT: ‘print UP: HP-UX ksh

AUTHOR: Randy Michael

DATE: 03/14/2002

FREV Lee

PLATFORM: HP-UX Only

cid

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on an HP-UX system.

+ REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

lpstat | grep Warning: | while read LINE

do

if (echo $LINE | grep 'is down') > /dev/null

then

enable $(echo $LINE | awk '‘{print $3}')

£5:

if (echo $LINE | grep ‘queue is turned off') >/dev/null

then

accept $(echo $LINE | awk '{print $3}')

£4

done

Listing 16.7 print_UP_HP-UX.ksh shell script listing.

Print Queue Hell: Keeping the Printers Printing 417

I want to point out a nice little trick in the shell script in Listing 16.7. In both of the
if..then..fi statements, notice that we execute a command inside parentheses. What this
technique allows us to do is execute a command in a sub-shell and use the command’s
resulting return code directly in the if..then..fi structure. We really could not care less
about seeing the line that we are grepping on; however, if the return code from the
command is zero, then the pattern is present.

In the first half of the script in Listing 16.7 we check the status of printing. If a printer
is found to be disabled, then we use command substitution to produce the printer
name for the enable command. Likewise, we check for the status of queuing in the sec-
ond half of the script. Again, using command substitution we have the queue name to
provide as a parameter to the accept command. Notice that I added the redirection to
the bit bucket, specified by >/dev/nu11, after the command in the if statement. I add

this redirection to /dev/nu11 to suppress the output of the grep statement.
That is it for HP-UX printing. HP did a good job of keeping everything pretty

straightforward in the printing arena.

Linux Print Control Commands

Linux uses the System V Ipc (line printer control) command to control the printers and

print queues, as most System V Unix does. The nice thing about this print service is

that you can control the queues and the printers independently. The main commands
that we are interested in for Linux queuing and printing include the options to the Ipe
command listed in Table 16.3.

As you can see in Table 16.3, the granularity of printer control is excellent, which

gives up several options when creating shell scripts. To control all of the printing and

queuing at one time you really do not need a shell script. The following two commands
can start and stop all printing and queuing on all print queues at the same time.

lpc down all # Disable all printing and queuing

lpc up all # Enable all printing and queuing

Table 16.3 Linux Ipc Command Options

LPC COMMAND COMMAND RESULT

disable (printer[@host] | all) Disables queuing

stop (printer[@host] | all) Disables printing

down (printer[@host] | all) Disables printing and queuing

enable (printer[@host] | all) Enables queuing

start (printer[@host] | all) Enables printing

up (printer[@host] | all) Enables printing and queuing

418 Chapter 16

To keep all of the printers printing and queuing you need just the Ipe up all com-

mand entered into a cron table. I placed an entry in my root cron table to execute this

command every 10 minutes. My cron table entry is shown here:

yay Ay Stay, CS, Sey te Ge PS Abin a /Klopiely/Aboye: (olkoy feullAl SayKokony/inyeilil Boxe

This cron table entry enables all printing and queuing on all printers on the 5s,

24 hours a day, 7 days a week.
If you do want a little more control and if you keep a log of what is going on on a per

queue/printer basis, then we have to do a little scripting. The script that follows
searches all of the queues and reports on the individual status of printing and queuing

and then enables each one independently.

For this script we are going to use arrays to load the variables on each loop iteration.

Array can be created and elements assigned values in two ways. The first technique is

to use set -A to define the array and all of its elements. For example, if I want an array

called QUEUE to contain the values for printing and queuing for a specified queue, I can

set it up this way:

PQueue=yogi_hp4

Print_val=enabled

Queue_val=disabled

set -A QUEUE S$PQueue S$Print_val $Queue_val

We could have assigned the values directly in the set -A statement, but this time we

used variables for the assignments. This statement defines an array named QUEUE that

contains three array elements. The elements loaded into the array are the values that
the variables $PQueue, $Print_val, and $Queue_val point to. For example, we

assigned PQueue the value yogi_hp4, Print_val is assigned the value enabled,

and Queue_val is assigned the value disabled. The result is that the first array ele-

ment, 0 (zero) contains the value yogi_hp4, the second array element, 1 (one), has the

value enabled, and the third array element, 2, contains the value disabled, which is

what the $Queue_val variable points to. Using this technique requires that you access
the array elements starting with 0, zero.

To address the array elements you use the following syntax:

${QUEUE[0]} # Points to value assigned to the first array element,

yogi_hp4

${QUEUE[1]} # Points to value assigned to the second array element,

enabled

${QUEUE[2]} # Points to the value assigned to the third array element,

disabled

To address all of the array’s elements at the same time use the following syntax:

print "${QUEUE[*]}"

----OR----

Print Queue Hell: Keeping the Printers Printing 419

print "${QUEUE[@] }"

yogi_hp4 enabled disabled

Now, before I lose you, let’s take a look at a more intuitive way of working with
arrays and array elements. Instead of using the set -A command to define and load an
array, we can define an array and load its elements at the same time using the follow-
ing syntax:

QUEUE [1]=yogi_hp4

QUEUE [2]=enabled

QUEUE [3]=disabled

Notice that the first array element is now referenced by 1, one. These commands cre-
ate an array named QUEUE and load the first three array elements, referenced by 1, 2,

and 3, into array QUEUE. Now you can use the array directly in a command statement

by pointing to the array element that you want to use. For example, if I want to print

the printing status of the yogi_hp4 print queue, I use the following syntax:

echo "\nPrinter ${QUEUE[1]} has print status ${QUEUE[2]}\n"

The previous command produces the following output:

Printer yogi_hp4 has print status enabled

Now that we have seen the basics of working with arrays, let’s look at a shell script

to handle keeping the printing and queuing enabled on all of the printers individually.

The first step is to load an array in a while loop. This is a little different from what we

did before with arrays. In this case I want to use the Ipc status all command to find

printers that have either printing or queuing disabled. The output of the Ipc status all

command is shown below.

lpc status all

Printer Printing Spooling Jobs Server Subserver Redirect

Status/ (Debug)

hp4@localhost enabled disabled 0 none none

This is an easy output to deal with because all of the data for each queue is on a sin-
gle line. The output that we are interested in is the printer name, the printing status,

and the spooling status—the first three fields on the second line. We are not interested
in the first line at all so we can get rid of it with a pipe to the tail command. When we

add to our command we get the following output:

lpc status all | tail +2

yogi_hp4@localhost enabled disabled 0 none none

I currently have only one printer defined on this system, so the output is the status

of a single printer. Now we want to load the first three fields into an array using a

420 Chapter 16

while loop. Look at the next command line to see how we are directly loading an array

called pgqstat with array elements of the first three fields on each line. -

lpe status all | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

Because I want just the first three fields in the output, notice that the fourth variable

in the read part of the while statement is junk. The junk variable is a catch-all vari-

able to capture any remaining strings on the line of output in a single variable. It is a
requirement that you take care of this remaining text because if you neglect adding a

variable to catch any remaining characters on the line, you will read the characters in

as strings on the next loop iteration! This type of error produces some strange output

that is hard to find and troubleshoot.

Notice that in the output of the Ipe status all command the printer has queuing dis-

abled, which is the third field. The easiest way to handle the two status fields is to use

two case statements, with each tagging on a separate field. Look at the full script code
in Listing 16.8, and we will cover the technique at the end.

#!/bin/ksh

#) SCRIPT: (print: UP: Linux ksh

AUTHOR: Randy Michael

DATE: 03/14/2002

REVS Ld)

a

PLATFORM: Linux Only

cd

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on a Linux system. Logging can be

enabled.

REV: LIST:

a

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

HHFHHEHEFHHPPHEPHEEHEPHEPHEEHEHEPHEPHHERHEPHE EH FH

Initial Variables Here

HHEFFHHEFFHHHHEEEEHHHEFEEHHAEEEHHHEESSEHHEEESEHHEH

LOGILE=/usr/local/log/PQlog.log

[-£ $LOGFILE] || echo /dev/null > $LOGFILE

PERE E RR HH HHH HH EHH HE HERR E HH H HEE HHH HH HHH HHH HE

lpc status | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

Listing 16.8 print_UP_Linux.ksh shell script listing.

Print Queue Hell: Keeping the Printers Printing 421

dao

First check ‘the status of printing for each printer

case ${pqstat[2]} in

disabled) |

Printing is disabled - print status and restart printing

echo "${pqstat[1]} Printing is ${pqstat[2]}" \

| tee -a$LOGFILE

lpe start ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo "${pqstat[1]} Printing Restarted" \

| tee -a $LOGFILE

enabled|*) : # No-Op - Do Nothing

esac

Next check the status of queueing for each printer

case ${pqstat[3]} in

disabled)

echo "${pqstat[1]} Queueing is ${pqstat[3]}" \

| tee -a $LOGFILE

lpec enable ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo "${pqstat[1]} Printing Restarted" \

| tee -a $LOGFILE

enabled|*) : # No-Op - Do Nothing

esac

done

Listing 16.8 print_UP_Linux.ksh shell script listing. (continued)

We start off this script in Listing 16.8 by defining the $LOGFILE. Notice that the fol-

lowing command, after the log file definition, checks to see if the log file exists. If the

SLOGFILE does not exist, then the result of the test is a nonzero return code. We use a

logical OR, specified by the double pipes, | |, to execute the succeeding command to

create a zero length $LOGFILE because it does not exist if the return code of the test is
nonzero.

Next, we start our while loop to load the pqstat array on each loop iteration,

which in our case is a single loop iteration for a single printer. This means that we load

a one-dimensional array with new data on each loop iteration (one-dimensional arrays

are all that the Korn shell can use). Again, notice the junk variable that is added as the

last variable in the while loop statement. This extra variable is required to catch the
remaining text in a single variable.

With the array loaded we proceed with two case statements to test for the status of

printing and queuing on each print queue. Notice that we use the array element
directly in the case statement, as shown here:

case ${pqstat[2]} in

422 Chapter 16

We use the same technique with the print queuing array element in a separate case

statement. We have only two possible results for the array elements, enabled and
disabled. The only result we are concerned about is any disabled value. If we

receive any disabled values we attempt to reenable the printing or queuing on the
printer. Notice that the second option in both case statements includes enabled and
anything else, specified by the wildcard, *, as shown here:

enabled |*)

We could have just used the wildcard to cover everything, but it is clearer to the

reader of the script to see actual expected results in a case statement than just a catchall
asterisk.

When a reenabling task is completed successfully, notice the use of the logical AND
to test the return code and give notification on a zero return code value, as shown here:

(($? == 0)) && echo "S${pqstat[1]} Printing Restarted"

The second part of the command will execute only if the test for a zero return code
is true. Otherwise, the system will report an error, so there is no need for us to add any

failure notification.

To see everything that is happening on the screen and to log everything at the same
time we use the tee -a command. This command works with a pipe and prints all of the

output to the screen; at the same time it sends the exact same output to the file speci-
fied after tee -a. An example is shown here.

lpc start ${pqstat[1]} | tee -a $LOGFILE

The previous command attempts to restart printing on the print queue specified by

the array element pqstat [1] and sends any resulting output to the screen and to the
$LOGFILE simultaneously.

Controlling Queuing and Printing Individually

Depending on the situation, you may not always want to enable printing and queuing

at the same time. We can break up the shell script in Listing 16.8 and pull out the indi-

vidual case statements to start either printing or queuing. Because printing is con-

trolled by array element 2 we can extract the first case statement to create a new shell

script. Let’s call this shell script printing_only_UP_Linux.ksh. You can see the

modifications in Listing 16.9.

#!/bin/ksh

SCRIPT: printing_only_UP_Linux.ksh

Listing 16.9 printing_only_UP_Linux.ksh shell script listing.

Print Queue Hell: Keeping the Printers Printing 423

AUTHOR: Randy Michael

DATE: 03/14/2002

REV eh.

PLATFORM: Linux Only

PURPOSE: This script is used to enable printing on each printer

on a Linux system. Logging is enabled.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

se 3 4 H+ HH HH HH HH HF HF H+

HHHHHHHHHPRHREPEEEHHHHR HEHE PPE HEE HHP Ho

Initial Variables Here

HEHHEREHEHSHEHEPHEEHEPESHESEPHSHEHEHHHEHHHHHHH HEHE SH

LOGILE=/usr/local/log/PQlog.log

{ -£ $LOGFILE] || echo /dev/null > $LOGFILE

HHPHHHEERPRRHRERHEEEHEEAEHES HEHEHE HEEHH EHH HH HH

lpe status | tail +2 | while read pqstat[1] pqstat[2] paqstat[3] junk

do

Check the status of printing for each printer

case ${pqstat[2]} in

disabled)

Printing is disabled - print status and restart

printing

echo "${pqstat[1]} Printing is ${pqstat[2]}" \

| tee -aSLOGFILE

lpe start ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo "S{pqstat[1]} Printing Restarted" \

| tee -a S$LOGFILE

enabled|*) : # No-Op - Do Nothing

esac

done

Listing 16.9 printing_only_UP_Linux.ksh shell script listing. (continued)

Notice that the only thing that was changed is that the second case statement struc-

ture was removed from the script and the name was changed. We can do the same

thing to create a shell script that only enables queuing, as shown in Listing 16.10.

424 Chapter 16

#!/bin/ksh

SCRIPT: queuing_only_UP_Linux.ksh

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: io). P

PLATFORM: Linux Only

on each print queue on a Linux system. Logging can be

enabled.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

PURPOSE: This script is used to enable printing and queuing separately

HHEPHEHHEPHEPHEPHEHEPPHEEEEGHEPHHEHEEE RHEE EH

Initial Variables Here

HHHHFHEPHHESEPHEERHHEAHEEHESEEEHEEPEESHEaHH EHH EEE

LOGILE=/usr/local/log/PQlog.log

[-£ $LOGFILE] || echo /dev/null > $LOGFILE

HHPREEREERREEE RE EH GHEE REE EEE TERE HER EEE EEE E HH

lpe status | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

do

done

check the status of queueing for each printer

case ${pqstat[3]} in

disabled)

echo "${pqstat[1]} Queueing is ${pqstat[3]}" \

| tee -a $LOGFILE

lpe enable ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo "${pqstat[1]} Printing Restarted" \

| tee -a $LOGFILE

enabled|*) : # No-Op - Do Nothing

esac

Listing 16.10 queuing_only_UP_Linux.ksh shell script listing.

Notice that the only thing that was changed this time is the first case statement

structure was removed from the script and the name of the shell script was changed.

Print Queue Hell: Keeping the Printers Printing 425

You could also modify the shell script in Listing 16.8 to add a command-line parame-
ter to let you control queuing and printing individually from the same shell script. lam
going to leave this as an exercise for you to complete.

As a hint for this exercise: Expect only zero or one command-line parameters. If $#
is equal to zero, then enable both queuing and printing. If there is one parameter and
the value of $1 is “all”, then enable both printing and queuing. If the $1 parameter is
equal to “printing”, then enable only printing. If $1 is equal to “queuing”, then enable
only queuing. You need to add a usage function to show how to use the shell script if
the given value does not match what you are expecting.

Arrays are good to use in a lot of situations where you want to address certain out-
put fields directly and randomly. All Korn shell arrays are one-dimensional arrays, but
using the array in a loop gives the appearance of a two-dimensional array.

Solaris Print Control Commands

Solaris uses the System V Ipc (line printer control) command to control the printers and

print queues, as most System V Unix does. The nice thing about this print service is
that you can control the queues and the printers independently. The main commands

that we are interested in for Solaris queuing and printing include the following options
and parameters to the Ipc command, as shown in Table 16.4.

As you can see in Table 16.4, the granularity of printer control is excellent, which
gives several options when creating shell scripts. To control all of the printing and

queuing at one time you really do not need a shell script. The following two commands

can start and stop all printing and queuing on all print queues at the same time.

lpe down all # Disable all printing and queuing

lpc up all # Enable all printing and queuing

To keep all of the printers printing and queuing you need only the Ipc up all com-

mand entered into a cron table. I placed an entry in my root cron table to execute this

command every 10 minutes. My cron table entry is shown here:

Sy by ore oD Date USTa/Sban/dpc mpialels = /idew/mua li 2s

Table 16.4 Solaris |pc Command Options

- LPC COMMAND COMMAND RESULT

disable (printer[@host] | all) Disables queuing

stop (printer[@host] | all) Disables printing

down (printer[@host] | all) Disables printing and queuing

enable (printer[@host] | all) Enables queuing

start (printer[@host] | all) Enables printing

up (printer[@host] | all) Enables printing and queuing

426 Chapter 16

This cron table entry enables all printing and queuing on all Pee on the 5s, 24

hours a day, 7 days a week.
We have a nice situation here because we can use the same shell script that we used

for the AIX System V printing on Solaris. Unlike Linux, where all of the data that we

want is on a single line of output, with Solaris and AIX System V printing, the data we
are interested in is separated on three lines of output. You can see the difference in the

output here.

AIX SYSTEM V OUTPUT

lpc status all

hp4v:

queueing is enabled

printing is disabled

5 entries in spool area

LINUX SYSTEM V OUTPUT

lpc status

Printer Printing Spooling Jobs Server Subserver Redirect

Status/ (Debug)

hp4@localhost enabled disabled 0 none none

SOLARIS SYSTEM V OUTPUT

lpc status all

bambam_hp4:

queueing is enabled

printing is enabled

no entries

Of these three outputs, Linux is the one that differs. With the data we are interested

in for Solaris residing on three separate lines for each print queue, we need a different

strategy to get the exact data the we want. First notice that the beginning of the stanza

for the queue name there is a colon, :, appended to the name of the queue. Because this

character occurs only in the queue name, we can use the colon character as a tag for a
grep statement. Following the queue name entry the next two lines contain the data

pertaining to the status of the queuing and printing.

Because we have some unique tag for each entry, it is easy to extract the lines of

data that we are interested in by using an extended grep, or egrep, statement, as shown

here:

lpc status all | egrep ':|printing|queveing' | while read LINE

The egrep command works the same way as the grep command except that you can

specify multiple patterns to match. Each pattern is separated by a pipe without any

Print Queue Hell: Keeping the Printers Printing 427

spaces! If you add spaces on either side of the search pattern the egrep statement will

fail to make a match. The entire list of patterns is then enclosed within single forward
tic marks, ‘pattern1|pattern2|pattern3’. The output produced has the queue

name on the first line, the printing status on the second line, and the queuing status on
the third line.

The last part of the previous command is where the output is piped to a while loop.

On each read, the entire line of data is loaded into the variable LINE. Inside of the

while loop we use the following case statement to assign the data to the appropriate
variable.

case S$LINE in

*:) QO=$(echo SLINE | cut -d ':' £1)

printing*)

PSTATUS=$ (echo $LINE | awk '‘{print $3}')

queueing*)

QSTATUS=$ (echo SLINE | awk '{print $3}')

esac

Notice that if SLINE begins with *: then we load the Q variable. If SLINE begins

with printing* we load the PSTATUS variable with the third field, which should be

either enabled or disabled. We do the same thing in loading the QSTATUS variable

with the third field of the value that the $LINE variable points to.

The trick in this script is how to load and process three lines of data and then load

and process three more lines of data, and so on. The most intuitive approach is to have

a loop counter. Each time the loop counter reaches three we process the data and reset
the loop counter back to zero. Take a look at the entire script in Listing 16.11 to see how
this loop count works. Pay close attention to the bold type.

#!/bin/ksh

SCRIPT: print UP Solaris. ksh

AUTHOR: Randy Michael

DATE: 03/14/2002

Revi d 2

PLATFORM: Solaris only

- PURPOSE: This script is used to enable printing and queuing separately

on each Bete eo on Solaris systems.

‘REV LIST:

Listing 16.11 print_UP_SUN.ksh shell script listing. (continues)

428 Chapter 16

set -x # Uncomment to debug this script :

set -n # Uncomment to check syntax without any execution

HHPHHHPEEPEPEEEEEHEEEPAERESPRSRAEAREPEAEH SHE HEH EH

LOOP=0 # Loop Counter - To grab three lines at a time

lIpe status all | egrep ':|printing|queveing' | while read LINE

do

Load three unique lines at a time

case $LINE in

*:) O=Siecho SLINE | cut -d ':' —£1)

printing?*)

PSTATUS=$ (echo $LINE | awk '{print $3}')

queueing*)

QSTATUS=$ (echo S$LINE | awk '{print $3}')

esac

Increment the LOOP counter

((LOOP = LOOP + 1))

if ((LOOP == 3)) # Do we have all three lines of data?

then

Check printing status

case $PSTATUS in

disabled) lpe start $Q >/dev/null

(($? == 0)) && echo "\n$Q printing re-started\n"

enabled|*) : # No-Op - Do Nothing

esac

Check queuing status

case S$QSTATUS in

disabled) Ipe enable $Q >/dev/null

(($? == 0)) && echo "\n$Q queueing re-enabled\n"

enabled|*) : # No-Op - Do Nothing

esac

LOOP=0 # Reset the loop counter to zero

pial

done

Listing 16.11 print_UP_SUN.ksh shell script listing. (continued)

Print Queue Hell: Keeping the Printers Printing

Table 16.5 System V lpstat Command Options

COMMAND DESCRIPTION

lpstat -a Show status of queuing on all printers

lpstat -p Show status of printing on all printers

Within this while loop we are grabbing three lines of data at a time to process. I say

that we are grabbing three lines at a time in Listing 16.11 because I use the case state-

ment to specify unique tags for each line of data. I know that the queue name will have
a colon, :,as a suffix. I know that the printing status line will begin with printing*,

and I know that the queuing line will begin with queueing*. We load only one vari-

able on each loop iteration, though. To get three pieces of data (queue name, printing

status, and queuing status), we need to go through the while loop three times for each

printer queue. Once we pass the initial case statement we increment the LOOP counter

by one. If the $LOOP variable is equal to 3, then we have all data that we need to

process a single printer queue. After processing the data for this printer queue we reset

the LOOP variable to zero, 0, and start gathering data for the next printer queue.

Sounds simple enough? This same technique works for any fixed set of lines of data

in command output or in a file. The only changes that are needed to use this method

include creating unique tags for the data you are interested in and setting the $LOOP

equality statement to reflect the number of lines that are in each set of data.

More System V Printer Commands

We have been looking only at the Ipc command thus far. We also need to look at two
command parameters to the Ipstat command in this section. The -a parameter lists the

status of queuing, and the -p command parameter lists the status of printing. The nice

thing about these two command options is that the output for each queue is on a sin-

gle line, which makes the data easier to parse through. The Ipstat command options are

shown in Table 16.5.
Other than having to query the printer subsystem twice, having to use separate

commands for monitoring printing and queuing is not so bad. The separation is built

in because the -a and -p command parameters are mutually exclusive, which means

that you cannot use -a and -p at the same time. Output from each command option is

shown here:

. # Ipstat -a

hp4 accepting requests since May 07 07:02 2002

_ yogi_hp4_ips accepting requests since May 07: 07:02) 2002

Listing 16.12 Ipstat -a and Ipstat -p command output. (continues)

429

430 Chapter 16

long_queue not accepting requests since Tue May 7 07:02:23 EDT 2002 -

s_q_nam not accepting requests since Tue May 7 O7 202323 EDP 2002 > =.

Ipstat -p

printer long _ queue disabled since Tue May 7 07:02:01 EDT 2002.

available.

stopped by user

printer s_q nam disabled since Tue May 7 07:02:01 EDT 2002. available.

stopped by user

printer hp4 unknown state. enabled since May 07 07:30 2002. available.

printer yogi_hp4 lps unknown state. enabled since May 07 07:30 2002.

available.

Listing 16.12 Ipstat -a and Ipstat -p command output. (continued)

Notice in Listing 16.12 that the output from each command option has a unique set

of status information for each printer on each line of output. We want to use the

uniqueness of the status information as tags in a grep statement. The terms make

sense, too. A queue is either accepting new requests or not accepting new requests, and a
printer is either enabled for printing or disabled from printing. Because we are interested
in only the disabled and not accepting states, we can create a simple script or a one-

liner.

We need to know two things to enable printing and to bring up a print queue to

accept new requests, the printer/queue name and the state of the queue or printer. The

first step is to grep out the lines of output that contain our tag. The second step is to

extract the printer/queue name from each line of output. Let’s first look at using a
while loop to bring everything up, as shown in Listing 16.13.

lpstat -a | grep 'not accepting' | while read LINE

do

Q=$(echo $LINE | awk '‘{print $1}')

lpe enable $Q

done

lpstat -p | grep disabled | while LINE

do

P=S(echo SLINE | awk ‘{print $2} °)

lpc start $P

done

Listing 16.13 Scripting the Ipstat command using -a and -p.

Print Queue Hell: Keeping the Printers Printing 431

Notice in Listing 16.13 that we have to work on the print queues and printers sepa-
rately, by using two separate loops. In the first while loop all of the queuing is started.
In the second loop we enable printing for each of the printers. The down side to this
method is where you have hundreds of printers. The time it takes to scan through all
of the printers once and then rescan the printer service can be quite long. Of course, if
you have hundreds of printers, you should use Ipc up all to bring everything up at
once.

As I said before, we can also make a one-liner out of the two loops in Listing 16.13.
We can combine the grep and awk commands on the same line and use command sub-

stitution to execute the Ipc command. The following two commands replace the two
while loops.

lpc enable $(lpstat -a | grep ‘not accepting' | awk '{print $1}')

lpe start $(lpstat -p | grep disabled | awk '{print $2}')

The first command enables queuing, and the second command starts printing. The

command substitution, specified by the $ (command) notation, executes the appropri-
ate Ipstat command, then greps on the tag and extracts the printer/queue name. The

resulting output is used as the parameter to the Ipc commands.

Putting It All Together

Now we need to combine the shell scripts for each of the different Unix flavors so that
one script does it all. Please do not think that taking several shell scripts, making func-
tions out of them, and combining the new functions into a new script are difficult tasks.

To make one script out of this chapter we are going to take the best of our scripts and

extract the code. For each shell script we make a new function, which requires only the
word function, a function name, and the code block surrounded by curly braces,
function function_name { code stuff here }.Let’s take a look at the entire

combined shell script in Listing 16.14 and cover the functions at the end.

#!/bin/ksh

x

SCRIPT: PQ all_in_one.ksh
N i

AUTHOR: Randy Michael —

DATE: 03/14/2002

+CR EVs deb oP

PLATFORM: AIX, HP-UX, Linux and Solaris _

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continues)

432 Chapter 16

PURPOSE: This script is used to enable printing and queuing on

AIX, HP-UX, Linux and Solaris

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

+ + + HH HF HH HF HH

HEERHRHERRERERPERREEER REPRE R EARP RRRERPRERER HEHE

HHHHHHHHHHHEH HHH DEFINE FUNCTIONS HERE ######HHEHPHEEH HEH

function AIX classic printing

{

for Q in $(eng -AW | tail +3 | grep DOWN | awk '{print $1}')

do

enable $Q |

(($2 == 0)) |[echo "\n$Q print queue FAILED to enable. \n"

done

}

PEER HE H EH HHH EH HHH HHH HEH EHH HE EH HHH HEE HHH HEE HHH HH

function AEX SYSV printing

{

LOOP=0 # Loop Counter - To grab three lines at a time

lpc status all | egrep ':|printing|queueing' | while read LINE

do

Load three unique lines at a time

case SLINE in

*:) Q=S(echo SLINE | cut -d ‘:' -£1)

printing)

PSTATUS=$ (echo $LINE | awk '{print $3}")

queueing*)

QSTATUS=S (echo SLINE | awk ‘{print $3}")

esac

Increment the LOOP counter

(€€- LOOP: => LOOP +. 2) }

1£ ((LOOP == 3)) # Do we have all three lines of data?

then

Check printing status

case S$PSTATUS in

Listing 16.14 PQ all_in_one.ksh shell script listing. (continued)

Print Queue Hell: Keeping the Printers Printing 433

disabled) lpe start $Q >/dev/null

(($? == 0)) && echo “\n$Q printing re-started\n"

enabled|*) : # No-Op - Do Nothing

esac

Check queuing status

case SQSTATUS in

disabled) lpc enable $Q >/dev/null

(($? == 0)) && echo "\n$Q queueing re-enabled\n"

enabled|*) : # No-Op - Do Nothing

esac

LOOP=0 # Reset the loop counter to zero

done

HHPPEHEFEREEEERHEPAEEHEEPEHEPHHEHERRRPEEEPE RR PREHH HH RBH SH HH

function HP_UX_printing

{

lpstat | grep Warning: | while read LINE

do :

if (echo $LINE | grep ‘is down') > /dev/null

then

enable $(echo $LINE | awk '{print $3}')

fa

if (echo $LINE | grep ‘queue is turned off') >/dev/null

then

accept S(echo SDINE | awk ' {print $3} °)

£3

done

HHEHHHHEPEEHHPEEEEAPEEEAEREERREREEEEEPRPEEEESERREEE HEHE

function Linux printing

{

Ipe status | tail +2 | while read pqstat[1] pastat(2] pastat[3] junk

do

First check the Status of printing for each printer

case S{pqstat(2]} in

Listing 16.14 PQ all_in_one.ksh shell script listing. (continues)

434 Chapter 16

disabled)

Printing is disabled - print status and restart

printing

done

echo “Sfpastat{1]} Printing is S{pqstat[2])"

lpe start S${pqstat[1]}

(($? == 0)) && echo "${pqstat[1]} Printing Restarted"

enabled|*) : # No-Op - Do Nothing

esac

Next check the status of queueing for each printer

case ${pqstat[3]} in

disabled)

echo "S${pqstat[1]} Queueing is ${pqstat[3]}"

lpe enable ${pqstat[1] }

(($? == 0)) && echo "S${pqstat[1]} Printing Restarted"

enabled|*) : # No-Op - Do Nothing

esac

HEPHHPHHEEPHEHEPHPPPHREHHHHPRHHPHH RHEE HEH HHH HHH HHH HH HE

function Solaris printing

{

LOOP=0 # Loop Counter - To grab three lines at a time

lpe status all | egrep ':|printing|queueing' | while read LINE

do

Load three unique lines at a time

case SLINE in

*2)) OS (eeho SEINE | cue -d ‘:! =£1)

printing*)

PSTATUS=§$ (echo SLINE | awk ’'{print $3} ")

queueing*)

QSTATUS=§ (echo SLINE | awk ‘{print $3}")

esac

Increment the LOOP counter

(LOOP = LOOP + 1)

if ((LOOP == 3)) # Do we have all three lines of data?

then

Listing 16.14 PQ all_in_one.ksh shell script listing. (continued)

Print Queue Hell: Keeping the Printers Printing 435

Check printing status

case S$PSTATUS in

disabled) lpc start $Q >/dev/null

\ ((S? == .0)) && echo "\nSO printing re-started\n"

enabled|*) : # No-Op - Do Nothing

esac

Check queuing status

case SQSTATUS in

disabled) lpc enable $Q >/dev/null

(($? == 0)) && echo "\n$Q queueing re-enabled\n"

enabled|*) : # No-Op - Do Nothing

esac

LOOP=0 # Reset the loop counter to zero

done

HEH HH HE HEE EH EH HEE HH EH HH EHH HH HH HH

HHPHHHHHHHHE HHH BEGINNING OF MAIN ######HHHHHHHHHEEEEH EH

HH HHH HHH HH HE aE HEH EH HEH a EE HE HEE HE EH HE

What OS are we running?

To start with we need to know the Unix flavor.

This case statement runs the uname command to

determine the OS name. Different functions are

used for each OS to restart printing and queuing.

case $(uname) in

AIX) # AIX okay...Which printer subsystem?

Starting with AIX 5L we support System V printing also!

Check for an active qdaemon using the SRC lssrc command

if (ps -ef | grep ‘/usr/sbin/qdaemon’ | grep —v grep) \

>/dev/null 2>&1

then

Standard AIX printer subsystem found

ALXUPSS=CLASSIC

elif (ps -ef | grep “/usr/lib/ip/ipsched" | grep -v grep) \

>/dev/null 2>&1

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continues)

436 Chapter 16

then

AIX System V printer service is running

AIX PSS=SYSTEMV

£1

Call the correct function for Classic AIX or SysV printing

case SAIX_PSS in

CLASSIC) # Call the classic AIX printing function

AIX classic printing

SYSTEMV) # Call the AIX SysV printing function

AIX_SYSV_printing

esac

HP-UX) # Call the HP-UX printing function

HP_UX_printing

Linux) # Call the Linux printing function

Linux_printing

SunOS) # Call the Solaris printing function

Solaris printing

ii

~) # Anything else is unsupported.

echo "\nERROR: Unsupported Operating System: $ (uname) \n"

echo "“\nVt\t.. BRE TING oo \n" ae

esac

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continued)

For each of the operating systems and, in the case of AIX, each printer service we

took the previously created shell scripts, extracted the code, and placed it between
function function_name { and the function ending character }. We now have the
following functions:

AIX_classic_printing

AIX_SYSV_printing

HP_UX_printing

Linux_printing

Solaris printing

Print Queue Hell: Keeping the Printers Printing 437

To execute the correct function for a specific operating system, we need to know the

Unix flavor. The uname command returns the following output for each of our target
operating systems:

os

AIX

HP-UX

Linux

Solar

uname Output

AIX

HP-UX

Linux

is SunOS

With the exception of AIX, this information is all that is needed to execute the cor-

rect function. But with AIX we have to determine which printer service is running on

the server. Both types of print services have a process controlling them so we can grep
for each of the processes using the ps -ef command to find the currently running

printer service. When the classic AIX printer subsystem is running, there is a /usr/
sbin/qdaemon process running. When the System V printer service is running, there

isa /usr/1lib/1p/lpsched process running. With this information we have every-

thing ne eded to make a decision on the correct function to run.

We added at the end of the script all of the function execution control in the case

statement that is shown in Listing 16.15.

case

AIX)

$(uname) in

AIX okay...Which printer subsystem?

Starting with AIX 5L we support System V printing also!

Check for an active qdaemon using the SRC lssrce command

if (ps -ef | grep '/usr/sbin/qdaemon' | grep -v grep) \

>/dev/null 2>&1

then

Standard AIX printer subsystem found

AIX _PSS=CLASSIC

elif (ps -ef | grep '/usr/1lib/1p/lpsched' | grep -v grep) \

>/dev/null 2>&1

then

AIX System V printer service is running

AIX _PSS=SYSTEMV

basi

Call the correct function for Classic’ AIX or SysV, printing

case $AIX_PSS in

CLASSIC) # Call the classic AIX printing function

AIX classic printing

e+
at

Listing 16.15 Controlling case statement listing to pick the OS. (continues)

438 Chapter 16

SYSTEMV) # Call the AIX SysV printing function

AIX_SYSV_printing

esac

HP-UX) # Call the HP-UX printing function

HP UX printing

Linux) # Call the Linux printing function

Linux_printing

SunOS) # Call the Solaris printing function

Solaris printing

*) # Anything else is unsupported.

echo "\nERROR: Unsupported Operating System: $(uname) \n"

echo “NpNC\VE. CBS TT ENG hin

esac

Listing 16.15 Controlling case statement listing to pick the OS. (continued)

I hope by now that the code in the case statement is intuitively obvious to read and

understand. If not, the first line of the case block of code is the uname command. At

this point we know what the OS flavor is. For HP-UX, Linux, and Solaris we execute

the target OS printing function. For AIX we make an additional test to figure out which
one of the supported printing services is running. The two options are System V and

the Classic AIX printer subsystem.

Notice that I removed all of the logging functionality from the functions. With this

type of setup, where you have the functions doing the work, you can move the logging

out to the main body of the shell script. This means that you can capture all of the out-
put data of the function to save to a log file, use the tee command to view the data
while logging at the same time, or just point it to the bit bucket by redirection to

/dev/null.

Other Options to Consider

As usual, we can always improve on a shell script, and these shell scripts are no excep-
tion. Some options that you may want to consider are listed next.

Print Queue Hell: Keeping the Printers Printing 439

Logging

You may want to add logging with date/time stamps. If you are having a lot of trouble
keeping certain print queues up, studying the log may give you a trend that can help
you find the cause of the problem. Some queues may drop ina particular location more
than others. This can indicate network problems to the site. Any time you start logging
do not forget to keep an eye on the log files! I often see that a script is added to a pro-
duction machine, and the next thing you know, the log file has grown so large that it
has filled up the filesystem. Don’t forget to prune the log files. Trimming the log files is
another little shell script for you to write.

Exceptions Capability

In a lot of shops you do not want to enable every single printer and print queue. In this
case you can create an exceptions file, which contains the queue/ printer names that you
want to exclude from enabling. You also may have special considerations if your shop
uses specific forms at different times on some of the floating printers. Some shops are
just print queue hell! Having the capability to keep the majority of the printers active
all of the time and exclude a few is a nice thing to have.

Maintenance

During maintenance windows and other times when you want to stop all printing, you

may want to comment out any cron table entries that are executing the enabling
scripts. You usually find this out after the fact.

Scheduling

I keep a script running 24 x 7 to keep all of the printers available. You may want to tai-

lor the monitoring scheduling to fit business hours (my requirement is 24 x 7). Users’

loading up on print jobs during the middle of the day is always a problem, so we try to
hold big jobs for times of low activity. Low activity times are the times when you want

to be at home so make sure you are keeping the printers printing during these hours,
or the next morning you will have the same problem.

Summary

In this chapter we covered some unique techniques to handle the data from command

output. In the Linux script we used arrays to hold the data as array elements. In other

cases we read in a line at a time and used tags to grab the data we needed. We learned
how to process a specific number of lines of data in groups by using a loop counter

within a while loop.

440 Chapter 16

The techniques in this chapter are varied, but the solutions are readable and can be
easily maintained. Someone will follow in your footsteps and try to figure out what

you did when you wrote the shell script. Do not play the “job security” game because

you are you own worst enemy when it comes to documenting your shell scripts. If you

comment when you write the script and make a note in the REV section when you edit

it, you will have a long, happy life using your shell script.

In the next chapter we are going to move into the world of FTP. The object of the
next chapter is to automate file transfers between systems using FTP, or file transfer
protocol.

Automated FTP Stuff

In many shops the business relies on nightly, or even hourly, file transfers of data that

is to be processed. Due to the importance of this data, the data movement must be

automated. The extent of automation in the ftp world is threefold. We want the ability

to move outbound files to another site, move inbound files from a remote location to

your local machine, and check a remote site on a regular basis for files that are ready to

download. In this chapter we are going to create some shell scripts to handle each of
these scenarios.

Most businesses that rely on this type of data movement also require some pre-ftp

and post-ftp processing to ready the system for the files before the transfer takes place
and to verify the data integrity or file permissions after the transfer. For this pre and

post processing we need to build into the shell script the ability to either hard-code the

pre and post processing events or point to a file that performs these tasks. Now we are
up to five pieces of code that we need to create. Before we go any further let’s look at
the syntax for the ftp connections.

Syntax

Normally when we ftp a file, the remote machine’s hostname is included as an argu-

ment to the ftp command. We are prompted for the password and, if it is entered cor-

rectly, we are logged into the remote machine. We then can move to the local directory

441

442 Chapter 17

containing the file we want to upload, then to the directory that is to receive the upload
from our local machine. In either case we are working with an interactive program. A

typical ftp session looks like the output shown in Listing 17.1.

[root:yogi]@/# cd /scripts/download

[root:yogi]@/scripts/download# ftp wilma

Connected to wilma.

220 wilma FTP server (SunOS 5.8) ready.

Name (wilma:root): randy

331 Password required for randy.

Password:

230 User randy logged in.

ftp> cd /scripts

250 CWD command successful.

fips get-auto ftp xter. ksh

200 PORT command successful.

150 ASCII data connection for auto_ftp_xfer.ksh (10.10.10.1,32787) (227

bytes) .

226 ASCII Transfer complete.

246 bytes received in 0.0229 seconds (10.49 Kbytes/s)

local: auto ftp xfer.ksh remote: auto ftp xfer.ksh

ftp> bye

221 Goodbye.

[root: yogi] @/scripts/download#

Listing 17.1 Typical FTP file download.

As you can see in Listing 17.1 the ftp command requires interaction with the user to

make the transfer of the file from the remote machine to the local machine. How do we
automate this interactive process? If you have been studying other chapters, then you
know the answer is a here document. A here document is a coding technique that allows
us to place all of the required interactive command input between two labels. Let’s look

at an example of coding a simple ftp transfer using this automation technique in List-
ing 17.2.

#!/bin/ksh

SCRIPT: tst ftp.ksh

AUTHOR: Randy Michael

DATE: 6/12/2002

REV: 1.1.A

PLATOFRM: Not platform dependent + + FH H+ +

Listing 17.2 Simple here document for FTP transfer in a script.

Automated FTP Stuff 443

PURPOSE: This shell script is a simple demonstration of

using a here document in a shell SCrIpt | CoVautomate

an FTP file transfer.
}

$6 4 + +e +

Connect to the remote machine and begin a here document.

ftp -i -v -n wilma <<END FTP

user randy mypassword

binary

lcd /scripts/download

cd (scripts

get auto_ftp_xfer.ksh

bye

END_FTP

Listing 17.2 Simple here document for FTP transfer in a script. (continued)

Notice in Listing 17.2 where the beginning and ending labels are located. The first

label, <<END_FTP, begins the here document and is located just after the interactive

command that requires input, which is the ftp command in our case. Next comes all of
the input that a user would have to supply to the interactive command. In this exam-

ple we log in to the remote machine, wilma, using the user randy mypassword

syntax. This ftp command specifies that the user is randy and the password is

mypassword. Once the user is logged in, we set up the environment for the transfer

by setting the transfer mode to binary, locally changing directory to /scripts/

download, then changing directory on the remote machine to /scripts. The last step
is to get the auto_ftp_xfer.ksh file. To exit the ftp session we use bye; quit also

works. The last label, END_FTP, ends the here document, and the script exits.

Also notice the ftp command switches used in Listing 17.2. The -i command switch
turns off interactive prompting during multiple file transfers so there is no prompt for

the username and password. See the FTP man pages for prompt, mget, mput, and

mdelete subcommands for descriptions of prompting during multiple file transfers.

The -n switch prevents an automatic login on the initial connection. Otherwise, the ftp

command searches for a SHOME/ .netrc entry that describes the login and initializa-

tion process for the remote host. See the user subcommand in the man page for ftp. The

-v switch was added to the ftp command to set verbose mode, which allows us to see

the commands as the ftp sessions runs. The tst_ftp.ksh shell script from Listing

17.2 is shown in action in Listing 17.3.

444 Chapter 17

[root:yooi]@/scripts# —/tst ftp-ksh ue

Connected to wilma.

220 wilma FTP server (SunOS 5.8) ready.

331 Password required for randy.

230 User randy logged in.

200 Type set to I.

Local directory now /scripts/download

250 CWD command successful.

200 PORT command successful. :

150 Binary data connection for auto ftp xfer ksh (10.10.10.1, 32/93)

(227 bytes) . |

226 Binary Transfer complete.

227 bytes received in 0.001092 seconds (203 Kbytes/s)

local: auto ftp xfer. ksh remote: auto. ftp xfer ksh

221 Goodbye.

[root:yogi]@/scripts#

Listing 17.3 Simple automated FTP file transfer using a script.

Using these techniques we are going to create shell scripts to tackle some of the com-

mon needs of a business that depends on either receiving data from or transferring

data to a remote host.

Automating File Transfers and
Remote Directory Listings

We have the basic idea of automating an ftp file transfer, but what do we want to

accomplish? We really want to do three things: download one or more files with get or
meget, upload one or more files with put or mput, and get a directory listing from a

remote host. The first two items are standard uses for any ftp script, but getting a

remote directory listing has not been explained in any of the documentation of a script-
ing technique that I have seen.

Additionally, we need to add the ability of pre-event and post-event processing. For

example, a pre-ftp event may be getting a directory listing from a remote host. A post-

ftp event may be changing the ownership and file permissions on a newly down-

loaded file. This last example brings up another point. When you ftp a file that has the

execute bit set, the file will be received with the execute bit unset. Any time you ftp a

file, the execution bit is stripped out of the file permissions.
Let’s look at these topics one at a time.

Using FTP for Directory Listings on a Remote Machine

To save a remote directory listing from a remote system to a local file, we use the ftp

subcommand nlist. The nlist subcommand has the following form:

Automated FTP Stuff 445

nlist [RemoteDirectory] [LocalFile]

The nlist subcommand writes a listing of the contents of the specified remote
directory (RemoteDirectory) to the specified local file (LocalFile). If the

RemoteDirectory parameter is not specified, the nlist subcommand lists the con-

tents of the current remote directory. If the LocalFile parameter is not specified or is

a - (hyphen), the nlist subcommand displays the listing on the local terminal.

Let’s create a little shell script to test this idea. We can use most of the shell script

contents shown in Listing 17.2, but we remove the get command and replace it with the

nlist subcommand. Take a look at Listing 17.4.

#!/bin/ksh

SCRIPT: get_remote_dir_listing.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

TORR VT bd Pp.

PLATFORM: Not Platform Dependent

cid

PURPOSE: This shell script uses FTP to get a remote directory listing

cid and save this list in a local file.

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

HHEEHEHHHHHHHEHHHAEREREERREHEEEEEEPEEEAEEEPHEER EERE ERE REE R ERR ERR EE EH

HHHHHHHHHHHHHHEHHH DEFINE VARIABLES HERE #####0# FR PHHESEEE HEHEHE EE EH

HHHHHHHHHHEHRERRHHRRHEAEHER ER RAHEEE AREER ERASE EERE EEE EH EERE EH

RNODE="wilma"

USER="randy"

UPASSWD="mypassword"

LOCALDIR="/scripts/download"

REMOTEDIR="/scripts"

DIRLISTFILE="$ {LOCALDIR}/${RNODE} .$ (basename ${REMOTEDIR}) .dirlist.out"

cat /dev/null > $DIRLISTFILE

HHHHAHHHHHHHHHPEHEP HEHEHE HBR EPEREE EERE HEH EH HHH He HR HH He Ha HE

HHHHHHHEHHHHHHHHHHE AHH BEGINNING OF MAIN ###2HRRHEH RHEE HERE EH HEH HE

HHHHHPHHHEEHEHHHHRE PREP ERB EH EHH EH HEH HH HE HE HH HE Ho aE He HE HEE HE

ftp -i -v -n $RNODE <<END_FTP

user SUSER SUPASSWD

nlist SREMOTEDIR $DIRLISTFILE

bye

END_FTP

Listing 17.4 get_remote_dir_listing.ksh shell script listing.

446 Chapter 17

There are several things to point out in Listing 17.4. We start out with a variable def-
inition section. In this section we define the remote node, the username’and password

for the remote node, a local directory, a remote directory, and finally the local file that

is to hold the remote directory listing. Notice that we had to create this file. If the local
file does not already exist, then the remote listing to the local file will fail. To create the

file you can use either of the following techniques:

cat /dev/null > SDIRLISTFILE

>SDIRLISTFILE

touch SDIRLISTFILE

The first two examples create an empty file or will make an existing file empty. The

touch command will update the time stamp for the file modification for an existing file

and will create the file if it does not exist.

At the BEGINNING OF MAIN we have our five lines of code that obtain the direc-

tory listing from the remote node. We use the same technique as we did in Listing 17.2

except that we use variables for the remote node name, username, and password.

Variables are also used for the directory name on the remote machine and for the local

filename that holds the directory listing from the remote machine using the ftp sub-
command nlist.

Notice that the password is hard-coded into this shell script. This is a security night-
mare! In a later section in this chapter we will cover a technique of replacing hard-

coded passwords with hidden password variables.

Getting One or More Files from a Remote System

Now we get to some file transfers. Basically we are going to combine the shell scripts

in Listings 17.1 and 17.4. We are also going to add the functionality to add pre- and

post-ftp events. Let’s start by looking at the shell script in Listing 17.5, get_ftp_
Files.ksh.

#! /bin/ksh

SCRIPT: get_ftp_files.ksh

AUTHOR: Randy Michael

DATE: July: 15,-2002

REV Ae LP

PURPOSE: This shell script uses FTP to get a list of one or more

+

PLATFORM: Not Platform Dependent

remote files from a remote machine.

ci

i set -n # Uncomment to check the script syntax without any execution

Listing 17.5 get_ftp_files.ksh shell script listing.

Automated FTP Stuff 447

set -x # Uncomment to debug this shell script

HHHHHHHHEPRPPPHHPEHHEEHRHEHRHHHHHHHHH HEPES HHH HH EH HEH HH HH

HHFHHREHREHEEHHHHEH DEFINE VARIABLES HERE ########HHHHHHHHHHHHE HEHEHE

HHHHHHHHEREPHEHHEEEHHEHHEEEHHHEHHHHHHHP HEHEHE RE HH HEH HE HE HH dE

REMOTEFILES=$1

THISSCRIPT=$ (basename $0)

RNODE="wilma"

USER="randy"

UPASSWD="mypassword"

LOCALDIR="/scripts/download"

REMOTEDIR="/scripts"

HEHEHE HEH HE EH HA HEE HE AE HEHE HE aE HE HEHEHE HEHEHE HEHEHE HEHE HEE HHH EHH HHH HHH HHH EH HHH

HHHHEHHEEEHEHEHHE EH DEFINE FUNCTIONS HERE ###HH HHH HHH HEH HS HH HH HH HHH

HEHE EH HH EH HE EE HEE HE HE HE HE EE HE HEH HE EH HEHE HE HE ak HE EH HEHE HEHEHE HEHEHE HEH HEHEHE HE HH HEHE HH HEH HEH

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

HHPHERREHHREESPREEERERERERE REE G ERE E REET ERR EEE EH EHH HH EHH

post_event ()

{
Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

mo-op: The colon (:) is a no-op character, It does nothing and

always produces a 0, zero, return code.

}

HHHHHHHHPHHEHHEHEEHEEERBB ESHER EHH HH HEHE HH EH HHH HH HEH HE HH HEH

usage ()

i
echo "\nUSAGE: STHISSCRIPT \"One or More Filenames to Download\" \n"

exit ot

Listing 17.5 get_ftp_files.ksh shell script listing. (continues)

448 Chapter 17

} :

everererrrecervertrerrerer rs tr ertrertrererer tre et ee.

usage error ()

{

echo "\nERROR: This shell script requires a list of one or more

files to download from the remote site. \n"

usage

}

HHHAHAAHH AHHH AEHHAAHAEHAAAHAHHHAPHH AAA AAHHAREHA AHH RAH ARAH AER ERASE

HHHHRHEEHHEEHEHHEE HEHEHE BEGINNING OF MAIN ######FHFEERPREERREEEHREE RS

HHFEEEHREREPEEERERPEE EERE RRERH HERR RRERE EERE ERE ERR E ERE H HGH EH HEE

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

(($# != 1)) && usage_error

pre_event

Connect to the remote site and begin the here document.

ftp -i -v -n $RNODE <<END_FTP

user SUSER SUPASSWD

binary

lcd SLOCALDIR

cd SREMOTEDIR

mget SREMOTEFILES

bye

END_FTP

post_event

Listing 17.5 get_ftp_files.ksh shell script listing. (continued)

We made a few changes in Listing 17.5. The major change is that we get the list of

files to download from the $1 command-line argument. If more than one file is listed
on the command line, then they must be enclosed in quotes, “file1 file2 file3 filen”, so

they are interpreted as a single argument in the shell script. A blank space is assumed
when separating the filenames in the list.

Automated FTP Stuff 449

Notice that the local and remote directories are hard-coded into the shell script.

If you want, you can modify this shell script and use getopts to parse through some

command-line switches. This is beyond the basic concept of this chapter.

Because we are now requiring a single argument on the command line, we also need

to add a usage function to this shell script. We are looking for exactly one command-
line argument. If this is not the case, then we execute the usage_error function,
which in turn executes the usage function.

Because we may have more than one filename specified on the command line, we

need to use the ftp subcommand mget, as opposed to get. We have already turned off

interactive prompting by adding the -i switch to the ftp command so there will not be

any prompting when using meget.

Pre and Post Events

Notice in Listing 17.5 that we added two new functions, pre_event and

post_event. By default, both of these functions contain only the no-op character, :

(colon). A : does nothing but always has a return code of 0, zero. We are using this as

a placeholder to have something in the function.

If you have a desire to perform a task before or after the ftp activity, then enter the

tasks in the pre_event and/or the post_event functions. It is a good idea to enter

only a filename of an external shell script rather than editing this shell script and try-

ing to debug a function in an already working shell script. An external shell script file-

name, that is executable, is all that is needed to execute the pre and post events.

In the external shell script enter everything that needs to be done to set up the envi-

ronment for the ftp file transfers. Some things that you may want to do include remov-

ing the old files from a directory before downloading new files or getting a directory

listing of a remote host to see if there is anything to even download. You can make the

code as long or as short as needed to accomplish the task at hand.

Script in Action

To see the shell script in Listing 17.5 in action, look at Listing 17.6 where we are trans-
ferring the shell script to another host in the network.

[root:yogi]@/scripts# ./get_ftp_files.ksh get_ftp_files.ksh

Connected to wilma.

220 wilma FTP server (SunOS 5.8) ready.

331 Password required for randy.

230 User randy logged in.

200 Type set to I.

Local directory now /scripts/download

250 CWD command successful.

200 PORT command successful.

Listing 17.6 get_ftp_files.ksh shell script in action. (continues)

450 Chapter 17

150 Binary data connection foe get_ ftp_files. ksh (10.10,10.1, 22808)

(1567 bytes) . |

226 Binary Transfer complete.

1567 bytes received in 0.001116 seconds (1371 Kyte

local: get ftp files ksh remote: get_ftp._files.ksh

221 Goodbye. _

[root:yogi]@/scripts#

Listing 17.6 get_ftp_files.ksh shell script in action. (continued)

In this example the transfer is taking place between a local AIX machine called yogi

and the remote SunOS machine called wilma.

Putting One or More Files to a Remote System

Uploading files to another machine is the same as downloading the files except we

now use the put and mput commands. Let’s slightly modify the shell script in Listing

17.5 to make it into an upload script. This script modification is shown in Listing 17.7.

#!/bin/ksh

SCRIPT: put ftp files koh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1 .P

PLATFORM: Not Platform Dependent

PURPOSE: This shell script uses FTP to put a list of one or more

local files to a remote machine.

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

PETS TTT TET EVETETEV EV ET ET IVETE IVEY TT TE TET ET OT TOT ET ETT TTT

HEHHHEHHEREHEHEHEHEE DEFINE VARIABLES HERE ##H###4##FHHEEHPEEHPEESEREH

HHERPHHPRPRRPEEAPHSEPEEHE REAPER ERPPEEEEE RR PEEH EHH HEE HEH HEE

LOCALFILES=$1

THISSCRIPT=S (basename $0)

RNODE="wilma"

Listing 17.7 put_ftp_files.ksh shell script listing.

Automated FTP Stuff 451

USER="randy"

UPASSWD="mypassword"

LOCALDIR="/scripts"

REMOTEDIR="/scripts/download"

HHH HH HERR RRR HR HEHEHE EPH EPH HH PR ETHER PEER E ERR BEES ER HH

HHFHEHHHPRERER HEHEHE DEFINE FUNCTIONS HERE #######HHHHHHHEHEHEHHEEHH HEH

HHPRERPRR BEEP EERE HEE HH RHEE RHEE EHH HHH REA EH ERE EE HH

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

HSE HH HHH HH HH EE HEHE HE HE aE aE aE a EEE a aE ae EEE PH HE HH

post_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

HHHHHHHHH AEH HEH HHH HH EH HH HHH HH HEH EHH HH HEH HE HE

usage ()

{

echo "\nUSAGE: S$THISSCRIPT \"One or More Filenames to Download\" \n"

exit: 1

3

HHHHHHHHHHEHHPEH HEHEHE EHH HEHEHE He oe ee ea ee EH SE eH SE EH SE EH So EH

usage error ()

{
echo "\nERROR: This shell script requires a list of one or more

files to download from the remote site. \n"

usage

Listing 17.7 put_ftp_files.ksh shell script listing. (continues)

452 Chapter 17

}

AUEEEEEEEECHEEEEEEEE HEHEHE EH HEH EEEMEHMEEEEEEEEEEEHEERR
HHHHHHERAAAEAHERERHHY BEGINNING OF MAIN #4####4#000#HHHHHHHH HEED
HHEHPAARA AAPA AERA HA AAAS AAA gE HE

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

(($# != 1)) && usage error

pre_event

Connect to the remote site and begin the here document.

ftp -i -v -n SRNODE <<END_FTP

user SUSER SUPASSWD

binary

led $LOCALDIR

cd SREMOTEDIR

mput SLOCALFILES

bye

END_FTP

post_event

Listing 17.7 put_ftp_files.ksh shell script listing. (continued)

The script in Listing 17.7 uses the same techniques as the get_ftp_files.ksh

shell script in Listing 17.5. We have changed the $1 variable assignment to LOCAL-

FILES instead of REMOTEFILES and changed the ftp transfer mode to mput to upload

the files to a remote machine. Other than these two changes the scripts are identical.

In all of the shell scripts in this chapter we have a security nightmare with hard-

coded passwords. In the next section is a technique that allows us to remove these

hard-coded passwords and replace them with hidden password variables. Following

the next section we will use this technique to modify each of our shell scripts to utilize
hidden password variables.

Replacing Hard-Coded Passwords with Variables

Traditionally when a password is required in shell script it has been hard-coded into

the script. Using this hard-coded technique presents us with a lot of challenges, rang-

ing from a security nightmare to the inability to change key passwords on a regular

basis. The variable technique presented in this section is very easy to implement with
only minor changes to each shell script.

Automated FTP Stuff 453

| NOTE Important: Each shell script must be changed in order to properly

implement the technique throughout the infrastructure.

The variable replacement technique consists of a single file that contains unique vari-

able assignments for each password required for shell scripts on the system. A sample
password file looks like the following:

DBORAPW=alpha

DBADMPW=beta

BACKUPW=gamma

RANDY=mypassword

Some of the considerations of implementing this variable replacement technique
include the following:

m The scope of where the variable containing the password can be seen

m The file permission of the password variable file that contains the hard-coded
passwords

To limit the scope of the variable it is extremely important that the variable not be

exported in the password variable file. If the variable is exported, then you will be able

to see the password in plain text in the process environment of the shell script that is

using the password variable. Additionally, with all of these passwords in a single file,

the file must be locked down to read-only by root ideally.

The best illustration of this technique is a real example of how it works. In the fol-

lowing code sections, shown in Listings 17.8, 17.9, and 17.10, there is a password file
that contains the password variable assignments that has the name setpwenv.ksh

(notice this file is a shell script!). In the first file, the password variable is exported. In

the second file, the password variable is not exported. Following these two files is a
shell script, mypwdtest .ksh, that executes the password environment file, setp-

wenv . ksh, and tests to see if the password is visible in the environment.

| NOTE Test results of using each technique are detailed in the next section of

this chapter.

Example of Detecting Variables in a Script’s Environment

We start the examples with a setpwenv . ksh file that exports the password variable in

Listing 17.8.

#!/bin/ksh

SCRIPT: setpwenv.ksh

PURPOSE: This shell script is executed by other shell

Listing 17.8 Password file with the password variable exported. (continues)

454 Chapter 17

scripts that need a password contained in

A Variable -

This password is NOT exported

MYPWDTST=bonehead

This password IS exported

MYPWDTST=bonehead

export MYPWDTST

Listing 17.8 Password file with the password variable exported. (continued)

Notice in Listing 17.8 that the password is exported. As you will see, this export of

the password variable will cause the password to be visible in plain text in the calling

shell script’s environment.
The password file in Listing 17.9 shows an example of not exporting the password

variable.

#!/bin/ksh

SCRIPT: setpwenv.ksh

PURPOSE: This shell script is executed by other shell

scripts that need a password contained in

a variable

iF

This password is NOT exported

MYPWDTST=bonehead

This password IS exported

MYPWDTST=bonehead

export MYPWDTST

Listing 17.9 Password file showing the variable not exported.

Notice in Listing 17.9 that the password is not exported. As you will see, this variable

assignment without exporting the password variable will cause the password to not

be visible in the calling shell script’s environment, which is the result that we are

looking for.

Automated FTP Stuff 455

The shell script shown in Listing 17.10 performs the test of the visibility of the pass-
word assigned for each of the password environment files.

#!/usr/bin/ksh

SCRIPT: mypwdtest.ksh

PURPOSE: This shell script \as\used)to demonstrate the

use of passwords hidden in variables.

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution $e HE HEHE HEH HOH

Set the BIN directory

BINDIR=/usr/local/bin

Execute the shell script that contains the password variable

assignments.

- ${BINDIR}/setpwenv.ksh

echo "\n\nPASS is SMYPWDTST" # Display the password contained in

the variable

echo "\nSearching for the password in the environment...”

env | grep $MYPWDTST

if (($? == 0))_

then

echo "\nERROR: Password was found in the environment\n\n"

else

echo "\nSUCCESS: Password was NOT found in the environment\n\n"

fi

Listing 17.10 Shell script to demonstrate the scope of a variable.

The shell script shown in Listing 17.10, mypwdtest . ksh, tests the environment

using each of the setpwenv.ksh shell scripts, one with the password environment
exported and the second file that does not do the export. You can see the results of the

tests here.

Example with the Password Variable Exported

PASS is bonehead

Searching for the password in the environment...

MYPWDTST=bonehead

ERROR: Password was found in the environment

456 Chapter 17

Notice in the previous example that the password is visible in the shell script’s envi-
ronment. When the password is visible you can run the env command while the
mypwdtest.ksh shell script is executing and see the password in plain text. There-

fore, anyone could conceivably get the passwords very easily. Notice in the next output

that the password is hidden.

Example with the Password Variable Not Exported

PASS is bonehead

Searching for the password in the environment...

SUCCESS: Password was NOT found in the environment

| WARNING As you can see, it is extremely important never to export a

password variable.

To implement this variable password substitution into your shell scripts you only

need to add the password to the password environment file using a unique variable

name. Then inside the shell script that requires the password you execute the pass-

word file, which is setpwenv . ksh in our case. After the password file is executed the

password variable(s) is/are ready to use.

| NOTE The preceding content uses this technique for passwords; however,

this practice can also be utilized for usernames, hostnames, and application

variables. The main purpose of this exercise is to have a central point of

changing passwords on a regular basis and to eliminate hard-coded passwords

in shell scripts.

Modifying Our FTP Scripts to Use Password Variables

As you saw in the previous section, Replacing Hard-Coded Passwords with Variables, it is

an easy task to modify a shell script to take advantage of hidden password variables.

Here we make the two lines of modifications to our nlist, get, and put shell scripts.

The first thing that we need to do is create a password environment file. Let’s use a

name that is a little more obscure than setpwenv.ksh. How about setlink.ksh?

Also, let’s hide the setlink.ksh shell script in /usr/sbin for a little more security.

Next let’s set the file permissions to 400, read-only by the owner (root). Now you may

be asking how can we execute a shell script that is read-only. All we need to do is to dot
the filename. An example of dotting the file is shown here.

. /usr/sbin/setlink.ksh

Automated FTP Stuff 457

The dot just says to execute the filename that follows. Now let's set up the password
environment file. This example assumes that the user is root.

echo "RANDY=mypassword" >> /usr/sbin/setlink.ksh

chown 400 /usr/sbin/setlink.ksh

Now in each of our shell scripts we need to dot the /usr/sbin/setlink.ksh file
and replace the hard-coded password with the password variable defined in the exter-
nal file, /usr/sbin/setlink.ksh, which is $SRANDY in our case.

Listings 17.11, 17.12, and 17.13 show the modified shell scripts with the hard-coded

passwords removed.

#!/bin/ksh

SCRIPT: get_remote_dir listing pw var.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REVs2 2b P

PLATFORM: Not Platform Dependent

PURPOSE: This shell script uses FTP to get a remote directory listing

and save this list in a local file. This shell script uses

remotely defined passwords.

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

Se SF FE HE OH HEHEHE HEHEHE HEHE HE

HHPHHPHEPEHPEHPEEPHEEPERPEEE RESP EEE EERE RHEE EES EHPPEESREEAR HEHEHE SH

HHHHEPHHEHHPHHHHHHE DEFINE VARIABLES HERE ##H###FHHPPPEPHEEEHEHHE HEH EH

HHHPEEHEAEEEAHBHEEEGE ERAGE REE REE E HERRERA REET AAEEEHH HEHE H

RNODE="wilma”

USER="randy"

LOCALDIR="/scripts/download"

REMOTEDIR="/scripts"

DIRLISTFILE="$ {LOCALDIR}/${RNODE}.$(basename ${REMOTEDIR}) .dirlist.out"

cat /dev/null > SDIRLISTFILE

HEEHHHEHEHER RE RRHREEHEES HEARSE REE EREEERRE ERE EERE EERE ERRR RRR ER HEH

HHHHHHHHHHHEHHHEHHEHEH BEGINNING OF MAIN ####HHEHHPHHEEHEEREH HEH HE EH

HHHHHHHHAEHAAH AERA REPRE AERE ERA EE EHH ARATE RPAH EHH FEE EH

Get a password

Listing 17.11 get_remote_dir_listing_pw_var.ksh script listing. (continues)

458 Chapter 17

. /usr/sbin/setlink.ksh .

ftp -i -v -n SRNODE <<END_FTP

user SUSER SRANDY

nlist SREMOTEDIR SDIRLISTFILE

bye

END_FTP

Listing 17.11 get_remote_dir_listing_pw_var.ksh script listing. (continued)

In Listing 17.11 the only modifications that we made to the original shell script

include a script name change, the removal of hard-coded passwords, adding the execu-
tion of the /usr/sbin/setlink.ksh shell script, and adding the SRANDY remotely

defined password variable.

#!/bin/ksh

SCRIPT: get ftp files pw var.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: Ls P

PLATFORM: Not Platform Dependent

PURPOSE: This shell script uses FTP to get one or more remote

files from a remote machine. This shell script uses a

remotely defined password variable.

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

HRHEEEHEEEREREER PEER RERERR EERE EERE REPREPPEPREEEERHEEEPREEHEERHEHE

HHHHHHPEEEHHHEEHHHE DEFINE VARIABLES HERE #H###### HEHEHE EEEHEREREE HE

HRREREHEPERER RHEE ERERERRREERERRR EAE ER SPER PPHERSRHHPAEERERRREREEEEHH

REMOTEFILES=$1

THISSCRIPT=$ (basename $0)

RNODE="wilma"

USER="randy"

LOCALDIR="/scripts/download"

Listing 17.12 get_ftp_files_pw_var.ksh shell script listing.

Automated FTP Stuff 459

REMOTEDIR="/scripts"

HHTPTA TETHER REE PEER EEPEE AEP E EERE PERE EE HEHE PREAH HPEH PAPE HH HH

HHTHHHHEHEEEREHHHH DEFINE FUNCTIONS HERE #######H##HHHHHHHHHHHHE HHS

HEFHHEAR HER ERP EERE ERHEREER AEH AH PERE RHE THREE HEHE RHEE EREHEPH HHH EH HEH

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

FREER RETR EAR RE THEE ESHER ERE ESR ETHER EH RATES GRRE REGRESS HH HF

post_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

HERHHHH RAHA AA AH HEHE HH HERRERA RHEE HEHEHE EHH EE

usage ()

{

echo "\nUSAGE: STHISSCRIPT \"One or More Filenames to Download\" \n"

exit 1

}

HHAHHHAHHHEHHAHEHEH EARP AHA REHEARSE EH EEE EH HEHE EE HHT

usage_error ()

{
echo "\nERROR: This shell script requires a list of one or more

files to download from the remote site.\n"

usage

}

HHHHHHHHPHHHHE PHBH Ho HE EE EH EA EHH aE HE HE EGE HE aE EE aE

HHAHHHHHHEHHHEHEEHE HEHE BEGINNING OF MAIN #####HHEHRHER EPR ER HEE HHT R HE

Listing 17.12 get_ftp_files_pw_var.ksh shell script listing. (continues)

460 Chapter 17

EEE HULU EERE

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

((S# != 1)) && usage_error

Get a password

. /usr/sbin/setlink.ksh

pre_event

ftp -i -v -n SRNODE <<END_FTP

user SUSER $RANDY

binary

led SLOCALDIR

cd SREMOTEDIR

mget SREMOTEFILES

bye

END_FTP

POSE event

Listing 17.12 get_ftp_files_pw_var.ksh shell script listing. (continued)

In Listing 17.12 the only modifications that we made to the original shell script

include a script name change, the removal of hard-coded passwords, adding the exe-

cution of the /usr/sbin/setlink.ksh shell script, and adding the $RANDY
remotely defined password variable.

#!/bin/ksh

SCRIPT: put £tp files pw var.ksh

AUTHOR: Randy Michael

DATE: duly 15, 2002

HoREVs 1 ot. P

PLATFORM: Not Platform Dependent

PURPOSE: This shell script uses FIP to put a list of one or more

local files to a remote machine. This shell script uses

Listing 17.13 put_ftp_files_pw_var.ksh shell script listing.

Automated FTP Stuff 461

remotely defined password variables

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

+ H+ +H HH FH

HHETHEPPEE REPS EE ERE HERREEERPEE RPE REE ARTE HERRERA ERR ERAEE AHHH

FHEPHHREEHEHEHEHHEH DEFINE VARIABLES HERE #####HH HE HEHEHE RHEEEEEH SH

HEE AE HE aE EEE HE aE AR HE HE HE ARE HE AE AE HE HE EE HE aE HEE HE EH HE ER HE HE HE

LOCALFILES=$1

THISSCRIPT=S (basename $0)

RNODE="wilma"

USER="randy"

LOCALDIR="/scripts"

REMOTEDIR="/scripts/download"

HHHHHAHHHHHAAAAHHAAEHHAAAAAHAATHHARHHHARHAHAAHHA AHHH AREH HAHAHA RHEE

HHHHHHHEHHHEPHHE HEHE DEFINE FUNCTIONS HERE #H###HHHHEREEE EAH EH HE HEHE HHH

HHHHHHEEPEAPEESEEEEREREHEERER RAPER REAPER PEE EEE RHEE EEE EHS HEH

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code,

HHEHHHHHHHHHHEREEARA AAPA ARERR ARRPR RRR EAR HEE GH EH RHR HE RH

post_event ()

{
Ad@ anything that you want to execute in this function. You can

+ Hard-code the tasks in this function or Greate’ an external shell

script and execute the external function here.

#°no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

HHHHHHHEHHPHHHRHEP HEH BH HSE HE EEE EH EE HOH EAE aE HE Ha aE aE

usage ()

{

echo "\nUSAGE: S$THISSCRIPT \"One or More Filenames to Download\" \n"

Listing 17.13 put_ftp_files_pw_var.ksh shell script listing. (continues)

462 Chapter 17

exit 1

}

HHFHHPHEEPHEASERAPHEAS ERAS RHAEHEEPHEEPHHPEPEEHPRRHPRERHEEE ERE HEE EH

usage_error ()

f

echo "\nERROR: This shell script requires a list of one or more

files to download from the remote site.\n"

usage

HARA AEE AEA EE AEA EA ARE a a HEE EE

HHHHHHEHHEEEHHEHAHHHEH BEGINNING OF MAIN #####8##HFHFEHEHERERHESERHHSE

HEHEHE HRPHEAPHEAEPHEPHSEPHRHEPEEHPPEPEPEPHESRPEESEREPHEAEPEREREERHESE

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

((S# != 1)) && Usage error

Get a password

. /usr/sbin/setlink.ksh

pre event

Connect to the remote site and begin the here document.

ftp -i -v -n SRNODE <<END FTP

user SUSER $RANDY

binary

led $LOCALDIR

cd SREMOTEDIR

mput SLOCALFILES

bye

END FTP.

post_event

Listing 17.13 put_ftp_files_pw_var.ksh shell script listing. (continued)

Automated FTP Stuff 463

In Listings 17.11-17.13 the only modifications that we made to the original shell
scripts include a script name change, the removal of hard-coded passwords, adding
the execution of the /usr/sbin/setlink.ksh shell script, and adding the $RANDY

remotely defined password variable.

Other Things to Consider

This set of shell scripts is very useful to a lot of businesses, but you will need to tailor

the shell scripts to fit your environment. Some options that you may want to consider

are listed in the following sections.

Use Command-Line Switches to Control Execution

By using getopts to parse cominand-line options you can modify these shell scripts

to have all of the variables assigned on the command line with switches and switch-

arguments. This modification can allow you to specify the target host, the local and

remote working directories, and the file(s) to act on. We have used getopts a lot in this

book, so look at some of the other chapters that use getopts to parse the command-line

switches and try making some modifications as an exercise.

Keep a Log of Activity

It is a very good idea to keep a log of each connection and check the return codes. If you

use the ftp switch -v you will have a detailed account of the connection activity of each
transaction. Remember to add a date stamp to each log entry, and also remember to

trim the log file periodically so the filesystem does not fill up.

Add a Debug Mode to the Scripts

If a connection fails you could put the script into debug mode by adding a function

called debug. In this function the first thing to do is to ping the remote machine to see

if it is reachable. If the machine is not reachable by pinging, then attempting to ftp to

the remote node is useless.

You can also issue the ftp command with the debug option turned on, specified by

the -d switch. For more information on ftp debug mode see the man pages for the ftp

command.

464 Chapter 17

Summary

This chapter is meant to form a basis for creating larger shell scripts that require the

transfer of files between machines. The set of shell scripts presented in this chapter can

be modified or made onto functions to suit your needs. There are too many variables
for the use of ftp to follow each path to its logical end, so in this case you get the build-

ing blocks. If you have trouble with a shell script, always try to do the same thing

the shell script is doing, except do it on the command line. Usually you can find where
the problem is very quickly. If you cannot reach a remote node, then try to ping the
machine. If you cannot ping the machine, then network connectivity or name resolu-

tion is the problem.
In the next chapter we are moving on to finding large files on the system. This is a

nice tool to clean up filesystems and to look for files that have filled up a filesystem.
You start from the current top-level directory, and the search traverses from the current

directory to all subdirectories below. I hope you found this chapter useful, and I'll see

you in the next chapter!

Finding “Large” Files

Filesystem alert! We all hate to get full filesystem alerts, especially at quitting time on
Friday when the developers are trying to meet a deadline. The usual culprit is one or

more large files that were just created, compiled, or loaded. Determining the definition

of a large file varies by system environment, but a “large” file can fill up a filesystem
quickly, especially in a development shop. To find these large files we need a flexible

tool that will search for files larger than a user-defined value. The find command is
your friend when a filesystem search is needed.

The find command is one of the most flexible and powerful commands on the sys-

tem. Before we get started, print out the manual page for the find command. Enter the
following command:

man find | lp -d print_queue_name

The previous command will print the manual page output to the printer defined by

print_queue_name. By studying the find command manual page you can see that
the find command is the most flexible command on the system. You can find files by

modification/creation time, last access time, exact size, greater-than size, owner, group,

permission, and a boatload of other options. You can also execute a command to act on

the file(s) using the -exec command switch. For this chapter we are going to concentrate
on finding files larger that an integer value specified on the command line. As with all

of our shell scripts, we first need to get the correct command syntax for our task.

465

466 Chapter 18

Syntax

We are going to use the -size option for the find command. There are two things to con-

sider when using the -size command switch. We must supply an argument for this
switch, and the argument must be an integer. But the integer number alone as an argu-

ment to the -size switch specifies an exact value, and the value is expressed, by default,

in 512-byte blocks instead of measuring the file size in bytes. For a more familiar mea-

surement we would like to specify our search value in megabytes (MB). To specify the

value in bytes instead of 512-byte blocks we add the character c as a suffix to the inte-

ger value, and to get to MB we can just add six zeros. We also want to look at values

greater than the command-line integer value. To specify greater than we add a + (plus

sign) as a prefix to the integer value. With these specifications the command will look

like the following:

find SSEARCH_ PATH -size +tinteger_valuec -print

To search for files greater than 5MB we can use the following command:

find S$SEARCH_PATH -size +5000000c -print

The + (plus sign) specifies greater than, and the c denotes bytes. Also notice in the

previous command that we specified a path to search using the variable

$SEARCH_PATH. The find command requires a search path to be defined in the first

argument to the command. We also added the -print switch at the end of the command

line. If you omit the -print, then you cannot guarantee that any output will be pro-

duced. The command will return the appropriate return code but may not give any

output, even if the files were found! I have found this to be operating system depen-

dent by both Unix flavor and release. Just always remember to add the -print switch to

the find command, and you will not be surprised.

For ease of using this shell script we are going to assume that the search will always

begin in the current directory. The pwd command, or print working directory command,

will display the full pathname of the current directory. Using our script this way

requires that the shell script is located in a directory that is in the user’s $PATH, or you
must use the full script pathname any time you use the shell script. I typically put all

of my scripts in the /usr/local/bin directory and add this directory to my $PATH

environment. You can add a directory to your path using the following command

syntax:

PATH=$ PATH: /usr/local/bin

export PATH

Creating the Script

We have the basic idea of the find command syntax, so let’s write a script. The only
argument that we want from the user is a positive integer representing the number of

megabytes (MB) to trigger the search on. We will add the extra six zeros inside the shell

Finding “Large” Files 467

script. As always, we need to confirm that the data supplied on the command line is

valid and usable. For our search script we are expecting exactly one argument; there-

fore, $# must equal one. We are also expecting the argument to be an integer so the reg-

ular expression + ([0-9]) should be true. We will use this regular expression in a case

statement to confirm that we have an integer. The integer specified must also be a posi-

tive value so the value given must be greater than zero. If all three tests are true, then

we have a valid value to trigger our search.

I can envision this script producing a daily report at some shops. To facilitate the

reporting we need some information from the system. I would like to know the host-

name of the machine that the report represents. The hostname command will provide

this information. A date and time stamp would be nice to have also. The date com-
mand has plenty of options for the time stamp, and because this is going to be a report,

we should store the data in a file for printing and future review. We can just define a

$OUTPUT file to store our report on disk.

Everyone needs to understand that this script always starts the search from the cur-
rent working directory, defined by the system environment variable $ PWD and the pwd

command. We are going to use the pwd command and assign the output to the

SEARCH_PATH script variable. The only other thing we want to do before starting the

search is to create a header for the SOUTFILE file. For the header information we can
append all of the pertinent system data we have already gathered from the system to

the SOUTFILE.
We are now ready to perform the search starting from the current directory. Starting

a search from the current directory implies, again, that this script filename must be in
the $PATH for the user who is executing the script, or the full pathname to the script

must be used instead.

Study the findlarge.ksh shell script in Listing 18.1, and pay attention to the bold

type.

#!/usr/bin/ksh

SCRIPT: findlarge.ksh

AUTHOR: Randy Michael

DATE: 11/30/2000

REVS 20 A

PURPOSE: This script is used to search for files that

are larger than $1 Meg. Bytes. The search starts at

the current directory that the user is in, “pwd, and

includes files in and below the user's current directory. ©

The output is both displayed to the user and stored

in a file for later review.

REVISION LIST:

Listing 18.1 findlarge.ksh shell script listing. (continues)

468 Chapter 18

‘

set -n # Uncomment to check syntax without ANY execution

set -x # Uncomment to debug this script

SCRIPT NAME=$(basename $0)

HHHEHHHHHRHEEHEHPRSESERPERERPEREHPEEEHEPEPES EEE

function usage

{
echo U\ Ree ARKAAA REAR ARAR ERA AER AKA AKA AAA AAA A A

echo "\nUSAGE: $SCRIPT NAME [Number Of Meg Bytes]"

echo "\nEXAMPLE: S$SCRIPT_NAME 5"

echo "\n\nWill Find Files Larger Than 5 Mb in, and below"

echo “the Current Directory..."

echo T\n\n\G.. BXtPINnG 8

echo UNDE AS SAAR AA AAA AARNE RES ee Ce eS A

}

HEH HH EHH HHH EE EH HE EH EE EE EH

function trap exit

{
echo UN Qs eae RA AAR ARR ERR AREA RARER AE KAA ER ORK AK A

echo "\n\n EXITING ON A TRAPPED SIGNAL. ..7

SCho "\n\nt tee EER A RO I RE I IO I

}

HHHHEHPREEPEEPHPEEPHEAEHERERHEE EPH HE SH EH EH

Set a trap to exit. REMEMBER - CANNOT TRAP ON kill -9

trap ‘trap exit; exit 2' 12 3 15

HEHFHEHHHEPHEPESHEAEPEPRPEPHEEEHEPEPHEEEHE RHE

Check for the correct number of arguments

if [$# -ne 1]

then

usage

exit 1

fa:

HHHHHFHRHEPHEHEEEPHEEEHEAEPEEHEHEHE HE

Check for an integer

case $1 in

Listing 18.1 findlarge.ksh shell script listing. (continued)

Finding “Large” Files 469

+([0-9])) : # no-op -- Do Nothing!

*) usage

exit 1

esac

HHHHHHHHHEPEHEPPREEHHHP HHH HEHEHE Ht

Check for an integer greater than zero

LEVEL SL -LE DL]

then

usage

exit «1

fi

HHPHHRHRRRREEAPPEEHESPHEEEREPRRERESS RR EEER ES

Define and initialize files and variables here...

THISHOST= hostname # Hostname of this machine

DATESTAMP=$ (date +"%h%d:%y:%T") # Date/Time Stamp

SEARCH PATH=$ (pwd) # Top-level directory to search (CURRENT DIR!)

MEG _BYTES=$1 # Number of MB for file size trigger

OUTFILE="/tmp/largefiles.out" # Output user file

cat /dev/null > SOUTFILE # Initialize Co a nuli frie

HOLDFILE="/tmp/temp hold file.out" # Temporary storage file

cat /dev/null > SHOLDFILE # Initialize to a null file

HEHHERFHHEEHEPHEHEAEEREPEAEREEPHEEEESEERHEEEEH

Prepare the Output File Header

echo "\nSearching for Files Larger Than ${MEG BYTES}Mb Starting in:"

echo "\n==> SSEARCH PATH"

echo "\nPlease Standby for the Search Results..."

echo "\nbLarge Files Search Results: ">> SOUTRFILE

echo "\nHostname of Machine: S$THISHOST" >> SOUTFILE

echo "\nTop Level Directory of Search:" >> SOUTFILE

echo “\n==> SSEARCH PATH" >> SOUTFILE

echo "\nDate/Time of Search: ‘date’ " >> SOUTFILE

echo "\nSearch Results Sorted by File Modification Time" >> SOUTFILE

HHHHHHHHHEHPE EERE EEHEAEHRR GHAR HEE ERR HEH HH HEH

Listing 18.1 findlarge.ksh shell script listing. (continues)

470 Chapter 18

Search for files > $MEG BYTES starting at the $SEARCH PATH

find $SEARCH_PATH -type f -size +${MEG_BYTES}000000c \

-print > $HOLDFILE

How many files were found?

if [-s $HOLDFILE] # File greater than zero bytes?

then

NUMBER _OF FILES= cat $HOLDFILE | we -l*

echo "\nNumber of Files Found: ==> SNUMBER_OF_FILES\n\n" >> SOUTFILE

Append to the end of the Output File...

ls -1lt ‘cat $HOLDFILE >> SOUTFILE

Display the Time Sorted Output File...

more SOUTFILE

echo "\nThese Search Results are Stored in ==> SOUTFILE"

echo "\nSearch Complete. ..EXITING...\n"

else

cat SOUTFILE # Show the header information!

echo "\n\nNo Files were Found in the Search Path that"

echo "are Larger than ${MEG BYTES}Mb\n"

echo "\n\t...EXITING...\n"

£3.

rm -f£ $HOLDFILE # Remove the temp. file

End of the findlarge.ksh Script

Listing 18.1 findlarge.ksh shell script listing. (continued)

Let’s review the findlarge.ksh shell script in Listing 18.1 in a little more detail.

We added two functions to our script. We always need a usage function, and in case

CTRL-C is pressed we added a trap_exit function. The trap_exit function is

executed by the trap for exit signals 1, 2, 3, and 15 and will display EXITING ON A

TRAPPED SIGNAL before exiting with a return code of 2. The usage function is exe-

cuted if any of our three previously discussed data tests fail and the script exits with a
return code of 1, one, indicating a script usage error.

In the next block of code we query the system for the hostname, date/time stamp,

and the search path (the current directory!) for the find command. All of this system

data is used in the file header for the SOUTFILE. For the search path we could have just

Finding “Large” Files

used a dot to specify the current directory, but this short notation would result in a
relative pathname in our report. The full pathname, which begins with a forward slash (/),
provides much clearer information and results in an easier-to-read file report. To get

the full pathnames for our report, we use the pwd command output assigned to the
SEARCH_PATH variable.

We define two files for processing the data. The SHOLDFILE holds the search results
of the find command’s output. The SOUTFILE contains the header data, and the search

results of the find command are appended to the end of the SOUTFILE file. If the

SHOLDFILE is zero-sized, then the find command did not find any files larger than

$MEG_BYTES, which is the value specified in $1 on the command line. If the SHOLDFILE

is not empty, we count the lines in the file with the command NUMBER_OF_

LINES=*cat $HOLDFILE | wc -1°. Notice that we used back tics for command sub-

stitution, “command. This file count is displayed along with the report header informa-
tion in our output file. The search data from the find command, stored in $HOLDFILE,

consists of full pathnames of each file that has exceeded our limit. In the process of
appending the $HOLDFILE data to our SOUTFILE, we do a long listing sorted by the

modification time of each file. This long listing is produced using the ls -1t $(cat
$HOLDFILE) command. A long listing is needed in the report so that we can see not
only the modification date/time but also the file owner and group as well as the size

of each file.
All of the data in the SOUTFILE is displayed by using the more command so that we

display the data one page at a time. The findlarge.ksh shell script is in action in

Listing 18.2.

Searching for Files Larger Than 1Mb starting in:

=e> /SCrApts

Please Standby for the Search Results...

Large Files Search Results:

Hostname of Machine: yogi

Top Level Directory of Search:

==> /scripts

Date/Time of Search: Thu Nov 8 10:46:21 EST 3001

Séarch Results Sorted by File Modification Time:

Number of Files Found: ==> 4

—Kwxrwxrwx 1 root sys 34290332. 0CE 25: 10703

/scripts/sling_shot621.tar

Listing 18.2 findlarge.ksh shell script in action. (continues)

471

472 Chapter 18

-YwxXrwxrwx 1 xroot: sys 1280000 Aug 27 15:33 /scripts/sudo/sudo-

1.6 tar

-Yw-L--Lr== 1 root. Svs 46745600 Jul 27 09:48 /scripts/scripts. tar

-rw-r--r-- 1 root system 10065920 Apr 20 2001

/scripts/exe/exe_files.tar

These Search Results are Stored in ==> /tmp/largefiles.out

Search Complete...EXITING...

Listing 18.2 _findlarge.ksh shell script in action. (continued)

The output in Listing 18.2 is a listing of the entire screen output, which is also the
contents of the SOUTFILE. The user is informed of the trigger threshold for the search,

the top-level directory for the search, the hostname of the machine, the date and time
of the search, and the number of files found to exceed the threshold. The long listing of
each file is displayed that has the file owner and group, the size of the file in bytes, the

modification time, and the full path to the file. The long listing is very helpful in large

shops with thousands of users!

Other Options to Consider

The findlarge.ksh she11 script is simple and does all of the basics for the system
reporting, but it can be improved and customized for your particular needs. I think
you will be interested in the following ideas:

1. The first thing you probably noticed is that the script uses the current directory

as the top-level directory for the search path. You may want to add a second

command-line argument so that you can specify a search path other than the

current directory. You could add this user-supplied search path as an option,

and if a search path is omitted you use the current directory to start the search.
This adds a little more flexibility to the shell script.

2. Each time we run the findlarge.ksh shell script, we overwrite the

SOUTFILE. You may, however, want to keep a month’s worth of reports

on the system. An easy way to keep one month of reports is to use the date

command and extract the day of the month, and then add this value as a suffix

to the SOUTFILE file name definition. The following command will work:

OUTFILE="/tmp/largefiles.out.$(date +%d)"

Over time our script will result in filenames largefile.out.01 through

largefiles.out.31.

Finding “Large” Files 473

3. When searching large filesystems the search may take a very long time to com-

plete. To give the user feedback that the search process is continuing you may

want to add one of the progress indicators studied in Chapter 4. Two of the

studied progress indicators would be appropriate, the rotating line and the
series of dots. Look in Chapter 4 for details.

4. When we specify our search value we are just adding six zeros to the user-

supplied integer value. But we are back to a basic question: Is one MB equal

to 1,000,000 or 1,024,000? Because a System Administrator may not be the one

reading the report, maybe a manager, I used the mathematical 1,000,000 and

not the system-reported power-of-2 value. This is really a toss-up, so you make

the decision on the value you want to use. The value is easy to change by doing
a little math to multiply the user-supplied value by 1,024,000.

5. If you need to look for newly created files when a filesystem has just filled up,
you can add the following command as a cross reference to find the true cause
of the filesystem filling up:

find $SEARCH_PATH -mtime 1 -print

This command will find all files that have been modified, or created, in the last

24 hours. You can redirect this output to a file and do a cross-reference to dis-
cover the files, and users, that actually caused the filesystem to fill up.

Summary

In this chapter we have shown how to search the system for large files and create a

machine-specific report. As stated in the previous section, there are many ways to do the
same task, and as always we have other options to consider. This chapter, along with
filesystem monitoring in Chapter 5, can help keep filesystem surprises to a minimum.

In the next chapter we are going to study techniques to capture a user’s keystrokes.

Capturing keystrokes has many uses, from giving you an audit trail of all root access

to keeping track of a problem contractor or user. I use this technique to keep an audit

trail of all root access to the systems. I hope you gained some knowledge in this chap-

ter, and I will see you in the next chapter!

Monitoring and Auditing

User Key Strokes

In most large shops there is a need, at least occasionally, to monitor a user’s actions.

You may even want to audit the keystrokes of anyone with root access to the system or

other administration type accounts, such as oracle. Contractors on site can pose a par-

ticular security risk. Typically when a new application comes into the environment one

or two contractors are on site for a period of time for installation, troubleshooting, and

training personnel on the product. I always set up contractors in sudo (see Chapter 14

for more details on sudo) to access the new application account, after I change the pass-

word. sudo tracks only the commands that were entered with a date/time stamp. The
detail of the command output from stdout and stderr does not get logged so you
do not have a complete audit trail of exactly what happened if a problem arises.

To get around this dilemma you can track a user’s keystrokes from the time he or

she accesses a user account until the time he or she exits the account, if you have the

space for the log file. This little feat is accomplished using the script command. The

idea is to use sudo to kick off a shell script that starts a script session. When the script
session is running, all of the input and output on the terminal is captured in the log file.
Of course, if the user goes into some menus or programs the log file gets a little hard to

read, but we at least have an idea what happened. This monitoring is not done surrep-
titiously because I always want everyone to know that the monitoring is taking place.

When a script session starts, output from the script command informs the user that a

session is running and gives the name of the session’s log file. We can also set up mon-

475

476 Chapter 19

itoring to take place from the time a user logs in until the user logs out. For this moni-

toring we do not need sudo, but we do need to edit the $HOME/ .profile or other

login configuration file for the particular user.

Syntax

Using the script command is straightforward, but we want to do a few more things in

the shell script. Giving a specific command prompt is one option. If you are auditing

root access you need to have a timeout set so that after about five minutes (see the
TMOUT environment variable) the shell times out and the root access ends. On a shell

timeout, the session is terminated and the user is either logged out or presented with a

command prompt, but we can control this behavior. We have many options for this set

of shell scripts. You are going to need to set up sudo, super-user-do, cn your machine.

The full details for installing and configuring sudo are in Chapter 14. We want sudo to

be configured with the names of each of the shell scripts that are used for this moni-
toring effort, as well as the specific users that you will allow to execute them. We will

get to these details later.

The script command works by making a typescript of everything that appears on
the terminal. The script command is followed by a filename that will contain the cap-

tured typescript. If no filename is given the typescript is saved in the current directory

in a file called typescript. For our scripting we will specify a filename to use. The
script session ends when the forked shell is exited, which means that there are two

exits required to completely log out of the system. The script command has the follow-
ing syntax:

script [filename]

As the script session starts, notification is shown on the terminal and a time stamp

is placed at the top of the file, indicating the start time of the session. Let’s look at a

short script session as used on the command line in Listing 19.1.

[root:yogi]@/# more /usr/local/logs/script/script_example.out

Script command is started on Wed May 8 21:35:27 EDT 2002.

[root:yogi]@/# cd /usr/spool/cron/crontabs

[root:yogi]@/usr/spool/cron/crontabs# 1s

adm root sys uucp

[root:yogi]@/usr/spool/cron/crontabs# 1s -al

total 13

drwxrwx--- 225i cron 522 Bebe lO. 2053605

drwxr-xr-x 4 bin cron Bio Tul 26 2OOn,

—=Yw-Lr--r-- 1 adm cron 2027 Feb 10.21 536 adm

-rw------- 1 root cron 1325 Feb: 10-0 31:35 root

=twers-r— 1 sys cron 864 Jul 26.2001) sys

Listing 19.1 Command-line script session.

Monitoring and Auditing User Key Strokes 477

-“rw-Yr--rK-- Liroot cron MOS uy 26 200d umes

[root: yogi} @/usr/spool /cron/crontabs# cd)... /.

[root:yogi]@/usr/spool# ls -1

tetal 12 ‘

drwxrwsrwt 2 daemon staff D122) Sep 172000 Calendar

drwxr-xr-x 4 bin cron SLA Ok 26 200M econ

drwxrwxr-x a VARS) ip BS Mare 2S a 2a

Arwxrwxr-x jae ont a printq S12 May Od 2032 Tod

drwxrwxr-x 2 bain mail Sha May Oe 27236 maa l

arwxrwx--- 2 root system 512 May 06 17:36 mqueue

Arwxrwxr-x 2 ban print 512 Apr 29. 10:52) qdaemon

AQrwxr-xr-x 2root system bi2 wul 26.2001. Ewe

arwxrwsrwx Pag obi aY staff Sh2 Tul 26 2001 \secretmarl

drwxr-xr-x 11 uuep uucp 512 Mar 1320-43 ‘wuep

Arwxrwxrwx 2 uucp uucp 512 Sep 08 2000 wucppublic

drwxrwxr-x 2 root system 512 Apr 16 2001 writesrv

[root:yogi]@/usr/spool# exit

Script command is complete on Wed May 8 21:36:11 EDT 2002.

[root:yogi]@/#

Listing 19.1 Command-line script session. (continued)

Notice that every keystroke is logged as well as all of the command output. At the

beginning and end of the log file a script command time stamp is produced. These
lines of text are also displayed on the screen as the script session starts and stops. These
are the user notifications given as the monitoring starts and stops.

Scripting the Solution

There are three different situations in which you want to use this type of monitor-

ing/auditing. In this first instance we have users that you want to monitor the entire

session. In the next situation you want to monitor activity only when a user wants root

access to the system. Our systems have direct, remote, and su root login disabled, so to

gain root access the user must use sudo to switch to root using the broot script. The
third script is a catch-all for other administrative user accounts that you want to audit.
The first script is covering end-to-end monitoring with the script execution starting at

login through the user’s $HOME/ .profile.
Before we actually start the script session, there are some options to consider.

Because we are executing a shell script from the user’s .profile we need to ensure

that the script is the last entry in the file. If you do not want the users to edit any
. profile files, then you need to set the ownership of the file to root and set the user

to read-only access.

478 Chapter 19

Logging User Activity

We are keeping log files so it is a good idea to have some kind of standard format for

the log filenames. You have a lot of options for filenames, but I like to keep it simple.

Our log files use the following naming convention:

[hostname]. {user SLOGNAME]. [Time Stamp]

We want the hostname because most likely you are monitoring users on multiple
systems and using a central repository to hold all of the log files. When I write a shell
script I do not want to execute a command more times than necessary. The hostname

command is a good example. Assigning the system’s hostname to a variable is a good

idea because it is not going to change, or it should not change, during the execution of
the script. To assign the hostname of the system to a variable use the following syntax:

THISHOST=S (hostname)

For the date/time stamp a simple integer representation is best. The following date

command gives two digits for month, day, year, hour, minute, and second:

TS=$ (date +%m%dsy%HsMsS)

Now we have to reference only the $T'S variable for the date/time stamp. Because

the user may change we can find the active username with either of the following envi-
ronment variables:

echo SLOGNAME

echo SUSER

echo S$SLOGIN

As you change user IDs by using the switch user command (su), all of these envi-
ronment variables change accordingly. However, if a user does a switch user using

sudo, then the SLOGIN environment variable carries over to the new user while the

SLOGNAME and $USER environment variables gain the new user ID. Now we have

everything to build a log filename. A good variable name for a log file is LOGFILE,

unless this variable is used by your system or another application. On my systems

the LOGFILE variable is not used. Not only do we need to create the name of the
$LOGFILE, but we need to create the file and set the permissions on the file. The ini-

tial permissions on the file need to be set to read/write by the owner, chmod 600
$LOGFILE. The following commands set up the log file:

TS=S$ (date +%m%d%ysHsMsS) # Create a time stamp

THISHOST=S (hostname) # Query the system for the hostname

LOGFILE=$ {THISHOST} .${LOGNAME}.$TS # Name the log file

touch ${LOGDIR}/$LOGFILE #

chmod 600 ${LOGDIR}/$ {LOGFILE} #

Create an empty log file

Set the file permissions

Monitoring and Auditing User Key Strokes 479

A sample filename is shown here:

yogi.randy.05110274519

The filename is good, but where do we want to store the file on the system? I like to
use a separate variable to hold the directory name. With two separate variables repre-
senting the directory and filename, you can move the log directory to another location
and have to change just one entry in the script. I set up a log directory on my system in
/usr/local/logs. For these script log files I added a subdirectory called script.
Then I set a LOGDIR variable to point to my logging directory, as shown here:

LOGDIR=/usr/local/logs/script

Starting the Monitoring Session

With the logging set up we are ready to start a script session. We start the session using
the following syntax:

script ${LOGDIR}/$ {LOGFILE}

When the script session starts, a message is displayed on the screen that informs

the user that a script session has started and lists the name of the script log file, as

shown here:

Serrpt command is started. The file is

/asr/local/logs/script/yogi.randy.051102174519.

If the user knows that monitoring is going on and also knows the name of the file,

what is to keep the user from editing or deleting the log? Usually directory permissions
will take care of this little problem. During the script session the actual log file is an

open file—that is, actually a system temporary file that cannot be accessed directly by
the user. But if the user is able to delete the $LOGFILE then you have lost the audit
trail. This is one problem that we will discuss later.

Where Is the Repository?

So far here is the scenario. A user has logged into the system. As the user logs in, a mon-

itoring session is started using the script command, which logs all of the terminal output

in a log file that we specify. During the time that the session is active the log file is open
as a system temporary file. When the session ends, by a user typing exit or CTRL-D or
by an exit signal, the log file is closed and the user is notified of the session ending, and

again the name of the log file is displayed.
For security and auditing purposes we need to have a central repository for the logs.

The method I like to use is email. When the session ends we want to set the file permis-

sions on the log file to read only by the owner. Then we email the log to another machine,
ideally, which is where the repository is located. Once the email is sent I compress the

local file and exit the script.

480 Chapter 19

With two copies of the user session existing on two different machines, an audit will

easily detect any changes. In fact, if a user tries to change the log these commands will

also be logged. You may have different ideas on handling the repository, but I set up a
user on a remote machine that I use as a log file manager, with a name logman. The
logman user’s email is the repository on the audit machine. For simplicity in this shell
script we are going to email the logs to the local logman user. To send mail, I use the

mailx command on all Unix flavors except Linux, where I use the mail command, as

shown here:

mailx -s "$TS - SLOGNAME Audit Report" $LOG_MANAGER <

${LOGDIR} /$ {LOGFILE}

In the shell script the $LOG_MANAGER is defined as logman. The nice thing about
having a variable hold the mail recipients is that you can add a second repository or

other people to receive email notifications. By using the local logman account you have

other options. You can set up mail aliases; one of my favorites is to use the logman

account as a bounce account. By adding a . forward file in the SHOME directory for the

logman user, you can redirect all of the email sent to the logman user to other destina-

tions. If a . forward file exists in the user’s home directory, the mail is not delivered to

the user but instead is sent to each email address and alias listed in the . forward file.

Asample . forward file is shown here.

yogibear@cave.com

booboo@cave.com

dino@flintstones.org

admin

With the previous entries in the $HOME/ . forward file for the logman user, all mail

directed to logman is instead sent to the three email address and all of the addresses

pointed to by the admin email alias.

The Scripts

We have covered all of the basics for the shell scripts. We have three different shell
scripts that are used in different ways. The first script is intended to be executed at

login time by being the last entry in the user’s SHOME/.profile. The second shell

script is used only when you want to gain root access, which is done through sudo,

and the third script is a catch-all for any other administration-type accounts that

you want to audit, which also use sudo. Let’s first look at the login script called

log_keystrokes.ksh, shown in Listing 19.2.

#!/bin/ksh

SCRIPT: log_keystrokes.ksh

AUTHOR: Randy Michael

Listing 19.2 log keystrokes.ksh shell script listing.

Monitoring and Auditing User Key Strokes 481

DATE: 05/08/2002

REV) 04). 0% 2

PLATFOEM: Any Unix

}

PURPOSE: This shell (script i2s\used to monitor a login session by

capturing all of the terminal data in a log file using

the script command. This shell script name should be

the last entry in the user's $HOME/.profile. The log file

is both kept locally and emailed to a log file

administrative user either locally or on a remote machine.

REV LIST:

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

$e 4h Se SE SE FE OSE GE OSE OE OE OE OE OEE HEHE

HHEHHHHHHEHHHH DEFINE AUDIT LOG MANAGER ###H#4HHH HEHEHE EH HHH

This user receives all of the audit logs by email. This

Log Manager can have a local or remote email address. You

can add more than one email address if you want by separating

+e oe OE HEHE each address with a space.

LOG_MANAGER="logman" # List to email audit log

HHEAHHHHHHAHHHAHAHAHHHAHHHA PREAH AREA HERA PREAH EHH

HHHHHHHHHHHHHHHH DEFINE FUNCTIONS HERE #####H#HEHHHREHEEHE

FHHHHEHEPPEEEHEEEEEEPHEEEEREEEE RHEE EERE EERE EPEREEH EHH

cleanup exit ()

This function is executed on any type of exit except of course

a kill: -9, which cannot be trapped. The script log file is

emailed either locally or remotely, and the log file is

compressed. The last “exit” is needed so the user does not

have the ability to get to the command line without logging. + FF OH OHH

if [[-s ${LOGDIR}/S${LOGFILE}]]

then

case “uname in

Linux) # Linux does not have "mailx"

mail -s "STS - SLOGNAME Audit Report" SLOG_MANAGER <

${LOGDIR}/$ {LOGFILE}

*)
mailx -s "STS - SLOGNAME Audit Report" SLOG _MANAGER <

$ {LOGDIR}/$ {LOGFILE}

ee
ay

Listing 19.2 log _keystrokes.ksh shell script listing. (continues)

482 Chapter 19

esac

compress ${LOGDIR}/${LOGFILE} 2>/dev/null

exit

Set a trap

trap ‘'cleanup_exit'l 2 3 45 67 8 9 10 11 12 13 14 15 16 17 18 19 20 26

HHFHHEHFHESHHEAPHRESHHESPERSREAEREAPPRAHEREREES ESHER EE

HEHHHHHHHHHHHHHH DEFINE VARIABLES HERE ######4##HEHEHEH HEH

HEFHHHESEAERPERSHEAEHHEEPHSEEREGEEPESEEERPEEPEAEHPES EERE EH

TS=$(date +%m%d%y%H%M%S) # File time stamp

THISHOST=$ (hostname|cut -f£1-2 -d.) # Host name of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=$ {THISHOST} .${LOGNAME}).$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

set -o vi 2>/dev/null Previous commands recall

stty erase *? Set the backspace key 4 Sk Fe

Set the command prompt

export PS1="[SLOGNAME:STHISHOST]@"'SPWD> '

HHFHHHHHPHHEHHEHHEEHHE RUN IT HERE ###F#HHEHHEHHEHEEEHEREEESH

chmod 600 ${LOGDIR}/${LOGFILE} # Change permission to RW for the owner

script ${LOGDIR}/$ {LOGFILE} # Start the script monitoring session

chmod 400 ${LOGDIR}/$ {LOGFILE} # Set permission to read-only for

the owner

cleanup exit # Execute the cleanup and exit function

Listing 19.2 log keystrokes.ksh shell script listing. (continued)

The log_keystrokes.ksh script in Listing 19.2 is not difficult when you look at

it. At the top we define the cleanup_exit function that is used when the script exits
to email and compress the log file. In the next section we set a trap and define and set

some variables. Finally we start the logging activity with a script session.

In the cleanup_exit function notice the list of exit codes that the trap command will

exit on. This signal list ensures that the log file gets emailed and the file gets compressed.

Monitoring and Auditing User Key Strokes 483

The only exit signal we cannot do anything about is a kill -9 signal because you cannot

trap kill -9. There are more exit signals if you want to add more to the list in the trap

statement, but I think the most captured are listed.

The last command executed in this shell script is exit because in every case the

cleanup_exit function must execute. If exit is not the last command, then the user

will be placed back to a command prompt without any logging being done. The reason

for this behavior is that the script session is really a fork of the original shell. Therefore,

when the script command stops executing, one of the shells in the fork terminates, but

not the original shell. This last exit logs out of the original shell. You may want to

replace this last exit, located in the cleanup_exit function, with logout, which will

guarantee the user is logged out of the system.

Logging root Activity

In some shops there is a need to log the activity of the root user. If you log the root
activity, then you have an audit trail, and it is much easier to do root cause analysis on

a root user booboo. We can use the same type of shell that we used in the previous sec-

tions, but this time we will use sudo instead of a .profile entry. I call this script

broot because it is a short name for “I want to be root”. In this section let’s look at the

shell script in Listing 19.3 and go through the details at the end.

#!/bin/ksh

SCRIPT: broot
4 Z

AUTHOR: Randy Michael

DATE: 05/08/2002

REV: 1.0.P

PLATFOEM: Any Unix

PURPOSE: This shell script is used to monitor all root access by

capturing all of the terminal data in a log file using

the script command. This shell script is executed from the

command line using sudo (Super User Do). The log file

is kept locally and emailed to a log file administrative

user either locally or on a remote machine. Sudo must be

configured for this shell script. Refer to your sudo notes.

USAGE: sudo broot

REV LIST:

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

Se Sh SE SF SE OE OHH HEHEHE HEHEHE HE HEHEHE HE HE

Listing 19.3 broot shell script listing. (continues)

484 Chapter 19

HHHHHHHHHHHEH DEFINE AUDIT LOG MANAGER ##H#H##HEHEHEEEEH HERE

This user receives all of the audit logs by email. This

Log Manager can have a local or remote email address. You

can add more than one email address if you want by separating

each address with a space. Se $F tH OH

LOG_MANAGER="logman" # List to email audit log

HHHHEHHE RHEE EREAEEREREERE PERERA ETHER ER EH HH EEE EERE EEE H

HHHHHHHHEEHHEPHEHHE DEFINE FUNCTIONS HERE HHAAR EERE EH HHS

HHHREEHEHEEPHEAEHHPRHEEEHHEEEHEEEHEREEEE EERE HEHE HHA HSH HEH HE

cleanup exit ()

This function is executed on any type of exit except of course

a Kill -9, which cannot be trapped. The script log file as

emailed either locally or remotely, and the log file is

compressed. The last "exit" is needed so the user does not

have the ability to get to the command line without logging. S$ OF OE OH OHS

if [[-s ${LOGDIR}/${LOGFILE}]]

then

case uname in

Linux) # Linux does not have "mailx"

mail -s "STS - SLOGNAME Audit Report" $LOG_MANAGER <

${LOGDIR} /$ {LOGFILE}

x)

mailx -s "STS - $LOGNAME Audit Report" $LOG_MANAGER <

${LOGDIR} /$ {LOGFILE}

esac

nohup compress ${LOGDIR}/S${LOGFILE} 2>/dev/null &

exit

Set a trap

trap 'cleanup_exit'l 23 4567 89 10111213 14 15 16 17 18 19 20 26

HEHFHHHEEFHFHFHESHPHSHEHHEAHEHEEEHESHPHESEPESHEPRSHEHHEHEHESH

HHHFHHHHPHEHHHHEH DEFINE VARIABLES HERE ##### #44 FH HHHEHHEHHH

HEHHFHEEHEHAEEPRPHESEHERHEEHPEEEHPEPHEEERPRERHRRR EPH HE EE HH

TS=$(date +%m%d%y%H%*M%S) # File time stamp

Listing 19.3 broot shell script listing. (continued)

Monitoring and Auditing User Key Strokes 485

THISHOST=$ (hostname)

LOGDIR=/usr/local/logs/script

LOGFILE=$ {THISHOST} .${LOGNAME}.$7S

touch $LOGDIR/$LOGFILE

TMOUT=300

export TMOUT

set -o vil

Host name of this machine

Directory to hold the logs

Creates \the)iname| of’ the log file

Creates the actual file

Set the root shell timeout!!!

Export the TMOUT variable

To recall previous commands

Set the backspace key st: He H+ + + + stty erase _

Run root's .profile if one exists

if [{ -£ S$HOME/.profile]]

then

- $HOME/.profile

Ea

set path to include /usr/local/bin

echo $PATH|grep -q ':/usr/local/bin' || PATH=$PATH: /usr/local/bin

Set the command prompt to override the /.profile default prompt

PSi="STHESHOST = broot> ”

export PS1

HHFHEFHHEEHE HEHEHE HE RUN IT HERE ######FHHHEREHHEPHEEHHEE ES

chmod 600 ${LOGDIR}/${LOGFILE} # Change permission to RW for the owner

script ${LOGDIR}/${LOGFILE} # Start the script monitoring session

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only for the

owner

cleanup_exit # Execute the cleanup and exit function

Listing 19.3 broot shell script listing. (continued)

There is one extremely important difference between this script and the script in

Listing 19.2. In the broot script in Listing 19.3 we execute the .profile for root, if

there isa .profile for root. You may ask why we did not execute the profile last time.

The answer involves the recursive nature of running a file onto itself. In the previous
case we had the following entry in the $HOME/ . profile file:

/usr/local/bin/log_keystrokes.ksh

We add this entry beginning with a “dot”, which means to execute the following file,

as the last entry in the $HOME/.profile. If you added execution of $HOME/
. profile into the shell script you end up executing the log_keystrokes.ksh shell

486 Chapter 19

script recursively. When you run the script like this you fill up the buffers and you get

an error message similar to the following output:

ksh: .: 0403-059 There cannot be more than 9 levels of recursion.

For monitoring root access with the broot script we are not executing from the
. profile, but we use sudo to run this broot script, so we have no worries about

recursion. At the top of the script in Listing 19.3 we define a LOG_MANAGER. This list of
one or more email addresses is where the log files are going to be emailed. You may
even want real-time notification of root activity. I like to send the log files off to my
audit box for safe keeping using my logman user account. This email notice in the
cleanup_exit function uses two different e-mail commands, depending on the Unix
flavor. The only machine that does not support the mailx command is Linux, which

supports only the mail command. This is not a problem, but I had to use the mix email
commands to add a subject heading in the email; not all mail commands on all systems

allow a subject heading so I used mailx instead.
The next step is to set a trap. If the script exits on signals 1 2 3 45 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 26,the cleanup_exit function is executed.

This trap ensures that the log file gets emailed and the file gets compressed locally. In
the next section we define and set the variables that we use. Notice that we added a

shell timeout, specified by the TMOUT environment variable. If someone with root

access is not typing for five minutes the shell times out. You can set the TMOUT variable
to anything you want or even comment it out if you do not want a shell timeout. The

measurement is in seconds. The default is 300 seconds, or 5 minutes, for this script.

After the variable definitions we execute the root . profile. We run the profile here

because we are not running the broot script from a login $HOME/ .profile, as we

did with the log_keystrokes.ksh script in Listing 19.2. Next we add /usr/
local/bin to root’s $PATH, if it is not already present. And, finally, before we are

ready to execute the script command we set a command prompt.
The final four things we do are (1) set the permissions on the log file so we can write

to it; (2) run the script command using the log filename as a parameter; (3) set the file

permissions on the log file to read-only; and (4) execute the cleanup_exit function
to email the log and compress the file locally.

Some sudo Stuff

I have inserted a short /etc/sudoers file for Listing 19.4 to show entries that need to

be made. The entire task of setting up and using sudo is shown in Chapter 14. Pay
attention to the bold type in Listing 19.4.

sudoers file.

This file MUST be edited with the ‘visudo' command as root.

See the sudoers man page for the details on how to write a

Listing 19.4 Example /etc/sudoers file.

Monitoring and Auditing User Key Strokes 487 $$ ____ IaASToring and Auditing User Key Strokes 487

Se SF SF SF OH OH HEHEHE OH OH OH OH

Host_Alias

User alias specification

User_Alias

User_Alias

User_Alias

User_Alias

User_Alias

User_Alias

All access:

sudoers file.

Users Identification:

randy - Randy Michael

terry - Admin

oracle - Oracle Admin

Host alias specification

LOCAL=yogi

operator - operator access

Restricted Access to: mount umount and exportfs

ROOTADMIN=randy, terry

NORMAL=randy, operator, terry

ADMIN=randy, terry

ORACLE=oracle

DB2=db2adm

OPERATOR=operator

Runas alias specification

Runas_Alias

Cmnd alias specification

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

Cmnd_Alias

ORA=oracle

BROOT=/usr/local/bin/broot

MNT=/usr/bin/mount

UMNT=/usr/bin/umount

EXP_FS=/usr/bin/exportfs

KILL=/usr/bin/kill

ORACLE _SU=/usr/bin/su - oracle

TCPDUMP=/usr/sbin/tcpdump

ERRPT=/usr/bin/errpt

SVRMGRL=/oracle/product/8.0.5/bin/svrmgrl

User privilege specification

root

ROOTADMIN

NORMAL

ALL=(ALL) ALL

LOCAL=BROOT

LOCAL=MNT, UMNT, EXP_F'S

Listing 19.4 Example /etc/sudoers file. (continues)

488 Chapter 19

ADMIN

LOCAL=BROOT, MNT, UMNT, KILL, ORACLE_SU, TCPDUMP, ERRPT: \

LOCAL=EXP_FS

ORACLE LOCAL=SVRMGRL

Override Defaults

Defaults logfile=/var/adm/sudo.log

Listing 19.4 Example /etc/sudoers file. (continued)

Three entries need to be added to the /etc/sudoers file. Do not ever edit the

sudoers file directly with vi. There is a special program called visudo, in the /usr/
local/sbin directory, that has a wrapper around the vi editor that does a thorough

check for mistakes in the file before the file is saved. If you make a mistake the visudo
program will tell you where the error is located in the /etc/sudoers file.

The three entries that need to be added to the /etc/sudoers are listed next and are

highlighted in bold text in Listing 19.4.

Define the User_Alias, which is where you give a name to a group of users. For

this file let’s name the list of users who can get root access ROOTADMIN, as shown here:

User_Alias ROOTADMIN=randy, terry

Next we need to define the Cmnd_Alias, which is where you define the full path-

name to the command, as shown here.

Cmnd_Alias BROOT=/usr/local/bin/broot

The last step is to define the exact commands that the User_Alias group of users
can execute. In our case we have a separate USer_Alias group only for the users who

can use the broot script. Notice that the definition also specifies the machine where

the command can be executed. I always let sudo execution take place only on a single
machine at a time, specified by LOCAL here.

ROOTADMIN LOCAL=BROOT

Once the /etc/sudoers file is set up, you can change the root password and allow
root access only by using the broot script. Using this method you have an audit trail
of root access to the system.

Monitoring and Auditing User Key Strokes

Monitoring Other Administration Users

More often than not, you will want add to the list of auditing that can be done. This
next script is rewritten to allow you to quickly set up a broot type shell script by

changing only the user name and the script name. The method that we use to execute

the script command is what makes this script different—and easy to modify.
For ease of use we can use a lot of variables throughout the script. We have already

been doing this to some extent. Now we will call the monitored user the effective user,

which fits our new variable $EFF_USER. For this script I have set the username to oracle.

You can make it any user that you want to. Take a look at this shell script in Listing 19.5,

and pay particular attention to the boldface type.

#!/bin/ksh

Ss 3 + + H+ HH HH HH OH HOH HK OH HK HH HK HH OH OH HOH HE OH OH OH OH OH

SCRIPT: "Banybody" boracle - This time

AUTHOR: Randy Michael

DATE: 05/08/2002

REV: 1.0. P

PLATFOEM: Any Unix

PURPOSE: This shell script is used to capture all "“SEFF USER"

access by capturing all of the terminal data in a log

file using the script command. This shell script is

executed from the command line using sudo (Super User Do).

The log file is kept locally and emailed to a log file

administrative user either locally or on a remote

machine. Sudo must be configured for this shell script.

Refer to your sudo notes. The effective user, currently

oracle, can be changed by setting the "EFF_USER"” variable

to another user, and changing the name of the script.

This is why the original name of the script is called

"Banybody".

ORIGINAL USAGE: sudo Banybody

THIS TIME USAGE ==> USAGE: sudo boracle

REV LIST:

5/10/2002: Modified the script to replace the hard-coded

username with the variable SEFF_USER. This

allows flexibility to add auditing of more

Listing 19.5 boracle shell script listing. (continues)

489

490 Chapter 19

accounts by just changing the EFF USER variable

and the script name.

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

+ OE HEHE HEHEHE

HHEHHHHHHEHEERHEHHE DEFINE EFFECTIVE USER ####H##HHEPEEEEEEEH

This EFF_USER is the username you want to be to execute

a shell ain. An sw command is used to switch to this user)

EFF_USER=oracle

HHEHFHHEHHEHHEHHEH DEFINE AUDIT LOG MANAGER ######HH4FEEHEEHEH EH

This user receives all of the audit logs by email. This

Log Manager can have a local or remote email address. You

can add more than one email address if you want by separating

each address with a space. SF SE OE HE

LOG MANAGER="logman" # List to email audit log

HHEHEEEPHEEE EERE AREER EEE EEG HES EEE EAEE EH PEGE HEE EE HEH

HEHHHEEHEHEHEEEEH DEFINE FUNCTIONS HERE ###### FH #EHEHEHE HHH

HERP EHH FEE EEE EEE HHH EHH HEHE REE EEE HEE HEHEHE EH HEE

cleanup exit ()

{

This function is executed on any type of exit except of course

a kill -9, which cannot be trapped: The script log filers

emailed either locally or remotely, and the log file is

compressed. The last “exit" is needed so that the user does not

have the ability to get to the command line without logging.

if [[-s ${LOGDIR}/S${LOGFILE}]] # Is it greater than zero bytes?

then

case “uname in

Linux)

mail -s "STS - SLOGNAME Audit Report" $LOG_ MANAGER <

$ {LOGDIR} /$ {LOGFILE}

a)

mailx -s "$TS - S$LOGNAME Audit Report" $LOG MANAGER <

${LOGDIR}/$ {LOGFILE}

Listing 19.5 boracle shell script listing. (continued)

Monitoring and Auditing User Key Strokes 491

ee
ae

esac

compress ${LOGDIR}/${LOGFILE} 2>/dev/null

exit

HEHHHHHHEHHPHEEEH SET A TRAP #H#H#HHEHHFHHHFHEHEHEHEHHHEHHEEHE

trap 'cleanup_exit' 1 2 3 5 15

HEH HH HH EG EE ERE EEE HE HE RH SH HH EEE HH HH

HHEHHEEHEEEHH HHH DEFINE VARIABLES HERE ####H###HH HHH HHH HEH

HEH HHH HH HH HH HH EH EEE HE EEE EH HE EEE EH EE EEE HH

File time stamp

Hostname of this machine

Directory to hold the logs

Creates the name of the log file

Creates the actual file

Set the root shell timeout!!!

Export the TMOUT variable

To recall previous commands

TS=$ (date +%m%dtytHtM%sS)

THISHOST=S (hostname)

LOGDIR=/usr/local/logs/script

LOGFILE=$ {THISHOST} .${EFF_USER}.S$TS

touch SLOGDIR/SLOGFILE

TMOUT=3 00

export TMOUT

set -o vi

+ + OH OH OH HH HF H stty erase “? Set the backspace key

set path to include /usr/local/bin

echo $PATH|grep -q ':/usr/local/bin' || PATH=$PATH:/usr/local/bin

Set the command prompt to override the /.profile default prompt

PSi="$THISHOST:b${EFF_USER}> "

export PS1

HHEEHHHHHHHHHEHHHEHHHEH RUN IT HERE ##HFHHHFHEPHHEPH EHH EHH EHH

chmod 666 ${LOGDIR}/$ {LOGFILE} # Set permission to read/write

To get the script session to work we have to use the switch user (su)

command with the -c flag, which means execute what follows. Sudo is

also used just to ensure that root is executing the su command.

We ARE executing now as root because this script was started with

sudo. If a nonconfigured sudo user tries to execute this command

then it will fail unless sudo was used to execute this script as root. = FF HF HF H+ H+

Listing 19.5 boracle shell script listing. (continues)

492 Chapter 19

Notice we are executing the script command as "SEFF_USER". Tie

variable is set at the top of the script. A value ouch as -

“EFF USER=oracle" is expected. .

sudo su - $EFF USER -c "script ${LOGDIR}/${LOGFILE}"

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only for |

the owner

cleanup exit # Execute the cleanup and exit function |

Listing 19.5 boracle shell script listing. (continued)

The most important line to study in Listing 19.5 is the third line from the bottom:

sudo su - $EFF_USER -c "script ${LOGDIR}/${LOGFILE}"

There are several poirts to make about this command. Notice that we start the

command with sudo. Because you must use sudo to execute the boracle script, and

you are already executing as root, then why use sudo here? We use sudo here to ensure

that the boracle script was indeed started with sudo. If any old user runs the bora-

cle command we want it to fail if sudo was not used.

The second command in the previous statement is su - $EFF_USER. The signifi-

cance of the hyphen, -, is important here. Using the hyphen, -, with a space on both sides

tells the su command to switch to the user pointed to by the $EFF_USER, oracle in our

case, and run that user’s .profile. If the hyphen is omitted or the spaces are not

around the hyphen, then the user .profile is not executed, which is a bad thing in

this case.

The last part of this command is where we start our script session. When you switch

users with su, you can specify that you want to run a command as this user by adding

the -c switch followed by the command enclosed in single or double quotes. Do not for-

get the quotes around the command.

The only other real change is the use of the EFF_USER variable. This variable is set

at the top of the script, and changing this variable changes who you want to “be.” If

you want to create more admin auditing scripts, copy the boracle file to a new file-

name and edit the file to change the name at the top of the script and modify the
EFF_USER variable. That’s it!

Other Options to Consider

Through this chapter we have covered some interesting concepts. You may have quite

a few things that you want to add to these scripts. I have come up with a few myself.

Monitoring and Auditing User Key Strokes

Emailing the Audit Logs

Depending on the extent of monitoring and auditing you need to do, you may want to

send the files to several different machines. I selected using email for the transport, but

you may have some other techniques, such as automated FTP. You may also want to

compress the files before you email, or whatever, the log files. To email a compressed
file you will need some type of mail tool like metasend or a tool that does a type of

uuencoding. This is needed sometimes because the mail program will think that some
of the characters, or control characters, are mail commands. This can cause some

strange things to happen. You should be able to find some mail tools on the Web.

Watch the disk space! When you start logging user activity you need to keep a close

check on disk space. Most systems store email in /var. If you fill up /var for an

extended period of time you may crash the box. For my log files I create a large dedi-

cated filesystem called /usr/local/logs. With a separate filesystem I do not have
to worry about crashing the system if I fill up the filesystem. You can probably think of

other methods to move the files around as the emails are received.

Compression

For all of these scripts we used the compress command. This compression algorithm is

okay, but we can do better. I find that gzip has a much better compression algorithm,

and the compression ratio is tunable for your needs. The tuning is done using numbers

as a parameter to the gzip command, as shown here:

gzip -9 SLOGFILE

The valid numbers are 1 to 9, with 9 indicating the best compression. This extra com-

pression does come at a price—time! The higher the number, the longer it takes to com-

press the file. By omitting the number you use gzip in default mode, which is -5. For

our needs you will still see a big increase in compression over compress at about the

same amount of time.

Need Better Security?

Another option for this keystroke auditing is to use open secure shell and keep a real

time encrypted connection to the log server by creating a named pipe. This can be done

but it, too, has some potential problems. This first major problem is that you introduce

a dependency for the logging to work. If the connection is lost then the script session

ends. For auditing root activities, and especially when all other root access has been

disabled, you can have a real nightmare. I will leave this idea for you to play around

with because it is beyond the scope of this book.

Inform the Users

I did not add this chapter to the book for everyone to start secretly monitoring every-

one’s keystrokes. Always be up-front with the user community, and let them know that

493

494 Chapter 19

an audit is taking place. I know for a fact that Systems Administrators do not like to
have the root password taken away from them. I know first hand about the reaction.

If you are going to change the user password, please place the root password in a

safe place where, in case of emergency, you can get to the password without delay.
Your group will have to work out how this is accomplished.

Sudoers File

If you start running these scripts and you have a problem, first check your sudo con-
figuration by looking at the /etc/sudoers file. There are some things to look for that
the visudo editor will not catch:

mw Check the LOCAL line. This variable should have the hostname of your

machine assigned.

m Check for exact pathnames of the files.

m Ensure that the correct users are assigned to the correct commands.

The visudo editor does catch most errors, but there are some things that are not so

easy to test for.

Summary

I had a lot of fun writing this chapter and playing with these scripts. I hope you take

these auditing scripts and use them in a constructive way. The information gathered

can be immense if you do not have a mechanism for pruning the old log files. The fol-
lowing command works pretty well:

find /directory -mtime +30 -print -exec rm {} \;

This command will remove all the files in /directory that have not been modified

in 30 days. You may want to add a -name parameter to limit what you delete. As with

any type of monitoring activity that creates logs, you need to watch the filesystem
space very closely, especially at first, to see how quickly logs are being created and how
large the log files grow.

Another topic that comes up a lot is the shell timeout. The only place I use the TMOUT

environment is in the broot script. If you add a shell timeout to your other adminis-

trative accounts you may find that a logout happens during a long processing job. With
these users I expect them to just lock the terminal when they leave.

In the next chapter we are going to look at Serial Storage Architecture (SSA) disk

drives and how to physically identify them. These drives normally come in a rack of 18
drives, and we have a ton of racks! In this mess it is hard to lecate a specific drive or a

group of drives. We have a script that turns the identification lights on and off, with a
lot of different options. See you in the next chapter!

Turning On/Off SSA
Identification Lights

On any system that utilizes the Serial Storage Architecture (SSA) disk subsystem from

IBM you understand how difficult it is to find a specific failed disk in the hundreds of

disks that populate the racks. Other needs for SSA disk identification include finding

all of the drives attached to a particular system. Then you may also want to see only the

drives that are in currently varied-on volume groups or a specific group of disks. In
this chapter we will work through all of these areas of identification.

In identifying hardware components in a system you usually have a set of tools for

this function. This chapter is going to concentrate on AIX systems. The script presented

in this chapter is valid only for AIX, but with a few modifications it can run on other

Unix flavors that utilize the SSA subsystem. I am sticking to AIX because this script has

an option to query volume groups, which not all Unix flavors support. If your systems

are running the Veritas filesystem, then only a few commands need to be modified for

my identification script to work because Veritas supports the concept of a volume

group.
In identifying an SSA disk you have two ways of referencing the disk. In AIX all

disks are represented as an hdisk#. As an example, hdisk0 almost always contains the
operating system, and it is part of the rootvg volume group. It is not often an SSA disk;

it is usually an internal SCSI disk. If an hdisk is an SSA disk, then it has a second disk

name that is used within the SSA subsystem, which is called the pdisk#. Not often are

the hdisk# and the pdisk# the same number because the first couple of disks are usu-
ally SCSI drives. We need to be able to translate an hdisk to its associated pdisk, and

vice versa.

495

496 Chapter 20

Syntax

As always, we need to start out with the commands to accomplish the task. With the

SSA subsystem we are concerned about two commands that relate to hdisks and
pdisks. The first command, ssaxlate, translates an hdisk# into a pdisk#, or vice versa.

The second command we use is the ssaidentify command, which requires a pdisk rep-

resentation of the SSA disk drive. This command is used to turn the SSA disk identifi-

cation lights on and off. We want the script to identify the SSA disks to recognize either
disk format, hdisk and pdisk. With the ssaxlate command this is not a problem.

To use these commands you need to know only the SSA disk to act on and add the
appropriate command switch. Let’s look at both commands here.

Translating an hdisk to a pdisk

ssaxlate -l hdisk43

pdisk41

In this example hdisk43 translates to pdisk41. This tells me that the hdisk to pdisk

offset is 2, which I have to assume means that hdisk0 and hdisk1 are both SCSI disks,

and hdisk3 through, at least, hdisk43 are all SSA disks. This is not always the case. It

depends on how the AIX configuration manager discovered the disks in the first place,

but my statement is a fair assumption. We could just as easily translate pdisk41 to

hdisk43 by specifying pdisk41 in the ssaxlate command.

The next step is to actually turn on the identification light for hdisk43, which we dis-

covered to be pdisk41. The ssaidentify command wants the disks represented as
pdisks, so we need to use pdisk41 for this command.

identifying an SSA Disk

ssaidentify -1l pdisk41 -y

The ssaidentify command will just return a return code of success or failure, but no

text is returned. If the return code is 0, zero, then the command was successful. If the

return code is nonzero, then the command failed for some reason and a message is sent
to standard error, which is file descriptor 2. All we are interested in is if the return code
is zero or not.

Turning On/Off SSA Identification Lights 497

Table 20.1 SSA Identification Functions

FUNCTION NAME PURPOSE

usage Shows the user how to use the shell script

man_page Shows detailed information on how to use the

shell script

cleanup Executes when a trapped exit signal is detected

twirl Used to give the user feedback that processing
continues

all_defined_pdisks Controls SSA identification lights for all system
SSA disks

all_varied_on_pdisks Controls SSA disks only in currently varied-on
volume groups

last of sdisks Controls SSA identification of a list of one or more
disks

The Scripting Process

In the SSA identification script we are going to use a lot of functions. These functions

perform the work so we just need the logic to decide which function to execute. An

important thing you need to understand about functions is that the function must be

declared, or written, in the code previous to when you want to execute the function.

This makes sense if you think about it: You have to write the code before you can use it!

The functions involved in this shell script are listed in Table 20.1 for your convenience.

Usage and User Feedback Functions

As you can see, we have our work cut out for us, so let’s get started. The first function

is the usage function. When a user input error is detected you want to give the user

some feedback on how to properly use the shell script. Always create a usage func-

tion. I want to show you this function because I did something you may not know that

you can do. I used a single echo command and have 15 separate lines of output. Take

a look at the function in Listing 20.1 to see the method.

498 Chapter 20

function Veaoe

{

echo "\nUSAGE ERROR.

\nMAN PAGE ==> ee -?

\nTo Turn ALL Lights Either ON or OFF:

\nUSAGE: SSAidentify.ksh [-v] [on] [ore]

EXAMPLE: SSAidentify.ksh “Vv on —

\nWill turn ON ALL of the system! s currently VARIED ON :

SSA identify lights. NOTE: The default is all. DEFINED SSA disks:

\nto Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdiskd(s);

\NUSAGE: SSAidentify.ksh fon} [ott} paisk(41) Indisk(#2)}.

EXAMPLE: SSAidentify.ksh on hdisk36 pdisk44 pdisk47 _

\nWill turn ON the lights to all of the associated pdisk#(s)
that hdisk36 translates to and PDISKS pdisk44 and pdisk47.
\nNOTE: Can use all pdisks, all hdisks or BOTH hdisk

and pdisk together if you want...”

exit 1

J

Listing 20.1 Usage function with a single echo command.

As you can see in Listing 20.1, I enclose the entire text that I want to echo to the

screen within double quotes, "usage text". To place text on the next line, just press

the ENTER key. If you want an extra blank line or a TAB, then use one or more of the
many cursor functions available with the echo command, as shown in Table 20.2.

There are many more in the man pages on your system. When incorrect usage of the
shell script is detected, which you have to build in to the script, the proper usage mes-

sage in Listing 20.2 is displayed on the screen.

Table 20.2 Cursor Control Commands for the echo Command

ECHO FUNCTION PURPOSE noe =

\n Insert a new line with a carriage return

we Tab over on TAB length characters for each \t entered

__\b Back the cursor up one space for each \b entered

\c Leaves the cursor at the current position, without a
carriage return or line feed

Turning On/Off SSA Identification Lights 499

USAGE ERROR...

MAN PAGE ==> SSAidentify.ksh -?
4

To Turn (ALL Lights Bither|ON\\or Orr:

USAGE: SSAidentify.ksh [-v] [on] [off]

EXAMPLE: SSAidentify.ksh -v on

Will turn ON ALL of the system's currently VARIED ON

SSA identify lights. NOTE: The default is all DEFINED SSA disks

vo. Turn SPECIFIC LIGHTS Either ON or OFF Using RITHER

the pdisk#(s) AND/OR the hdisk#(s):

USAGE: SSAidentify.ksh [on] [off] pdisk{#1} [hdisk{#2}]...
EXAMPLE: SSAidentify.ksh on hdisk36 pdisk44 pdisk47

Will turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

NOTE: Can use all pdisks, all hdisks or BOTH hdisk

and pdisk together if you want...

Listing 20.2 Example of cursor control using the echo command.

By using cursor control with the echo command, we can eliminate using a separate

echo command on every separate line of text we want to display. I do the same thing

in the man_page function. You can see this function in its entirety in the full shell script

shown in Listing 20.9.

Before I show you the cleanup function, I want to show you the twirl function.

The twirl function is used to give feedback to the user, which you saw back in Chap-
ter 4. As a brief review, the twirl function displays the appearance of a line rotating.

And this is accomplished through? You guess it, cursor control using the echo com-
mand. I like the twirl function because it is not too hard to understand and it is very

short. This function works by starting an infinite while loop, which is done using the :

(colon) no-op operator. A no-op does nothing and always has a zero return code so it is

perfect to create an infinite loop. The next step is to have a counter that counts only

from 0 to 4. When the counter reaches 4 it is reset back to 0, zero. At each count a case
statement is used to decide which of the four lines, -, \, |, and /, is to be displayed. At
the same time, the cursor is backed up so it is ready to overwrite the previous line char-

acter with a new one. There is a sleep for one second on each loop iteration. You must

500 Chapter 20

leave the sleep statement in the code or you will see a big load on the system by all of

the continuous updates to the screen. I use this function for giving user feedback when

a time-consuming job is executing. When the job is finished I kill the twirl function

and move on. The easiest way to kill a background function is to capture the PID just
after kicking off the background job, which is assigned to the $! shell variable. This is

similar to the way $? is used to see the return code of the last command. The twirl

function is shown in Listing 20.3.

function twirl

{
TCOUNT="0" # For each TCOUNT the line twirls one increment

while : # Loop forever...until you break out of the loop

do

TCOUNT=$ (expr ${TCOUNT} + 1) # Increment the TCOUNT _

case ${TCOUNT} in

wat) echo ae ot \po\ve!

sleep 1

O°) echo §\\" 2 \b\c"

sieep 1

nO echo HV p\es

sleep 1

nau) echo "/\b\c"

sleep 1

*) TCOUNT={"0" ;; # Reset the TCOUNT to "0", zero.

esac : :

done

End of twirl funetion

}

Listing 20.3 Twirl function listing.

When I have a time-consuming job starting, I start the twirl function with the fol-
lowing commands:

twirl &

TWIRL_PID=$!

This leads into the next function, cleanup. In normal operation the twirl function

is killed in the main body of the script, or in the function that it is called in, by using the

Turning On/Off SSA Identification Lights

kill command and the previously saved PID, which is pointed to by the TWIRL_PID
variable. Life, though, is not always normal. In the top of the main body of the shell

script we set a trap. The trap is used to execute one or more commands, programs, or

shell scripts when a specified exit code is captured. Of course, you cannot trap a kill -9!
In this shell script we execute the cleanup function on exit codes 1,2 3,5, and 15. You

can add more exit codes if you want. This cleanup function displays a message on the

screen that a trap has occurred and runs the kill -9 $TWIRL_PID command before

exiting the shell script. If you omit the trap and the twirl function is running in the

background, it will continue to run in the background! You cannot miss it—you always

have a twirling line on your screen. Of course, you can kill the PID if you can find it in

the process table with the ps command. The cleanup function is shown in Listing 20.4.

function cleanup

{

echo "\n:.-Exiting on a trapped signal... .EXITING STAGE LEFT...\n"

kill -9 STWIRL_PID

End of cleanup function

}

Listing 20.4 Cleanup function listing.

When an exit code is captured the user is informed that the shell script is exiting,

and then the kill command is executed on the PID saved in the $TWIRL_PID variable.

Control Functions

Now we get into the real work of turning on and off the SSA identification lights start-

ing with the all_defined_pdisks function. This function is the simplest of the SSA

identification functions in this chapter. The goal is to get a list of every SSA disk on the

system and use the pdisk# to control the identification lights by turning all lights on or

off in sequence.

To understand this function you need to understand an AIX command called Isdev

and the switches we use to extract only the pdisk information. The lsdev command is

used to display devices in the system and the characteristics of devices. The -C switch

tells the lsdev command to look at only the currently defined devices. Then the -c com-

mand switch is added to specify the particular class of device; in our case the device

class is pdisk. So far our Isdev command looks like the following statement:

lsdev -Cc pdisk

502 Chapter 20

But we want to drill down a little deeper in the system. We can also specify a subclass
to the previously defined class by adding the -s switch with our subclass ssar. We also

want to have a formatted output with column headers so we add the -H switch. These
headers just help ensure that we have good separation between fields. Now we have

the following command:

lsdev -Cc pdisk -s ssar -H

Using this command on a system with SSA disks you see an output similar to the

one in Listing 20.5.

name status location description

pdiskO Available 34-08-5B91-01-P SSA160 Physical Disk Drive

pdisk1 Available 34-08-5B91-02-P SSA160 Physical Disk Drive

pdisk2 Available 34-08-5B91-03-P SSA160 Physical Disk Drive

pdisk3 Available 34-08-5B91-04-P SSA160 Physical Disk Drive

pdisk4 Available 24-08-5B91-05-P SSA160 Physical Disk Drive

pdisk5 Available 24-08-5B91-07-P SSA160 Physical Disk Drive

pdisk6 Available 24-08-5B91-06-P SSA160 Physical Disk Drive

pdisk7 Available 24-08-5B91-08-P SSA160 Physical Disk Drive

pdisk8 Available 24-08-5B91-09-P SSA160 Physical Disk Drive

pdisk9 Available 24-08-5B91-10-P SSA160 Physical Disk Drive

pdiski0 Available 24-08-5B91-11-P SSA160 Physical Disk Drive

pdisk11 Available 24-08-5B91-12-P SSA160 Physical Disk Drive

pdisk12 Available 34-08-5B91-13-P SSA160 Physical Disk Drive

padisk13 Available 34-08-5B91-14—-P SSAI160 Physical Disk Drive

pdisk14 Available 34-08-5B91-16-P SSA160 Physical Disk Drive

pdisk15 Available 34-08-5B91-15-P SSA160 Physical Disk Drive ©

Listing 20.5 Isdev listing of pdisks.

In Listing 20.5 we have more information than we need. The only part of this Ilsdev

command output that we are interested in is in the first column, and only the lines that
have “pdisk” in the first column. To filter this output we need to expand our Isdev

command by adding awk and grep to filter the output. Our expanded command is

shown here:

lsdev -Cc pdisk -s ssar -H | awk '{print $1}' | grep pdisk

In this command statement we extract the first column using the awk statement in a

pipe, while specifying the first column with the ' {print $1}' notation. Then we use

grep to extract only the lines that contain the pattern pdisk. The result is a list of all cur-
rently defined pdisks on the system.

Turning On/Off SSA Identification Lights 503

To control the identification lights for the pdisks in this list we use a for loop and use
our Isdev command to create the list of pdisks with command substitution. These steps
are shown in Listing 20.6.

function all_defined_pdisks

{

TURN ON/OFF ALL LIGHTS:

Loop through each of the system's pdisks by using! the’ "isdey*

command with the "-Cc pdisk" switch while using "awk" to extract

out the actual pdisk number. We will either

turn the identifier lights on or off specified by the SSWITCH

variable:

Turn lights on: -y

Turn lights off: -n

as the S$SWITCH value to the "ssaidentify" command, as used below...

echo "\nTurning S$STATE ALL of the system's pdisks...Please Wait...\n"

for PDISK in $(lsdev -Cc pdisk -s ssar -H | awk '{print $1}' \

| grep pdisk)

do

echo. "Turning SSTATE ==> SPDISK"

ssaidentify -1 $PDISK -${SWITCH} \

|| echo "Turning $STATE $PDISK Failed"

done

echo "\n,..TASK COMPLETE... \n"

}

Listing 20.6 all_defined_pdisks function listing.

In Listing 20.6 notice the command substitution used in the for loop, which is in

bold text. The command substitution produces the list arguments that are assigned to

the $PDISK variable on each loop iteration. As each pdisk is assigned, the ssaidentify

command is executed using the $PDISK definition as the target and uses the -

$SWITCH as the action to take, which can be either -y for light on or -n for light off.

These values are defined in the main body of the shell script. As each light is being

turned on or off the user is notified. If the action fails the user is notified of the failure
also. This failure notification is done using a logical OR, specified by the double

pipes, | |.
The next function is all_varied_on_pdisks. This function is different in that we

must approach the task of getting a list of SSA disks to act on using completely different
strategy. The result we want is the ability to control the SSA disks that are in volume

504 Chapter 20

groups that are currently varied-on. To get this list we must first get a list of the varied-
on volume groups using the Isvg -o command. This command gives a list of varied-on

volume groups directly without any added text so we are okay with this command’s
output. Using this list of volume groups we can now use the lspv command to get a

full listing of defined hdisks. From this list we use grep to extract the hdisks that are in

currently varied-on volume groups. Notice that all of this activity so far is at the hdisk
level. We need to have pdisks to control the identification lights. To build a list of

hdisks to convert we use a for loop tagging on the volume groups with the VG variable.
For each $VG we run the following command to build a list.

lspv | grep $VG >> S$HDISKFILE

Notice that we use a file to store this list. A file is needed because if a variable were

used we might exceed the character limit for a variable, which is 2048 on most systems.

As you know, most large shops have systems with hundreds, if not thousands, of SSA

disks. To be safe we use a file for storage here.
Using this list of hdisks we are going to use another for loop to translate each of the

hdisks into the associated pdisk. Because we may still have a huge list containing

pdisks we again use a file to hold the list. The translation takes place using the ssaxlate

command, but what if some of these hdisks are not SSA disks? Well, the translation will

fail! To get around this little problem we first test each translation and send all of the

output to the bit bucket and check the return code of the ssaxlate command. If the

return code is 0, zero, then the hdisk is an SSA disk. If the return code is nonzero, then

the hdisk is not an SSA disk. The result is that only pdisks are added to the new pdisk

list file, which is pointed to by the PDISKFILE variable. Because this translation may

take quite a while we start the twirl function, which is our progress indicator, in the

background before the translation begins. As soon as the translation process ends, the
twirl function is killed using the saved PID.

The only thing left to do is to perform the desired action on each of the pdisk identi-

fication lights. We do this by starting yet another for loop. This time we use command

substitution to produce a list of pdisks by listing the pdisk list file with the cat com-
mand. On each loop iteration the ssaidentify command is executed for each pdisk in

the list file. The all_varied_on_pdisk function is shown in Listing 20.7.

function all_varied_on_pdisks

{

trap t kill -9 STWIRL PID; return 2122.3) 05

cat /dev/null > SHDISKFILE

cat /dev/null > SPDISKFILE

echo "\nGathering a list of Varied on system SSA disks...Please

Warten. cic

VG_LIST=$(lsvg -o) # Get the list of Varied ON Volume Groups

for VG in $(echo $vVG_LIST)

Listing 20.7 all_varied_on_pdisks function listing.

Turning On/Off SSA Identification Lights 505

do

lspv | grep $VG >> SHDISKFILE # List of Varied ON PVs

done

twirl & # Gives the user some feedback during long processing times...

TWIRL PID=$!

echo "\nTranslating hdisk(s) into the associated pdisk(s)

wn. phease-Watt. oo vow

for DISK in $(cat $HDISKFILE) # Translate hdisk# into pdisk#(s)

do

Checking for an SSA disk

/usr/sbin/ssaxlate -1 $DISK # 2>/dev/null 1>/dev/null

if (($? == 0))

then :

/usr/sbin/ssaxlate -1 $DISK >> $PDISKFILE # Add to pdisk List

£1

done

kill -9 $TWIRL_ PID # Kill the user feedback function...

echo "\b " # Clean up the screen by overwriting the last character

echo "\nTurning $STATE all VARIED ON system pdisks...Please Wait...\n"

Act on each pdisk individually...

for PDISK in $(cat SPDISKFILE)

do

echo “Turning SSTATE: ==> SPDISK”

/usr/sbin/ssaidentify -1 $PDISK -${SWITCH} \

||echo "Turning $STATE PDISK Failed"

done

echo i \n\te) TASK COMPLETE). \nit

}

Listing 20.7 all_varied_on_pdisks function listing. (continued)

Notice that there is a trap at the beginning of this function in Listing 20.7. Because

we are using the twirl function for user feedback we need a way to kill off the rotat-

ing line so we added a trap inside the function. In the next step we initialized both of

the list files to empty files. Then the fun starts. This is where we filter through all of the
hdisks to find the ones that are in currently varied-on volume groups. With this hdisk
list we loop through each of the disks looking for SSA disks. As we find each hdisk it is

translated into a pdisk and added to the pdisk list. With all of the pdisks of interest
found we loop through each one and turn on/off the SSA identification lights.

506 Chapter 20

The last function is 1ist_of_disks, which acts on one or more hdisks or pdisks

that are specified on the command line when the shell script is executed. In the main

body of the shell script we do all of the parsing of the command-line arguments
because if you tried to parse the command line inside a function the parsing would act

on the function’s argument, not the shell script’s arguments. Therefore this is a short

function.

In the main body of the shell script a variable, PDISKLIST, is populated with a list

of pdisks. Because the user can specify either hdisks or pdisks, or both, on the com-

mand line the only verification that has been done is on the hdisks only, when they

were translated to pdisks. We need do a sanity check to make sure that each of the
pdisks we act on has a character special file in the /dev filesystem. This is done using

the -c switch in an if...then test. If the pdisk listed has a character special file associated

with it, then an attempt is made to turn the SSA identification light on/off, otherwise,

the user is notified that the specified pdisk is not defined on the system. The

list_of_disks function is shown in Listing 20.8.

hHinetion list of disks

{
TURN ON/OFF INDIVDUAL LIGHTS:

Loop through each of the disks that was passed to this script

via the positional parameters greater than $1, i.e., $2, $3, $4...

We first determine if each of the parameters is a pdisk or an

hdisk. For each hdisk passed to the script we first need to

translate the Ahdisk definition into a pdisk definition. this

script has been set up to accept a combinition of hdisks and

pdisks.

We will either turn the identifier lights on or off specified by

the SSWITCH variable for each pdisk#:

Turn Lights on: =y

Turn tights off. =n

as the SSWITCH value to the "ssaidentify" command, as used below..

echo "An"

The disks passed to this script can be all hdisks, all pdisks,

or a combination of pdisks and hdisks; it just does not matter.

We translate each hdisk into the associated pdisk(s).

echo '\nTurning SSTATE individual SSA disk lights. ..\n"

for PDISK in $(echo $PDISKLIST)

do

Listing 20.8 _list_of_disks function listing.

Turning On/Off SSA Identification Lights 507

Is it a real pdisk??

if [-c /dev/${PDISK}] 2>/dev/null

then (fh Yep (action De!

/usr/sbin/ssaidentify -1 $PDISK -${SWITCH} >/dev/null

DEC Sie 5) ON)

then

/usr/bin/ssaxlate -1 $PDISK -${SWITCH}

LE (CS? == 0))

then

echo ("Light on\SPDISK Us ‘SSTATE"

else

echo "Turning $STATE SPDISK Failed"

£3)

fi

else

else ‘

echo "\nERROR: $PDISK is not a defined device on $THISHOST\n"

Ex

done

echo. "\n &, «TASK ‘COMPLETE -¢)/\n"

}

Listing 20.8 _list_of_disks function listing. (continued)

Notice in the boldface text in Listing 20.8 where we do the test to see if the pdisk

listed is a real pdisk by using the -c switch in the if statement. We have covered the rest
of the function, so let’s move on to the main body of the shell script.

The Full Shell Script

This is a good point to show the entire shell script and go through the details at the end

of the listing. The SSAidentify.ksh shell script is shown in Listing 20.9.

#!/bin/ksh

SCRIPT: SSAidentify.ksh

AUTHOR: Randy Michael

DATHS 1247/2000

Listing 20.9 SSA identify.ksh shell script listing. (continues)

508 Chapter 20

REVr 225 2k

PURPOSE: This script 1s used ‘to turn on, or off, the

identify lights on the system's SSA disks

REV LIST:
11/27/2000: Added code to allow the user to turn on/off

individual pdisk lights

12/10/2000: Added code to accept a combination of pdisks

and hdisks. For each hdisk passed the script translates

the hdisk# into the associated pdisk#(s).

12/10/2000: Added code to ALLOW using the currently VARIED ON

Volume Group's disks (-v switch), as opposed to ALL DEFINED

SSA disks, which is the default behavior. Very helpful in an

HACMP environment.

hdisks into associated pdisks. The twirl function is just a

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script SF SE SF Ht OH HF OH OH HH HH HSH HH HK HH HF HF HH HF HS HS HS FH

SCRIPTNAME=$ (basename $0)

HHFHEFHHEHHEAEEPEEEEESHEPHERHESHHERHESHERHH EHH

function usage

{

echo "\nUSAGE ERROR...

\nMAN PAGE ==> SSCRIPTNAME -?

\nTo Turn ALL Lights Either ON or OFF:

\nUSAGE: SSAidentify.ksh [-v] [on] [off]

EXAMPLE: SSAidentify.ksh -v on :

\nWill turn ON ALL of the system's currently VARIED ON

SSA identify lights. NOTE: The default is all DEFINED SSA disks

\nTo Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdisk#(s):

\nUSAGE: SSAidentify.ksh [on] [off] pdisk{#1} [hdisk{#2}]...

EXAMPLE: SSAidentify.ksh on hdisk36 pdisk44 pdisk47

\nWill turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

\nNOTE: Can use all pdisks, all hdisks or BOTH hdisk

Listing 20.9 SSA identify.ksh shell script listing. (continued)

12/11/2000: Added the "twirl" function to give the user feedback

during long processing periods, i.e., translating a few hundred

rotating cursor, and it twirls during the translation processing.

Turning On/Off SSA Identification Lights 509

and pdisk together iff you want..."

exit

}

HHHHHEETT EERE ER EREHE PEER RPEE RHEE RHEE EEE HEHEHE

function man_page

{

MAN_FILE="/tmp/man_file.out"

>3MAN_FILE

Text for the man page...

echo "\n\t\tMAN PAGE FOR SSAidentify.ksh SHELL SCRIPT\n

This script is used to turnon) or off) the system's SSA disk drive

identification lights: You can use this script in the following ways: \n

To turn on/off ALL DEFINED SSA drive identification lights, ALL VARIED-

ON SSA

drive identification lights (-v switch), AN INDIVIDUAL SSA drive

identification

light or A LIST OF SSA drive identification lights.\n

SSA disk drives can be specified by EITHER the pdisk OR the hdisk, or

a COMBINATION OF BOTH. The script translates all hdisks into the

associated pdisk(s) using the system's /usr/sbin/ssaxlate command and

turns

the SSA identification light on/off using the system's

/usr/sbin/ssaidentify

command. \n

This script has four switches that control its action: \n

-? - Displays this man page.\n

on -° Turns the SSA sdentify light (s)) ON. \n

off — Turns the SSA identify light(s) OFF.\n

=y = Specifies to only act on SSA disks that are in currently varied-on

volume groups. The default action is to act on ALL DEFINED SSA disks.\n

NOTE: This switch is ignored for turning on/off individual SSA drive

lights,

only valid when turning on/off ALL iights. This option is very helpful

in an

HACMP environment because ALL DEFINED, the default action, will turn

on/off all

Of the SSA drive lights even ii the SSA disk Is in a volume group that

iS not

currently varied-on. This can be confusing in an HA cluster.\n

Using this script is very straight forward. The following examples show

the

Listing 20.9 SSA identify.ksh shell script listing. (continues)

510 Chapter 20
OUWKTwEluUTUlu_llu_wt waa

correct use of this script:\n" >> SMAN FILE

echo "\nUSAGE: SSAidentify.ksh [-v] [on] [off] [pdisk#/hdisk#]

{pdisk#/hdisk# list]

\n\nTo Turn ALL Lights Either ON of ORF:

\nUSAGE: SSAidentify.ksh [-v] [on] [off]

\nEXAMPLE: SSCRIPTNAME on

\nWill turn ON ALL of the system's DEFINED SSA identify tights.

This is the default.

EXAMPLE: SSAidentify.ksh -v on

\nWill turn ON ALL of the system's currently VARIED-ON

SSA identify lights. OVERRIDES THE DEFAULT ACTION OF ALL DEFINED SSA

DISKS

\nTo Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdisk#(s):

\nNUSAGE: $SCRIPTNAME [on] [off] pdisk{#1} [hdisk{#2}]...

\nEXAMPLE: SSCRIPTNAME on hdisk36 pdisk44 pdisk47

\nWill turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

\nNOTE: Can use all pdisks, all hdisks or BOTH hdisk

and pdisk together if you want...\n\n" >> $MAN_ FILE

more $MAN FILE

End of man_page function

}

HEHHEHHEEHEPHHEFHEEHESHEEEHHEEHEEEHESHREAHESHEEH

function cleanup

{

echo "\n...Exiting on a trapped signal...EXITING STAGE LEFT... \n"

kill $TWIRL PID

End of cleanup function

}

HHEHHEPREEPEPERPEREPEPPREEEPHPPRERPREERR EER EH

function twirl

{

TCOUNT== 02! # For each TCOUNT the line twirls one increment

while : # Loop forever...until you break out of the loop

do

TCOUNT=$ (expr ${TCOUNT} + 1) # Increment the TCOUNT

case ${TCOUNT} in

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Turning On/Off SSA Identification Lights 511

va a) echo cor nvp\ar

sleep 1

na") echo "\\ TO \bvc"
sleep 1

Sin echo." | \p\alr

sleep 1

nan) echo »/\b\o"

sleep 1

*) TCOUNT="0" fou #oReset ‘the TCOUNT fo "0", sero.

esac

done

End of twirl function

}

HARE EERE ERE RR HEH HEE EH HE HEHE HH HHH HHH HHH EE

function all defined pdisks

{

TURN ON/OFF ALL LIGHTS:

Loop through each of the system's pdisks by using the "lsdev"

command with the "-Cc pdisk" switch while using "awk" to extract

out the actual pdisk number. We will either

turn the identifier lights on or off specified by the

SSWITCH variable:

Turn Lights on: -y

Turn Lights off: -n

Ss oF HH HH HH HH HH H as the SSWITCH value to the "Sssaidentify" command, as used below...

echo "\nTurning S$STATE ALL of the system's pdisks...Please Wait...\n"

for PDISK in $(1sdev -Ce pdisk -< ssar -H | awk ‘{print $1)" | grep

pdisk)

do

echo "Turning $STATE ==> SPDISK"

ssaidentify -1 SPDISK -${SWITCH} || echo "Turning SSTATE S$PDISK

Failed"

done

echo "\n...TASK COMPLETE...\n"

HEPHHHPRAEHHEEHHAERHER RRR RARER ERE GER EH EHH

Listing 20.9 SSA identify.ksh shell script listing. (continues)

512 Chapter 20

function all_varied_on_pdisks .

{

trap ‘kill -9 STWIRL PID; return 1° 2:2 3 15

cat /dev/null > SHDISKFILE

echo "\nGathering a list of Varied on system SSA disks...Please

Walt... \c" ae

VG_LIST=S(lsvg -o) # Get the list of Varied ON Volume Groups

for VG in $(echo SVG LIST)

do

lspv | grep $VG >> SHDISKFILE # List of Varied ON PVs

done

twirl & # Gives the user some feedback during long processing times...

TWIRL. PID=$!

echo "\nTranslating ndisk(s) into the associated pdisk(s)...Please

Wate. oo \c"

for DISK in S(cat SHDISKFILE) # Translate hdisk# into pdisk#(s)

do

Checking for an SSA disk

/usr/sbin/ssaxlate -1 SDISK # 2>/dev/null 1>/dev/null

Tf (Se == 0))

then

/usr/sbin/ssaxlate -1 $DISK >> $PDISKFILE # Add to pdisk List

fi
done

kill -9 STWIRL PID # Kill the user feedback function...

echo "\b "

echo "\nTurning SSTATE all VARIED-ON system pdisks...Please Wait...\n"

for PDISK in ${cat SPDISKFILE)

do # Act on each pdisk individually...

echo "Turning SSTATE ==> SPDISK"

/usr/sbin/ssaidentify -1 $PDISK -S{SWITCH} || echo "Turning SSTATE

SPDISK Failed”

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Turning On/Off SSA Identification Lights 513

done

echo "\a\t. .. TASK COMPLETE 0 \ni"

}

HHHHHHERPR ERE AEH RRH RRR HR E RE

function list_of disks

{

TURN ON/OFF INDIVDUAL LIGHTS:

Loop through each of the disks that was passed to this script

Via the positional parameters greater, than Si) ace, $2,053). $4.0.

We first determine if each of the parameters is a pdisk or an hdisk.

For each hdisk passed to the script we first need to translate

the hdisk definition into a pdisk definition. This script has

been set up to accept a combination of hdisks and pdisks.

We will either turn the identifier lights on or off specified by

the SSWITCH variable for each pdisk#:

Turn tights on: <=y.

Turn lights off: -n

as the SSWITCH value to the "ssaidentify" command.

echo "\n"

The disks passed to this script can be all hdisks, all pdisks

or a combination of pdisks and hdisks; it just does not matter.

We translate each hdisk into the associated pdisk(s).

echo "\nTurning SSTATE individual SSA disk lights... \n"

for PDISK in $(echo $PDISKLIST)

do

Is it a real pdisk??

4€ [{ -G /dev/S{PDISK} 1 2>/dev/null

then # Yep = act on ati.

/usr/sbin/ssaidentify -1 $PDISK -${SWITCH}

if [($? -eq 0]

then

/usr/bin/ssaxlate -1 $PDISK -${SWITCH}

Af. ((S? == 0))

Listing 20.9 SSA identify.ksh shell script listing. (continues)

514 Chapter 20

then

echo “Light on SPDISK is SSTATE"

else

echo "Turning $STATE SPDISK Failed”

fi

£i

else

echo "\nERROR: SPDISK is not a defined device on S$THISHOST\n"

i

done

echo \n). TASK COMPLETE... \n"

}

HEHEHE HSHPEEHESESHEEGHEEEHEAHSH PEEP EEH EHH

HHFHHEHHHEHHH BEGINNING OF MAIN #H####H#4 4H HHH

HHHPHPHHHRHEPHPEEEPHESEHESHEEEHEAEPHES HHH HH HH

Set a trap...

#\ Remember...Cannot trap a "kill -9" Ir!

trap 'cleanup;exit 1' 1 2 3 15

HHEHPHEHEPHPHPHEHEHEAEHEAEPEPHEAPHEE EEA EH EH HH

Check for the correct number of arguments (1)

if (($# == 0))

then

usage

£1.

HHHHHEHHPHEHPHEEHESEPHPEPHPHEHEAEREPHEHEHESHEH SE

See if the system has any pdisks defined before proceeding

PCOUNT=$(1lsdev -Cc pdisk -s ssar | grep -c pdisk)

if -C((PCOUNT:==20))

then

echo "\nERROR: This system has no SSA disks defined\n”

echo “\t\t.. BXITING | \n"

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Turning On/Off SSA Identification Lights 515

Coban sai

bape

HHPHHHRHHAHHAEHHHAEHHEREAHERH HAHAHAHA HEHE HH HH

Make sure that the ssaidentify program is

executable on this system...

if [! -x /usr/sbin/ssaidentify]

then

echo "\nERROR: /usr/sbin/ssaidentify is NOT an executable"

echo "program on S$THISHOST"

echo? "\n. 2. BXTTING. | \n"

exit 1

aa

HHFHHERHEERRREHEEEREHERHPER RPE RPEEEHEA HEEB EES

Make sure that the ssaxlate program is

executable on this system...

if [! -x /usr/sbin/ssaxlate]

then

echo "\nERROR: /usr/sbin/ssaxlate is NOT an executable"

echo "program on STHISHOST"

6cho "in. EXITING, .\n"

exit 1

£i

HRPEREREE EEE HEHE HHH HEHE HHH EH HH HE HE HH HE HEH HH

HEHEHE HEHE RHE EH EH EEE HEH EERE EEE HEE HEH HH

Okay, we should have valid data at this point

Let's do a light show.

HHEHHHEHHHHHFHEESHEARHEAGHESEAEEEEPEEPHEEEREGRH SE

HHEAHFHEFHEPRPHRESREREREEPEREREESHEPEREAHEH EHH

Always use the UPPERCASED value for the $STATE, SMODE,

and $PASSED variables...

typeset -u MODE

Listing 20.9 SSA identify.ksh shell script listing. (continues)

516 Chapter 20

MODE="DEFINED_ DISKS"

typeset -u STATE

STATE=UNKNOWN

typeset -u PASSED

Use lowercase for the argument list

typeset -1 ARGUMENT

Grab the system hostname

THISHOST=S (hostname)

Define the hdisk and pdisk FILES

HDISKFILE="/tmp/disklist.out"

>SHDISKFILE

PDISKFILE="/tmp/pdisklist.identify”

>SPDISKFILE

Define the hdisk and pdisk list VARIABLES

HDISKLIST=

PDISKLIST=

Use getopts to parse the command-line arguments

while getopts ":v V" ARGUMENT 2>/dev/null

do

case SARGUMENT in

v|v) MODE="VARIED_ON"

\?) man_page

esac

done

HHEHHPHFHFHEHHHESHPEPHEHEHESEHPEEEPHEEEHEHHPERRES

Decide tf we are to turn the lights on or off...

(echo $@ | grep -i -w on >/dev/null) && STATE=ON

(echo $@ | grep -i -w off >/dev/null) && STATE=OFF

case $STATE in

ON)

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Turning On/Off SSA Identification Lights 517

Puen ath of the Lights Onl!

SWITCH="y"

OFF)

horn vald of) the lights) ORB)

SWITCH="n"

~)

Unknown Option...

echo "\nERROR: Please indicate the action to turn lights ON or

OFF\n"

usage

exit 1

esac

HHHHEEHEERHEEEREPEREEEH EE EEEAPH EE EEEE HERG HEHEHE

HH HEH HEE HH EEE EEE EH RR HERE EH EHH EHH

HHHHHHHHHHE PLAY WITH THE LIGHTS #####HHHHHHHEHH

HEHEHE HH HHH HH HHH EH HH HEH EE EEE EEE ER EH BREE

HEHEHE HHH HH HHH HH EH EHH HEE HH HE EE EE EH

if (($# == 1)) && [[$MODE = "DEFINED_DISKS"]]

then

This function will turn all lights on/off

all _ defined _pdisks

elif [[$MODE = "VARIED_ON"]] && (($# = 2))

then

This function will turn on/off SSA disk lights

in currently varied-on volume groups only

all _varied_on_pdisks

Now check for hdisk and pdisk arguments

elif [$MODE = DEFINED DISKS] && (echo $@ | grep disk >/dev/null) \

&& (($# >= 2))

then

If we are here we must have a list of hdisks

and/or pdisks

Look for hdisks and pdisks in the command-line arguments

for DISK in $(echo $@ | grep disk)

do

case $DISK in

Listing 20.9 SSA identify.ksh shell script listing. (continues)

518 Chapter 20

hdisk*) HDISKLIST="S$HDISKLIST $DISK"

pdisk*) PDISKLIST="$PDISKLIST $DISK"

*) : # No-Op - Do nothing

esac

done

if [[! -z "$HDISKLIST"]] # Check for hdisks to convert to pdisks

then

We have some hdisks that need to be converted to pdisks

so start converting the hdisks to pdisks

Give the user some feedback

echo "\nConverting hdisks to pdisk definitions"

echo "\n ...Please be patient...\n"

Start converting the hdisks to pdisks

for HDISK in $(echo $HDISKLIST)

do

PDISK=$(ssaxlate -1 $HDISK)

if (($? == 0))

then

echo "SHDISK translates to ${PDISK}"

else

echo “ERROR: hdisk to pdisk translation FAILED

for SHDISK"

fi:

Build a list of pdisks

Add pdisk to the pdisk

List

PDISKLIST="SPDISKLIST SPDISK"

done

jak

if [[-z "$PDISKLIST"]]

then

echo "\nERROR: You must specify at least one hdisk or

pdisk\n"

man_page

exit 1

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Turning On/Off SSA Identification Lights 519

else

Turn on/off the SSA identification lights

list of diske
fi

fi

HEATHER RE HERPES ERE EHHPHEHERRT ERR REPRE RPE EERE SH

BEND\OF (SCRIPT #

FHTTHTRER HERR ERE RE RHR EEHEHEPRREEEE RR PREHE ERS

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Let’s start at the “Beginning of Main” in Listing 20.9. The very first thing that we do

is set a trap. This trap is set for exit codes 1, 2,3,5, and 15. On any of these captured sig-

nals the cleanup function is executed, and then the shell script exits with a return

code of 1. It is nice to be able to clean up before the shell script just exits.

In the next series of tests we first make sure that there is at least one argument

present on the command line. If no arguments are given, then the script presents the

usage function, which displays proper usage and exits. If we pass the argument test

then I thought it would be a good idea to see if the system has any SSA disks defined
on the system. For this step we use the PCOUNT=$(Isdev -Cc pdisk -s ssar | grep -c

pdisk). The grep -c returns the count of SSA disks found on the system and assigns the

value to the PCOUNT variable. If the value is zero there are no SSA disks, so inform

the user and exit. If we do have some SSA disks, the next thing we do is make sure that
the ssaidentify and ssaxlate commands exist and are executable on this system. At this

point we know we are in an SSA environment so we define and initialize all of the

script’s variables.
Then we get to use the getopts function to parse the command-line arguments. We

expect and recognize just two arguments, -v and -V, to specify varied-on volume

groups only. Any other argument, specified by a preceding hyphen, -, displays the

man_page function. Anything else on the command line is ignored by the getopts
function, which is a shell built-in function.

On the command line we must have either on or off present, or we do not have

enough information to do anything. We check the command-line arguments by echo-
ing out the full list and grepping for on and off. At the next case statement the $STATE

variable is tested. If on or off was not found, the usage function is displayed and the

script exits. If we get past this point we know that we have the minimal data to do

some work.
When we start playing with the lights we have to do some tests to decide what

action we need to take and on what set of SSA disks. The first one is simple. If we have
only one command-line argument and it is either on or off, then we know to turn on or

520 Chapter 20

off all defined SSA disk identification lights on the system without regard to volume

group status. So, here we run the all_defined_pdisks function. If we have two

arguments on the command line and one of them is -v or -V, then we know to act only

on SSA disks in currently varied-on volume groups by turning every one of the SSA

identification lights on or off.
The last option is to have hdisks or pdisks listed on the command line. For this

option we know to act on only the disks that the user specified and to turn on or off
only these disks. Because we allow both hdisks and pdisks we need to convert every-

thing to pdisk definitions before we call the 1ist_of_disks function. To do this we

echo the entire list of command-line arguments and grep for the word disk. Using this

list in a case statement, we can detect the presence of an hdisk or a pdisk. For each one
found it is added to either the HDISKLIST or the PDISKLIST variables. After the test
we check to see if the HDISKLIST variable has anything assigned, which means that

the variable is not null. If there are entries, then we convert each hdisk to its associated

pdisk and build up the pdisk list in the PDISKLIST variable. When the list is complete,

and it is not an empty list, we call the 1ist_of_disks function. That is it for this shell

script.

Other Things to Consider

I cannot always fit all of the options into a chapter, and this chapter is no exception.
Here are a few things to consider to modify this shell script.

Error Log

When I created this shell script it was for a personal need because I have so many SSA
disk trays. For my purposes I did not need an error log, but you may find one neces-

sary. In the places that I sent everything to the bit bucket, especially standard error, or

file descriptor 2, redirect this output to append to an error log. This may help you find
something in the system that you missed.

Cross-Reference

Because it is rare for the hdisk and pdisk associations to match by numbers you may

find that a shell script to cross-reference the numbers beneficial. You should be able to
knock this out in about one hour. Look through the code where I first test the hdisk to
see if it is an SSA disk and then do the translation. Using these few lines of code you
can build a nice little cross-reference sheet for your staff.

Root Access and sudo

Both of the SSA commands need root privilege to execute. If your systems have strict

root access rules you may just want to define this shell script in your /etc/sudoers

file. Please never directly edit this file! There is a special wrapper program around the

Turning On/Off SSA Identification Lights

vi editor in the /usr/local/sbin directory called visudo. This command starts a vi
session and opens up the /etc/sudoers file automatically. When you are finished
editing and save the file, this program checks the /etc/sudoers file for errors.

Summary

In this chapter we learned a few new things about controlling the SSA subsystem on an

AIX machine. These principles apply to any other Unix system utilizing SSA. As

always, there are many different ways to write a shell script, and some are lean and

mean with no comments. I like to make the shell scripts easier to understand and main-

tain. But I do have a few things that you may want to consider.

I hope you learned something in this chapter. In the next chapter we will look at

pseudo-random number generators. See you in the next chapter!

521

Pseudo-Random
Number Generation

In writing shell scripts we sometimes run into a situation where we are creating files
faster than we can make the filenames unique. Most of the time a date/time stamp can

be added as a suffix to the filename to make the filename unique, but if we are creating
more than one file per second we end up overwriting the same file during a single

second. To get around this problem we can create pseudo-random numbers to append to
the filename after the date/time stamp. You may recall that in Chapter 10 we studied

creating pseudo-random passwords by using the computer generated numbers as
pointers to array elements that contained keyboard characters. A more thorough dis-

cussion of randomness is presented in this chapter.

What Makes a Random Number?

It is very difficult to create a true random number in a computer system. The problem

is repeatability and predictability of the number. When you start researching random
numbers you quickly enter the realm of heavy mathematical theory, and many of the
researchers have varying opinions of randomness. The only true random numbers that

I know of are the frequency variations of radioactive decay events and the frequency

variations of white noise. Radioactive decay events would have to be detected in some
way, and because we do not want to have any radioactive material hanging around we
can use built-in computer programs called pseudo-random number generators. Some

523

524 Chapter 21

computer techniques are able to create numbers that are suitable for encryption keys
and for cryptographic secure communication links. Some of these techniques include

measuring the time between keystrokes and use this measured value as a memory

address to read the contents.

A popular Unix technique is to use a special Unix character device called /dev/

random. If you search the Internet for /dev/random you will find more information

than you could imagine on the topic of randomness. Randomness is a discussion topic

with many experts in the field having widely varying viewpoints. I am not an expert on

randomness, and this topic is beyond the scope of this book. We are going to concentrate

on creating pseudo-random numbers to make unique filenames in this chapter.

The numbers that we will create are not sufficiently random for any type of encryp-

tion because they are repeatable and cyclical in nature, but they will create unique

filenames. The Korn shell provides an environment variable called—you guessed it—

RANDOM. This pseudo-random number generator uses a seed as a starting point to

create all future numbers in the sequence. After the initial seed is used to create a

pseudo-random number, this resulting number is used for the next seed to create the

next random number, and so on. As you would expect, if you always start generating
your numbers with the same seed each time, you will get the exact same number

sequence each time. To change the repeatability we need to have a mechanism to vary

the initial seed each time we start generating numbers. I like to use the current process

ID (PID) because this nuniber will vary widely and is an easy way to change the seed
value each time we start generating numbers.

The Methods

In this chapter we are going to look at three techniques to generate pseudo-random

numbers:

m Create numbers between zero and the maximum number allowed by the

system (32,767)

ma Create numbers between one and a user-defined maximum

m™ Create fixed-length numbers between one and a user-defined maximum with
leading zeros added if needed

Each method is valid for a filename extension, but you may have other uses that

require either a range of numbers or a fixed number of digits with leading zeros. In any
case the basic concept is the same.

We start out by initializing the RANDOM environment variable to the current PID:

RANDOM=$$

The double dollar signs ($$) specify the PID of the current system process. The PID

will vary, so this is a good way to initialize the RANDOM variable so that we do not

always repeat the same number sequence. Once the RANDOM environment variable is

initialized we can use RANDOM just like any other variable. Most of the time we will use

Pseudo-Random Number Generation 525

the echo command to print the next pseudo-random number. An example of using the
RANDOM environment variable is shown in Listing 21.1.

RANDOM=SS

echo $RANDOM

PREAH

echo SRANDOM

3431

echo SRANDOM

12127

echo SRANDOM SRANDOM

2087 21108

Listing 21.1 Using the RANDOM environment variable.

By default the RANDOM variable will produce numbers between 0 and 32767. Notice
the last entry in Listing 21.1. We can produce more than one number at a time if we

need to by adding more $RANDOM entries to our echo command. In showing our three
methods in this chapter we are going to create three functions and then create a shell

script that will use one of the three methods depending on the user-supplied input.

The last step is to write a shell script that will create unique filenames using a date/

time stamp and a random number.

Method 1: Creating Numbers between 0 and 32,767

Creating pseudo-random numbers using this default method is the simplest way to use

the RANDOM environment variable. The only thing that we need to do is to initialize the

RANDOM environment variable to an initial seed value and use the echo command to

display the new number. The numbers will range from 0 to 32767, which is the maxi-
mum for the RANDOM variable. You do not have control over the number of digits,

except that the number of digits will not exceed five, and you cannot specify a maxi-

mum value for the number in this first method. The function get_random_number is

shown in Listing 21.2.

function get_random_number
7 | | |

This function gets the next random number from the

SRANDOM variable. The range is 0 to 32767.

echo "$RANDOM"

}

Listing 21.2 get_random_number function listing.

526 Chapter 21

As you can see, the function is just one line, and we are assuming that the RANDOM

environment variable is initialized in the main body of the calling shell script.

Method 2: Creating Numbers between
1 and a User-Defined Maximum

We often want to limit the range of numbers to not exceed a user-defined maximum.

An example is creating lottery numbers between 1 and the maximum number, which

might be 36. We are going to use the modulo arithmetic operator to reduce all numbers

to a fixed set of numbers between [0..N-1], which is called modulo N arithmetic.

For our number range we need a user-supplied maximum value, which we will

assign to a variable called UPPER_LIMIT. The modulo operator is the percent sign (%),

and we use this operator the same way that you use the forward slash (/) in division.

We still use the RANDOM environment variable to get a new pseudo-random number.

This time, though, we are going to use the following equation to limit the number to

not exceed the user-defined maximum modulo N arithmetic.

RANDOM_NUMBER=$ ((S$RANDOM % S$UPPER_LIMIT + 1))

Notice that we added one to the equation.
Using the preceding equation will produce a pseudo-random number between

1 and the user-defined SUPPER_LIMIT. The function using this equation is

in_range_random_number and is shown in Listing 21.3.

function in_range_random_ number

{

Create a pseudo-random number less than or equal

to the SUPPER_LIMIT value, which is user defined

RANDOM NUMBER=S ((S$RANDOM % SUPPER_LIMIT + 1))

echo "SRANDOM NUMBER”

2

Listing 21.3 in_range_random_number function listing.

The function in Listing 21.3 assumes that the RANDOM variable seed has been initial-

ized in the main body of the calling shell script and that a user-defined UPPER_LIMIT

variable has been set. This function will produce numbers between 1 and the user-

defined maximum value, but the number of digits will vary as the numbers are

produced.

Pseudo-Random Number Generation

Method 3: Fixed-Length Numbers between
1 and a User-Defined Maximum

In both of the previous two examples we had no way of knowing how many digits the

new number would contain. When we are creating unique filenames it would be nice

to have filenames that are consistent in length. We can produce fixed-length numbers

by padding the number with leading zeros for each missing digit. As an example we

want all of our numbers to have four digits. Now let’s assume that the number that is

produced is 24. Because we want 24 to have four digits, we need to pad the number

with two leading zeros, which will make the number 0024. To pad the number we need

to know the length of the character string that makes up the number. The Korn shell
uses the pound operator (#) preceding the variable enclosed within curly braces ({}), as
shown here.

RN_LENGTH=$ (echo ${#RANDOM_NUMBER})

If the RANDOM_NUMBER variable has 24 assigned as an assigned value, then the

result of the previous command is 2 (this RN_LENGTH variable points to the value 2),

indicating two digits. We will also need the length of the UPPER_LIMIT value, and we

will use the difference to know how many zeros to use to pad the pseudo-random

number output. Take a close look at the code in Listing 21.4 where you will find the

function in_range_fixed_length_random_number.

function in _range_fixed_length_random_number

{
Create a pseudo-random number less than or equal

to the SUPPER LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent.

- RANDOM NUMBER=$ ((SRANDOM % SUPPER_LIMIT + 1))

Find the length of each character string

RN_LENGTH=$ (echo ${#RANDOM_NUMBER})

UL_LENGTH=$ (echo ${#UPPER_LIMIT})

Calculate the difference in string length

CC LENGTH DIFF = UL LENGTH — RN_LENGTH))

Pad the $RANDOM NUMBER value with leading zeros

Listing 21.4 in_range_fixed_length_random_number function. (continues)

527

528 Chapter 21

to keep the number of digits consistent.

case SLENGTH DIFF in

0) = echo

1) coe

2) oe

3) ae

4) ae

5) co

5 es
ae

is

Listing 21.4

"SRANDOM_NUMBER”

"OSRANDOM_NUMBER”

"0OSRANDOM_NUMBER"

"000SRANDOM_NUMBER"

"0000SRANDOM_NUMBER"

"Q00000SRANDOM_NUMBER"

"SRANDOM_ NUMBER"

in_range_fixed_length_random_number function. (continued)

In Listing 21.4 we use the same technique from Listing 21.3 to set an upper limit to

create our numbers, but we add in code to find the string length of both the

UPPER_LIMIT and RANDOM_NUMBER values. By knowing the length of both strings

we subtract the random-number length from the upper-limit length and use the differ-
ence in a case statement to add the correct number of zeros to the output.

Because this is a function, we again need to assume that the UPPER_LIMIT is

defined and the RANDOM environment variable is initialized in the main body of the

calling shell script. The resulting output is a fixed-length pseudo-random number
padded with leading zeros if the output string length is less than the upper limit string

length. Example output is shown in Listing 21.5 for an UPPER_LIMIT value of 9999.

0024

3145

9301

0328

0004

4029

2011

0295

OL59

4863

Listing 21.5 Sample output for fixed-length random numbers.

Pseudo-Random Number Generation 529

Why Pad the Number with Zeros the Hard Way?

An easier, and much cleaner, way to pad a number with leading zeros is to typeset the

variable to a fixed length. The following command works for any length number:

typeset -Z5 FIXED LENGTH

FIXED_LENGTH=25

echo $FIXED_LENGTH

00025

Listing 21.6 Using the typeset command to fix the length of a variable.

In the example in Listing 21.6 we used the typeset command to set the length of the

FIXED_LENGTH variable to five digits. Then we assigned the value 25 to it. When we

use the echo command to show the value assigned to the variable the result is 00025,

which is fixed to five digits. Let’s modify the function in Listing 21.4 to use this tech-
nique as shown in Listing 21.7.

function in_range_fixed_length_random_number_typeset

Create a pseudo-random number less than or equal

to the SUPPER LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent using

the typeset command. Ss HOHE OH OH

Find the length of each character string

UL. LENGTH=$ (echo ${#UPPER_LIMIT})

Fix the length of the RANDOM NUMBER variable to

the length of the UPPER_LIMIT variable, specified

by the SUL_LENGTH variable.

typeset -ZSUL_LENGTH RANDOM NUMBER

Create a fixed length pseudo-random number

RANDOM NUMBER=$ ((S$RANDOM % SUPPER LIMIT + 1))

Return the value of the fixed length SRANDOM NUMBER

echo $RANDOM_NUMBER

}

Listing 21.7 Using the typeset command in a random number function.

530 Chapter 21

As you can see in Listing 21.7, we took all of the complexity out of fixing the length
of a number. The only value we need to know is the length of the UPPER_LIMIT vari-

able assignment. As an example, if the upper limit is 9999 then the length is 4. We use 4

to typeset the RANDOM_NUMBER variable to four digits.

Now that we have four functions that will create pseudo-random numbers, we can

proceed with a shell script that will use one of the three methods depending on the
command-line arguments supplied to the shell script.

Shell Script to Create Pseudo-Random Numbers

Using the three functions from Listings 21.2, 21.3, and 21.7 we are going to create a

shell script that, depending on the command-line arguments, will use one of these
three functions. We first need to define how we are going to use each function.

With the usage definitions from Table 21.1 let’s create a shell script. We already have

the functions to create the numbers so we will start with BEGINNING OF MAIN in the
shell script.

For the usage function we will need the name of the shell script. We never want to

hard-code the name of a shell script because someone may rename the shell script for

one reason or another. To query the system for the actual name of the shell script we

use the basename $0 command. This command will return the name of the shell script,

specified by the $0 argument, with the directory path stripped out. I like to use either

of the following commands to create a SCRIPT_NAME variable.

SCRIPT_NAME=*basename S$0~

or

SCRIPT_NAME=S$ (basename $0)

Table 21.1 =random_number.ksh Shell Script Usage

SHELL SCRIPT USAGE FUNCTION USED TO CREATE THE NUMBER

random_number.ksh Without argument will use get_random_number

random_number.ksh 9999 With one numeric argument will use
in_range_random_number

random_number.ksh -f 9999 With -f as the first argument followed
by a numeric argument will use
in_range_fixed_length_random_number_typeset

Pseudo-Random Number Generation 531

The result of both command substitution commands is the same. Next we need to
initialize the RANDOM environment variable. As we described before, we are going to
use the current process ID as the initial seed for the RANDOM variable.

RANDOM=$$

The SCRIPT_NAME and the RANDOM variables are the only initialization needed
for this shell script. The rest of the script is a case statement that uses the number of
command-line arguments ($#) as a value to decide which random number function we
will use. We also do some numeric tests to ensure that “numbers” are actually numeric
values. For the numeric tests we use the regular expression + ([0-9]) ina case state-
ment. If the value is a number, then we do nothing, which is specified by the no-op
character, colon (:).

The entire shell script is shown in Listing 21.8.

#!/usr/bin/ksh

AUTHOR: Randy Michael

SCRIPT: random_number.ksh

DATE: 11/12/2001

REM oP

PLATFORM: Not Platform Dependent

EXIT CODES:

0 - Normal script execution

1 - Usage error

REY LIST:

set -x # Uncomment to debug

set -n # Uncomment to check syntax without any command execution

See FR OE OSE OE OE OH HEHEHE HEHEHE HE_—s#_saHE oH

HHHPHEEHE EE RHEEEEEEREHERERERHEEEREERHEERRREA EERE HEH

HHHHHHHHHHE DEFINE FUNCTIONS HERE ##H###H##HHEHEREEE HH

HEHEHE EHHPEEEEEEERAAEAEEPEHPA RRR ERREEH HEHEHE HEHEHE

function usage

{

echo "\nUSAGE: SSCRIPT NAME [-f] [upper_number_range]”

echo "\nEXAMPLE: S$SCRIPT_NAME"

echo "Will return a random number between 0 and 32767"

echo "\nEXAMPLE: SSCRIPT_NAME 1000"

echo "Will return a random number between 1 and 1000"

echo "\nEXAMPLE: SSCRIPT_NAME -f 1000"

Listing 21.8 random_number.ksh shell script listing. (continues)

532 Chapter 21

echo "Will add leading zeros to a random number from”

echo "1 to 1000, which keeps the number of digits consistant\n"

}

THERE ERR RRA PREHEAT AAR HBR EHR HE HER HE REE EHH HE HF

function get_random_number

{

This function gets the next random number from the

SRANDOM variable. The range is 0 to 32767.

echo "$RANDOM"

}

HHHHHEEHEERPHHEHEEH EA RPRAEEER ER PEERHE ERE RPE EH EH HE RH

function in_range_random_number

{

Create a pseudo-random number less than or equal

to the SUPPER LIMIT value, which is user detined

RANDOM _NUMBER=$(($RANDOM % SUPPER_LIMIT + 1))

echo "$RANDOM_ NUMBER"

}

HEPHHHPREREREREEERHEEREREES ES EREEE EERE EEE EH EE ERE

function in_range_fixed_length_random_number_ typeset

Create a pseudo-random number less than or equal

to the SUPPER_LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent using

the typeset command. $e th HOE OE OS

Find the length of each character string

UL_LENGTH=$ (echo ${#UPPER_LIMIT})

Fix the length of the RANDOM NUMBER variable to

the length of the UPPER_LIMIT variable, specified

Listing 21.8 random_number.ksh shell script listing. (continued)

Pseudo-Random Number Generation 533

by the SUL_LENGTH variable.

typeset -ZS$UL_LENGTH RANDOM NUMBER

Create a fixed length pseudo-random number

RANDOM_NUMBER=$((SRANDOM % SUPPER_LIMIT + 1))

Return the value of the fixed length $RANDOM_ NUMBER

echo $RANDOM_ NUMBER

}

FREE RRERREERR EERE RRRG EE EERE AGREES REE SHE HEE HEE HHH

HHHHHHEHHHHEHEHH BEGINNING OF MAIN ####HHHHHHHEH EHH HHH

HEGRE R EEE EH ERE EH HEH EEE EEE FE HH EH EH HE EE EH

SCRIPT_NAME="basename $0°

RANDOM=$$ # Initialize the RANDOM environment variable

using the PID as the initial seed

case $# in

0) get_random_number

wa

1) UPPER_LIMIT="$1"

Test to see if SUPPER_LIMIT is a number

case $UPPER_LIMIT in

+([0-9])) : # Do Nothing...It's a number

NOTE: A colon (:) 12S a no-op in (Korn shell

*) echo "\nERROR: $UPPER_LIMIT is not a number..."

usage

exit 1

esac

-# We have a valid UPPER LIMIT. Get the number.

in range _random_number

Listing 21.8 random_numberksh shell script listing. (continues)

34 Chapter 21

i ees ee ce
ee ae ae
Ce eas coon

. i

is a

is

va

SEES Mel ad | Nucla aoe eae

-
e a

oe
ne ees

es _

ses Saovae
a ae : eae ee a ey

ee UE ee te a Sera
o ie

ae
oe

Listing 21.8 random_number.ksh shell script listing. (continued)

Notice in Listing 21.8 that we will allow only zero, one, or two command-line
arguments. More than three arguments produces an error, and nonnumeric values,

other than -f or -F in argument one, will produce a usage error. Output using the
random_number . ksh shell script is shown in Listing 21.9.

Pseudo-Random Number Generation 535

yogi@/scripts# random _number.ksh 32000

10859

yogi@/scripts# random_number.ksh -f 32000

14493

yogi@/scripts# ./random_number.ksh -f 32000

05402

yogi@/scripts# ./random_number.ksh -f

BRROR?)) £0 2s) not!'a) number).

USAGE: random_number.ksh [-f] [upper_number_range]

EXAMPLE: random_number.ksh

Will return a random number between 0 and 32767

EXAMPLE: random_number.ksh 1000

Will return a random number between 1 and 1000

EXAMPLE: random_number.ksh -f£ 1000

Will add leading zeros to a random number from

1 to 1000, which keeps the number of digits consistent

Listing 21.9 random_number.ksh shell script in action.

The last part of Listing 21.9 is a usage error. Notice that we give an example of each

of the three uses for the random_number.ksh shell script as well as state why the
usage error occurred.

Now that we have the shell script to produce pseudo-random numbers, we need to

move on to creating unique filenames.

Creating Unique Filenames

The goal of this chapter is to write a shell script that will produce unique filenames
using a date/time stamp with a pseudo-random number as an extended suffix. When

I create these unique filenames I like to keep the length of the filenames consistent so
we are going to use only one of the random number functions, in_range_fixed_

length_random_number_typeset.

We have a few new pieces to put into this new shell script. First we have to assume
that there is some program or shell script that will be putting data into each of the

unique files. To take care of executing the program or shell script we can add a function

536 Chapter 21

that will call the external program, and we will redirect our output to the new unique
filename on each loop iteration. The second piece is that we need to ensure that we
never use the same number during the same second. Otherwise, the filename is not
unique and the data will be overwritten. We need to keep a list of each number that we
use during each second and reset the USED_NUMBERS list to null on each new second.

In addition we need to grep the list each time we create a new number to see if it has

already been used. If the number has been used we just create a new number and check

for previous usage again.
The procedure to step through our new requirements is not difficult to understand

once you look at the code. The full shell script is shown in Listing 21.10, and an exam-

ple of using the shell script is shown in Listing 21.11. Please study the script carefully,
and we will go through the details at the end.

#!/usr/bin/ksh

AUTHOR: Randy Micahel

SCRIPT: mk_unique_filename.ksh

DATES) LEYLA (200k

REV fede aieP

PLATFORM: Not Platform Dependent

0 - Normal script execution

1 - Usage error

REV LIST:

cia

EXIT CODES:

set -x # Uncomment to debug

set -n # Uncomment to debug without any execution

HHPHEPHEERHERHHERHEES SHE EEERESPR EEE EPA EEES ER EREE SS

HHHHHHEHHEH DEFINE FUNCTIONS HERE ########EEEEHHEEEES

HHPPERPRRAEERERERPREREEEEPEPEPEPERRREEEREREEREEREHEHH

function usage

echo "\nUSAGE: SSCRIPT_NAME base file name\n"

exit 1

}

HHEHEEHEEHEHEFHREHHEEEEEHEREREEEESHESHHEPHEEHHEE HEHE

function get_date time stamp

{

DATE_STAMP=$(date +'%m%d%y .%H%M%S ')

Listing 21.10 mk_unique_filename.ksh shell script listing.

Pseudo-Random Number Generation 537

echo SDATE_STAMP

}

FHP TRERER ERR EREHEEEHEER HERP PEEEE RH PPEEERH EPR EH HH

4

function get_second

{

THIS _SECOND=$(date +%S)

echo $THIS_SECOND

3;

HHPPHPEEE ERE REE RRREEHEERPPREHEE HAR EREE ESHER E

function in_range_ fixed_length_ random number typeset

Create a pseudo-random number less than or equal

to the SUPPER_LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent using

the typeset command. 4e SE FE FE HE OA

Find the length of each character string

UL_LENGTH=$(echo ${#UPPER_LIMIT})

Fix the length of the RANDOM_NUMBER variable to

the length of the UPPER_LIMIT variable, specified

by the SUL_LENGTH variable.

typeset -ZS$UL_LENGTH RANDOM NUMBER

Create a fixed length pseudo-random number

RANDOM NUMBER=$((S$RANDOM % SUPPER_LIMIT + 1))

Return the value of the fixed length SRANDOM NUMBER

echo $RANDOM_NUMBER

}

HEHEHE HHHHHHE APRA EERE H AREER PEER EE HRA ESHER EE HE

function my program

{

Listing 21.10 =mk_unique_filename.ksh shell script listing. (continues)

538 Chapter 21

Put anything you want to process in this function. I

recommend that you specify an external program of shell

script to execute. :

echo "HELLO WORLD - SDATE ST" > SUNIQUE_FN &

: # No-Op - Does nothing but has a return code of zero

HHPEPHPEEPREEHPEAESEESEREES PEPE EEPESRHEEPEH EHP EE HHH

HEFHHEHEEHHEHHHE BEGINNING OF MAIN #####HFHHEPHREHH HE

HHPHHHPREPHPEHREAPHPRSRESHEHEEPESEEPHEAREREREEEE HEHEHE SE

SCRIPT _NAME=$(basename $0) # Query the system for this script name

Check for the correct number of arguments - exactly 1

af ((S# != 1))

then

echo "\nNERROR: Usage error... EXITING. .%

usage

fa

What filename do we need to make unique?

BASE_FN=$1 # Get the BASE filename to make unique

RANDOM=$$ # Initialize the RANDOM environment variable

with the current process ID (PID)

UPPER_LIMIT=32767 # Set the UPPER_LIMIT

CURRENT _SECOND=99 # Initialize to a nonsecond

LAST SECOND=98 # Initialize to a nonsecond

USED_NUMBERS= # Initialize to null

PROCESSING="TRUE" # Initialize to run mode

while [[$PROCESSING = "TRUE"]]

do

DATE ST=S(get_date time stamp) # Get the current date/time

CURRENT _SECOND=S$ (get_second) # Get the current second

RN=S$ (in_range_fixed_length_random_number_typeset) # Get a new number

Check to see if we have already used this number this second

if ((CURRENT_SECOND == LAST_SECOND))

Listing 21.10 mk_unique_filename.ksh shell script listing. (continued)

Pseudo-Random Number Generation 539

then

UNIQUE=FALSE # Initialize to FALSE

while [["$UNIQUE" != "TRUE"]] && [[! -z "SUNIQUE"]]

do |

Has this number already been used this second?

echo $USED_NUMBERS | grep $RN >/dev/null 2>&1

£2) CCS? ine ON)

then

Has been used...Get another number

RN=§$(in_range fixed length random number)

else

Number is unique this second...

UNIQUE=TRUE

Add this number to the used number list

USED_NUMBERS="S$USED_ NUMBERS $RN"

fa:

done

else

USED_NUMBERS= # New second...Reinitialize to null

£i

Assign the unique filename to the UNIQUE FN variable

UNIQUE_FN=${BASE_FN}.${DATE_ST}.$RN

echo SUNIQUE_FN # Comment out this line!!

LAST_SECOND=$CURRENT_SECOND # Save the last second value

We have a unique filename...

PROCESS SOMETHING HERE AND REDIRECT OUTPUT TO SUNIQUE_FN

my_program

IF PROCESSING IS FINISHED ASSIGN "FALSE" to the

PROCESSING VARIABLE

if [[$MY_PROCESS = "done"]]

then

PROCESSING="FALSE"

£1

done

Listing 21.10 =mk_unique_filename.ksh shell script listing. (continued)

We need five functions in this shell script. As usual, we need a function for correct

usage. We are expecting exactly one argument to this shell script, the base filename to

make into a unique filename. The second function is used to get a date/time stamp.

540 Chapter 21

The date command has a lot of command switches that allow for flexible date/time

stamps. We are using two digits for month, day, year, hour, minute, and second with a

period (.) between the date and time portions of the output. This structure is the first

part that is appended to the base filename. The date command has the following

syntax: date +/Ym%d Vy. %HYM%S'.

We also need the current second of the current minute. The current second is used

to ensure that the pseudo-random number that is created is unique to each second,

thus a unique filename. The date command is used again using the following syntax:

date +%S.

The in_range_fixed_length_random_number_typeset function is used to

create our pseudo-random numbers in this shell script. This function keeps the num-

ber of digits consistent for each number that is created. With the base filename, date/

time stamp, and the unique number put together, we are assured that every filename

has the same number of characters.
One more function is added to this shell script. The my_program function is used to

point to the program or shell script that needs all of these unique filenames. It is better

to point to an external program or shell script than trying to put everything in the inter-
nal my_program function and debugging the internal function on an already working

shell script. Of course, I am making an assumption that you will execute the external
program once during each loop iteration, which may not be the case. At any rate, this

script will show the concept of creating unique filenames while remaining in a tight

loop.

At the BEGINNING OF MAIN in the main body of the shell script we first query the

system for name of the shell script. The script name is needed for the usage function.

Next we check for exactly one command-line argument. This single coimmand-line

argument is the base filename that we use to create further unique filenames. The next

step is to assign our base filename to the variable BASE_FN for later use.

The RANDOM environment variable is initialized with an initial seed, which we

decided to be the current process ID (PID). This technique helps to ensure that the ini-

tial seed changes each time the shell script is executed. For this shell script we want to

use the maximum value as the UPPER_LIMIT, which is 32767. If you need a longer or

shorter pseudo-random number, you can change this value to anything you want.

If you make this number longer than five digits the extra preceding digits will be

zeros. There are four more variables that need to be initialized. We initialize both

CURRENT_SECOND and LAST_SECOND to nonsecond values 99 and 98, respectively.

The USED_NUMBERS list is initialized to null, and the PROCESSING variable is initial-

ized to TRUE. The PROCESSING variable allows the loop to continue creating unique

filenames and to keep calling the my_process function. Any non-TRUE value stops

the loop and thus ends execution of the shell script.

A while loop is next in our shell script, and this loop is where all of the work is done.

We start out by getting a new date/time stamp and the current second on each loop
iteration. Next anew pseudo-random number is created and is assigned to the RN vari-

able. If the current second is the same as the last second, then we start another loop to

ensure that the number that we created has not been previously used during the cur-

rent second. It is highly unlikely that a duplicate number would be produced in such a

short amount of time, but to be safe we need to do a sanity check for any duplicate
numbers.

Pseudo-Random Number Generation 541

When we get a unique number we are ready to put the new filename together. We
have three variables that together make up the filename: SBASE_FN, SDATE_ST, and

$RN. The next command puts the pieces together and assigns the filename to the vari-

able to the UNIQUE_FN variable.

UNIQUE_FN=$ {BASE_FN} .${DATE_ST}.$RN

Notice the use of the curly braces ({}) around the first two variables, BASE_FN and

DATE_ST. The curly braces are needed because there is a character that is not part of

the variable name without a space. The curly braces separate the variable from the
character to ensure that we do not get unpredictable output. Because the last variable,

$RN, does not have any character next to its name, the curly braces are not needed, but

it is not a mistake to add them.

The only thing left is to assign the $CURRENT_SECOND value to the LAST_SECOND
value and to execute the my_program function, which actually uses the newly created

filename. I have commented out the code that would stop the script’s execution. You

will need to edit this script and make it suitable for your particular purpose. The

mk_unique_filename.ksh shell script is in action in Listing 21.11.

yogi@/scripts# ./mk_unique_filename.ksh /tmp/myfilename

/tmp/myfilename.120601.131507.03038

/tmp/myfilename.120601.131507.15593

/tmp/myfilename.120601.131507.11760

/tmp/myfilename.120601.131508.08374

/tmp/myfilename.120601.131508.01926

/tmp/myfilename.120601.131508.07238

/tmp/myfilename.120601.131509.07554

/tmp/my£ilename.120601.131509.12343

/tmp/myfilename.120601.131510.08496

/tmp/myfilename.120601.131510.18285

/tmp/myfilename.120601.131510.18895

/tmp/myfilename.120601.131511.16618

/tmp/myfilename.120601.131511.30612

/tmp/myfilename.120601.131511.16865

/tmp/myfilename.120601.131512.01134

/tmp/myfilename.120601.131512.19362

/tmp/myfilename.120601.131512.04287

/tmp/myfilename.120601.131513.10616

/tmp/myfilename.120601.131513.08707

/tmp/myfilename.120601.131513.27006

/tmp/myfilename.120601.131514.15899

/tmp/myfilename.120601.131514.18913

/tmp/myfilename.120601.131515.27120

/tmp/myfitename.120601.131515.23639

/tmp/mytilename.120601 .131515.13096

/tmp/myfilename.120601.131516.19111

/tmp/myfilename.120601.131516.05964

Listing 21.11 =mk_unique_filename.ksh shell script in action. (continues)

542 Chapter 21

/tmp/my£ilename.120601.131516.07809 | =.
/tmp/myfilename.120601.131524.03831 a.
/tmp/myfilename.120601.131524.21628
/tmp/myfilename.120601.131524.19801
/tmp/myfilename.120601.131518.13556

/tmp/myfilename.120601.131518.24618

/tmp/myfilename.120601.131518.12763

Listing of newly created files

yogi@/tmp# 1s -ltr /tmp/myfilename. *

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131507.15593

-rw-r--r-- root system Dec 06 13:15

/tmp/my£ilename.120601.131507.03038

-rYw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131508.08374

-rYw-r--r-- root system Dec 06 13:15

/tmpo/myfilename.120601.131508.01926

-ryw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131507.11760

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131509.12343

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131509.07554

-rw-r--r-- root system Dec 06 13:15

/tmo/myfilename.120601.131508.07238

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131510.18285

-rw-r--r-- root system Dee 06 13:15

/tmp/myfilename.120601.131510.08496

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131511.30612

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131511.16618

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131510.18895

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131512.19362

-rw-r--r-- root system Dec 06 13:15

/tmo/myf£ilename.120601.131512 01134

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131511.16865

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131513.10616

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131513.08707

Listing 21.11 =mk_unique_filename.ksh shell script in action. (continued)

TOW oe aa OO

/tmp/myfilename.

TO ea SOO

/tmp/myfilename.

SW =i POOL

/tmp/myfilename.

-tEw-r-—-f-— root

/tmp/myfilename.

Wei BOOT

/tmp/myfilename.

AW t= be OOD

/tmp/myfilename.

See He POO.

/tmp/myfilename.

-EW-f>-r-= Loot

/tmp/myfilename.

=rw-r--r-= root

/tmp/myfilename.

22W era FOOt

/tmp/myfilename.

=EW=P--r == FOOE

/tmp/myfilename.

=EWr rs TOO

/tmp/myfilename.

“EWe-i=-L=—. root

/tmp/myfilename.

PEWS - Fr -—— Tooke

/tmp/myfilename.

=tWer-=f-=2 Too

/tmp/myfilename.

SEW-E--b--—2LO0r

/tmp/myfilename.

Pseudo-Random Number Generation 543

system)'Dec" 06" 13 25

IZO GOL LSMSMaWoO42ie7,

system, Dec 06 (13:15

P20 GOR US DStA PS 9'1'3

system Dec 06 13:15

L206OL Ps tSra 15s g9

system Dec\ Oe ns\15

TZ060 R23 TS i352 7006

system")\Dec "06 13275

FAV GORI ASL SRS, 2120

system Dec 06.13:15

£20602. DEPS VS 931639

system, Dec 06 23:05

T20602 SPS tS ES. 31096

system Deo 06 13en5

T20600L [131 516.19 LR E

system Dec 06 13:15

120601.131516.05964

system Dec 06 13:15

120601 131524221628

system Dec 06 13:15

120601131524 .03831

system Dec 06 13:15

120601.131516.07809

system Dec 06 13:15

120601,131518.24618

system Dec 06 13:15

120601 [13151813556

system Dec 06 13:15

120601 .131524 19801

system Dec 06° 13:15

T20600L 131518 312763

Listing 21.11 =mk_unique_filename.ksh shell script in action. (continued)

Summary

In this chapter we stepped through some different techniques of creating pseudo-
random numbers and then used this knowledge to create unique filenames. Of

course these numbers are not suitable for any security-related projects because of the
predictability and cyclical nature of computer generated numbers using the RANDOM

variable. Play around with these shell scripts and functions and modify them for your

544 Chapter 21

needs. In Chapter 10 we used pseudo-random numbers to create pseudo-random pass-
words. If you have not already studied Chapter 10, I suggest that you break out of
sequence and study this chapter next.

In the next chapter we move into a little floating point mathematics and introduce
you to the be utility. Floating point math is not difficult if you use some rather simple
techniques. Of course you can make mathematics as difficult as you wish. I hope you

gained a lot of knowledge in this chapter and I will see you in the next chapter!

Floating-Point Math
and the bc Utility

Have you ever had a need to do some floating-point math in a shell script? If the

answer is yes, then you're in luck. On Unix machines there is a utility called bc that is

an interpreter for arbitrary-precision arithmetic language. The bc command is an inter-

active program that provides arbitrary-precision arithmetic. You can start an interac-
tive be session by typing be on the command line. Once in the session you can enter
most complex arithmetic expressions as you would in a calculator. The be utility can

handle more than I can cover in this chapter, so we are going to keep the scope limited

to simple floating-point math in shell scripts.
In this chapter we are going to create shell scripts that add, subtract, multiply,

divide, and average a list of numbers. With each of these shell scripts the user has the
option of specifying a scale, which is the number of significant digits to the right of the
decimal point. If no scale is specified, then an integer value is given in the result.

Because the bc utility is an interactive program, we are going to use a here document to

supply input to the interactive be program. We will cover using a here document in

detail throughout this chapter.

Syntax

By now you know the routine: We need to know the syntax before we can create a shell

script. Depending on what we are doing we need to create a mathematical statement to

545

546 Chapter 22

present to be for a here document to work. A here document works kind of like a label

in other programming languages. The syntax that we are going to use in this chapter

will have the following form:

VARIABLE=$ (bc <<LABEL

scale=SSCALE

(SMATH_STATEMENT)

LABEL)

The way a here document works is some label name, in this case LABEL, is added

just after the bc command. This LABEL has double redirection for input into the

interactive program, bc <<LABEL. From this starting label until the same label is
encountered again everything in between is used as input to the be program. By doing

this we are automating an interactive program. We can also do this automation using

another technique. We can use echo, print, and printf to print all of the data for the

math statement and pipe the output to be. It works like the following commands.

VARTABIE=S(print scales = lO;m 10434167 3.3)21.5 ualibe)

or

VARIABLE=$ (print 'scale=$SCALE; ($MATH_STATEMENT)' | bc)

In either case we are automating an interactive program. This is the purpose of a

here document. It is called a here document because the required input is here, as

opposed to somewhere else, such as user input from the keyboard. When all of the

required input is supplied here, it is a here document.

Creating Some Shell Scripts Using bc

We have the basic syntax, so let’s start with a simple shell script to add numbers

together. The script is expecting a list of numbers as command-line arguments. Addi-

tionally, the user may specify a scale if the user wants the result calculated as a floating-

point number to a set precision. If a floating point number is not specified, then the

result is presented as an integer value.

Creating the float_add.ksh Shell Script

The first shell script that we are going to create is float_add.ksh. The idea of this

shell script is to add a list of numbers together that the user provides as command-line

arguments. The user also has the option of setting a scale for the precision of floating-
point numbers. Let’s take a look at the float_add.ksh shell script in Listing 22.1,
and we will go through the details at the end.

Floating-Point Math and the bc Utility 547

#!/usr/bin/ksh

SCRIPT: float add ksh

AUTHOR: Randy Michael

DATE: 03/01/2001
150 CRY AH at RN RG

PURPOSE: This shell script 1s used to.add.a list of numbers

together. The numbers can be either integers or floating-

point numbers. For floating-point numbers the user has

the option of specifying a scale of the number of digits to

the right of the decimal point. The scale is set by adding

a -s or -S followed by an integer number.

EXIT CODES:

Q ==> This script completed without error

1 ==> Usage error

2 ==> This script exited on a trapped signal

REV. LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

+ OH OH HF HH HH HH HH HH HH HH HH HH H+

HHH EHH HH HEH Ha EHH HH EH EH EHH EEE BH EEE EH

###HHHH#HHHHHHH DEFINE VARIABLE HERE #######4H¢# HHHHEH EHH

HHHHRRAEPR REET HAGE R HERES HHH EEE HH HEHE HEE HHH

SCRIPT NAME=$(basename $0) # The name of this shell script

SCALE="0" # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST variable to NULL

COUNT=0 # Initialize the counter to zero

MAX COUNT=$# # Set MAX COUNT to the total number of

command-line arguments.

HHHHHHHHHERHBH HEH HHH HHH HEH HH EH HH HH HH HH HHH HH HH HE HE ES

HHHHHHHHHHHEHHEHHEH FUNCTIONS ##4### FERRER E ERE EERE RHEE EHH

HHHHHHHHHEEHEEEERA RH RRAREER ER PHE EERE REE ERREEE ER EHH

function usage

{

echo "\nPURPOSE: Adds a list of numbers together\n"

echo "USAGE: $SCRIPT_NAME [-s scale value] Nl N2...Nn"

Listing 22.1 float_add.ksh shell script listing. (continues)

548 Chapter 22

echo "\nFor an integer result without any ‘significant decimal plas

echo "\nEXAMPLE: $SCRIPT_NAME 2048.221 65536 \n"

echo ‘OR for 4 significant decimal places"

echo "\nEXAMPLE: SSCRIPT NAME -s 4. 8. 09838 207 65536 42. 632"

echo “\n\t.. EXITING... \n"

ee eee treet reer ee ee ee ea

function exit trap

{

echo "\n... EXITING on trapped signal... \n"

}

HHEPPHEPHERHHHEPEHPE HERRERA GER ER RAR R ERR RHE HERR E HHH

HHHHHHHHHEHHEHEHHE START OF MAIN #######HHHHHHHEHHHHHHAHE

HEHHHHHEHHASHHEEHERSAPREEEEEHR EERE AHEEEHEEPREEEEEREREE SE

HHHH#HH Set a Trap ####H4

trap ‘exit _trap; exit 2' 1 2 3 15

HHAHHHHHHHEHPHHEPEPEERPREEHP PEPER EP EEP PEEP RHEE EEE ES HH

Check for at least two command-line arguments

if [$# -1t 2]

then

echo "\nERROR: Please provide a list of numbers to add"

usage

exit 1

£i

Parse the command-line arguments to find the scale value, if present.

while getopts ":s:S:" ARGUMENT

do

case SARGUMENT in

s|S) SCALE=SOPTARG

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -cl) = '-' }] \

Listing 22.1 float_add.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 549 SSSSSSSCS NING -FOtNt Math and the De Utility 549

&& [$TST_ARG != '-s' -a S$TST_ARG != '-s!]

then

case $TST_ARG in

ENC COSO Dik Nore): (do. nothing

CLS OSS TOS)

#\No-op, (do nothang

+ (C= 0-900) 2d Noo, do nothing

*) echo "\nERROR: Invalid argument on the command
line"

usage

exit 1

ai

esac

fa:

done

ra

esac

done

HHHHHT EAH REE PPERHEHHEPHAEREEPEPPEHP HEHEHE EHP BEE He

Parse through the command-line arguments and gather a list

of numbers to add together and test each value.

while ((COUNT < MAX COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1 # Grab a command line argument on each loop iteration

case $TOKEN in # Test each value and look for a scale value.

-s|-S) shift 2

EC (COUNT: = (COUNT 1))

=s${(SCALE}) shift

-SS{SCALE}) shift

*) # Add the number (S$TOKEN) to the list

NUM_LIST="${NUM LIST} STOKEN"

((COUNT < MAX COUNT)) && shift

esac

done

HHEEEREEEREERREREERREEES aE REEPEEREEEEREEESPPHEEE EERE EE

Listing 22.1 float_add.ksh shell script listing. (continues)

550 Chapter 22

e
cou

El
Seine

Listing 22.1 float_add.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 551

No-op, do nothing

*). echo |" \nERROR:) SNUM)\is NOT) a valid number"

usage

ext it

esac

done

HHHHHPEPHEEHPHERPEEEHPHPRSERPEHHPHHEHHE HEH H EHH EH oH

Build the list of numbers to add

ADD= # Initialize the ADD variable to NULL

PLUS= # Initialize the PLUS variable to NULL

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if -[{ $(echo $X-| Gut -cl) = '+% }}

then

X=$(echo $X | cut -c2-)

£i g

ADD="SADD S$PLUS $xX"

PLUS="+"

done

HHH HH HH HEH HH EH HE EE aE HEE HEE EERE EEE

Do the math here by using a here document to supply

input to the be command. The sum of the numbers is

assigned to the SUM variable.

SUM=$ (bc <<EOF

scale = $SCALE

($ {ADD})

EOF)

HHEHHHHHHHEHHERPHEAHEAHHEEARHHHEEHERSERAPREREHEPHES EEE H HH SH

Present the result of the addition to the user.

echo "\nThe sum of: $ADD"

echo "\nis: ${SUM}\n"

Listing 22.1 float_add.ksh shell script listing. (continued)

552 Chapter 22

Let’s take it from the top. We start the shell script in Listing 22.1 by defining some

variables. These five variables, SCRIPT_NAME, SCALE, NUM_LIST, COUNT, and

MAX _COUNT are predefined for later use. The SCRIPT_NAME variable assignment
extracts the filename of the script from the system using the basename $0 command,
and SCALE is used to define the precision of floating-point numbers that are calcu-

lated. The NUM_LIST variable is used to hold valid numbers that are to be calculated,
where the command switch and the switch-argument are removed from the list. The

COUNT and MAX_COUNT variables are used to scan all of the command-line arguments
to find the numbers..

In the next section we define the functions. This shell script has two functions,
usage and exit_trap. The usage function shows the user how to use the script, and

the exit_trap function is executed only when a trapped exit signal is captured. Of

course, you cannot trap a kill -9. At the START OF MAIN the first thing that we do is
to set a trap. A trap allows us to take some action when the trapped signal is captured.

For example, if the user presses CTRL-C we may want to clean up some temporary

files before the script exits. A trap allows us to do this.

A trap has the form of trap '{[command; command, ... ; exit 2'12 3 15. We first enclose

the commands that we want to execute within tic marks (single quotes) and then give

a list of exit signals that we want to capture. As I said before, it is not possible to cap-

ture a kill -9 signal because the system really just yanks the process out of the process
table and it ceases to exist.

After setting the trap we move on to verifying that each of the command-line argu-
ments is valid. To do this verification we do five tests. These five tests consist of check-

ing for at least two command-line arguments, using getopts to parse the command-line

switches, test for invalid switches, and assign switch-arguments to variables for use in

the shell script. The next step is to scan each argument on the command line and

extract the numbers that we need to do our calculations. Then the $SCALE value is

checked to ensure that it points to an integer value, and the final test is to check the

“numbers” that we gathered from the command-line scan and ensure that each one is
either an integer or a floating-point number.

Testing for Integers and Floating-Point Numbers

I want to go over the integer and floating-point test before we move on. At this point in

the script we have a list of “numbers”—at least they are supposed to be numbers—and

this list is assigned to the NUM_LIST variable. Our job is to verify that each value in the

list is either an integer or a floating-pointing number. Look at the code segment shown
in Listing 22.2.

Check each number supplied to ensure that the "numbers"

are either integers or floating-point numbers.

for NUM in SNUM_LIST

do

case SNUM in

Listing 22.2 Testing for integers and floating-point numbers.

done

We use a for loop to test each value in the NUM_LIST. On each loop iteration the cur-
rent value in the $NUM_LIST is assigned to the NUM variable. Within the for loop we

have set up a case statement. For the tests we use regular expressions to indicate a

range, or type of value, that we are expecting. If the value does not meet the criteria

that we defined, the * is matched and we execute the usage function before exiting the

shell script.

The regular expressions for testing for integers and floating point numbers include

+109), + (— (0-9), +(10-9) | [0-9], + (4+ 10-9) . [0-9], +(-[0-9] . (0-9),
+([-.0-9]),+([+.0-9]). The first two tests are for integers and negative whole

numbers. The last five tests are for positive and negative floating point numbers.

Floating-Point Math and the bc Utility 553

+([0-9])) # Check for an integer

: #\ No-op, do nothing),

et TO—97)) # Check for a negative whole number

'-: # No-op, do nothing

+(10-9) | {. 3 [0-9]))

Check for a positive floating point number

: # No-op, do nothing

+(+[0-9]| [.] [0-9]))

Check for a positive floating point number

with a + prefix

2? # No-op, do nothing

me be} tt 0e9]'))

Check for a negative floating point number

: # No-op, do nothing

+([-.0-91))

Check for a negative floating point number

: # No-op, do nothing

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

*) echo "\nERROR: $NUM is NOT a valid number"

usage

exit 1

esac

Listing 22.2 Testing for integers and floating-point numbers. (continued)

554 Chapter 22

Notice the use of the plus sign (+), minus sign (-), and the decimal point (.). The place-

ment of the plus sign, minus sign, and the decimal point are important when testing
the string. Because a floating point number, both positive and negative, can be repre-

sented in many forms we need to test for all combinations. Floating point numbers are
one of the more difficult tests to make as you can see by the number of tests that are
required.

Building a Math Statement for the bc Command

Once we are sure that all of the data is valid we proceed to building the actual math
statement that we are sending to the be utility. To build this statement we are going to

loop through our newly confirmed $NUM_LIST of numbers and build a string with a

plus sign (+) between each of the numbers in the $NUM_LIST. This is a neat trick. We

first initialize two variables to NULL, as shown here.

ADD=

PLUS=

As we build the math statement, the ADD variable will hold the entire statement as it

is added to. The PLUS variable will be assigned the + character inside of the for loop on

the first loop iteration. This action prevents the + sign showing up as the first character
in the string we are building. Let’s look at this code segment here.

ADD= # Initialize the ADD variable to NULL

PLUS= # Initialize the PLUS variable to NULL

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $SNUM_LIST

do

Lemon (eChous Xan |Nncu car cll) ur snuee nla

then

X=$(echo $X | cut -c2-)

fie

ADD="SADD $PLUS $X"

PLUS="+"
done

On the first loop iteration only the first number in the $NUM_LIST is assigned to the

ADD variable. On each of the following loop iterations a plus sign (+) is added followed
by the next number in the $NUM_LIST, specified by the X variable on each loop itera-

tion, until all of the numbers and plus signs have been assigned to the ADD variable. As
an example, we have the following list of numbers:

WA ESS TS AAS oO Sole 274

Also notice that we added a test for the number beginning with a + sign. We need to

strip this character out so that we do not have two plus signs together when we present

Floating-Point Math and the bc Utility 555

the equation to the be program or an error will occur. As we build the math statement
the following assignments are made to the ADD variable on each loop iteration:

ADD="12"

ADD="12 + 453.766"

ADD="12 + (453).766. + 223 56"

ADD="12 + 453.766 + 223.6 + 3.145927"

ADD=S12> + 453.5766 + 22356 4+ 3.145927 4+ 22"

Using a Here Document

When the looping finishes we have built the entire math statement and have it

assigned to the ADD variable. Now we are ready to create the here document to add all

of the numbers together with the be utility. Let’s take a look at the here document
shown here.

Do the math here by using a here document to supply

input to the bc command. The sum of the numbers is

assigned to the SUM variable.

SUM=$ (bc <<EOF

scale=S$SCALE

($ {ADD})

EOF)

For this here document the label is the EOF character string (you will see this used a

lot in shell scripts). The bc command has its input between the first EOF and the end-
ing EOF. The first EOF label starts the here document, and the second EOF label ends

the here document. Each line between the two labels is used as input to the be com-
mand. There are a couple of requirements for a here document. The first requirement

is that the starting label must be preceded by double input redirection (<<EOF). The

second requirement is that there are never any blank spaces at the beginning of any line
in the here document. If even one blank space is placed in column one, then strange

things may begin to happen. Depending on what you are doing, and the interactive

program you are using, the here document may work, but it may not! This is one of the
most difficult programming errors to find when you are testing, or using, a shell script
with a here document. To be safe, just leave out any beginning spaces.

The final step is to display the result to the user. Listing 22.3 shows the
float_add.ksh shell script in action.

froot:yogi1¢/scripts# ./float add.kcsh —s 8 2.223.545: 332.009976553

The sum of: 2 + 223.545 + 332.009976553

to a scale of 8 is 557.554976553

Listing 22.3 float_add.ksh shell script in action.

556 Chapter 22

Notice that the scale is set to 8, but the output has 9 decimal places. For this shell

script the scale has absolutely no impact on the final result. This is just how the be pro-

gram works. It is not an error to add in a scale but the result does not use it in this case.
The man page for the be program can provide you with more details on this effect. We

will see how the scale works in some of the other shell scripts later in this chapter.
That is it for the addition shell script, but we still have four more shell scripts to go

in this chapter. Each of the following shell scripts is very similar to the script in Listing

22.1. With this being the case I am going to cover different aspects of each of the fol-

lowing scripts and also show where the differences lie. Please keep reading to catch a

few more shell programming tips.

Creating the float_subtract.ksh Shell Script

As the £loat_add.ksh shell script performed addition on a series of numbers, this

section studies the technique of subtraction. Because this shell script is very similar to

the shell script in Listing 22.1 we are going to show the shell script and study the

details at the end. The float_subtract .ksh shell script is shown in Listing 22.4.

#!/usr/bin/ksh

SCRIPT: float subtract.ksh

AUTHOR: Randy Michael

DATE: 02/23/2001

REV: Lol A

PURPOSE: This shell script is used to subtract a list of numbers.

i The numbers can be either integers or floating- point

i numbers. For floating- point numbers the user has the

option to specify a scale of the number of digits to

the right of the decimal point. The scale is set by

adding a -s or -S followed by an integer number.

EXIT SPATUS:

0 ==> This script completed without error

1 ==> Usage error

2 s=> This script exited on a trapped signal

REV. List:

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

HHFHHEPEPREEEEREREEHAE SE EEEEEEPEEPEEERHREEHEEE HERES HH

FHEPHHEPEEHHH DEFINE VARIABLE HERE ######HHHHREEHEEHEHEH

HEEHHEERER EPR RRPRERAEE REAR RRPPRRRPRPRREH RPE HH

Listing 22.4 float_subtract.ksh shell script listing.

Floating-Point Math and the bc Utility 557

SCRIPT_NAME= basename $0° # The name of this shell script

SCALE="0" # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST to NULL

COUNT=0 # Initialize the counter to zero

MAX COUNT=$# # Set MAX COUNT to the total number of

command-line arguments

FRERFHHHE TEETER EERE REE RR ER ERRE EEE RHEE RES HEH EHH HHH

FHEHHHHSHHHE EEE FUNCTIONS #HeHHHH EH EH aH HH EH HH HH HHH

HHRHHHHHH HSER RRR R ERE E EERE H EERE HEH EE HH HE

function usage

{

echo "\nPURPOSE: Subtracts a list of numbers\n"”

echo "USAGE: $SCRIPT_NAME [-s scale value] Nil N2...Nn"

echo "\nFor an integer result without any significant decimal places..."

echo "\nEXAMPLE: SSCRIPT_NAME 2048.221 65536 \n"

echo "OR for 4 significant decimal places"

echo "\nEXAMPLE: SSCRIPT_NAME -s 4 8.09838 2048 65536 42.632"

echo. “\n\t... EXITING... \n*

}

HEHEHHHHFHHEHHEHEHHEHHHEAEEHESEAEPHEEHEPHEREH GEER RPEHEH EHH

function exit_trap

{

echo “\n...EXITING on trapped signal...\n"

HEHHHHFHHHHHHEPHEHEHEHARHEHPES EHP EEEEAEEES REESE SH HHH

HHHHHHHHHHHEHHEH START OF MAIN #####FFHEHFHEHEHESHHH HHH

HHHHHEHHHEHHHHHHPRHEH RE EH EH HH eH EH HH EE EH HEH HEH EH Ht

HHE#HH Set a Trap ######

trap ‘exit _trap; exit 2' 1 2 3 15

HHHHHHHHHHHHHREEPEEEH EEE

Check for at least two command-line arguments

if (($# < 2))

then

echo "\nERROR: Please provide a list of numbers to subtract"

usage

exit 1

bigs

Listing 22.4 float_subtract.ksh shell script listing. (continues)

558 Chapter 22

Parse the command-line arguments to find the scale value, .i1f present.

while getopts ":s:S:" ARGUMENT

do

case SARGUMENT in

s|S) SCALE=SOPTARG

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [{ $(echo $TST_ARG | cut -cl) = '-']] \

&& [$TST_ARG != '-s' -a $TST_ARG != '-S']

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

+([-0-9].[0-9]))

No-op, do nothing

+*([-.0-9])) : # No-op, do nothing

*) echo "\nERROR: Invalid argument on the command

line"

usage

exit 1

esac

£2

done

esac

done

HHH HH HH HE HH HE HH a EE HEE HE aE aE aE EE EEE HE a HE EH

Parse through the command-line arguments and gather a list

of numbers to subtract.

while ((COUNT < MAX COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case $TOKEN in

-s|-S) shift 2

((CGUNT = COUNT + 1))

eye

Listing 22.4 float_subtract.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 559

-s${SCALE}) shift

-S${SCALE}) shift

*) NUM_LIST="${NUM_LIST) $TOKEN"

((COUNT < MAX COUNT)) && shift

esac

done

HHHHHHEHHPEEHEEPPEEREPRRRRAHHHRPHHEPPHH HEHEHE EPP REEHH H H

Ensure that the scale is an integer value

case $SCALE in

+([0-9])) : # No-Op - Do Nothing

*) echo "\nERROR: Invalid scale - SSCALE - Must be an

integer"

usage

exit 1

esac

HH EHH HH HH HH HEE HH EE EE EH EEE HEE HH EH

Check each number supplied to ensure that the "numbers"

are either integers or floating- point numbers.

for NUM in $NUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

No-op, do nothing.

+([-0-9])) # Check for a negative whole number

No-op, do nothing

+([0-9]|[.]1[0-9]))
Check for a positive floating point number

No-op, do nothing

+(+[0-9][[-][0-9]))

Check for a positive floating point number

witha + prefix

No-op, do nothing

+([-0-9]|.[0-9]))

Listing 22.4 float_subtract.ksh shell script listing. (continues)

560 Chapter 22

Check for a negative floating point number:

No-op, do nothing

+(-{.1[0-9]))

Check for a negative floating point number

No-op, do nothing

+([+.0-9]))

Check for a positive floating point number

No-op, do nothing

*) echo "\nERROR: $NUM is NOT a valid number"

usage

exit 1

esac

done

HEHHHHHEHESHHEPHHEHHEHHEHEESHEPHEEHEEEHEPHEEHEGHEGEH EHH SE

Build the list of numbers to subtract

SUBTRACT= # Initialize the SUBTRACT variable to NULL

MINUS= # Initialize the MINUS variable to NULL

Loop through each number and build a math statement that

will subtract the numbers in the list.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if [[$(echo §x | cut -cl) = '+' J]

then

X=$(echo $x | cut -c2-)

fi

SUBTRACT="S$SUBTRACT S$MINUS $x"

MINUS='-'

done

Hear AE HE EE HE aE HEE HE HEE aE HEHEHE EE ERE HE EHH

Do the math here by using a here document to supply

input to the bc command. The difference of the numbers is

assigned to the DIFFERENCE variable.

DIFFERENCE=$(bc <<EOF

scale=$SCALE

($ {SUBTRACT})

Listing 22.4 float_subtract.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 561

EOF)

HHHHTH TPE HRE ERE RREEHPHHEPPEHE EHH PEA PHEH EHP RPE EH HHH HH

Present the result of the subtraction to the user.

echo "\nThe difference of: SSUBTRACT"

echo "\nis: ${DIFFERENCE} \n"

Listing 22.4 float_subtract.ksh shell script listing. (continued)

The parts of the float_subtract.ksh shell script, shown in Listing 22.4, that
remain unchanged from Listing 22.1 include the following sections: variable defini-

tions and the usage function, which is unchanged except that the references to addi-

tion are changed to subtraction. Additionally, all of the same tests are performed on the

user-provided data to ensure the data integrity. When we get to the end of the shell

script where the math statement is created and the here document performs the calcu-

lation, we get into some changes.

Using getopts to Parse the Command Line

Let’s first cover parsing the command line for the -s and -S switches and these switch-
arguments that we use to define the floating-point precision with the getopts com-

mand. Using getopts for command-line parsing is the simplest method. It sure beats

trying to program all of the possibilities inside the shell script. The first thing to note

about getopts is that this command does not care what is on the command line! The

getopts is interested in only command switches, which must begin with a hyphen (-),

such as -s and -S for this shell script. Let’s look at the getopts code segment and see

how it works.

Parse the command-line arguments to find the scale value, if present.

while getopts ":s:S:" ARGUMENT

do

case $ARGUMENT in

s|S) SCALE=$OPTARG

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -c1) = '-']] \

&& [$TST_ARG != '-s' -a $TST_ARG != '-S']

562 Chapter 22

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

+CL=0-9)])-) [0-9])))

: # No-op, do nothing

+([-.0-9])) : # No-op, do nothing

*) echo "\nERROR: $TST_ARG is an invalid argument\n"

usage

exit 1

esac

esac

done

A getopts statement starts with a while loop. To define valid command-line
switches for a shell script you add the list of characters that you want to use for com-
mand-line switches just after the while getopts part of the while statement. It is a good

practice to enclose the list of command-line switches in double quotes ("list"). The
next thing that you need to notice is the use of the colons (:) in the list of valid

switches. The placement and usage of the colons is important. Specifically, if the list

starts with a colon, then any undefined command-line switch that is located will be

assigned the question mark (?) character. The question mark character is then assigned

to the ARGUMENT variable (which can actually be any variable name). Whenever the ?

is matched it is a good idea to exit the script or send an error message to the user, and

show the user the correct usage of the shell script before exiting. This ability of catch-

ing usage errors is what makes getopts a very nice and powerful tool to use.

But, in our case when we encounter the ? we may just have a negative number!

Therefore, any time we encounter a hyphen (-) on the command line we need to test for

a negative number before we tell the user that the input is invalid. This piece of code is
in the case statement after the ?.

The other colon (:) used in the list specifies that the switch character that appears
immediately before the colon requires a switch-argument. Looking at the following
getopts example statement may help to clarify the colon usage.

while getopts ":s:S:rtg:" ARGUMENT

In this getopts statement the list begins with a colon so any command-line switch

other than -s, -S, -r, -t, and -g will cause the ARGUMENT variable to be assigned the ?

character, indicating a usage error. When any defined command-line argument is located

on the command line it is assigned to the ARGUMENT variable (you can use any variable

name here). When any undefined command-line switch is located, and the valid switch

list begins with a colon, then the question mark character is assigned to the ARGUMENT

variable. If the switch list does not begin with a colon, then the undefined switch

is ignored. In our shell script we do not want to ignore any invalid command-line

Floating-Point Math and the bc Utility 563

argument but we also do not want a negative number to be considered invalid input.

This is where we do the extra test on the command-line.
Looking at each of the individually defined switches in the previous example, -s,

and -S each require a switch-argument. The -r and -g switches do not have an argument

because they do not have a colon after them in the definition list. When a switch is

encountered that requires a switch-argument, the switch-argument is assigned to a

variable called OPTARG. In our case the switch-argument to -s or -S is the value of the

scale for precision floating-point arithmetic, so we make the following assignment:
SCALE=SOPTARG in the case statement inside the while loop. As with the
float_add.ksh shell script, the scale does not give the results that you expect. The

use of the scale is in this shell script as a learning experience and you will see expected

results in the following shell scripts in this chapter.

Just remember when using getopts to parse command-line arguments for valid
switches that getopts could care less what is on the command line. It is up to you to

verify that all of the data that you use is valid for your particular purpose. This is why
we make so many tests of the data that the user inputs on the command line.

Building a Math Statement String for bc

Next we move on to the end of the shell script where we build the math statement for

the bc command. In building the math statement that we use in the here document we

now use the SUBTRACT and MINUS variables in the for loop. Take a look at the code

segment listed here to build the math statement.

Build the’list of numbers to subtract

SUBTRACT= # Initialize the SUBTRACT variable to NULL

MINUS= # Initialize the MINUS variable to NULL

Loop through each number and build a math statement that

will subtract the numbers in the list.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if [[$(echo $X | cut -c1) = '+']]

then

X=$(echo $X | cut -c2-)

Galt

SUBTRACT="$SUBTRACT $MINUS $x"

MINUS='-'

done

Notice that we initialize the SUBTRACT and MINUS variables to NULL. We do this

because on the first loop iteration we do not want a minus sign (~) included. The minus

sign is defined within the for loop. The SUBTRACT variable is initialized to NULL

because we want to begin with an empty statement string. As we start the for loop,

using the valid list of numbers that we so painstakingly verified, we add only the first

564 Chapter 22

number in the SNUM_LIST. On the second loop iteration, and continuing until all of

the numbers in the $NUM_LIST have been exhausted, we add a minus sign to the math

statement, followed by the next number in the list. Additionally, we took the extra step

of removing any plus sign (+) that may be a prefix to any positive number. This step is

required because we do not want the + in the equation or an error will occur because

there will be a - and a + between two numbers. During this for loop the entire math

statement is assigned to the SUBTRACT variable. The statement is built in the following

manner, assuming that we have the following numbers to work with.

ee SETS SI lS SAMUS ey A

As we build the math statement the following assignments are made to the

SUBTRACT variable:

SUBTRACT="12"

SUBTRACT="12 - 453.766"

SUBURAGT =l2 sea Sr OOM tao Om

SUB RR ACT = uil2 45 SiO ONS Om mnSue ao Za/an

SUBURACP=lel2 = A535, / OOm— e225. Omer EAS ae

Here Document and Presenting the Result

I want to cover a here document one more time because it is important to know what

you can and cannot do with this technique. With the math statement created we are

ready to create the here document to add all of the numbers together with the bc utility.

Let’s take a look at the here document shown here.

Do the math here by using a here document to supply

input to the bc command. The difference of the numbers is

assigned to the DIFFERENCE variable.

DIFFERENCE=$ (bc <<EOF

scale=SSCALE

($ {SUBTRACT})

EOF)

Just like the here document in Listing 22.1, float_add.ksh, this here document

label is the EOF character string. The be command has its input between the starting

EOF label and the ending EOF label. The first label starts the here document, and the

second EOF label ends the here document. Each line between the two labels is used as

input to the be command. There are a couple of requirements for a here document. The

first requirement is that the starting label must be preceded by double input redirection
(<<EOF). The second requirement is that there are never any biank spaces at the begin-

ning of any line in the here document. If even one blank space is placed in column one,

then strange things may begin to happen with the calculation. This is the cause of a lot

of frustration when programming here documents. This blank-space problem is one of

the most difficult programming errors to find when you are testing, or using, a shell
script with a here document.

Floating-Point Math and the bc Utility 565

The final step is to display the result to the user. Listing 22.5 shows the float
_subtract.ksh shell script in action.

[root:yogi]@/scripts# float_subtract.ksh -s 4 8.09838 2048 65536 42.632

The difference of: 8.09838 - 2048 - 65536 - 42.632

to a scale of 4 is -67618.53362

Listing 22.5 float_subtract.ksh shell script in action.

The float_subtract.ksh shell script is very similar to the float_add.ksh

shell script. Again, notice that the scale had no effect on the result of this calculation.

The man page for be has more information on using scale. The next three shell scripts

have some variations also. With this commonality Iam going to deviate and cover

some of the different aspects of each of the following scripts and show where the dif-

ferences lie.

Creating the float_multiply.ksh Shell Script

This time we are going to multiply a list of numbers. Using the same front end, for the

most part, this shell script changes the building of the math statement and has a new
here document. I want to cover the technique that we use to scan the command-line

arguments to find the nonswitch-arguments and their associated switch-arguments.
What remains after the command-line argument scan should be only a list of numbers,

which is assigned to the NUM_LIST variable. Of course, we do test each number with

regular expressions just as before. Let’s look at the float_multiply.ksh shell script
shown in Listing 22.6 and study the details at the end.

#!/usr/bin/ksh

SCRIPT: float_multiply.ksh

AUTHOR: Randy Michael

DATE: 02/28/2001

+ REVS bebo P

PURPOSE: This shell script is used to multiply a list of numbers #

together. The numbers can be either integers or floating-—

point numbers. For floating-point numbers the user has

the option of specifying a scale of the number of digits) to

the right of the decimal point. The scalevis set by adding

a -s or -S followed by an integer number.

EXIT STATUS:

Listing 22.6 float_multiply.ksh shell script listing. (continues)

566 Chapter 22

0 ==> This script/function exited normally

1 ==> Usage or syntax error :

2 ==> This script/function exited on a trapped signal

REV. LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

4h 4h Ge GE Ge OE SE SE SE

HEHEHE PREEHRRERRRER RRR RRA REPRE RRP ERR EERE RHEE HEH

HHHHHHHHHHHHHH DEFINE VARIABLE HERE ######HHHHHEEEHH HEHE

HAE HHH HH HH EH HE EE aE EE aE HE aE Ha EEE EE

SCRIPT _NAME=$(basename $0) # The name of this shell script

SCALE="0" # Initialize the scale value to zero

NUM _LIST= # Initialize the NUM_LIST to NULL

COUNT=0 # Initialize the counter to zero

MAX_COUNT=$# # Set MAX _COUNT to the total number of

command-line arguments

HH a aE EH a HE HE aE HE HE HE HEE EE EH HE a EE EH HE HH HH HH

HHHHHEFHEHEREHEHE FUNCTIONS ####FHHEEEEEEEEE HEHE EEE EEE EHH

HHHHHRPHEEEEEE PEER REEAHE EEE EEEH EERE EPR HEH EH E RHEE HE HH

function usage

{

echo "\nPURPOSE: Multiplies a list of numbers together\n"

echo "USAGE: SSCRIPT NAME {-s scale value] Ni N2...Nn"

echo "\nFor an integer result without any significant decimal places..."

echo "\nEXAMPLE: $SCRIPT_ NAME 2048.221 65536 \n"

echo "OR for 4 significant decimal places"

echo "\nEXAMPLE: SSCRIPT_NAME -s 4 8.09838 2048 65536 42.632"

echo “\n\beCBeTrInG An"

ii

HHHFHEHHHEHHFHFHEAPHPHEHEEH EPH PHPEEHEHEPHSHEPH PEE H HES HHH HH HE

function exit _trap

{

echo "\n...EXITING on trapped signal...\n"

}

HHHAHHHEHPHEHHEHEPHEPHPHEHEHEAHEPEPHEHEHESHEPEPAEHEPEEHEP EH

HHHHFHHEHHEEHHEHEH START OF MAIN #H###H#FHHFEHEEHEEEHEEHHE HF

HHHHFHHEHHEEHEEHHESHEEHHEEHHEHHEAHEEHHES EEE HREEHERHH EHH HH

#H#HHH Set a Trap ####Ht#

Listing 22.6 float_multiply.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 567

Crap "exrte traps expe 2h Li asks

HHHHHHHHHHHHHHHHHHRHAHAHHEHHH HEHEHE REE PRE RE RHEE EH

Check for at least two command-line arguments

if (($# < 2))

then

echo "\nERROR: Please provide a list of numbers to multiply"

usage

exit 1

£2

HHPHEHHEPHEHEEEEHEH HSE HEHEHE HH HH HH HHH HH HEH EHH HH eH HE HE EH SE HE

Parse the command-line arguments to find the scale value, if present.

while getopts ":s:S:" ARGUMENT

do

case S$ARGUMENT in

s|S) SCALE=SOPTARG

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -cl) = '-']] \

&& [$TST_ARG != '-s' -a STST_ARG != '-S']

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

+([-0-9].[0-9]))

No-op, do nothing

+([{-.0-9])) : # No-op, do nothing

*) echo "\nERROR: $TST_ARG is an invalid argument\n"

usage

exit ad

esac

£2)

done

esac

Listing 22.6 float_multiply.ksh shell script listing. (continues)

568 Chapter 22

done

ere r etree rrr rere rerr rere rere errr

Parse through the command-line arguments and gather a list

of numbers to multiply together.

while ((COUNT < MAX COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case STOKEN in

-s|-S) shift 2

((COUNT = COUNT + .1))

-s${SCALE}) shift

-S${SCALE}) shift

*) NUM_LIST="${NUM_LIST} $TOKEN"

((COUNT < MAX COUNT)) && shift

esac

done

HHPHHHHPHHERPHEEHEEEEPEEPESEEPEAPEAEEEEREREEPEAPHESEEEE EES

Ensure that the scale is an integer value

case $SCALE in

+([0-9])) : # No-Op - Do Nothing

*) echo “\nERROR: Invalid scale - SSCALE - Must be an

integer”

usage

exit 1

esac

FHTHTHPRRERHEE ERE EEREEERRREEEEEERRR PEEP EH HEHE HH HEHEHE

Check each number supplied to ensure that the "numbers"

are either integers or floating-point numbers.

for NUM in SNUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

No-op, do nothing.

Listing 22.6 float_multiply.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 569

+([-0-9])) # Check for a negative whole number

No-op, do nothing

+([0-9]|[.][0-9]))

Check for a positive floating point number

No-op, do nothing

+(+[0-9]|[.1[0-9]))
Check for a positive floating point number

with a + prefix

No-op, do nothing

+([-0-9]|.[0-9]))

Check for a negative floating point number

No-op, do nothing

+(-.[0-9]))

Check for a negative floating point number

No-op, do nothing

+([+.0-9]))

Check for a positive floating point number

No-op, do nothing

*) echo "\nERROR: $NUM is NOT a valid number"

usage

exit 1

esac

done

HHEHFHHHHHHEAHEHEHES HEHEHE HEHEHE HEHEHE HPREREA RHEE HHEH

Build the list of numbers to multiply

MULTIPLY= # Initialize the MULTIPLY variable to NULL

TIMES= # Initialize the TIMES variable to NULL

Loop through each number and build a math statement that

will multiply all of the numbers together.

for X in $NUM_LIST
do

If the number has a + prefix, remove it!

af [PU Sleeho SX “| cut -el) So's) 7]

then

K=S (echo $X | cut.-c2-)

£i

Listing 22.6 float_multiply.ksh shell script listing. (continues)

570 Chapter 22

MULTIPLY="SMULTIPLY STIMES Sx" oS

TIMES='*'
done

HEGHHAAPHAAPHEAEHEA CHUA CHUA EHUAEAEH EER HHA EH AREA ER EERE

Do the math here by using a here document to supply —

input to the be command. The product of the multiplication

of the numbers is assigned to the PRODUCT variable.

PRODUCT=$ (bc <<EOF

scale=$SSCALE

$MULTIPLY

EOF)

HEHHHHHHHHHPHEEHHHEEEEEH PERE EEERER RRR EEEEEPEEEREE REE EH HH

Present the result of the multiplication to the user.

echo “\nThe product of: SMULTIPLY”

echo “\nto a scale of SSCALE is ${PRODUCT} \n"

Listing 22.6 float_multiply.ksh shell script listing. (continued)

As you can see in Listing 22.6, most of the previous two shell scripts have been car-
ried over for use here. Now I want to cover in a little more detail how the scanning of

the command-line arguments works when we extract the command switches, and the

associated switch-arguments, from the entire list of arguments.

Parsing the Command Line for Valid Numbers

To start the extraction process we use the two previously initialized variables, COUNT

and MAX COUNT. The COUNT variable is incremented during the processing of the

while loop, and the MAX_COUNT has been initialized to the value of $#, which specifies

the total number of command-line arguments given by the user. The while loop runs

until the COUNT variable is greater than or equal to the MAX_COUNT variable.

Inside of the while loop the COUNT variable is incremented by one, so on the first
loop iteration the COUNT equals 1, one, because it was initialized to 0, zero. Next is the

TOKEN variable. The TOKEN variable always points to the $1 positional parameter

throughout the while loop execution. Using the current value of the $1 positional

parameter, which is pointed to by the TOKEN variable, as the case statement argument

we test to see if $TOKEN points to a known value. The current known values on the

command line are the -s and -S switches that are used to define the scale for floating-

point arithmetic, if a scale was given, and the integer value of the SCALE. There are

only two options for the value of the scale:

Floating-Point Math and the bc Utility 571

-s{Scale Integer}

-s {Scale Integer}

Because these are the only possible scale values (we also allow an uppercase -S) for

the command line, we can test for this condition easily in a case statement. Remember

that I said the $TOKEN variable always points to the $1 positional parameter? To move
the other positional parameters to the $1 position we use the shift command. The shift

command alone will shift the $2 positional parameter to the $1 position. What if you

want to move the $3 positional parameter to the $1 position? We have two options: Use
two shift commands in series, or add an integer as an argument to the shift command.

Both of the following commands move the $3 positional parameter to the $1 position.

Shaetes baste

OR

Shwe 2

Now you may be wondering what happens to the previous $1, and in this case $2,

positional parameter values. Well, anything that is shifted from the $1 position goes to
the bit bucket! But this is the result that we want here.

If the value of the positional parameter in the $1 position is the -s or -S switch alone,

then we shift two positions. We do this double shift because we know that there should
be an integer value after the -s or -S switch, which is the integer switch-argument that

defines the scale. On the other hand, if the user did not place a space between the -s or -S
switch and the switch-argument, then we shift only once. Let’s say that the user entered

either of the following command statements on the command line:

[root:yogi]@/scripts# float_multiply.ksh -s 4 8.09838 2048 65536 42.632

OR

[root:yogi]@/scripts# float_multiply.ksh -s4 8.09838 2048 65536 42.632

Notice in the first command the user added a space between the switch and the

switch-argument (-s 4). In this situation our test will see the -s as a single argument so
we need to shift two places to move past the switch-argument, which is 4. In the sec-
ond command statement the user did not add a space between the switch and the

switch-argument (-s4). This time we shift only one position because the switch and the

switch-argument are together in the $1 positional parameter, which is what STOKEN

points to.
There is one more thing that I want to point out. On each loop iteration the COUNT is

incremented by 1, one, as you would expect. But if we shift two times, then we need to

increment the COUNT by 1, one, a second time so we do not count past the number of

arguments on the command line. This is very important! If you leave this extra counter

incrementation out, the shell script errors out. Every little piece of this loop has a

reason for being there. Speaking of the loop, please study the while loop in the code

segment shown in Listing 22.7.

572 Chapter 22

Parse through the command-line arguments and gather a Tist

of numbers to multiply together.

while ((COUNT < MAX COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case STOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

-s${SCALE}) shift

-SS${SCALE}) shift

*) NUM LIST="${NUM_ LIST} $TOKEN"

((COUNT < MAX COUNT)) && shift

esac

done

Listing 22.7. Code to parse numbers from the command line.

The techniques to build the math statement and to do the calculations with a here

document using the be command are changed only slightly. Of course, because we are

multiplying a string of numbers instead of adding or subtracting, we changed the

build code to add a *, instead of a + or -. The here document is exactly the same

except that the result is assigned to the PRODUCT variable. Please look closely at the
float_multiply.ksh shell script shown in Listing 22.6 and study the subtle

changes from the previous two shell scripts in Listing 22.1 and Listing 22.3.

The float_multiply.ksh shell script is shown in action in Listing 22.8. Notice in

this output that the scale setting still has no effect on the output.

[root:yogi]@/scripts# float_multiply.ksh -s 4 8.09838 2048 65536 42.632

The product of: S.09838 * 2048 * 65536 * 42.632

is 46338688867.08584

Listing 22.8 float_multiply.ksh shell script in action.

In the next section we move on to study division. We had to do some creative

engineering to change the previous shell script to work with only two numbers. Keep
reading—I think you will pick up a few more pointers.

Floating-Point Math and the bc Utility

Creating the float_divide.ksh Shell Script

For the division script we had to do some changes because we are dealing with only two

numbers, as opposed to an unknown string of numbers. The float_divide

. ksh shell script starts out the same as the previous three scripts, with the same variables

and a modified usage function. The first test is for the correct number of command-

line arguments. In this shell script we can handle from two to four arguments, with the

option to specify a scale value for precision of floating-point numbers, which by the

way does work for division.

In the getopts statement we perform the same test to parse out the scale switch, -s

or -S, and the switch-argument. When however, we get to parsing the entire list of

command-line arguments to gather the numbers for the division, we do things a little

differently. The while loop is the same with the counter and the TOKEN variable always

pointing to the $1 positional parameter, which we use as we shift command-line argu-

ments to the $1 position. It is in the case statement that we do our modification. For

division we need a dividend and a divisor, which has the form in a division statement of

((QUOTIENT = S$DIVIDEND / $DIVISOR)). As we parse the command-line argu-

ments we assign the first number to the DIVIDEND variable and the second number to

the DIVISOR. Look at the code segment in Listing 22.9, and we will go into the details

at the end.

Parse through the command-line arguments and gather a list

of numbers to subtract.

TOTAL_NUMBERS=0

while ((COUNT < MAX COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case S$TOKEN in

-s|-S) shift 2

CUCCOUNT = COUNT 4+.1)))

-s${SCALE}) shift

-S${SCALE}) shift

*) ((TOTAL_NUMBERS = TOTAL_NUMBERS + 1))

if ((TOTAL_ NUMBERS == 1))

then

DIVIDEND=$ TOKEN

elif ((TOTAL_NUMBERS == 2))

then

DIVISOR=$TOKEN

else

echo "ERROR: Too many numbers to divide"

usage

Listing 22.9 Code to extract the dividend and divisor. (continues)

573

574 Chapter 22

exit 1

fi :

NUM_LIST="$NUM_LIST $TOKEN"

((COUNT < MAX COUNT)) && shift

esac

done

Listing 22.9 Code to extract the dividend and divisor. (continued)

In the case statement in Listing 22.9 notice the boldface text. When a number is

encountered we use a variable called TOTAL_NUMBERS to keep track of how many
numbers are on the command-line. If $TOTAL_NUMBERS is equal to 1, one, we assign

the value of the $ TOKEN variable to the DIVIDEND variable, the number on the top in

a division math statement. When $TOTAL_NUMBERS is equal to 2 we assign the value
of the STOKEN variable to the DIVISOR variable. If the $TOTAL_NUMBERS counter

variable exceeds 2, then we print an error message to the screen, execute the usage

function, and exit the script with a return code of 1, which is a normal usage error for

this shell script.

Notice that we are also keeping the NUM_LIST variable. We use the $NUM_LIST to

verify that each “number” is actually an integer or a floating-point number by using
the regular expressions that we covered previously in this chapter.

Notice in the shell script in Listing 22.10 that we omitted the step of building the
math statement. In this script it is not necessary because we have the dividend and

divisor captured in the code segment in Listing 22.9. Check out the shell script in
Listing 22.10, and pay close attention to the boldface text.

#!/usr/bin/ksh

SCRIPT: float_divide.ksh

AUTHOR: Randy Michael

DATE: 02/23/2001

REV: 1 oh

PURPOSE: This shell script is used to divide two numbers.

The numbers can be either integers or floating point

numbers. For floating point numbers the user has the

option to specify a scale of the number of digits to

the right of the decimal point. The scale is set by

adding a -s or -~-S followed by an integer number. 4H oe OE HEHEHE HEHEHE HEHEHE

Listing 22.10 float_divide.ksh shell script listing.

Floating-Point Math and the bc Utility 575

EXIT) STATUS|:

0 ==> This script exited normally

1 =5> Usage or syntax error

2 ==> This script exited on a trapped signal

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

+ HH HH HH HH HK HH HH H

HHH HH EH HH HH HEHE HS aE EEE HE EE EE EH aH EH EE HE

HHHHHPEEE HEHEHE DEFINE VARIABLE HERE #####HHHHHHEHEHH EH HEHE

HHH HH EHH HHH HH EH HEH HE EE EE EEE HE EH HH

SCRIPT_NAME="basename $0°

SCALE="0" # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST to NULL

COUNT=0 # Initialize the counter to zero

MAX COUNT=$# # Set MAX COUNT to the total number of

command-line arguments

HHHHHEEHHEPEEREEREEE EEE EHEREEEHE EEE HERE E REE EH GHEE

HHEFHHHHEHEES HEHE FUNCTIONS ####HHHEEPEEEE ERE EEEP EEE HEHE

HEH HH HE EH HEH HEH aE EH EEE EE EE HH

function usage

{

echo "\nPURPOSE: Divides two numbers\n"”

echo "USAGE: $SCRIPT_NAME [-s scale value] Nl N2"

echo "\nFor an integer result without any significant decimal places..."

echo "\nEXAMPLE: SSCRIPT NAME 2048.221 65536 \n"”

echo "OR for 4 significant decimal places"

echo "\nEXAMPLE: SSCRIPT_NAME -s 4. 2048.221 65536"

echo "\nVe.. BSiTING... .\n"

}

HHHHHHHHHHHHHHHE RHA RARER PEERPPERRPEE ERE ERE R EEE HE HEH

function exit _trap

{
echo "\n...EXITING on trapped signal...\n"

HHHHHHHHHHHHEEEHERHRRARPRAEEEE ERATE SE HEHE RE EHH HH HH HEH HF

HHHHHHHHHHHHHHHEH START OF MAIN #444 #HEEPPRERRRE HEHEHE HEHE H

HHHHHHHHHAEHHHHHE HH HEH HH EH HE te aE HE HE

Listing 22.10 float_divide.ksh shell script listing. (continues)

576 Chapter 22

HH##HH Set a Trap ##H#HHEH

trap ‘exit trap; exit 2' 1 2 3 15

HHFHPEHHPEREHHEEEHEEEEEEH

Check for at least two command-line arguments

and not more than four

if (($# < 2))

then

echo "\nERROR: Too few command line arguments"

usage

exit 1

elit ((3# > 4))

then

echo "\nERROR: Too many command line arguments"

usage

exit 1

fa

Parse the command-line arguments to find the scale value, if present.

while getopts ":s:S:" ARGUMENT

do

case SARGUMENT in

s|S) SCALE=$OPTARG

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -cl) = '-']] \
&& [$TST_ARG != '-s' -a $TST_ARG != '-s']

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

+([-0-9].[0-9]))

No-op, do nothing

+([-.0-9])) : # No-op, do nothing

*) echo "\nERROR: $TST_ARG is an invalid argument\n"

usage

Listing 22.10 float_divide.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 577

esac

done

HHHHHEPPRPTHRE RHE HREHPE RHE HHH HHA PREP HERE EEE

Parse through the command-line arguments and gather a list

of numbers to subtract.

TOTAL_NUMBERS=0

while ((COUNT < MAX COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case S$TOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

-s${SCALE}) shift

-S${SCALE}) shift

*) ((TOTAL_NUMBERS = TOTAL NUMBERS + 1))

if ((TOTAL_NUMBERS == 1))

then

DIVIDEND=$TOKEN

elif ((TOTAL_NUMBERS == 2))

then

DIVISOR=$TOKEN

else

echo "ERROR: Too many numbers to divide"

usage

exit 1

£3.

NUM_LIST="$NUM_LIST $TOKEN"

((COUNT < MAX COUNT)) && shift

esac

done

FEEPHHEHHPRERH EEE RE REEEAEEEHHREEHE EERE PHERRRE RRR EE

Ensure that the scale is an integer value

Listing 22.10 float_divide.ksh shell script listing. (continues)

578 Chapter 22

case $SCALE in

+([0-9])) : # No-op - Do Nothing

*) echo "\nERROR: Invalid scale - $SCALE - Must be an integer"

usage

exit. |

esac

HHHEHHAAHAHAHHAAHHRERREPHHPPHHAAHHHER OR EE RHE P PERE PEER EE

Check each number supplied to ensure that the “numbers *

are either integers or floating point numbers.

for NUM in $NUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

No-op, do nothing.

+([-0-9])) # Check for a negative whole number

No-op, do nothing

+([0-9]|[.][0-91))

Check for a positive floating point number

No-op, do nothing

+(+[0-9]|[.1[0-9]))

Check for a positive floating point number

with a + prefix

No-op, do nothing

+([-0-9]].[0-9]))

Check for a negative floating point number

No-op, do nothing

+(-.[0-9]))

Check for a negative floating point number

No-op, do nothing

+([+.0-9]))

Check for a positive floating point number

No-op, do nothing

*) echo "\nERROR: $NUM is NOT a valid number"

usage

exit 1

ESF

Listing 22.10 float_divide.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 579

esac

done

HHHTFPT PP HPEREREEHE RP HE EP RR EHH HH HHH HEHEHE HAH R REE EH HH

Do the math here by using a here document to supply

input to the bc command. The quotient of the division is

assigned to the QUOTIENT variable.

QUOTIENT=$ (bc <<EOF

scale=$SCALE

$DIVIDEND / $DIVISOR

EOF)

HHHHPHHPHHEPHHH ER EHHP HEHE EHH EHH H EPH HEHEHE HEH EB HHH HH

Present the result of the division to the user.

echo "\nThe quotient of: $DIVIDEND / SDIVISOR"

echo "\nto a scale of SSCALE is ${QUOTIENT}\n"

Listing 22.10 float_divide.ksh shell script listing. (Continued)

Let’s look at the here document that we feed input into the be utility at the end of
Listing 22.10. We already have extracted the dividend and divisor directly from the

command line so we skipped building the math statement. Using command substitu-

tion we use double input redirection with a label (<<EOF), which defines the beginning

of a here document, to set the scale of the precision of floating-point numbers and to

divide the two numbers. If no scale was given on the command line, then the scale is 0,

zero. The here document ends with the final label (EOF) to end the here document and

exit the be utility, which is an interactive program. The final step is to present the result

to the user. In Listing 22.11 you can see the float_divide.ksh shell script in action.

[yoot!yogi]@/scripts# float divide. ksh -s 6.3321 -332.889

The quOtcLeEnE, Of: .3321. / —332.889

fo a scale of 6 is -.000997

Listing 22.11 float_divide.ksh shell script in action.

Notice that the scale worked with the division script! We have completed shell
scripts for addition, subtraction, multiplication, and division. I want to present one

more variation in the next section.

580 Chapter 22

Creating the float_average.ksh Shell Script

Using the addition shell script from Listing 22.1 we can make a couple of minor modi-

fications and take the average of a series of numbers. I am not going to show the entire

shell script, only the modifications that I made to the float_add.ksh shell script to

average the series of numbers.
The first addition to Listing 22.1 is the addition of the variable TOTAL_NUMBERS. To

average a list of numbers we need to know how many numbers are in the list so we can

divide the SUM by the total number of numbers. The counter is added in the sanity

check of the $NUM_LIST numbers, where we are ensuring that the numbers are either

integers or floating point. This modification is shown in Listing 22.12.

TOTAL _NUMBERS=0

for NUM in SNUM_LIST

do

((TOTAL NUMBERS = TOTAL NUMBERS + 1))

case SNUM in

+([0-9])) # Check for an integer

: # No-op, do nothing.

+([-0-9])) # Check for a negative whole number

: # No-op, do nothing

+({0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

+(+(0-9]|{.][0-9]))
Check for a positive floating point number

with a + prefix

: # No-op, do nothing

+([-0-9]|.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

#{] 10-91))

Check for a negative floating point number

: # No-op, do nothing

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

*) echo "\nERROR: SNUM is NOT a valid number"

usage

exit 1

Listing 22.12 Code segment to keep a running total of numbers.

Floating-Point Math and the bc Utility 581

esac

done i

Listing 22.12 Code segment to keep a running total of numbers. (continued)

The two lines of modification are highlighted in boldface text in Listing 22.12. The
only other modifications are with the here document, where we added a division to the
SADD by the $TOTAL_NUMBERS, and the code to present the result to the user. This
code modification is shown in the code segment in Listing 22.13.

Do the math with a here document for the be command

AVERAGE=S$ (bc <<EOF

scale=$SSCALE

(${ADD}) / $TOTAL_NUMBERS

EOF)

Present the result to the user

echo "\nThe average of: §$(echo §$ADD | sed s/+//g)"

echo "\nto a scale of SSCALE is ${AVERAGE}\n"

Listing 22.13 Code segment to average a list of numbers.

In Listing 22.13 notice how the averaging of the numbers is done. In a previous code

section an addition math statement was created and assigned to the ADD variable. Now
we use this ADD variable as input to the be command in the here document and divide

the result of the addition by the total number of numbers given on the command line,
$TOTAL_NUMBERS. The result is an average of the numbers.

In the next step we present the result to the user. Notice the sed statement that is in
boldface text. This sed statement is replacing every occurrence of the plus sign (+) with
a blank space. The result is a list of the numbers only. We could have just as easily used

the $NUM_LIST variable, but I wanted to slip a sed statement into this chapter some-

where. The float_average.ksh shell script is in action in Listing 22.14.

froot: yooi|@/scripts# \floatiaverage ksh -s 822389 65 32.775 .—. 200

Phe average Obs 22889" (65 0-32.70 /8) 0 = 22k

to a scale of 815 8.05622250

Listing 22.14 float_average.ksh shell script in action.

582 Chapter 22

The float_average.ksh shell script listing is not shown in the book, but it is on
the Web site that accompanies this book. .

Other Options to Consider

As always, these scripts can be improved, just as any shell script can be improved. As

you saw in each of the shell scripts in this chapter, we did a lot of tests to verify the
integrity of the data the user entered on the command-line. You may be able to com-

bine some of these tests, but I still like to separate each piece so that whoever comes
along in the future can follow the shell script easily. Sure, some of these can be done in

three lines of code, but this does not allow for data verification, and the user would

have to rely on the cryptic system error messages that do not always tell where the data
error is located.

Remove the Scale from Some of the Shell Scripts

Since the scale was only valuable when we did division you may as well remove all of

scale references in the addition, subtraction, and multiplication shell scripts. The divi-

sion and average shell scripts use the scale since both use division to get the answer.

Create More Functions

As an exercise for this chapter, replace each of the data tests with functions. This is easy

to do! All that is required is that the function must be defined before it can be used. So,

put these new functions at the top of the shell scripts in the DEFINE FUNCTIONS HERE

section. When you extract a code segment, from the main body of the shell script, make

a comment to yourself that “XYZ Function goes here.” Then use one of the following
techniques to make the code segment into a function.

function my_new_function_name

{

Place Code Segment Here

}

OR

my_new_function_name ()

{

Place Code Segment Here

}

Both techniques produce the same result, but I prefer the first method because it is

more intuitive to new shell programmers. Remember where the scope of your vari-

ables can be seen. A variable in the main body of the shell script is a global variable,

which can be seen by all functions. A variable inside of a function has limited scope

Floating-Point Math and the bc Utility 583

and can be seen in the function and any function that the current function calls, but not

in the calling shell script. There are techniques that we have covered in this book to get

around these scope limitations, so I hope you have read the whole book. Experiment!
That is how you learn.

I hope you enjoyed studying this chapter. Please explore the other options that are

available in the be command; you will be surprised by what you can do.

Summary

We have covered a lot of material in this chapter. I hope that you will now find that
math is not difficult in a shell script and that it can be done to the precision required.

The be command is very powerful, and we only touched the surface of the ability of be

here. For more information on be look at the man page, man be.

In the next chapter we are moving on to changing numbers between numbers bases.

We start with the basics and move to a shell script that converts any number in any

number base to any other number base. See you in the next chapter!

Scripts for Number
Base Conversions

On many occasions in computer science you need to convert numbers between differ-

ent number bases. For example, you may need to translate a hexadecimal number into

an octal representation, or if you are a software developer you may want to license the

software you create for a specific machine. One way of creating a machine-specific
license key is to use the IP address of the machine to create a hexadecimal character
string, which will allow the software to execute only on that specific machine. The first

example here is a common occurrence, but the latter one is a little more obscure.

In this chapter we are going to present some number base conversion techniques
and also show how to create a shell script that produces a license key, as in our second

example. Converting between number bases is very straightforward, and we are going
to go through each step. Before we can write a shell script we need the correct com-
mand syntax. In this case we add setting up the proper environment for the system to

do all of the hard work automatically.

Syntax

By far, the easiest way to convert a number from one base to another is to use the type-
set command with the -ibase option. The typeset cominand is used a lot in this book,

mostly to force a character string to uppercase or lowercase and to classify a variable as

585

586 Chapter 23

an integer value. This time we are adding to the integer setting, specified by typeset -i
VAR_NAME, by adding the number base that the variable is to maintain. For example,

if the variable BASE_16_NUMis to always contain a hexadecimal number, then the next
command will set the variable’s environment:

typeset -i16 BASE_16_NUM

After the BASE_16_NUM variable is typeset to base 16, then any value assigned to

this variable is automatically converted to hexadecimal. We can also typeset a variable

after a number has been assigned. This applies not only to base 10 numbers, but also to

any base number up to the system limit, which is at least base 36. Let’s look at some

examples of converting between bases.

Example 23.1: Converting from Base 10 to Base 16

[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=47295

{root@yogi:/scripts]> echo $SBASE_16_NUM

16#b8bf

Notice the output in Example 23.1. The output starts out by setting the number base

that is represented, which is base 16 here. The string after the pound sign (#) is the
hexadecimal number, b8bf£. Next we want to convert from base 8, octal, to base 16,

hexadecimal. We use the same technique, except this time we must specify the number

base of the octal number in the assignment, as shown in Example 23.2.

Example 23.2: Converting from Base 8 to Base 16

[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=8#472521

[root@yogi:/scripts]> echo $BASE_16_NUM

16#735c9

In Example 23.2 notice that we assigned the octal number 472521 to the

BASE_16_NUM variable by specifying the number base followed by the base 8 number,

BASE_16_NUM=8#472521. When this base 8 number is assigned to the

BASE_16_NUM variable it is automatically converted to base 16. As you can see, the
system can do the hard work for us.

In Unix there is never just one way to accomplish a task, and number base conver-

sions are no exception. We can also use the printf command to convert between num-
ber bases. The printf command accepts base 10 integer values and converts the
number to the specified number base. The following options are available:

m o Accepts a base 10 integer and prints the number in octal

m= x Accepts a base 10 integer and prints the number in hexadecimal

Let’s look at two examples of using the printf command.

Scripts for Number Base Conversions 587

Example 23.3 Converting Base 10 to Octal

[root@yogi:/scripts]> printf %o 20398

47656

In Example 23.3 notice the added percent sign (%) before the printf command

option. This % tells the printf command that the following lowercase o is a number
base conversion to octal.

Example 23.4 Converting Base 10 to Hexadecimal

[root@yogi:/scripts]> printf %x 20398

4fae

Although not as flexible as the typeset command the printf command allows you to do

base conversions from base 10 to base 8 and base 16. I like the extra flexibility of the type-

set command, so this is the conversion method that we are going to use in this chapter.

Scripting the Solution

The most common number base conversion that computer science people use is con-

versions between base 2, 8, 10, and 16. We want to be able to convert back and forth

between these, and other, bases in this chapter. To do this conversion we are going to

create four shell scripts to show the flexibility, and use, of number base conversions.

The following shell scripts are covered:

m Base 2 (binary) to base 16 (hexadecimal) shell script

m Base 10 (decimal) to base 16 (hexadecimal) shell script

m Script to create a software key based on the hexadecimal representation of an IP

address

m Script to translate between any number base

We have a lot to cover in this chapter, but these shell scripts are not too difficult to

follow. I hope you pick up a few tips and techniques in this chapter, as well as the

whole book.

Base 2 (Binary) to Base 16 (Hexadecimal) Shell Script

This is the first conversion that most computer science students learn in school. It is

easy enough to do this conversion with a pencil and paper, but, hey, we want automa-

tion! This shell script to convert from binary to hexadecimal uses the typeset technique,

as all of these scripts use. You know the basic principle of the conversion, so let’s

present the shell script and cover the details at the end. The equate_base_2_to_16

. ksh shell script is shown in Listing 23.1.

588 Chapter 23

#!/usr/bin/ksh

SCRIPT: equate_base_2 to_16.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2.P

PURPOSE: This Script is used to convert a base 2 number

to a base 16 hexadecimal representation.

This script expects that a base 2 number

is supplied as a single argument.

EXIT: CODES:

0 - Normal script execution

1 - Usage error

REV DIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

He OSE OSE OE OEE HE HEHEHE HE OH OH OH OH HK OH HK HF KE HF

SCRIPT_NAME=*basename $0~

function usage

{

echo "\nUSAGE: $SCRIPT_NAME {base 2 number}"

echo "\nEXAMPLE: $SSCRIPT_NAME 1100101101"

echo "\nWill return the hexadecimal base 16 number 32d"

echo" \n\ie = | EXELENG oo \n”

Check for a single command-line argument

if (($# != 1))
then

echo "\nERROR: A base 2 number must be supplied..."

usage

exit 1

fa:

Check that this single command-line argument is a binary number!

case $1 in

+([0-1])) BASE_2 NUM=$1

*) echo "\nERROR: $1 is NOT a base 2 number"

usage

CxtE 2

Listing 23.1 equate_base_2_to_16.ksh shell script listing.

Scripts for Number Base Conversions 589

esac

: }
Assign the base 2 number to the BASE_16 NUM variable

BASE_16_NUM=$ ((2#${BASE_2 NUM}))

Now typeset the BASE 16 NUM variable to base 16.

This step converts the base 2 number to a base 16 number.

typeset -i16 BASE 16 NUM

Display the resulting base 16 representation

echo SBASE_16 NUM

Listing 23.1 equate_base_2_to_16.ksh shell script listing. (continued)

In Listing 23.1 all of the real work is done with three commands. The rest of the code

is for testing the user input and providing the correct usage message when an error is

detected. Two tests are performed on the user input. First, the number of command-

line arguments is checked to ensure that exactly one argument is supplied on the com-

mand line. The second test is to ensure that the single command-line argument is a

binary number. Let’s look at these two tests.

The $# shell variable shows the total number of command-line arguments, with the

command itself being in the $0 position, and the single command-line argument rep-

resented by the positional parameter $1. For this shell script the value $# shell variable

must be equal to 1, one. This test is done using the mathematical test shown here.

UE CCS Y= 92)

then

echo "\nERROR: A base 2 number must be supplied..."

usage

exter

peak

The second test is to ensure that a base 2 number is given on the command line. For

this test we use a good ole regular expression. You have to love the simplicity of mak-
ing this type of test. Because a binary number can consist only of 0, zero, or 1, one, it is

an easy test with a regular expression. The idea is to specify a valid range of characters

that can make up a binary number. The tests for decimal and hexadecimal are similar.
The regular expression that we use is used in the case statement shown here.

case Sl an

+({0-1])) BASE_2_ NUM=$1

ra

590 Chapter 23

*) echo "\nERROR: $1 is NOT a base 2 number"

usage

exit 1

esac

The regular expression shown here has the form + ([0-1]) and is used as a test for

the specified valid range of numbers 0 through 1. If the range is valid, then we assign

the binary number to the BASE_2_NUM variable. We will look at more regular expres-

sions later in this chapter.

When we are satisfied that we have valid data we are ready to do the number base

conversion. The first step is to assign the binary number that was supplied on the com-

mand line to the BASE_16_NUM variable. Notice that thus far we have not typeset any

of the variables, so the variable can contain any character string. It is how we assign the

binary number to the BASE_16_NUM variable that is important. When the binary value
is assigned to the variable the current number base is specified, as shown here.

BASE_16_NUM=S ((2#${BASE_2_NUM}))

Notice in this assignment that the BASE_2_NUM variable is preceded by the number

base, which is base 2 in this case. This allows for the number to be assigned to the

BASE_16_NUM as a base 2 number. The base translation takes place in the next step

where we typeset the variable to base 16, as shown here.

typeset -i16 BASE_16_NUM

With the BASE_16_NUM variable typeset to base 16, specified by the -i16 argu-

ment, the binary number is translated to hexadecimal. We could just as easily typeset
the BASE_16_NUM variable at the top of the shell script, but it really does not matter.

Base 10 (Decimal) to Base 16 (Hexadecimal) Shell Script

This shell script is very similar to the shell script in the previous section. We are really

changing just the tests and the conversion values. Other than these few changes the two
shell scripts are identical. Again, I want to present the shell script and cover the details

at the end. The equate_base_10_to_16.ksh shell script is shown in Listing 23.2.

#!/usr/bin/ksh

SCRIPT: equate _base_10_ to _16.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2-P

PURPOSE: This script is used to convert a base 10 number

to a base 16 hexadecimal representation. 4b 4k 4k 4k Sk Gk 4k +

Listing 23.2 equate_base_10_to_16.ksh shell script listing.

Scripts for Number Base Conversions 591

This script expects that a base 10 number
is supplied as a single argument.

)

EXIT CODES:

0 - Normal script execution

1.\-\ Usage (error

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

SCRIPT_NAME="basename $0°

function usage

{

echo "\nUSAGE: $SCRIPT_NAME {base 10 number}"

echo "\nEXAMPLE: S$SCRIPT NAME 694"

echo “\nWill return the hexadecimal number 2b6"

echo "\n\t...BXITING...\n"

}

Check for a single command-line argument

if (($# != 1))

then

echo "\nERROR: A base 10 number must be supplied..."

usage

exit 1

fy

Check that this single command-line argument is a base 10 number!

case $1 in

+([0-9])) BASE.10_NUM=$1

*) echo. "\MERROR: $1 is’ NOT a base \10 number"

usage

exit 1

esac

Assign the base 10 number to the BASE _16 NUM variable

BASE_16_NUM=$((10#${BASE_10_NUM}))

Now typeset the BASE_16_NUM variable to base 16.

Listing 23.2 equate_base_10_to_16.ksh shell script listing. (continues)

592 Chapter 23

This step converts the base 10 number to a base 16 number. ~

typeset -i16 BASE_16 NUM

Display the resulting base 16 number representation

echo $BASE_16_NUM

This following code is optional. It removes the number base

prefix. This may be helpful if using this script with

other programs and scripts.

Strip out the base prefix and the pound sign (#). (Optional)

4

echo $BASE_16_ NUM | grep -q "#"

if (($? == 0))

then

echo $BASE_16_NUM | awk -F ‘#' '{print $2}'

else

echo $BASE_16 NUM

fi

Listing 23.2 equate_base_10_to_16.ksh shell script listing. (continued)

In Listing 23.2 we have a few things to point out. First, notice the usage function
and how we use the extracted name of the shell script directly from the system, speci-

fied by SCRIPT_NAME=*basename $0°. This is command substitution using back

tics, which are located in the upper left corner of a standard keyboard under the ESC-

key. Using this technique is equivalent to using the dollar parentheses method, specified
by $ (command), as we use in most chapters in this book. Notice in the assignment that

the basename $0 command holds the name of the shell script. We always want to
query the system for a script name in the main body of the shell script, before it is used

in a usage function. If we use the basename $0 command in the function the response

would be the name of the function, not the name of the shell script. We never want to

hard-code the script name because someone may change the name of the shell script in
the future.

The next thing that I want to point out is the change made to the regular expression.

Before, we were testing for a binary number, which can consist of only 0 and 1. This

time we are testing for a decimal number, which can consist of only numbers 0 through
9. The new regular expression is shown here.

case $1 in

+([0-9])) BASE _10_NUM=$1

*) echo "\nERROR: $1 is NOT a base 10 number"

usage

Scripts for Number Base Conversions 593

excite J

esac

In this case statement we are testing the ARG[1] variable, represented by the $1 posi-
tional parameter. This regular expression will assign $1 to the BASE_10_NUM variable
only if the characters are numbers between 0 and 9. If any other character is found in
this character string, then an ERROR message is displayed and the usage function is
called before the script exits with a return code of 1, one.

In the assignment of the base 10 number to the BASE_16_NUM variable notice the
change in the variable assignment as shown here.

BASE_16_NUM=$§ ((10#$ {BASE_10_NUM}))

Notice that the $ {BASE_10_NUM} variable is preceded by number base representa-
tion, 10#. Because this is a decimal number we really did not need to do this, but to be

consistent it was added.
The last thing that I want to point out is the optional code at the end of the shell

script in Listing 23.2. If you are using this shell script with other programs or shell

scripts to produce number base conversions, then this optional code strips out the

number base prefix. Look at the code segment shown here.

Strip out the base prefix and the pound sign (#). (Optional)

=

echo $BASE_16_NUM | grep -q "#"

oa

if (($? == 0))

then

echo $BASE_16_NUM | awk -F '#' '{print $2}'

else

echo $BASE_16_NUM

fi

This code is commented out, but let’s look at what it does. The purpose is to remove

the base number prefix and leave only the number alone, which implies that you must
have some built-in logic to know the number base in which the number is represented.
The first step is to test for the existence of a pound sign (#). We do this by printing the
variable with the echo command and piping the output to a grep statement, using the

quiet option -q. This command does not produce any output to the screen, but we test

the return code to see if a pattern match was made. If the return code is 0, zero, then a

match was made and there is a pound sign in the string. Because we want to display

everything after the pound sign (#) we use this pound sign as a field separator. To split

the string and leave only the number, which will be in the second field now, we can use

either cut or awk. Let’s use awk for a change of pace. To do field separation with awk

we use the -F switch, followed by the character(s) that represent a separation of the

fields, which is the # here. Then we just print the second field, specified by the $2 posi-

tional parameter, and we are left with the number alone. If you use this optional code

segment, always remember to keep track of the current number base and comment out

the echo statement that precedes this code block.

594 Chapter 23

Script to Create a Software Key Based on the
Hexadecimal Representation of an IP Address

With the techniques learned in the last two shell scripts let’s actually do something that

is useful. In this section we are going to create a shell script that will create a software

license key based on the IP address of the machine. To tie the license key to the machine
and the software we are going to convert each set of numbers in the machine's IP

address from decimal to hexadecimal. Then we are going to combine all of the hexa-

decimal numbers together to make a license key string. This is pretty primitive, but it

is a good example for using base conversions. Again, let’s look at the code and go

through the details at the end. The mk_swkey. ksh shell script is shown in Listing 23.3.

#!/usr/bin/ksh

SCRIPT: mk_swkey.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV <1 22222

PURPOSE: This script is used to create a software

license key based on the IP address of the

system that this shell script is executed on.

The system is queried for the system's IP

address. The IP address is stripped of the

dots (.), and each number is converted to

hexadecimal. Then each hex string is combined

into a single hex string, which is the software

license key.

REV LIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

SF $F HF OH OH OH OH OH OH OH UK OH OH HH HH HH OH OH OH OH HH TH

HHEHHHHHEEHEEHEEHEEHHEAHEREEESHEESERPHEEPHEPHHESHHEEHESHRE SHEESH

HHHFHHHHHHEHHHHEH DEFINE FUNCTIONS HERE ####### #4 FHHHHHHHEEEHHH

HHHHEFHHEHHESHEPHHEPHEHHEPEEEPEEPHEPHHEPHHEHHEEHHEHHHP HHH EH HH

function convert base 10 to 16

{

set -x # Uncomment to debug this function

typeset -i16 BASE 16 NUM

BASE_10_NUM=$1

BASE_16_NUM=$((10#${BASE_10 NUM}))

Listing 23.3. mk_swkey.ksh shell script listing.

Scripts for Number Base Conversions 595

Strip the number base prefix from the hexadecimal

number. This prefix is not needed here.

echo $BASE_16 NUM | grep -q '#!

LE OCS 2 ==0))

then

echo $BASE_16_NUM | awk -F '#' ‘{print $2}!

else

echo S$BASE_16_NUM

fi

:

FHHPHRERPE EERE EERE ARRAS EERE E REE ERE EEER HARE RRA EH ASEH HE HHH

HHHHHHHEEREREHEE HEH BEGINNING OF MAIN ######HHEHHEHHEREEH EEE EEE

PREG RRR HEE RHEE EEE EE EERE BAER EEE ERE HERES RE EHH EHH HE HH

Query the system for the IP address using the "host $ (hostname) "

command substitution.

IP=$(host $(hostname) | awk '{print $3}' | awk -F ',' '{print $1}')

Field delimit the IP address on the dots (.) and assign each

number to a separate variable in a “while read" loop.

echo $IP | awk -F '.' '{print $1, $2, $3, $4}' | while read a bc d junk

do 2

Convert each of the numbers in the IP address

into hexadecimal by calling the "“convert_base_10_to 16”

function.

FIRST=$ (convert _base 10 to_16 $a)

SECOND=$ (convert base 10 to_16 $b)

THIRD=S$ (convert_base_10_to_16 $c)

FORTH=$ (convert _base 10 to 16 $d)

done

Combine all of the hexadecimal strings into a single

hexadecimal string, which represents the software key.

echo "${FIRST}${SECOND}${THIRD}$ {FORTH} "

Listing 23.3 mk_swkey.ksh shell script listing. (continued)

In the script in Listing 23.3 we are actually doing something useful—at least if you

license your own software this script is useful. To start this shell script off we converted

the base 10 to base 16 code into a function called convert_base_10_to_16. This

allows us to call the function four times, one for each piece of the IP address. In this

596 Chapter 23

function I want you to notice that we typeset the BASE_16_NUM variable to base 16 at
the top of the function, as opposed to the bottom in the previous shell script. It does not
make any difference where it is set as long as it is set before the value is returned to the

main body of the shell script, or displayed.
Also, the optional code segment that was commented out on Listing 23.2 is now

used in this shell script. In this case we know that we are converting to a hexadecimal

number, and we do not want the number base prefix to appear in the software license
key. We use the following code segment to remove the prefix from the output.

Strip the number base prefix from the hexadecimal

number. This prefix is not needed here.

echo $BASE_16_NUM | grep -q '#'

ine (Se == ©),

then

echo $BASE_16_NUM | awk -F '#' '{print $2}'

else

echo SBASE_16_NUM

‘fal

Notice the silent execution of the grep command using the -q command switch.

Then, if a pound sign is found, the awk statement uses the # as a field delimiter by

specifying the -F '#' switch, and then the second field is extracted. This is the value

that is returned back to the main body of the shell script from the conversion function.
At the BEGINNING_OF_MAIN we start out by querying the system for the system’s

IP address using the following command:

IPp=$(host $(hostname) | awk '{print $3}' | awk -F ',' '{print $1}')

Let’s step through each part of this command. On my system I pulled an IP address

out of the air for this demonstration. On the yogi machine the command substitution
host $(hostname) results in the following output:

[root:yogi]@/scripts# host $ (hostname)

Vogts! Lose l55e204242),

From this output you can see that the fictional IP address is located in the third field,
163.155.204.42,. Notice that I have an extra comma (,) tacked on to the end of the

IP address, which we do not want included. After we extract the third field from the com-

mand output we pipe this result to an awk statement (the cut command will do the same

thing here). In the awk part of the statement we set the field delimiter to the comma (,)

that we want to get rid of, using the -F_', ' notation. Now that the string is field delim-
ited on the comma we just extract the first field, which is the IP address alone. This result
is then assigned to the IP variable using command substitution.

Now that we have the whole IP address we can chop it up into a series of four
numbers. Once we have four individual numbers we can convert each of the decimal
numbers into their hexadecimal equivalent. To separate the IP address into separate

individual numbers we can use cut, sed, or awk. For consistency let’s keep using awk.
This time we field delimit the string, which is an IP address, using the dots (.) and then

Scripts for Number Base Conversions 597

use the print argument for the awk command to print each of the four fields. At this
point we are left with the following four numbers:

163 155 204 42

Now we have some numbers to work with. Because we want to work on each

number individually, we pipe this output to a while read loop and assign each of the

four numbers to a separate variable. Then, inside of the loop, we convert each decimal

number into hexadecimal. The entire command statement is shown here.

echo SiPy | awk —Pa' os’ {print si copmss ie o4} salmewhilesread sash acc umnk

Notice the final variable at the end of the while statement, junk. I added this as a

catch-all for anything that may be tacked on to the previous pipe outputs. It does not
matter if there is anything to capture, but if there are “extra” field(s) the junk variable
will catch everything remaining in the output. Other than this, each of the four fields is

stored in the variables a,b, c, and d.

Inside of the while read loop we call the conversion function four times, once for

each variable, as shown here:

FIRST=S$ (convert_base_10_to_16 $a)

SECOND=S$ (convert_base_10_to_16 $b)

THIRD=$ (convert_base_10_to_16 $c)

FOURTH=S (convert_base_10_to_16 $d)

The result of these four function calls is the assignment of the hexadecimal values to

four new variables, FIRST, SECOND, THIRD, and FOURTH. Now that we have the hexa-

decimal values all we need to do now is combine the hex strings into a single string.
The combination is shown here.

echo "${FIRST}${SECOND}${THIRD}$ {FOURTH} "

The resulting output from the IP address that I pulled out of the air for temporary

use (163.155.204.42) is shown next.

[root:yogi]@/scripts# ./mk_swkey.ksh

a39bcec2a

This hexadecimal string is the software license that is tied to the IP address.

Script to Translate between Any Number Base

So far we have been working in a restricted environment with limited ability to switch

between number bases. This script will convert any number to any number base within

the limits of the system. The base conversions availability is to base 36 at least, and

some systems may go higher. Iam not sure what you would do with a base 36 number,

but you can make one if you want to.

In this script we rely on two command-line switches, each requiring an argument,

and the “number” to convert. The two switches are -f {Starting Number Base, or

598 Chapter 23

From:} and -t {Ending Number Base, or To:}. These two parameters tell the shell script

what number base we are converting from and what number base we want to convert
the number to, which is where the -f and -t command-line switches came from. This is

another shell script that needs to be presented first, and we will cover the details at the

end. The equate_any_base.ksh shell script is shown in Listing 23.4.

#!/usr/bin/ksh

SCRIPT: equate_any_base.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2.72

PURPOSE: This script is used to convert a number to any

supported number base, which is at least base 36.

This script requires that two command-line

arguments and the "number" to be converted

are present on the command line. An example

number base conversion is shown here:

equate_any_base.ksh -f16 -t2 e245c

2#11100019010001011100

This example converts the base 16 number, e245c, to

the base 2 equivalent, 2#11100010010001011100.

The 2#, which precedes the binary number, shows

the base of the number represented.

EXIT CODES:

0 - Normal script execution

1 - Usage error

set -x # Uncomment to debug this shell script

set -n # Uncomment to check syntax without any execution

ee i I a ee ee ee ee

HHEHHHRRRREREERPREREEEAERREREEEEPR EERE EPP REEEARPE RHEE

FHEHHHEPHHEE HEH DEFINE VARIABLES HERE ########4¢4##H##

HEPEEERERERERREE EER RRP RRRRRSRRRREERREREREERHRASE EEE

SCRIPT NAME=$(basename $0)

COUNT=0

MAX COUNT=$#

HHPHEEPHEEREEEREEEPEREEEEPHPERPPEEPEEEPHEEEEHE HEHE HHH HH

HHFPHEEEHHEEHEE DEFINE FUNCTIONS HERE ###H## HEHEHE EEE

HEPHEEPPEEREHEER TEER EEEE EE EEEEPPEEEEEEPSEEEREE HEE EH EE

function usage

{

Listing 23.4 equate_any_base.ksh shell script listing.

Scripts for Number Base Conversions 599

echo "\n\t***USAGE ERROR***”

echo "\nPURPOSE: This script converts between number bases"

echo "\nUSAGE: S$SCRIPT_NAME -f£{From base#} -t{To base#} NUMBER"

echo "\nEXAMPLE: $SCRIPT_NAME -f£16 -t10 fc23”

echo "\nWill convert the base 16 number fc23 to its"

echo "decimal equivalent base 10 number 64547"

SCHOEN Eee CE ENG oy Nae

HHEPHEEEEPE EERE RR PERE REPRE RRERE ERR E RRR ER RRR E ERR EERE

HtHHHHHHH CHECK COMMAND LINE ARGUMENTS HERE ####H### #4

PRAEGER ER EER EERE HH HH ERE HERG RHE EE aH EEE EH EH

The maximum number of command line arguments is five

and the minimum number is three.

if (($# > 5))

then

echo "\nERROR: Too many command line arguments\n”

usage

exit 1

elif (($# < 3))

then

echo "\nERROR: Too few command line arguments\n"

usage

exit 1

£i

Check to see if the command line switches are present

echo $* | grep -q '\-£' || (usage; exit 1)

echo $* | grep -q '\-t' || (usage; exit 1)

Use getopts to parse the command line arguments

while getopts ":f:t:" ARGUMENT

do

case SARGUMENT in

f) START BASE="SOPTARG"

t) END BASE="SOPTARG"

\?) usage

exit dL

esac

done

Ensure that the START BASE and END_BASE variables

Listing 23.4 equate_any_base.ksh shell script listing. (continues)

600 Chapter 23

are not NULL.

if { -z "SSTART BASE"] || ["SSTART BASE" = '*] \

|| € -z "$END_BASE" } || ["SEND_BASE" = '']
then

echo "\nERROR: Base number conversion fields are empty\n"

usage :

exit 1

£2.

Ensure that the START BASE and END BASE variables

have integer values for the number base conversion.

case $START BASE in

+([0-9])) : # Do nothing - Colon is a no-op.

*) echo "\nERROR: $START_ BASE is not an integer value"

usage

exited

esac

case SEND BASE in

+([0-9])) : # Do nothing - Colon is a no-op.

*) echo "\nERROR: $END_BASE is not an integer value"

usage

exit 1

esac

HHRRERRRRR AREER HAE EE EE EERA ARREARS EAHA EHAR EAE RHEE

HHHHHEPEHEREEHEHE BEGINNING OF MAIN ######4FHEHHEHEEEHH SH

FEHHPREPREERE EERE ETHER ER EREEEEEERHEERHHEEHH EH HHH HHH HH

Begin by finding the BASE NUM to be converted.

Count from 1 to the max number of command line arguments

while ((COUNT < MAX COUNT))

do

((COUNT == COUNT + 1))

TOKEN=$1

case $TOKEN in

-£) shift; shift

((COUNT == COUNT + 1))

-f£${START_BASE}) shift

we

Listing 23.4 equate_any_base.ksh shell script listing.

Scripts for Number Base Conversions 601

-t) shift; shift

((COUNT ==" COUNT ah))N)

-t${END_BASE}) shift

*) BASE_NUM=$TOKEN

break

esac

done

Typeset the RESULT variable to the target number base

typeset -iSEND_BASE RESULT

Assign the BASE _NUM variable to the RESULT variable

and add the starting number base with a pound sign (#) +e

as a prefix for the conversion to take place.

NOTE: If an invalid number is entered a system error

will be displayed. An example is inputting 1114400 as

a binary number, which is invalid for a binary number.

RESULT="${START_BASE}#$ {BASE_NUM}"

Display the result to the user or calling program.

echo "$RESULT"

End of seript.: .

Listing 23.4 equate_any_base.ksh shell script listing. (continued)

Please stay with me here! This script in Listing 23.4 is really not as difficult as it

looks. Because we are requiring the user to provide command-line arguments we need

to do a lot of testing to ensure that we have good data to work with. We also need to
give the user good and informative feedback if a usage error is detected. Remember,
always let the user know what is going on. Keeping the user informed is just good

script writing!

Let’s start at the top of the equate_any_base.ksh shell script and work our way

through the details. The first thing we do is to define three variables. The

$SCRIPT_NAME variable points to the name of this shell script. We need to query the

system for this script name for two reasons. First, the name of the script may change in
the future; second, the SCRIPT_NAME variable is used in the usage function. If we had

executed the basename $0 command inside of the usage function we would get the

name of the function instead of the name of the shell script. This is an important point to

make. We need to know where the scope lies when referring to positional parameters,

602 Chapter 23

$0 in this case. When we refer to positional parameters in the main body of a shell script
then the position parameters are command-line arguments, including the name of the

shell script. When we refer to positional parameters inside of a function then the scope
of the positional parameters lies with the arguments supplied to the function, not the
shell script. In either case, the name of the shell script, or function, can be referenced by

the basename $0 command.
The next two variables definitions, COUNT=0 and MAX_COUNT=$#, are to be used to

parse through each of the shell scripts command-line arguments, where $# represents

the total number of command-line arguments of the shell script. We will go into more

detail on these two variables a little later.

In the next section we define any functions that we need for this shell script. For this
shell script we need just a usage function. If you look at this usage function, though,

we have a good deal of information to describe how to use the shell script in Listing

23.4. We state the purpose of the shell script followed by the USAGE statement. Then
we supply an example of using the shell script. This really helps users who are not

familiar with running this script.
As I stated before, we need to do a lot of checking because we are relying on the user

to supply command-line arguments for defining the execution behavior. We are going

to do seven independent tests to ensure that the data we receive is good data that we

can work with.

The first two tests are to ensure that we have the correct number of command-line

arguments. For the equate_any_base.ksh shell script the user may supply as few

as three arguments and as many as five arguments. This variation may sound a little

strange, but when we go to the getopts command it will be intuitively obvious. For

testing the number of arguments we just use an if..then..elif..fi structure where we test

the $# shell parameter to make sure that the value is not greater than five and is not less
than three, as shown here.

Bee (CS tts 5)) 9)

then

echo "\nERROR: Too many command-line arguments\n"

usage

exit 1

ln EG (Sites)

then

echo "\nERROR: Too few command-line arguments\n"

usage

exit 1

feat

Using getopts to Parse the Command Line

Now we get to use getopts to parse through each command-line switch and its argu-

ments. The getopts command recognizes a command switch as any character that is

preceded by a hyphen (-)—for example, -f and -t. The getopts command really does

not care what is on the command line, unless it is a command switch or its argument.

Let’s look at a couple of examples of command-line arguments so I can clear the mud.

Scripts for Number Base Conversions 603

Example 23.5 Correct Usage of the
equate_any_base.ksh Shell Script

[root:yogi]@/scripts# ./equate_any_base.ksh -f£ 2 -t16 10110011110101

Notice in Example 23.5 the use of the two command switches, -£ 2 and -t16. Both

of these are valid because getopts does not care if there is a space or no space between
the switch and the switch-argument, and the order of appearance does not matter
either. As you can see in Example 23.5, we can have as few as three command-line
arguments if no spaces are used or as many as five if both command switches have a
space between the command switch and the switch-argument.

Example 23.6 Incorrect Usage of the
equate_any_base.ksh Sheil Script

[root:yogi]@/scripts# ./equate_any_base.ksh -i -f 2 -t 16 10110011110101

In Example 23.6 we have an error condition in two different ways. The first error is

that there are six command-line arguments given to the equate_any_base.ksh

shell script. The second error is that there is an undefined command switch, -i, given

on the command line. This is a good place to go through using getopts to parse a
defined set of command-line switches and arguments.

The purpose of the getopts command is to process command-line arguments and
check for valid options. The getopts command is used with a while loop and has an

enclosed case statement to let you take action for each correct and incorrect argument
found on the command line. We can define command-line switches to require an argu-

ment, or the switch can be defined as a standalone command switch. The order of the

switch does not matter, but if the switch is defined to require an argument then the
switch-argument must follow the switch, either with or without a space. When getopts

finds a switch that requires an argument, the argument is always assigned to a variable

called OPTARG. This variable allows you to assign the switch argument value to a use-

ful variable name to use in the shell script. Let’s look at the getopts definition that is

used in this shell script.

while getopts ":f:t:" ARGUMENT

do

case SARGUMENT in

f) START_BASE="SOPTARG"

t) END_BASE="SOPTARG"

\?) usage

exit, 1

604 Chapter 23

There are two parts to the getopts definition. The first is the while loop that contains
the getopts statement, and the second is the case statement that allows you to do some-

thing when a valid or invalid switch is found. In the while loop we have defined two
valid command switches, -f and -t. When you define these you do not add the hyphen

(-) in the case statement, but it is required on the command-line. Notice the colons (:)

in the definitions. The beginning colon specifies that when an undefined switch is
found—for example, -i—then the invalid switch is matched with the question mark (?)

in the case statement. In our case we always run the usage function and immediately

exit the shell script with a return code of 1, one. Also notice that we escaped the ? with
a backslash (\?). By escaping the ? character (\?) we can use the ? as a regular char-

acter without any special meaning or function.

When a colon (:) is present after a switch definition it means that the switch must

have an argument associated with it. If the switch definition does not have a colon after

it, then the switch has no argument. For example, the statement getopts ":t:f:i" defines

-t and -f as command-line switches that require an argument and -i as a switch that has
no argument associated with it.

When a switch is found, either defined or undefined, it is assigned to the ARGUMENT

variable (you can use any variable name here), which is used by the case statement. For

defined variables we need a matching match in the case statement, but for undefined

switches the ARGUMENT is assigned ? if the getopts definition begins with a colon (:).

Additionally, when a defined switch is found that requires an argument then the

argument to the switch is assigned to the OPTARG variable (you cannot change this

variable name) during the current loop iteration. This is the mechanism that we use to

get our from and to number base definitions, START_BASE and END_BASE, for the

equate_any_base.ksh shell script.

Continuing with the Script

As I stated before, getopts does not care what is on the command line if it is not a com-

mand switch or a switch argument. So, we need more sanity checks. The next test is to

ensure that both -f and -t command-line switches are present on the command-line as
arguments. We must also check to ensure that the START_BASE and END_BASE vari-
ables are not empty and also make sure that the values are integers. We can do all of
these sanity checks with the code segment in Listing 23.5.

Check to see if the command line switches are present

echo $* | grep -q '\-f'

echo $* | grep -q '\-t'

(usage; exit 1)

; exit 1)

|
| =~ [=] a » Q o ss

Use getopts to parse the command line arguments

while getopts ":£:t:" ARGUMENT

do

case S$ARGUMENT in

Listing 23.5 Code segment to verify number base variables.

Scripts for Number Base Conversions 605

£) START_BASE="SOPTARG"

t) END_BASE="SOPTARG"

\?) usage

exit 1

esac

done

Ensure that the START BASE and END BASE variables

are not NULL.

if [-z "$START_BASE"] || ["$START_BASE" = '']} \

|| £ -z "SEND_BASE"] || ["$END_BASE" = '']
then :

echo "\nERROR: Base number conversion fields are empty\n"

usage

exit 1

£7

Ensure that the START_BASE and END_BASE variables

have integer values for the number base conversion.

case $START_BASE in

+([0-9])) :.-# Do nothing - Colon is a no-op.

*) echo "\nERROR: $START_BASE is not an integer value"

usage

exit 1

esac

case $END_BASE in

+({0-9])) =: # Do nothing - Colon is a no-op.

*) echo "\nERROR: S$END_BASE is not an integer value"

usage

exctd

esac

Listing 23.5 Code segment to verify number base variables. (continued)

Starting at the top in Listing 23.5 we first check to ensure that both -f and -t are

present as command-line arguments. Next the getopts statement parses the command
line and populates the START_BASE and END_BASE variables. After getopts we test

the START_BASE and END_BASE variables to ensure that they are not NULL. When

606 Chapter 23

you do have NULL value tests always remember to use double quotes ("$VAR_NAME")
around the variable names, or you will get an error if they are actually empty. This is

one of those hard-to-find errors that can take a long time to track down.

In the next two case statements we use a regular expression to ensure that the

$START_BASE and $END_BASE variables are pointing to integer values. If either one

of these variables is not an integer we give the user an informative error message, show

the correct usage by running the usage function, and exit the shell script with a return

code of 1, one.

Beginning of Main

At this point we have confirmed that the data that was entered on the command line is

valid so let’s do our number base conversion. Because we have all of the command

switches and switch-arguments on the command line, we actually need to find the

“number” that is to be converted between bases. To find our number to convert we

need to scan all of the command-line arguments starting with the argument at $1 and

continuing until the number is found, or until the last argument, which is pointed to by

the $# shell variable.

Scanning the command-line arguments and trying to find the “number” is a little

tricky. First the “number” may be in any valid number base that the system supports, so

we may have alphanumeric characters. But we do have one thing going for us: We know

the command switches and the integer values of the $START_BASE and $END_BASE

variables. We still need to consider that there may or may not be spaces between the com-

mand switches and the switch-arguments. Let’s think about this a minute. If a single

command-line argument is one of the command switches, then we know that the user

placed a space between the command switch and the switch-argument. On the other

hand, if a single command-line argument is a command-line switch and its switch-

argument, then we know that the user does not place a space between the command

switch and the switch-argument. By using this logic we can use a simple case statement

to test for these conditions. When we get to a command-line argument that does not fit
this logic test we have found the “number” that we are looking for.

Look at the code segment in Listing 23.6, and we will go into a little more detail at
the end.

Count from 1 to the max number of command-line arguments

while ((COUNT < MAX COUNT))

do

(COUNT: == COUNT + 2))

TOKEN=$1

case STOKEN in

=f) shift; shift

€(GOUNT == COUNT + 1))

-f£S{START BASE}) shift

Pot

Listing 23.6 Code segment to parse the command line. (continues)

Scripts for Number Base Conversions 607

St) (She ee sit

C(COUNT == COOMERA ty)

-t${END_BASE}) shift

*) BASE _NUM=STOKEN

break

esac

done

Listing 23.6 Code segment to parse the command line. (continued)

Remember that at the beginning of the shell script we defined the variables

COUNT=0 and MAX_COUNT=$#. Now we get a chance to use them. I also want to intro-

duce the shift command. This Korn shell built-in allows us to always reference the $1

command-line argument to access any argument on the command line. To go to the
next command-line argument we use the shift command to make the next argument,

which is $2 here, shift over to the $1 position parameter. If we want to shift more than

one position then we can either execute multiple shift commands or just add an inte-

ger value to the shift command to indicate how many positions that we want to shift

to the $1 position. Both of the following commands shift positional parameters two

positions to the $1 argument.

Shine, schuet

Shicttm

The idea in our case statement is to do one shift if a command-line switch with its

switch-argument is found at $1 and to shift two positions if a command-line switch is

found alone. We start with a while loop and increment a counter by one. Then we use
the TOKEN variable to always grab the value in the $1 position. We make the test to

check for a command-line switch alone or a command-line switch plus its switch argu-
ment. If the $1 positional parameter contains either of these, then we shift accordingly.

If the test is not matched, then we have found the number that we are looking for. So,
this is really not that difficult a test when you know what the goal is.

When we have found the “number,” which is assigned to the BASE_NUM variable,

we are ready to do the conversion between number bases. We do the conversion as we

did in the previous shell scripts in this chapter except that this time we use the variable

assignments of the START_BASE and END_BASE variable as number bases to start at

and to end with, as shown in the next command statement.

RESULT="$ {START_BASE} #$ {BASE_NUM}"

Let’s assume that the $START_BASE variable points to the integer 2, and the

$BASE_NUM variable points to the binary number 1101101011. Then the following com-

mand statement is equivalent to the previous statement.

608 Chapter 23

RESULT="2#1101101011"

The next step is to typeset the BASE_TO variable to the target number base. This is

also accomplished using the previously defined variable END_BASE, as shown here.

typeset -iSEND_BASE RESULT

Now let’s assume that the target number base, $END_BASE, is 16. The following

command statement is equivalent to the preceding variable statement.

typeset -i16 RESULT

The only thing left to do is print the result to the screen. You can use echo, print, or

printf to display the result. I still like to use echo, so this is the final line of the shell

script.

echo SRESULT

Other Options to Consider

As with all of the scripts in this book, we can always make some changes to any shell

script to improve it or to customize the script to fit a particular need.

Software Key Shell Script

To make a software key more complicated you can hide the hexadecimal representa-

tion of the IP address within some pseudo-random numbers, which we studied in

Chapters 10 and 21. As an example, add five computer-generated pseudo-random

numbers as both a prefix and a suffix to the hexadecimal IP address representation.

Then to verify the license key in your software program you can extract the hex IP

address from the string. There are several techniques to do this verification, and Iam

going to leave the details up to you as a little project.
This is the only modification that I can think of for this chapter.

Summary

We went through a lot of variations in this chapter, but we did hit the scripts from

different angles. Number base conversion can be used for many purposes, and we

wrote one script that takes advantage of the translation. Software keys are usually

more complicated than this script example, but I think you get the basic idea.

In the next chapter we are going to look at creating a menu that is suitable for your

operations staff because you rarely want the Operators to have access to the command
line. See you in the next chapter!

Menu Program Suitable
for Operations Staff

Oh yes, we can never forget about the Operations staff! A lot of us traveled along this

road in the beginning; I know I did back in the 1980s. These guys still do the grunt

work, but most of the time you do not want a beginning Operator to get near a com-
mand prompt for everyday tasks. The chance for small mistakes is too great with the
newcomers, but we must give them the ability to do their job.

This ability is easily given to the Operators by a menu that has all of the functionality
that they need to get the job done, and we might as well make it a nice-looking menu.

Some of the more common operations tasks include managing the print queues, man-
aging the backup tapes, and changing user passwords. There are many more tasks, but

this short list will get us started.

First, let’s set some expectations. Normally, this type of shell script is put in the

user’s $HOME/ .profile or other login configuration file, and when the user logs in

the menu is presented. When the user exits the menu the user is logged out immedi-

ately. Using this method we do our best not to let the user gain access to a command

prompt. Be careful! If a program like vi is in the menu, then all a user has to do is

escape out to a shell with a couple of key strokes and the user is at a command prompt.
Of course, if your Operators can find a way to get a command prompt, then just give it

to them!

609

610 Chapter 24

The techniques used in this chapter involve using reverse video, as we last saw in
Chapter 15 when we created the hgrep shell script. This time we will use reverse video

in a menu interface, again using the tput command options.

Reverse Video Syntax

To start off we want to give the menu a reverse video title bar across the top of the
screen. To refresh your memory, to turn on reverse video we use tput smso and to turn

off the highlight we use tput rmso. For this title bar we will use the system’s hostname
in the title. After the script is started we will remain in the menu until 99 (exit) is

entered as a menu selection. We also would like to highlight the menu options next to

the option label. The title bar is first.

clear # Clear the screen first

tput smso # Turn on reverse video

echo " $(hostname)\c" # 33 spaces

echou!! # 39 spaces

tput rmso # Turn off reverse video

In the preceding code block we first clear the screen for the menu using the clear
command. The second line will turn on the reverse video using the tput smso com-

mand. An echo statement that executes the Unix command hostname, as command

substitution, follows this. In both echo statements the blank spaces are highlighted, which

results in a bar across the top of the screen with the system’s hostname in the middle,

displayed in reverse video. Notice that before the hostname there are 33 spaces and after

the hostname there are 39 more spaces. This allows up to 8 characters for the hostname
in the middle of the title bar. You can adjust this spacing easily to suit your needs.

Creating the Menu

The next thing we want to do is display the menu options. For this step we want to

make the selection options appear in reverse video to the left of the option label. We will

again use command substitution, but this time to turn on and off the highlight within an

echo statement. The block of code shown in Listing 24.1 will handle this nicely.

echo "S$(tput smso)1$(tput rmso) - Tape Management "

echo "$(tput smso)2$(tput rmso) - Initialize New Tapes"

echo "$(tput smso)3$(tput rmso) - Dismount Tape Volume".

echo "$(tput smso)4$(tput rmso) - Query Volumes in Lebraeyt”

echo "$(tput smso)5$(tput rmso) - Query Tape Volumes" —

echo "$(tput smso)6$(tput rmso) - Audit Library/Check-in scratch

Volumes"

echo "$(tput smso)7$(tput rmso) - Print Tape Wolune saat pemece

echo "\n\n" # Print two blank lines

Listing 24.1 Reverse video menu options.

Menu Program Suitable for Operations Staff 611

echo "S$(tput smso)10$(tput: rmso) -— Change Password”

echo: \"S(itput smso) 11S \'tputrmsso) =" Rnable all Print Queues

echo "\n\n\n\n\n\n"

echo "$(tput smso)99$(tput rmso) - Logout\n"

Listing 24.1 Reverse video menu options. (continued)

Notice how the command substitution works in the echo statements. Highlighting

is turned on, the menu selection number is displayed, and reverse video is turned off,

then the selection label is printed in plain text.

Creating a Message Bar for Feedback

Another nice thing to have in our menu is a message bar. This can be used to display a
message for an invalid option selection and also can be used to display a message if we
want to disable a menu option. For this we want to set the message up to assume an

invalid selection, and we will blank the message variable out if we have valid input. In

case we want to disable an option in the menu we can comment out the commands that

we want to disable and put a disabled option comment in the message variable. The next

few lines of code, shown in Listing 24.2, will work to display the message bar.

Draw a reverse video message bar across bottom of screen,

with the error message displayed, if there is a message.

tput smso # Turn on reverse video

echo " S{MSG}\c" # 30 spaces

echo " # 26 Spaces

tput rmso # Turn off reverse video

Prompt for menu option.

echo. "Selection: \\c"

read OPTION

Assume the selection was invalid. Because a message is always

displayed we need to blank it out when a valid option

is selected.

MSG="Invalid Option Selected." # 24 spaces

Listing 24.2 Setting up the reverse video message bar.

612 Chapter 24

This message bar works the same as the title bar. The text message pointed to by $MSG
is displayed in the middle of the message bar. Notice that we are assuming an invalid

option was entered as the default. If we have valid input we need to replace the text in

the $MSG variable with 24 blank spaces, for a total of 80 characters. This way we have

only a highlighted bar, without any text, across the screen. We do this in each option of
the case statement that is used to process the menu selections. The entire shell script is

shown in Listing 24.3. See how menu option 5 is disabled in the ease statement.

#1! /usr/bin/ksh

SCRIPT: operations _menu.ksh

AUTHOR: Randy Michael

DATE: 09-06-2001

REV 2.0.P

PLATFORM: Any Unix OS, with modifications

PURPOSE: This script gives the operations staff an easy-

to-follow menu to handle daily tasks, such

as managing the backup tapes and changing

their password

REV List:

set -n # Uncomment to check script syntax without any | execution —.

set -x # Uncomment to debug this script a

$e SE Se OE HEHEHE HEHEHE HEH HE OH OH OH OHO OTH

HEPHHAHHAPHAAHAHAAHHAGEAAARARAPRRERAEHEEREEE HEE

####4### DEFINE FILES AND VARIABLES HERE ####4##

HERA HH EE HEH HHH HH HEE REE RE EEE HEH HH EH HHH HH

BINDIR="/usr/local/bin"

PASSWORD_SERVER="yogi"

THIS _HOST=$ (hostname)

HHEEHRHRE PERTH GREE G RHEE HE EAHA HERES HSH HEH HHH

H#HHHHHHHEH INITIALIZE VARIABLES HERE ######## #4

HRA RH HH HE EH EH HE HHA EAA HS HHH HHH SE HHH

MSG=")
OPT=" " # Variable for menu selection

HERHHEPEEEEEREEEEEEREEEEEERERREPEEHEERRRHE EEE RH

HEHHHHEHEHEPHEHE SET A TRAP HERE ####HHHHPREEHEEH

Listing 24.3. operations_menu.ksh shell script listing.

Menu Program Suitable for Operations Staff 613

HHEHTHRPR HERE RH HHHEHP HERE RHR ER EHHRE HEHEHE HH HH

trap ‘echo "\nEXITING on a TRAPPED SUGNAD Es \
)

Ske GM da auigs

HHHHHPREREHHRPHHAH THERE RRR HARHHERER HEHEHE RHE HH

HHTHHHHTHHHEH BEGINNING OF MAIN ###H#### HHH HHHHH

HHHHTTTHHEPREERHERPERPHRRE RHE PHE HHH RPAH HH HH

Loop until option 99 is Selected

We use 99 as a character instead of an integer

in case a user enters a non-integer selection,

which would cause the script to fail.

while [[S$OPT != 99 }]

do

Display a reverse video image bar across the top

of the screen with the hostname of the machine.

clear # Clear the screen first

tput smso # Turn on reverse video

echo ” S(INTS HOST hes

echo " He

tput rmso # Turn off reverse video

echo "\n" # Add one blank line of output

Show the menu options available to the user with the

numbered options highlighted in reverse video -

$(tput smso) Turns ON reverse video

$(tput rmso) Turns OFF reverse video

echo "$(tput smso)1$(tput rmso) - Tape Management"

echo "$(tput smso)2$(tput rmso) - Label Tapes”

echo "$(tput smso)3$(tput rmso) - Query Volumes in Library"

echo "$(tput smso)4S(tput: rmso) - Query Tape Volumes"

echo "S$(tput smso)5$(tput rmso) - Audit/Check-in Scratch Volumes”

echo "S(tput smso)6$(tput rmso) - Print Tape Volume Audit Report"

echo "\n\n" # Print two new lines

echo “$(tput smso)7$(tput rmso) - Change Password"

echo "S(tput smso)8$(tput rmso) - Enable all Print Queues"

echo "\n\n\n\n"

Listing 24.3 operations_menu.ksh shell script listing. (continues)

614 Chapter 24 Las

ava
|

eae
a

Poe
seve

See ae
AAS

5 th et
a

—

ae ee G

a
a a

ares

a
' i.

ee PAAR GTS ENG GSM REG oo oo .

eS en
a NEAR

vi

Oe

a a

- aa

Listing 24.3 operations_menu.ksh shell script listing.

Menu Program Suitable for Operations Staff 615 —$$____ ISIN Frogram Sultable tor Operations Staff 615

Option 4 - Query Tape Volumes

clear # Clear the screen

print "Enter Tape Volume to Query:

read ANSWER

dsmadmc -ID=admin ~PAssword=pass query vol SANSWER \

format=detailed

if (($? == "11")) # Check for "Not Found"

then

print "Tape Volume SANSWER not found in database."

print "Press ENTER to continue."

read

£4

MSG=" "

5)

Option 5 - Audit/Checkin Scratch Volumes

dsmadmc -ID=admin -PAssword=pass audit library mainmount

dsmadmc -ID=admin -PAssword=pass checkin libvol mainmount\

status=scratch search=yes

Not for Operations anymore!!!

MSG=""" Option is disabled: .

6)

Option 6 - Print Tape Volume Audit Report

${BINDIR}/print_audit_report.ksh
MSG= aT) "

7)

Option 7 - Change Password

echo "Remote Shell into $PASSWORD_SERVER for Password Change"

echo "Press ENTER to continue: \c"

read KEY

rsh $PASSWORD_SERVER passwd

ssh SPASSWORD_SERVER passwd

MSG=" .

8)

Option 8 - Enable all print queues

echo "Attempting to Enable all print queues...\c"

${BINDIR}/enable_all_queues.ksh

echo "\nQueue Enable Attempt Complete\n"

Listing 24.3 operations_menu.ksh shell script listing. (continues)

616 Chapter 24

esac

End of Loop until 99 is selected

done

Erase menu from screen upon exiting with the "clear" command

clear

End of Script

Listing 24.3 operations_menu.ksh shell script listing. (continued)

From the Top

Let’s look at this script from the top. The first step is to define files and variables. In this

section we define three variables, our BINDIR directory, which is the location of all of
the shell scripts and programs that we call from the menu. The second variable is the

hostname of the password server. I use a single server to hold the master password list,

and every 15 minutes this master password file is pushed out to all of the other servers
in the landscape. This method just makes life much easier when you have a lot of

machines to manage. Of course you may use NIS or NIS+ for this functionality. The last
variable is the hostname of the machine running the menu, THIS_HOST.

Next we initialize two variables; one is for the message bar, and the other is for the

menu options, $MSG and S$OPT. After initializing these two variables we set a trap. This

trap is just informational. All that we want to do if this shell script receives a trapped
signal is to let the user know that this program exited on a trapped signal, nothing more.

Now comes the fun stuff at the BEGINNING OF MAIN. For the menu we stay ina

loop until the user selects 99 as a menu option. Only an exit signal or a 99 user selec-
tion will exit this loop. The easiest way to create this loop is to use a while loop speci-

fying 99 as the exit criteria. Each time through the loop we first clear the screen. Then

we display the title bar, which has the hostname of this machine, specified by the
$THIS_HOST variable. Next we display the menu options. This current menu has 8

options, plus the 99 exit selection.

We preset the message bar to always assume an incorrect entry. If the entry is valid,

then we overwrite the $MSG variable with blank spaces. After the message bar is dis-

played we prompt the user for a menu selection. When a valid selection is made we
jump down to the case statement, which executes the selected menu option.

Menu Program Suitable for Operations Staff 617

Notice that the message string, $MSG, is always the same length, 24 characters. This
is a requirement to ensure that the message bar and the title bar are the same length;
assuming an eight character hostname. This is also true for the hostname in the title bar.
In each of the case statement options we process the menu selection and make the $MSG
all blank spaces, with the exception of item number 5. We disabled menu option 5 by
commenting out all of the code and changing the $MSG to read Option is Disabled. This
is an easy way to remove a menu option from being executed temporarily. The $MSG
will always be displayed in the message bar, whether the “message” is all blank spaces
or an actual text message. Both the title and message bars are always 80 characters long,
assuming a hostname of 8 characters. You may want to add some code to ensure that the
title bar is always 80 characters. This is a little project for you to resolve.

The 8 menu options include the following:

m Tape management

m ‘Tape labeling

Query tape volumes in the library

Query tape volumes

Audit/check-in scratch volumes

Print tape volume audit report

Change password

m Enable all print queues

m 99—exit

For each valid menu selection in this script either a local command is executed or an

external program or shell script is executed. You will have to modify this menu script

to suit your needs. Do not assume that the TSM commands listed as menu options in
this script will work without modification. These menu entries are just an example of
the types of tasks that you may want your operations staff to handle. Every environ-

ment is different and some operations staff members are more capable than others.
For safety I recommend that you add this shell script name to the end of the users’

SHOME/ .profile and follow this script name with the exit command as the last entry

in the user’s . profile. This method allows the Operators to log in to run the tasks in
the menu. When 99 is selected the menu is exited and the user is logged out of the sys-
tem due to the exit command, without ever seeing a command prompt.

Other Options to Consider

This script, like any other shell script, can be improved. I can think of only a couple of

things that I might add depending on the environment. You may have better ideas on

how a menu should look and work, but this is one way to get the job done in an easily

readable script.

618 Chapter 24

Shelling Out to the Command Line

Be extremely careful about the commands that you put into the menu. Some programs
are very easy to get to a shell prompt. The example I mentioned earlier was the vi
editor. With a couple of key strokes you can suspend vi and get to a shell prompt. You

can do this with many other programs, too.

Good Candidate for Using sudo

In Chapter 14 we went through installing and configuring sudo, which stands for super

user do. A menu is an excellent place to use sudo. One of the major advantages is that

you keep an audit trail of who did what and when the commands were executed. If a

problem arises this sudo log should be one of the first places to look.

Summary

In this chapter we covered the creation of a moderately complex menu shell script. This

one is not too difficult to read and understand, and I like to keep it that way. Some

administrators will try to put everything in a couple of lines of code that they under-

stand. When the menu needs to be modified, though, you really need an easy-to-
understand script. It is not if you will modify this shell script but when you will have to

modify the script.

You can place just about any task in a menu by using the proper method. As I men-

tioned before, sudo is excellent for keeping an audit trail. You can also add a logging

facility into this menu script by using the tee -a $LOGFILE command in a pipe after

each command. The tee -a $LOGFILE command displays everything on the screen and

also appends the output data to the specified file.

In the next chapter we are going to look at a technique to send pop-up messages to
Windows desktop using Samba. See you in the next chapter!

Sending Pop-Up Messages
from Unix to Windows

There is a need in every shop for quick communications to the users in your environ-

ment. Getting a message out quickly when an application has failed is a good example.

In this chapter we are going to look at a method of sending “pop-up” messages to Win-

dows desktops. The only requirement for the Unix machines is that Samba must be

configured and running on the Unix sever. Samba is a freeware product with a lot of

uses; however, our focus in this chapter is sending pop-up messages using the

smbclient command.
I really like this shell script, and I use it a lot to tell my users of impending mainte-

nance, to notify users when a problem is to be corrected, and to give the status of an
ongoing maintenance procedure. In this chapter we will look at setting up a master

broadcast list and setting up individual group lists for sending messages, as well as

specifying where the message is to be sent as the script is executing.

About Samba and the smbclient Command

Samba is a suite of programs that allows for the sharing of resources between various

operating systems. We are interested in only the Unix-to-Windows part of Samba. The

part of the Samba suite of programs that we use in this chapter to broadcast a message
to one or more Windows clients is the smbclient command. The smbclient command

is a client that allows nodes to talk, and in our case to send messages. This chapter

619

620 Chapter 25

focuses on sending pop-up messages to Windows clients from our Unix machine. The
smbclient command has a lot more functionality than is covered in this chapter; so if

you want to know what else the smbclient command can do, see the Samba documen-

tation and the man pages.

We use a single switch in this chapter with the smbclient command. The -M switch
allows us to send messages using the Winpopup protocol. The receiving computer must

be running the Winpopup protocol, however, or the message is lost and no error noti-

fication is given. Even if we check the return code, which we always do, it is only a

nonzero return code when a node name cannot be resolved. For the Windows
machines in the following list, the receiving machine must copy Winpopup into the

startup group if the machine is to always have pop-up messages available:

m Windows for Workgroups

wm Windows 95 and 98

Most other versions of Windows will accept pop-up messages by default. It is
always a good idea to work with the System Administrators in your Windows team to

test the correct usage and functionality; all Windows networks are not created equally.

The -M option of the smbclient command is expecting a NetBios name, which is the

standard in a Windows network. You can also use the -R command to set the name
resolution order to search. We also have the option of specifying an IP address by using
the -I option.

This shell script has been tested on the following Windows operating systems, and

the script delivered the message without any modification to the Windows systems:

zw Windows NT

wm Windows XP

mw Windows 2000

Because this is the last chapter in the book, I’m sure that you know we are going to
cover the syntax for the proper usage.

Syntax

To send messages from Unix to Windows we need only the smbclient -M command.
The basic use of the command, especially for testing, is shown here.

NODELIST="winhostA winhostB winhostc"

MESSAGE="Hello World"

for NODE in SNODELIST

do

echo $MESSAGE | smbclient -M $NODE

done

Sending Pop-Up Messages from Unix to Windows

The only thing that we need is a list of nodes to send the message to and a message

to send. When we have these two elements then all that is required is echoing the
messaging and piping it to the smbclient command. Normally the smbclient com-

mand is an interactive command. By using the piped-in input we have the input ready,

which is the same result that a here document produces for interactive programs.

Building the broadcast.ksh Shell Script

When I started this chapter it was going to be about five pages. I kept coming up with
more ideas and options for broadcasting messages so I just had to expand this chapter

to fit these ideas into the mix. The basic idea is to send a message from a Unix system
to a specific Windows machine in the network. I started thinking about sending

messages to selected groups of users that all have a related purpose. For example,

we can have the following list of individual groups: Unix, DBA, ORACLE, DB2,

APPLICATION, and so on. Then we have a default list of ALL Windows machines in
the business, or at least in a department.

With all of these options in mind I started rewriting an already working shell script.

In the next sections we are going to put the pieces together and make a very flexible

shell script that you can tailor to suit your needs very easily. Let’s start with the default

behavior of sending a message to all users.

Sending a Message to All Users

The basics of the original shell script has a master list of nodes, which may be repre-

sented by a username in some shops and a node name in others. This list of nodes or

users is read one at a time in a for loop. As each node name is read it is placed in the

smbclient command statement. The message is sent to all nodes in a series of loop iter-

ations until all of the target nodes have been processed. For this basic functionality we
need only a file that contains the names of the nodes (or users) and a for loop to process
each node name in the file. This one is the simple version and forms the basis for send-

ing messages in this chapter. Study Listing 25.1, and pay attention to the boldface text.

Define the list file containing the list of nodes/users.

WINNODEFILE="/usr/local/bin/WINlist"

Load the node list into the WINLIST variable, but ignore’

any line in the file that begins with a pound sign (#).-

WINLIST=$(cat $WINNODEFILE | grep -v “# | awk '{print $1}' | uniq)

Ask the user for the message to send

Listing 25.1 Code segment to broadcast a message. (continues)

621

622 Chapter 25

echo "\nEnter the message to send

echo "\n\nMessage ==> eo

read MESSAGE .

for NODE in $WINLIST
do - |...

echo "$MESSAGE" | smbclient -M $NODE
done 8 .

Listing 25.1 Code segment to broadcast a message. (continued)

In the code segment in Listing 25.1 we first define the list file containing the nodes
(or users) for which the message is intended. After the node list file is defined we load
the file’s contents into the WINLIST variable. We want to give the user the ability to

comment out entries in the SWINNODEFILE with a pound sign (#). We also want the

user to be able to make comments in the list file after the node/user name. With this
increased flexibility we added some filtering in the WINLIST variable assignment.

Notice in this assignment that we used grep and awk to do the filtering. First comes the

grep command. In this statement we have the entry:

grep -v “#

The -v tells the grep command to list everything except what grep is pattern match-

ing on. The “# is the notation for begins with a #. The caret (“) is a nice little option that

lets us do filtering on lines of data that begin with the specified pattern. To ignore blank
lines in a file use the cat $FILE | grep -v “*$ command statement.

Also notice the use of the uniq command. This command removes any duplicate

line in the file. Any time you need to remove exact duplicate entries you can pipe the
output to the uniq command.

In the next section we prompt the user for the message to send and read the entire

message into the MESSAGE variable. Because we are using a variable for the message the
length can not exceed 2048 characters. The smbclient command will truncate the text

string to 1600 characters, which should be more than enough for a pop-up message.
Now that we have the message and the destination nodes/users, we are ready to

loop through each destination in the SWINLIST using the for loop. Usually the
smbclient command is an interactive program. The method that we use to supply the

message is to echo the $MESSAGE and pipe the output to the smbclient command.

The full command statement for sending the message is shown here:

echo "SMESSAGE" | smbclient -M $NODE

The -M switch expects a NetBios node name, which is a typical Windows protocol.

Sending Pop-Up Messages from Unix to Windows

Adding Groups to the Basic Code

The code segment in Listing 25.1 forms the basis for the entire shell script. We are going to

build on the base code to allow us to send messages to specific groups of users by defining
the GROUPLIST variable. Each group that is added to the group list is a variable in itself
that points to a filename that contains a list of nodes/users, just like the WINNODEFILE

variable. By adding this new ability we need a way to tell the shell script that we want the
message sent to a particular group. This is where we need to use the getopts command to

parse the command line for command switches and switch-arguments. We have used

getopts in other chapters in this book so we will get to the details in a moment.

There are three steps in defining a group for this shell script. The first step is to add
the new group to the GROUPLIST variable assignment statement, which is toward the

top of the script. For this example we are adding three groups: UNIX, DBA, and APP-A.
The first step looks like the statement shown here.

GROUPLIST="UNIX DBA APP-A"

The second step is to define a filename for each newly defined group. I like to define

a variable to point to the top-level directory, which is /usr/local/bin on my

machines. This method makes moving the location of the list files easy with a one-line

edit. The code segment is shown here.

GRP_DIR="/usr/local/bin"

UNIX="${GRP_DIR}/UNIXlist"

DBA="${GRP_DIR}/DBAlist"

APP-A="${GRP_DIR}/APPAlist"

Notice the use of the curly braces ($ {VAR}) in this code segment. The curly braces

are used to separate the variable from the next character if there is no space between
the variable name and the next character.

The third and final step is to create each of the files and enter the destination nodes
in the file with one entry on each line. The code in this shell script allows for you to

comment out entries with a pound sign (#) and to add comments after the node/user

definition in the file.
To use a group the user must specify one or more groups on the command line with

the -G switch, followed by one or more groups that are defined in the script. If more

than one group is specified, then the group list must be enclosed in double quotes. To

send a message to everyone in the Unix and DBA groups use the following command:

broadcast.ksh -G “UNIX DBA"

Adding the Ability to Specify Destinations Individually

With the code described thus far we are restricted to the users/nodes that are defined

in the list files that we created. Now let’s add the ability for a user to specify one or

623

624 Chapter 25

more message destinations on the command line or by prompting the user for the des-
tination list. These two options require more command-line switches and, in one case,

a switch-argument.
We are going to add the following command-line switches to this script:

-M,-m Prompts the user for the message destination(s) and the message.

-H, -h,-N,-n_ Expects a destination list as a switch-argument. Each switch does

the same thing here.

The first switch, -M and -m, is the message switch. There is not a switch-argument for
this switch, but instead the user is prompted to enter one or more destination
nodes/users. The second set of switches each performs the exact same task, and a

switch-argument is required, which is a list of destination nodes/users. Some people
think of these destination machines as hosts, so I added the -h and -H switches. Other

people think of the destination machines as nodes, so I added the -n and -N switches.
This way both sets of users can have it their way.

Using getopts to Parse the Command Line

Now we have a bunch of command-line switches, and some of these switches require

a switch-argument. This is a job for getopts! As we have studied before, the getopts

command is used in a while loop statement. Within the while loop there is a case
statement that allows us to take some useful action when a command-line switch is

encountered. Whenever a switch is encountered that requires a switch-argument, the

argument that is found is assigned to the $OPTARG variable. This $OPTARG is a

variable that is build into the getopts command. Let’s look at the getopts command

statement and the code segment with the enclosed case statement in Listing 25.2.

Parse the command-line arguments for any switches. A command-

line switch must begin with a hyphen (-).

A colon (:) AFTER a variable (below) means that the switch

must have a switch-argument on the command line

while getopts ":mMh:H:n:N:g:G:" ARGUMENT

do

case SARGUMENT in

m|M) echo "\nEnter One or More Nodes to Send This Message:"

echo "\nPress ENTER when finished \n\n" :
echo "Node List ==> \c"

read WINLIST

h|H|n|N) WINUIST=SOPTARG

g|G) GROUP=SOPTARG # S$OPTARG is the value of the switch-argument!

Listing 25.2 Using getopts to parse the command-line switches.

Sending Pop-Up Messages from Unix to Windows 625

Make sure that the group has been defined

for G in $GROUP

do

echo "$GROUPLIST" | grep -q $G || group_error $G¢

done

ALL of the groups’are valid if you get here!

WINLIST= # NULL out the WINLIST variable

Loop through each group in the $GROUP

and build a list of nodes to send the message to.

for GRP in $GROUP

do

Use “eval" to show what a variable is pointing to!

Make sure that each group has a non-empty list file

if [-s $(eval echo \$"S$GRP")]

then

WINLIST="$WINLIST $(eval cat \$"$GRP" |grep -v “# \

| awk '{print $1}')"

else

group_file error $(eval echo \$"S$GRP")

£i

done

\?) echo "\nERROR: Invalid Augument(s)!"

usage

exit 1

esac

done

Listing 25.2 Using getopts to parse the command-line switches. (continued)

Don’t run away yet! The code segment in Listing 25.2 is not too hard to understand

when it is explained. In the getopts statement, shown here, we define the valid

switches and which switches require a switch-argument and which ones have a mean-

ing without a switch-argument.

while getopts ":mMh:H:n:N:g:G:" ARGUMENT

In this getopts statement the switch definitions list, ":mMh:H:n:N:g:G:", begins

with a colon (:). This first colon has a special meaning. If an undefined switch is

encountered, which must begin with a hyphen (-), the undefined switch causes a ques-

tion mark (?) to be assigned to the ARGUMENT variable (you can use any variable name

here). This is the mechanism that finds the switch errors entered on the command line.

626 Chapter 25

In the getopts statement the -m and -M switches do not have a switch argument and

the -h, -H, -n, -N, -g, and -G switches do require a switch-argument. Whether or not a

switch requires an argument is determined by the placement of colons in the definition
statement. If a colon (:) appears after the switch in the definition, then that switch

requires a switch-argument; if a switch does not have a colon after the switch defini-

tion, then the switch does not have a switch-argument. This is really all there is to using

the getopts command. .
Inside the while loop we have an embedded case statement. It is in the case statement

that we do something useful with the command-line arguments that are switches. Just
remember, getopts does not care what is on the command line unless it has a hyphen (-).

This is why we need to test for valid arguments supplied on the command line.
In our case statement in Listing 25.2 we take action or make assignments when a

valid switch is encountered. When a -M, or -m, switch is found we prompt the user for
a list of one or more destination nodes to send the message. When a -h, -H, -n, or -N

switch is found, we assign the $OPTARG variable to the WINLIST, which is a list of tar-

get users/nodes. When getopts finds -g, or -G, we assign the $OPTARG variable to the

GROUP variable. When an undefined switch is found, a question mark (?) is assigned
to the ARGUMENT variable. In this situation we give the user an ERROR message, show

the usage function, and exit the shell script with a return code of 1, one.

Using the eval Function with Variables

Let’s go back to the GROUP variable in Listing 25.2 for a minute. Remember that we can
have group names assigned to the GROUPLIST variable. Each group assigned to the

GROUPLIST variable must have a filename assigned to it that contains a list of destina-

tion machines. Now if you think about this you should notice that we have to work
with a variable pointing to another variable, which points to a filename. The file con-
tains the list of destination machines. Just how do we point directly to the filename?

This is a job for the eval function. The eval function is a Korn shell built-in, and we use
it to solve our little dilemma.

The eval function works like this in our code. We have the GROUP variable that is one
or more groups that the user entered on the command line as a switch-argument to the
-G, or -g, switch. Each group that is assigned to the GROUP variable is a pointer to a file-

name that holds a list of destination machines. To directly access the filename we have
to use the eval function. Let’s look at the code segment that uses the eval function in
the getopts loop in Listing 25.3.

for GRP in $GROUP

do

Use "eval" to show the value of what a variable is pointing

to! Make sure that each group has a nonempty list file

if [-s $(eval echo \$"SGRP")]

then

WINLIST="$WINLIST $(eval cat \$"$GRP" |grep -v “# \ __

Listing 25.3 Using eval to evaluate double pointing variables.

Sending Pop-Up Messages from Unix to Windows 627

| awk '{print $1}' | uniq)"

else

group_file_error $(eval echo \$"$GRP")

Ex

done

Listing 25.3 Using eval to evaluate double pointing variables. (continued)

We first start a for loop to process each group assigned to the GROUP variable, which
is assigned to the GRP variable on each loop iteration. Inside the for loop we first test

to see if the group has a group file assigned and if this file size is greater than zero. To
do this we use the following command:

if [-s $(eval echo \S"S$GRP")]

The command substitution, $ (eval echo \$"S$GRP"), points directly to the file

name of the group. We could also use the command substitution, $ (eval echo
'$'SGRP) , to directly access the filename. Both statements produce the same result. This

eval statement is saying “tell me what this other variable is pointing to, in this statement.”

Notice that we use eval two more times in Listing 25.3. We first use eval to assign the

destination machine listed in the list file to the WINLIST variable in the command

shown here.

WINLIST="$WINLIST $(eval cat \$"$GRP" | grep -v *# \

| awk '{print $1}' | unig)"

In this case we are listing the file with cat and then using grep and awk to filter the
output, and uniq to remove any duplicate entries. The next instance of eval is in

the error notification. The group_file_error function requires one argument, the

group list filename. In this step we are building a list of destination machines if more

than one group was given on the command line.

Testing User Input

For any shell script it is extremely important that the information provided by the user
is valid. In the broadcast .ksh shell script we have the opportunity to check a lot of
user input. Starting at BEGINNING OF MAIN several tests of data need to be made.

Testing and Prompting for WINLIST Data

The first test of user input is a test to ensure that the WINLIST variable is not empty, or
NULL. To make this test we use an until loop to prompt the user for a list of destination

nodes if the WINLIST is empty. I created a function called check_for_null_winlist

628 Chapter 25

that is used as the loop criteria for prompting the user for a node list input. This function

is shown in Listing 25.4.

function check for null winlist

{

if [[-z "SWINLIST" && "SWINLIST" = ""]]

then

return 1

else

return 0

fi

}

Listing 25.4 Function to check for a Null WINLIST variable.

The only thing that the check_for_null_winlist function in Listing 23.4 does is

return a 1, one, as a return code if the SWINLIST variable is empty, or NULL, and

return a 0, zero, if the SWINLIST has data assigned. Using this function as the loop cri-

teria in an until loop is easy to do, as shown in the code segment in Listing 25.5.

Ensure that at least one node is defined to send the message.

If not stay in this loop until one or more nodes are entered

on the command line

until check_for_null_winlist

do

echo ‘\n\nEnter One or More Nodes to Send This Message:

echo "\n Press ENTER when finished \n\n"

echo "Node List ==> \c"

read WINLIST

done

Listing 25.5 Using an until loop with check_for_null_winlist.

This until loop will continue to execute until the user either enters data or presses
CTRL.

Testing and Prompting for Message Data

Like the WINLIST data, the MESSAGE variable must have at least one character to send

as a message, or we need to prompt the user for the message to send. We use the same
type of technique as we did for the WINLIST data. We created the check_for_null

_message function to test the MESSAGE variable to ensure that it is not empty, or

Sending Pop-Up Messages from Unix to Windows 629

NULL. This function returns a 1, one, if the MESSAGE variable is empty and returns a

0, zero, if the MESSAGE variable has data. Check out the function in Listing 25.6.

function check_for_null_message

{

if [[-z "$MESSAGE" && "SMESSAGE" = ""]]

then

return 1

else

return 0

£2

}

Listing 25.6 Function to check for a Null MESSAGE variable.

Using the check_for_null_message function in Listing 25.6 we can execute an

until loop until the MESSAGE variable has at least one character. The loop exits when

the function returns a 0, zero, for a return code. Look at the until loop in the code seg-
ment shown in Listing 25.7.

Prompt the user for a message to send. Loop until the

user has entered at least one character for the message

to send.

until check for _null_ message

do

echo "\nEnter the message to send:"

echo "\nPress ENTER when finished\n\n"

echo "Message ==> \c"

read MESSAGE

done

Listing 25.7 Using an until loop with check_for_null_message.

If the MESSAGE variable already has data assigned, then the until loop will not

prompt the user for any input. This is just a test to look for at least one character of data

in the SMESSAGE variable.

Sending the Message

At this point we have validated that we have a list of one or more nodes/users to send

the message and that the message is at least one character long. As stated before, the

$MESSAGE will be truncated at 1600 characters (1600 bytes), which should not be an

issue for a pop-up message. If the message is long, then an email is more appropriate.

630 Chapter 25

We have already seen the basics of sending a message with the smbclient command,

which is part of the Samba suite of programs. We are going to use the same technique
here to send the message. Now we have the list of destination nodes assigned to the
WINLIST variable. Let’s look at the code segment to send the message in Listing 25.8.

echo "\nSending the Message...\n”

Loop through each host in the S$WINLIST and send the pop-up message

for NODE in $WINLIST

do

echo "Sending to ==> $NODE"

echo SMESSAGE | SSMBCLIENT -M $NODE # 1>/dev/null

if (($? == 0))

then

echo "Sent OK ==> (SNODR

else

echo "FAILED to ==> $NODE Failed"

een

done

echo Yin"

Listing 25.8 Code segment to send a message to a list of nodes.

We added a few lines of code to the for loop in Listing 25.8. Notice on each loop iter-

ation that the user is informed of the destination for the current loop iteration. When

we send the message using the smbclient command we check the return code to see if

the message was sent successfully. A 0, zero, return code does not guarantee that the

target machine received the message. For example, if the target is a Windows 95

machine and winpopup is not running, then the message is lost and no error message

is received back to let you know that the message was not displayed. You will receive
a nonzero return code if the machine is not powered up or if the destination machine-
name cannot be resolved.

Also notice the commented-out redirection to /dev/null, after the smbclient
command statement. This output redirection to the bit bucket is commented out so that

the user can see the result of sending each message. If there is a problem sending a mes-
sage, then the smbclient event notifications provide better information than a return

code for the smbclient command itself. If you want to hide this connection informa-

tion, uncomment this redirection to the bit bucket.

Putting It All Together

Now that we have covered most of the individual pieces that make up the
broadcast .ksh shell script, let’s look at the whole shell script and see how the pieces

fit together. The entire shell script is shown in Listing 25.9. Please pay particular atten-
tion to the boldface text.

Sending Pop-Up Messages from Unix to Windows 631

#!/bin/ksh

SCRIPT: broadcast.ksh

AUTHOR: Randy Michael
Systems Administrator

DATE: 1/12/2000

REV sks 2e

PLATFORM: Not platform dependent but requires Samba

PURPOSE: This script is used to broadcast a pop-up message to

Windows desktops. The Windows machines must be defined in

the SWINNODEFILE file, which is where the master list of

nodes is defined. The SWINNODELIST filename is defined in the

variable definitions section of this shell script.

You also have the ability of setting up individual GROUPS of

users/nodes by defining the group name to the GROUPLIST variable.

Then define the filename of the group. For example, to define a

Unix and DBA group the following entries need to be made in this

shell script:

GROUPLIST="UNIX DBA"

UNIX="/scripts/UNIXlist"

DBA="/scripts/DBAlist"

Assuming that the filenames presented above are acceptable to you.

There are four options for sending a message:

1) Execute this script without any argument prompts for the

message to send and then send the message to all nodes

defined in the SWINNODEFILE.

2) Specify the "-M" switch if you want to send a message to a

Specific node or a List of nodes. The user is\prompted for

the message to send.

3) Specify the -N or -H switches to specify the specific nodes

to receive the message. Add the node list after the -N or

-H switch.

4) Specify the -G switch, followed by the group name, that the

message is intended be sent.

EXAMPLES:

To send a message to all nodes defined in the $WINNODEFILE:

broadcast.ksh

To gend a message to only the “booboo" and “yogi" machines:

Se 3 SF FH OE OE OEE HEE HE CHEE HEE HEE EEE EOE EHEC HEHE HEHEHE HEHE HEHE HEHEHE HEHE HEHEHE oH OH OH OH OH # broadcast.ksh -H "booboo yogi"

Listing 25.9 broadcast.ksh shell script listing. (continues)

632 Chapter 25

OR

broadcast.ksh -N "booboo yogi”

To send a message to specific machines without specifying

each one on the command line:

broadcast.ksh -M

To send a message to all users in the Unix and DBA

groups only:

broadcast.ksh -G "UNIX DBA"

Each switch is valid in uppercase or lowercase.

NOTE: This script uses SAMBA!!! SAMBA must be installed

and configured on this system for this shell script

to function!

EXIT CODES: 0 ==> Normal Execution

1 Ss=>\ Usage Error

2 ==> Missing Node List File

3 ==> The “smbclient" program is not in the $PATH

4 ==> The "smbclient” program is not executable

REV DIST:

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

Se Sk Sk Se SE SE OSE SE OE OHHH HE OK OH KH HK HH HK H HH HH HH HH OH OH OH HF HTH

HEHHHHHHPHPHEPPEEHHEEPHEPHSHESEHEESEPHEHEHEHEAEPHEEEPRSHEEEE EHH

#4¢##4## DEFINE BROADCAST GROUPS AND GROUP FILES HERE #######

HHHHPHPEEPHPEEPEEEHPEAPEAEHPEPEEPEPEEPREERPRAEHPEPEEHHPE SEES

Define the file directory for this shell script.

GRP_DIR="/usr/local/bin"

Define all valid groups to send messages

GROUPLIST="UNIX SAP ORACLE DBA APPA APPB"

Define all of the Group files

UNIX="${GRP_DIR}/Unixlist"

SAP="${GRP_DIR}/SAPlist"”

Listing 25.9 broadcast.ksh shell script listing.

Sending Pop-Up Messages from Unix to Windows 633

ORACLE="${GRP_DIR}/ORACLElist"

DBA="${GRP_DIR}/DBAlist"

APPA="${GRP_DIR}/APPAlist"

APPB="${GRP_DIR}/APPBlist"

File that contains the master list of nodes

WINNODEFILE="${GRP_DIR}/WINlist"

HHEPPPRS HERR RRRREEEEEERPHREPHEER HEHEHE EE RP REHEH REAR RRER RH

HHHHHHHHHHEEHHHEH DEFINE FUNCTIONS HERE ##### HHH EEHEEHEE EHH

HERR RHEE EHR EH EHH HH a aE HH HEH a EE HE EE EAR HE HE AE AE EE HE

function display listfile error

{

The function is used to inform the users that the

SWINNODEFILE file does not exist. The S$WINNODEFILE

filename is defined in the main body of the shell script.

echo "\n\tERROR: ...MISSING NODE LIST FILE..."

echo "\nCannot find the SWINNODEFILE node list file!”

echo "\nThe SWINNODEFILE file is a file that contains a list of"

echo "nodes to broadcast a message. Create this file with"

echo "one node name per line and save the file.\n\n"

exit 2

}

HHPHHHHHRPHHERRERRREEHEEEEHHEAHEEAH HEHEHE EHEE HEHEHE EH HEHH

function usage

{

echo "\nUSAGE: STHISSCRIPT [-M] [-H Host List] [-N Node List] \

[-G Group List] \n\n"

echo "EXAMPLES: "

echo "\nTo send a message to all nodes defined in the master list"

echo "S$WINNODEFILE file enter the scriptname without any options:"

echo “\nSTHISSCRIPT"

echo "\nTo send a message to one or more nodes only,"

echo "enter the following command:"

echo "\nSTHISSCRIPT -M"

echo "\nTo specify the nodes to send the message to on”

echo "the command-line enter the following command:"

echo “"\nSTHISSCRIPT -H \"yogi booboo dino\" "

echo "\nTo send a message to one or more groups use the”

echo "following command syntax:"

echo "\nSTHISSCRIPT -G \"UNIX DBA\"\ \n\n"

Listing 25.9 broadcast.ksh shell script listing. (continues)

634 Chapter 25

}

HHPEEREREEREEGRREEHEERRR RHEE HEHE HEHEHE HH THE HH HESS

function check for _ null message

{

if [[-z "$MESSAGE" && "SMESSAGE" = ""]]

then

return 1

else

return 0

sig

\

HHHHHRREEHEEE RHEE RHEE EERE REEARE EER EEA HPR REESE ERE HEHE Ea EE ERE SE

function check_for_null_winlist

{

if [[-z "SWINLIST" && "SWINLIST" = "" }}

then

return 1

else

return 0

fi

}

HHRHHREERPEEEREERPEERHEEEER PEERS EH EE HEEEEEHPEEEEESPEEEHEE AH EHH

function group error

{

(($# != 1)) && (echo "ERROR: function group_error expects \

an argument"; exit 1)

GRP=$1

echo "\nERROR: Undefined Group - $GRP"

usage

ext.

}

HERE E EEH HH H HH A HREEEP EERE HHH SH HH HEH HH ER HEE

function group_file error

{

(($# != 1)) && (echo “ERROR: function group file error expects \

an argument"; exit 1)

GPF=$1

echo "\nERROR: Missing group file - $GPF\n"

usage

Listing 25.9 broadcast.ksh shell script listing.

Sending Pop-Up Messages from Unix to Windows 635

exe ot

HHHHHHPHHHHAPREH PEEP RPAH HHER PERE PRE EH H

function check_for smbclient command

{

Check to ensure that the "smbclient" command is in the $PATH

SMBCLIENT=S$ (which smbclient)

Tf the SSMBCLIENT variable begins with "which:” or "no" for

Solaris and HP-UX then the command is not in the $PATH on

this system. A correct result would be something like:

"/usr/local/bin/smbclient" or "/usr/bin/smbclient". Se 4 SF +

if [[$(echo $SMBCLIENT | awk '{print $1}') = 'which:']] || \

[If $(echo $SMBCLIENT | awk '{print $1}') = 'no']]

then

echo "\n\nERROR: This script requires Samba to be installed

and configure. Specifically, this script requires that the

\"sbmclient\" program is in the \$PATH. Please correct this problem

and send your message again. \n"

echo "\n\t...EXITING...\n"

exit 3

elif [! -x $SMBCLIENT]

echo "\nERROR: $SMBCLIENT command is not executable\n"

echo "Please correct this problem and try again\n"

exit 4

HHHHHHHHHHHEHHEHHHHPHEEE RP HEE HEHE HHH HH Ht HH HH Ht HH HH HH HH HH EH SE EH EH

HHHHHHHHHEHHEHHEHY DEFINE VARIABLES HERE ###### #444 FH HEHEHE EHHEH

HHHHHHHEHHHEHHHHHEPHHEHE PE RREH RPE PEHHE HHH EHP H HH EH HE EH

THISSCRIPT=$(basename $0) # The name of this shell script

MESSAGE= # Tnitialize the MESSAGE variable to NULL

WINLIST= # Initialize the list of node ‘to NULL

HHHHHHHHHHHBHEHHPHHPHPE EPH E HH a Ha a eH EE HH HH HH

HHHHHHHHHEHHEHEHEH TEST USER INPUT HERE ##HHEHRPHEEER EEE TEE HH

HHHHHAHHAHHHHHHEA HEE E RRR EHTS HEHE HH RHE HHH HH aE

Listing 25.9 broadcast.ksh shell script listing. (continues)

636 Chapter 25

Check for the "“smbclient” command's existence

check for smbclient_command

If no command-line arguments are present then test for

the master SWINNODEFILE, which is defined at the top

#-of this sheli-seript:

if (($# == 0)) # No command-line arguments - Use the master list

then

[-s $WINNODEFILE] || display _listfile_error

Load the file data into the WINLIST variable ignoring

any line in the file that begins with a # sign.

WINLIST=$(cat $SWINNODEFILE | grep -v “# \

else

| awk '{print $1}' | unig)

Parse the command-line arguments for any switches. A command

line switch must begin with a hyphen (-).

A colon (:) AFTER a variable (below) means that the switch

must have a switch-argument on the command line

while getopts ":mMh:H:n:N:g:G:" ARGUMENT

do

case SARGUMENT in

m|M) echo "\nEnter One or More Nodes to Send This Message:"

echo "\nPress ENTER when finished \n\n"

echo "Node List ==> \c"

read WINLIST

rt

h|H|n|N) WINLIST=SOPTARG

g|G) GROUP=SOPTARG # SOPTARG is the value of

the switch-argument!

Make sure that the group has been defined

for G in $GROUP

do

echo "$GROUPLIST" | grep -q $G || group_error $G

done

All of the groups are valid if you get here!

WINLIST= # NULL out the WINLIST variable

Loop through each group in the SGROUP

Listing 25.9 broadcast.ksh shell script listing.

Sending Pop-Up Messages from Unix to Windows 637

Fianna) budliaiial distiok modesto send) the message to:

for GRP in $GROUP

} do

Use "eval" to show what a variable is pointing to!

Make sure that each group has a non-empty list

file

if [-s $(eval echo \$"S$GRP")]

then

WINLIST="SWINLIST $(eval cat \$"$GRP" \

| grep -v *# | awk '{print $1}' \

| unig)"
else

group file error $(eval echo \$"SGRP")

£1:

done

\?) echo "\nERROR: Invalid Argument (s)!"

usage

exit 1

esac

done

HEH H Ha HH HH HE EH HE HEHE HE HEH EHH EH HEHEHE HEHE HHH HH HH EHH HH

HHEHHHEEHHHEHEEHEHH BEGINNING OF MAIN ###H###FHHHHHHHHEH EEE HH

HHEFHHHEPHEEEEEEEEEEERE EERE RRR RERP EERE EERERREREE HEE E HEHEHE EHH

Ensure that at least one node is defined to send the message.

If not stay in this loop until one or more nodes are entered

on the command line

until check for_null_winlist

do

echo "\n\nEnter One or More Nodes to Send This Message: "

echo "\n Press ENTER when finished \n\n"

echo "Node List ==> \c"

read WINLIST

done

HHAHHRERP AHHH HHH HHH HHH EEE HE EHH ERE HH

fi # End of "if (($# == 0))" test.

Prompt the user for a message to send. Loop until the

Listing 25.9 broadcast.ksh shell script listing. (continues)

638 Chapter 25

user has entered at least one character for the message

to send.

until check _for_null_message

do

echo "\nEnter the message to send:"

echo "\nPress ENTER when finished\n\n"

echo "Message ==> \c"

read MESSAGE

done

HHEHHHERRHEH HEHEHE EHH HH HHH HH EHH HE HE HEHE HE HEH HE HE HEHE HEHE HEH HEHE HH

Inform the user of the host list this message is sent to...

echo "\nSending message to the following hosts:\n"

echo “\nWIN_HOSTS: \nSWINLIST\n\n"

HHEEEHREEE EEE EEE HEHE HE EEE EHR HHP R EEE HEH HEHE FEE FEE HHH HEH

echo "\nSending the Message...\n"

Loop through each host in the SWINLIST and send the pop-up message

for NODE in $WINLIST

do

echo "Sending to ==> $NODE"

echo $MESSAGE | $SMBCLIENT -M $NODE # 1>/dev/null

LE ((Ses= 0))

then

echo "Sent OK ==> SNODE”

else

echo "FAILED to ==> SNODE Failed"

£2

done

echo" \n"

HHHHHHHEHEHEHHSHPHEHPHEHHHEESHPHPHEHEPRAHHPHEHESRHEEA SHEESH HH

This code segment is commented out by default

a

Send the message to the Unix machines too using "wall"

and “rwall”" af you desire to'do so, This code is commented

out by default.

echo "\nSending Message to the Unix machines...\n"

echo $MESSAGE | rwall -h $UnixHOSTLIST

Listing 25.9 broadcast.ksh shell script listing.

Sending Pop-Up Messages from Unix to Windows 639

echo $MESSAGE | wall

echo "\n\nMessage ‘sent... \n\n"

HHHHHHHHHEERRHHHHHHEHAHEH AHHH HHH HHHHHHHHE EPP

Remove the message file from the system

rm -£ SMESSAGE

Listing 25.9 broadcast.ksh shell script listing. (continued)

As you study the script in Listing 25.9 I hope that you can see how the pieces are put
together to produce a logical flow. You may have noticed that there is a larger if

statement that skips all of the command-line parsing if there are no command-line
arguments present. If we do not have anything to parse through, we just use the
default master list of machine destinations.

I also want to point out a function that is called at the BEGINNING OF MAIN. The

check_for_smbclient_command function looks for the smbclient command in the

$PATH. Check out this function in Listing 25.10.

function check _for_smbclient._command

{

Check to ensure that the "smbclient" command is in the $PATH

SMBCLIENT=$ (which smbclient)

T£ the SSMBCLIENT variable begins with "“which:" or "no" for

Solaris and HP-UX then the command is not in the $PATH on

this system. A correct result would be something like:

" fusr/local/bin/smbclient" or "/usr/bin/smbclient" . ee a: ee

if [[$(echo $SMBCLIENT | awk ‘{print $1}') = 'which:' 1] || \

[L $(echo $SMBCLIENT | awk '{print §1}') = 'no' J]

then

echo ”\n\nERROR: This script requires Samba to be installed

and configured. Specifically, this script requires that the

\"sbmclient\" program is in the \$PATH. Please correct this problem

and send your message again. \n"

echo "\n\t.. .BxXTTING.. 3 \n"

exres

elit [1 =x SSMBCLIENT |

then

Listing 25.10 check_for_smbclient_command function listing. (continues)

640 Chapter 25

echo "\nERROR: $SMBCLIENT command is not executable\n”

echo "Please correct this problem and try again\n" —

exit 4

fi:

}

Listing 25.10 check_for_smbclient_command function listing. (continued)

Notice that we use the which command in Listing 25.10 to find the smbclient com-

mand in the $PATH. The which command will respond with either the full pathname
of the smbclient command or an error message. The two messages look like the
following:

which smbclient

/usr/local/samba/bin/smbclient

OR

which smbclient

which: 0652-141 There is no smbclient in /usr/bin /etc /usr/sbin

/Jusr/ucb /usr/bin/X11 /sbin /usr/local/bin /usr/local/samba/bin

/usr/local/bin /usr/dt/bin/ /usr/opt/ifor/1ls/os/aix/bin .

If we receive the second message, then the smbclient command cannot be found.

Note that this second response begins with which: just before the error code. This is
true for AIX and Linux; however, on Solaris and HP-UX the result begins with no as

opposed to which:. Using this response we give the user an error message that the

smbclient command cannot be found.

Watching the broadcast.ksh Script in Action

You can see the broadcast .ksh shell script in action in Listing 25.11. In this listing

we use the -M option to specify that we want to be prompted for both a list of destina-
tion machines and a message.

Sending Pop-Up Messages from Unix to Windows 641

[root:yogi]@/scripts# |. /broadcast.ksh -M

Enter One or More Nodes to Send This Message:

Press ENTER ee finished

Node List ==> booboo

Enter the message to send: ‘

Press ENTER when finished

Message ==> Please log out at lunch for a system reboot.

Sending message to the following hosts:

WIN_HOSTS:

booboo

Sending the Message...

Sending to ==> booboo

added interface ip=10.10.10.1 beast=10.10.255.255 nmask=255 2550.0

Connected. Type your message, ending it with a Control-D

sent 45 bytes

Sent OK ==> booboo

Listing 25.11 broadcast.ksh shell script in action.

My booboo machine is an NT 4 box. The pop-up message that I received is shown

in Figure 25.1.

The pop-up message in Figure 25.1 is typical for most machines except for Windows
95 and 98. For these two versions of Windows the winpopup program must be run-

ning. Most other machines have a similar pop-up message, as shown in Figure 25.1.

642 Chapter 25

Figure 25.1 Pop _Up message sent to a Windows desktop.

Downloading and Installing Samba

You can download the latest version of Samba from the following URL: www

.samba.org /samba.
From the main page select a download site. Download sites from around the world

are available. This page has a link, samba-latest.tar.gx, to the latest version of

the source code. If you download the source code you need a C compiler to compile the

Samba release. The . /configure file is looking for either gcc or cc when you begin

the compilation process. If a suitable C compiler is not found you cannot install the

Samba code. For our purposes we can download the available precompiled binary

versions of the code. Some of these are back releases, but the smbclient command

works just fine.

When you download the Samba source code follow these steps to compile the code

on your machine. Follow the link to the latest version of Samba. Download the code

into a directory on the Unix machine that has plenty of space, at least 500MB. Next,

uncompress the release. The code that I downloaded was a tar file that was compressed
with gzip, which has a .gz filename extension. Let’s say that you downloaded the

Samba code into the /usr/local directory with the filename samba.2.7.latest
. tar.gz. You can name it anything you want when you download the file. The

following commands in Listing 25.12 are used to uncompress, untar, and install the

Samba code.

[root:yogi]@/usr/local > gunzip samba.2.7.latest.tar.gz

[root:yogi}@/usr/local > tar =xvfi samba.2./ latest. tar

[root:yogi]@/usr/local > cd samba.2.7

[root:yogi]@/usr/local/samba.2.7 > ./configure

{root:yogi]@/usr/local/samba.2.7 > make

[root:yogi]@/usr/local/samba.2.7 > make install

Listing 25.12 Samba source code installation.

Sending Pop-Up Messages from Unix to Windows 643

Once the installation is complete you can remove the /usr/local/samba.2.7
directory to regain your disk space. Be aware that your file/directory names and
release may differ from the commands shown in Listing 25.12. This source code instal-
lation does not create a smb.conf file. In the procedure that is presented in Listing
25.12, the smb.conf file is located in /usr/local/samba/lib/smb.conf. Please

refer to the Samba documentation of the release you installed to know where to put

this configuration file. For our purposes, and for security, make the file simple! The
smbclient command works with a smb.conf file with only a single semicolon, (;).
No other entry is required! The semicolon (;) and hash mark (#) are both comment

specifications in this file. If you want to use any of the other functionality of Samba you
are on your own, and the Samba documentation is your best resource for additional
information.

Testing the smbclient Program the First Time

Before you start creating the master list file and a bunch of group list files, do a few
tests to ensure that you have the correct format, the destination machines are reach-

able, and the name resolution is resolved for each node. Initially have a list of about

five machines. The machines may be referenced in the NetBios world as a machine

name or a username. This name resolution varies depending on the Windows network

in your environment.

My home network does not have NetBios running, so I had to do a little research
and I found that there is a file, which coexists with the smb. conf file, that works like

a /etc/hosts file. This file is called Imhosts, and you make machine entries into

this file just like a regular hosts file, except that the machine-names are entered in

uppercase characters.
First try the following test. Let’s suppose that I have five users named JohnB,

CindySue, Bubba, JonnyLee, and BobbyJoe. For each user in the list we run the follow-

ing commands.

echo "Hello World" | smbclient -M JohnB

echo "Hello World" | smbclient -M CindySue

echo "Hello World" | smbclient -M Bubba

echo "Hello World" | smbclient -M JonnyLee

echo "Hello World" | smbclient -M BobbyJoe

Ideally, the response should look something like the following output:

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

644 Chapter 25

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 beast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

If you get responses like the ones shown here, then everything is as we want it to be.
If you get output more like the next set of smbclient output, then we have a problem,

Houston!

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

timeout connecting to 10.10.10.4:139

Error connecting to 10.10.10.4 (Operation already in progress)

Connection to JohnB failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to CindySue failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to Bubba failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to JonnyLee failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to BobbyJoe failed

Notice that the first attempt, to JohnB, timed out on connection. This is good! We

know that there is name resolution to this machine but the machine is currently

unreachable. I know it is unreachable because I turned the machine off. If a node is not

powered up, this is the type of message that we receive.

On the other hand, the next four attempts to reach CindySue, Bubba, JonnyLee, and

BobbyJoe failed. This is usually an indication that there is no name resolution to get to

these machines. When you have this problem, first try to reach the machine by

the node name instead of the user name. You can get the name of the machine by left-
clicking on the My Computer icon on the Windows desktop. Then select properties. Try

the same process of sending the message again, this time using node names. If you still

have a problem, consult the Windows Systems Administrators to see if they can help.

The other solution is to maintain a lmhosts file, which is a pain to do. The

lmhosts file is located in the same directory as the smb.conf file, which is in

/usr/local/samba/1ib if you downloaded and compiled the distribution from the
Samba site. The lmhosts file does not exist by default, so you will have to create

the file using the same format as the /etc/hosts file. This problem with this solution

is that you have an extra step when you add a node to both the list files for the
broadcast .ksh shell script and the lmhosts file.

Other Options to Consider

This is one of those shell scripts that you can do a lot of different things with. Here are

a few things that I thought of. Use your imagination, and I’m sure that you can add to
this list.

Sending Pop-Up Messages from Unix to Windows 645

Producing Error Notifications

A very good use of this shell script is to set up as many groups as you need to do error
notification to users responsible for maintaining particular machines, programs, data-
bases, and applications. When an error is detected in one of the monitoring shell
scripts, just send a pop-up message as an immediate notification; the email notification
is just gravy on the potatoes. You can make this a powerful tool if you desire.

Add Logging of Unreachable Machines

If you redirect the output of the smbclient command in the shell script to a log file and

parse the log file for connection and name resolution errors, you can find out who is

not getting some messages, but not all. If a user’s machine is turned off, the message is

lost and there is no notification. Even if a message is refused by the host, the return

code from the smbclient command is still 0, zero. Keeping a log of the activity and

automatically parsing the log after each message is sent can help you find where the
rejections occur. Just remember to keep it simple!

Create Two-Way Messaging

I wanted to figure out how to send the message from the Windows machines back to

the Unix boxes, but I ran out of time to meet my due date. I am sure that this is not a

hard task to solve. This is a good project for you to play around with; I am going to
work on this one, too.

Summary

I sure hope that you enjoyed this chapter, and the whole book. The process of writing

this book has been a thrill for me. Every time I started a new chapter I had a firm idea
of what I wanted to accomplish, but usually along the way I got these little brain
storms that help me build on the basic idea that I started with. Some five-page chapters

turned into some of the longest chapters in the book. In every case, though, I always
tried to hit the scripting techniques from a different angle. Sometimes this resulted in a

long script or roundabout way of accomplishing the task. I really did do this on pur-

pose. There is always more than one way to solve a challenge in Unix, and I always
aimed to make each chapter different and interesting. I appreciate that you bought this
book, and in return I hope I have given you valuable knowledge and insight into solv-
ing any problem that comes along. Now you can really say that the solution to any

challenge is intuitively obvious! Thank you for reading, and best regards.

ase
é =

a
A q

Sa

= -

vz 7

i]

h

-

a

(

a’ —

7

a

What's on the Web Site

This Appendix shows a list of the shell scripts and functions that are include on the

Web site. Each of the shell scripts and functions has a brief description of the purpose.

Shell Scripts

Chapter 2

12_ways_to_parse.ksh:

This script shows the different ways of reading a file line by line. Again there is not

just one way to read a file line by line and some are faster than others and some are
more intuitive than others.

mk_large_file.ksh:

This script is used to create a text file that is has a specified number of lines that is
specified on the command line.

Chapter 3

No shell scripts to list in Chapter 3.

647

648 Appendix A

Chapter 4

rotate.ksh:

This shell script is used as a progress indicator with the appearance of a rotating line.

countdown.ksh:

This shell script is used as a progress indicator with a countdown to zero.

Chapter 5

fs_mon_AIX.ksh:

This shell script is used to monitor an AIX system for full filesystems using the

percentage method.

fs_mon_AIX_MBFREE.ksh:

This shell script is used to monitor an AIX system for full filesystems using the

MB free method.

fs_mon_AIX_MBFREE_excep.ksh:

This shell script is used to monitor an AIX system for full filesystems using the
MB free method with exceptions capability.

fs_mon_AIX_PC_MBFREE.ksh:

This shell script is used to monitor an AIX system for full filesystems using the
percentage method with exceptions capability.

fs_mon_ATX_excep.ksh:

Basic AIX filesystem monitoring using the percent method with exceptions

capability.

fs_mon_ALL_OS.ksh:

This shell script auto detects the UNIX flavor and monitors the filesystems using both
percent and MB free techniques with an auto detection to switch between methods.

fs_mon_HPUX.ksh:

This shell script is used to monitor a HP-UX system for full filesystems using the
percentage method.

What’s On the Web Site 649

fs_mon_HPUX_MBFREE.ksh:

This shell script is used to monitor an HP-UX system for full filesystems using the
MB free method.

f£fs_mon_HPUX_MBFREE_excep.ksh:

This shell script is used to monitor an HP-UX system for full filesystems using the
percentage method with exceptions capability.

fs_mon_HPUX_PC_MBFREE.ksh:

This shell script is used to monitor an HP-UX system for full filesystems using the
percentage method with exceptions capability.

fs_mon_HPUX_excep.ksh:

Basic HP-UX filesystem monitoring using the percent method with exceptions
capability.

fs_mon_LINUX.ksh:

This shell script is used to monitor a Linux system for full filesystems using the
percentage method.

£s_mon_LINUX_MBFREE.ksh:

This shell script is used to monitor a Linux system for full filesystems using the MB

free method.

fs_mon_LINUX_MBFREE_excep.ksh:

This shell script is used to monitor a Linux system for full filesystems using the

percentage method with exceptions capability.

fs_mon_LINUX_PC_MBFREE.ksh:

This shell script is used to monitor a Linux system for full filesystems using the

percentage method with exceptions capability.

fs_mon_LINUX_excep.ksh:

Basic Linux filesystem monitoring using the percent method with exceptions

capability.

fs_mon_SUNOS.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the

percentage method.

650 Appendix A

fs_mon_SUNOS_MBFREE.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the MB

free method.

fs_mon_SUNOS_MBFREE_excep.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the

percentage method with exceptions capability.

fs_mon_SUNOS_PC_MBFREE. ksh:

This shell script is used to monitor a SunOS system for full filesystems using the
percentage method with exceptions capability.

fs_mon_SUNOS_excep.ksh:

Basic SunOS filesystem monitoring using the percent method with exceptions
capability.

Chapter 6

AIX_paging_mon.ksh:

Shell script to monitor AIX paging space.

HP-UX_swap_mon.ksh:

Shell script to monitor HP-UX swap space.

Linux_swap_mon.ksh

Shell script to monitor Linux swap space.

SUN_swap_mon.ksh:

Shell script to monitor SunOS swap space.

all-in-one_swapmon.ksh:

Shell script to monitor AIX, HP-UX, Linux, and SunOS swap/paging space.

Chapter 7

uptime_loadmon.ksh:

System load monitor using the uptime command.

What's On the Web Site 651

uptime_fieldtest.ksh:

Script to test the location of the latest uptime load information as it changes based
on time.

sar_loadmon.ksh:

Load monitor using the sar command.

lostat_loadmon.ksh:

Load monitor using the iostat command.

vmstat_loadmon.ksh:

Load monitor using the vmstat command.

Chapter 8

proc_mon.ksh:

Process monitor that informs the user when the process ends.

proc_wait.ksh:

Process monitor that informs the user when the process starts.

proc_watch.ksh:

Process monitor that monitors a process as it starts and stops.

proc_watch_timed.ksh:

Process monitor that monitors a process for a user specified amount of time.

Chapter 9

There are no shell scripts to list in Chapter 9.

Chapter 10

mk_passwd.ksh:

This shell script is used to create pseudo-random passwords.

652 Appendix A

Chapter 11

stale_LV_mon.ksh:

This shell script is used to monitor AIX stale Logical Volumes.

stale _PP_mon.ksh: |

This shell script is used to monitor AIX stale Physical Partitions.

stale_VG_PV_LV_PP_mon.ksh:

This shell script is used to monitor AIX stale partitions in Volume Groups, Physical

Volumes, Logical Volumes, and Physical Partitions.

Chapter 12

pingnodes.ksh:

This shell script is used to ping nodes. The operating system can be AIX, HP-UX,
Linux, or SunOS.

Chapter 13

AlXsysconfig.ksh:

This shell script is used to gather information about an AIX system’s configuration.

Chapter 14

chpwd_menu.ksh:

This shell script uses sudo to allow support personnel to change passwords.

Sudo —i GS pi mtcalimag zis

This is a tar ball of the sudo source code.

Chapter 15

hgrep.ksh:

This shell script works similar to grep except that it shows the entire file with the
pattern match highlighted in reverse video.

What’s On the Web Site 653

Chapter 16

enable_AIX_classic.ksh:

Enables all AIX “classic” print queues.

print_UP_AIX.ksh:

Enables all AIX System V printers and queues.

print_UP_HP-UX.ksh:

Enables all HP-UX System V printers and queues.

print_UP_Linux.ksh:

Enables all Linux System V printers and queues.

printing_only_UP_Linux.ksh:

Enables printing on Linux System V printers.

queuing_only_UP_Linux.ksh:

Enables queuing on Linux System V printers.

print_UP_SUN.ksh:

Enables all SunOS System V printers and queues.

PQ_all_in_one.ksh:

Enables all printing and queuing on AIX, HP-UX, Linux, and SunOS by auto detect-
ing the UNIX flavor.

Chapter 17

EStahtpe ksh:

Simple FTP automated file transfer test script.

get_remote_dir_listing.ksh:

Script to get a remote directory listing using FTP.

get_ftp_files.ksh:

Shell script to retrieve files from a remote machine using FTP.

654 Appendix A

put_ftp_files.ksh:

Shell script to upload files to a remote machine using FTP.

get_remote_dir_listing_pw_var.ksh:

Script to get a directory listing from a remote machine using FTP. The passwords are

stored in an environment file somewhere on the system, defined in the script.

get_ftp_files_pw_var.ksh:

Script to retrieve files from a remote machine using FTP. This script gets its pass-

word from an environment file somewhere on the system, defined in the script.

put_ftp_files_pw_var.ksh:

Script to upload files to a remote machine using FTP. This script gets its password
from an environment file somewhere on the system, defined in the script.

Chapter 18

findlarge.ksh:

This shell script is used to find “large” files. The file size limit is supplied on the
command line and the search begins in the current directory.

Chapter 19

broot:

Shell script to capture keystrokes of anyone gaining root access.

banybody:

Shell script to capture keystrokes of any user defined in the shell script.

log_keystrokes.ksh:

Shell script to log a user’s keystrokes as they type on the keyboard.

Chapter 20

SSAidentify.ksh:

Shell script to control SSA disk subsystem disk identification lights.

What’s On the Web Site 655

Chapter 21

mk_unique_filename.ksh:

This shell script creates unique filenames.

Chapter 22

float_add.ksh:

Adds a series of floating point numbers together using the bc utility.

float_subtract.ksh:

Subtracts floating point numbers using the bc utility.

float_multiply.ksh:

Multiplies a series of floating point numbers together using the bc utility.

float_divide.ksh:

Divides two floating point numbers using the be utility.

float_average.ksh:

Averages a series of floating point numbers using the bc utility.

Chapter 23

mk_swkey.ksh:

Shell script to create a software license key using the hexadecimal representation of

the IP address.

equate_any_base.ksh:

Converts numbers between any base.

equate_base_2_to_16.ksh:

Converts numbers from base 2 to base 16.

equate_base_16_to_2.ksh:

Converts numbers from base 16 to base 2.

656 Appendix A

equate_base_10_to_16.ksh:

Converts numbers from base 10 to base 16.

equate_base_16_to_10.ksh:

Concerts numbers from base 16 to base 2.

equate_base_10_to_2.ksh:

Converts numbers from base 10 to base 2.

equate_base_2_to_10.ksh:

Converts numbers from base 2 to base 10.

equate_base_10_to_8.ksh:

Converts numbers from base 10 to base 8.

equate_base_8_to_10.ksh:

Converts numbers from base 8 to base 10.

Chapter 24

operations_menu.ksh:

Shell script menu for an Operations staff.

Chaper 25

broadcast.ksh:

Shell script to send pop-up messages to Windows desktops. This shell script requires
Samba to be installed on the UNIX machine.

Functions

Chapter 2

All of the following 12 functions are different methods to process a file line by line. The

two fastest methods are tied for first place and are highlighted in boldface text.

What’s On the Web Site 657

while _read_LINE

while _read_ LINE bottom

cat_while _LINE_line

while line LINE

while _LINE_line bottom

while LINE_line_cmdsub2

while LINE_line_bottom_cmdsub2

while read LINE FD

while LINE line FD

while LINE_line cmdsub2_FD

while line LINE_FD

Chapter 3

send_notification:

This function is used to send an email notification to a list of email addresses,

specified by the MAILLIST variable defined in the main body of the shell script.

Chapter 4

dots:

This function is used as a progress indicator showing a series of dots every 10 sec-

onds, or so.

rotate:

This function is used as a progress indicator showing the appearance of a rotating

line.

Chapter 5

There are no functions to list in Chapter 5.

Chapter 6

AIX_paging_mon:

Function to monitor AIX paging space.

HP_UX_Swap_mon:

Function to monitor HP-UX swap space.

658 Appendix A

Linux_Swap_mon:

Function to monitor Linux swap space.

SUN_Swap_mon:

Function to monitor SunOS swap space.

Chapter 7

There are no functions to list in Chapter 7.

Chapter 8

There are no functions to list in Chapter 8.

Chapter 9

check_HTTP_server:

This function is used to check an application Web server and application URL pages.

Chapter 10

in_range_random_number:

This function creates pseudo-random numbers within one and a “max value”.

load_default_keyboard:

This function is used to load a USA 102-key board layout into a keyboard file.

check_for_and_create_keyboard_file:

If the SKEYBOARD_FILE does not exist then ask the user to load the “standard” key-

board layout, which is done with the load_default_keyboard function.

build_manager_password_report:

Build a file to print for the secure envelope.

Chapter 11

There are no functions to list in Chapter 11.

What’s On the Web Site 659

Chapter 12

ping_host:

This function executes the correct ping command based on UNIX, the UNIX flavor,
AIX, HP-UX, Linux, or SunOS.

ping_nodes:

This function is used to ping a list of nodes stored in a file. This function requires the
ping_host function.

Chapter 13

All of these functions are used in gathering system information from an AIX system.

Refer to Chapter 13 for more details in the AIXsysconfig.ksh shell script.

get_host

get_OS

get_OS_level

get_ML_for_AIxX

get_TZ

get_real_mem

get_arch

get_devices

get_long_devdir_listing

get_tape_drives

get_cdrom

get_adapters

get_routes

get_netstats

get_fs_stats

get_VGs

get_varied_on_VGs

get_LV_info

get_paging_space

get_disk_info

get_VG_disk_info

get_HACMP_info

get_printer_info

get_process_info

get_sna_info

get_udp_x25_procs

get_sys_cfg

get_long_sys_config

get_installed_filesets

check_for_broken_filesets

last_logins

660 Appendix A :

Chapter 14

There are no functions to list in Chapter 14.

Chapter 15

There are no functions to list in Chapter 15.

Chapter 16

AIX_classic_printing:

Enables AIX print queues using the AIX “classic” printer subsystem.

AIX_SYSV_printing:

Enables AIX printers and queues using System V printing subsystem.

HP_UX_printing:

Enables HP-UX printers and print queues using System V printing.

Linux_printing:

Enables Linux printers and print queues using System V printing.

Solaris_printing:

Enables SunOS printers and print queues using System V printing.

Chapter 17

pre_event:

Function to allow for pre events before processing.

post_event:

Function to allow for post events after processing.

Chapter 18

There are no functions to list in Chapter 18.

What’s On the Web Site 661

Chapter 19

There are no functions to list in Chapter 19.

Chapter 20

man_page:

Function to create man page type information about the proper usage of the
SSAidentify.ksh shell script.

twirl:

Progress indicator that looks like a “twirling”, or rotating line.

all_defined_pdisks:

Function that lights all disk identification lights for all defined pdisks.

all_varied_on_pdisks:

Function that lights all disk identification lights that are in varied-on Volume

Groups.

inisteofredisks:

Function that acts on each pdisk by turning on/off the SSA disk identification lights.

Chapter 21

get_random_number:

This function produces a pseudo-random between 1 and 32,767.

in_range_random_number:

Create a pseudo-random number less than or equal to the SUPPER_LIMIT value,

which is user defined.

Chapter 22

There are no functions to list in Chapter 22.

662 Appendix A

Chapter 23

There are no functions to list in Chapter 23.

Chapter 24

There are no functions to list in Chapter 24.

Chapter 25

check_for_null_message:

Checks to see if a variable is empty.

check_for_null_winlist:

Checks to see if a variable is empty.

check_for_smbclient_command:

Checks for the existence of the smbclient command and ensures the file is

executable.

SYMBOLS

* (asterisk), 28

\ (backslash), 2, 103, 265

~ (back tic mark), 16

* (caret), 105, 207, 622

$? (check return code), 25-26

: (colon)

checking NFS for, 113-118

getopts command and, 229, 562, 604

{} (curly braces), 104, 541

. (decimal point), 554

$ (dollar sign)

numeric test comparison and, 120

variable name and, 13, 151

&& (double ampersands), 407

$$ (double dollar signs), 524

== (double equal signs), 217

| | (double pipes), 407

“ (double quotes)

multiword string patterns and, 392
uses of, 16

variable and, 115

/ (forward slash), 471

‘ (forward tic mark), 2, 16

(hash mark), 5

- (hyphen), 562

- (minus) sign, 554

: (no-op), 58
% (percent) character, 103, 526

Index

| & (pipe ampersand), 232

+ (plus) sign, 554

(pound) operator, 527

? (question mark), 28, 562

A

accessing

value of $# positional parameter, 45

variable data, 13

adding list of numbers, 547-551, 555

AIX

classic printer subsystem, 38, 404-408

df -k command output, 130, 131

iostat command output, 186

Logical Volume Manager (LVM), 298

lsps command, 146-147
paging monitor, 149-155

ping command syntax, 320

pwdadm command, 385-389

sar command output, 188-189

system monitoring, 98-103

system snapshot commands, 338-340
system snapshot listing, 341-351

system snapshot report output, 353-366

System V output, 426

System V printing, 408-414

uptime command output, 180-181

vmstat command output, 191

See also stale disk partition, monitoring
for

663

664 index

aliases for /etc/sudoers file, 384, 488

all_defined_pdisks function, 501-503

all_varied_on_pdisks function, 503-505

API (application program interface), 261

application monitoring

APIs and SNMP traps, 261

HTTP server, checking, 259-260

local processes, 252-254

Open Secure Shell and, 254-256

Oracle databases, checking for, 256-259

overview of, 251, 260

application program interface (API), 261

arguments, command switch and, 229.

See also command-line arguments

arithmetic operators

modulo, 267, 526

overview of, 17

array

creating, 418-419

loading, 46-47, 264, 265-266, 280-281

one-dimensional, 265

uses of, 425

working with, 419-420

array pointer, 264

ASCII text, 2

assigning variable, 13

asterisk (*), 28

at command, 28, 96

auditing root access, 476, 483-486

auto-detect techniques, 118

automated event notification

basics of, 79-81

file system monitoring and, 143-144

techniques for, 79

automated FTP file transfer, 39

automated host pinging, 37

averaging series of numbers, 579-582
awk statement, 100, 307

B

background, co-process and, 245-246

backslash (\), 2, 103, 265

back tic mark (>), 16

basename command, 94-95

basename $0 command, 530

be command and floating-point math,

40-41, 545

be utility

float_add script, 546-552

float_average script, 579-582

float_divide script, 573-579

float_multiply script, 565-570
float_subtract script, 556-561

functions, creating, 582-583

here document, using, 555-556, 564-565

Linux swap space monitor and, 160-161

math statement, building, 554-555,

563-564
overview of, 545
parsing command-line arguments with

getopts, 561-563

parsing command line for valid

numbers, 570-572

scale, removing from scripts, 582

scale, setting, 161, 165, 556

Solaris swap space monitor and, 165

syntax, 545-546

testing for integers and floating-point

numbers, 552-554

bdf command, 132-133

bin directory, 103

blank line, removing from file, 44

boot logical volume, 300

bounce account, 480

break command, 9

broadcasting message

to all users, 621-622

error notifications, 645

groups, adding, 623
to individual destinations, 623-627

log file and, 645

overview of, 43, 619

script for, 631-639

sending message, 629-630

testing user input, 627-629

build_manager_password_report function,
271-274

built-in tests, 26

Cc

calling function, 2

capturing

large list of files, 39

user keystrokes, 40, 475-476, 480-483

Index 665

caret (%), 105, 207, 622

case sensitivity, 1

case statement, 8, 437-438

catching delayed command output, 32-33
cat command, 57-58

oe, SVAl

CD-ROM

files, script stub and, 5-6

monitoring and, 98-99

check_exceptions function, 114

check_for_and_create_keyboard_file

function, 270-271

check_for_null_message function, 629

check_for_null_winlist function, 628

check_for_smbclient_command function,

639-640

check_HTTP_server function, 259-260

check return code ($?), 25-26

chmod command, 18-20

cleanup function, 500-501

colon (:)

checking NFS for, 113-118

getopts command and, 229, 562, 604

columns heading, removing in command

output, 45-46

command-line arguments

overview of, 13-14

parsing with getopts, 29-30, 244-245,

561-563, 602-604, 624-626

special parameters and, 15-16

testing and parsing, 275-279

commands

at, 28, 96

AIX classic print control, 404-408
AIX System V print control, 408-414

basename, 94-95

basename $0, 530

be, 40-41, 545

break, 9

cat, 57-58

catching delayed output, 32-33

chmod, 18-20

compress, 493

configure, 371-375

crontab, 27

cut, 150

date, 467, 472, 540

df -k, 98, 130-132

disk subsystem, 298-299

echo, 35, 88, 89, 498-499, 524-525

echo $#, 275

eng -A, 404-405

env, 456

executing in sub-shell, 417

exit, 9, 483

find, 39, 465, 466-473

free (Linux), 148

ftp, 442, 443, 463

gunzip, 371

gzip, 493

hostname, 467, 478

HP-UX print control, 414-417

iostat, 179, 186-188, 203-208

kill, 500-501

last, 22-23

line, 54, 58-62

Linux print control, 417-422

list of, 10-12

Ipe (AIX), 408-412

Ipe (Linux), 417-418

Ipe (Solaris), 425-429

Ipstat (AIX), 412-414

Ipstat (HP-UX), 414-417

Ipstat (Solaris), 429-431

Isdev, 501-503

Islv, 299

Isps (AIX), 146-147

Ispv, 299, 304, 504

Isvg, 298, 299, 308

Isvg -o, 504

mail notification, 34-35, 80-83

make, 371, 375-377

make install, 377

manual page, printing, 465

more, 392, 393, 399, 471

number base conversion, 41-42

pg or page, 392, 393, 399

ping, 37-38, 251, 319

printf, 41-42, 586-587

ps, 23

ps auxw, 179, 213-214

ps -ef, 216, 252, 257

pwd, 466, 467, 471

pwdadm, 385-389

read, 53-54, 60

real-time user communication, 24

Index

commands (continued)

remote, running, 255-256

removing columns heading in output,

45-46

return, 9

rsh, 20-21

running on remote host, 20-21

rwall, 24

sar, 179, 188-191, 197-203, 214

select, 42-43

sendmail, 34-35, 83-84, 330

set -A, 46-47, 265, 418

shift, 14-15, 571, 607

smbclient, 619-621, 630

Solaris print control, 425-431

sqlplus, 257-258

ssaidentify, 496-497, 503

ssaxlate, 315-316, 496, 504

ssh, 254

sudo program and, 369-370

su (switch user), 478, 492

swapinfo (HP-UX), 147-148

swap (Solaris), 148-149

symbol commands, 13

system snapshot for AIX, 338-340

tail, 45-46, 405

talk, 24

tee, 223

tee -a, 352, 422

time, 56, 67

touch, 446

tput, 38, 389, 400-401

tput rmso, 392

tput smso, 154, 392

tr, 24-25

tty, 223

typeset, 24-25, 41, 529, 585-586

uname, 128, 176

unig, 43-44, 622

uptime, 179, 180-186, 194-197

user information, 22—23

vmstat, 179, 191-193, 208-212

w, 22

wall, 24

which, 640

who, 22

write, 24

See also getopts command; script

command

command substitution

back tics and, 16

description of, 60

experiment using, 393

options for, 323

timing methods of, 77-78

comments, 4-6

communicating with users, 23-24

compiling sudo, 371-372

compress command, 493

compressing file, 493

configure command, 371-375

configuring sudo, 378-384

continue, 9

control structures, 6-8

converting numbers between bases
base 2 (binary) to base 16 (hexadecimal),

587-590

base 8 to base 16, 586

base 10 (decimal) to base 16

(hexadecimal), 590-593

base 10 to base 16, 586

base 10 to hexadecimal, 587

base 10 to octal, 587

beginning of main, 606-608
overview of, 41-42, 585

parsing command-line argument with
getopts, 602-604

sanity checks, 604-606

software key, creating, 594-597, 608

translation between any base, 597-608

typeset command syntax, 585-586

co-process

with background function, making,

30-32

process monitoring and, 245-246
setting up, 230-231

countdown indicator, 91-96

COUNT variable, 570

CPU load monitoring. See system load
monitoring

cron table

automated hosts pinging and, 335
file system monitoring and, 143-144

overview of, 27-28

pinging and, 321

printing, queuing, and, 409, 418

silent running and, 29

curly braces ({}), 104, 541

current directory, searching and, 472

cut command, 150

D

date command, 467, 472, 540

debug mode, automated FTP and, 463

decimal point (.), 554

declaring

function, 3

shell, 3-4

default shell, 3

defining

function, 120, 340-341, 351

trigger value, 118

/dev/random, 524

df -k command

AIX output, 130, 131

Linux output, 131

overview of, 98

SUN/Solaris output, 132

dial-out modem software, 84-85

directory, adding to path, 466

directory listing, saving remote, 444-446
dividing numbers, 573-579

dollar sign ($)

numeric test comparison and, 120

variable name and, 13, 151

dotting filename, 456-457

double ampersands (&&), 407

double bracket test for character data, 73

double dollar signs ($$), 524

double equal signs (==), 217

double parentheses mathematical test, 73,

iil

double pipes (| |), 407
double quotes (“)

multiword string patterns and, 392

uses of, 16

variable and, 115

downloading

Samba, 642-643

sudo program, 370-371

E

echo command

cursor control commands for, 498-499

RANDOM environment variable and,

524-525

series of dots and, 35, 88, 89

ia nde fe

echo $# command, 275

egrep statement

file system monitoring and, 144

grep compared to, 99, 410

-v argument, 99-100, 133-134

email as repository for log files, 479-480,
486, 493

enclosures, 16

encryption key, 254

eng -A command, 404-405

enterprise management tool, 85, 86, 261

env command, 456

EOF character string, 555, 564

error log, 520

error notification, 645

escaping special character, 2, 265

/etc/motd file, 23
/etc/sudoers file

samples, 378-384, 486-488

troubleshooting, 494

eval function, 626-627

event notification

basics of, 79-81

file system monitoring and, 143

monitoring for stale disk partition, 316

swap space monitoring and, 177

techniques for, 79

events, pre, startup, and/or post, running,

720-229; 249

exceptions capability

exceptions file, 103-110

MB of free space with exceptions

method, 113-118

print queue and, 439

executing

command in sub-shell, 417

shell script recursively, 485-486
exit command, 9, 483

exit criteria, 616

exit signals, 21

exporting password variable, 456

F
file descriptors

overview of, 54

parsing file with, 63-66

timing data and, 67, 73

filename

creating unique, 535-543

dotting, 456-457

668 Index

filename (continued)
log files, 478

See also pseudo-random number, creating

files

aliases for sendmail, 83

capturing large list of, 39

CD-ROM, 5-6
compressing, 493

forward, 82-83, 480

gzip, 371

highlighting text in, 38

large, finding, 465

permissions and chmod command, 18-20

processing line by line, 33

.profile, ownership of, 477

searching for newly created, 473

See also filename; find command

file system monitoring

automated execution, 143-144

command syntax, 98-103

egrep statement, modifying, 144

event notification, 143

exceptions capability, adding, 103-110

full, defining, 100-101
MB of free space method, 110-113

MB of free space with exceptions
method, 113-118

percentage used-MB free combination,

118-128
techniques for, 97

Unix flavors and, 128-130

See also operating system (OS)
File Transfer Protocol. See FTP

find command

large file script, creating, 466-472

options for searching, 472-473

overview of, 39, 465

syntax, 466

flexibility in scripting, 249

floating-point math

float_add script, 546-552

float_average script, 579-582

float_divide script, 573-579

float_multiply script, 565-570

float_subtract script, 556-561

functions, creating, 582-583

here document, using, 555-556, 564-565

Linux swap space monitor and, 160-161

math statement, building, 554-555,

563-564

overview of, 545
parsing command-line arguments with

getopts, 561-563

parsing command line for valid

numbers, 570-572

scale, removing from scripts, 582

scale, setting, 161, 165, 556

Solaris swap space monitor and, 165

syntax, 545-546

testing for integers and floating-point
numbers, 552-554

floating printer, 439

for ... in statement, 7

forward file, 82-83, 480

forward slash (/), 471

forward tic mark (’), 2, 16

free command (Linux), 148

FTP (File Transfer Protocol)

automation of, 39, 441, 444

controlling execution with command-line
switches, 463

debug mode, adding, 463

getting files from remote system, 446—450
here document and, 442-443

log file, adding, 463

modifying script to use password

variables, 456-463

pre and post events, 449

replacing hard-coded passwords with

variables, 452-456

saving remote directory listing, 444-446

syntax for, 441-444

typical file download, 442

uploading files to remote system,

450-452
ftp command, 442, 443, 463
full pathname, 471

functions

all_defined_pdisks, 501-503

all_varied_on_pdisks, 503-505

build_manager_password_report,
271-274

calling, 119

check_exceptions, 114

check_for_and_create_keyboard_file,

270-271
check_for_null_message, 629

check_for_null_winlist, 628

check_for_smbclient_command, 639-640
check_HTTP_server, 259-260

cleanup, 500-501

converting shell script into, 175-176

declaring, 3

defining, 120, 340-341, 351

eval, 626-627

form of, 3

get_max, 212-213

getopts, 278

get_random_number, 525

in_range_fixed_length_random_number,

527-528

in_range_random_number, 267-268

as interpreted, 2

list_of_disks, 506-507

load_default_keyboard, 268-270

man_page, 499

mathematical, built-in, 18

overview of, 2-3

positional parameters and, 14

send_notification, 83-84

show_all_instances_status, 257

show_oratab_instances, 256

simple_SQL_query, 258

trap_exit, 275

twirl, 499-500

usage, 274-275, 497-498

on Web site for book, 656-662

G
gcc, 371

get_max function, 212-213

getopts command

automating FTP and, 463

limitations of, 246

parsing command-line arguments with,

29-30, 244-245, 278-279, 561-563,

602-604, 624-626
process monitoring and, 218, 228,

229-230
getopts function, 212-213

get_random_number function, 525

global variable, 582

goal of script, 2

grep statement

egrep compared to, 99
exceptions capability and, 104-105

process monitoring and, 214

ps -ef command and, 216

rows and, 307

Index 669

uptime field test solution and, 184-186

See also hgrep (highlighted grep)

group, broadcasting message to, 623

gunzip command, 371

gzip command, 493
gzip file, 371

H

hash mark (#), 5

hdisk#
cross-referencing to pdisk#, 520
overview of, 495

translating to pdisk#, 496

here document

be utility and, 545-546, 555-556, 564-565
FTP process and, 442-443

swap space monitor and, 161, 165-166

syntax for, 9-10

hgrep (highlighted grep)
building shell script, 393-394

listing, 394-399
overview of, 391

reverse video control, 392-393

highlighting text in file, 38

$HOME/.profile, 617

hostname command, 467, 478

HP-UX
bdf command output, 132-133

iostat command output, 186-187

ping command syntax, 320

print control commands, 414-417

sar command output, 189

swapinfo command, 147-148

swap space monitor, 155-160

uptime command output, 181-182

vmstat command output, 191

HTTP server, checking, 259-260

hyphen (-), 562

|

identifying
hardware components, Unix flavor and,

495

SSA disk, 496-497

if statement, tests used in, 330

if ... then ... elif ... (else) statement, 7

if ... then ... else statement, 6

if ... then ... fi statement, 417

if ... then statement, 6

670 Index

input redirection, 58
in_range_fixed_length_random_number

function, 527-528
in_range_random_number function,

267-268
integer, testing for, 552-554

iostat command, 179, 186-188, 203-208

IP address, creating software key based
on, 594-597, 608

J

job control, 28-32

junk variable, 420

K

kill command, 500-501

L

large file, searching for, 466-473

last command, 22-23

$LENGTH, testing for integer value,

277-278
line, rotating, creating, 35-36, 89-91, 95-96,

499-500
line command, 54, 58-62

Linux

controlling queuing and printing

individually, 422-425

df -k command output, 131

free command, 148
iostat command output, 187

ping command syntax, 320

print control commands, 417-422

sar command output, 189

swap space monitor, 160-164

System V output, 409, 426

uptime command output, 182

vmstat command output, 192

linx command-line browser, 259-260

listings

AIX Isps -s data gathering, 150

AIX paging monitor, 151-153, 154

AIX system snapshot commands,

338-340
AIX System V printing, 411-412

all_defined_pdisks function, 503

all-in-one paging and swap space

monitor, 169-175

automated FTP, 444

averaging list of numbers, 581

base 2 (binary) to base 16 (hexadecimal)

conversion, 588-589

base 10 (decimal) to base 16

(hexadecimal) conversion, 590-592

broadcasting message, 621-622

build_manager_password_report

function, 272

case statement for iostat fields of data, 188

case statement for sar fields of data, 190

case statement for vmstat fields of data,

192-193

cat $FILENAME | while line LINE

method, 60

cat $FILENAME | while LINE=$(line)

method, 62

cat $FILENAME | while LINE= line’

method, 59

cat $FILENAME | while read LINE

method, 57

check_exceptions function, 114
check_for_and_create_keyboard_file

function, 270-271

check_for_null_message function, 629

check_for_null_winlist function, 628

check_for_smbclient_command function,

639-640

check_HTTP_server function, 259-260

cleanup function, 501

configure command output, 371-375

controlling case statement to pick OS,
437-438

co-process, 231

countdown indicator, 92-94

cursor control using echo command, 499

dividend and divisor, extracting, 573-574

equate_any_base, 598-601

/etc/sudoers file samples, 378-381,

381-384, 486-488

exceptions file, 109

exceptions file that worked best with

testers, 127-128

filename, creating unique, 536-539,
541-543

file system monitoring for AIX, 101-102
file system monitoring for AIX with

exceptions capability, 106-109

finding large file, 467-470, 471-472

fixed-length random number output, 528
float_add script, 547-551, 555

float_average script in action, 581

float_divide script, 574-579

float_multiply script, 565-570, 572

float_subtract script, 556-561, 565
for loop enabling classic AIX print

queues, 406-407

FTP file download, 442

full filesystem on yogi script, 110
full filesystem script, 103

getopts command line parsing, 279

getopts command usage, 229-230
getopts function, 278

get_random_number function, 525

get remote directory listing, 445

get remote directory listing, hard-coded

passwords removed, 457-458

getting files from remote system,

446-448, 449-450
getting files from remote system, hard-

coded passwords removed, 458-460

grep mistake, 104-105

here document for FTP, 442-443

hgrep, 394-399
HP-UX print control, 416

HP-UX swapinfo -tm command output,

155
HP-UX swap space monitor, 157-158

HP-UX swap space report, 159-160

in_range_fixed_length_random_number

function, 527-528

in_range_random_number function, 268,

526
iostat load monitoring, 203-205, 207-208

$LENGTH, testing for integer value,

277-278
Linux, controlling printing individually,

422-423
Linux, controlling queuing individually,

424
Linux print control, 420-421

Linux swap space monitor, 162-163, 164

list_of_disks function, 506-507
load_default_keyboard function, 268-269

loading KEYS array, 280-281

logging keystrokes, 480-482

Index 671

logging root access, 483-485

logic code for large and small filesystem

freespace script, 119

looping in background, 88

loop list, building, 281-282

Ipstat command output, 413, 429-430

Ipstat command using -a and -p, 414, 430
Ipstat or eng -A command output, 404

Ipstat -W or eng -AW command output,

405
Isdev listing of pdisks, 502

Isvg -l appvg2 rootvg command output,

300
LV, loop to show number of stale PPs

from each, 302

LV statistics, 301

mail code segment, 81

mail service, testing, 82

make command output, 375-377

make install command output, 377

MB of free space method, 111-113

MB of free space with exceptions

method, 115-118

monitor all OS, 134-141

monitoring administration users, 489-492

monitoring application process, 253

my_sql_query.sql, 257

operating system test, 129

operations menu, 612-616

paging and swap space report, 146

parsing command line, 606-607

parsing command-line switches with

getopts, 624-625

parsing numbers from command line,

572
password file with variable exported,

453-454
password file with variable not exported,

454
password report, 273-274
password report, printing, 283-284

password, testing visibility of, 455

percentage free-MB free combination,

121-127
pinging, automated hosts, with

notification, 324-328, 331

pop-up messages, sending to Windows,

631-639, 641

Index

listings (continued)

printing and queuing all-in-one, 431-436

process monitoring, 218-222, 223

process monitoring and logging,
224-227, 228

process monitoring timed execution,

232-244
process monitoring timed execution in

action, 248

process startup loop, 216-217

process wait, 218

progress indicator background function,

89
pseudo-random number, creating,

531-535
pseudo-random password, 284-294

pseudo-random password, building new,

282
PV statistics, 305

reverse video menu options, 610-611

reverse video message bar, 611

rotate function, 90, 91

running remote command, 255-256

running total of numbers, 580-581

Samba source code installation, 642

sar load monitoring, 198-200, 202

script for timing of line by line
processing, 55-56

script session, command-line, 476-477

secure shell login, 254-255

sending message to list of nodes, 630

send_notification function, 83-84, 331

shell script starter file, 5-6

shift command, 14-15

show_all_instances_status function, 257

show_oratab_instances function, 256

simple_SQL_query function, 258
software key, creating, 594-595

Solaris print commands, 427-428

Solaris swap space monitor, 166-168, 169

system snapshot for AIX report output,

353-366
testing command input, 72

testing command-line arguments,

276-277

testing for integers and floating-point
numbers, 552-553

timing command substitution methods,

77

timing data for each method, 73-75

timing script, 67-72

twirl function, 500

typeset command in random number

function, 529

typeset command to fix length of

variable, 529

uploading files to remote system,

450-452

uploading files to remote system, hard-

coded passwords removed, 460-462

uptime field test solution, 184-185

uptime load monitoring, 194-196, 197

usage function, 274, 497-498
/usr/local/bin/exceptions file, 142

verifying number base variables, 604-605
VG, LV, and PV monitoring with resync,

308-313

vmstat load monitoring, 208-212

while_line_LINE_Bottom method, 59, 76

while LINE= line’ from Bottom, 61

while LINE=$(line) from Bottom method,

62

while line LINE with file descriptors

method, 66

while LINE=$(line) with file descriptors

method, 65

while LINE='line’ with file descriptors
method, 64-65

while read $FILENAME from Bottom, 58

while read LINE method, 64

sorted timing data by method, 75-76

SQL+ Oracle query, 258-259

SSA identify, 507-519

stale LV monitoring, 303-304

stale PP monitoring, 305-306

list_of_disks function, 506-507

load_default_keyboard function, 268-270
loading

array, 46-47, 264, 265-266, 280-281

default keyboard layout, 268
sudo, using first time, 385 log file

sudo, using in shell script, 386-388 automated FTP and, 463

sudo log file, 389-390 automated hosts pinging, adding to,

system snapshot for AIX, 341-351 333-334.

emailing, 479-480, 486, 493
filename, 478

monitoring for stale disk partition, 316

pop-up message and, 645

print queue and, 439

sudo program, 389-390

swap space monitoring and, 177

user activity and, 478-479

logging process starts and stops, 223-228
logical AND, 17, 407

logical OR, 17, 407

Logical Volume Manager (LVM, AIX), 298

loop counter, 410

looping techniques for parsing file line by
line

cat $FILENAME | while line LINE

method, 60-61

cat $FILENAME | while LINE=$(line)

method, 61-62

cat $FILENAME | while LINE="line*

method, 59-60
cat $FILENAME | while read LINE

method, 57-58, 77

command syntax, 53-54

file for testing timing of, 54-56

techniques for, 33
timing command substitution methods,

77-78
timing data for each method, 73-77

timing methods, 66-67

timing script, 67-72

while_line_LINE_Bottom method, 58-59,

76
while LINE= line* from Bottom, 61
while LINE=$(line) from Bottom method,

62
while line LINE with file descriptors

method, 66

while LINE=$(line) with file descriptors

method, 65-66

while LINE='line’ with file descriptors
method, 64-65

while read $FILENAME from Bottom

method, 58
while read LINE with file descriptors

method, 63-64, 76-77

Ipc command

AIX, 408-412

Linux, 417-418

Solaris, 425-429

Index

Ipstat command

AIX, 404-405, 412-414

HP-UX, 414-417

Solaris, 429-431

Isdev command, 501-503

Islv command, 299

Isps command (AIX), 146-147

Ispv command, 299, 304, 504

Isvg command, 298, 299, 308

Isvg -o command, 504

M

mail command

automated event notification with, 80-81

syntax, 34

-v switch, 82-83

mail notification techniques, 34-35

mailx command

automated event notification with, 80

syntax, 34

-v switch, 82-83

maintenance window

communicating with users and, 23

printing and, 439

make command, 371, 375-377

Makefile, configuring, 371-375

make install command, 377

man_page function, 499

manual page, printing, 465

math

be command for floating-point, 40-41,

545

functions, built-in, 18

modulo operator, 267, 526

operators, 17

See also be utility
MB (megabytes), size of, 473

measurement type, 111

memory, paging and swap space and,

145-146

memory leak, 153

menu, creating

for Operations staff, 609-618

select command and, 42-43

message, broadcasting. See pop-up

messages, sending to Windows

message bar, creating, 611-612

mget subcommand, 449
MIB (Management Information Base), 86

Miller, Todd, 370, 378

673

674 Index

minus (-) sign, 554

model dialing software, 84-85

modulo arithmetic operator, 267, 526

monitoring. See application monitoring;

file system monitoring; process

monitoring; script command; system

load monitoring
more command, 392, 393, 399, 471

multiplying list of numbers, 565-570, 572

N

named pipe, creating, 493

nlist subcommand, 444446

no-op (:), 58

notification of event. See event notification

null value check, 114

null variable, testing for, 44, 115

number. See bc utility; pseudo-random

number, creating

number base conversion

base 2 (binary) to base 16 (hexadecimal),

587-590

base 8 to base 16, 586

base 10 (decimal) to base 16

(hexadecimal), 590-593

base 10 to base 16, 586

base 10 to hexadecimal, 587

base 10 to octal, 587

beginning of main, 606-608

overview of, 41-42, 585

parsing command-line argument with
getopts, 602-604

sanity checks, 604-606

software key, creating, 594-597, 608

translation between any base, 597-608

typeset command syntax, 585-586

numeric test comparison, 120

oO
Open Secure Shell (OpenSSH), 21, 254-256

operating system (OS)
command syntax, output, and, 130-134

controlling case statement to pick,
437-438

exceptions file listing, 142

file system monitoring and, 128-130

/home filesystem, 142-143

monitor all OS listing, 134-141

See also specific operating systems

Operations staff, menu for
overview of, 609

reverse video syntax, 610-618

operators

math, 17

modulo arithmetic, 267, 526

numeric, 120

pound (#), 527

Oracle database, checking for, 256-259
OS. See operating system

outbound mail, problems with, 82-84

output control, 28-32

P
padding number with leading zeros,

527-530
page command, 392, 393, 399

pager notification, 143

paging space. See swap space

parameters

positional, 13-14, 45, 601-602

special, 15-16

parsing

command-line arguments, 29-30,

275-279
command-line arguments with getopts,

244-245, 561-563, 602-604, 624-626
command line for valid numbers,

570-572
file with file descriptors, 63-66

file with line command, 54, 58-62

See also processing file line by line

passwords

hard-coded, 446

hard-coded, replacing, 452-456

page of, printing, 264, 271-272, 283-284,
294

password environment file, creating,
456-457

pwdadm command, 385-389

randomness and, 263

root, auditing, 476, 483-486

root, protecting, 369

secure, 264, 273

selecting, 295

sudo program and, 369-370

See also pseudo-random password

path, adding directory to, 466

pattern matching and set statement, 391

Index 675

pdisk#

all_defined_pdisks function, 501-503
all_varied_on_pdisks function, 503-505

cross-referencing to hdisk#, 520

list_of_disks function, 506-507

Isdev command and, 501-502

overview of, 495

translating hdisk# to, 496

percent (%) character, 103, 526

pg command, 392, 393, 399
PID (process ID), 263, 524

ping command, 37-38, 251, 319

pinging, automated hosts, with notification

cron table entry and, 335

/etc/hosts file compared to list file, 333

functions, 329-331
listing, 324-328
logging capability, adding, 333-334

options for convenience, 321

overview of, 319

pager notification, 334-335
$PINGLIST variable length limit

problem, 332-333

script in action listing, 331

syntax, 320

trap, creating, 323

“unknown host” and, 334

variables, defining, 321-323

pipe ampersand (| &), 232

piping
to background, 231, 232

co-process to background, 31-32
file output to while loop, 57-58

to tee -a command, 352

plus (+) sign, 554

pop-up messages, sending to Windows

to all users, 621-622

error notifications, 645

groups, adding, 623

to individual destinations, 623-627

log file and, 645

overview of, 43, 619

script for, 631-639
sending message, 629-630

testing user input, 627-629

positional parameters

accessing value of $#, 45
overview of, 13-14

referring to, 601-602

pound (#) operator, 527

printers

AIX classic print control commands,

404—408
AIX System V print control commands,

408-414
controlling case statement to pick OS,

437-438
exceptions capability and, 439

HP-UX print control commands, 414-417

keeping enabled, 38-39
Linux, controlling queuing and printing

individually, 422-425

Linux print control commands, 417-422
log file and, 439

maintenance and, 439

printing and queuing all-in-one listing,

431-436
scheduling, 439

Solaris print control commands, 425-431

status information, 413-414

See also printing
printf command, 41-42, 586-587

printing

manual page, 465

page of passwords, 264, 271-272,

283-284, 294
See also printers; System V printing

process ID (PID), 263, 524

processing file line by line

cat $FILENAME | while line LINE

method, 60-61

cat $FILENAME | while LINE=$(line)

method, 61-62

cat $FILENAME | while LINE="line

method, 59-60

cat $FILENAME | while read LINE

method, 57-58, 77

command syntax, 53-54

file for testing timing of, 54-56

techniques for, 33
timing command substitution methods,

77-78
timing data for each method, 73-77
timing methods, 66-67

timing script, 67-72

while_line_LINE_Bottom method, 58-59,

76
while LINE= line’ from Bottom, 61

676 Index

processing file line by line (continued)
while LINE=$(line) from Bottom method,

62

while line LINE with file descriptors

method, 66

while LINE=$(line) with file descriptors

method, 65-66

while LINE='line’ with file descriptors

method, 64-65

while read $FILENAME from Bottom

method, 58

while read LINE with file descriptors

method, 63-64, 76-77

process monitoring

common uses of scripts, 248

end of process, 218-223
logging starts and stops, 223-228

modifications to scripts, 248-249

overview of, 215-216

startup loop, 216-218

timed execution, 228-230

-profile file, ownership of, 477

progress indicator
countdown indicator, 91-96

creating, 35-36

overview of, 87

rotating line, 89-91

series of dots, 87-89, 95

ps auxw command, 179, 213-214

ps command, 23

ps -ef command, 216, 252, 257
pseudo-random number, creating

filename, creating unique, 535-543

fixed-length numbers between 1 and

user-defined maximum, 527-530

numbers between 0 and 32,767, 525-526

numbers between 1 and user-defined

maximum, 526

overview of, 36, 523, 524

random number, description of, 523-524

shell script listing, 531-535

shell script overview, 530-531

software key creation and, 608

techniques for, 524

pseudo-random password

array, loading, 280-281

building new, 282-283
creating, 264

functions, defining, 267-275

keyboard file, checking for, 280
listing, 284-294

loop list, building, 281-282

page of, printing, 264, 271-272, 283-284,

294.

syntax, 264-266

testing and parsing command-line

arguments, 275-279

trap, setting, 280

variables, defining, 266-267

pwdadm command, 385-389

pwd command, 466, 467, 471

Q
querying system for name of shell script,

530
question mark (?), 28, 562

queuing. See printers

R
random number, 523-524. See also

pseudo-random number, creating

read command, 53-54, 60
rebooting system, 337

redirecting standard error to standard

output, 366

relative pathname, 470-471

remote command, running, 255-256

remote host, running commands on, 20-21
removing

blank lines in file, 44

columns heading in command output,

45-46
repeated lines in file, 43-44

repeated line, removing from file, 43-44

resyncing, 313

return code, checking, 25-26

return command, 9

reverse video

control commands, 392-393
highlighting text using, 391
Operations menu, 610-618

turning on and off, 154

root access, auditing, 476, 483-486

root access, restricted. See sudo (superuser
do) program

rsh command, 20-21

ee a Index: 677

running pattern matching and, 391
commands on remote host, 20-21 removing blank lines from file and, 44
pre, startup, and/or post events, reverse video control and, 392

228-229, 249 seed, 267, 524
printers, 38-39 select command, 42-43
remote command, 255-256 sending pop-up messages to Windows.
shell script, 3-4 See pop-up messages, sending to
silent, 28-29, 63 Windows

run queue, 194 sendmail command, 34-35, 83-84, 330
rwall command, 24 Serial Storage Architecture (SSA)

control functions, 501-507
Ss disk identification, 495

Samba error log, 520

downloading, 642-643 executing commands, 520-521

overview of, 24, 619 identifying disks listing, 507-519

testing smbclient program, 643-644 identifying disks listing explanation,

See also smbclient command 519-520

sanity check, 113-115 syntax, 496-497

sar command, 179, 188-191, 197-203, 214 usage and user feedback functions,

saving remote directory listing with FTP, 497-501

444-446 set -A command, 46-47, 265, 418
scale set statement, 391

description of, 545 sgid, 18

removing from scripts, 582 shell, 2

setting, 161, 165, 556 shell script

scheduling comments and style in, 4-6
monitoring, 177 as interpreted, 2

printers, 439 running, 3-4

scope of variable, 14, 120 shift command, 14-15, 571, 607

script command show_all_instances_status function, 257
emailing audit logs, 493 show_oratab_instances function, 256
logging user activity, 40, 478-479, 480-483 silent running, 28-29, 63

monitoring administration users, 489-492 simple_SQL_query function, 258

options, 493-494 smbclient command, 619-621, 630

overview of, 475 snapshot information

repository for log files, 479-480 AIX commands listing, 338-340

starting monitoring session, 479 commands, selecting, 337-338

syntax, 476-477 determining statistics to include, 367
uses of, 477 functions, defining, 340-341, 352

searching for large file, 466-473 listing, 341-351

security listing explanation, 351-353

monitoring user action, 475-476 report output, 353-366

pseudo-random numbers and, 543 storing, 337

See also passwords variables, defining, 352

sed statement SNMP (Simple Network Management

character substitution and removal and, Protocol), 86

101, 102-103 SNMP trap, 85-86, 261

highlighting text in file and, 38

Index

software

dial-out modem, 84-85

license key, creating, 594-597, 608

See also Samba; sudo (superuser do)

program

Solaris

df -k command output, 132
iostat command output, 187

ping command syntax, 320

print control commands, 425-431

sar command output, 190

swap command, 148-149

swap space monitor, 164-169

System V output, 409, 426

uptime command output, 183

vmstat command output, 192

special characters, escaping, 2

special parameters, 15-16

SQL+ database query, 258-259

sqlplus command, 257-258

SSA. See Serial Storage Architecture

ssaidentify command, 496-497, 503

ssaxlate command, 315-316, 496, 504

ssh command, 254

stale disk partition, monitoring for

automated execution, 316

disk subsystem commands, 298-299

event notification, 316-317

Logical Volume Manager (LVM), 298

LV level, stale PPs at, 299-304

overview of, 37, 297

PV level, stale PPs at, 304-307

SSA disks, 315-316

VG, LV, and PV monitoring with resync,

308-315

starting and stopping all printing and

queuing, 409

startup event, 228-229, 249

stderr file descriptor, 54, 63

stdin file descriptor, 54, 63

stdout file descriptor, 54, 63

sticky bit, setting, 18

storing log file, 479, 493

string, testing, 47-50

style, 4-6
sub-shell, executing command in, 417

subtracting list of numbers, 556-561, 565

sudo (superuser do) program

compiling, 371-377

configure command output, 371-375

configuring, 378-384

downloading, 370-371
/etc/sudoers file samples, 378-381,

381-384, 486-488
installing, 377
lecture message, 385

log file, 389-390

make command output, 375-377

monitoring administration users and, 492

need for, 369-370
Operations menu and, 618

overview of, 367, 369

script command and, 475, 476

using first time, 384-385

using in shell script, 385-389

suid, 18

SUN/Solaris. See Solaris
su (switch user) command, 478, 492

swap command (Solaris), 148-149

swapinfo command (HP-UX), 147-148

swap space
AIX paging monitor, 149-155

all-in-one paging and swap space

monitor, 169-176

command syntax, 146-149

HP-UX swap space monitor, 155-160

Linux swap space monitor, 160-164

memory and, 145

options for, 176-177

paging space compared to, 145-146

Solaris swap space monitor, 164-169

symbol commands, 13

system information, gathering.

See snapshot information
system load monitoring

detecting problems, 213

gathering data for plotting, 214

get_max function, 212-213

iostat command syntax, 186-188

iostat solution, 203-208

overview of, 179, 193-194

sar command syntax, 188-191

sar solution, 197—203

showing top CPU hogs, 213-214

ee ee = Index 679

uptime command syntax, 180-186 timed execution for process monitoring
uptime solution, 194-197 co-process, 230-231, 245-246
vmstat command syntax, 191-193 getopts command, 218, 228, 229-230,
vmstat solution, 208-212 244-245, 246

System V printing in action listing, 248
AIX and, 408-414 listing, 232-244
commands for, 39 overview of, 228
Linux and, 417-422 timeout, shell, 476, 486
Solaris and, 429-431 time stamping process, 227

timing, at command and, 96

T TOKEN variable, 570

tail command, 45-46, 405 top level down, 120

talk command, 24 touch command, 446

tar format, 371 tput command, 38, 389, 400-401

tee -a command, 352, 422 tput rmso command, 392

tee command, 223 tput smso command, 154, 392

testing trap

binary numbers, 589-590 setting, 21, 280

built-in tests, 26 SNMP, 85-86, 261
character strings, 245 trap_exit function, 275

command input, 72-73 tr command, 24—25

command-line arguments, 275-279 trigger value, defining, 118

integers and floating-point numbers, troubleshooting
552-554 /etc/sudoers file, 494

mail service, 82 proactive approach to, 403

null variable, 44, 115 See also snapshot information

numeric test comparison, 120 tty command, 223

password file with variable exported, twirl function, 499-500
455-456 typeset command

password file with variable not exported, number base conversion and, 41

456 overview of, 24-25
response to system snapshot, 366 syntax, 585-586

sanity check, 113-115 variable length, setting, 529

smbclient program, 643-644
string, 47-50 U
text strings, 24-25 uname command, 128, 176

timing of line by line processing, 54-56 unig command, 43-44, 622

user input, 627-629 Unix flavors. See AIX; HP-UX; Linux;

text Solaris
ASCII, 2 until loop, catching delayed command

finding in large file, 391 output with, 32-33
highlighting in file, 38 until statement, 7-8

uppercase or lowercase, 24-25 uptime command

thrashing, 145-146 AIX system and, 180-181

threshold variable, setting, 111 field test solution, 184-186

time-based script execution, 27-28 HP-UX system and, 181-182

time command, 56, 67 Linux system and, 182

680 Index

uptime command (continued)

OS common denominator, 183-184

overview of, 179, 180

Solaris system and, 183

system load, measuring, 194-197

usage function, 274-275, 497-498

user

capturing keystrokes of, 40, 475-476,

480-483

giving feedback to, 313

informing about monitoring, 493-494
logging activity of, 478-479

monitoring administration, 489-492

monitoring session, starting, 479

sending pop-up message to, 621-622

user information commands, 22-23

/usr/local/bin directory, 466

Vv

/var, 493

variable

COUNT, 570

double quotes (”) and, 16, 115, 392

global, 582

junk, 420

length, setting, 529

name of, and $ (dollar sign), 13, 151

null, testing for, 44, 115

overview of, 13

password, 456-463

RANDOM, 524-525

replacing hard-coded password with,

452-456

scope of, 14, 120

threshold, setting, 111

TOKEN, 570

verbose mode, 218, 222

Veritas filesystem, 495

viewing data assigned to variable, 13

visudo program, 378, 488

vmstat command, 179, 191-193, 208-212

volume group, 495

WwW

wall command, 24

w command, 22

Web site for book

functions on, 656-662

shell scripts on, 24, 647-656

Web sites

Open Secure Shell code, 21

Samba, 642

sudo program, 370

which command, 640

while loop

parsing file in, 53-54

progress indicator and, 88, 89
while statement, 7

who command, 22

wildcards, 28

Windows, sending pop-up messages to.

See pop-up messages, sending to

Windows

Winpopup protocol, 620

write command, 24

NVIT LIBRARIES Se TT WT Hil]

TA x, W450 tog
Suu?

7.

a
a 4i.

el]

OA 76.76 .063 M48 2003 c.1 Michael, Randal kK, Mastering Unix shell scripting

NEW YORK INSTITUTE
OF TECHNOLOGY

DEMCO

Programming and Software Development ; $45.00 USA/$69.95 CAN/£33.50 UK

Discover how to solve real-world system administration problems with

this collection of end-to-end shell scripts

This comprehensive book takes you The approach used will teach you how RANDAL K. MICHAEL is a Unix

step-by-step through the process of to attack problems logically. It will also © Systems Administrator at Coca-

writing shell scripts to solve real-world empower you to take the basic com- Cola Enterprises, Inc., where he

Unix problems and tasks. Each chapter mand syntax and turn it into a shell writes shell scripts to address

begins by presenting a typical Unix scripting solution. complex monitoring and event

challenge that you'll most likely experi- notification issues. He has more
Throughout the book, you'll find end-

to-end shell scripts that you can use

to automate repetitive tasks and solve

real-world system administration

problems. These tasks include:

ence at your job. With each challenge,

you'll learn how to identify a specific

goal and start the shell script by defin-

ing the correct command syntax to

than 23 years of industry experi-

ence and 10 years of experience

as a Unix Systems Administrator,

working with Solaris, Linux, AIX,

solve the problem. You'll find out how and HP-UX.

to build the shell script around the e¢ Communications such as automated

commands, filter the commands output — event notification, monitoring The companion Web site contains all
to strip out the unneeded data, and add _— processes locally and on remote . sen seiyrh iene a

options that give users more flexibility systems, and automated FTP file pubupentiarnpie conical seas
3 book as well as bonus shell scripts

on the command line. transfers for various tasks.

e Information gathering and monitor-

ing for file systems, paging/swap

space, system load, applications,

processes, and capturing the

system’s configuration

e Print queue management to keep

the printers printing

¢ Floating point mathematics in shell

scripts using the be utility

Wiley Technology Publishing Timely. Practical. Reliable.

Visit the companion Web site at www.wiley.com/compbooks/michael

vwuer NSN
wil ey.com 7

