
MICROSOFT® REFERENCE Mill—

I iiMl

®
KRIS JAMSA

MS-DOS
BATCH FILES

Digitized by the Internet Archive

in 2017 with funding from

Kahle/Austin Foundation

https://archive.org/details/msdosbatchfiles00jams_0

Mm

MICROSOFT® REFERENCE

MS-DOS
BATCH FILES

Microsoft
P R E S S

®

KRIS JAMSA

PUBLISHED BY
Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1989 by Kris A. Jamsa

All rights reserved. No part of the contents of this book

may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Jamsa, Kris A., 1960-

Quick reference guide to MS-DOS batch files.

Includes index.

1. MS-DOS (Computer operating system) 2. File

management (Computer science) 3. Electronic data

processing--Batch processing. I. Title.

QA76.76.063J34 1989 005.4’40 89-35208

ISBN 1-55615-235-3

Printed and bound in the United States of America.

23456789 RARA 3210

Distributed to the book trade in Canada by General Publishing

Company, Ltd.

Distributed to the book trade outside the United States and Canada by

Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10,

New Zealand

British Cataloging in Publication Data available

IBMf PC/ATf and PS/2® are registered trademarks of International

Business Machines Corporation. Microsoft® and MS-DOS® are registered

trademarks of Microsoft Corporation.

Acquisitions Editor: Dean Holmes Project Editor: Jack Litewka

Technical Editor: Jim Johnson

Contents

Introduction 1

PART I: Getting Started with Batch Files 3
Understanding Batch-File Processing 3

Advantages Batch Files Provide 6

Naming Your Batch Files 8
*

Creating Your Batch Files 9

PART II: Customizing Your System with
Batch Files 1

6

Using Batch Files to Customize Your System 16

Looking at AUTOEXEC.BAT 20

AUTOEXEC.BAT vs CONFIG.SYS 22

PART III: Essential Batch Commands
and Concepts 24

Suppressing the Display of Batch-File Command
Names 24

Ending a Batch File Early 29

Redirecting Output with DOS Batch Files 31

Helping Others Understand Your Batch Files 31

Improving Batch-File Readability 34

Temporarily Suspending Batch-File Processing 35

Displaying Messages to the User with the ECHO
Batch-File Command 42

Where to Place Your Batch Files on Disk 48

PART IV: Using Parameters to Increase
Batch-File Flexibility 49

Getting Started with Batch-File Parameters 49

iv CONTENTS

PART V: Batch-File Programming 53
Testing Specific Conditions Within Your Batch

Files 53

Using the NOT Operator 64

Repeating a DOS Command for a Set of Files 66

Branching from One Position in a Batch File to

Another with GOTO 72

PART VI: Advanced Batch-File Concepts 7B
Using Named Parameters 78

Running One Batch File from Within Another 82

Handling More than Nine Parameters with SHIFT 89

Batch-File Exceptions 94

Completing the OS/2 Batch-File Commands 97

PART VII: Getting the Most from Batch Files

with ANSI.SYS and DEBUG 101
Unleashing Batch-File Applications with the

ANSI.SYS Device Driver 101

Using DEBUG to Unleash Your Batch-Processing

Potential 112

Using the ASCII Extended Character Set 128

PART VIII: Building a Batch-File Library 1 34
Setting Screen Colors 134

Preventing Hard-Disk Formatting 136

Getting Character-String Input 138

Simplifying Your System-Backup Operations 140

PART IX: Getting the Most from
AUTOEXEC.BAT 1 46

Customizing AUTOEXEC.BAT 146

PART X: Appendixes 153
Appendix A: Summary of DOS Exit-Status Values 153

Appendix B: Summary of ANSI.SYS Commands 155

Index 157

Introduction

For years, experienced users of the MS-DOS disk operating

system have found that DOS batch files save them time and

keystrokes. Put simply, a DOS batch file is a file that con-

tains DOS commands. When you type the name of a batch

file at the DOS prompt, DOS executes the commands that

the batch file contains. (This book will use the hard-disk

drive default prompt C>.) Although many users employ

simple batch files on a daily basis, abbreviating a series of

commonly used commands, most users fail to take full ad-

vantage of the potential that batch files offer.

Until now, the majority of books on “batch processing”

largely focused on non-batch-related DOS commands. This

book, however, sticks to its topic. Users new to DOS batch

files can begin with the basics. Those who have used

simple batch files will learn how to repeat commands and

how to branch from one location in a batch file to another.

Experienced batch-file users will learn how to add color

and line-drawing characters to the screen display generated

by their batch files.

Although the DOS batch commands are quite powerful, the

commands still don’t provide you with all the capabilities

you need to get the most from your batch files. This quick

reference guide teaches you how to create simple programs,

using DEBUG, that let your batch files prompt the user for

a Y (yes) or N (no) response, test to see if a specific func-

tion key has been pressed, and even use the direction keys

to move menu options. These programs take only minutes

to create. You don’t need any special programming lan-

guages— all you need is DOS!

This book also teaches you how to have your batch file ask

the user for information and then how to read and use the

1

2 INTRODUCTION

information provided. For years, users have wanted these

capabilities: This quick reference shows you how you can

have them.

You don’t have to be an expert to use this guide. Any DOS
user can easily follow the examples. Learning how to

create and use batch files might just be the most productive

time you spend at your computer— because it will save you

time whenever you use your computer.

PARTI

Getting Started

with Batch Files

UNDERSTANDING BATCH-FILE

PROCESSING
The number of DOS commands now exceeds 60. Most of

us, however, use only a small group of DOS commands,

such as COPY, REN, DEL, TYPE, DISKCOPY, and

FORMAT— and possibly the subdirectory commands.

Therefore, we probably won’t recall the format for many
other DOS commands, let alone their command-line

switches.

To accomplish specific tasks such as selecting a specific

directory and running a word processor, novice users often

have to perform a series of commands. As the amount of

typing that a user must perform increases, so too does the

possibility of error. An error can be the omission of a criti-

cal command, or it can be a typographical error.

To decrease the likelihood of error and to simplify your use

of DOS, DOS supports batch files. A batch file is a file you

create that contains one or more DOS commands. To exe-

cute all the commands within a batch file, a user simply

types the name of the batch file at a DOS prompt and

presses the Enter key, exactly as if the batch file were a

single DOS command. When DOS encounters the batch

file, DOS executes all the batch commands, starting with

the first command and working toward the last.

3

4 PART I: GETTING STARTED WITH BATCH FILES

To begin, let’s examine a simple batch file, named

TIMEDATE.BAT, that contains three basic DOS
commands:

CLS

TIME

DATE

You will create this batch file later; for now, we’ll simply

discuss how it works.

CLS clears the screen display. TIME displays the current

time and prompts the user to enter a new time. DATE
displays the current date and prompts the user to enter a

new date.

Notice the BAT filename extension. File extensions can de-

scribe the type of information a file contains. In the case of

TIMEDATE.BAT, the BAT extension tells the user, as well

as DOS, that the file is a batch file. To run the batch file,

you would type the name of the batch file at the DOS
prompt and then press the Enter key, as follows:

C> TIMEDATE

When DOS encounters the name of the batch file, DOS
opens the batch file and executes the first command in the

file— in this case, the CLS command. After CLS com-

pletes execution, DOS executes the next command in the

batch file— the TIME command. At this point, DOS dis-

plays the following:

C> TIME

Current time is 11:26:46.03a
Enter new time:

You would now type the correct time and press the Enter

key, or you would press Enter to leave the time unchanged.

(Note: DOS releases prior to version 4.0 do not support the

12-hour clock. Such versions would not display an a
,
as

shown above, for “A.M.” This book is based on DOS 4.0;

exceptions are noted.) After TIME completes execution,

DOS executes the DATE command and displays the

following:

C> DATE

Current date is Sat 05-12-1990
Enter new date (mm-dd-yy):

PART I: GETTING STARTED WITH BATCH FILES 5

You would now type the correct date and press Enter, or

you would press Enter to leave the date unchanged. When
the DATE command completes execution, DOS searches

for the next command in the batch file. Because no other

commands exist, the batch file completes execution and

DOS displays its prompt./

Let’s examine another batch file, named DISKINFO.BAT,

that contains three DOS commands:

VOL

CHKDSK
DIR

To execute the commands in this file, which display speci-

fics about the default drive, you would type the name of the

batch file and press Enter:

C> DISKINFO

If DOS displays the message Bad command or file name

when you execute this batch file, it signifies that DOS
could not locate the external command, CHKDSK.COM.
Remember: External commands must reside on the floppy

disk or in the current drive or be accessible via the com-

mand path defined by the DOS command PATH.

A Note for OS/2 Users

Batch files are not unique to DOS. OS/2 batch files behave

in the same manner as DOS batch files. The difference be-

tween DOS and OS/2 batch files is simply naming. OS/2

real mode allows you to execute DOS commands and DOS
batch files with the extension BAT. In OS/2 protected

mode, however, batch files have the extension CMD. CMD,
in this case, is short for “command.” Assuming you are

using OS/2 protected mode, you can create a batch file,

named TIMEDATE.CMD, that contains three DOS com-

mands: CLS, TIME, and DATE.

As before, to run the batch file, type its filename at the

OS/2 prompt and then press the Enter key:

[C:\] TIMEDATE

6 PART I: GETTING STARTED WITH BATCH FILES

When OS/2 encounters the batch file, OS/2 executes the

batch-file commands, starting with the first command and

working toward the last.

ADVANTAGES BATCH FILES PROVIDE

Regardless of whether you are using DOS or OS/2, batch

files save you.time, reduce your keystrokes and errors, and

simplify the execution of difficult commands. Let’s look at

several batch-file examples that show you how.

Saving Time with Batch Files

Assume that each morning you must run four inventory-

control programs. The first program, CALCINV.EXE,
calculates your current product inventory. The second,

SORTINV.EXE, sorts the inventory by quantity on hand.

The third, PRINTINV.EXE, prints listings of inventory

quantities on hand. The fourth, ORDERINV.EXE, gener-

ates purchase orders for items that need to be stocked.

To run these four programs, you must type in the name of

the first program, press the Enter key, and wait for the pro-

gram to complete execution before repeating these steps for

the remaining programs. You might spend a considerable

amount of time sitting at the keyboard and waiting for each

program to complete execution.

These commands are excellent candidates for a batch file.

In this case, you might name the batch file GETINV.BAT.
This file contains the following four commands:

CALCINV, SORTINV, PRINTINV, and ORDERINV.
When you type the name of the batch file and press Enter,

DOS sequentially executes the four commands for you:

C> GETINV

C> CALCINV

C> SORTINV

C> PRINTINV

C> ORDERINV

PART I: GETTING STARTED WITH BATCH FILES 7

Because DOS executes the commands for you automati-

cally, you are free to perform other tasks away from your

computer. In this way, using a batch file can save consider-

able time each day.

Saving Keystrokes and Reducing Errors

with Batch Files

Because batch files allow you to execute multiple com-

mands by entering one command name, they reduce the

number of keystrokes a user must enter, which directly re-

duces the possibility of error. In the previous example, exe-

cuting the batch file GETINV.BAT not only reduced the

number of keystrokes but also eliminated the possibility of

the user executing a command in the wrong order, typing a

command incorrectly, or omitting a command.

Simplifying Command Execution

Each one of us was new to DOS at one time. Most of us can

remember the intimidation we felt when we issued our first

DOS commands. Batch files help to minimize this intimi-

dation by reducing the number of difficult commands that a

new user must remember and successfully execute. For ex-

ample, most users keep their word-processing files in a

unique subdirectory. To run the word processor, the user

must first select the correct subdirectory by using the

CHDIR (Change Directory) command and then select the

word processor. In the case of Microsoft Word, for ex-

ample, the sequence of commands becomes:

C> CHDIR \W0RD

C> WORD

Whether you are a new user or an experienced user helping

a beginner, you might consider creating a batch file, named

DOWORD.BAT, that contains both commands. The fewer

commands a new user must memorize, the more comfort-

able the new user will feel with the computer. As a result,

the new user will learn faster.

8 PART I: GETTING STARTED WITH BATCH FILES

NAMING YOUR BATCH FILES

You should always try to give meaningful filenames to

every file that you create on your disk. Batch files are no

exception. Batch files must have the BAT extension under

DOS and the CMD extension under OS/2. As a result,

you have only the eight-character filename to distinguish

one batch file from another. The name of the batch file

should clearly explain the processing that the batch file

performs. For example, earlier we examined the batch

file TIMEDATE.BAT, which set your system’s time and

date; and in our inventory example, the batch file was

GETINV.BAT. Both of these batch-file names explain the

processing the files perform. Although naming a batch file

X.BAT or Z.BAT is easy, neither name describes what the

batch file does. A few days after you create such a batch

file, you probably won’t recall its function.

Do not give a batch file the same name as a DOS internal

command or external command. Each time you type a

command at the DOS prompt, DOS first checks to see if

your command is an internal command (such as CLS,

DATE, or TIME), which DOS keeps in memory at all

times. If your command is an internal command, DOS exe-

cutes it (instead of the batch-file command). Otherwise,

DOS tests to see if the command is an external command
in the current directory. An external DOS command (such

as DISKCOPY or FORMAT) is a command that resides

on disk. If your command is not an internal command in

memory or an external command on disk, DOS tests to see

if your command corresponds to a DOS batch file. DOS
and OS/2 will execute batch files only if no matching inter-

nal or external command exists in the current drive and

directory. If you give your batch file the same name as that

of a DOS command, DOS will never execute the batch file.

For example, if your batch file is named TIME.BAT, DOS
will locate the DOS command TIME and then execute

only the DOS command.

PART I: GETTING STARTED WITH BATCH FILES 9

CREATING YOUR BATCH FILES

The method you choose to create batch files can vary, de-

pending on their length. For short batch files, the simplest

and fastest method is to copy the batch file from the key-

board. To do so, you perform a copy operation using CON
(the device name for the keyboard) as the source of your

batch file’s input. In this case, we will create the batch file

TIMEDATE.BAT, which sets the system time and date. To

begin the batch-file copy operation, type the following

command at the DOS prompt:

C> COPY CON TIMEDATE.BAT

DOS will perform a copy operation using the COPY com-

mand. In this case, the source of the data to copy is the key-

board. The target of the copy operation is the batch file

TIMEDATE.BAT. When you press the Enter key to begin

the copy operation, DOS places the cursor at the start of the

line following the command. At this point, DOS is waiting

for the first line of input. Type the command TIME, which

is the first batch-file command, and press Enter:

C> COPY CON TIMEDATE.BAT
TIME

Next, type the command DATE and press Enter:

C> COPY CON TIMEDATE.BAT
TIME

DATE

The DATE command is the last command in the batch file.

You must tell DOS that you have no more input for the file.

To do so, press the F6 (end-of-file) function key and then

press Enter. DOS will display the characters AZ at the bot-

tom of your batch file. (Caution: Do not press Shift-8 to

create the caret. You can, however, hold down the Control

[Ctrl] key and press Z.) The AZ characters, pronounced

“Control Z,” indicate the end of the file to DOS. When
you press Enter following AZ, you inform DOS that you

have completed the file copy operation. As a result, DOS
creates the batch file and displays the following:

1 o PART I: GETTING STARTED WITH BATCH FILES

C> COPY CON TIMEDATE.BAT

TIME

DATE
A Z

1 File(s) copied

C>

To execute this batch file, type TIMEDATE:

C> TIMEDATE

When you press Enter, DOS executes the TIME command

and then the DATE command.

Using the COPY CON technique, create a batch file,

named DISKINFO.BAT, that contains the commands VOL,

CHKDSK, and DIR. As before, type the COPY command

line, using the CON device name as your input source, and

press Enter:

C> COPY CON DISKINFO.BAT

Next, type each batch-file command, pressing Enter after

each command name:

C> COPY CON DISKINFO.BAT
VOL

CHKDSK
DIR

To tell DOS you’re finished entering commands, press the

F6 key and then press Enter. DOS creates the batch file and

tells you that one file has been copied:

C> COPY CON DISKINFO.BAT

VOL

CHKDSK
DIR
A Z

1 File(s) copied

C>

To create small batch files from the keyboard, follow these

steps:

1. Issue a COPY command using CON as the source and

using a meaningful name for the batch file as the target.

Then press Enter. For example: C> COPY CON
DATEPRNT.BAT

PART I: GETTING STARTED WITH BATCH FILES 1

1

2. Type one batch-file command at a time, and press Enter

after each command.

3. After typing the last batch-file command, press the F6

key and then press Enter. (F6 signals the end of the file

to DOS.)
r

As your batch files get larger, you will want to use either a

word processor or the Edlin line editor that DOS provides.

If you use a word processor, be sure that you save the file

in nondocument (ASCII) mode. As you might have ob-

served, word processors allow you to format text within a

letter or report by aligning paragraphs, centering text, or

highlighting specific text. To perform these tasks, word

processors place embedded characters within your file.

Although these embedded characters are meaningful to the

word processor, DOS does not understand them. If these

characters appear in your batch files, they cause errors. If

you open or save your word-processing files in ASCII

mode, the word processor will not embed these characters.

If you perform a directory listing of the files in your DOS
directory (on hard-disk systems) or on your DOS disk (on

floppy-disk systems), you will see that DOS provides the

file EDLIN.COM, as follows:

C : \DOS> DIR EDLIN.COM

Volume in drive C is DOS 4

Volume Serial Number is 3A2F-18E9

Directory of C:\DOS

EDLIN COM 14249 06-17-88 12 : OOp

1 File(s) 21161984 bytes free

Edlin is a line editor (meaning you can work with only one

line at a time) that allows you to create and change files.

To understand how Edlin works, let’s use it to create a

batch file, named SHORTDIR.BAT, that contains the com-

mands CLS and DIR /W.

To begin, run Edlin from the DOS prompt and specify the

file to edit. (You must specify a filename in your Edlin

command line.) In this case, your command line is:

C> EDLIN SHORTDIR.BAT

1 2 PART !: GETTING STARTED WITH BATCH FILES

When you press Enter, Edlin displays:

C> EDLIN SHORTDIR.BAT

New file
*

The asterisk symbol (*) is the Edlin prompt. Edlin supports

several single-letter commands. For our purposes, we will

use only a few of these commands. (For a complete discus-

sion of Edlin, refer to your DOS user’s manual.)

To insert a command into a batch file, you must issue the

Edlin insert command, I, and press Enter:

C> EDLIN SHORTDIR.BAT
New file

*1
1 : *

Edlin prompts you to enter the first line of the batch file.

Type CLS and press Enter:

C> EDLIN SHORTDIR.BAT
New file
*1

1 :* CLS

2 : *

Edlin now prompts you for the second line. Type DIR /W
and press Enter:

C> EDLIN SHORTDIR.BAT
New file
*1

1:* CLS

2:* DIR /W

Because only two lines are required for this batch file, you

must tell Edlin you’ve finished inserting text. To do so,

hold down the key labeled Ctrl and press the C key. When
you press Ctrl-C, Edlin exits the insert mode and displays

its prompt, as follows:

C> EDLIN SHORTDIR.BAT
New file
*1

1 : * CLS

2:* DIR /W

3 : *
A
C

PART I: GETTING STARTED WITH BATCH FILES 1

3

To save the file, exiting Edlin and returning to DOS, enter

the Edlin end command, E, and press Enter:

C> EDLIN SHORTDIR.BAT

New file

*1

1:* CLS

2:* DIR /W
•'

3:* A C

*E

m

c>

To run your newly created batch file, type SHORTDIR :

C> SHORTDIR

and press Enter. DOS clears the screen and displays your

directory listing with filename columns across the screen

(as directed by the /W switch).

As discussed, Edlin allows you to change an existing file.

Now let’s change the file SHORTDIR.BAT so that DOS
displays only those files with the extension EXE. As

before, type EDLIN and specify the filename:

C> EDLIN SHORTDIR.BAT

Because the file SHORTDIR.BAT already exists, Edlin dis-

plays the following:

C> EDLIN SHORTDIR.BAT
End of input file
*

In this case, Edlin is telling you that it has read the entire

file and that it is ready to edit. When you type the numeral

1 at the Edlin prompt and press Enter, Edlin displays the

first line in the file:

C> EDLIN SHORTDIR.BAT
End of input file

*1

1:* CLS

1 :*

The second 7:* that appears on your screen is Edlin’s

prompt for you to change line 1. If you want to leave line 1

unchanged, press Enter; otherwise, type the new text for

line 1. For now, leave line 1 unchanged (by pressing Enter):

14 PART I: GETTING STARTED WITH BATCH FILES

C> EDLIN SHORTDIR.BAT

End of input file

*1

1 :* CLS

1 : *

*

At the Edlin prompt, type the numeral 2 and press Enter.

Edlin displays the contents of line 2, allowing you to

change it:

C> EDLIN SHORTDIR.BAT
End of input file
*1

1 :* CLS

1 :*

*2

2 : * DIR /W

2 :
*

In this case, you need to change line 2 from DIR /W to

DIR *.EXE /W. Type the new line and press Enter:

C> EDLIN SHORTDIR.BAT
End of input file
*1

1:* CLS

1 :*

*2

2 : * DIR /W

2 : * DIR *. EXE /W

*

Again, by entering the Edlin end command, E, and press-

ing Enter, you save the updated file contents and exit to

DOS:

C> EDLIN SHORTDIR.BAT
End of input file
*1

1 :* CLS

1 : *

*2

2 : * DIR /W

2:* DIR * . EXE /W

*E

C>

PART I: GETTING STARTED WITH BATCH FILES 1

5

If you now run the batch file, DOS clears the screen and

displays only those files with the extension EXE.

If you want to stop editing the file without saving any

changes, use the Edlin quit command, Q. When you issue

the command, Edlin responds with:

Abort edit (Y / N)

?

If you type Y (for yes) and press Enter, Edlin ignores your

edits, exits to DOS, and leaves the file unchanged. If you

type N (for no) and press Enter, Edlin continues the editing

session.

Later in this reference, we will use Edlin to create batch

files that change your screen settings and to assign com-

monly used DOS commands to the function keys on your

keyboard. We will also continue our discussion of DOS
batch files and batch-file commands. But first, let’s take

a look at a simple batch file that you might want to use

on a daily basis.

Using Edlin, let’s create another batch file, named

SORTDIR.BAT, that contains the command to print a

sorted listing of your files:

C> EDLIN SORTDIR.BAT
New file
*1

1 : * DIR ! SORT > PRN

2:* A C

*E

C>

PART II

Customizing Your

System with

Batch Files

USING BATCH FILES TO CUSTOMIZE
YOUR SYSTEM

Many users “personalize” their systems by changing the

DOS prompt. By default, DOS displays the current disk-

drive letter followed by the greater-than symbol (>) as its

prompt. For example: C>.

Many users also like to display the current directory within

the prompt. To do so, users must issue the PROMPT com-

mand. If you examine the PROMPT command in the DOS
user’s manual, you will find that PROMPT supports sev-

eral unique character combinations called metacharacters.

In general, a metacharacter is a character that follows the

dollar-sign character ($). When PROMPT detects a

metacharacter, it displays text unique to the metacharacter.

PROMPT supports the following metacharacters:

Metacharacter Corresponding Text

$$ $ character

$b ! character

$d Current system date

$e ASCII escape character

$g > character

$h ASCII backspace character

(continued

)

16

PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES 1

7

continued

Metacharacter Corresponding Text

$1 < character

$n Current disk drive

$p Current disk drive and directory

$t Current system time

$v
«*

Current DOS version

$_ Carriage return, linefeed

$q = character

In OS/2 only, the

supported:

following metacharacters are also

Metacharacter Corresponding Text

$a & character

$c (character

$f) character

$i The help line

$s Insert a leading space

As you can imagine, remembering these metacharacters

could be a difficult task. A better alternative is to deter-

mine the prompt setting that you want and then to place the

corresponding PROMPT command in a batch file named

MYPROMPT.BAT. For example, the following command
displays the current system date on one line and the current

drive and directory two lines below enclosed in brackets:

PROMPT d_$_I$p]

Assuming that you place this command in the batch file

MYPROMPT.BAT, executing the batch file results in

prompt lines resembling the following:

Sat 05-12-1990

[C:\D0S]

As you can see, DOS displays the current date, followed by

the current directory within open and close brackets. (Note

that the brackets, as with other characters not preceded by

1 8 PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES

the $ character, are displayed exactly as entered.) Regard-

less of the system prompt you choose, most users find that a

prompt containing the current drive and directory is very

functional. By setting your desired prompt with a DOS
batch file, you don’t have to remember the PROMPT com-

mand line from one day to another or enter it each session.

The first time you issue the PRINT command, DOS in-

stalls software in your computer’s memory that manages

your printer and the files you print, and it lets you include

several switches in the command line. (Note: The switches

that can take parameters can be specified only when

PRINT is first executed.) The switches specify such prefer-

ences as the selected printer (normally PRN for parallel

printers and COM1 for serial printers); the size of the print

queue, from 4 through 32 (by default, DOS will hold 10

files for printing, in a list called a queue); and several

switches that determine how much of your computer’s time

is spent printing files. The following table briefly describes

PRINT’S switches:

Switch Function

/B Specifies the size of the print buffer.

/c Cancels one or more files in the print queue.

/D Specifies the target output device.

/M Specifies the number of clock ticks during

which PRINT can retain control of the printer

for each time it begins printing.

/Q Specifies the number of files the print queue
can store.

/ s Specifies the print time slice, which controls

how often PRINT gains control of the printer.

/T Cancels all files in the print queue.

/u Specifies the number of clock ticks that

PRINT can wait for the printer to become
available.

/P Prints the files named on this command line.

Most users use PRINT’S default settings simply because

they don’t remember the available switches. In many cases,

users can get better performance from their printer and

computer by including a few simple switches in the PRINT

PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES 19

command. DOS batch files provide you with an easy way

to run PRINT with its optimal settings. For most users, the

following command line will give the best performance:

PRINT / D : PRN /Q : 32 /M:64 /U : 16 /B:4096

If you are using a serial printer connected to the first

adapter, change the /D switch to reference COM1:

PRINT / D : C0M1 / Q : 3 2 /M:64 /U : 16 /B : 4096

In this case, the command installs a queue large enough for

32 files using the /Q switch. The /D switch tells PRINT the

device to print to. By including this switch, PRINT sup-

presses the prompt (Name of list device [PRN]:) that PRINT
normally displays the first time you run it. The /M switch

directs PRINT to retain control of the computer for 64

clock ticks each time it begins printing. The /U switch

directs PRINT to retain control for 16 clock ticks while

waiting for the printer to become available, if the printer is

currently busy.

Lastly, the /B switch sets aside a print buffer of 4096 bytes.

PRINT fills this buffer with characters from the file each

time it reads from disk. Because this buffer is quite large

(the default is 512 bytes), PRINT reduces the number of

slow disk-input operations it must perform to print a file.

Reducing disk-input operations improves overall system

performance.

You might call the batch file PRINTINS.BAT (for Print In-

stall). Although the MYPROMPT.BAT and PRINTINS.BAT
batch files are quite simple, both show you how batch files

eliminate the burden of remembering difficult commands.

You might be thinking that you would like to issue these

commands on a daily basis, or better yet, each time DOS
starts. As it turns out, DOS lets you create one special

batch file, called AUTOEXEC.BAT, whose contents DOS
executes each time you start the system. If you are using

OS/2, the operating system executes a similar batch file,

called STARTUP.CMD, each time the system starts.

AUTOEXEC.BAT and STARTUP.CMD have the same

function— to provide a set of commands that automatically

execute each time you start the system.

20 PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES

LOOKING AT AUTOEXEC.BAT

Users generally need to execute several DOS commands

each time they work with their systems. These commands

include PROMPT (which sets your system prompt), PRINT
(which installs printer-management software), PATH
(which defines the set of subdirectories and disk drives that

DOS searches for executable programs), APPEND (which

defines the data-file search path), and SET (which defines

DOS environment variables), as well as third-party soft-

ware commands that install memory-resident software pro-

grams. If you group these commands into a batch file, you

don’t have to type these commands each time you start

your system.

When DOS starts, it searches the root (uppermost) direc-

tory of the boot disk for the batch file AUTOEXEC.BAT.
If this file exists, DOS opens it and executes the commands
it contains, beginning with the first command in the file

and working its way toward the last.

If DOS cannot find AUTOEXEC.BAT in the root direc-

tory, DOS instead displays a copyright message and exe-

cutes the DATE and TIME commands. To better

understand this processing, let’s take a look at a sample

AUTOEXEC.BAT file:

PATH C:\D0S
PROMPT pg
PRINT /D: LPT1 /Q : 32 /M:64 /U : 16 /B:4096

This batch file contains three commands commonly found

in AUTOEXEC.BAT. The first command:

PATH C:\D0S

defines the command search path. Each time DOS fails to

locate a command in the current directory or in the direc-

tory specified, DOS checks to see if you have defined a

command search path. The DOS command PATH lets

you specify a list of one or more subdirectories that DOS
searches for executable programs. In this case, if DOS does

not locate the specified program, it searches the subdirec-

tory DOS on drive C for the program. Because this subdi-

rectory contains all the external DOS commands, DOS

PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES 21

will very likely locate the command. If your disk has other

subdirectories that contain commonly used files, PATH lets

you include them in the command-file search path by

separating each directory with a semicolon, as follows:

PATH C:\DOS;C:\UTIL;C:\BIN

In this case, if DOS fails XO locate a program in the current

directory or in the specified directory, DOS begins its

search for the program in the subdirectory C:\DOS. If DOS
locates the program, DOS executes it. Otherwise, DOS con-

tinues searching the directories C:\UTIL and C:\BIN (in

that order).

Place only those subdirectories that are likely to contain

executable programs into your command search path. Each

time DOS uses the command search path, DOS examines

every file, in every directory specified in the path, stop-

ping when the file is found. If a subdirectory in the path

is not likely to contain an executable program, DOS is

wasting time searching the files in that subdirectory.

The second command in this batch file:

PROMPT $ p $

g

sets the DOS system prompt to the current drive and direc-

tory name, followed by the > symbol. As you change drives

or directories, DOS changes your prompt, displaying the

current default drive and directory. In this case, assuming

that the current directory is the root directory in drive C,

your prompt is:

C:\>

If you use CHDIR (Change Directory) to select the subdi-

rectory DOS, for example, DOS changes your prompt, as

follows:

C:\> CHDIR \D0S

C : \D0S>

If you change the current drive, DOS changes the prompt.

For example, here is how the prompt changes when you

change the current drive from C to A:

C : \D0S> A:

A: \>

22 PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES

Most users display the current directory and drive in the

system prompt for convenience.

The third command:

PRINT / D : LPT1 /Q : 32 /M : 64 /U : 16 /B : 4096

installs software that DOS uses to manage the files you

later print using the DOS command PRINT.

The actual commands that your AUTOEXEC.BAT file con-

tains can vary with the program that you use. If your system

does not have a battery-powered clock that stores the sys-

tem date and time, you need to include the DOS commands

DATE and TIME in AUTOEXEC.BAT. Placing DATE and

TIME in this batch file will ensure that you are prompted

for data to keep your system’s date and time correct.

Be especially careful when you change the contents of the

AUTOEXEC.BAT file. A good rule to follow is that you

never change AUTOEXEC.BAT without first having made

a backup copy of the file. To save AUTOEXEC.BAT, copy

it to a second file, called AUTOEXEC.SAV, as follows:

C> COPY AUTOEXEC.BAT AUTOEXEC. SAV

If you should later want to access the previous version of

the file, you have it readily available on disk.

AUTOEXEC.BAT vs CONFIG.SYS

Many DOS users are confused by the difference between

AUTOEXEC.BAT and CONFIG.SYS. AUTOEXEC.BAT
is a batch file whose commands DOS executes each time

you start your system. CONFIG.SYS, however, is not a

batch file. (Remember: DOS batch files must have the file-

name extension BAT.) Files with the filename extension

SYS are operating-system files that perform specific tasks.

In the case of CONFIG.SYS, the file contains values that

DOS uses to configure itself in memory each time the

system starts. Such values include, for example, the

BUFFERS= entry (which defines the number of disk

buffers DOS uses) and the FILES= entry (which specifies

the number of files DOS can have open at one time). The
following table briefly describes the CONFIG.SYS entries:

PART II: CUSTOMIZING YOUR SYSTEM WITH BATCH FILES 23

Entry Function

BREAK= Enables/disables extended Ctrl-Break

checking.

BUFFERS^ Specifies the number of disk I/O buffers.

COUNTRY^ Identifies a new country, if country-specific

information is available. (New in MS-DOS
version 2.1 -and in PC-DOS version 3.0)

DEVICE^ Installs a device driver.

DRIVPARM= Specifies block device characteristics. Unique
to MS-DOS. (Versions 3.2 and later)

FCBS= Specifies the number of file control blocks

DOS supports for older programs. (Versions

3.0 and later)

FILES= Specifies the number of files DOS can have

open at one time.

INSTALL= Allows loading of certain DOS commands
during CONFIG.SYS processing. (Versions

4.0 and later)

LASTDRIVE= Specifies the last disk-drive letter that DOS
will support. (Versions 3.0 and later)

REM= Allows comment lines within a CONFIG.SYS
file. (Versions 4.0 and later)

SHELL= Defines a command-line processor other than

DOS.

STACKS= Provides additional stack space for systems

encountering too many hardware interrupts at

one time. (MS-DOS versions 3.2 and later and

PC-DOS versions 3.3 and later)

SWITCHES= Uses conventional keyboard functions when
an extended keyboard is installed. (PC-DOS
4.0 only)

Each time DOS starts, it installs itself in your computer’s

memory before executing any other commands. During

this process, DOS examines the contents of the batch file

CONFIG.SYS. DOS uses the entries in the CONFIG.SYS
file to customize the operating system. If this file does not

exist, DOS uses default values.

Only after DOS is completely installed does it check for the

existence of the batch file AUTOEXEC.BAT. So, although

DOS uses both CONFIG.SYS and AUTOEXEC.BAT dur-

ing system start-up, it uses these files for two distinct pur-

poses and in a specific order.

PART 111

Essential Batch

Commands and

Concepts

SUPPRESSING THE DISPLAY OF BATCH-
FILE COMMAND NAMES

By default, each time you execute a batch file, DOS
displays the name of each command as it executes. For

example, let’s look again at the batch file GETINV.BAT,
which contains the commands CALCINV, SORTINV,
PRINTIN V, and ORDERINV.

As you might recall, DOS displays the name of each com-

mand as it is executed. As a result, your screen contains

the following:

C> GETINV

C> CALCINV

c> SORTINV

c> PRINTINV

c> ORDERINV

c>

You might not always want DOS to display the names of

the batch-file commands as they execute. Your reason for

suppressing the command-name display might simply be

to reduce screen clutter, or you might not want the user

24

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 25

to know the commands that DOS is executing. Depending

on your version of DOS, two methods exist to suppress

command-name display in batch files. For users of DOS
versions 3.3 and later or OS/2, placing the @ character at

the start of a command name directs DOS to suppress the

command-name display. For example, the batch file

VERVOL.BAT displays the. current DOS version number

as well as the current disk volume label.

@VER
<§V0L

Because both of the batch-file commands (@VER and

@VOL) are preceded by the @ character, DOS does not

display the command name. When you run this batch file,

DOS displays the current DOS version and disk volume

label, as follows:

IBM DOS Version 4.00

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C>

Contrast this output to that of VERVOL2.BAT, whose two

commands (VER and VOL) do not suppress the command
names. When you run this batch file, DOS displays the

following:

C> VER

IBM DOS Version 4.00

C> VOL

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

O
Remember: To use the @ character within a batch file, you

must be using DOS version 3.3 (or later) or OS/2.

26 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

For users with older DOS versions, the batch-file command

ECHO allows your batch files to suppress command-name

display. With older versions of DOS, it is common to place

the command ECHO OFF as the first batch-file command.

When DOS encounters ECHO OFF, DOS does not display

the names of the batch-file commands as they execute. For

example, the batch file VERVOL3.BAT uses ECHO OFF,

as follows:

ECHO OFF

VER

VOL

When you run this batch file, DOS displays the following:

C> ECHO OFF

IBM DOS Version 4.00

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C>

As you can see, DOS did not display the command names

VER and VOL. However, DOS does display the message:

C> ECHO OFF

If you are using DOS version 3.3 (or later) or OS/2, you

can eliminate the ECHO OFF message by preceding the

ECHO OFF command with the @ character. If you are

using an older version of DOS, consider placing the CLS
command in the batch file, immediately following the

ECHO OFF command (as shown below), to clear the

screen before displaying the output of the VER and VOL
commands:

ECHO OFF

CLS

VER

VOL

Let’s assume that this batch file is named VERVOL4.BAT.
When you run this batch file, DOS displays the following:

PART Ml: ESSENTIAL BATCH COMMANDS AND CONCEPTS 27

IBM DOS Version 4.00

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C>

Later in this reference, we will use the ECHO command
extensively within our batch files to write messages to the

user, to set the screen colors, and even to redefine keys on

your keyboard. For now, however, understand that the

ECHO OFF command inhibits the display of batch-file

commands when DOS executes a batch file. If, for some

reason, you want to display the names of some commands
as they execute (we will see why you might want to do this

later), the command ECHO ON enables command name

display (the DOS default setting). This last version of the

VER, VOL batch file, named VERVOL5.BAT, illustrates

the use of ECHO ON and ECHO OFF:

ECHO OFF

CLS

VER

ECHO ON

VOL

When you run this batch file, DOS displays the following:

IBM DOS Version 4.00

C> VOL

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C>

As you can see, DOS suppressed the display of the com-

mand name for the CLS, VER, and ECHO ON commands.

After the ECHO ON command completed execution, DOS
enabled the command-name display, displaying the VOL
command.

Many users prefer to precede the commands in their

AUTOEXEC.BAT file with the @ character or the ECHO
OFF command. By so doing, DOS suppresses the display

of command names as it executes the commands in

AUTOEXEC.BAT.

28 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

ECHO Batch-File Command
Function:

Suppresses or enables the display of command names as

DOS executes the command within a batch file.

Format:

ECHO ON

or

ECHO OFF

Notes:

The ECHO OFF command suppresses the display of com-

mand names within a batch file as DOS executes each com-

mand. By suppressing the display of command names, you

reduce screen clutter and reduce the possibility of confus-

ing the end user. By default, DOS uses ECHO ON, which

directs DOS to display each command name as it executes.

DOS will reset ECHO to ON at the end of a batch file.

If you are using DOS version 3.3 (or later) or OS/2 you can

suppress command names in a batch file by preceding each

name with the @ character.

In addition to enabling and disabling command-name dis-

play, the ECHO batch-file command lets your batch files

display messages to the end user.

Example:

Assume that your batch file runs the DOS commands
TIME and DATE as follows:

TIME

DATE

When you run the batch file, DOS (by default) displays

each command name as the command executes:

(continued)

PART 111: ESSENTIAL BATCH COMMANDS AND CONCEPTS 29

continued

C> TIME

Current time is 11:26:46.03a
Enter new time:

C> DATE

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

If you add the ECHO OFF and CLS commands to your

batch file, as follows:

ECHO OFF

CLS

TIME

DATE

DOS suppresses the command-name display as the batch

file executes, and then displays:

Current time is 11:26:46.03a
Enter new time:

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

ENDING A BATCH FILE EARLY

If you need to end a batch file, hold down the Ctrl key and

press C. When DOS detects the Ctrl-C, DOS displays the

message:

Terminate batch job (Y / N)

?

If you press Y, DOS immediately ends the batch-file

processing. If you press N, DOS ends the command it is

currently executing, continuing execution with the next

command in the batch file. To better understand this pro-

cessing, let’s again examine the TIMEDATE.BAT batch

file, which contains TIME and DATE. When you run this

batch file, DOS first executes the TIME command, as

follows:

30 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

C> TIMEDATE

Current time is 11:39:22.25a

Enter new time:

Rather than entering a new time, press the Ctrl-C key com-

bination. When DOS detects the Ctrl-C, DOS asks you if

you want to end the batch file, as follows:

C> TIMEDATE

Current time is 11:39:22.25a
Enter new time: A C

Terminate batch job (Y / N)

?

In this case, press Y. DOS ends the execution of the entire

batch file, immediately returning control to the DOS
prompt.

Run TIMEDATE.BAT a second time, and press Ctrl-C at

the TIME prompt:

C> TIMEDATE

Current time is 11:39:22.25a
Enter new time: A C

Terminate batch job (Y / N)

?

This time, press N. When you press N, DOS does not end

the batch file; instead, DOS ends only the current com-

mand, continuing execution with the next command in the

batch file, which in this case is DATE:

C> TIMEDATE

Current time is 11:39:22.25a
Enter new time: A C

Terminate batch job (Y / N) ? N

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

Note: In OS/2, Ctrl-C does not offer an option. It ends the

execution of the batch file, immediately returning control

to the system prompt.

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 31

REDIRECTING OUTPUT WITH DOS
BATCH FILES

DOS batch files I/O redirection does not work for batch

files when you execute a batch file but will work within

batch files. For example, if a batch file, named

DIRAB.BAT, consists of:

DIR A:*.*

DI R B : * .

*

«*

and you execute that batch file by typing:

DIRAB > PRN
*

the DIR output will not be directed to the printer. To direct

the DIR output to the printer, I/O redirection must be

associated directly with a specific DOS command. There-

fore, DIRAB.BAT would be rewritten as follows:

DIR A:*.* > PRN

DIR B:*.* > PRN

In this case, DOS will redirect the output of both DIR com-

mands to the printer. The batch file will still display both

DIR command lines on the screen as they execute. To sup-

press the command-name display, use the ECHO OFF com-

mand or use the @ character as follows:

@DIR A:*.* > PRN

@DIR B:*.* > PRN

HELPING OTHERS UNDERSTAND
YOUR BATCH FILES

The name you give a batch file should hint at the batch

file’s overall purpose. As your batch files increase in com-

plexity, however, you might have difficulty remembering

not only the batch file’s sequence of commands but also the

switches each command line contains. To help you remem-

ber, or to help another user who is reading the file under-

stand what the batch file does, DOS provides the batch-file

command REM. REM (for Remark) allows you to place a

32 PART ill: ESSENTIAL BATCH COMMANDS AND CONCEPTS

line in your batch file that provides information to a user

reading the batch file. When DOS encounters REM, it con-

tinues execution with the next command in the batch file.

Consider how the REM command improves the readability

of the batch file GETINV.BAT:

ECHO OFF

REM Name: GETINV.BAT

REM Function: Executes the commands for

REM inventory processing.

REM

REM Written By: K. Jamsa 6/01/89
REM

REM Use the program CALCINV to determine
REM the current inventory status.

CALCINV
REM Use the program SORTINV to generate
REM a sorted listing of the current inventory.

SORTINV
REM Use the program PRINTINV to print

REM hard copies of the current inventory.
PRINTINV
REM Use the program ORDERINV to

REM initiate inventory purchase orders.
ORDERINV

At first glance, the length of the batch file might be intimi-

dating. However, after you read the remarks the operation

of the batch file should become clear.

The ECHO OFF command disables the display of DOS
command names as the batch file executes. If you don’t in-

clude the ECHO OFF command, DOS will display each

REM command on the screen as the batch file executes.

(Remember: REM is meant to aid you as you read a batch

file. If DOS displays each REM command on the screen as

the batch file executes, your batch file will confuse the user.)

Next, lines 2 through 6 explain the purpose of the batch

file, who wrote it, and when it was written. By including

this information, you have a point of contact for the batch

file as well as a creation date that lets you know whether or

not you are using the most recent version of the batch file.

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 33

Should someone decide to change the batch file, the person

changing the batch file should include a line that states the

date of the change and the reason for the change.

ECHO OFF

REM Name: GETINV.BAT
REM Function: Executes the commands for

REM inventory processing.

REM

REM Written by: K. Jamsa 6/01/89

REM Last change: D. v]amsa 9/12/89 Print two

REM inventory copies

REM

Even the simplest batch file can become confusing several

weeks after you create it. To reduce the potential for confu-

sion, use REM extensively in your batch files. The few

minutes you spend documenting your batch file today will

save you much time and effort should you later need to

change the batch file.

REM Batch-File Command
Function:

Provides remarks in a batch file that explain the operation

of the batch file.

Format:

REM text

Notes:

As a batch file’s complexity increases, so too does the

difficulty of understanding the batch file’s processing. The

REM batch-file command lets you place reminders in a

batch file that explain its purpose. When DOS encounters a

REM statement, DOS ignores it, continuing execution of

the batch file with the next command in the batch file.

The ECHO OFF command suppresses the display of

remarks in your batch file.

(continued

)

34 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

continued

Example:

Your batch files should at least contain several lines at the

top that explain who wrote the batch file and when it was

written:

REM Monthly backup procedures.
REM Written by: K. Jamsa

REM 06/01/1989
REM Function: Performs a complete disk backup of

REM all of the files on your disk.

IMPROVING BATCH-FILE READABILITY

The REM batch-file command lets you place meaningful

remarks in a batch file that you can later refer back to in

order to better understand the batch file’s processing. As

the number of REM statements in your batch file increases,

so too does the possibility of clutter, which leads to reader

confusion.

To reduce clutter, many users place blank lines within

their batch files to separate logically related commands.

By separating commands in this way, you can draw the

reader’s attention to specific sections of the batch file. A
batch file with small sections is less intimidating to the

reader. In addition, the blank lines improve the visual ap-

peal of the batch file:

ECHO OFF

REM Name: GETINV.BAT
REM Function: Executes the commands for

REM inventory processing.

REM

REM Written by: K. Jamsa 6/01/89
REM

REM Use the program CALCINV to determine
REM the current inventory status.

CALCINV

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 35

REM Use the program SORTINV to generate

REM a sorted listing of the current inventory.

SORTINV

REM Use the program PRINTINV to print

REM hard copies of the current inventory.

PRINTINV

REM Use the program ORDERINV to

REM initiate inventory purchase orders.

ORDERINV

TEMPORARILY SUSPENDING
BATCH-FILE PROCESSING

Many batch files execute all the commands— from the

first to the last— without user intervention. For those

times, however, when a batch file needs to wait until the

user places a printer on line or inserts a specific floppy

disk in a drive, the batch-file command PAUSE lets a batch

file display a message, suspending batch-file processing un-

til the user presses any key to continue.

When a batch file executes the PAUSE command, PAUSE
displays the message specified in its command line, fol-

lowed by the line:

Press any key to continue . . .

When the user presses any key, the batch file resumes

processing at the next command. If, for some reason, the

user wants to end the batch file’s processing, the user can

press the Ctrl-C key combination at the PAUSE prompt.

Consider a batch file, named PRINTDIR.BAT, that prints

the files in the current directory. Before printing the direc-

tory listing, the batch file displays:

PAUSE Place the printer on line

Press any key to continue . . .

36 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

As you might have guessed, the batch file contains the fol-

lowing two commands:

PAUSE Place the printer on line

DIR > PRN

When you execute this batch file, PAUSE will wait for you

to press any key to continue.

The next batch file, named REMSETWO.BAT, uses the

PAUSE command twice to obtain a printed listing of the

files in drive A. The first PAUSE directs the user to place a

disk in drive A. The second PAUSE tells the user to place

the printer on line.

PAUSE Put disk with directory to print in drive A

PAUSE Place the printer on line

DIR > PRN

When you run this batch file, DOS executes the first

PAUSE command and displays the following:

PAUSE Put disk with directory to print in drive A

Press any key to continue . . .

When you place a disk in drive A and press a key, the batch

file executes the second PAUSE command and displays the

following:

PAUSE Place the printer on line

Press any key to continue . . .

When you place the printer on line and press a key, the

batch file executes the DIR command, redirecting the

directory output to the printer as desired.

Notice that neither of the preceding two batch files used the

ECHO OFF command to suppress the display of the batch-

file command name. As it turns out, when a batch file sets

ECHO OFF, DOS suppresses the user message contained

in the PAUSE command line. As a result, the only output

that appears on the screen is the message:

Press any key to continue . . .

The following batch file, named NOMSG.BAT, illustrates

that ECHO OFF suppresses the display of the user message

in the PAUSE command line:

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 37

ECHO OFF

PAUSE Place the printer on line

DIR > PRN

When you run this batch file, DOS displays:

C> ECHO OFF

Press any key to continue . . .

As you can see, DOS has indeed suppressed the message

Place the printer on line. /

A batch file that uses the PAUSE command is very likely to

use the ECHO ON command to enable the display of some

batch-file command names and the ECHO OFF command
to disable others.

Consider a batch file, named ECHOTEST.BAT, that en-

ables and disables command-name display so that the

PAUSE message is not suppressed:

ECHO OFF

VER

VOL

ECHO ON

PAUSE Just turned ECHO ON

ECHO OFF

VER

VOL

When you run this batch file, DOS displays:

C> ECHOTEST

C> ECHO OFF

IBM DOS Version 4.00

Volume in drive C is DOS 4

Volume Serial Number is 3921-1 8D3

C> PAUSE Just turned ECHO ON

Press any key to continue . . .

C> ECHO OFF

IBM DOS Version 4.00

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C>

38 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

Remember: If you are using DOS version 3.3 (or later) or

OS/2, you can suppress the ECHO OFF message by making

the @ character the first character on the command line.

Depending on the number of commands in a batch file and

on the run time of each batch file, the user is very likely to

start the batch file, leave it running unattended, and move

on to other tasks away from the computer. If the batch file

executes a PAUSE command, a considerable amount of

time might pass before the user remembers to press a key

to continue batch-file processing.

Rather than using PAUSE to simply display a message to

the user, you might want PAUSE to also send the bell sound

to your computer’s built-in speaker. As you will see, by

knowing a few secrets about the ASCII character set that

the computer uses to display letters, numbers, and symbols

on your screen, generating the computer’s bell sound be-

comes easy.

Each letter and number that the computer displays or that

your printer prints is represented by a unique value from 0

through 127. The ASCII character set comprises these

values. In addition to the uppercase and lowercase letters of

the alphabet, the ASCII character set contains values for

common punctuation symbols as well as special values that

have unique meaning to the computer. The ASCII value 7,

for example, directs the computer to send the bell sound to

its built-in speaker.

For the PAUSE command to sound your computer’s

“bell,” the message in the PAUSE command line must

contain ASCII 7. Several methods exist for placing this

character in the PAUSE command line.

Let’s begin by creating a batch file, named BELL.BAT, by

copying the file from the keyboard, as follows:

C> COPY CON BELL.BAT

Type the word PAUSE followed by a space, but do not press

Enter. Next, let’s place three ASCII 7 characters in the

PAUSE command line so that your computer will sound its

bell three times when you execute the batch file.

PART ill: ESSENTIAL BATCH COMMANDS AND CONCEPTS 39

Three methods are available for entering an ASCII 7 to

sound the bell. The first method is to hold down the Alter-

nate (Alt) key and press the number 7 key on your numeric

keypad at the far right of your keyboard. (Note: You must

use the numeric keypad— not the row of number keys

across the top of your keyboard.)

FI F2 rtdoc"ISKBiaarEISriE"
5

Num Scroll

Loct< Lock

F3 F4

- |i i' to- tt M
1 1

(’ I f
'

-L-.4IJ — 12

!»

1

j

1

w» f : "gUp

F5 F6 Ctrl

1 1

„
•

1
-

1

| a :
;

' «

F7 F8 *
1 |

X o <

|i* 1" L | |
r.-s z y

l i_.. afc ...

F9 F10
TT T Caps

1 Lock Ins Del

The numeric keypad (shaded) as it appears on the 83-key keyboard.

When you release the Alt key, DOS writes the characters

AG (pronounced “Control G”) to your screen, as follows:

C> COPY CON BELL . BAT

PAUSE A G

Press the Alt-7 key combination two more times. (Note:

The Alt key must be released between successive entries of

ASCII values.)

OCOPY CON BELL . BAT

PAUSE A G A G A G

Next, complete the batch file by entering the message BELL
BELL BELL

,
as follows:

C> COPY CON BELL . BAT

PAUSE A
G A G A GBELL BELL BELL

A Z

1 File(s) copied

C>

When you run the batch file, DOS sounds your computer’s

bell three times, displays the message Press any key to con-

tinue . . ., and awaits your response.

DOS and OS/2 represent the ASCII 7 character on your

screen with AG. The second method of creating a batch file

that sounds your computer’s bell uses the Ctrl-G key

combination.

40 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

As before, create the batch file BELL.BAT by copying it

from the keyboard. In this case, we will simply overwrite

the previous version of the file on disk. Type the word

PAUSE, followed by a space:

C> COPY CON BELL.BAT
PAUSE

Next, hold down the Ctrl key and press the G key. DOS
displays:

C> COPY CON BELL.BAT
PAUSE A G

Repeat this process twice and then type the word BELL
three times, creating the batch file, as follows:

C> COPY CON BELL.BAT
PAUSE A G A G A GBELL BELL BELL
A
Z

1 File(s) copied

C>

When you run this batch file, DOS sounds your computer’s

bell three times, displays the words BELL BELL BELL on

your screen, displays the message Press any key to con-

tinue . . . ,
and awaits your response.

Next, delete the file BELL.BAT so that you can create it

using the DOS command EDLIN:

C> DEL BELL.BAT

The third method for sounding the bell uses Edlin to edit

the file BELL.BAT:

C> EDLIN BELL.BAT
New file
*

Press the Edlin insert command, I, to enter the first line of

the file. Type the word PAUSE, followed by a space:

C> EDLIN BELL.BAT
New file
*1

1 :* PAUSE

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 41

Press Ctrl-G three times to place the ASCII 7 character in

the file, and type BELL three times:

C> EDLIN BELL. BAT

New file
*1

1:* PAUSE A G A G A GBELL BELL BELL
2 : *

Press Ctrl-C to exit the Edlin insert mode, and press the

Edlin end command, *E, to save the file’s contents:

C> EDLIN BELL . BAT

New file
*1

1 : * PAUSE A G A G A GBELL BELL BELL
2:* A

C

*E

C>

Finally, if you are creating your batch files with a word

processor, refer to the documentation that accompanied

your word processor to learn how to enter an ASCII char-

acter sequence. (Later in this reference, we will use a set of

values from 128 through 255, called the ASCII extended

character set, that allow the IBM PC and PC compatibles to

display boxes and mathematical characters.)

PAUSE Batch-File Command
Function:

Temporarily suspends the processing of a batch file after

displaying an optional message to the user. When the user

presses any key, the batch-file processing continues.

Format:

PAUSE [message]

Notes:

When your batch file executes PAUSE, DOS displays the

optional message that appears in the PAUSE command
line, followed by the message:

(continued)

42 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

continued

Press any key to continue . . .

If the user presses any key, the batch-file processing con-

tinues with the next command in the batch file. If the user

does not want to continue the batch-file processing, the user

can end the batch file by pressing Ctrl-C and then pressing

Y to respond to the message Terminate batch job (YIN)?

The ECHO OFF batch-file command suppresses the dis-

play of the optional message contained in the PAUSE com-

mand line. If your batch file specifies ECHO OFF, the

PAUSE command still displays the message Press any key

to continue . . ., and PAUSE suspends the batch-file process-

ing until the user presses a key.

Example:

The batch file prompts the user to insert the floppy disk

containing payroll information into drive A. After the user

does so, the user presses any key to continue:

PAUSE Insert diskette PAYROLL into drive A

PAYROLL

When you run this batch file, DOS displays:

C> PAUSE Insert diskette PAYROLL into drive A

Press any key to continue . . .

DISPLAYING MESSAGES TO THE USER
WITH THE ECHO BATCH-FILE COMMAND

The PAUSE batch command allows a batch file to display

a message to the user. However, after each message that

PAUSE writes to the screen, the user must press a key to

continue. In many cases, you will want your batch files to

display messages or prompts to the user that don’t require

the user to continually press Enter. In such instances, the

ECHO batch-file command provides a solution. In addition

to letting a batch file enable and disable command-name

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 43

display, ECHO lets batch files display a single-line mes-

sage to the user. To use ECHO to display messages, most

batch files first suppress command-name display using

the ECHO OFF command. A batch file, named

MESSAGE.BAT, displays the following messages:

First Message

Second Message

Last Message

This batch file’s commands are:

ECHO OFF

CLS

ECHO First Message
ECHO Second Message
ECHO Thi rd Message

The batch file first disables the command-name display by

using ECHO OFF. If you remove the ECHO OFF com-

mand, the batch-file output becomes cluttered:

C> ECHO First Message
First Message

C> ECHO Second Message
Second Message

C> ECHO Thi rd Message
Third Message

The ECHO batch command’s capability to display messages

has many uses, ranging from displaying batch-file menus to

setting screen colors to redefining keys on your keyboard

(the latter two using the ANSI.SYS device driver).

Notice how the ECHO batch command displays copyright

information in the following batch file:

ECHO OFF

REM Name: GETINV.BAT
REM Function: Executes the commands for

REM inventory processing.
REM

REM Written by: K. Jamsa 6/01/89
REM

44 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

REM Display copyright information.

ECHO GETINV.BAT (Copyright 1989. KAJ Software)

ECHO All rights reserved.

REM Use the program CALCINV to determine
REM the current inventory status.

CALCINV

REM Use the program SORTINV to generate
REM a sorted listing of the current inventory.

SORTINV

REM Use the program PRINTINV to print

REM hard copies of the current inventory.

PRINTINV

REM Use the program ORDERINV to

REM initiate inventory purchase orders.

ORDERINV

When the user runs this batch file, DOS displays:

ECHO OFF

GETINV.BAT (Copyright 1989. KAJ Software)

All rights reserved.

As you can see, ECHO allows you to display meaningful

messages to the user without interrupting the batch file’s

processing.

Many users encounter difficulty when trying to display

blank lines from a batch file using the ECHO command.

By default, if you execute ECHO with no command-line

parameter (such as the word ON or OFF, or a message),

ECHO displays its current status, ECHO ON or ECHO
OFF. For example, from the DOS prompt, call the ECHO
command:

C> ECHO

ECHO is on

C>

When you don’t specify an ECHO command-line parame-

ter, ECHO simply displays its current state. A batch file,

named SHOWECHO.BAT, calls ECHO to display its cur-

rent state throughout the batch file’s processing:

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 45

©ECHO Displaying default state

©ECHO
@ECH0 Turning ECHO OFF

@ECH0 OFF

©ECHO

When you run this batch file, DOS displays:

C> SHOWECHO
Displaying default state

ECHO is on

Turning ECHO OFF

ECHO is off

Even if you place several space characters after the ECHO
batch command, ECHO still displays its current state. The

secret to displaying a blank line using ECHO lies in the

ASCII extended character value 255. Your computer

associates unique characters and symbols with the ASCII

values 0 through 127 as well as with the ASCII extended

values 128 through 255. The ASCII character set uses the

value 32 for the blank character. If the ECHO command
line contains only blanks, ECHO displays its state. As it

turns out, the ASCII extended character value 255 also cor-

responds to a blank character. The ECHO command, how-

ever, does not recognize this value as a blank. Therefore, if

you place the ASCII extended character value 255 in the

ECHO command line, ECHO displays your blank line as

you intended.

Create the batch file BLANK.BAT by copying the com-

mands from the keyboard:

C> COPY CON BLANK.BAT

The batch file begins by setting ECHO OFF and clearing

the screen display:

ECHO OFF

CLS

ECHO Skip one line

To skip a line, type the word ECHO ,
followed by a space.

Next, hold down the Alt key while typing 255 (using the

numeric keypad). When you release the Alt key, you will

46 PART Hi: ESSENTIAL BATCH COMMANDS AND CONCEPTS

see the cursor move one character position to the right. The

ECHO command line now contains the ASCII extended

value 255.

Use the same procedure to complete the batch file:

C> COPY CON BLANK. BAT

ECHO OFF

CLS

ECHO Skip one 1 i ne

ECHO <A1 t 255 here>

ECHO Skip two lines

ECHO <Alt 255 here>

ECHO <A1 t 255 here>

ECHO Last line
A Z

1 File(s) copied

C>

When you run this batch file, DOS displays:

Skip one line

Skip two lines

Last line

If ECHO displays its current state when this batch file

runs, you have not correctly entered the Alt-255 key combi-

nation for the three ECHO commands that do not show any

associated values. (Remember: You must use the numeric

keypad.)

To create a batch file that displays a blank line using Edlin,

use this same technique. After you edit the file and enter

the ECHO batch command, hold down the Alt key and type

255 (using the numeric keypad):

C> EDLIN BLANK . BAT

New f i 1

e

*1

1:* ECHO < A 1 t 255 here>

Note: As we increase the capabilities of the batch files

throughout the remainder of this quick reference, the

ECHO command will prove to be one of the most valuable

batch-file commands.

PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS 47

ECHO message Batch-File Command
Function:

Displays a single-line message to the end user.

Format:

ECHO message

Notes:

In addition to enabling and disabling command-name dis-

play within your batch files, the ECHO batch command
also lets your batch files display single-line messages to the

end user. The message can be as simple as a single-line er-

ror message that tells the user a file was not found, or it can

contain ANSI escape sequences that clear the screen dis-

play and set screen colors. Throughout this reference, you

will use ECHO to draw menus, sound your computer’s

“bell,” and even redefine keys on your keyboard.

Example:

This batch file uses ECHO to sound the computer’s bell,

telling the user that the inventory processing is finished:

ECHO OFF

CALC I NV

SORTINV
PRINTINV

ORDERINV
ECHO A G A G A GInventory processing complete
ECHO Inventory status information is printing

Remember: Pressing Ctrl-G results in AG being displayed.

When this batch file completes execution, your computer’s

“bell” sounds three times, and DOS displays:

Inventory processing complete
Inventory status information is printing

48 PART III: ESSENTIAL BATCH COMMANDS AND CONCEPTS

WHERE TO PLACE YOUR BATCH FILES

ON DISK

As you begin to create more batch files, the batch files

might eventually spread out across your disk. Many users

initially place their batch files in the same directory in

which their DOS commands reside. After all, that directory

is normally defined in the PATH= environment entry.

A better solution is to create a unique directory for those

batch files that you use frequently. You can name this

directory either BATCH or UTIL (for utilities):

C> MKDI R \BATCH

After you copy your batch files to this directory, you can

modify the PATH statement to add the directory to your

command-file search path. If you add the directory to your

command path, keep in mind that DOS might have to ex-

amine each filename in the directory when it searches for

your batch file. If the directory contains several seldom-

used batch files, DOS is wasting time examining those

filenames. Because of this, restrict the directory to your

frequently used batch files.

PART IV

Using Parameters

to Increase Batch-

File Flexibility

GETTING STARTED WITH BATCH-FILE

PARAMETERS
Batch files exist to save you time and keystrokes. Let’s look

at a batch file, named P.BAT, that prints a copy of the file

AUTOEXEC.BAT. The batch file is very short, containing

only the following command:

PRINT \AUTOEXEC.BAT

In this case, each time you want to print the contents of

your AUTOEXEC.BAT file, you need only press P and

then press Enter. Although P.BAT saves you a considerable

number of keystrokes, it isn’t very functional. You would

only use it to print the contents of one specific file. A more

flexible batch file would allow you to abbreviate a com-

mand such as PRINT, enabling you to use the batch file to

print the contents of any file.

Each time you type a command at the DOS prompt, the

line on which you type is the command line. DOS com-

mand lines often consist of two parts, a command name

such as DISKCOPY and command-line parameters such as

the disk-drive identifiers A: and B:

C> DISKCOPY A: B:

i

,

—
i h-j

Command Command-line parameters

49

50 PART IV: USING PARAMETERS TO INCREASE BATCH-FILE FLEXIBILITY

DOS provides support for batch-file parameters. Using

these parameters, you can quickly create the batch file

P.BAT, which abbreviates the PRINT command for any

file. In this case, the batch file becomes:

PRINT %1

As you can see, the batch file contains the DOS command
PRINT, as before; however, the command directs DOS to

print %1 (rather than a filename). Each time you run a

batch file, DOS assigns the first command-line parameter

to the symbol %1. In this case, if you run P.BAT as:

C> P \AUTOEXEC.BAT

DOS assigns to %1 the value\AUTOEXEC.BAT, as follows:

C> P \AUTOEXEC.BAT

If you later run the batch file as:

C> P \C0NFIG . SYS

DOS assigns to %1 the filename \CONFIG.SYS, as follows:

C> P \C0NFIG . SYS

1
PRINT %1

PRINT \CONFIG.SYS

Because the DOS command PRINT supports wildcard

characters, you can run the batch file as:

C> P *. BAT

In this case, DOS prints all the files in the current direc-

tory that have the BAT extension.

PART IV: USING PARAMETERS TO INCREASE BATCH-FILE FLEXIBILITY 5

1

Here we have greatly increased the flexibility of the batch

file by using one batch parameter. To enhance your pro-

cessing capabilities to an even greater extent, DOS supports

batch-file parameters %0 through %9. As you just learned,

DOS assigns the first batch-file command-line parameter to

the variable %1. If your batch-file command line contains

several batch parameters, such as:
r

C> PAYROLL JUNE JULV AUGUST

DOS assigns the parameters to variables, starting with %1
and continuing through %9 (if that many exist). Each time

you run a batch file, DOS assigns the name of the batch file

to the variable %0. In this case, the assignments become:

C> PAYROLL JUNE JULY

t t y
%0 %l %2

A batch file, named SHOWNAME.BAT, uses the ECHO
batch-file command to display its own name:

ECHO OFF

CLS

ECHO %0

When you run this batch file, DOS displays:

SHOWNAME

By using the ECHO batch command, you can display the

values of the batch-file parameters %0 through %9.

Although this is seldom necessary, should your batch file

ever need to use its own name during its processing, DOS
provides the name using %0.

A batch file, named SHOWVAR.BAT, uses the ECHO
batch-file command to display each of the parameters %0
through %9:

ECHO OFF

CLS

ECHO %0 %1 %Z %3 %4 %5 %6 %7 %8 %9

If you run the batch file with the command line:

C> SHOWVAR ONE TWO THREE

AUGUST

I
%3

52 PART IV: USING PARAMETERS TO INCREASE BATCH-FILE FLEXIBILITY

DOS displays:

C> SHOWVAR ONE TWO THREE

SHOWVAR ONE TWO THREE

Likewise, if you run the batch file with:

C> SHOWVAR ABCDEFGH
DOS displays:

C> SHOWVAR ABCDEFGH
SHOWVAR ABCDEFGH
Batch-file parameters are essential to powerful batch files.

A batch file, named CP.BAT, uses the batch-file parameters

%1 and %2 to abbreviate the COPY command:

COPY %1 %2

If you run this batch file as:

C> CP \AUTOEXEC.BAT \AUT0EXEC . SAV

DOS assigns the parameters, as follows:

C> CP \AUTOEXEC.BAT \AUT0EXEC . SAV
I I L _J

COPY %\ %2

1
COPY \AUTOEXEC.BAT \AUTOEXEC.SAV

Later in this reference you will learn how to use the batch-

file commands IF and FOR. As you will see, DOS batch

parameters greatly increase batch-file functionality.

PARTY

Batch-File

Programming
»./

r

TESTING SPECIFIC CONDITIONS
WITHIN YOUR BATCH FILES

All the batch files we have examined so far have started

with the first command in the batch file, executing the

commands from top to bottom. As your batch files increase

in complexity, you might want or need to control which

batch commands DOS will execute, based on a specific set

of conditions. The IF batch-file command gives a batch file

the capability to execute a DOS command only when a

given condition is true.

The IF batch command allows a batch file to test six

unique conditions: The three IF conditions— EXIST,

StringOne==StringTwo, and ERRORLEVEL— can be

complemented by a NOT condition, yielding six conditions.

The first condition is whether a specific file exists on disk.

To use the IF command to determine whether a file exists,

your command format becomes:

IF EXIST filename. ext DOSCommand

When DOS encounters the IF command, DOS examines

the disk for the specified file. The filename parameter can

contain a complete DOS pathname, beginning with a disk-

drive letter and a complete string of subdirectory names, or

it can simply be a filename that DOS searches for in the

current directory. In either case, if the file exists, DOS exe-

cutes the specified command. If the file does not exist,

DOS continues with the next command in the batch file.

53

54 PART V: BATCH-FILE PROGRAMMING

The second IF batch condition allows you to specify:

IF NOT EXIST filename. ext DOSCommand

The effect of this command format is that if the specified

file does not exist, the specified command is executed.

If you create a batch file, named T.BAT, that uses the batch

parameter %1 to abbreviate the DOS command TYPE, as

follows:

TYPE %

1

and then run this batch file with a filename that does not

exist, DOS displays the message:

File not found - fi 7 ename . ext

Likewise, if you run the batch file without specifying a

filename, DOS displays the message:

Required parameter missing

This batch file is very well suited for the IF batch-file com-

mand. The batch file can first test to see if the specified

file exists on disk. If the file exists, the batch file executes

the TYPE command. If the file does not exist, DOS does

not execute the TYPE command, so no error messages

occur. The new T.BAT file contains:

IF EXIST %1 TYPE %i

Experiment with this batch file by running it with existing

files as well as with files that do not exist.

As you know, the DOS command COPY overwrites an

existing file on disk if the file is not a read-only, system, or

hidden file. To prevent an errant COPY command from

overwriting a critical file, you might want to create a

simple batch file, named MYCOPY.BAT, that uses the IF

EXIST batch-file command to determine whether the target

file already exists. If the target file exists on disk, the batch

file can use the PAUSE batch-file command to warn the

user. The user can then press any key to continue the file

copy operation. (Note: The result of the file copy operation

will be the message Access denied - filename.ext if the target

file has one or more of the “read only,” “system,” or

“hidden” attributes; in none of these three cases will the

PART V: BATCH-FILE PROGRAMMING 55

target file be overwritten.) Alternatively, the user can press

Ctrl-C to terminate the batch file. For example, if the batch

file MYCOPY.BAT contains:

IF EXIST %2 PAUSE Target file already exists
COPY %1 %2

and if the target file exists on disk, the batch file displays:

C> IF EXIST FILENAME. EXT PAUSE Target file

already exists
Press any key to continue . . .

The user can cancel the command by pressing Ctrl-C.

(Note: Due to width constraints, the C> command line

shown above runs over to the next line.)

You might even want to take the processing one step fur-

ther by including the %2 batch parameter in the message

that PAUSE displays, as follows:

IF EXIST %2 PAUSE Target file %2 already exists

COPY %1 %2

In this case, if the user runs the batch file with

AUTOEXEC.BAT as the target file, the batch file displays:

C> IF EXIST AUTOEXEC.BAT PAUSE Target file

AUTOEXEC.BAT already exists

Press any key to continue . . .

The user now knows immediately why the batch file is dis-

playing the PAUSE message. (Note: Due to width con-

straints, the C> command line shown above runs over to the

next line.)

IF EXIST Batch-File Command
Function:

Tests whether a file exists and, if so, executes the specified

DOS command.

Format:

IF EXIST filename.ext DOSCommand

(continued)

56 PART V: BATCH-FILE PROGRAMMING

continued

Notes:

The IF EXIST condition searches the disk for the specified

file. The filename can be a complete DOS pathname that

starts with a disk-drive letter and a directory name, or it

can be a filename that DOS searches for in the current

directory.

If DOS locates the specified file, DOS executes the speci-

fied command. If the file does not exist, DOS continues

batch-file execution with the next command in the batch

file.

Example:

This batch file tests whether the file AUTOEXEC.BAT
exists in the root directory. If the file exists, the batch file

prints a copy of it and then proceeds to the VER command.

If the file does not exist, DOS continues batch-file execu-

tion with the VER command:

IF EXIST \AUTOEXEC.BAT PRINT \AUTOEXEC.BAT
VER

The third IF batch condition tests whether two character

strings are equal. A character string is a sequence of one or

more characters. The format of this IF condition is:

IF StringOne==StringTwo DOSCommand

If the character strings on both sides of the double equal

sign are the same, DOS executes the specified command. If

the strings differ, DOS continues execution with the next

command in the batch file.

The fourth IF batch condition tests to determine if two

character strings are not equal. The format becomes:

IF NOT StringOne==StringTwo DOSCommand

If DOS finds that the two strings differ, the specified

command is executed. If the two strings are equal, DOS
continues execution with the next batch-file command.

A batch file, named COLOR.BAT, examines the color

name specified by the first batch parameter, %1:

PART V: BATCH-FILE PROGRAMMING 57

ECHO OFF

IF %1==RED ECHO Color is Red

IF %1==BLUE ECHO Color is Blue

IF %1—WHITE ECHO Color is White

Run the batch file as:

C> COLOR BLUE

and the batch file displays:

Color is Blue

Next, run the batch file with the color RED :

C> COLOR RED

DOS matches the expression:

IF %1==RED ECHO Color is Red

As a result, DOS displays:

Color is Red

For the IF batch command to consider two strings as the

same, the strings must match letter for letter, including use

of uppercase and lowercase. If you run the batch file with

the color Blue:

C> COLOR Blue

DOS does not find a matching color, because the IF batch

command does not recognize the strings Blue and BLUE as

the same.

A good way to better understand the processing that the IF

batch command performs is to remove the ECHO OFF
command from the previous batch file. If you then run the

batch file as:

C> COLOR BLUE

you can see the actual comparisons that the DOS batch file

performs.

Next, try running the batch file without a command-line

parameter, such as:

C> COLOR

Each time DOS attempts to execute an IF command, it

displays the message:

58 PART V: BATCH-FILE PROGRAMMING

Syntax error

DOS displays this message because the syntax or format of

the IF command is invalid. Remember: The IF batch com-

mand compares two strings. If you do not assign a value to

the batch parameter %1, the IF command has only one

string to compare. Because DOS requires two strings, DOS
displays a syntax-error message. To prevent this problem,

you need to ensure that the IF command always has two

strings to compare. To do so, you group the strings within

single quotes:

IF '%1 '==’ RED’ ECHO Color is Red

IF ’%! '
— ’BLUE* ECHO Color is Blue

IF 'Xl'—''WHITE' ECHO Color is White

In th is case, if the user enters the command:

C> COLOR BLUE

the batch file matches the condition:

IF ' BLUE '==' BLUE ' ECHO Color is Blue

If the user does not enter a color, the comparison becomes:

IF
'

' ==
' RED ' ECHO Color is Red

The single quotes are called the empty string. Because the

IF command can compare the empty string with the color

values, we eliminate the syntax error.

A batch file, named TEST%1.BAT, uses the empty string to

test the value of %\. If you don’t specify a batch parameter,

the batch file displays the following message:

No parameter value specified

In many batch files, you will need to test whether the user

has specified a value for %1:

@IF * % 1
*~ *

' ECHO No parameter value specified

If the user runs the batch file simply as:

C> TEST%1

the IF condition becomes:

IF
' '==’

' ECHO No parameter value specified

PART V: BATCH-FILE PROGRAMMING 59

IF StringOne==StringTwo

Batch-File Command
Function:

Tests if two character strings are identical, and if so,

executes the DOS command that fol low's.

Format:
*

IF StringOne==StringTwo DOSCommand

Notes:
*

The IF StringOne==StringTwo condition compares two

character strings letter by letter. If the strings match ex-

actly, including use of uppercase and lowercase, DOS exe-

cutes the command that follows. If one or more letters

differ, DOS continues the batch-file processing with the

next command in the batch file.

If you do not specify two character strings in the IF batch

command line, DOS displays the following error message:

Syntax error

This error is common when you are testing a batch parame-

ter that does not have a value, such as:

IF %1==M0NTH LY_BACKUP GOTO MONTHLY

In this case, if the user does not specify a value for %1, the

IF condition becomes:

I F==MONTHLY_BACKUP GOTO MONTHLY

Because the command contains only one string, DOS dis-

plays the Syntax error message. As a solution, simply place

the character strings to be compared within single quotes,

as follows:

IF ’%1 , =='MONTHLY_BACKUP’ GOTO MONTHLY

In this case, if the user does not specify a value for %1,

DOS will compare the empty string with the string

MONTHLY_BACKUP, as follows:

IF
'

'==' MONTH LY_BACKUP ’ GOTO MONTHLY

(continued)

60 PART V: BATCH-FILE PROGRAMMING

continued

Because the command line contains two strings, DOS does

not generate the Syntax error message.

Example:

This batch file tests whether the value of the batch parame-

ter is \AUTOEXEC.BAT. If it is, the batch file prints

\AUTOEXEC.BAT:

IF AUTOEXEC. BAT ' PRINT \AUTOEXEC.BAT

The next batch file uses the IF command to determine

which language the user would like to use:

IF '%1 '==’ GERMAN

'

GOTO GERMAN
IF '%1 '==' SPANISH

'

GOTO SPANISH
IF '%1 ’==' FRENCH’ GOTO FRENCH

IF ' %1 ' ==
’ SWEDI SH

'

GOTO SWEDISH
GOTO INVALID_LANGUAGE

This batch file simply compares the value of %1 with the

specified languages. If %1 matches one of the languages,

the batch file branches to the corresponding label. If %1
does not match a language, the batch file branches to the

label INVALID.LANGUAGE.

The fifth IF batch condition tests the exit or ending status

of the previous DOS command. As it turns out, many of the

DOS commands return a status value that indicates whether

or not they successfully completed execution— and if not,

why not. For example, the DOS command DISKCOPY
returns one of the following exit-status values:

Value Error Status

0 Disk copy successful

1 Copy unsuccessful, nonfatal disk error

2 Copy incomplete, user Ctrl-C

3 Copy unsuccessful, fatal disk error

4 Insufficient memory or invalid drive

The IF ERRORLEVEL batch-file command lets your

batch files examine a command’s exit-status value and

continue processing accordingly. The format of the

IF ERRORLEVEL batch command is:

PART V: BATCH-FILE PROGRAMMING 61

IF ERRORLEVEL value DOSCommand

When DOS encounters the IF ERRORLEVEL command,

DOS examines the exit-status value of the previous com-

mand. If the exit status is greater than or equal to the speci-

fied status value, DOS executes the specified command. If

the exit-status value is less than the specified value, DOS
continues processing with the next command in the batch

file. The sixth condition tests to determine whether the

EXIT status is not equal to or greater than the specified

value. If the EXIT status is less than the specified value,

the specified DOS command is executed; otherwise,

processing continues with the next batch-file command.

A batch file, named ERRLEVEL.BAT, tests to see if the

user has terminated the DOS command DISKCOPY with

the Ctrl-C key combination. If the user has terminated the

DISKCOPY command by pressing Ctrl-C, DISKCOPY
returns an exit-status value of 2.

@DISKC0PY A: B:

@IF ERRORLEVEL 2 ECHO Ctrl-C Termination

Run the batch file ERRLEVEL.BAT:

C> ERRLEVEL

When DISKCOPY displays the prompt:

Insert SOURCE diskette in drive A:

Insert TARGET diskette in drive B:

Press any key to continue . . .

press Ctrl-C to terminate the command. When you do so,

DOS displays:

Ctrl -C Termi nation

Remember: To terminate only the current command, allow-

ing the batch file to complete execution, you need to press

N. When DOS continues the batch file’s execution at the IF

command, DOS compares DISKCOPY’s exit-status value

with the value 2. In this case, because the values are equal,

the batch file displays the message:

Ctrl -C Termi nati on

62 PART V: BATCH-FILE PROGRAMMING

Keep in mind that as long as the previous command’s exit-

status value is greater than or equal to the specified value,

DOS executes the command associated with the IF batch

command. (Note: If DISKCOPY had terminated because of

fatal disk error or insufficient memory or invalid drive [exit-

status values 3 and 4, respectively], the condition would

also be true, and the specified DOS command would be

executed.)

The ability to test and utilize exit-status values will be key

to increasing the functionality of the batch files that appear

later in this reference. Your goal in creating a batch file is

to automate a series of DOS commands. With that in mind,

your batch files should be able to handle unexpected errors.

The IF ERRORLEVEL batch command lets your batch

files do exactly that.

IF ERRORLEVEL Batch-File Command
Function:

Tests the exit-status value of the previous program. If the

program’s exit-status value is greater than or equal to the

value given, execute the specified DOS command.

Notes:

Many programs return an exit-status value to DOS that in-

dicates whether they successfully completed execution. For

example, the DOS command FORMAT returns the fol-

lowing exit-status values:

Meaning
Successful format
Format incomplete due to user Ctrl-C

Format incomplete due to an error

User termination at the prompt:

WARNING, ALL DATA ON NON- REMOVABLE DISK

DRIVE N: WILL BE LOST!

Proceed with Format(Y/N)?

The IF ERRORLEVEL batch-file command lets your

batch files test a program’s exit-status value and then

continue processing accordingly.

Val ue

0

3

4

5

(continued).

PART V: BATCH-FILE PROGRAMMING 63

continued

Not all DOS commands provide exit-status values.

When DOS encounters an IF ERRORLEVEL batch-file

command, DOS compares the exit status of the previous

program with the value the IF batch command specifies. If

the exit status is greater than or equal to the value in the

IF command, DOS executes the corresponding command.

If the exit-status value is less than the specified value, the

batch-file processing continues with the next command
in the batch file. (This logic is reversed if the IF NOT
ERRORLEVEL expression— the sixth condition— is used.)

Example:

This batch file executes the DOS command FORMAT and

displays a completion status message based on FORMAT’S
exit-status value:

ECHO OFF

FORMAT A:

IF ERRORLEVEL 5 GOTO N0_RESP0NSE
IF ERRORLEVEL 4 GOTO ERROR

IF ERRORLEVEL 3 GOTO USER_CTRLC
ECHO Successful FORMAT operation
GOTO DONE

: N0_RESP0NSE
ECHO Fixed disk will not be formatted
GOTO DONE

: ERROR

ECHO Error in processing, FORMAT incomplete
GOTO DONE

: USER_CTRLC
ECHO FORMAT incomplete due to Ctrl-C

: DONE

Notice that the batch file tests the highest exit-status value

first.

Remember: If the exit-status value is greater than or equal

to the value in the IF batch-file command, DOS executes

the specified command. If this batch file first tested for an

exit status of 3, DOS would always perform the processing

for user Ctrl-C
,
regardless of whether the exit status was 3,

4, or 5. In all cases, the exit status would be greater than or

equal to 3. By reversing the order of the tests, the batch file

branches to the correct position for each status value.

64 PART V: BATCH-FILE PROGRAMMING

USING THE NOT OPERATOR
As you just learned, the IF batch-file command lets your

batch files execute a DOS command when a specific condi-

tion is met. The condition can be the existence of a specific

file, two strings being identical, or a command’s exit-status

value being greater than or equal to the specified value. In

many batch-file applications, it is more convenient for DOS
to perform a specific command when a tested condition

fails. The batch-file command NOT operator allows you to

do exactly that.

The NOT operator changes the result of a condition. If, for

example, a condition evaluates as true, using the NOT
operator returns a false result. Likewise, if the result of an

expression is false, the NOT operator returns a true value.

Consider this change to the batch file T.BAT. The batch file

begins by testing whether the file specified by %1 exists on

disk. If so, the batch file displays the file’s contents. Next,

the batch file performs a second test. This test allows the

batch file to display the message:

filename.ext does not exist

The batch file T.BAT now becomes:

ECHO OFF

CLS

IF EXIST %1 TYPE %1

IF NOT EXIST %1 ECHO %1 does not exist

In this case, if the result of the EXIST %1 condition is false

(meaning the file does not exist), the NOT operator chan-

ges the result to true and directs IF to execute the ECHO
command. If instead, the result of the condition is true (the

file exists), the NOT operator changes the result to false.

When the IF batch command examines the false value, it

does not execute the ECHO command.

The NOT operator is used extensively in DOS batch files.

A batch file, named COMPSTR.BAT, compares the two

strings contained in the batch parameters %1 and %2. If the

strings are identical, the batch file displays the message:

stringl and string2 are identical

PART V: BATCH-FILE PROGRAMMING 65

If the strings differ, the batch file displays the message:

stringl and string2 are not the same

This batch file’s commands are:

ECHO OFF

CLS

IF
,

%1
, == , %2’ ECHO %1 and %2 are identical

IF NOT * %
1

' == * % 2 * ECHO %1 and %Z are not the same

As you can see, the batch file needs two IF batch com-

mands to perform its processing. The first IF command
handles the condition where the strings are the same. The

second IF command handles the condition where the

strings differ. (For programmers, this processing might

seem similar to that of an IF-ELSE statement.)

NOT Batch-File Operator

Function:

Reverses a true or false result in an IF batch-file command.

If the result of a test is false, NOT changes the result to

true. Likewise, if the result of a test is true, NOT changes

the result to false.

Format:

IF NOT condition DOSCommand

Notes:

The NOT operator can be used with any one of the three IF

conditions:

IF NOT EXIST filename. ext DOSCommand
IF NOT StringOne == StringTwo DOSCommand
IF NOT ERRORLEVEL value DOSCommand

Example:

This batch file tests whether the\AUTOEXEC.BAT batch

file exists. If not, the batch file displays messages that tell

the user to create the file.

(continued)

66 PART V: BATCH-FILE PROGRAMMING

continued

ECHO OFF

IF NOT EXIST \AUTOEXEC.BAT GOTO N 0_F I L

E

GOTO DONE

: N 0 F I LE

ECHO Your root directory does not contain the batch
ECHO file AUTOEXEC.BAT. This batch file lets you
ECHO specify one or more commands that you want DOS

ECHO to execute each time your system starts. Most

ECHO users place the DOS PRINT, PROMPT, and PATH

ECHO commands in this file.

: DONE

Assuming that the batch file AUTOEXEC.BAT does not

reside in the root directory of the default drive, the batch

file displays:

Your root directory does not contain the batch

file AUTOEXEC.BAT. This batch file lets you
specify one or more commands that you want DOS

to execute each time your system starts. Most

users place the DOS PRINT, PROMPT, and PATH

commands in this file.

REPEATING A DOS COMMAND FOR A
SET OF FILES

As you just found, the IF batch-file command lets your

batch files perform a DOS command when a specific con-

dition is met. Processing that is dependent on whether a

specific condition is true or false is called conditional

processing. In addition to conditional processing within

your batch files using IF, DOS lets you repeat a specific

command for a specific set of files. Processing that exe-

cutes at least one time, possibly repeating, is called iterative

processing. The batch-file command FOR lets your batch

files repeat a command for a specific set of files.

The format of the FOR batch command is:

FOR %%BatchVariable IN (SetOfFiies) DO DOSCommand

PART V: BATCH-FILE PROGRAMMING 67

Like all commands specific to batch-file processing, FOR
is an internal command. DOS always keeps internal com-

mands in memory (as opposed to external commands, such

as DISKCOPY, that reside on disk).

The second entry in the FOR command, %%BatchVariable,

is a batch variable. Earlier we discussed the batch variables

%0 through %9 that DOS substitutes values for during the

batch file’s processing. The variable %%BatchVariable is

similar in that DOS again assigns a value to this variable.

The difference is simply in naming. Most batch files use

the letters of the alphabet to name batch variables, such as

%%A or %%F. DOS restricts the names of batch variables

to one letter. The word IN is part of the FOR command. IN

tells DOS that the set of files FOR is to use follows imme-

diately (between the left and right parentheses).

The FOR batch command executes by assigning each file-

name in a given set of files to the batch variable. After

DOS has assigned the first filename, DOS executes the

DOS command that follows. When the command completes

execution, DOS assigns the next filename in the set to the

batch variable and this process repeats. When no files re-

main in the set, the FOR batch command completes

execution.

You specify the set of files by simply typing filenames,

separated by either a space or a comma. The following sets

of files are examples of valid sets for the FOR batch

command:

(MAY.PAY JUNE.PAY JULY.PAY)

(MAY.PAY, JUNE.PAY, JULY.PAY)

(*.BAT *.EXE *.COM)

(*.*)

As you can see, FOR supports the DOS wildcard character

* (asterisk), as seen in the above example, as well as the ?

(question mark). When FOR detects a wildcard, DOS ex-

pands the wildcard into the corresponding set of filenames.

FOR, in turn, uses the filenames one at a time.

68 PART V: BATCH-FILE PROGRAMMING

The word DO tells DOS that the command to execute for

each file immediately follows. The DOS command can be

any DOS command. To better understand this processing,

consider the command:

FOR %%A IN (A.BAT B.BAT C.BAT) DO TYPE %%A

Here, FOR first assigns the file A.BAT to the variable

%%A, and DOS then executes the command TYPE %%A.
Because DOS has assigned the filename A.BAT to the

batch variable-, DOS actually executes the command
TYPE A.BAT.

When the TYPE command completes execution, FOR
assigns the next file in the set to the batch variable. In this

case, DOS displays the contents of the file B.BAT. Again,

when the TYPE command completes execution, FOR
repeats this process, assigning the filename C.BAT to the

variable.

When the TYPE command completes execution, FOR
again examines its set of files. Because no more files re-

main, the FOR command completes execution.

In a similar manner, the next batch file, named SHOW.BAT,
uses the FOR batch command to display all the batch files

in the current directory:

FOR %%\ IN (* . BAT) DO TYPE %%I

The FOR command uses the variable %%\. The actual

variable name you use does not matter. You must, however,

use a single-letter name, as previously discussed.

By default, the DOS command DIR displays a file’s name,

extension, size, and creation date and time:

COMMAND COM 37637 06-17-88 1 2 : OOp

COUNTRY SYS 12838 06-17-88 12 : OOp

DISKCOPY COM 10428 06-17-88 12 : OOp
DISPLAY SYS 15741 06-17-88 1 2 : OOp
FDISK COM 70151 06-17-88 12 : OOp
FORMAT COM 22923 06-17-88 12 : OOp

SORT EXE 5914 06-17-88 12 : OOp

XCOPY EXE 17087 06-17-88 12 : OOp

PART V: BATCH-FILE PROGRAMMING 69

If you call DIR with the /W qualifier, DIR displays only

filenames and extensions. However, DIR displays five file-

names across the screen. In some cases, you might simply

want to display filenames one after another, as follows:

COMMAND.COM
COUNTRY. SYS

DISKCOPY.COM
DISPLAY. SYS

FDISK.COM
F0RMAT.C0M
SORT . EXE

XC0PY.EXE

The next batch file, named SHORTDIR.BAT, uses the FOR
batch command to “echo” filenames (with ECHO) to the

screen, as follows:

ECHO OFF

CLS

FOR %%1 IN <*.*) DO ECHO %%I

Here, the FOR batch-file command assigns the name of

each file in the current directory to the variable %%I. DOS
then uses the ECHO command to display the filename on

the screen. As discussed, if your FOR command contains

wildcard characters, DOS expands the wildcard characters

into the corresponding filenames.

By using batch-file parameters, we can increase the flexi-

bility of SHORTDIR.BAT. In this case, rather than display-

ing the names of each file in the current directory by using

the asterisk wildcard characters (*.*), the batch file now

lets you specify the desired wildcard filename as the first

command-line parameter. For example:

C> SH0RTDIR * . BAT

or:

C> SH0RTDI R *.TXT

To display all of the files in the current directory, your

command line becomes:

C> SH0RTDI R *.*

70 PART V: BATCH-FILE PROGRAMMING

To provide this flexibility, you simply change

SHORTDIR.BAT to read:

ECHO OFF

CLS

FOR %%l IN (%1) DO ECHO %%I

A batch file, named SORTDIR.BAT, is for advanced DOS
users. It uses the DOS redirection operations to display a

sorted directory listing of the files specified by the first

command-line parameter.

@ECH0 OFF

IF EXIST SORTFILE.DAT DEL SORTFILE.DAT
FOR %%I IN (% 1) DO ECHO %%I >> SORTFILE.DAT
SORT < SORTFILE.DAT
DEL SORTFILE.BAT

This batch file first uses the IF EXIST condition to delete

the file SORTFILE.DAT if the file exists. Next, the FOR
batch command “echoes” (with ECHO) each filename (as

the previous batch file did). In this case, however, the batch

file uses the redirection operator to direct the output of the

ECHO command from the screen, appending the output to

the file SORTFILE.DAT. After FOR has created the file of

filenames, the batch file uses the DOS command SORT to

sort the file’s contents, displaying the sorted filenames on

the screen display. When the SORT command completes

execution, it deletes the file SORTFILE.DAT, cleaning up

after itself because the file is no longer needed.

Using the FOR batch command, you can improve the batch

file T.BAT so that it supports the DOS wildcard characters:

ECHO OFF

CLS

FOR %%I IN (%1) DO TYPE %%I

In so doing, the command:

C> T *. BAT

displays the contents of all of the batch files that reside in

the current directory. In fact, you might want to include

several of the batch parameters in FOR’s set of files, as

follows:

PART V: BATCH-FILE PROGRAMMING 71

ECHO OFF

CLS

FOR %%I IN (%1 %2 %3 %4 %5) DO TYPE °%%l

After you do this, your batch-file command line can

specify several files to display:

C> T SORTDIR.BAT SHORTDIR.BAT *. BAT

Now the batch file dispfays the contents of SORTDIR.BAT,
followed by those of SHORTDIR.BAT Next, the batch file

expands the wildcard characters *.BAT and displays all the

files in the current directory on the default drive with the

extension BAT.

The FOR batch command adds tremendous flexibility to

batch files, and it will be used repeatedly throughout the

remainder of this reference.

FOR Batch-File Command
Function:

Repeats a DOS command for a given set of files.

Format:

FOR %%v IN (set) DO DOSCommand

Notes:

When you run the FOR batch-file command, FOR assigns

the first file specified in the set of files to the specified

variable. The variable must have a single-letter name. You

specify the set of files by typing filenames separated by

either a comma or a space. After the FOR batch command
assigns a filename to the specified variable, FOR issues the

specified DOS command. When the DOS command com-

pletes execution, FOR assigns the next file in the set of

files to the variable, and this process repeats.

When no more files remain in the set of files, the FOR
command completes execution, and the batch file continues

processing with the next command in the batch file.

(continued

)

72 PART V: BATCH-FILE PROGRAMMING

continued

The FOR command fully supports the DOS wildcard char-

acters. If the set of files contains wildcard characters, FOR
expands each wildcard into the appropriate list of file-

names, assigning each to the variable, one at a time.

Example:

This batch file uses the FOR command to issue the DOS
command TYPE and displays the contents of the files

A.TXT, B.TXT, and C.TXT:

FOR %%\ IN (A.TXT B.TXT C.TXT) DO TYPE %%I

In a similar manner, the following batch file uses the type

command to display the contents of all the files associated

with the %\ parameter. If the user runs the batch file with a

wildcard character, such as the asterisk in *.BAT, the batch

file displays the contents of each corresponding file:

FOR %%V IN (% 1) DO TYPE %%V

BRANCHING FROM ONE POSITION IN A
BATCH FILE TO ANOTHER WITH GOTO

All the batch files we have examined throughout this refer-

ence have started with the first command in the batch file,

executing commands one after another from top to bottom.

When we examined the IF batch-file command, you

learned that you can direct DOS to execute a command
only when a specific condition is met. As your applications

increase in complexity, you might occasionally need the

batch file to perform a specific set of commands in one in-

stance or to skip one or more commands in another. The

GOTO batch-file command lets your batch file branch from

one command to another. The format of the GOTO batch

command is:

GOTO DOSBatchLabel

PART V: BATCH-FILE PROGRAMMING 73

Let’s take a look at a simple example. A batch file, named
REMOVE.BAT, uses the batch parameter %1 to display a

file’s contents. After the batch file displays the file’s con-

tents, it displays the message:

PAUSE About to delete filename. ext

Press any key to continue . . .

If the user presses a key; the batch file deletes the file. If

the user does not want to delete the named file, the user

ends the batch file by pressing the Ctrl-C key combination.

ECHO OFF

IF
, %1'— ” GOTO N0_FI LE

TYPE 11

PAUSE About to delete %

1

DEL 11

GOTO DONE

: N0_FI LE

ECHO Need to specify filename
: DONE

REMOVE.BAT begins by testing whether the user has

specified a file as a command-line parameter. If not, the

batch file branches to the label NO_FILE, as follows:

ECHO OFF

IF '%l'==" GOTO N0_FI LE

TYPE %1

PAUSE About to delete 11

DEL 11

GOTO DONE

: NO F I LE -«

ECHO Need to specify filename
: DONE

In this case, DOS displays the message:

Need to specify filename

and ends. As you can see, the GOTO batch command
branches control to the specified label. A batch label

begins with a colon and can contain any number of charac-

ters— although DOS only recognizes the first eight. This

batch file uses the labels :NO_FILE and :DONE. Notice

that the line containing the label begins with a colon and

that the label reference in the GOTO command does not:

74 PART V: BATCH-FILE PROGRAMMING

ECHO OFF

IF *%1 ’— ’
' GOTO N0___.FI LE

TYPE %

1

PAUSE About to delete %1

DEL %1

GOTO DONE

: NO F I L E

ECHO Need to specify filename
: DONE

Label reference in

GOTO command

DOS labels with colons

When DOS encounters a line in your batch file that begins

with a colon, D'OS knows the line contains a label. In such

a case, DOS does not attempt to execute the label as a com-

mand. Also, regardless of the state of ECHO, labels are not

displayed when a batch file is run.

In the batch file REMOVE.BAT, if the user presses a key to

delete the file, the batch file issues the command DEL and

then uses GOTO to branch to the label :DONE at the end of

the batch file.

As you will learn, applications for batch files are basically

limitless. For example, the batch file HELPDOS.BAT pro-

vides a general on-line help facility for DOS. To get help

on a specific DOS command, the user runs the batch file

with a specified command. For example:

C> HELP DOS’ FORMAT

The batch file in turn examines the first batch parameter

(%1) and displays the corresponding help text:

FORMAT command

Command type: External

Function: Prepares a disk for use by DOS.

Command format: FORMAT [drive:][/B][/l][/4][/8]
[/N:sectors] [/S][/T:tracks][/V:disklabel][/F:size]

Example: FORMAT A:/4

The batch file is quite simple to create. To begin, the batch

file tests to ensure that the user has provided a batch pa-

rameter. If not, the batch file uses the GOTO batch com-

mand to branch to commands that instruct the user on how
to use the batch file:

PART V: BATCH-FILE PROGRAMMING 75

ECHO OFF

IF
, %1'==" GOTO INSTRUCTIONS

Next, assuming that the user has provided a batch parame-

ter, the batch file tests one DOS command after another to

determine the DOS command with which the user wants

help:

IF ' %1 '==
' CLS ' GOTO CLS_HELP

IF ’ %1 ’
~

’ FORMAT’ GOfO FORMAT_HELP
IF

,

%l
, == , DISKCOPr GOTO DI SKCOPY_HELP

* •

IF '%1 ’— ’XCOPY’ GOTO XCOPY_HELP

As you can see, depending on the value of %1, the batch

file branches to a specific position within the batch file. In

the case of the CLS command, for example, the batch file

contains:

:CLS_HELP
ECHO CLS command

ECHO <Alt-255>

*

ECHO Command type: Internal

ECHO <Alt-255>

*

ECHO Function: Erases the screen display,

ECHO placing the cursor at the upper left,

ECHO or home, position

ECHO <A 7 t -255>*

ECHO Example: CLS

GOTO DONE

*To enter ASCII 255, you must hold down the Alt key and type 255 using the

numeric keypad.

If the user runs the batch file with:

C> HELPDOS CLS

the batch file displays:

CLS command

Command type: Internal

Function: Erases the screen display,

placing the cursor at the upper left,

or home, position

Example: CLS

76 PART V: BATCH-FILE PROGRAMMING

After the batch file displays the help information on a

specific topic, the batch file uses the GOTO batch com-

mand to branch to the ending label :DONE.

As you can guess, a complete batch-file command help

facility for all the DOS commands could get quite large.

Instead, the following version of HELPDOS.BAT provides

on-line help for the batch-file commands IF, FOR, and

GOTO:

ECHO OFF

IF '%r— " GOTO INSTRUCTIONS
IF *%1 *— * IF* GOTO I F_HELP

IF 'Xl'— 'FOR’ GOTO F0R_HELP

IF '%1 '==’ GOTO’ GOTO G0T0_HELP
ECHO Invalid command
: INSTRUCTIONS
ECHO The batch file provides on-line help for

ECHO IF, FOR, and GOTO. Run the batch file

ECHO as HELPDOS commandname, such as

ECHO HELPDOS GOTO
GOTO DONE

: I F_HELP
ECHO IF Command
ECHO <A 7 t-255>*

ECHO Command type: Internal, batch
ECHO <A 1 t~255>*

ECHO Function: Allows a batch file to perform
ECHO decision making using one of the
ECHO following conditions:
ECHO IF EXIST filename. ext DOSCommand
ECHO IF ERRORLEVEL value DOSCommand
ECHO IF Stri ngOne==Stri ngTwo DOSCommand
ECHO <Alt-255>

*

ECHO Example: IF EXIST %1 PRINT %1

GOTO DONE

: F0R„HELP
ECHO FOR Command
ECHO <A 1 t-255>*

ECHO Command type: Internal, batch
ECHO <Alt-255>*
ECHO Function: Repeats a DOS command for a set
ECHO of files.
ECHO <A 7 1~255>*

ECHO Format: FOR %%Var IN (set) DO DOSCommand
ECHO <Alt-255>

*

ECHO Example: FOR %%l IN (*.*) DO TYPE %%I

PART V: BATCH-FILE PROGRAMMING 77

GOTO DONE

: GOTO_HELP
ECHO GOTO Command
ECHO <Alt-255>*

ECHO Command type: Internal, batch
ECHO <A 1 t-255>*

ECHO Function: Lets a batch file branch from one

ECHO location to another.

ECHO <Alt-255>

*

ECHO Format: GOTO label

ECHO <Alt-255>*
ECHO Example: :Repeat

ECHO VER
*

ECHO GOTO REPEAT
:DONE

* To enter ASCII 255, you must hold down the Alt key and type 255 using the

numeric keypad.

PART VI

Advanced Batch-

File Concepts

USING NAMED PARAMETERS
As you have seen, the DOS batch parameters %0 through

%9 increase your batch file’s capabilities, allowing a single

batch file to serve several applications. In addition to these

batch parameters, DOS versions 3.3 and later support

named parameters. A named parameter is a batch variable

enclosed in percent signs. When DOS encounters a named

parameter in your batch file, DOS searches the DOS envi-

ronment for a corresponding entry. For example, a batch

file, named PRT.BAT, prints the file that corresponds to the

named parameter %PRINT_FILE%:

PRINT % P R I NT F I LE%

When DOS encounters %PRINT_FILE% in your batch

file, DOS searches the DOS environment for an entry in

the form:

PRINT_FILE=

The DOS command SET allows you to change or display

entries in the DOS environment. If you issue the SET com-

mand without a command line, as follows:

C> SET

DOS displays the current environment entries:

C0MSPEC=C :\D0S\C0MMA ND.COM
PATH=C : \D0S

To create an environment entry, issue the SET command
and assign a value to the environment entry, as follows:

78

PART VI: ADVANCED BATCH-FILE CONCEPTS 79

C> SET PRINT_FI LE=AUTOEXEC . BAT

If you issue the SET command again, DOS displays its

new entry:

C> SET

C0MSPEC=C :\D0S\C0MMAND.C0M
PATH=C : \D0S

PRI NT_FI LE=AUTOEXEC . BAf
<*

If you run the batch file PRT.BAT, DOS replaces the named
parameter PRINT_FILE with the corresponding environ-

ment entry AUTOEXEC.BAT, printing the file’s contents.

To remove an environment entry, use the SET command, as

follows:

C> SET PRINT_FI LE=

In this case, DOS removes the PRINT_FILE entry, leaving

the contents of the environment as:

C> SET

C0MSPEC=C :\D0S\C0MMAND.C0M
PATH=C : \D0S

If you again run the batch file PRT.BAT, DOS will not find

an environment entry that matches PRINT_FILE; there-

fore, the named parameter will contain the empty string.

Using the IF batch-file command, the batch file can test for

the empty string and continue processing accordingly, as

follows:

ECHO OFF

IF * % P R I N T_ FI L E% * == *

' GOTO NO_PARAMETER
PRINT %PR I NT F I LE%

GOTO DONE

: NO_PARAMETER
ECHO The named parameter PRI NT_F I LE is

ECHO not defined. Use the DOS SET command

ECHO to assign it the filename to print.

: DONE

Many users have trouble thinking of applications that need

named parameters, so let’s look at one or two examples.

First, consider a batch file that might create temporary files

as it executes. Some users might not want DOS to create

the files in the current directory. Consider the following

batch file, which creates the temporary file SORTDIR.TMP:

80 PART VI: ADVANCED BATCH-FILE CONCEPTS

DIR ! SORT > SORTDIR.TMP
PRINT SORTDIR.TMP
MORE < SORTDIR.TMP
DEL SORTDIR.TMP

If the user starts this batch file and then later ends it using

the Ctrl-C key combination before the DEL command com-

pletes execution, the file SORTDIR.TMP remains in the

current directory. As an alternative, a user might want to

create a directory, named TEMP, that stores the temporary

files. Next, a user would place references to the directory

TEMP throughout the batch file, as follows:

DIR i SORT > \TEMP\SORTDIR.TMP
PRINT \TEMP\ SORTDIR.TMP

MORE < \TEMP\SORTDIR.TMP
DEL \TEMP\SORTDIR.TMP

The problem with this method is that it forces all users to

create a TEMP directory to hold the temporary files.

The following batch file, named NAMEDTMP.BAT, uses a

named parameter to solve the problem of where to place

temporary files:

DIR ! SORT > %TEMP%SORTDIR.TMP
PRINT %TEMP%SORTDIR.TMP
MORE < %TEMP%SORTDIR.TMP
DEL %TEMP%SORTDIR.TMP

When DOS encounters the named parameter %TEMP%,
DOS searches the environment for a corresponding entry.

If no such entry exists, DOS assigns %TEMP% to the empty

string. As such, DOS creates the file SORTDIR.TMP in the

current directory. If the user instead creates an environ-

ment entry, such as:

C> SET TEMP=D:

DOS uses the named parameter to create the file

D:SORTDIR.TMP. This batch file solves the needs of both

users. Users who don’t care if DOS creates the file in the

current directory simply run the batch file without issuing

a SET command to define TEMP. Users who want DOS to

create the file in a specific directory, such as in a fast

RAM disk, simply use SET to equate an appropriate disk

and/or subdirectory to the named parameter.

PART VI: ADVANCED BATCH-FILE CONCEPTS 81

As discussed, the PATH= entry defines the list of subdirec-

tories that DOS searches for external commands. Most

users define PATH= using the PATH command in AUTO-
EXEC.BAT. When you install various third-party software

packages, the installation often includes the newly created

directory in the command path. To do so, the installation

changes the contents of the batch file AUTOEXEC.BAT.

Assume, for this example, that the file AUTOEXEC.BAT
contains the following commands:

ECHO OFF

PRINT /D : LPT1 /Q : 32

PATH C:\D0S

Next, assume that a software installation wants to add the

directory C:\UTIL to the command path. Rather than

changing the entry:

PATH C : \ DOS

the installation can add the line:

SET PATH=%PATH% ; C : \ UT I

L

at the end of the batch file. The entry takes advantage of

the fact that the DOS command PATH creates a DOS envi-

ronment entry. After the PATH entry exists, you can use it

as a named parameter.

To better understand how this processing works, create a

batch file, named MYPATH.BAT, that contains:

ECHO OFF

SET MYPATH=C : \D0S

ECHO Appending C:\UTIL to %MYPATH%
SET MYPATH=%MYPATH% ; C : \UTI

L

ECHO Complete entry is %MYPATH%

When you run this batch file, DOS displays:

Appending C:\UTIL to C:\D0S
Complete entry is C: \D0S;C: \UTIL

As you can see, the batch file created the complete entry,

C:\DOS;C:\UTIL, as intended.

Several of the batch files that we will examine throughout

the remainder of this reference will use DOS named

parameters.

82 PART VI: ADVANCED BATCH-FILE CONCEPTS

RUNNING ONE BATCH FILE FROM
WITHIN ANOTHER

All the commands executed by our batch files so far have

been either EXE or COM files. If your batch file needs to

run another batch file, your batch file needs to use either

the DOS command COMMAND or the DOS command
CALL, depending on your version of DOS.

To understand why your batch file cannot execute a second

batch file simply by calling the name of the batch file as

you would a DOS command, let’s create a simple batch

file, named VERVOL.BAT, that contains:

VER

VOL

Next, create a batch file, named PRIMARY.BAT, that

contains:

DATE

VERVOL
TIME

PRIMARY.BAT runs the batch file VERVOL.BAT by

referencing the batch file’s name. When you run the batch

file PRIMARY.BAT, DOS first executes the DATE com-

mand and displays the following:

C> PRIMARY

C> DATE

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

If you press Enter (leaving the date unchanged), DOS runs

the second batch file, VERVOL.BAT. As DOS executes this

batch file, DOS displays:

C> PRIMARY
C> DATE

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

C> VERVOL

C> VER

PART VI: ADVANCED BATCH-FILE CONCEPTS 83

IBM DOS Version 4.00

C> VOL

Volume in drive C is DOS 4

Volume Serial Number i s 3921 - 18D3

C>

The batch file VERVOLrBAT completed execution, but

DOS did not execute the TIME command that is the last

command in the batch file PRIMARY.BAT This occurred

because you must use one of the DOS commands—
COMMAND or CALL— to run a second batch file, or

DOS will quit executing batch-file commands when the last

batch file completes execution and attempts to return to the

batch file that ran it.

If you are using DOS version 3.3 or later, the CALL com-

mand lets a batch file correctly execute the commands in a

second batch file and then return to the next command in

the first batch file. The format of the DOS command
CALL is:

CALL BatchFile [parameters]

The parameters are the optional batch parameters that

DOS assigns to the variables %1 through %9. If you are

using DOS version 3.3 or later, change the batch file

PRIMARY.BAT to:

DATE

CALL VERVOL
TIME

When you run this batch file, DOS again executes the

DATE command. As before, press Enter (leaving the

system date unchanged). DOS now executes the DOS
command CALL, which in turn executes the batch file

VERVOL.BAT

When VERVOL.BAT completes execution, DOS continues

execution of the commands in PRIMARY.BAT, executing

the TIME command. As a result, DOS displays:

84 PART VI: ADVANCED BATCH-FILE CONCEPTS

C> PRIMARY

C> DATE

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

C> CALL VERVOL

C> VER

IBM DOS Version 4.00

C> VOL

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C> TIME

Current time is 1:54:09. 09p
Enter new time:

C>

As you can see, the CALL command allows a batch file to

successfully run a second batch file and to return to the

first file for executing the remaining commands.

CALL Batch-File Command
Function:

Allows one batch file to run another batch file, followed by

a return to the initial batch file.

Format:

CALL BatchFile [parameters]

Notes:

If you run one batch file from within another without using

CALL or COMMAND /C (discussed in the paragraph fol-

lowing this summary box), DOS will only execute com-

mands until one batch file completes execution. If you run

a second batch file from the middle of a batch file, the

commands that follow the transfer to the second batch file

(continued)

PART VI: ADVANCED BATCH-FILE CONCEPTS 85

'.continued

will never execute. When the second batch file ends, the

execution of all batch commands ends.

If you are using DOS version 3.3 or later, the CALL batch-

file command lets you run one batch file from within an-

other, followed by a return to the initial batch file. Simply

place the name of the batch file on the CALL command
line, along with any batch parameters.

Example:

This batch file uses the CALL batch command to run the

batch file NESTED.BAT:

VER

CALL NESTED
VOL

In this case, NESTED.BAT contains:

DATE

TIME

If you remove the CALL command from the first batch

file, leaving:

VER

NESTED

VOL

DOS will never execute the VOL command. When
NESTED.BAT completes execution, DOS stops executing

batch-file commands and returns to the system prompt.

If you are using a DOS version earlier than 3.3, you must

use COMMAND /C to run a second batch file. The file

COMMAND.COM contains the DOS command-line

processor. The command-line processor executes com-

mands as you type them at the DOS prompt, as well as

the commands in a DOS batch file. If you are using a

DOS version earlier than 3.3, change the batch file

PRIMARY.BAT so that it contains:

DATE

COMMAND /C VERVOL
TIME

86 PART VI: ADVANCED BATCH-FILE CONCEPTS

Be sure that the file COMMAND.COM resides in the

current directory or in the command path.

C> DIR COMMAND.COM
Volume in drive C is DOS 3.1

Directory of C:\DOS

COMMAND COM 23210 03-07-85 l:43p

1 File(s) 21104640 bytes free

C>

When you run the batch file, DOS executes the DATE
command. As before, press Enter to leave the system date

unchanged. The batch file’s processing will continue, using

COMMAND /C to run the batch file VERVOL.BAT. When
VERVOL.BAT completes execution, DOS continues with

the execution of the TIME command in the batch file

PRIMARY.BAT. DOS then displays:

C> PRIMARY

C> DATE

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

C> COMMAND /C VERV0L

C> VER

IBM DOS Version 3.10

C> VOL

Volume in drive C is DOS 3.1

C> TIME

Current time is 13:54:09.09
Enter new time:

C>

COMMAND /C directs DOS to load a second command
processor in memory. The /C tells DOS that the command
processor will remain in memory only to execute the com-

mand that follows. In this case, the secondary command
processor remains in memory just long enough to execute

PART VI: ADVANCED BATCH-FILE CONCEPTS 87

the commands in the batch file VERVOL.BAT. When the

batch file completes execution, DOS removes the second-

ary command processor from memory and continues exe-

cution of the commands in the initial batch file.

COMMAND /C Batch-File Command
Function:

Allows one batch file to run another batch file, followed by

a return to the initial batch file.

Format:

COMMAND /C BatchFile [parameters]

Notes:

If you run one batch file from within another without using

CALL or COMMAND /C, DOS will only execute com-

mands until one batch file completes execution. If you run

a second batch file from the middle of a batch file, the

commands that follow the transfer to the second batch file

will never execute. When the second batch file ends, the

execution of all batch commands ends.

If you are using DOS version 3.2 or earlier, COMMAND
/C lets you run one batch file from within another. Simply

place the name of the batch file on the COMMAND /C

batch-file command line, along with any batch parameters.

Example:

This batch file uses COMMAND /C to run the batch file

NESTED.BAT:

VER

COMMAND /C NESTED
VOL

In this case, NESTED.BAT contains:

DATE

TIME

(continued

)

88 PART VI: ADVANCED BATCH-FILE CONCEPTS

continued

If you remove COMMAND /C from the first batch file,

leaving:

VER

NESTED
VOL

DOS will never execute the VOL command. When
NESTED.BAT completes execution, DOS stops executing

batch-file commands and returns to the system prompt.

As your batch files increase in complexity, you might on

occasion choose to provide the user with a list of menu op-

tions. Each menu option results in the execution of a differ-

ent DOS command. One of the options might allow the

user to temporarily suspend the batch file’s execution so

that the user can execute commands from the DOS prompt.

The DOS command COMMAND lets your batch files do

exactly that.

Consider a batch file, named USEDOS.BAT, that contains:

ECHO OFF

CLS

ECHO In batch file, about to

ECHO access DOS prompt
COMMAND
ECHO Back in batch file

When DOS encounters COMMAND, DOS loads a second-

ary command processor into memory, which in turn dis-

plays a DOS prompt, allowing the user to execute DOS
commands. When the user no longer wants to execute DOS
commands, the user calls the DOS command EXIT to end

the secondary command processor.

If the file COMMAND.COM resides in the current direc-

tory or in the command-file search path, issue the batch file

USEDOS.BAT. In this case, DOS displays:

In batch file, about to

access DOS prompt

PART VI: ADVANCED BATCH-FILE CONCEPTS 89

IBM DOS Version 4.00

(C)Copyright International Business

Machines Corp 1981, 1988

(C)Copyright Microsoft Corp 1981-1986

C>

DOS has loaded a secondary command processor, allowing

you to issue the commands, at the DOS prompt. In this case,

issue the DATE command to display the current system

date. To return control to the batch file, issue the EXIT

command. Your screen now contains:
m

In batch file, about to

access DOS prompt

IBM DOS Version 4.00

(C)Copyright International Business

Machines Corp 1981, 1988

(C)Copyright Microsoft Corp 1981-1986

C> DATE

Current date is Sat 05-12-1990

Enter new date (mm-dd-yy):

C> EXIT

Back in batch file

C>

When the EXIT command completes execution, DOS

returns control to the batch file, which continues its

execution.

HANDLING MORE THAN NINE

PARAMETERS WITH SHIFT

As you have learned, the DOS batch-file parameters %l

through %9 let the user pass nine values to your batch file.

When you pass values to batch files in this manner, your

batch files increase in flexibility, supporting many more

applications than batch files that don’t support parameter

processing. Even so, for some applications, the nine-

parameter restriction can still cause problems. For such

applications, the DOS batch-file command SHIFT pro-

vides a solution.

90 PART VI: ADVANCED BATCH-FILE CONCEPTS

The primary purpose of the DOS command SHIFT is to

allow batch files to access more than nine batch parame-

ters. When your batch file executes SHIFT, DOS moves

each batch parameter value one position to the left. DOS
assigns to the parameter %0 the value of %1. Likewise,

DOS assigns to %1 the value of %2. DOS shifts the value of

each parameter in this fashion. If your batch-file command
line contains more than nine parameters, SHIFT assigns

the tenth parameter to %9. If no additional parameter re-

mains, SHIFT assigns the empty string to %9. As an ex-

ample, let’s consider a batch file, named ONESHIFT.BAT,
that contains:

ECHO OFF

CLS

ECHO %0 %1 %2 %3 % 4 %5 %6 %7 %8 %9

SHIFT
ECHO %0 %1 %2 %3 %4 %5 %6 %7 %8 %9

If you run this batch file by typing:

C> ONESHIFT ABC
DOS displays:

ONESHIFT ABC
ABC
If you run this batch file with more than nine parameters,

as follows:

C> ONESHIFT 123456789 10 11

DOS displays:

ONESHIFT 123456789
123456789 10

Notice that SHIFT assigns the value 10 to the parameter

%9. Pictorially, this SHIFT operation becomes:

ONESHIFtI %l[T] %2 [2] %3 [T] %40 %b \s\ %6 0 %7
[
7

]
%8

[
8] %9 [9] %10E

%

0

1 11 2 12 3 %3 4 %4 5 %5 6 %6 7 %7 8 %8 9 %9 10

Next, a batch file, named TWOSHIFT.BAT, uses the

SHIFT command twice:

PART VI: ADVANCED BATCH-FILE CONCEPTS 91

ECHO OFF

CLS

ECHO %0 %1 %2 %3 %4 %5 %6 %7 %8 %9

SHIFT

ECHO %0 %1 %2 %3 %4 %5 %6 %7 %8 %9

SHIFT

ECHO %0 %\ %2 %3 %4 %5 %6 %7 %8 %9

If you run the batch file as:

C> TWOSHIFT ABC •

DOS displays:

TWOSHIFT ABC
ABC
B C

As before, if you run the batch file with more than nine

batch parameters, as follows:

C> TWOSHIFT 123456789 10 11

DOS displays:

TWOSHIFT 123456789
123456789 10

23456789 10 11

Keep in mind that when SHIFT no longer has values to

assign to %9, SHIFT assigns the empty string to %9. By

testing for the empty string, you can create a batch file,

named SHIFTIT.BAT, that uses the GOTO command to

loop through all the batch-file command-line parameters,

displaying each on individual lines using ECHO:

ECHO OFF

: REPEAT

ECHO %0

SHIFT

IF NOT , %0'==” GOTO REPEAT

If you run the batch file as:

C> SHIFTIT ONE TWO THREE

DOS displays:

SHIFTIT
ONE

TWO

THREE

92 PART VI: ADVANCED BATCH-FILE CONCEPTS

When the batch file first begins execution, %0 contains the

name of the batch file. When the batch file executes the

SHIFT command, DOS assigns the word ONE to %0. Be-

cause %0 is not equal to the empty string, the batch file

issues the GOTO command, and this process repeats. After

the fourth SHIFT command, %0 contains the empty string,

and the batch file ends.

Using this same technique, you can change the SHIFTIT.BAT

batch file slightly to create a batch file, named D.BAT, to

enhance the DOS command DIR:

ECHO OFF

CLS

: REPEAT
DIR % 1

SHIFT
IF NOT ,

%1
,~ " GOTO REPEAT

You can now run the batch file as:

C> DIR *.* *. BAT COMMAND. COM

The batch file in turn performs successive directory list-

ings for the specified files. If you replace the line:

DIR %1

with:

FOR %%A IN (% 1) DO TYPE %%A

the batch file uses the TYPE command to display each of

the files you specify in the batch-file command line.

SHIFT Batch-File Command
Function:

:

Shifts each batch-file-parameter value one parameter loca-

tion to the left. Thus, DOS places the value of %\ in %0.

Likewise, DOS assigns to %1 the value of %2, to %2 the

value of %3, and so on.

Format:
i

' "> \

1m iSHIFT

(continued

)

PART Vi: ADVANCED BATCH-FILE CONCEPTS 93

continued

Notes:

By default, DOS supports the batch parameters %0 through

%9. If your batch-file command line contains more than
*

nine parameters, the SHIFT command lets your batch file

access the additional parameters. Assume, for example, that

a user runs a batch fi^e, named SHIFTTST.BAT, with:

C> SHIFTTST A B C D

The batch parameters %0 through %5 contain:

%0 contains SHIFTTST

%1 contains A
%2 contains B

%3 contains C
%4 contains D
%5 contains " (empty string)

If the batch file issues a SHIFT command, DOS shifts each

parameter, resulting in:

%0 contains A
%\ contains B

%2 contains C
%3 contains D
%4 contains " (empty string)

%5 contains " (empty string)

If the command line contains more than nine parameters,

SHIFT places the first unreferenced parameter into %9
with each iteration. When no additional parameters remain,

SHIFT assigns %9 the empty string.

Example:

This batch file uses SHIFT to display all the batch parame-

ters passed on the command line.

: REPEAT
IF ' % 1 ' == '

' GOTO N0__M0RE

ECHO %1

SHIFT

GOTO REPEAT

: NO. MORE

94 PART VI: ADVANCED BATCH-FILE CONCEPTS

continued

The batch file simply loops, displaying the current value of

%1. As long as %1 is not the empty string, the loop con-

tinues and a new parameter value is shifted into %1.

BATCH-FILE EXCEPTIONS

You have seen each of the DOS batch-file processing com-

mands. Now let’s take a look at several problems you can

encounter when you execute your batch files. If your batch

file displays the message:

Bad command or file name

a command in the batch file is invalid. The quickest way to

determine which command is responsible for the error mes-

sage is to remove ECHO OFF so that DOS displays com-

mand names as the batch file executes. The incorrect

command name will appear on your screen immediately

before the error message. For example, a batch file, named

BADCMD.BAT, contains an invalid DOS command:

VER

XYZ12345
VOL

When you run this batch file, DOS displays:

C> VER

IBM DOS Version 4.00

C> XYZ12345
Bad command or file name

C> VOL

Volume in drive C is DOS 4

Volume Serial Number is 3921-18D3

C>

DOS displays the error message immediately following the

command XYZ12345. When a batch file contains an in-

valid command, DOS displays the error message and con-

tinues execution with the next command. In many cases, a

command in your batch file is a valid DOS command

—

yet DOS still issues the message Bad command or file name

PART VI: ADVANCED BATCH-FILE CONCEPTS 95

when DOS encounters the command. In such cases, the

problem is not the command name but rather where DOS is

searching on disk to locate the command.

Remember: DOS defines commands as either internal or

external. The internal commands (such as TYPE, DATE,
CLS, and VER) alway§Teside in your computer’s memory
after DOS starts. External commands reside on disk. Com-
mon external commands include DISKCOPY and FOR-
MAT. When DOS executes these commands, DOS must

first find the command on disk and then load the command
into memory. If the command does not reside in the current

directory or in the specified directory, DOS displays the

Bad command or file name error message simply because

DOS cannot locate the file on disk. As discussed earlier in

this reference, the PATH command increases the number of

locations DOS searches for commands. If you know that

the command generating the Bad command error message

is valid, then be sure that DOS can locate the command.

Finally, some users have encountered the Bad command

error message even when all the commands in their batch

files can be successfully located. When this occurs, the

word processor you are using has very likely embedded a

strange character in the batch file that DOS cannot under-

stand. If you are creating your batch files with a word

processor, be sure you process and save the file in non-

document (ASCII) mode.

If your batch file displays the message:

File not found

the commands in your batch file are valid, but DOS cannot

locate a file that one of the commands is trying to use.

Consider a batch file, named BADFILE.BAT, that contains:

TYPE 12345678 . XYZ

When you run this batch file, DOS displays:

File not found

C>

Although DOS successfully executed the TYPE command,

TYPE could not locate the file 12345678.XYZ.

96 PART VI: ADVANCED BATCH-FILE CONCEPTS

As your batch files increase in complexity, they will make

extensive use of batch-file and named parameters. By using

the IF EXIST condition, your batch files can test to ensure

that a file exists before the batch file tries to use the file.

You will recall that the GOTO batch-file command lets

your batch files branch from one location within a file to

another. When DOS encounters a GOTO batch command,

DOS begins searching the batch file for the specified label.

If DOS encounters the label, DOS continues the batch-file

execution at the command that immediately follows the

label. If, instead, the label does not exist, DOS stops exe-

cuting the batch file and displays the message:

Label not found

If this error occurs, be sure that your batch file contains the

label and that the label is spelled correctly. The following

batch file, named NOLABEL.BAT, shows that DOS imme-

diately stops batch-file execution when a label is invalid:

GOTO DONE

VER

VOL

When you execute this batch file, DOS displays:

Label not found

Notice that DOS did not execute either the VER or the

VOL command.

Also, keep in mind that DOS uses only the first eight let-

ters of a label’s name. If DOS cannot distinguish between

two labels, DOS uses the first label it encounters. A batch

file, named 2LABELS.BAT, uses the labels BatchLahelOne

and BatchLabelTwo. Because the first eight letters of each

label’s name are the same, DOS views the labels as

identical:

: BatchLabel One

VER

GOTO BatchLabelTwo
VOL

: BatchLabel Two

PART VI: ADVANCED BATCH-FILE CONCEPTS 97

When you run this batch file, DOS repeatedly displays the

current version number until you use the Ctrl-C key combi-

nation to end the command. Although the GOTO command
references the label BatchLabelTwo, DOS uses only the first

eight characters of the label name. Therefore, DOS repeat-

edly loops back to the start of the batch file.

COMPLETING THE OS/2 BATCH-FILE

COMMANDS
OS/2 executes all the batch-file commands we have ex-

amined in this reference. In addition to these commands,

OS/2 provides three others: EXTPROC, SETLOCAL, and

ENDLOCAL.

The OS/2 EXTPROC command lets your batch file define

a command processor other than the OS/2 command-line

interpreter to execute the commands your batch file con-

tains. Most users will not use EXTPROC. The format of

the EXTPROC command is:

EXTPROC [drive:][path]filename.ext [arguments!

The filename provides the complete DOS path to the file,

including the filename extension, to serve as the batch

file’s command interpreter. Typically, you would purchase

such a file from a third-party software company. The argu-

ments are optional command-line arguments that the com-

mand interpreter uses to get started. These parameters will

depend entirely on the command processor you are using.

Because EXTPROC tells OS/2 the name of the batch-file

command-line interpreter, EXTPROC must be the first

command in your batch file.

OS/2 EXTPROC Batch-File Command
- - '

. . .

Function:

Defines the command-line processor that the batch file will
j.

use to issue its commands.

(continued

)

98 PART VI: ADVANCED BATCH-FILE CONCEPTS

continued

'

Format:

EXTPROC [drive:][path]filename.ext [parameters]

Notes:

Most users will- never use EXTPROC. The EXTPROC
batch-file command lets you use a third-party software

package to execute the commands in a batch file.

Because EXTPROC defines the command-line processor

that the batch file is to use, EXTPROC must be the first

command in the batch file.

i
|

, , - j|H| ' /, " v
1 I 1

As you have found, batch files let you change the default

drive and directory, as well as the environment entries. In

some cases, you might want these changes to exist only

during execution of the batch file. For example, consider a

batch file, named CHANGEIT.BAT, that sets the environ-

ment entry FILE to FILENAME.EXT, sets the current

directory on the default drive to the root, and sets the

default drive to drive A:

SET FI LE=FI LENAME . EXT

CHDIR \

A:

When you run this batch file, all the changes remain in

effect after the batch file completes execution. Consider,

instead, an application that issues these three commands
as part of its overall processing. When the batch file com-

pletes execution, the current drive and directory should be

the same as when the user started the batch file. Likewise,

the environment should contain its original contents.

The OS/2 SETLOCAL and ENDLOCAL batch-file com-

mands work together to save and later restore the OS/2 en-

vironment, as well as the current disk drive and directory.

By using the SETLOCAL batch command, changes to the

environment and to the current drive or directory last only

as long as the batch file executes. Use of the ENDLOCAL
batch command allows these values to be reset, earlier,

within the batch file.

PART VI: ADVANCED BATCH-FILE CONCEPTS 99

Consider a batch file, named NOCHANGE.BAT, that uses

SETLOCAL and ENDLOCAL:

SETLOCAL
SET FI LE=NEWNAME . EXT ,

CHDIR \

A:

ENDLOCAL

When OS/2 encounters the SETLOCAL batch command,

OS/2 saves the current disk drive, the current directory,

and the environment’s contents. When OS/2 later encoun-

ters the ENDLOCAL batch command, OS/2 restores the

previous settings. As a result, the batch-file changes are

limited to the life of the batch file or are in effect only

until an ENDLOCAL batch command is encountered.

OS/2 SETLOCAL and ENDLOCAL
Batch-File Commands
Function:

Save and later restore the current disk drive, the current

directory, and the contents of the OS/2 environment.

Format:

SETLOCAL
batch_commands

ENDLOCAL

Notes:

Many batch files change the contents of the environment or

the current disk drive or directory during their processing.

In most cases, these changes need to be in effect only dur-

ing processing of the batch file.

Unfortunately, most batch files don’t restore the current

disk drive or directory when they complete execution. The

end user has to issue other commands to get back to the

previous drive or directory.

The OS/2 batch-file commands SETLOCAL and

ENDLOCAL work together to save and later restore the

(continued

)

100 PART VI: ADVANCED BATCH-FILE CONCEPTS

continued

current drive, the current directory, and the contents of the

environment. The SETLOCAL batch command saves the

current values. Later, when the batch file has completed

execution, the ENDLOCAL batch command restores the

values. If the SETLOCAL command is used but the

ENDLOCAL command is omitted, OS/2 restores the

values when the batch file completes execution.

Example:

This batch file runs SETLOCAL to save the current disk

drive, directory, and environment. Next, the batch file

changes the current drive and directory and issues several

SET commands to change environment entries. Before the

batch file completes execution, it runs ENDLOCAL, which

restores the saved settings. As a result, the changes to the

current disk drive, the current directory, and the environ-

ment’s contents are only temporary.

SETLOCAL
A:

CD \

SET FI LE=TEST . BAT

SET PATH=A

:

SET PR0MPT=A$g
ENDLOCAL

PART VII

Getting the Most
r

from Batch Files

with ANSI.SYS and

DEBUG

UNLEASHING BATCH-FILE APPLICATIONS
WITH THE ANSI.SYS DEVICE DRIVER

If you examine your DOS disks, you will find a file with

the name ANSI.SYS:

C> DIR ANSI.SYS

Volume in drive C is DOS 4

Volume Serial Number is 3A2F-18E9

Directory of C:\D0S

ANSI SYS 9148 06-17-88 12:00p

1 File(s) 21231616 bytes free

The filename extension SYS tells you that ANSI.SYS is an

operating-system file. Specifically, ANSI.SYS is a device

driver that increases the capabilities of the computer’s

screen and keyboard. (A device driver is software that DOS
loads into memory each time your system starts.) After it is

installed, the device driver provides capabilities that are not

available through DOS itself.

To install a device driver, you must place a DEVICE= en-

try in the CONFIG.SYS file. You will recall that DOS uses

CONFIG.SYS each time your system starts, to configure

101

102 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

itself in memory. For ANSI.SYS, your CONFIG.SYS entry

becomes:

DEVICE-ANSI. SYS

You must provide DOS with a complete pathname to the

file ANSI.SYS. Therefore, if ANSI.SYS resides in a DOS
subdirectory, your CONFIG.SYS entry might become:

DEVICE-C : \D0S\ANSI -SYS

Remember: After you change the CONFIG.SYS file, you

must restart your computer for the change to take effect.

To use the ANSI.SYS-enhanced capabilities of your screen

and keyboard from your batch files, you must use either the

DOS command ECHO or the DOS command PROMPT to

send escape sequences to the device driver.

An escape sequence is a unique character combination that

begins with the ASCII escape character (ASCII 27). The

ANSI.SYS device driver supports several escape sequences

to set your screen color, set the cursor position, or redefine

keys on your keyboard.

To begin, let’s use ANSI.SYS to set screen colors. The

ANSI.SYS escape sequence to set your screen’s color is:

Escape[colorm

where Escape is the ASCII escape character and color is

one of the color values defined in the following table.

COLOR VALUES SUPPORTED BY ANSI.SYS

Color Value Color

0 Default color (black and white)

1 Bold text attribute

2* Low-intensity text attribute

3* Italic text attribute

4 Underscore on for IBM monochrome;
underscore color (blue) for VGA

5 Blinking text attribute

6* Rapid-blinking text attribute

7 Reverse-video text attribute

8 Concealed text attribute

30 Black foreground

(continued)

PART VII: GETTING THE MOST FROM BATCH FILES ... 103

COLOR VALUES SUPPORTED BY ANSI.SYS continued

Color Value Color

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

48* Subscript

49* Superscript

* Not operative on VGA.

Note: Not all values are supported in all versions of ANSI.SYS.

For example, the ANSI.SYS escape sequence:

Escape[31m

sets the screen foreground color to red. Likewise, the

sequence:

Escape[42m

selects a green background. Using the PROMPT $e

metacharacter, a batch file, named CYANBG.BAT, sets

the screen background color to cyan:

PROMPT $e[46m
PROMPT [$p]

CLS

The PROMPT $e metacharacter directs PROMPT to write

the ASCII escape character. The first command sets the

screen color to cyan, while the second PROMPT command

resets the system prompt to the current drive and directory,

1 04 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

both displayed within square brackets. The CLS command
simply clears the screen display, setting the screen’s back-

ground color to cyan.

In a similar manner, the batch file BLUEFG.BAT uses the

PROMPT command to set the screen’s foreground color to

blue:

PROMPT $e[34m
PROMPT [$p]

CLS

If you run this batch file, the ANSI.SYS device driver

changes your screen’s foreground to blue, leaving the

screen background color unchanged.

As you can see, the batch files CYANBG.BAT and

BLUEFG.BAT are almost identical— the only difference

is the color value. Therefore, we can create a single batch

file, named SCRCOLOR.BAT, that sets the screen-color

attributes based on the batch parameter %1. In this case,

the batch file becomes:

IF '%1 '
— *

’ GOTO DONE

PROMPT $e[%lm
PROMPT [$p]
CLS

: DONE

To set your screen color, you simply specify the color value

as a batch-file parameter. For example, the command line:

C> SCRCOLOR 42

sets the screen’s background color to green. DOS simply

places the value 42 into the batch file (replacing %1), yield-

ing the escape sequence:

Escape[42m

You might be wondering when your batch files would use

the bold, blinking, or reverse-video attributes. Consider an

application that displays the message:

About to delete FILENAME. EXT

Press any key to continue . . .

Earlier in this reference you learned how to use the com-

puter’s built-in “bell” to get the user’s attention before

PART VII: GETTING THE MOST FROM BATCH FILES ... 105

displaying a message with PAUSE. The following batch

file, named DELETE.BAT, uses the blinking text attribute

to get the user’s attention:

ECHO OFF

IF '%1’==" GOTO DON'T

REM Set text attribute to blinking.
REM Must turn ECHO ON for prompt command to

REM change the text attribute.
PROMPT $e[5m
ECHO ON

ECHO OFF

CLS

PROMPT [$p]
REM Displaying warning message
ECHO About to delete %\

PAUSE

DEL %1

PROMPT $e[Om
REM Restore default color. Again, turn ECHO ON.

ECHO ON

ECHO OFF

PROMPT [$p]
: DONE

Although this batch file displays a blinking message as

specified, when it completes execution, it sets the screen

color back to its default setting. If you have used the

ANSI.SYS device driver to set your screen’s color, the

color is lost.

As a solution, a batch file, named SCRCOLOR.BAT,
can define the three named parameters— TEXTATTR,
FOREGROUND, and BACKGROUND— as follows:

IF ’%r— ’
* GOTO DONE

PROMPT $e[%lm
PROMPT [$p]
CLS

ECHO OFF

REM Set the named parameters TextAttr, ForeGround,

REM and BackGround
IF ’%1’— 'O' SET TEXTATTR=0
IF

,

%l
, ==’r SET TEXTATTR=1

IF ' %
1

' ==
’ 2 * SET TEXTATTR=2

IF '%1 '
— *3* SET TEXTATTR=3

IF '%1 •— ’
4

* SET TEXTATTR=4
IF ' %

1
' ==

'

5
' SET TEXTATTR=5

1 06 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

IF '%1'— '6' SET TEXTATTR-6
IF ' % 1 '=

' 7 ' SET TEXTATTR-7
IF ’ %1 '— ’8' SET TEXTATTR-8
IF ’30’ SET F0REGR0UND==30

IF *%r= ’31' SET FOREGROUND-31
IF ’ % 1

• ===== * 3 2 ’ SET FOREGROUND-32

IF ' %1 '-=' 33
' SET FOREGROUND-33

IF
, %r== , 34' SET FOREGROUND-34

IF *%!•— *35* SET FOREGROUND-35

IF ' % 1
* == *36* SET FOREGROUND-36

IF * %1 ’==
’ 37

1 SET FOREGROUND-37
IF ’%r=-’40’ SET BACKGROUND-40
IF ’ % 1 '— ’ 4 1 * SET BACKGROUND-41
IF * %

1
’ == *42* SET BACKGROUND-42

IF — SET BACKGROUND-43

IF '% 1 ’==’44 ’ SET BACKGROUND-44

IF ’%1 *— *45 * SET BACKGROUND-45

IF ’%r— ’46* SET BACKGROUND-46
IF '%1 , === ,

47 * SET BACKGROUND-47

IF — ’48' SET BACKGROUND-48
IF ’%1’= '49' SET BACKGROUND-49

: DONE

As you can see, depending on the color value that you

specify as the first parameter of SCRCOLOR.BAT, the

batch file defines one of the three named parameters

accordingly.

When you create another batch file, such as DELETE.BAT,

which changes screen attributes, the batch file can test to

see if these named parameters exist, and if they do, it can

restore the previous screen colors.

ECHO OFF

IF — ’
' GOTO DONE

REM Set text attribute to blinking.

REM Must turn ECHO ON for prompt command to

REM change the text attribute.

PROMPT $e[5m

ECHO ON

ECHO OFF

CLS

PROMPT [$p]
REM Displaying warning message
ECHO About to delete %1

PAUSE

DEL % 1

PART VII: GETTING THE MOST FROM BATCH FILES ... 107

REM Restore default color. Again, turn ECHO ON.

ECHO ON

IF NOT ' %TEXTATTR%

’

PROMPT $e[%TEXTATTR%m
IF NOT ’ %FOREGROUND% ' == ’

' PROMPT $e[%FOREGROUND%m
IF NOT ’ %BACKGROUND% ' == '

' PROMPT $e[%BACKGROUND%m
ECHO OFF

CIS

PROMPT [$p]

: DONE

As briefly discussed.Yhe DOS command ECHO also lets

your batch files send escape sequences to the ANSI.SYS
device driver. The easiest way to create a batch file that

uses ECHO to write escape sequences is with Edlin. In this

manner, you can create the batch file SCRERASE.BAT,
which uses the ANSI.SYS escape sequence:

Escape[2

J

to erase the screen display, placing the cursor at the

screen's upper left (home) position. As discussed before,

run Edlin with the filename, as follows:

C> EDLIN SCRERASE.BAT

Edlin displays:

C> EDLIN SCRERASE.BAT
New file
*

Next, using I, the Edlin insert command, type the word

ECHO and press the Spacebar once:

C> EDLIN SCRERASE.BAT
New file
*1

1:* ECHO

Next, you must enter the ANSI.SYS escape sequence to

clear the screen. To enter the ASCII escape character, hold

down the Ctrl key and press V:

C> EDLIN SCRERASE.BAT
New file
*1

1:* ECHO A V

1 08 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

Next, release the Ctrl key, type two left brackets, and then

type 2J :

C»EDLI N SCRERASE.BAT
New file
*1

1:* ECHO A V[[2J

Edlin uses the characters AV[as the ASCII escape charac-

ter. Press Enter and then Ctrl-C to exit Edlin’s insert mode.

Save the batch file using E, the Edlin exit command. When
you run SCRERASE, the ECHO command writes the

ANSI.SYS escape sequence that clears your screen. (Ad-

mittedly, you can easily use the DOS command CLS. The

purpose of the batch file SCRERASE.BAT was to teach

you how to use ECHO to “echo” an escape sequence.)

In addition to setting the foreground and background

colors of your screen and erasing your screen display, the

ANSI.SYS device driver allows your batch files to control

the cursor’s position on your screen. After you use the

ANSI.SYS device driver to position the cursor, the next

output occurs at that position.

The following table defines the five ANSI.SYS cursor-

positioning routines:

Escape Sequence

Escape[NumRowsA

Escape!NumRowsB

Escape[NumRowsC

Escape!NumRowsD

Escape! Row;ColH

Result

Move cursor up

Move cursor down

Move cursor right

Move cursor left

Set cursor at the Row,
Col position

Most screens use 25 rows and 80 columns. The extreme

upper left screen position is 1, 1 — that is, row 1, column 1.

The extreme lower right screen position is 25, 80. A batch

file, named CURPOS.BAT, uses the ANSI escape

sequences:

Escaped ;1H

Escaped : 5H

EscapedO; 1 OH

Escape[20 ; 20H

PART VII: GETTING THE MOST FROM BATCH FILES ... 109

to display messages at the row and column positions (1, 1),

(5, 5), (10, 10), and (20, 20). The batch file uses the ECHO
batch-file command to set the cursor position:

ECHO OFF

CLS

ECHO Escaped ; lHRow T, Column 1

ECHO Escaped ; 5HRow 5, Column 5

ECHO Escape[10 ; lOHRow 10. Column 10

ECHO Escape[20;20HRow 20, Column 20

Because it is difficult to display the ASCII escape character

within a text, this batch file uses the word Escape each time

you need to include the ASCII escape character. If you are

using Edlin to create your batch files, use the AV[character

combination in place of each Escape.

Earlier in this reference, we created the batch file

HELPDOS.BAT, which displayed on-line help for each

DOS command. Using the ANSI.SYS device driver, you

can change the batch file to display command names cen-

tered on the screen in bold text and to display the actual

help text in a distinct foreground color.

This batch-file fragment illustrates the use of the

ANSI.SYS device driver for help on the DOS command
CLS:

ECHO OFF

CLS

REM Set all attributes off.

ECHO Escape[0m
REM Select bold text.

ECHO Escapedm
REM Center the word CLS.

ECHO Escaped ; 35HCLS
REM Select blue color for text.

ECHO Escape[34m
ECHO Escaped ; lOHCommand Type: Internal

ECHO Escaped ; lOHFunct i on : Erases the screen

ECHO display, placing the

ECHO Escaped : 20Hcursor at the upper left, or

ECHO home, position.

ECHO Escape[8;10HExample: CLS

In this case, the fragment uses the ANSI.SYS device driver

to set the text attribute to bold and then to center the CLS

1 1 0 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

command name. Then, the batch file disables any currently

set attributes to avoid potential color conflicts. Next, the

batch file selects the foreground color and displays the help

text. As you can see, the batch file uses the escape

sequence:

Escape[Row;ColH

to display each line of help information starting at column

10 (continued lines begin in column 20). After the batch

file displays the help text, the batch file could use the

ANSI.SYS driver to reset the video attributes to their nor-

mal state. (Later in this reference, you will learn how to

create and use menus from within your batch files. At that

time, you will use the ANSI.SYS cursor-positioning escape

sequences extensively.)

The ANSI.SYS device driver enhances both screen and

keyboard capabilities. You have just used the ANSI.SYS
driver to clear the screen, set foreground and background

colors, and position the cursor. To enhance your keyboard’s

capabilities, ANSI.SYS lets you redefine keys. Most users

use ANSI.SYS to assign character strings to the function

keys F7 through F10, which are not predefined by DOS.
Remember: DOS uses function keys FI through F6 for

command-line editing.

Each key on your keyboard has a unique value associated

with it; this value is called a scan code . The keys F7

through F10 use the scan-code values 65, 66, 67, and 68,

respectively. To assign a character string to one of these

function keys, your ANSI.SYS escape sequence becomes:

Escape[0;Scancode;"string
n

p

For example, to assign the DOS command VER to the

function key F7, your command line becomes:

Escape[0 ; 65
; "VER"p

Likewise, to assign the CLS command to the F10 function

key, the ANSI escape sequence becomes:

Escape[0 ; 68
; "CLS"p

PART VII: GETTING THE MOST FROM BATCH FILES ... Ill

A batch file, named DEFKEY.BAT, uses the ANSI.SYS
keyboard-reassignment escape sequence to define a func-

tion key on the keyboard:

IF ’%r—” GOTO DONE
IF — ” GOTO DONE

ECHO Escape[0 ;%1
; "%2"p

: DONE

This batch file uses the %1 batch parameter to determine

the key to define, and it uses the %2 batch parameter to

determine the value to assign to the key. For example, to

assign the CLS command to the F10 function key, your

command line becomes:

C> DEFKEY 68 CLS

As you can see, the batch file substitutes the values 68 and

CLS into the escape sequence:

ECHO Escape[0 ; 68
; "CLS"p

In many cases, you will want to assign several words to a

key. For example:

C> DEFKEY 68 DIR *.* /P

To do so, simply change the batch file DEFKEY.BAT to

use the batch parameters %1 through %9, as follows:

IF *%1’— ’
' GOTO DONE

IF
, %2 ,~” GOTO DONE

ECHO Escape[0 ;%1 ;"%2 %3 %4 %5 %6 %7 %8 %9"p

: DONE

By assigning commonly used commands to the function

keys F7 through F10, you can save time and keystrokes.

Remember: After you create the batch file DEFKEY.BAT,
you can run it from AUTOEXEC.BAT by using either

COMMAND /C or the CALL batch-file command. In so

doing, your keyboard definitions are active each time your

system starts.

Now you’ve had a glimpse of what can be done with key-

board reassignment and how it can be accomplished. Be

aware that the first parameter in these examples (zero) is

required when the scan code consists of an ASCII extended

1 1 2 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

value. For scan codes that do not use ASCII extended

values, the zero and its semicolon must not be used.

The ASCII extended codes and their definitions are:

15

16-25

30-38

44-50

59-68

71

72

73

75

77

79

80

81

82

83

84-93

94-103

104-113

Shift-Tab

Alt- q, w, e, r, t, y, u, i, o, p

Alt- a, s, d, f, g, h, j, k, 1

Alt- z, x, c, v, b, n, m
F1-F10

Home

Cursor Up

Page Up

Cursor Left

Cursor Right

End

Cursor Down

Page Down

Insert

Delete

Shift-Fl through Shift-FlO

Ctrl-Fl through Ctrl-FlO

Alt-Fl through Alt-FlO

USING DEBUG TO UNLEASH YOUR
BATCH-PROCESSING POTENTIAL

All the DOS commands were written by computer pro-

grammers using a programming language such as C or

Pascal. Only a small portion of the 30 million DOS users

are programmers. To achieve total control of your batch

files, you need to develop a few simple programs— even

if you’re not a programmer. For DOS users, the DEBUG
command provides all the capabilities needed to write

simple programs that enhance batch-file capabilities.

PART VII: GETTING THE MOST FROM BATCH FILES ... 113

DEBUG is a programmer’s utility that helps programmers

find errors, or “bugs,” in their programs. Although most of

us won’t use DEBUG to find program errors, we can use it

to create simple programs. DEBUG intimidates many users

because they view DEBUG as a utility designed exclusively

for programmers, and because DEBUG requires the entry

of program instructions in assembly language. However, if

you follow the examples as they appear in this reference,

you will find DEBUG Very easy to use. You will create

several programs using DEBUG. The examples explain

each step you must type. If you take a few minutes to type

these programs, you will greatly enhance your batch-file

capabilities.

DEBUG is an external DOS command that resides on disk:

C> DIR DEBUG.COM
Volume in drive C is DOS 4

Volume Serial Number is 3A2F-18E9

Directory of C:\D0S

DEBUG COM 21606 06-17-88 12 : OOp

1 File(s) 21166080 bytes free

When you execute DEBUG, you will specify, on the com-

mand line, the name of the file that DEBUG is to create:

C> DEBUG FILENAME. EXT

To begin, let’s create a program, named SCRPRINT.COM,
that prints the current contents of your screen display.

Assume, for example, that a program in your batch file dis-

plays important data on the screen. To ensure that the user

sees this information, your batch file can run SCRPRINT
(when the program completes execution) to print the

screen’s contents.

To begin, execute DEBUG with the SCRPRINT.COM
filename:

C> DEBUG SCRPRINT.COM

DEBUG will respond with:

C> DEBUG SCRPRINT.COM
File not found

1 14 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

The message File notfound tells you that SCRPRINT.COM
did not previously exist on disk. The dash (-) is DEBUG’s
prompt.

Type the command A 100 and press the Enter key:

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100

The A 100 command tells DEBUG that you want to enter

program commands at the hexadecimal offset 100. Each

time DOS runs a program, DOS begins execution at this

offset— so that’s where we will place our instructions. All

the programs you will create using DEBUG will begin-

ning the A 100 command.

Consider the manner in which DEBUG displays your pro-

gram’s line numbers. In this case, the rightmost number is

0100— because we told DEBUG to begin at offset 100. The

number your computer displays to the left of 0100 might

differ from the number shown here. The leftmost number

depends on where DOS starts DEBUG in memory. De-

pending on your version of DOS as well as on the programs

you have installed, this value can vary. Type the command
INT 5 and press Enter:

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100 INT 5

5AFF : 0102

The INT 5 command directs your computer to print its

screen contents.

It’s as easy as that! Next, you must include two more in-

structions that tell DOS to end the program. First, type

MOV AFl, 4C and press Enter. Second, type INT 21 and

press Enter. Your program is complete.

You must now tell DEBUG to save the program’s contents

on disk. To start the save process for the program, press

Enter. DEBUG displays its prompt, as follows:

PART VII: GETTING THE MOST FROM BATCH FILES ... 115

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100 INT 5

5AFF : 0102 MOV AH, 4C

5AFF : 0104 INT 21

5AFF : 0106

Next, issue the DEBUG command R CX, and DEBUG
responds:

-R CX

CX 0000

CX is a register or storage location built into your com-

puter. Before DEBUG can write the program on disk,

DEBUG must know how large the program is. Therefore,

you must place the program size in the CX register. Find

the value that corresponds to the last line number in the

program:

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100 INT 5

5AFF : 0102 MOV AH, 4C

5AFF : 0104 INT 21

5AFF : 0106 Last program line

-R CX

CX 0000

and subtract the beginning offset from that value (for ex-

ample, “0106 minus 0100 equals 6”). In this case, your

program is 6 bytes long. Type the value 6 at DEBUG’s
colon prompt for the CX value. When you press Enter,

DEBUG displays its command prompt:

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100 INT 5

5AFF : 0102 MOV AH, 4C

1 16 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

5AFF : 0104 INT 21

5AFF : 0106

-R CX

CX 0000

: 6

To save the file on disk, you issue the DEBUG write com-

mand, W.

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100 INT 5

5AFF : 0102 MOV AH, 4C

5AFF : 0104 INT 21

5AFF : 0106

-R CX

CX 0000

: 6

-W

Writing 0006 bytes

After DEBUG saves the file on disk, use the DEBUG quit

command, Q, to return to the DOS prompt:

C> DEBUG SCRPRINT.COM
File not found

-A 100

5AFF : 0100 INT 5

5AFF : 0102 MOV AH, 4C

5AFF : 0104 INT 21

5AFF : 0106

-R CX

CX 0000

: 6

-W

Writing 0006 bytes
-Q

C>

If you run the program SCRPRINT from the DOS prompt,

DOS prints the current screen contents. A directory listing

of the file reveals:

C> DIR SCRPRINT.COM

PART VII: GETTING THE MOST FROM BATCH FILES ... 117

Volume in drive C is DOS 4

Volume Serial Number is 3A2F-18E9
Directory of C:\BATCH

SCRPRI NT COM 6 05-13-89 12 : lip

1 File(s) 21155840 bytes free

As you can see, the size of the file is 6 bytes.

In a similar manner, the program REBOOT.COM reboots

DOS:

C> DEBUG REBOOT.COM
File not found

-A 100

584B : 0100 MOV AX, 40

584B : 0103 MOV DS, AX

584B : 0105 MOV AX, 1234

584B : 0108 MOV [72], AX

584B : 010B JMP FFFF :

0

584B : 01 10

-R CX

CX 0000

: 10

-w

Writing 0010 bytes
-Q

C>

REBOOT.COM uses the bootstrap program that starts your

computer when you turn its power on. The PC bootstrap

program examines the memory location 0472H to see if it

contains the value 1234. If it does contain the value, the PC
performs a Ctrl-Alt-Del system restart. REBOOT.COM
places the value 1234 into the correct memory location and

then issues the command JMP to branch to the bootstrap

program. The following program includes comments that

explain REBOOT.COM’s processing:

C> DEBUG REB00T.C0M
File not found

-A 100

5846:0100 MOV AX, 40 ; Segment address of 0472H

584B:0103 MOV DS, AX ; Assign address to data segment

584B:0105 MOV AX, 1234 ; 1234 tells bootstrap to "reboot"

1 1 8 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

584 B : 0 1 08 MOV [72], AX ; Move value into memory

584B:010B JMP F F F F : 0 ; Jump to bootstrap program

584B : 01 10

-R CX

CX 0000

: 10

-W

Writing 0010 bytes
-Q

C>

In this case, if you run REBOOT from the DOS prompt,

your system restarts. Let’s consider an application where

you might need a batch file to reboot DOS. Many users use

RAM disks in memory to provide a fast disk drive. De-

pending on your version of DOS, you will use either the

file RAMDRIVE.SYS or the file VDISK.SYS to create a

RAM drive. A RAM drive is a disk drive that you instruct

DOS to create in your computer’s RAM (random access

memory). After you create a RAM drive, the DOS com-

mands can reference the drive using a single drive letter

and colon— exactly as they would to access a floppy disk

or a hard disk.

Because a RAM drive resides in your computer’s memory,

it does not have the mechanical constraints of a floppy disk

or a hard disk. As a result, the RAM drive is much faster. A
RAM disk gives you a fast temporary storage location for

your files. However, when you turn off your computer, the

contents of your RAM drive are lost.

Assuming your version of DOS uses the file VDISK.SYS,

you create a RAM drive by installing the VDISK.SYS de-

vice driver in memory using the CONFIG.SYS DEVICE=
entry. For example, the entry:

DEVICE=VDISK. SYS

creates a RAM drive using the 64 KB default size. To

create a RAM drive of 256 KB, use the entry:

DEVICE=VDISK. SYS 256

Note: You must reboot your system for CONFIG.SYS
changes to take effect.

PART VII: GETTING THE MOST FROM BATCH FILES ... 119

Many users install a RAM disk for their daily computer

operations, only to have to remove the RAM disk later

when they run a large application program that consumes a

large amount of memory. Remember: A 256 KB RAM disk

consumes 256 KB of memory.

Each time the user needs t6 remove the RAM disk from

memory, the user must edit the file CONFIG.SYS by

removing the DEVICE=VDISK entry. Next, the user must

restart. If the user again* wants to install the RAM disk, the

user must again edit CONFIG.SYS and again reboot DOS.

Rather than continually performing this edit-reboot cycle,

you can create a batch file, named RAMDRIVE.BAT, that

performs this task for you. For example, to install the RAM
disk, you run the batch file as:

C> RAMDRIVE INSTALL 128

In this case, the batch file installs a RAM drive capable of

storing 128 KB. To later unload the RAM, run the batch

file as:

C> RAMDRIVE UNLOAD

In either case, the batch file edits CONFIG.SYS for you,

rebooting DOS for your changes to take effect, as follows:

ECHO OFF

IF '%1 '==' INSTALL' GOTO INSTALL_DISK
IF '%r— ’ UNLOAD' GOTO UNLOAD_DISK
GOTO DONE

: INSTALL_DISK
REM Install the RAM disk by adding the DE V I C E=V DISK

REM entry in CONFIG.SYS. Use %2 to determine the

REM size of the RAM disk. After CONFIG.SYS is

REM updated, reboot.

IF NOT EXIST \C0NFIG . SY S GOTO ADD__ENTRY

REM

REM Remove all lines in CONFIG.SYS containing VDISK.

REM

TYPE \C0NFIG . SYS ! FIND /V "VDISK" > \CONFIG.NEW

DEL \C0NFIG. SYS

REM

REM Append the VDISK entry to CONFIG.SYS.

REM

: ADD__ENTRY

ECHO DEVICE=VDISK. SYS %Z » \CONFIG.NEW

120 PART VII: GETTING THE MOST FROM BATCH FILES • • •

REN \C0NFIG. NEW CONFIG.SYS
REBOOT
GOTO DONE

:UNLOAOJ)ISK
REM Remove the RAM disk by removing the VDISK entry

REM from CONFIG.SYS and rebooting.

IF NOT EXIST \CONFIG. SYS GOTO DONE

REM

REM Remove all lines in CONFIG.SYS containing VDISK.

REM

TYPE \CONFIG. SYS I FIND /V "VDISK” > \CONFIG.NEW

DEL \ CON F I G . SYS

REN \CONFIG. NEW CONFIG.SYS
REBOOT

: DONE

The ECHO batch-file command following the label

:ADD_ENTRY assumes that the file VDISK.SYS can be

found in the root directory. If that is not the case, you must

provide the appropriate drive and/or subdirectory name as

a part of the filename— for example, c:\dos\vdisk.sys.

In the routine starting with the label :ADD_ENTRY, the

GOTO DONE statement following the REBOOT statement

is intended to never be executed, because the system should

reboot. However, if the REBOOT program does not exist or

cannot be found, the GOTO DONE statement will ensure

that the remainder of the batch file is not accidentally run.

Next, a program, named GETYORN.COM, gets keystrokes

from the user until the user presses either the Y key or the

N key. After GETYORN.COM gets a valid key, it returns

the key as an EXIT status value. Therefore, your program

can use the conditions:

GETYORN
IF ERRORLEVEL 89 GOTO YES
IF ERRORLEVEL 78 GOTO NO

to process the yes or no response. Notice that the batch file

first tests for the higher exit status (89).

Remember: The IF ERRORLEVEL condition returns a

value of true when the specified value is greater than or

equal to the exit status. If you place the test for an exit

status of 78 first, DOS always executes the corresponding

PART VII: GETTING THE MOST FROM BATCH FILES ... 121

commands because both keys return values greater than or

equal to 78.

The following program implements GETYORN.COM:

C> DEBUG GETYORN.COM
File not found

-A 100

5B10 : 0100 MOV AH. 08

5B10 : 0102 INT 21

5810:0104 CMP AL. 59*
; Did user press Y?

5B10 : 0106 JZ 010E
5810:0108 CMP AL. 4E ; Did user press N?

5B10 : 010A JZ 010E
5 B TO : 0 1 OC JMP 0100 ; Loop to get valid character
5B10 : 010E MOV AH. 4C

5B10:0110 INT 21 ; End program
5B10 : 0112

-R CX

CX 0000

: 12

-W

Writing 0012 bytes

-i

c>

As you can see, the program is slightly more complex than

those in the previous two examples. However, if you type it

exactly as it appears, you will have no problems.

For programmers wanting to understand the assembly-

language code that GETYORN.COM uses, the following

listing includes a short explanation:

C> DEBUG GETY0RN.COM
File not found

-A 100

5610:0100 MOV AH. 08

5610:0102 INT 21

5B10 : 0104 CMP AL, 59

5610:0106 JZ 010E

5610:0108 CMP AL, 4E

5B10 : 010A JZ 010E

5B10 : 010C JMP 0100

5B10 : 010E MOV AH, 4C

5610:0110 INT 21

uuo bei end r deter berviee

Call the service

Did user press Y?

Valid letter, jump to End Program

Did user press N?

Valid letter, jump to End Program

Loop to get valid character
DOS End Program service
Call service, ending program

1 22 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

5B10 : 0112

-R CX

CX 0000

: 12

-W

Writing 0012 bytes
-Q

C>

After you create GETYORN.COM, you can put it to use

immediately in a batch file, named DELETEYN.BAT.
This batch file uses the DOS commands FOR and DEL,

allowing you to selectively delete files. Actually,

DELETEYN.BAT creates a temporary batch file that it

uses to delete files. When the temporary batch file named

ERASEIT.BAT is no longer needed, DELETEYN.BAT
deletes it:

JiCHO 0FF
REM Create the temporary batch file ERASEIT.BAT that

REM prompts the user to keep or delete a file.

REM If the user presses Y, the batch file deletes
REM the file. If the user presses N, the batch file
REM leaves the file on disk.

REM Use ECHO and DOS redirection to create the

REM batch file.

ECHO ECHO Do you want to delete %%1? > ERASEIT.BAT
ECHO GETYORN » ERASEIT.BAT
ECHO IF ERRORLEVEL 89 DEL %%1 » ERASEIT.BAT

REM Now that the file ERASEIT.BAT exists on disk,

REM use it within the FOR loop.

FOR %%l IN (%1) DO CALL ERASEIT %%l

REM The batch file ERASEIT.BAT is no longer needed.
DEL ERASEIT.BAT

This batch file provides much information. First, it shows

you that you can create a batch file from within a batch file

and that your batch file can then run it. Next, examine the

three lines that actually create the batch file:

ECHO ECHO Do you want to delete %%1? > ERASEIT.BAT
ECHO GETYORN » ERASEIT.BAT
ECHO IF ERRORLEVEL 89 DEL %%1 » ERASEIT.BAT

PART VII: GETTING THE MOST FROM BATCH FILES ... 123

The batch file uses the DOS output redirection operator (>)

to create a batch file, named ERASEIT.BAT. The next two

commands use the DOS append redirection operator (»)
to add commands to the batch file. Notice the use of the

double percent signs in %%1. As you will recall, each time

DOS detects the %1 in a batch file, DOS substitutes the

value of the first batch parameter.

In this case, however, we don’t want DOS to substitute a

parameter; instead, we Want DOS to write the characters

%1 to the batch file ERASEIT.BAT. If you use the double

percent signs, DOS does not perform the substitution,

but DOS does write the characters %1 to the batch file

ERASEIT.BAT, as intended. This lets ERASEIT.BAT
support batch parameters.

The primary processing in a batch file, named

DELETEYN.BAT, is the FOR loop, which passes each file-

name to the batch file ERASEIT.BAT. Each time the FOR
loop calls the batch file, ERASEIT.BAT asks the user if the

specified filename should be deleted. The batch file then

uses the program GETYORN.COM, which we just created,

to determine the user’s response. If the user presses Y (for

yes), the batch file deletes the file. If the user presses N
(for no), ERASEIT.BAT completes execution and the FOR
loop repeats.

If you run the batch file DELETEYN.BAT as:

C> DELETEYN *.*

the batch file allows you to selectively delete any file in the

current directory on your default disk drive.

In a manner similar to the program GETYORN.COM, a

program, named F1TOF10.COM, returns the keyboard

scan-code values 59 through 68. These scan-code values

correspond to the function keys FI through F10. The fol-

lowing program implements F1TOF10.COM:

C> DEBUG F1T0F10.COM
File not found

-A 100

5B10 : 0100 MOV AH, 08

5810:0102 INT 21

1 24 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

5B10 : 0104 CMP AL, 0

5B10 : 0106 JNZ 0100

5B10 : 0108 MOV AH, 08

5B10 : 010A INT 21

5B10 : 010C CMP AL, 3B

5B10 : 010E JL 0100
5B10 : 0110 CMP AL, 44

5610:0112 JG 0100
5B10 : 01 14 MOV AH, 4C

5B10 : 0116 INT 21

5B10 : 01 18

-R CX

CX 0000

: 18

-W

Writing 0018 bytes
-Q

C>

The following listing explains the program’s processing:

C> DEBUG F1T0F10.C0M
File not found

-A 100

5B10

:

0100 MOV AH, 08

5B10

:

0102 I NT 21

5B1 0

:

0104 CMP AL, 0

5B1 0

:

0106 JNZ 0100

5B10: 0108 MOV AH, 08

5B10

:

010A INT 21

5B10: 010C CMP AL, 3B

5B10: 010E JL 0100

5B10

:

0110 CMP AL, 44

5B10

:

0112 JG I3100

5B10

:

0114 MOV AH, 4C

5B10

:

0116 INT 21

5B10

:

0118

-R CX

CX 0000

: 18

Get key service
Call the service
AL=0 if function key

Wasn’t 0, try again

Next, get the scan code

Call the service
Compare scan code to 3B (FI)

Too low, try again

Compare scan code to 44 (F10)

Too high, try again

End the program service
Call service, ending program

PART VII: GETTING THE MOST FROM BATCH FILES ... 125

The batch file DOSMENU.BAT displays the menu:

FI - Display DIRectory listing

F2 - Display DOS version number

F3 - Display Disk volume label

F4 - Quit
«y

If the user presses FI, the batch file displays a directory

listing. If the user presses F2, the program displays the cur-

rent version number. If the user presses F3, the batch file

displays the current volume label. The batch file continues

this processing until the user presses F4 to quit. The listing

for DOSMENU.BAT is:

ECHO OFF

CLS

: LOOP

ECHO FI - Display DIRectory listing
ECHO F2 - Display DOS version number
ECHO F3 - Display Disk volume label

ECHO F4 - Quit
REM Get user response
: GET_KEY
F1T0F10

IF ERRORLEVEL 63 GOTO GET_KEY

IF ERRORLEVEL 62 GOTO DONE

IF ERRORLEVEL 61 IF NOT ERRORLEVEL 62 VOL

IF ERRORLEVEL 60 IF NOT ERRORLEVEL 61 VER

IF ERRORLEVEL 59 IF NOT ERRORLEVEL 60 DIR

GOTO LOOP

: DONE

The batch file first displays the menu and then runs the

program FITOFIO to get a function-key response. If the

user presses a function key from F5 through F10, the batch

file loops back to get a valid key. If the user presses the F4

key (scan code 62), the batch file ends. Notice the use of

the two IF commands to test if an exit status is a specific

value. By using two IF commands in this manner, the batch

file can test whether the exit-status value is 61, 60, or 59, as

opposed to a value that is greater than or equal to one-of

these values.

Finally, a program, named GETARROW.COM, waits for

the user to press the Up direction key, the Down direction

key, or the Enter key. The program returns an exit status of

1 26 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

72 for an Up arrow and a value of 80 for a Down arrow. If

the user presses Enter, the batch file returns 13. Here is the

GETARROW.COM program:

C> DEBUG GETARROW.COM
File not found

-A 100

5B10 : 0100 MOV AH, 08

5B10 : 0102 INT 21

5B10 : 0104 CMP AL, 0

5B10 : 0106 JZ 0100

5B10 : 0108 CMP AL, 48

5B10 : 010A JZ 0116

5B10 : 010C CMP AL. 50

5B10 : 010E JZ 0116

5B10:0110 CMP AL, OD

5B10 : 0112 JZ 0116

5B10 : 01 14 JMP 0100

5B10 : 01 16 MOV AH, 4C

5B10 : 01 18 INT 21

5B10 : 0 1 1

A

-R CX

CX 0000

Writing 001A bytes
-0

C>

A batch file, named ARROW.BAT, displays a menu similar

to that of the previous program:

Display DIRectory listing

Display DOS version number

Display current volume label

Quit

In this case, the batch file uses the ANSI.SYS device driver

to highlight the current menu choice. As the user presses

the Up or the Down direction (arrow) key, the current

choice changes. When the user presses Enter, the batch file

executes the current choice:

ECHO OFF

SET CURRENT=DI

R

: LOOP

PART VII: GETTING THE MOST FROM BATCH FILES ... 127

CLS

IF %CURRENT%==DI R ECHO Escape[lmDi spl ay DIRectory
IF NOT %CURRENT%==DI R ECHO Escape[OmDi spl ay DIRectory
IF %CURRENT%==VER ECHO Escape[lmDi spl ay DOS version
IF NOT %CURRENT%==VER ECHO Escape[OmDi spl ay DOS version
IF %CURRENT%==VOL ECHO Escape[lmDi spl ay volume label

IF NOT %CURRENT%==VOL ECHO Escape[0mD1 spl ay volume label

IF %CURRENT%==QUIT ECHO Escape[lmQui

t

IF NOT %CURRENT%==QU IT ECHO Escape[OmQui

t

GETARROW
IF ERRORLEVEL 80 GOTO D0WN_ARR0W
IF ERRORLEVEL 72 GOTO UP_ARR0W
IF %CURRENT%==DI R DIR

IF %CURRENT%==VER VER

IF %CURRENT%==VOL VOL

IF %CURRENT%==QU IT GOTO DONE

PAUSE

GOTO LOOP

: UP__ARR0W

IF NOT %CURRENT%==DI R GOTO UP VER

SET CURRENT=QUIT
GOTO LOOP

: UP VER

IF NOT %CURRENT%==VER GOTO UP__VOL
SET CURRENT=DI

R

GOTO LOOP

: UP VOL

IF NOT %CURRENT%==VOL GOTO UP QUIT

SET CURRENT=VER
GOTO LOOP

: UP QUIT

SET CURRENT-VOL
GOTO LOOP

: DOWN_ARROW
IF NOT %CURRENT%==DI R GOTO DOWN VER

SET CURRENT=VER
GOTO LOOP

: DOWN VER

IF NOT %CURRENT%==VER GOTO DOWN VOL

SET CURRENT=VOL
GOTO LOOP

: DOWN VOL

IF NOT %CURRENT%==VOL GOTO DOWN QUIT

SET CURRENT=GUIT
GOTO LOOP

: DOWN QUIT

128 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

SET CURRENT=DIR
GOTO LOOP

: DONE
ECHO Escape[0m
SET CURRENT^

The batch file’s menu-manipulation capabilities are nor-

mally restricted to programs written in languages such as

Pascal or C. This batch file keeps track of the current op-

tion, using the named parameter CURRENT. When the

batch file begins execution, it uses the DOS command SET
to assign to the named parameter the value DIR. If you

look at the menu that ARROW.BAT displays, DIR is the

first choice. Next, the batch file uses the IF batch-file com-

mand to determine the current option. The batch file uses

the ANSI.SYS escape sequence Escape[lm to display the

current option with a bold attribute. The batch file uses the

escape sequence Escape[Om to display all the other options

with a normal attribute.

Next, the batch file uses the program GETARROW.COM,
which we just created, to get either an Up or a Down direc-

tion key or the Enter key. If the user presses Enter, the

batch file uses the named parameter CURRENT to deter-

mine the command to execute. If the user instead presses

either the Up or the Down direction key, the batch file de-

termines the new current option and redisplays the menu.

When the user finally selects the Quit option, the batch file

resets the video attribute to normal and removes the named
parameter CURRENT from the DOS environment.

Admittedly, our batch-file menu options are quite basic;

however, ARROW.BAT illustrates the amount of program-

ming you can actually perform using DOS batch files.

USING THE ASCII EXTENDED
CHARACTER SET

The computer represents all the characters, numbers, and

symbols that DOS displays using unique values ranging

from 0 through 255. The first 128 values (from 0 through

PART VII: GETTING THE MOST FROM BATCH FILES ... 129

127) represent the commonly used digits, letters, and

punctuation characters. These 128 values are known as the

ASCII Standard Character Set. The values 128 through 255

are known as the ASCII Extended Character Set. These

characters provide drawing symbols for the IBM PC and

PC-compatible computers. The following table contains the

ASCII extended characters:

Symbol ASCII Code Symbol ASCII Code Symbol ASCII Code

c 128 . 1 161 T 194

u 129 6 162 |- 195

e 130 u 163 196

a 131 n 164 + 197

a 132 N 165 |= 198

a 133
a

166
II-

199
o

a 134
o

167 If 200

<? 135 C 168 7 201

e 136 \

—

169 JL 202

e 137 —

I

170 if 203

e 138 y2 171
| p

204

1 139 Va 172 = 205

1 140
i

173 nr 206

i 141 « 174 d= 207

A 142 » 175 IL 208
o

A 143 176 t 209

E 144 177 TF 210

ae 145 1 178 Li 211

E 146
|

179 f 212

6 147 180 F 213

6 148
=1 181 rr 214

\

o 149
\\

182 tt
215

u 150 T1 183 =j= 216
s

U 151 3 184 J 217

y 152 ji

il
185 r 218

6 153
II

186 | 219

u 154 il 187 220

0 155 JJ 188 |
221

£ 156 U 189 | 222

¥ 157 d 190 223

Pt 158 1 191 a 224

f 159 L 192 (3 225

a 160 _L 193 T 226
(continued

)

1 30 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

continued

Symbol ASCII Code Symbol ASCII Code Symbol ASCII Code

n 227 0 237 247

X 228 € 238 O 248

a 229 n 239 O 249

4 230 = 240 • 250

T 231 ± 241 V 251

O 232 > 242 n 252

0 233 < 243 2 253

n 234 r 244 254

5 235 j 245 <blank> 255

00 236 -r- 246

As you enhance your batch-file capabilities, you might

want to enhance your screen display by placing menus and

other information within boxes.

Consider a batch file, named BOXMENU.BAT, that dis-

plays the following menu:

The batch file uses the ASCII extended-character values

179, 191, 192, 196, 217, and 218 to draw the box, as follows:

|! 18 196 197
]

179 179

196

PART VII: GETTING THE MOST FROM BATCH FILES ... 131

The easiest way to create this batch file is with Edlin. To

begin, enter the ECHO OFF and CLS commands as well as

the label :LOOP.

C> EDLIN BOXMENU.BAT
New file
*1

1 :* ECHO OFF ,

2:* CLS
3:* : LOOP

4 : *

m

Next, enter ECHO— but do not press Enter. Hold down the

Alt key and type 218 (using the numeric keypad at the far

right of your keyboard). When you release the Alt key, your

screen displays the upper left corner of the box:

C> EDLIN BOXMENU.BAT
New f i 1

e

*1

1 : * ECHO OFF
2:* CLS

3 : * : LOOP
4:* ECHO r

Next, again holding down the Alt key. type 196. When you

release the Alt key, DOS displays a horizontal line segment

that extends the top (horizontal) part of the box:

C> EDLIN BOXMENU.BAT
New file
*1

1:* ECHO OFF

2:* CLS

3:* : LOOP

4 : * ECHO |

—

Repeat this process until you have typed 35 horizontal

lines:

C> EDLIN BOXMENU.BAT
New file
*1

1:* ECHO OFF
2:* CLS

3 : * : LOOP

4; * ECH0 !

132 PART VII: GETTING THE MOST FROM BATCH FILES . .

.

Complete the top of the box— adding the upper right

corner— by holding down the Alt key and typing 797:

C> EDLIN BOXMENU.BAT
New file
*1

1:* ECHO OFF
2:* CLS
3:* : LOOP
4:* ECHO |

1

Using the ASCII extended-character value 179 for the

vertical bar character, complete the next seven lines as

follows:

C> EDLIN BOXMENU

New file
*1

1:* ECHO
2:* CLS
3:* : LOOP

.BAT

OFF

4:* ECHO
5:* ECHO FI - Display DIRectory listing

6:* ECHO

7 : * ECHO F2 - Display DOS version number

8 : * ECHO
9:* ECHO F3 - Display disk volume label

10:* ECHO
11:* ECHO F4 - Quit

The bottom of the box is much like the top— except that

you must use the ASCII extended-character values 192 and

217 for the lower left and lower right corners of the box.

Enter the batch-file commands from the batch file

DOSMENU.BAT, which you created earlier. When you do

this, BOXMENU.BAT becomes:

C> EDLIN BOXMENU.BAT
New file
*1

1:* ECHO OFF
2:* CLS
3:* : LOOP

PART VII: GETTING THE MOST FROM BATCH FILES ... 133

4:* ECHO
5:* ECHO
6:* ECHO
7:* ECHO
8:* ECHO
9:* ECHO

10:* ECHO
11:* ECHO
12:* ECHO
13:* REM Get user response
14:* : GET_KEY
15:* F1T0F10
16:* IF ERRORLEVEL 63 GOTO GET_KEY
17:* IF ERRORLEVEL 62 GOTO DONE
18:* IF ERRORLEVEL 61 IF NOT ERRORLEVEL 62 VOL

19 :* IF ERRORLEVEL 60 IF NOT ERRORLEVEL 61 VER
20 :* IF ERRORLEVEL 59 IF NOT ERRORLEVEL 60 DIR
21:* GOTO LOOP
22:* : DONE
23:* A C

The ASCII extended character set gives you greatly ex-

panded screen-presentation capabilities. Don’t restrict your

screens. For example, by adding a few more ECHO com-

mands to the previous batch file, the menu becomes:

FI - Display DIRectory listing

F2 - Display DOS version number

F3 - Display disk volume label

F4 - Quit

FI

F2

F3

F4

Display DIRectory listing

Display DOS version number

Display disk volume label

Quit

By now you have put together a powerful collection of

batch-processing tools. Show off your skills by developing

professional-quality screen displays.

PART VIII

Building a

Batch-File Library

So far, we have looked at several simple batch files that

you might use on a daily basis. In this section, we add four

more general-purpose batch procedures. As you work with

these batch files, modify them as your needs require.

SETTING SCREEN COLORS
A batch file, named COLORS.BAT, lets you use your

keyboard direction keys to cycle through the background

screen colors supported by the ANSI.SYS device driver.

Each time you press the Up or the Down direction (arrow)

key, the batch file changes the screen color. After you press

the Enter key, the newly selected color remains active for

the remainder of your session.

REM Allow the user to cycle through the background
REM screen colors that are available, until the user
REM presses Enter to select a color.
SET CURRENT=BLACK
: LOOP

IF %CURRENT%==BLACK ECHO Escape[40m
IF %CURRENT%==RED ECHO Escape[41m
IF %CURRENT%==GREEN ECHO Escape[42m
IF %CURRENT%==YELLOW ECHO Escape[43m
IF %CURRENT%==BLUE ECHO Escape[44m
IF %CURRENT%—MAGENTA ECHO Escape[45m
IF %CURRENT%—CYAN ECHO Escape[46m
IF %CURRENT%—WHITE ECHO Escape[47m
CLS

ECHO Press Enter to select the current color

134

PART VIII: BUILDING A BATCH-FILE LIBRARY 1 35

ECHO Use the Up and Down arrow keys to change colors
GETARROW
IF ERRORLEVEL 80 GOTO D0WN_ARR0W
IF ERRORLEVEL 72 GOTO UP_ARR0W
IF ERRORLEVEL 13 GOTO DONE

: DOWN_ARROW
IF NOT %CURRENT%—BLACK GOTO DN_RED
SET CURRENT-RED
GOTO LOOP

: DN_RED
IF NOT %CURRENT%—RED GOTO DN_GREEN
SET CURRENT-GREEN
GOTO LOOP

: DN_GREEN
IF NOT %CURRENT%—GREEN GOTO DN__YELLOW

SET CURRENT=YELLOW
GOTO LOOP

: DN_YELLOW
IF NOT %CURRENT%—YELLOW GOTO DN_BLUE
SET CURRENT=BLUE
GOTO LOOP

: DN_BLUE
IF NOT %CURRENT%—BLUE GOTO DN_MAGENTA
SET CURRENT-MAGENTA
GOTO LOOP

: DN_MAGENTA
IF NOT %CURRENT%—MAGENTA GOTO DN_CYAN

SET CURRENT=CYAN
GOTO LOOP

: DN_CYAN
IF NOT %CURRENT%==CYAN GOTO DN_WHITE
SET CURRENT-WHITE
GOTO LOOP

: DN_WHITE
SET CURRENT-BLACK
GOTO LOOP

:UP_ARROW
IF NOT %CURRENT%==BLACK GOTO UP_RED

SET CURRENT-WHITE
GOTO LOOP

: UP_RED
IF NOT %CURRENT%—RED GOTO UP_GREEN

SET CURRENT-BLACK
GOTO LOOP

: UP_GREEN
IF NOT %CURRENT%—GREEN GOTO UP_YELLOW

SET CURRENT-RED

136 PART VIII: BUILDING A BATCH-FILE LIBRARY

GOTO LOOP

: UP_YELL0W
IF NOT %CURRENT%—YELLOW GOTO UP_BLUE

SET CURRENT-GREEN
GOTO LOOP

: UP_BLUE
IF NOT %CURRENT%—BLUE GOTO UP__MAGENTA

SET CURRENT-YELLOW
GOTO LOOP

;UP_MAGENTA
IF NOT %CURRENT%—MAGENTA GOTO UP_CYAN

SET CURRENT-BLUE
GOTO LOOP

: UP_CYAN
IF NOT %CURRENT%—CYAN GOTO UP_WHITE

SET CURRENT-MAGENTA
GOTO LOOP

: UP_WH ITE

SET CURRENT-CYAN
GOTO LOOP

: DONE

Although long, the COLORS.BAT batch file is simple. The

batch file uses the named parameter CURRENT to track

the current background color. Based on CURRENT’S value,

the batch file writes the corresponding ANSI.SYS escape

sequence to the screen display. The batch file uses the pro-

gram GETARROW.COM, which we created earlier in this

reference using DEBUG. If you press the Up or the Down
direction (arrow) key, the batch file cycles to the appro-

priate background color. After you press Enter, the batch

file completes execution. As discussed earlier, for this

batch file to successfully execute, you must have previously

installed the ANSI.SYS device driver in CONFIG.SYS.

PREVENTING HARD-DISK FORMATTING
Many hard disks have fallen victim to errant FORMAT
commands issued by novice users. To prevent this from oc-

curring, many people remove the FORMAT.COM file from

a hard disk that is shared by many users. Removing the

FORMAT.COM file does eliminate the possibility of the

PART VIII: BUILDING A BATCH-FILE LIBRARY 1 37

user accidentally formatting the hard disk, but it also re-

moves a necessary DOS command. If users are doing seri-

ous work on a hard-disk system, eventually they will want

to copy that work to floppy disks. To do so, the users will

probably have to format floppy disks.

As an alternate solution, you can rename the DOS com-

mand FORMAT to FMAT.COM. Next, create a batch file,

named FORMAT.BAT, that contains the following:

ECHO OFF

IF *%1'— ” GOTO NO PARAMS— «•

ECHO To prevent inadvertent formatting of the hard

ECHO disk, this batch file lets you format only

ECHO floppy disks in drive A or B. Specify the disk

ECHO drive to use in your command line.

ECHO Example: FORMAT A:

ECHO Do you want to continue (Y/N)

?

GETYORN
IF ERRORLEVEL 89 GOTO CONTI NUE_FORMAT
IF ERRORLEVEL 78 GOTO DONE

:CONTINUE_FORMAT
IF

,

%1
, ==" GOTO NO_PARAMS

IF ’%! '==' A: ' GOTO V A L I D__D R I V

E

IF ’ % 1
’ ==

' B :
' GOTO VALID__DRIVE

GOTO I N V A L I D_D RIVE

: NO_PARAMS
ECHO You must specify the disk drive to format

ECHO in your command line.

GOTO DONE
:VALID„DRIVE
FMAT %1 %2 %3 %4 %5 %6 %7 %8 %9

GOTO DONE

: INVALI D_DRIVE
ECHO This batch file formats only disks in

ECHO drive A or B. The batch file considers

ECHO the disk drive %1 invalid.

: DONE

This batch file lets users format only floppy disks in either

drive A or drive B. When you run this batch file, DOS
displays:

To prevent inadvertent formatting of the hard

disk, this batch file lets you format only

floppy disks in drive A or B. Specify the disk

drive to use in your command line.

138 PART VIII: BUILDING A BATCH-FILE LIBRARY

Example: FORMAT A:

Do you want to continue (Y / N)

?

If you press Y to continue the batch file, the batch file tests

whether you are trying to format a disk in a drive other

than A or B. If so, the batch file displays an error message

and stops. If you are formatting a disk in drive A or drive

B, the batch file executes FMAT.COM using all the batch

parameters.

Remember: In some cases, the FORMAT command line re-

quires additional parameters, such as /S or /4. By using %2
through %9, the batch file supports these additional

parameters.

GETTING CHARACTER-STRING INPUT

Throughout this reference you have created programs using

DEBUG that allow the user to press Y or N for a yes or no

response, to enter a specific function key, and to press the

Up and Down direction keys. In some cases, however, you

might need to get several characters from a user, such as a

filename or a password that controls which users can exe-

cute a batch file.

The following batch file, named GETPASS.BAT, prompts

the user to enter a password. This batch file then compares

the user password with the predefined password MAN-
AGEMENT. If the two passwords are identical, the batch

file continues processing; otherwise, the batch file displays

an error message and stops processing:

ECHO OFF

IF NOT EXIST PASSWORD. SET GOTO NO FILE—
ECHO Enter your password, press F6, and then

ECHO press Enter.

COPY CON PASSWORD . DAT > NUL

COPY PASSWORD. SET+PASSWORD. DAT PASSWORD.BAT > NUL

CALL PASSWORD
IF NOT '%PASSWORD%’==' MANAGEMENT’ GOTO BAD_PASSWORD
ECHO Valid password - ready to process payroll

GOTO DONE

: NO__FI LE

ECHO This batch file requires the file PASSWORD . SET

,

PART VIII: BUILDING A BATCH-FILE LIBRARY 139

ECHO which contains SET PASSWORD= A
Z, as discussed

ECHO in the batch-processing reference.
GOTO DONE

: BAD_PASSWORD
ECHO Invalid password
: DONE

SET PASSWORD-
DEL PASSWORD . BAT

DEL PASSWORD . DAT

The batch file relies on the file PASSWORD.SET, which

you can create from the DOS prompt. To begin, issue the

following command, as follows:

C> COPY CON PASSWORD. SET

Next, type SET PASSWORD=, but do not press Enter. In-

stead, immediately following the equal sign, press the F6

function key and then press Enter. When you do so, DOS
creates the file PASSWORD.SET, as follows:

C> COPY CON PASSWORD. SET

SET PASSWORDS
1 File(s) copied

C>

When you run the batch file GETPASS.BAT, it prompts you

to enter a password:

Enter your password, press F6, and then

press Enter.

At this prompt, type MANAGEMENT

\

press F6, and then

press Enter. When you do so, the batch file copies the in-

formation you type into the file PASSWORD.DAT. The

command:

COPY CON PASSWORD.DAT > NUL

directs DOS to copy information from the keyboard into

the file PASSWORD.DAT until you press F6 to signify the

end of the file. The command redirects the message:

1 File(s) copied

to the NUL device so that the message does not appear on

your screen.

140 PART VIII: BUILDING A BATCH-FILE LIBRARY

Next, the command:

COPY PASSWORD. SET+PASSWORD. DAT PASSWORD.BAT > NUL

directs DOS to append the contents of PASSWORD.DAT
to the contents of the file PASSWORD.SET, creating the

batch file PASSWORD.BAT. Assuming that you previously-

typed the password MANAGEMENT
,
the file

PASSWORD.BAT now contains:

SET PASSWORD=MANAGEMENT

GETPASS.BAT then runs the batch file PASSWORD.BAT,
which creates the named parameter PASSWORD in the

DOS environment. After this entry exists, the batch file can

compare the password with MANAGEMENT using the IF

batch command. If the passwords differ, the batch file

displays an error message and stops processing. If the

passwords are the same, the batch file can execute its pro-

tected commands. Notice that, before completing execu-

tion, the batch file removes the PASSWORD environment

entry as well as the files PASSWORD.BAT and

PASSWORD.DAT.

Admittedly, you probably won’t need to get a password for

many batch-file applications. This batch file was presented

to teach you how to perform user input from within your

batch files.

SIMPLIFYING YOUR
SYSTEM-BACKUP OPERATIONS

A batch file, named FILEBU.BAT, helps you perform disk-

backup operations. When you run this batch file, DOS
displays:

FI - Monthly Backup

F2 - Daily/Incremental Backup
F3 - Specific Files Backup

F4 - Quit

If you press the FI function key, the batch file performs a

monthly backup. A monthly backup is a backup of every

file on your disk. Depending on the number of files on your

PART VIII: BUILDING A BATCH-FILE LIBRARY 141

disk, a monthly backup can be quite time-consuming. If

you press the F2 function key, the batch file performs an

incremental backup, backing up only those files that have

been created or modified since the last system backup.

(An incremental backup can be much faster than a system

backup.) You must, however, keep all your incremental

backup disks from one system backup to another. This en-

sures that you have a copy of every file on your disk.

If you press the F3 function key, the batch file prompts you

to enter the file specifications for the files to back up as

well as for the target disk drive. To back up all the files in

the subdirectory DOS to the floppy disk in drive A, for ex-

ample, you would enter:

C:\D0S A:

Next, you must press the F6 function key and then press

Enter. The batch file will back up only the files you

specify.

If you press the F4 key, the batch file stops processing.

For ease of understanding, view this batch file as though

it were four distinct batch files— FILEBU.BAT,

MONTHLY.BAT, DAILY.BAT, and SPECIFIC.BAT.

The batch file FILEBU.BAT contains:

ECHO OFF

REM Allow the user to perform a monthly, daily, or

REM specific file backup.

CLS

REM Loop until the user presses the F4 key to quit.

: LOOP

ECHO FI - Monthly Backup

ECHO F2 - Dai 1 y / Incremental Backup

ECHO F3 - Specific Files Backup

ECHO F4 - Quit

REM Get user response.

: GET_KEY
F1T0F10
REM If user presses a key other than FI to F4, get

REM another key.

IF ERRORLEVEL 63 GOTO GET_KEY

IF ERRORLEVEL 62 GOTO DONE

IF ERRORLEVEL 61 IF NOT ERRORLEVEL 62 CALL SPECIFIC

142 PART VIII: BUILDING A BATCH-FILE LIBRARY

IF ERRORLEVEL 60 IF NOT ERRORLEVEL 61 CALL DAILY

IF ERRORLEVEL 59 IF NOT ERRORLEVEL 60 CALL MONTHLY

GOTO LOOP

: DONE

As you can see, this batch file displays the main menu and

then uses a program, named F1TOF10.COM, to get a func-

tion key from the user. Depending on the function key

pressed, the batch file calls either MONTFILY.BAT for a

complete disk backup, DAILY.BAT for an incremental

backup, or SPECIFIC.BAT for a specific file backup. The

batch file continues to loop, repeating this process until the

user presses the F4 key to quit.

The batch file MONTHLY.BAT performs a complete disk-

backup operation. When you select this option, DOS
displays:

The monthly backup copies all the files on

your hard disk to a floppy disk.

Depending on the number of files on your disk,

the monthly backup can be quite time-consuming.
Do you wish to continue (Y / N)

?

This message simply explains the monthly backup pro-

cedures and lets the user continue or cancel the operation.

If the user responds by pressing Y to continue the opera-

tion, the DOS command BACKUP backs up the entire disk

to floppy disks in drive A:

REM Perform a complete backup of the system disk.

ECHO The monthly backup copies all the files on

ECHO your hard disk to a floppy disk.

ECHO Depending on the number of files on your disk,

ECHO the monthly backup can be quite time-consuming.
ECHO Do you wish to continue (Y / N)

?

GETYORN
IF ERRORLEVEL 89 GOTO BACKUP
IF ERRORLEVEL 78 GOTO RETURN

: BACKUP
ECHO Be sure that you label each disk with the

ECHO current date, the words MONTHLY BACKUP, and

ECHO your initials.
BACKUP C : *. * A: /S

•.RETURN

CLS

PART VIII: BUILDING A BATCH-FILE LIBRARY 143

The batch file DAILY.BAT is very similar to the batch file

MONTHLY.BAT

:

REM Perform a backup of each file on the disk changed
REM or created since the last system backup.

ECHO The daily backup copies all the files on

ECHO your hard disk that have been changed or created
ECHO since the last BACKUP to floppy.

ECHO

ECHO Do you wish to continue (Y / N)

?

GETYORN
IF ERRORLEVEL 89 GOTO BACKUP
IF ERRORLEVEL 78 GOTO RETURN
:BACKUP

ECHO Be sure that you label each disk with the

ECHO current date, the words DAILY BACKUP, and

ECHO your initials. Use the disk from the previous
ECHO daily backup until the floppy fills.

BACKUP C : * . * A: /S /A /M

: RETURN

CLS

As you can see, if the user responds by pressing Y to con-

tinue the batch file, the BACKUP command executes an

incremental backup of the files on the disk.

Of the four backup batch files, the batch file SPECIFIC.BAT

is the most interesting. This batch file lets the user type the

names of the files that are to be backed up. SPECIFIC.BAT

depends on a file, named BACKUP. FMT, that you can

create at the DOS prompt:

REM Back up one or more user- speci f i ed files to disk.

REM Prompt the user to enter the filename to back up.

REM Copy the names to the file BACKUP.DAT. Using the

REM file BACKUP. FMT, create a BACKUP command in the

REM batch file BACKIT.BAT

.

IF NOT EXIST BACKUP. FMT GOTO N0_F0RMAT

ECHO The specific-file option allows you to back up

ECHO one or more files.

ECHO Do you want to continue (Y / N)

?

GETYORN
IF ERRORLEVEL 89 GOTO BACKUP

IF ERRORLEVEL 78 GOTO RETURN

N0_F0RMAT

:

ECHO The specific-file backup requires the file

ECHO BACKUP. FMT, which contains BACKUP A Z, as

144 PART VIII: BUILDING A BATCH-FILE LIBRARY

ECHO discussed in the batch-file reference.

PAUSE

GOTO RETURN

: BACKUP

ECHO Type the file specification to backup and

ECHO the target disk-drive identification,
ECHO press the F6 key, and then press Enter.

ECHO Example: * . DAT A: A
Z [Enter]

COPY CON BACKUP . DAT > NUL

COPY BACKUP. FMT+BACKUP. DAT BACKIT.BAT
CALL BACKIT
DEL BACKUP . DAT

DEL BACKIT.BAT
: RETURN

CLS

Using the COPY CON BACKUP.FMT command, begin the

file copy:

C> COPY CON BACKUP.FMT

Type BACKUP followed by a space, and press F6 to mark

the end of the file:

C> COPY CON BACKUP.FMT
BACKUP A

Z

When you press Enter, DOS creates the file, as follows:

C> COPY CON BACKUP.FMT
BACKUP A

Z

1 File(s) copied

C>

(If the batch file should ever discover that the file

BACKUP.FMT does not exist, the batch file displays an

error message and returns to the main menu.)

Assuming that the file BACKUP.FMT does exist, if you

press Y to continue the batch file, the batch file prompts

you to type the filename to backup as well as the target disk

drive:

Type the file specification to backup and

the target disk-drive identification,

press the F6 key, and then press Enter.

Example: *.DAT A: A Z [Enter]

PART VIII: BUILDING A BATCH-FILE LIBRARY 145

The batch file places the information you type into the file

BACKUP.DAT. By redirecting its output to the NUL de-

vice, the command:

COPY CON BACKUP.DAT >NUL

suppresses the display of the message:

1 File(s) copied

Next, the command:

COPY BACKUP. FMT+BACKUP. DAT BACKIT.BAT

appends the contents of the file BACKUP.DAT (which con-

tains the filename to back up) to the file BACKUPFMT
(which contains the BACKUP command). The resulting

file is a batch file, named BACKIT.BAT, that the batch file

runs next. Assuming the user types C:\DOS and then types

A:, the file BACKIT.BAT contains:

BACKUP C:\D0S A:

As you can see, the command backs up only the subdirec-

tory desired. When the BACKUP command completes exe-

cution, the batch file deletes the files BACKUP.DAT and

BACKIT.BAT, cleaning up after itself.

The collection of batch files that perform the various

backup operations shows you how easy it is to develop

powerful utilities using DOS batch files. If you want to

enhance these batch files, you might consider using the

ANSI.SYS device driver to add color. If you are using DOS
version 3.30 or later, you also might want to add the /

L

qualifier to the BACKUP command, which directs

BACKUP to create a log file. Also, you might consider

adding exit-status checks using IF ERRORLEVEL to dis-

play error messages to the user if BACKUP fails.

PART IX

Getting the

Most from

AUTOEXEC.BAT

CUSTOMIZING AUTOEXEC.BAT

Now that you have seen all the DOS batch-file commands,

learned how to create programs using DEBUG, and created

several complex batch files, let’s take a look at a few

“fun” batch files that you might want to run from your

AUTOEXEC.BAT file. All the batch files in this section

use a simple program that you can create with DEBUG.

A batch file, named GREETING.BAT, uses the program

WEEKDAY.COM to determine the current day of the

week. The batch file then displays a message that is appro-

priate for that day. Here is the batch file:

ECHO OFF

REM Determine the day of the week using the program
REM WEEKDAY.COM. The program returns a status value

REM that you can check, using the IF ERRORLEVEL
REM condition. Sunday has the value 0, Monday has the

REM value 1, and so on. Saturday has the value 6.

REM After the batch file determines the day, it

REM displays an appropriate message.
WEEKDAY
IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 GOTO SUNDAY
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 GOTO MONDAY
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 GOTO TUESDAY
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 GOTO WEDNESDAY
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 GOTO THURSDAY
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 GOTO FRIDAY
IF ERRORLEVEL 6 GOTO SATURDAY

146

PART IX: GETTING THE MOST FROM AUTOEXEC.BAT 147

: SUNDAY
ECHO It's Sunday - Relax and watch football.
GOTO DONE

: MONDAY
ECHO It's Monday - Get ready for a new week.
GOTO DONE

: TUESDAY

ECHO It's Tuesday - Week is just beginning.
GOTO DONE

: WEDNESDAY
ECHO It’s Wednesday *- Hump day!

GOTO DONE

: THURSDAY
ECHO It's Thursday - Almost there!

GOTO DONE

: FRIDAY

ECHO It's finally Friday - Happy Hour!

GOTO DONE

: SATURDAY

ECHO It's Saturday - You should be in bed.

.-DONE

If you have appointments that fall on specific days or a

critical meeting that you don’t want to forget, you can sim-

ply modify the appropriate ECHO statement to remind you

about it— either on the day of the meeting or on the day

before it. The program, named WEEKDAY.COM, uses the

DOS Get Date service to determine the day of the week.

The program returns an exit-status value of 0 for Sunday, 1

for Monday, and so on. You can create WEEKDAY.COM
using DEBUG, as follows:

C> DEBUG WEEKDAY.COM
File not found

-A 100

2AF5 : 0100 MOV AH, 2A

2AF5 : 0102 INT 21

2AF5 : 0104 MOV AH, 4C

2AF5 : 0106 INT 21

2AF5 : 0108

-R CX

CX 0000

: 8

-W

Writing 0008 bytes
-Q

C>

148 PART IX: GETTING THE MOST FROM AUTOEXEC.BAT

In a similar manner, a batch file, named SCHEDULE.BAT,
uses the program, named GETMONTH.COM, to determine

the current month. After the batch file knows the month, it

branches to commands specific to the month and displays a

list of dates and meetings:

ECHO OFF

REM Determine the current month using the program
REM GETMONTH.COM. The program returns a status value
REM from 1 through 12 that represents the current
REM month. (January is 1; December is 12.) After the

REM month is determined, branch to the specified
REM month and display important dates for the month.

GETMONTH
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 GOTO JANUARY
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 GOTO FEBRUARY
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 GOTO MARCH
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 GOTO APRIL
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 GOTO MAY

IF ERRORLEVEL 6 IF NOT ERRORLEVEL 7 GOTO JUNE
IF ERRORLEVEL 7 IF NOT ERRORLEVEL 8 GOTO JULY

IF ERRORLEVEL 8 IF NOT ERRORLEVEL 9 GOTO AUGUST
IF ERRORLEVEL 9 IF NOT ERRORLEVEL 10 GOTO SEPTEMBER
IF ERRORLEVEL 10 IF NOT ERRORLEVEL 11 GOTO OCTOBER
IF ERRORLEVEL 11 IF NOT ERRORLEVEL 12 GOTO NOVEMBER
IF ERRORLEVEL 12 GOTO DECEMBER

: JANUARY
ECHO January 1 - New Year's Day

ECHO January 15 - Martin Luther King's Birthday
GOTO DONE

: FEBRUARY
ECHO February 12 - Lincoln’s Birthday
ECHO February 14 - Valentine's Day

ECHO February 22 - Washington's Birthday
GOTO DONE

: MARCH
ECHO March 17 - St. Patrick’s Day

GOTO DONE

: APRI

L

ECHO April 1 - April Fools' Day

GOTO DONE

PART IX: GETTING THE MOST FROM AUTOEXEC.BAT 149

: MAY

ECHO May 1 - May Day

ECHO Last Monday in May - Memorial Day

GOTO DONE

: JUNE

GOTO DONE

: JULY

ECHO July 4 - Independence Day

GOTO DONE

: AUGUST
GOTO DONE

: SEPTEMBER
ECHO First Monday in September - Labor Day

GOTO DONE

: OCTOBER
ECHO October 12 - Columbus Day

ECHO October 31 - Halloween
GOTO DONE

: NOVEMBER
ECHO November 11 - Veterans’ Day

ECHO Fourth Thursday - Thanksgiving Day

GOTO DONE

: DECEMBER
ECHO Hanukkah begins

ECHO December 25 - Christmas

: DONE

In this case, the batch file contains several of the major

holidays. Using the ECHO command, you can easily add

birthdays, anniversaries, or other important dates. You can

create the program GETMONTH.COM using DEBUG, as

follows:

C> DEBUG GETMONTH.COM
File not found

-A 100

2AF5 : 0100 MOV AH, 2A

2AF5 : 0102 INT 21

2AF5 : 0104 MOV AL, DH

1 50 PART IX: GETTING THE MOST FROM AUTOEXEC.BAT

2AF5 : 0106 MOV AH, 4C

2AF5 : 0108 INT 21

2AF5 : 010A

-R CX

CX 0000

: A
-W

Writing 000A bytes
-Q

C>

In some cases, your batch processing might be specific to a

day of the month, such as the 15th. The following program,

named GETDAY.COM, returns an exit-status value that

contains the day of the month:

C> DEBUG GETDAY.COM
File not found

-A 100

2AF5 : 0100 MOV AH, 2A

2AF5 : 0102 INT 21

2AF5 : 0104 MOV AL, DL

2AF5 : 0106 MOV AH, 4C

2AF5 : 0108 INT 21

2AF5.-010A

-R CX

CX 0000

: A

-W

Writing 000A bytes
-0

c>

The following two commands show you how to determine

the 15th after your batch file runs GETDAY.COM:

GETDAY

IF ERR0RLEVEL 15 IF NOT ERR0RLEVEL 16 GOTO 15TH

Many users like to delete old and unneeded copies of their

files on a specific date. Using the GETDAY.COM program,

AUTOEXEC.BAT determines if today is the day to delete

files and, if it is, deletes the files.

A batch file, named GETTIME.BAT, uses a program,

named GETHOUR.COM, to determine the current hour.

PART IX: GETTING THE MOST FROM AUTOEXEC.BAT 151

The batch file then displays a message to the user, such as

Good Morning , based on the current time:

ECHO OFF

REM Determine the current hour of the day using the
REM GETHOUR.COM program. GETHOUR returns a status
REM value from 0 to 23. (0 is midnight, 1 is 1AM,

REM 12 is noon, 13 is 1PM, and so on.) After the

REM hour is known, display a specified message
REM to the user.

•»

GETHOUR

IF ERRORLEVEL 0 IF NOT ERRORLEVEL 6 GOTO T00_LATE

IF ERRORLEVEL 6 IF NOT ERRORLEVEL 12 GOTO MORNING
IF ERRORLEVEL 12 IF NOT ERRORLEVEL 18 GOTO AFTERNOON
IF ERRORLEVEL 18 GOTO EVENING

: T00_LATE
ECHO You're up either too late or too early.

GOTO DONE

: MORNING
ECHO Good Morning.

GOTO DONE

rAFTERNOON

ECHO Good Afternoon.

GOTO DONE

.•EVENING

ECHO Good Evening. It's starting to get late.

: DONE

A program, named GETHOUR.COM, uses the DOS Get

Time service to determine the current hour. You can create

this program using DEBUG, as follows:

C> DEBUG GETHOUR.COM
File not found

-A 100

2AF5 : 0100

2AF5 : 0102

2AF5 : 0104

2AF5 : 0106

MOV AH, 2C

INT 21

MOV AL, CH

MOV AH, 4C

152 PART IX: GETTING THE MOST FROM AUTOEXEC.BAT

2AF5 : 0108 INI 21

2AF5 : 010A

-R CX

CX 0000

: A

-W

Writing 000A bytes
-1

C>

In a similar manner, a program, named GETMIN.COM,
returns the minutes of the current time:

C> DEBUG GETMIN.COM
File not found

-A 100

2AF5 : 0100 MOV AH, 2C

2AF5 : 0102 INT 21

2AF5 : 0104 MOV AL, CL

2AF5 : 0106 MOV AH, 4C

2AF5 : 0108 INT 21

2AF5 : 010A

-R CX

CX 0000

: A

-W

Writing 000A bytes

-f

C>

With these tools in hand, you can unleash the power of

your batch files. Change these batch files as your needs

change. Experiment with the programs presented in this

section; I think you will enjoy using them.

PARTX

Appendixes

APPENDIX A:

SUMMARY OF DOS EXIT-STATUS VALUES

Several MS-DOS commands provide exit-status values that

you can test using IF ERRORLEVEL. The following table

lists each exit value that MS-DOS provides:

Error

Command Status Meaning

BACKUP 0 Successful backup

BACKUP 1 No files to back up

BACKUP 2 File-sharing conflict, backup

incomplete

BACKUP 3 User Ctrl-C, backup incomplete

BACKUP 4 Fatal error, backup incomplete

DISKCOMP 0 Disks compared exactly

DISKCOMP 1 Disks were not the same

DISKCOMP 2 User Ctrl-C, diskcomp incomplete

DISKCOMP 3 Unrecoverable read or write error

DISKCOMP 4 Insufficient memory, invalid drive,

or syntax error

DISKCOPY 0 Copy was successful

DISKCOPY 1 Nonfatal read or write error

DISKCOPY 2 User Ctrl-C, diskcopy incomplete

DISKCOPY 3 Unable to either read source disk or

format target disk

DISKCOPY 4 Insufficient memory, invalid drive,

or syntax error

FORMAT 0 Successful format

FORMAT 3 User Ctrl-C, format incomplete

FORMAT 4 Fatal error, format incomplete

(continued
,

153

154 PART X: APPENDIXES

continued

Error

Command Status Meaning

FORMAT 5 User pressed N to continue prompt

GRAFTABL 0 Command successful

GRAFTABL 1 Previously loaded table replaced

GRAFTABL 2 No new table loaded

GRAFTABL 3 Invalid command-line parameter

GRAFTABL 4 Incorrect DOS version

KEYB 0 Successful keyboard load

KEYB 1 Invalid command line

KEYB 2 Invalid keyboard definition table

KEYB 3 Cannot create table

KEYB 4 CON device error

KEYB 5 Code page not prepared

KEYB 6 Missing translation table

KEYB 7 Incorrect DOS version

REPLACE 0 Successful replacement

REPLACE 2 Source file not found

REPLACE 3 Source or target path not found

REPLACE 5 Read-only target file

REPLACE 8 Insufficient memory

REPLACE 11 Invalid command line

REPLACE 15 Invalid disk drive specification

REPLACE 22* Incorrect version of DOS
RESTORE 0 Successful restore

RESTORE 1 No files found

RESTORE 2* File-sharing conflict, restore

incomplete

RESTORE 3 User Ctrl-C, restore incomplete

RESTORE 4 Fatal error, restore incomplete

MS-DOS does not return this code.

PART X: APPENDIXES 155

MS-DOS 4.0 provides the following:

Error

Command Status* Meaning

XCOPY 0 Copy without error

XCOPY 1 No files found to copy

XCOPY 2 Ctrl-C, XCOPY incomplete

XCOPY 4 Initialization error (not enough
memory, invalid drive, file or

path not found, or command-line
syntax error)

XCOPY 5 Int 24 Error occurred

*PC-DOS does not return these codes.

APPENDIX B:

SUMMARY OF ANSI.SYS COMMANDS
Throughout this reference, we have made extensive use of

ANSI.SYS escape sequences. The following table summa-

rizes the ANSI.SYS commands:

Sequence

Escape[rowsA

Escape[rowsB

Escape[rowsC

Escape[r<9U’.sD

Escape[rc»u’;c6>/H

Escape[/w;cc)/f

Escape[rd>vr;c<9/R

Escapefs

Escape[u

Escape[2J

Escape[K

Function

Moves cursor up the number of rows

specified.

Moves cursor down the number of rows

specified.

Moves cursor right the number of rows

specified.

Moves cursor left the number of rows

specified.

Moves cursor to row and column position.

(Same as Escape[rc>w’;c<9/H.)

Reports current row and column. (Note:

MS-DOS does not support this sequence.)

Saves cursor position.

Restores cursor position.

Clears screen display. Places cursor at home
position.

Erases to end of line.

(continued

)

156 PART X: APPENDIXES

continued

Sequence

Escape [colorm
Escape[6n

Escape [modpl*

Escape [=m<?£/ch

Escape[=71*

Escape [0‘,fkey;

"string'p

EscapetOq 1-

Escape[lq t:f;

Function

Sets screen-color attribute.

Reports console device status.

Resets video mode.

Sets video mode.

Disables line wrap.

Defines a function key.

Ignores commands that attempt to assign

additional keys on enhanced keyboard.

Allows additional keys on enhanced

keyboard to be assigned, even though

ANSI.SYS was loaded without the /X
switch.

*Note that the last character is the lowercase / (not the uppercase I or the digit 1).

+New with PC-DOS version 4.0; not available in MS-DOS.

Note that the value is the digit one (not lowercase /), followed by lowercase q.

INDEX 157

INDEX
Special Characters

$ (metacharacters) 16

% (parameters) 50-52
* (wildcard character) 50,„67, 69

: (batch label) 73-74
== (equality of character strings) 56

> (DOS prompt) 16-18, 21

? (wildcard character) 67-68

@ (command name suppression) 25, 26, 38
AG (ASCII bell sound) 39-40
AV (ASCII escape character) 108
AZ (end of file marker) 9

A
Alt-7 combination (bell sound) 39

Alt-255 (blank) 45

ANSI.SYS device driver 101-12

command summary 155-56

controlling cursor with 108-10

displaying blinking characters with 104-7

erasing screen display with 107-8

redefining keys with 110-12

setting screen colors with 102-7

ARROW.BAT file 126-28

ASCII characters

bell sound 38-4

1

displaying blank line using ECHO 45

escape sequences 102, 108

ASCII extended character set and definitions 112, 128-33

ASCII mode, saving batch files in 11, 95

AUTOEXEC.BAT file

changing contents of, when installing software

packages 8

1

vs CONFIG.SYS 22-23

customizing 146-52

executing DOS commands with 19, 20-22

printing, using batch-file parameters 49-51

B
BACKUP.FMT file 143-44

Backup operation, simplifying 140-45

BADCMD.BAT file 94-95

Bad command or file name message 5, 94-95

BADFILE.BAT file 95

158 INDEX

BAT extension (DOS batch files) 4, 8

Batch file(s) 3-15

advantages of 6-7

clarifying with remarks 31-34

creating 9-15

customizing your system with

(see System customization with batch files)

defined 3

disk placement of 48

displaying messages to the user 42-47

editing 13-15

ending 29-30

exceptions 94-97

improving readability of 34-35

naming 8

OS/2 vs DOS 5-6 (see also OS/2 batch files)

programming (see Batch-file programming)

redirecting output with DOS 31

running one batch file from within another 82-89

simple example of 4-5

suspending processing of temporarily 35-42

Batch-file command(s)
adding remarks with REM 31-34

additional OS/2 97-100

branching in batch files with GOTO 72-77

displaying messages to user with ECHO 42-47

handling more than nine parameters with SHIFT 89-94

invalid 94-97

repeating DOS commands for a file set with FOR 66-72

running one batch file from within another with CALL or

COMMAND /C 82-89

suppressing name display of, with ECHO OFF 24-29, 32,

36, 37, 94

suspending batch-file processing with PAUSE 35-42
testing condition failure with NOT operator 64-66

testing specific conditions with IF 53-63

Batch-file commands (summary boxes)

CALL 84-85

COMMAND /C 87-88

ECHO 28-29

ECHO message 47

FOR 71-72

IFERRORLEVEL 62-63

IF EXIST 55-56

IF STRINGOne==StringTwo 59-60

NOT 65-66

OS/2 EXPROC 97-98

OS/2 SETLOCAL and ENDLOCAL 99-100

PAUSE 41-42

INDEX 159

REM 33-34

SHIFT 92-94

Batch-file library 134-45

getting character-string input 138-40

preventing hard-disk formatting 136-38

setting screen colors 134-36

simplifying system backup 140-45

Batch-file parameters 49-52. See also Batch variables

%l through %9 50-52, 89

ECHO command 26-29, 44-45

handling more than nine, with SHIFT 89-94

named 78-81, 105-6

printing AUTOEXEC.BAT using 49-51

printing batch-file name using 51-52

Batch-file programming 53-77

branching with GOTO 72-77

repeating DOS commands for a set of files with FOR 66-72

testing specific conditions of, within batch files 53-63

IF ERRORLEVEL 53, 60-63

IF EXIST 53-56

IF STRINGOne~StringTwo 53, 56-60

using NOT operator 64-66

Batch labels 73-74, 96

Batch variables, 67. See also Batch-file parameters

%0 through %9 50-52, 83

BELL.BAT file 38-41

Bell sound 38-41

BLANK.BAT 45-46

Blank lines

adding to batch files to improve readability 34-35

displaying with ECHO 44-46

Blinking screen characters 104-5

BLUEFG.BAT file 104

Bold screen characters 104

BOXMENU.BAT file 130-33

Branching in batch files with GOTO 72-77

C
CALL batch-file command 82-85

format 83

summary box 84-85

CHANGEIT.BAT file 98

Character strings

empty 58

getting input 138-40

testing equality of, with IF

StringOne==StringTwo 56-60

testing using NOT 64-65

160 INDEX

CHDIR (Change Directory) command 7, 21-22

CHKDSK.COM 5

CLS command 4

CMD extension (OS/2 batch files) 5, 8

COLOR.BAT file 56-58

COLORS.BAT file 134-36

Color values supported by ANSI.SYS 102-3.

See also Screen colors

COMMAND (DOS command) 82, 83, 88-89

COMMAND /C batch-file command 85-88

summary box 87-88

Command execution, simplifying with batch files 7

Command names and help, displaying 109-10

Command processor, loading a secondary 88-89

COMPSTR.BAT file 64-65

Conditional processing 66

CONFIG.SYS file vs AUTOEXEC.BAT file 22-23

COPY command
abbreviated in CP.BAT 52

creating batch files with 9-11

preventing from overwriting critical files 54-55

CP.BAT file 52

Creating batch files 9-15

with COPY command 9-11

with Edlin line editor 11-15

with word processor 1

1

Ctrl-C 12

ending batch files with 29-30

CURPOS.BAT file 108-9

Cursor position, controlling with ANSI.SYS 108-9

CYANBG.BAT file 103-4

D
DAILY.BAT file 141, 142, 143

DATE command 4, 20

in AUTOEXEC.BAT 22

Day of the month, determining current 150

DEBUG 112-28

commands 113-16

creating F1TOF10.COM with 123-25

creating GETARROW.COM with 125-28

creating GETDAY.COM with 150

creating GETHOUR.COM with 151-52

creating GETMONTH.COM with 149-50

creating GETYORN.COM with 120-23

creating REBOOT.COM with 117-20

creating SCRPRINT.COM with 113-17

creating WEEKDAY.COM with 147

INDEX 161

DEFKEY.BAT file 111

DELETE.BAT file 105, 106

DELETEYN.BAT file 122-23

Device driver. See ANSI.SYS device driver

DIRAB.BAT file 31

Directory

for batch files 48

displaying batch files in current 68

displaying current, within the prompt 16-18

Disk

placing batch files on 48

preventing hard-disk formatting 136-38

DISKCOPY command, exit status values returned by 60-62

DISKINFO.BAT file 5

creating with COPY command 10

DOS (Edlin command) 40

DOS, rebooting 117-20

DOS command(s)
in batch files 3, 4-5

command-line parameters in batch files 49-51

customizing execution of, with AUTOEXEC.BAT 19, 20-22

executing under specific conditions 63

internal/external 8, 95

performing, when tested condition fails 64-66

testing exit status of previous 60-63

using COMMAND or CALL to run one batch file from

within another 82-89

DOSMENU.BAT file 125, 132

DOS prompt, changing with PROMPT and batch files 16-19

DOWORD.BAT file 7

E

ECHO batch-file command
command name suppression/display 26-27, 32, 36, 37, 94

displaying blank line with 44-46

displaying file names using 69-70

displaying messages to the user with 42-44

sending escape sequences with 102, 107-8

summary box 28-29

ECHO message batch file command 42-47

summary box 47

ECHOTEST.BAT file 37

Editing batch files with Edlin 13-15

EDLIN.COM line editor

creating batch files with 11-13

using ECHO to send escape sequences 107-8

displaying blank lines with 46

editing batch files with 13-15

162 INDEX

Empty string 58

ENDLOCAL batch-file command 97, 99-100

End of file marker AZ 9

Environment entries, setting/removing with SET 78-81

ERASEIT.BAT file 122-23

ERRLEVEL.BAT file 61-62

Error messages 5, 58, 94-97

Error reduction with batch files 7

Escape sequences 102, 107-8

EXIT command 88-89

Exit status values of DOS commands 60-63

returning, in GETYORN.COM 120-23

returning day of month and 150

returned by DISKCOPY 60-62

value summary 153-55

EXTPROC batch-file command 97-98

F

F1TOF10.COM file 123-25, 141

FILEBU.BAT file 140, 141-45

File Not Found message 95

FOR batch-file command 66-72

summary box 71-72

FORMAT.BAT file 137-38

Function key(s)

F6 (end-of-file) 9

user response, FI through F10 123-25

G
GETARROW.COM file 125-28

GETDAY.COM file 150

GETHOUR.COM file 150, 151-52

GETINV.BAT file 6-7, 8, 24

improving readability of, with blank lines 34-35

messages displayed in 43-44

remarks added to 32-33

GETMIN.COM file 152

GETMONTH.COM file 148-50

GETPASS.BAT file 138-40

GETTIME.BAT file 150-51

GETYORN.COM file 120-23

GOTO batch-file command 72-77

GREETING.BAT file 146-47

H
Hard-disk formatting, preventing with FORMAT.BAT 136-38

Help 74-77, 109-10

HELPDOS.BAT file 74-77

INDEX 163

I

IF ERRORLEVEL batch-file command 53, 60-63, 120

format 60-61

summary box 62-63

IF EXIST batch-file command 53-56, 70, 96

summary box 55-56

IF STRINGOne==StringTwo batch-file command
53, 56-60

summary box 59-60

Iterative processing 66

K
Keys

numeric 39

redefining, with ANSI.SYS 110-12

scan codes 110-12, 123-25

Keystrokes, saving with batch files 7

L

Label Not Found message 96

LASTDRIVE- 23

M
Message(s), displaying to users with ECFIO 42-47

MESSAGE.BAT file 43

Metacharacters 16-17

Month, determining current 148-49

MONTHLY.BAT file 141, 142

MYCOPY.BAT file 54

MYPROM PT.BAT file 17-18

N
Name(s)

attaching to batch files 8

suppressing batch-file 24-29

Named parameters 78-81

to define blinking video 105-6

NAMEDTMP.BAT file 80

NOLABEL.BAT file 96

NOMSG.BAT file 36-37

NOT operator, changing the result of a condition

with 64-65

summary box 65-66

Numeric keys 39

164 INDEX

o
Operating system, customizing with CONFIG.SYS 22-23

OS/2 batch files

additional commands for 97-100

Ctrl-C use in 29-30

vs DOS batch files 5-6

metacharacters supported by 17

Output, redirecting with DOS batch files 31

p
Passwords 138-40

PASSWORD.SET file 139

PATH command 48

in AUTOEXEC.BAT 20-21, 81

PAUSE batch-file command
summary box 41-42

suspending batch-file processing with 35-41

P.BAT file 49-51

PRIMARY.BAT file 82-87

PRINT command
in AUTOEXEC.BAT 20, 22

customizing with batch files 18-19

PRINTDIR.BAT file 35-36

PRINTINS.BAT file 19

Processing

conditional vs iterative 66

suspending batch-file, with PAUSE 35-41

PROMPT command
in AUTOEXEC.BAT 20, 21

customizing DOS prompt with 16-18

sending escape sequences with 102, 103

PRT.BAT file 78-79

R
RAM disk, installing 118-20

RAMDRIVE.BAT file 119-20

RAMDRIVE.SYS file 118

REM batch-file command
adding remarks with 31-33

summary box 33-34

REMOVE.BAT file 73-74

REMSETWO.BAT file 36

Reverse video attributes 104

INDEX 165

s
Scan codes, keyboard 110-12

values for FI through F10 123-25

SCHEDULE.BAT file 148-49

SCRCOLOR.BAT file 104, 105-6

Screen colors

restoring previous 106-7

setting, with ANSI.SYS 102-7

setting, with COLORS.BAT 134-36

Screen display

erasing with ANSI.SYS 107-8

printing current contents of 113-17

SCRERASE.BAT file 107-8

SCRPRINT.COM file 113-17

SET command
in AUTOEXEC.BAT file 20

changing or displaying environment entries with 78-79

SETLOCAL batch-file command 97, 99-100

SHIFT batch-file command 89-94

summary box 92-94

SHORTDIR.BAT file, creating with Edlin 11-13

displaying filenames using ECHO 69-70

SHOW.BAT file 68

SHOWECHO.BAT file 44-45

SHOWNAME.BAT file 51-52

SORTDIR.BAT file

creating, with Edlin 15

displaying sorted directory listing using redirection 70

SORTFILE.DAT file 70

SPECIFIC.BAT file 141, 143-45

STARTUP.CMD file 19

Subdirectories, searching with PATH 20-21

Switches, PRINT command 18-19

Syntax error message 58

System customization with batch files 16-23

AUTOEXEC.BAT 20-22

changing the DOS prompt 16-19

CONFIG.SYS vs AUTOEXEC.BAT 22-23

simplifying backup operations 140-45

T

T.BAT file 54-55

displaying batch file contents using wildcards 70-71

NOT operator used in 64

Temporary files 79-80

166 INDEX

Time
determining current 150-52

using batch files to save 6-7

TIME command 4, 20

in AUTOEXEC.BAT 22

TIMEDATE.BAT file 4-5, 8

creating with COPY command 9-10

ending with Ctrl-C 29-30

TYPE command, abbreviating with %1 54

USEDOS.BAT file 88-89

User response

getting arrows and Enter key 125-28

getting FI through F10 123-25

getting yes or no 120-23

V
VDISK.SYS file 118

VERVOL.BAT file 25, 82

VERVOL2.BAT file 25

VERVOL3.BAT file 26

VERVOL4.BAT file 26-27

VERVOL5.BAT file 27

w
Weekday, determining current 146-47

WEEKDAY.COM file 146-47

Wildcard characters (* and ?) 50, 67

displaying filenames using 69-70

Word processor, creating batch files with 11

KRIS JAMSA

Kris Jamsa graduated from the United States Air Force

Academy with a degree in computer science in 1983. He
moved to Las Vegas, Nevada, where he began work as a

VAX/VMS system manager for the U.S. Air Force. In 1986

Jamsa received a master’s degree in computer science (with

an emphasis in operating systems) from the University of

Nevada at Las Vegas. He taught computer science at the

National University in San Diego, California, for one year

before leaving the air force in 1988 to begin writing full-

time. He is the author of more than a dozen books on DOS,

OS/2, Windows, hard-disk management, and the Pascal and

C programming languages. With Microsoft Press, Jamsa

has published Microsoft QuickPascal Programming ; Graphics

Programming with Microsoft C and Microsoft QuickC;

Microsoft C: Secrets, Shortcuts, and Solutions; and numerous

quick references. Jamsa resides in Las Vegas with his wife

and their two daughters.

OTHER TITLES FROM MICROSOFT PRESS

RUNNING MS-DOS® 4th ed.

The Definitive Guide to MS-DOS and PC-DOS, Now
Completely Revised to Include Version 4 and the New
DOS Shell

Van Wolverton

“This book is simply the definitive handbook ofPC-DOS and

MS-DOS .. .written for both novices and experienced users.’’

BYTE magazine

Join the more than one million PC and PS/2 users— from novice

to expert— who use RUNNING MS-DOS, a richly informative

overview of the PC-DOS and MS-DOS operating systems. Up-

dated for version 4, RUNNING MS-DOS now includes informa-

tion on the DOS Shell, the new graphical user interface. Wolverton

shows you how to manage files and directories on a floppy-disk or

hard-disk system; work with printers, monitors, and modems; auto-

mate frequently performed tasks with batch files; and use the built-

in text editor and database. Novice computer users will value this

book for Wolverton’s clear writing style and the scores of easy-to-

understand examples. Experienced PC users will find the com-

mand reference section in RUNNING MS-DOS an unmatched

source of complete, up-to-date information.

560 pages, softcover, 7 3
/s x 9!4 $22.95

Order Code RUMS4

SUPERCHARGING MS-DOS,® 2nd ed.

The Microsoft® Guide to High Performance Computing

for the Experienced PC User

Van Wolverton

Updated for version 4, SUPERCHARGING MS-DOS includes

material on the additions and changes to DOS commands, device

driver updates, memory management, and printer control se-

quences. Wolverton gives expert advice on controlling the screen

and keyboard with ANSI.SYS; creating, examining, and changing

any file; personalizing CONFIG.SYS; and constructing a custom-

ized menu system. In addition, this book offers an exciting array of

new and updated programs and batch files to help you get the

maximum in efficiency, productivity, and creativity from DOS.
This is the power user’s guide.

352 pages, softcover, 7 3
/s x 9!4 $19.95

Order Code SUMS2

(Also available in a software version containing all the batch files

and assembly language programsfound in the book.)

SUPERCHARGING MS-DOS,® 2nd ed.

(Software Version)

Van Wolverton

352 pages, softcover, 7 3
/s x 914 with one 5.25-inch disk

$34.95 Order Code SUMSD2

QUICK REFERENCE GUIDE TO MS-DOS®
COMMANDS
Van Wolverton

Forgotten how to remove a directory? Sort a file? Compare a disk?

Use the built-in DOS text editor? Here’s a handy alphabetic refer-

ence— with examples— to all DOS, batch, configuration, and

Edlin commands. Instant answers to all your DOS questions. All

the new and revised DOS commands (through version 4) are listed

and explained, and a new section is devoted to the DOS shell. This

book belongs on the desk or at the workstation of anyone operating

a PC-DOS or MS-DOS-based computer, and it is also a good com-

plement to RUNNING MS-DOS.

112 pages, softcover, 4 3
/4 x 8 $5.95

Order Code QRMSC4

QUICK REFERENCE GUIDE TO HARD DISK
MANAGEMENT
Van Wolverton

If you’re an owner of an IBM PC, PS/2, or compatible and want

the efficiencies of a well-managed hard disk but don’t have time to

read a full-length hard disk management book, the QUICK REF-

ERENCE GUIDE TO HARD DISK MANAGEMENT is for you.

Here is all the core information you’ll need to prepare your hard

disk for use, configure DOS for your system, organize your files

and directories, create timesaving batch files, and back up and

maintain your hard disk. Included are dozens of great examples

that will help you take control of your hard disk.

96 pages, softcover, 43A x 8 $5.95

Order Code QRHADI

RUNNING WINDOWS™
The Microsoft® Guide to Windows 2.0, Windows/286,

and Windows/386

Nancy Andrews and Craig Stinson

“ ...it can be tough to distinguish the truly worthwhile volumes [on

Windows] from the mere rewrites of software manuals. RUNNING
WINDOWS is one of the former.” PC Computing

If you want a hands-on introduction to Windows 2.0, Win-

dows/286, and Windows/386, turn to RUNNING WINDOWS.
Using an example-rich approach, the authors provide all the infor-

mation you need to fully understand and successfully use Win-

dows’ built-in desk accessories and applications and the most

popular Windows applications. Additional sections include step-

by-step techniques for creating reports and proposals with popular

MS-DOS applications and using Windows in color. Dozens of ex-

amples included.

368 pages, softcover, 7 3
/s x 9!4 $19.95

Order Code RUWI2

WORD PROCESSING POWER WITH MICROSOFT®
WORD, 3rd ed.

Peter Rinearson

‘‘The definitive guide to Microsoft Word on the IBM PC. This

comprehensive resource can be read as a beginner's tutorial or

employed nicely as an experienced user's reference
.”

Computer Book Review

WORD PROCESSING POWER WITH MICROSOFT WORD is

undeniably the best book about Microsoft Word for the IBM PC,

PS/2, and compatibles. Now updated through version 5, this book

steers you from system startup to desktop publishing with

Microsoft Word. Pulitzer prize-winning journalist Peter Rinear-

son uses a dynamic approach to help you organize, compose, for-

mat, index, and print professional documents— while you

concentrate on writing. Using Rinearson’s inventive strategies,

techniques, and examples, you’ll discover how to tap all of Word’s

remarkable formatting capabilities, recover files you thought you

had lost, gain complete control over automatic indexing, use

Word’s merge feature, and do dozens of additional timesaving

tasks. And you’ll discover how to take advantage of all the en-

hanced capabilities of version 5, including the new macro feature

for simplifying routine tasks and the more sophisticated desktop

publishing features for faster and easier style sheet creations.

784 pages, softcover, I Vs x 954 $21.95

Order Code WOPR3

QUICK REFERENCE GUIDE TO MICROSOFT®
WORD FOR THE IBM® PC
Updated for version 5

Peter Rinearson

This compact, action-oriented quick reference lets you use Word’s

features as you need them— you don’t have to know specific menu
commands. To help you navigate Word more easily, the book in-

cludes a menu command index and an appendix listing keyboard

commands and functions. A great source of quick answers to your

Word questions.

160 pages, softcover, 4 3A x 8 $6.95

Order Code QRWOI

RUNNING MICROSOFT® EXCEL
The Complete Reference to Microsoft Excel on the

IBM® PC, PS/2,® and Compatibles

The Cobb Group: Douglas Cobb and Judy Mynhier

This is your tutorial and complete reference guide to Microsoft

Excel on the IBM PC, PS/2, and compatibles. RUNNING
MICROSOFT EXCEL covers every significant function and com-

mand of the spreadsheet, database, and charting environments.

The easy-to-follow tutorial will help you quickly learn both the

basic and most advanced features of Microsoft Excel. The in-depth

information will serve as a reference to be used again and again.

736 pages, softcover, 7 3
/s x 9/a $24.95

Order Code RUEX

Microsoft Press books are available wherever fine books

are sold, or credit card orders can be placed

by calling 1-800-MSPRESS.

I

The manuscript for this book was prepared and submitted

to Microsoft Press in electronic form. Text files were

processed and formatted using Microsoft Word.

Cover design by Celeste Design

Interior text design by Darcie S. Furlan

Principal typography by Rodney Cook

Color separations by Rainier Color Corporation

Text composition by Microsoft Press in Times Roman
with display in Futura Heavy, using the Magna composition

system and the Linotronic 300 laser imagesetter.

MICROSOFT®

S-DOS
BATCH FILES

Batch files offer an easy and instantly rewarding way to signifi-

cantly increase your productivity. You don’t need any program-

ming experience. All you need is Kris Jamsa’s MS-DOS BATCH
FILES!

If you’re a novice computer user, you’ll learn the fundamentals

of batch files— how to create, save, and run them. And you’ll

learn how to create a practical batch file that will automate

your start-up procedures.

If you’ve been working for some time with DOS and with

batch files, you’ll discover exciting new uses for batch files—
how to use them to control printer output, to set screen colors,

to redefine function keys, and to back up your hard disk.

You’ll also learn how to create menu-driven batch files.

If you’re a seasoned computer user, you’ll see how you can use

DEBUG to enhance your batch files. You’ll also learn how to

create batch files that prompt the user to respond to questions

and that then process the responses.

Using this quick reference might be the most productive time you

spend with your computer!

Look for these other books in the Microsoft Quick Reference

series:

MS-DOS Commands. Van Wolverton.

Hard Disk Management. Van Wolverton.

Microsoft Wordfor the IBM® PC. Peter Rinearson.

m

US. A.

U.K.

Austral.

$6.95

£5.95

$ 10.95

(recommended

)

ISBN l-55bl5-E35-3

781556 152351

5 069 5

