
UNIX Shell Programming

Shell

u

O'REILLY Cameron Newham & Bill Rosenblatt

ck.

J^W^G'^'^'^

Learning the bash Shell

Digitized by tine Internet Arciiive

in 2011

http://www.archive.org/cletails/learningbashshelOOnewh

Learning the bash Shell

Second Edition

Cameron Newham and Bill Rosenblatt

O'REILLY*
Beijing • Cambridge • Famham • Koln • Paris • Sebastopol • Taipei • Tokyo

Learning the bash Shell, Second Edition

by Cameron Newham and Bill Rosenblatt

Copyright © 1998, 1995 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Editor: Mike Loukides

Update Editor: Gigi Estabrook

Production Editor: Nicole Gipson Arigo

Printing History:

October 1995: First Edition.

January 1998: Second Edition. Updated to include bash version 2.0.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks

and The Java^'^ Series is a trademark of O'Reilly & Associates, Inc. The association of a fish and the

topic of the bash shell is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was

aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no

rcsponsibihly for errors or omissions, or for damages resulting from the use of the information

contained herein.

ISBN: 1-56592-347-2 l-VOO]

[M]

Table of Contents

Preface ix

1: hash Basics 1

What Is a Shell? 2

Scope of This Book 2

History of UNIX Shells 3

Getting bash 5

Interactive Shell Use 6

Files 7

Input and Output 14

Background Jobs 18

Special Characters and Quoting 21

Help 27

2: Command-Line Editing 28

The History File 50

emacs Editing Mode 50

vi Editing Mode 3S

The fc Command 47

History Expansion 50

readline 51

Keyboard Habits 55

vi Table of Contents

3: Customizing Your Environment 57

The .bash_ profile, .bash_logout, and .bashrc Files 58

Aliases 60

Options 63

Shell \^riables 65

Customization and Subprocesses 76

Customization Hints 81

4: Basic Shell Programming 83

Shell Scripts and Functions 83

Shell Variables 88

String Operators 94

Command Substitution 103

Advanced Examples: pushd and popd 107

5: Flow Control Ill

if7else 112

for 126

case 133

select 136

while and until 139

6: Command-Line Options and Typed Variables 141

Command-Line Options 141

Typed Variables 150

Integer Variables and Arithmetic 151

Arrays 160

7: Input/Output and Command-Line Processing 163

I/O Redirectors 163

String I/O 169

Command-Line Processing 177

8: Process Handling 195

Process IDs and job NumlxTs 196

Job Control 197

Signals 200

trap 207

C-or()u t i ncs 213

Table of Contents vii

Subshells 217

Process Substitution 219

9: Debugging Shell Programs 220

Basic Debugging Aids 221

A bash Debugger 226

10: hash Administration 247

Installing bash as the Standard Shell 247

Environment Customization 250

System Security Features 254

11: bashfor Your System 257

Obtaining bash 257

Unpacking the Archive 259

What's in the Archive 259

Who Do I Turn to? 264

A: Related Shells 267

B: Reference Lists 277

C: Loadable Built-Ins 293

D: Syntax 298

E: Obtaining Sample Programs 302

Index 305

Preface

The first thing users of the UNIX or Linux operating systems come face to face

with is the shell. "Shell" is the UNIX term for a user interface to the system

—

something that lets you communicate with the computer via the keyboard and the

display. Shells are just separate programs that encapsulate the system, and, as

such, there are many to choose from.

Systems are usually set up with a "standard" shell that new users adopt without

question. However, some of these standard shells are rather old and lack many

features of the newer shells. This is a shame, because shells have a large bearing

on one's working environment. Since changing shells is as easy as changing hats,

there is no reason not to change to the latest and greatest in shell technology.

Of the many shells to choose from, this book introduces the Bourne Again shell

ihash for short), a modern general-purpose shell. Other useful modern shells are

the Korn shell iksb) and the "Tenex C shell" itcshy, both are also the subjects of

O'Reilly handbooks.

bash Versions

This book is relevant to all versions of bash, although older versions lack some of

the features of the most recent version.* You can easily find out which version you

are using by typing echo $BASH_VERSION. The earliest public version of bash was

1.0, and the most recent is 2.01 (released in May 1997). If you have an older ver-

sion, you might like to upgrade to the latest one. Chapter 11, bash for Your Sys-

tem, shows you how to go about it.

* Even though version 2.0 has been out for a while, bash version 1.14..% is still in widespread use.

Throughout this book we have clearly marked with footnotes the features that are not present in the

earlier versions.

ix

Preface

Summary of bash Features
bash is a backward-compatible evolutionary successor to the Bourne shell that

includes most of the C shell's major advantages as well as features from the Korn

shell and a few new features of its own. Features appropriated from the C shell

include:

• Directory manipulation, with the pushd, popd, and dirs commands.

• Job control, including the fg and bg commands and the ability to stop jobs

with CTRL-Z.

• Brace expansion, for generating arbitrary strings.

• Tilde expansion, a shorthand way to refer to directories.

• Aliases, which allow you to define shorthand names for commands or com-

mand lines.

• Command history, which lets you recall previously entered commands.

bash's major new features include:

• Command-line editing, allowing you to use vi- or emacs-sty^e editing com-

mands on your command lines.

• Key bindings that allow you to set up customized editing key sequences.

• Integrated programming features: the functionality of several external UNIX

commands, including test, expr, getopt, and echo, has been integrated into the

shell itself, enabling common programming tasks to be done more cleanly and

efficiently.

• Control structures, especially the select construct, which enables easy menu

generation.

• New options and variables that give you more ways to customize your envi-

ronment.

• One dimensional arrays that allow easy referencing and manipulation of lists

of data.

• Dynamic loading of built-ins, plus the ability to write your own and load them

into the running shell.

Intended Audience
This book is designed to address casual UNIX and Linux users who are just ab(we

the "raw beginner" level. You should be familiar with the process of logging in.

entering commands, and doing simple things with files. Although Chapter 1, hash

Basics, reviews concepts such as the tree-like file and directory scheme, you may

Preface xi

find that it moves too quickly if you're a complete neophyte. In that case, we rec-

ommend the O'Reilly & Associates handbook, Learning the UNIX Operating Sys-

tem, by Jerry Peek, Grace Todino, and John Strang.

If you're an experienced user, you may wish to skip Chapter 1 altogether. But if

your experience is with the C shell, you may find that Chapter 1 reveals a few sub-

tle differences between the bash and C shells.

No matter what your level of experience is, you will undoubtedly learn many

things in this book that make you a more productive bash user—from major fea-

tures down to details at the "nook-and-cranny" level that you may not have been

aware of.

If you are interested in shell programming (writing shell scripts and functions that

automate everyday tasks or serve as system utilities), you should also find this

book useful. However, we have deliberately avoided drawing a strong distinction

between interactive shell use (entering commands during a login session) and

shell programming. We see shell programming as a natural, inevitable outgrowth

of increasing experience as a user.

Accordingly, each chapter depends on those previous to it, and although the first

three chapters are oriented toward interactive use only, subsequent chapters

describe interactive, user-oriented features in addition to programming concepts.

This book aims to show you that writing useful shell programs doesn't require a

computing degree. Even if you are completely new to computing, there is no rea-

son why you shouldn't be able to harness the power of bash within a short time.

Toward that end, we have decided not to spend too much time on features of

interest exclusively to low-level systems programmers. Concepts like file descrip-

tors and special file types can only confuse the casual user, and anyway, we figure

that those of you who understand such things are smart enough to extrapolate the

necessary information from our cursory discussions.

Code Examples
This book is full of examples of shell commands and programs that are designed

to be useful in your everyday life as a user, not just to illustrate the feature being

explained. In Chapter 4, Basic Shell Programming, and onwards, we include vari-

ous programming problems, which we call tasks, that illustrate particular shell pro-

gramming concepts. Some tasks have solutions that are refined in subsequent

chapters. The later chapters also include programming exercises, many of which

build on the tasks in the chapter.

xii Preface

Feel free to use any code you see in this book and to pass it along to friends and

colleagues. We especially encourage you to modify and enhance it yourself.

If you want to try examples but you don't use bash as your login shell, you must

put the following line at the top of each shell script:

#! /bin/bash

If bash isn't installed as the file /bin/bash, substitute its pathname in the above.

Chapter Summary
If you want to investigate specific topics rather than read the entire book through,

here is a chapter-by-chapter summary:

Chapter 1 , bash Basics, introduces bash and tells you how to install it as your login

shell. Then it surveys the basics of interactive shell use, including overviews of the

UNIX file and directory scheme, standard I/O, and background jobs.

Chapter 2, Command-Line Editing, discusses the shell's command history mecha-

nism (including the emacs- and i^/-editing modes), history substitution and the fc

history command, and key bindings with readline and bind.

Chapter 3, Customizing Your Environment, covers ways to customize your shell

environment without programming, by using the startup and environment files.

Aliases, options, and shell variables are the customization techniques discussed.

Chapter 4, Basic Shell Programming, is an introduction to shell programming. It

explains the basics of shell scripts and functions, and discusses several important

"nuts-and-bolts" programming features: string manipulation operators, brace

expansion, command-line arguments (positional parameters), and command sub-

stitution.

Chapter 5, Flow Control, continues the discussion of shell programming by

describing command exit status, conditional expressions, and the shell's flow-

control structures: if, for, case, select, while, and until.

Chapter 6, Command-Line Options and Typed Variables, goes into depth about

positional parameters and command-line option processing, then discusses special

types and properties of variables, integer arithmetic, and arrays.

Chapter 7, Input/Output and Command-Line Processing, gives a detailed descrip-

tion of bash I/O. All of the shell's I/O redirectors are covered, as are the line-at-a-

time I/O commands read and echo. Then the chapter discusses the shell's

command-line processing mechanism and the evai command.

Preface xiii

Chapter 8, Process Handling, covers process-related issues in detail. It starts with a

discussion of job control, then gets into various low-level information about pro-

cesses, including process IDs, signals, and traps. The chapter then moves to a

higher level of abstraction to discuss coroutines and subshells.

Chapter 9, Debugging Shell Programs, discusses various debugging techniques,

like trace and verbose modes, and the "fake" signal traps. We then present in

detail a useful shell tool, written using the shell itself: a bash debugger.

Chapter 10, bash Administration, gives information for system administrators,

including techniques for implementing system-wide shell customization and fea-

tures related to system security.

Chapter 1 1 , bash for Your System, shows you how to go about getting bash and

how to install it on your system. It also outlines what to do in the event of prob-

lems along the way.

Appendix A, Related Shells, compares bash to several similar shells, including the

standard Bourne shell, the IEEE 1003-2 POSIX shell standard, the Korn shell iksh)

and the public-domain Korn shell (pdkshX and the MKS Toolkit shell for MS-DOS
and OS/2.

Appendix B, Reference Lists, contains lists of shell invocation options, built-in com-

mands, built-in variables, conditional test operators, options, I/O redirection, and

emacs and vi editing mode commands.

Appendix C, Loadable Built-Lns, gives information on writing and compiling your

own loadable built-ins.

Appendix D, Syntax, lists the bash reserved words and provides a complete BNF
description of the shell.

Appendix E, Obtaining Sample Programs, lists the ways that you can obtain the

major scripts in this book for free, using anonymous FTP or electronic mail.

Conventions Used in This Handbook
We leave it as understood that, when you enter a shell command, you press

RETURN at the end. RETURN is labeled ENTER on some keyboards.

Characters called CTRL-X, where X is any letter, are entered by holding down the

CTRL (or CTL, or CONTROL) key and pressing that letter. Although we give the

letter in uppercase, you can press the letter without the SHIFT key.

Other special characters are LINEFEED (which is the same as CTRL-J), BACKSPACE

(same as CTRL-H), ESC, TAB, and DEL (sometimes labeled DELETE or RUBOUT).

xtv Preface

This book uses the following font conventions:

Italic is used for UNIX filenames, commands not built into the shell

(which are files anyway), and shell functions. Italic is also used

for dummy parameters that should be replaced with an actual

value, to distinguish the vi and emacs programs from their bash

modes, and to highlight special terms the first time they are

defined.

Bold is used for bash built-in commands, aliases, variables, and

options, as well as command lines when they are within regular

text. Bold is used for all elements typed in by the user within reg-

ular text.

Constant is used in examples to show the contents of files or the output

Width from commands.

Constant is used in examples to show interaction between the user and the

Bold shell; any text the user types in is shown in Constant Bold.

For example:

$ pwd
/home /cam/adventure /carrol

$

Constant is used in displayed command lines for dummy parameters that

Italic should be replaced with an actual value.

Reverse is used in Chapter 2, Command-line Editing, to show the posi-

Video tion of the cursor on the command line being edited. For exam-

ple:

grep -1 Alice < ~cam/book/§iw

We use UNIX as a shorthand for "UNIX and Linux." Purists will correctly insist that

Linux is not UNIX—but as far as this book is concerned, they behave identically.

We'd Like to Hearfrom You
We have tested and verified all of the information in this book to the best of our

ability, l:>ut you may find that features have changed (or even that we have made

mistakes!). Please let us know about any errors you find, as well as ycnir sugges-

tions for future editions, by writing:

Preface xv

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the US or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or

request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans

for future editions. You can access this page at:

http://www.oreilly.com/catalog/bash2/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgmentsfor the First Edition
This project has been an interesting experience and wouldn't have been possible

without the help of a number of people. Firstly, I'd like to thank Brian Fox and

Chet Ramey for creating bash and making it the polished product it is today.

Thanks also to Chet Ramey for promptly answering all of my questions on bash

and pointing out my errors.

Many thanks to Bill Rosenblatt for Learning the korn Shell, on which this book is

based; Michael O'Reilly and Michael Malone at iiNet Technologies for their useful

comments and suggestions (and my net.connection!); Chris Thorne, Justin Twiss,

David Quin-Conroy, and my mum for their comments, suggestions, and correc-

tions; Linus Torvalds for the Linux operating system which introduced me to bash

and was the platform for all of my work on the book; Brian Fox for providing a

short history of bash) David Korn for information on the latest Korn shell. Thanks

also to Depeche Mode for "101" as a backdrop while I worked, Laurence Dur-

bridge for being a likable pest and never failing to ask "Finished the book yet?"

and Adam (for being in my book).

The sharp eyes of our technical reviewers picked up many mistakes. Thanks to

Matt Healy, Chet Ramey, Bill Reynolds, Bill Rosenblatt, and Norm Walsh for taking

time out to go through the manuscript.

xvi Preface

The crew at O'Reilly & Associates were indispensable in getting this book out the

door. I'd like to thank Lenny Muellner for providing me with the formatting tools

for the job, Chris Reilley for the figures, and Edie Freedman for the cover design.

On the production end, I'd like to thank David Sewell for his copyediting, Claire-

marie Fisher O'Leary for managing the production process, Michael Deutsch and

Jane Ellin for their production assistance, Ellen Siever for tools support, Kismet

McDonough for providing quality assurance, and Seth Maislin for the index.

I'm grateful to Frank Willison for taking me up on my first piece of email to OKA:

"What about a book on bashT

Last but by no means least, a big thank you to my editor, Mike Loukides, who
helped steer me through this project.

Acknowledgmentsfor the Second Edition
Thanks to all the people at O'Reilly & Associates. Gigi Estabrook was the editor for

the second edition. Nicole Gipson Arigo was the production editor and project

manager. Nancy Wolfe Kotary and Ellie Fountain Maden performed quality control

checks. Seth Maislin wrote the index. Edie Freedman designed the cover, and

Nancy Priest designed the interior format of the book. Lenny Muellner imple-

mented the format in troff. Robert Romano updated the illustrations for this second

edition.

In this chapter:

• What Is a Shell?

• Scope of This Book
• History of UNIX

Shells

• Getting hash

• Interactive Shell Use

• Files
1 IT?'

• Input and Output l^ClSK) JLjClStCS
• BackgroundJobs
• Special Characters

and Quoting

• Help

Since the early 1970s, when it was first created, the UNIX operating system has

become more and more popular. During this time it has branched out into differ-

ent versions, and taken on such names as Ultrix, AIX, Xenix, SunOS, and Linux.

Starting on minicomputers and mainframes, it has moved onto desktop worksta-

tions and even personal computers used at work and home. No longer a system

used only by academics and computing wizards at universities and research cen-

ters, UNIX is used in many businesses, schools, and homes. As time goes on, more

people will come into contact with UNIX.

You may have used UNIX at your school, office, or home to run your applications,

print documents, and read your electronic mail. But have you ever thought about

the process that happens when you type a command and hit RETURN?

Several layers of events take place whenever you enter a command, but we're

going to consider only the top layer, known as the shell Generically speaking, a

shell is any user interface to the UNIX operating system, i.e., any program that

takes input from the user, translates it into instructions that the operating system

can understand, and conveys the operating system's output back to the user. Fig-

ure 1-1 shows the relationship between user, shell, and operating system.

There are various types of user interfaces, bash belongs to the most common cate-

gory, known as character-based user interfaces. These interfaces accept lines of

textual commands that the user types in; they usually produce text-based output.

Other types of interfaces include the increasingly common graphical user inter-

faces (GUI), which add the ability to display arbitrary graphics (not just typewriter

characters) and to accept input from a mouse or other pointing device, touch-

screen interfaces (such as those on some bank teller machines), and so on.

Chapter 1: bash Basics

Figure 1-1: The shell is a layer around the UNIX operating system

What Is a Shell?

The shell's job, then, is to translate the user's command lines into operating system

instructions. For example, consider this command line:

sort -n phonelist > phonelist . sorted

This means, "Sort lines in the file phonelist in numerical order, and put the result

in the file phonelist.sorted.'' Here's what the shell does with this command:

1. Breaks up the line into the pieces sort, -n, phonelist, >, and phonelist.sorted.

These pieces are called words.

2. Determines the purpose of the words: sort is a command, -n and phonelist are

arguments, and > and phonelist.sorted, taken together, are I/O instructions.

3. Sets up the I/O according to > phonelist.sorted (output to the file phone-

list.sorted) and some standard, implicit instructions.

4. Finds the command sort in a file and runs it with the option -n (numerical

order) and the argument phonelist (input filename).

Of course, each of these steps really involves several substeps, each of which

includes a particular instruction to the underlying operating system.

Remember that the shell itself is not UNIX—just the user interface to it. UNIX is

one of the first operating systems to make the user interface independent of the

operating system.

Scope of This Book
In this l:)()()k you will learn about bash, which is one of the most recent and pow-

erful of the major UNIX shells. There are two ways to use bash: as a user interface

and as a programming environment.

History of UNIX Shells

This chapter and the next cover interactive use. These two chapters should give

you enough background to use the shell confidently and productively for most of

your everyday tasks.

After you have been using the shell for a while, you will undoubtedly find certain

characteristics of your environment (the shell's "look and feel") that you would

like to change, and tasks that you would like to automate. Chapter 3 shows sev-

eral ways of doing this.

Chapter 3, Customizing Your Environment, also prepares you for shell program-

ming, the bulk of which is covered in Chapters 4, Basic Shell Programming,

through 6, Command-Line Options and Typed Variables. You need not have any

programming experience to understand these chapters and learn shell program-

ming. Chapters 7, Input/Output and Command-Line Processing, and 8, Process

Handling, give more complete descriptions of the shell's I/O and process handling

capabilities, while Chapter 9, Debugging Shell Programs, discusses various tech-

niques for debugging shell programs.

You'll learn a lot about bash in this book; you'll also learn about UNIX utilities and

the way the UNIX operating system works in general. It's possible to become a vir-

tuoso shell programmer without any previous programming experience. At the

same time, we've carefully avoided going into excessive detail about UNIX inter-

nals. We maintain that you shouldn't have to be an internals expert to use and

program the shell effectively, and we won't dwell on the few shell features that

are intended specifically for low-level systems programmers.

History of UNIX Shells

The independence of the shell from the UNIX operating system per se has led to

the development of dozens of shells throughout UNIX history—although only a

few have achieved widespread use.

The first major shell was the Bourne shell (named after its inventor, Steven

Bourne); it was included in the first popular version of UNIX, Version 7, starting in

1979. The Bourne shell is known on the system as sh. Although UNIX has gone

through many, many changes, the Bourne shell is still popular and essentially

unchanged. Several UNIX utilities and administration features depend on it.

The first widely used alternative shell was the C shell, or csh. This was written by

Bill Joy at the University of California at Berkeley as part of the Berkeley Software

Distribution (BSD) version of UNIX that came out a couple of years after Version

7. It's included in most recent UNIX versions.

The C shell gets its name from the resemblance of its commands to statements in

the C Programming Language, which makes the shell easier for programmers on

Chapter 1: bash Basics

UNIX systems to learn. It supports a number of operating system features (e.g., job

control; see Chapter 8) that were unique to BSD UNIX but by now have migrated

to most other modern versions. It also has a few important features (e.g., aliases;

see Chapter 3) that make it easier to use in general.

In recent years a number of other shells have become popular. The most notable

of these is the Korn shell. This shell is a commercial product that incorporates the

best features of the Bourne and C shells, plus many features of its own. The Korn

shell is similar to bash in most respects; both have an abundance of features that

make them easy to work with. The advantage of bash is that it is free. For further

information on the Korn shell see Appendix A, Related Shells.

The Bourne Again Shell

The Bourne Again shell (named in punning tribute to Steve Bourne's shell) was

created for use in the GNU project.* The GNU project was started by Richard Stall-

man of the Free Software Foundation (FSF) for the purpose of creating a UNIX-

compatible operating system and replacing all of the commercial UNIX utilities

with freely distributable ones. GNU embodies not only new software utilities, but a

new distribution concept: the copyleft. Copylefted software may be freely dis-

tributed so long as no restrictions are placed on further distribution (for example,

the source code must be made freely available).

bash, intended to be the standard shell for the GNU system, was officially "born"

on Sunday, January 10, 1988. Brian Fox wrote the original versions of bash and

readline and continued to improve the shell up until 1993- Early in 1989 he was

joined by Chet Ramey, who was responsible for numerous bug fixes and the inclu-

sion of many useful features. Chet Ramey is now the official maintainer of bash

and continues to make further enhancements.

In keeping with the GNU principles, all versions of bash since 0.99 have been

freely available from the FSF. bash has found its way onto every major version of

UNIX and is rapidly becoming the most popular Bourne shell derivative. It is the

standard shell included with Linux, a widely used free UNIX operating system.

In 1995 Chet Ramey began working on a major new release, 2.0, which was

released to the public for the first time on December 23, 1996. bash 2.0 adds a

range of new features to the old release (the last being 1.14.7) and brings tlie shell

into better compliance with various standards.

This book describes the latest release of bash 2.0 (version 2.01, dated June 1997).

It is applicable to all previous releases of bash. Any features of the current release

thai arc different in, or missing from, previous releases will be noted in the text.

* GNII is a recursive acronym, siancling for "GNlI's Not UNIX"

Getting bash

Features of bash

Although the Bourne shell is still known as the "standard" shell, bash is becoming

increasingly popular. In addition to its Bourne shell compatibility, it includes the

best features of the C and Korn shells as well as several advantages of its own.

bash's command-line editing modes are the features that tend to attract people to

it first. With command-line editing, it's much easier to go back and fix mistakes or

modify previous commands than it is with the C shell's history mechanism—and

the Bourne shell doesn't let you do this at all.

The other major bash feature that is intended mostly for interactive users is job

control. As Chapter 8 explains, job control gives you the ability to stop, start, and

pause any number of commands at the same time. This feature was borrowed

almost verbatim from the C shell.

The rest of bash's important advantages are meant mainly for shell customizers

and programmers. It has many new options and variables for customization, and

its programming features have been significantly expanded to include function

definition, more control structures, integer arithmetic, advanced I/O control, and

more.

Getting bash
You may or may not be using bash right now. Your system administrator probably

set your account up with whatever shell he or she uses as the "standard" on the

system. You may not even have been aware that there is more than one shell

available.

Yet it's easy for you to determine which shell you are using. Log in to your system

and type echo $SHELL at the prompt. You will see a response containing sh, csh,

ksh, or bash; these denote the Bourne, C, Korn, and bash shells, respectively.

(There's also a chance that you're using another shell such as tcsh?)

If you aren't using bash and you want to, then you first need to find out if it exists

on your system. Just type bash. If you get a new prompt consisting of some infor-

mation followed by a dollar-sign (e.g: bash2-2.01$), then all is well; type exit to

go back to your normal shell.

If you get a "not found" message, your system may not have it. Ask your system

administrator or another knowledgeable user; there's a chance that you might have

some version of bash installed on the system in a place (directory) that is not nor-

mally accessible to you. If not, read Chapter 11, bash for Your System, to find out

how you can obtain a version of bash.

Chapter 1: bash Basics

Once you know you have bash on your system, you can invoke it from whatever

other shell you use by typing bash as above. However, it's much better to install it

as your login shell, i.e., the shell that you get automatically whenever you log in.

You may be able to do the installation by yourself. Here are instructions that are

designed to work on the widest variety of UNIX systems. If something doesn't

work (e.g., you type in a command and get a "not found" error message or a

blank line as the response), you'll have to abort the process and see your system

administrator or, alternatively, turn to Chapter 11 where we demonstrate a less

straightforward way of replacing your current shell.

You need to find out where bash is on your system, i.e., in which directory it's

installed. You might be able to find the location by typing whereis bash (especially

if you are using the C shell); if that doesn't work, try whence bash, which bash, or

this complex command:*

grep bash /etc/passwd
|
awk -F: '{print $7}'

|
sort -u

You should see a response that looks like /bin/bash or /usr/local/bin/bash.

To install bash as your login shell, type chsh bash-name, where bash-name is the

response you got to your whereis command (or whatever worked). For example:

% chsh /usr/local/bin/bash

You'll either get an error message saying that the shell is invalid, or you'll be

prompted for your password. t Type in your password, then log out and log back

in again to start using bash.

Interactive Shell Use
When you use the shell interactively, you engage in a login session that begins

when you log in and ends when you type exit or logout or press CTRL-D.* During

a login session, you type in command lines to the shell; these are lines of text

ending in RETURN that you type in to your terminal or workstation.

By default, the shell prompts you for each command with an information string

followed by a dollar sign, though as you will see in Chapter 3, the entire prompt

can be changed.

* Make .sure you use the correct quotation mark in this command: ' rather than ^

.

t For .sy.stem .security rea.sons, only certain programs are allowed to he installed as login shells.

% The shell can he set up so that it ignores a single CTRL-I) to end the session. We recommend doing

this, hecau.se (TKI.-I) is too easy to type hy accident. See the section on options in Ch.iptcr -^ tor fur-

ther details.

Files

CommandSy Arguments, and Options

Shell command lines consist of one or more words, which are separated on a

command line by blanks or TABs. The first word on the line is the command. The

rest (if any) are arguments (also called parameters) to the command, which are

names of things on which the command will act.

For example, the command line Ip myfile consists of the command Ip (print a file)

and the single argument myfile. Ip treats myfile as the name of a file to print. Argu-

ments are often names of files, but not necessarily: in the command line mail cam,

the mail program treats cam as the username to which a message will be sent.

An option is a special type of argument that gives the command specific informa-

tion on what it is supposed to do. Options usually consist of a dash followed by a

letter; we say "usually" because this is a convention rather than a hard-and-fast

rule. The command ip -h myfile contains the option -h, which tells Ip not to print

the "banner page" before it prints the file.

Sometimes options take their own arguments. For example, ip -d Ipl -h myfile has

two options and one argument. The first option is -d Ipl, which means "Send the

output to the printer (destination) called ipl." The second option and argument

are the same as in the previous example.

Files

Although arguments to commands aren't always files, files are the most important

types of "things" on any UNIX system. A file can contain any kind of information,

and indeed there are different types of files. Three types are by far the most

important:

Regularfiles

Also called text files; these contain readable characters. For example, this book

was created from several regular files that contain the text of the book plus

human-readable formatting instructions to the troffv^ord processor.

Executablefiles

Also called programs; these are invoked as commands. Some can't be read by

humans; others—the shell scripts that we'll examine in this book—are just

special text files. The shell itself is a (non-human-readable) executable file

called bash.

Directories

These are like folders that contain other files—possibly other directories

(called subdirectories).

Chapter 1: bash Basics

Directories

Let's review the most important concepts about directories. The fact that directo-

ries can contain other directories leads to a hierarchical structure, more popularly

known as a tree, for all files on a UNIX system.

Figure 1-2 shows part of a typical directory tree; rectangles are directories and

ovals are regular files.

I "r If

etc

cam

book
I

bin | [^ readme |

(i aalw] [t ttlg) (
1 wonderlandj

V

\ /home/cam/book/aaiw

\
hatter

|
gryphon |

i*zoctc I

irectory

le

1
fred

[i memo

J
-^

)
^'

Figure 1-2: A tree ofdirectories andfiles

The top of the tree is a directory called root that has no name on the system.* All

files can be named by expressing their location on the system relative to root\

such names are built by listing all of the directory names (in order from root), sep-

arated by slashes (/), followed by the file's name. This way of naming files is

called a full (or absolute) pathname.

For example, say there is a file called aaiw that is in the directory book, which is

in the directory cam, which is in the directory home, which is in the root directory.

This file's full pathname is /home/cam/book/aaiw.

* Mo.st UNIX tutorial.s .say that root has the name /. Wc .stand by this alternative explanation because it

is more logically consistent with the rest of the UNIX filename conventions.

Files

The working directory

Of course, it's annoying to have to use full pathnames whenever you need to

specify a file. So there is also the concept of the working directory (sometimes

called the current directory), which is the directory you are "in" at any given time.

If you give a pathname with no leading slash, then the location of the file is

worked out relative to the working directory. Such pathnames are called relative

pathnames; you'll use them much more often than full pathnames.

When you log in to the system, your working directory is initially set to a special

directory called your home (or login) directory. System administrators often set up

the system so that everyone's home directory name is the same as their login

name, and all home directories are contained in a common directory under root.

For example, /home/cam is a typical home directory. If this is your working direc-

tory and you give the command Ip memo, then the system looks for the file memo
in /home/cam. If you have a directory called hatter in your home directory, and it

contains the file teatime, then you can print it with the command Ip hatter/teatime.

Tilde notation

As you can well imagine, home directories occur often in pathnames. Although

many systems are organized so that all home directories have a common parent

(such as /home or /users), you should not rely on that being the case, nor should

you even have to know the absolute pathname of someone's home directory.

Therefore, bash has a way of abbreviating home directories: just precede the name

of the user with a tilde (~). For example, you could refer to the file story in user

alice's home directory as ~alice/story. This is an absolute pathname, so it doesn't

matter what your working directory is when you use it. If alice's home directory

has a subdirectory called adventure and the file is in there instead, you can use

^alice/adventure/story as its name.

Even more convenient, a tilde by itself refers to your own home directory. You

can refer to a file called notes in your home directory as Vnotes (note the differ-

ence between that and ~notes, which the shell would try to interpret as user

notes's home directory). If notes is in your adventure subdirectory, then you can

call it yadventure/notes. This notation is handiest when your working directory is

not in your home directory tree, e.g., when it's some system directory like /tmp.

Changing working directories

If you want to change your working directory, use the command cd. If you don't

remember your working directory, the command pwd tells the shell to print it.

10 Chapter 1: bash Basics

cd takes as an argument the name of the directory you want to become your

working directory. It can be relative to your current directory, it can contain a

tilde, or it can be absolute (starting with a slash). If you omit the argument, cd

changes to your home directory (i.e., it's the same as cd ~
).

Table 1-1 gives some sample cd commands. Each command assumes that your

working directory is /home/cam just before the command is executed, and that

your directory structure looks like Figure 1-2.

Table 1-1. Sample cd Commands

Command New Working Directory

cd book

cd book/wonderland

cd ~/book/wonderland

cd /usr/lib

cd..

cd ../gnphon

cd ~gryphon

/home/cam/book

/home/cam/book/wonderland

/home/cam/book/wonderland

/usr/lib

/home

/home/gryphon

/home/gryphon

The first four are straightforv-^ard. The next two use a special directory called . .

(two dots), which means "parent of this directory." Every directory has one of

these; it's a universal way to get to the directory above the current one in the hier-

archy—which is called the parent directory.*

Another feature of bash's cd command is the form cd -, which changes to what-

ever directory you were in before the current one. For example, if you start out in

/usr/lib, type cd without an argument to go to your home directory, and then type

cd -. you will be back in /usr/lib.

Filenames, Wildcards, and Pathname Expansion

Sometimes you need to run a command on more than one file at a time. The most

common example of such a command is Is, which lists information about files. In

its simplest form, without options or arguments, it lists the names of all files in the

working directory except special hidden files, whose names begin with a dot (.).

If you give Is filename arguments, it will list those files—which is sort of silly: if

your current directory has the files duchess and queen in it and you type Is

duchess queen, the system will simply print those filenames.

* Each directory also has the special dircciorN' . (single dot), which just means "this directon." Thus.

cd . effectively does nothing. Both . and . . are actually special hidden files in each directors that

point to the director}' itself and to it.s parent directory, respectively, root is its own parent.

Files 11

Actually, Is is more often used with options that tell it to list information about the

files, like the -1 (long) option, which tells Is to list the file's owner, size, time of

last modification, and other information, or -a (all), which also lists the hidden

files described above. But sometimes you want to verify the existence of a certain

group of files without having to know all of their names; for example, if you use a

text editor, you might want to see which files in your current directory have names

that end in .txt.

Filenames are so important in UNIX that the shell provides a built-in way to spec-

ify the pattern of a set of filenames without having to know all of the names them-

selves. You can use special characters, called wildcards, in filenames to turn them

into patterns. Table 1-2 lists the basic wildcards.

Table 1-2: Basic Wildcards

Wildcard

\set\

\\set\

Matches

Any single character

Any string of characters

Any character in set

Any character not in set

The ? wildcard matches any single character, so that if your directory contains the

files program.c, program.log, and program.o, then the expression program.?

matches program. c and program.o but not program.log.

The asterisk (*) is more powerful and far more widely used; it matches any string

of characters. The expression program.* will match all three files in the previous

paragraph; text editor users can use the expression *.txt to match their input files.*

Table 1-3 should help demonstrate how the asterisk works. Assume that you have

the files bob, darlene, dave, ed, frank, and fred in your working directory.

Table 1-3: Using the * Wildcard

Expression Yields

fr* frank fred

*ed ed fred

b* bob

e darlene dave ed fred

r darlene frank fred

* MS-DOS and VAX/VMS users should note that there is nothing special about the dot (.) in UNIX file-

names (aside from the leading dot, which "hides" the file); it's just another character. For example, is
*

lists all files in the current directory; you don't need * .
* as you do on other systems. Indeed, is *

.
*

won't list all the files—only those that have at least one dot in the middle of the name.

12 Chapter 1: bash Basics

Table 1-3: Using the * Wildcard (continued)

Expression Yields

*

d*e

g*

bob darlene dave ed frank fred

darlene dave

g*

Notice that * can stand for nothing: both *ed and *e* match ed. Also notice that

the last example shows what the shell does if it can't match anything: it just leaves

the string with the wildcard untouched.

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc),

an inclusive range (e.g., a-z), or some combination of the two. If you want the

dash character to be part of a list, just list it first or last. Table 1-4 should explain

things more clearly.

Table 1-4: Using the Set Construct Wildcards

Expression Matches

[abc] a, b, or c

[-,;] Period, comma, or semicolon

[-_] Dash or underscore

[a-c] a, b, or c

[a-z] All lowercase letters

[!0-9] All non-digits

[0-9!] All digits and exclamation point

[a-zA-Z] All lower- and uppercase letters

[a-zA-Z0-9_-] All letters, all digits, underscore, and dash

In the original wildcard example, program, [co] and program, [a-z] both match pro-

gram.c 3Lnd program. o, but not program.log.

An exclamation point after the left bracket lets you "negate" a set. For example,

[! . ;] matches any character except period and semicolon; [!a-zA-Z] matches any

character that isn't a letter. To match ! itself, place it after the first character in the

set, or precede it with a backslash, as in [\!].

The range notation is handy, but you shouldn't make too many assumptions about

what characters are included in a range. It's safe to use a range for uppercase let-

ters, lowercase letters, digits, or any subranges thereof (e.g., [f-q], [2-6]). Don't

use ranges on punctuation characters or mixed-case letters: e.g.. [a-Z] and [A-z]

Files 13^

should not be trusted to include all of the letters and nothing more. The problem

is that such ranges are not entirely portable between different types of computers.*

The process of matching expressions containing wildcards to filenames is called

wildcard expansion or globbing. This is just one of several steps the shell takes

when reading and processing a command line; another that we have already seen

is tilde expansion, where tildes are replaced with home directories where applica-

ble. We'll see others in later chapters, and the full details of the process are enu-

merated in Chapter 7.

However, it's important to be aware that the commands that you run only see the

results of wildcard expansion. That is, they just see a list of arguments, and they

have no knowledge of how those arguments came into being. For example, if you

type Is fr* and your files are as on the previous page, then the shell expands the

command line to is fred frank and invokes the command Is with arguments fred

and frank. If you type Is g*, then (because there is no match) Is will be given the

literal string g* and will complain with the error message, g*: No such file or

directory, t

Here is an example that should help make things clearer. Suppose you are a C

programmer. This means that you deal with files whose names end in .c (pro-

grams, also known as source files), .h (header files for programs), and .o (object

code files that aren't human-readable) as well as other files. Let's say you want to

list all source, object, and header files in your working directory. The command Is

*.[cho] does the trick. The shell expands *.[cho] to all files whose names end in a

period followed by a c, h, or o and passes the resulting list to Is as arguments. In

other words. Is will see the filenames just as if they were all typed in individu-

ally—but notice that we required no knowledge of the actual filenames whatso-

ever! We let the wildcards do the work.

The wildcard examples that we have seen so far are actually part of a more gen-

eral concept called pathname expansion. Just as it is possible to use wildcards in

the current directory, they can also be used as part of a pathname. For example, if

you wanted to list all of the files in the directories /usr and /usr2, you could type

Is /usr* . If you were only interested in the files beginning with the letters b and e

in these directories, you could type ls/usr*/[be]* to list them.

* Specifically, ranges depend on the character encoding scheme your computer uses. The vast majority

use ASCII, but IBM mainframes use EBCDIC.

t This is different from the C shell's wildcard mechanism, which prints an error message and doesn't

execute the command at all.

14 Chapter 1: hash Basics

Brace Expansion

A concept closely related to pathname expansion is brace expansion. Whereas

pathname expansion wildcards will expand to files and directories that exist, brace

expansion expands to an arbitrary string of a given form: an optional preamble,

followed by comma-separated strings between braces, and followed by an

optional postscript. If you type echo b{ed,olt,ar}s, you'll see the words beds, bolts,

and bars printed. Each instance of a string inside the braces is combined with the

preamble b and the postscript s. Notice that these are not filenames—the strings

produced are independent of filenames. It is also possible to nest the braces, as in

b{ar{d,n,k},ed}s. This will result in the expansion bards, barns, barks, and beds.

Brace expansion can also be used with wildcard expansions. In the example from

the previous section where we listed the source, object, and header files in the

working directory, we could have used Is *.{c,h,o}.*

Input and Output
The software field— really, any scientific field—tends to advance most quickly and

impressively on those few occasions when someone (i.e., not a committee) comes

up with an idea that is small in concept yet enormous in its implications. The stan-

dard input and output scheme of UNIX has to be on the short list of such ideas,

along with such classic innovations as the LISP language, the relational data

model, and object-oriented programming.

The UNIX I/O scheme is based on two dazzlingly simple ideas. First, UNIX file I/O

takes the form of arbitrarily long sequences of characters (bytes). In contrast, file

systems of older vintage have more complicated I/O schemes (e.g., "block,"

"record," "card image," etc.). Second, everything on the system that produces or

accepts data is treated as a file; this includes hardware devices like disk drives and

terminals. Older systems treated every device differently. Both of these ideas have

made systems programmers' lives much more pleasant.

Standard I/O

By convention, each UNIX program has a single way of accepting input called

standard input, a single way of producing output called standard output, and a

single way of producing error messages called standard error output, usually

shortened to standard error. Of course, a program can have other input and out-

put sources as well, as we will see in Chapter 7.

* Thi.s differs slightly from C shell brace expansion, bash requires at least one unquoted comma to per-

form an expansion, otherwise the word is left unchanged, e.g., b{o}lt remains as b{())lt.

Input and Output 15

Standard I/O was the first scheme of its kind that was designed specifically for

interactive users at terminals, rather than the older batch style of use that usually

involved decks of punch-cards. Since the UNIX shell provides the user interface, it

should come as no surprise that standard I/O was designed to fit in very neatly

with the shell.

All shells handle standard I/O in basically the same way. Each program that you

invoke has all three standard I/O channels set to your terminal or workstation, so

that standard input is your keyboard, and standard output and error are your

screen or window. For example, the mail utility prints messages to you on the

standard output, and when you use it to send messages to other users, it accepts

your input on the standard input. This means that you view messages on your

screen and type new ones in on your keyboard.

When necessary, you can redirect input and output to come from or go to a file

instead. If you want to send the contents of a pre-existing file to someone as mail,

you redirect mails standard input so that it reads from that file instead of your

keyboard.

You can also hook programs together in a pipeline, in which the standard output

of one program feeds directly into the standard input of another; for example, you

could feed mail output directly to the Ip program so that messages are printed

instead of shown on the screen.

This makes it possible to use UNIX utilities as building blocks for bigger programs.

Many UNIX utility programs are meant to be used in this way: they each perform a

specific type of filtering operation on input text. Although this isn't a textbook on

UNIX utilities, they are essential to productive shell use. The more popular filtering

utilities are listed in Table 1-5.

Table 1-5: Popular UNIX Data Filtering Utilities

Utility Purpose

cat Copy input to output

grep Search for strings in the input

sort Sort lines in the input

cut Extract columns from input

sed Perform editing operations on input

tr Translate characters in the input to other characters

You may have used some of these before and noticed that they take names of

input files as arguments and produce output on standard output. You may not

16 Chapter 1: bash Basics

know, however, that all of them (and most other UNIX utilities) accept input from

standard input if you omit the argument.*

For example, the most basic utility is cat, which simply copies its input to its out-

put. If you type cat with a filename argument, it will print out the contents of that

file on your screen. But if you invoke it with no arguments, it will expect standard

input and copy it to standard output. Try it: cat will wait for you to type a line of

text; when you type RETURN, cat will repeat the text back to you. To stop the

process, hit CTRL-D at the beginning of a line. You will see "D when you type

CTRL-D. Here's what this should look like:

$ cat

Here is a line of text.

Here is a line of text.

This is another line of text.

This is another line of text.

$

I/O Redirection

cat is short for "catenate," i.e., link together. It accepts multiple filename argu-

ments and copies them to the standard output. But let's pretend, for now, that cat

and other utilities don't accept filename arguments and accept only standard input.

As we said above, the shell lets you redirect standard input so that it comes from a

file. The notation command < filename does this; it sets things up so that com-

mand takes standard input from a file instead of from a terminal.

For example, if you have a file called Cheshire that contains some text, then cat <

Cheshire will print Cheshire's contents out onto your terminal, sort < Cheshire will

sort the lines in the Cheshire file and print the result on your terminal (remember:

we're pretending that these utilities don't take filename arguments).

Similarly, command > filename causes the commands standard output to be redi-

rected to the named file. The classic "canonical" example of this is date > now: the

date command prints the current date and time on the standard output; the previ-

ous command saves it in a file called now.

Input and output redirectors can be combined. For example: the cp command is

normally used to copy files; if for some reason it didn't exist or was broken, you

could use cat in this way:

$ cat < filel > file2

This wouki be similar to cp filel filc2.

* If a particular UNIX utility doesn't accept statularti input when you leave out the hlenaine argument,

try usin^ a dash (-) as the ar>^uinent.

Input and Output 1

7

Pipelines

It is also possible to redirect the output of a command into the standard input of

another command instead of a file. The construct that does this is called the pipe,

notated as |. A command line that includes two or more commands connected

with pipes is called a pipeline.

Pipes are very often used with the more command, which works just like cat

except that it prints its output screen by screen, pausing for the user to type SPACE

(next screen), RETURN (next line), or other commands. If you're in a directory

with a large number of files and you want to see details about them. Is -1
I more

will give you a detailed listing a screen at a time.

Pipelines can get very complex, and they can also be combined with other I/O

directors. To see a sorted listing of the file Cheshire a screen at a time, type sort <

Cheshire
I
more. To print it instead of viewing it on your terminal, type sort <

Cheshire | Ip.

Here's a more complicated example. The file /etc/passwd stores information about

users' accounts on a UNIX system. Each line in the file contains a user's login

name, user ID number, encrypted password, home directory, login shell, and other

information. The first field of each line is the login name; fields are separated by

colons (:). A sample line might look like this:

cam: LMlc7G}iNesD4GhF3iEHrH4FeCKB/ : 501 : 100 : Cameron Newham: /home/cam: /bin/bash

To get a sorted listing of all users on the system, type:

$ cut -d: -fl < /etc/passwd
|
sort

(Actually, you can omit the <, since cut accepts input filename arguments.) The

cut command extracts the first field (-fl), where fields are separated by colons

(-d :), from the input. The entire pipeline will print a list that looks like this:

adm
bin
cam
daemon
davidqc
ftp

games
gonzo

If you want to send the list directly to the printer (instead of your screen), you can

extend the pipeline like this:

$ cut -d: -fl < /etc/passwd | sort | Ip

18 Chapter 1: bash Basics

Now you should see how I/O directors and pipelines support the UNIX building

block philosophy. The notation is extremely terse and powerful. Just as important,

the pipe concept eliminates the need for messy temporary files to store command
output before it is fed into other commands.

For example, to do the same sort of thing as the above command line on other

operating systems (assuming that equivalent utilities are available . . .), you need

three commands. On DEC's VAX/VMS system, they might look like this:

$ cut [etc]passwd /d=":" /f=l /out=templ

$ sort tempi /out=teinp2

$ print teinp2

$ delete tempi temp2

After sufficient practice, you will find yourself routinely typing in powerful com-

mand pipelines that do in one line what it would take several commands (and

temporary files) in other operating systems to accomplish.

BackgroundJobs
Pipes are actually a special case of a more general feature: doing more than one

thing at a time. This is a capability that many other commercial operating systems

don't have, because of the rigid limits that they tend to impose upon users. UNIX,

on the other hand, was developed in a research lab and meant for internal use, so

it does relatively little to impose limits on the resources available to users on a

computer—as usual, leaning towards uncluttered simplicity rather than overcom-

plexity.

"Doing more than one thing at a time" means running more than one program at

the same time. You do this when you invoke a pipeline; you can also do it by log-

ging on to a UNIX system as many times simultaneously as you wish. (If you try

that on an IBM's VM/CMS system, for example, you will get an obnoxious "already

logged in" message.)

The shell also lets you run more than one command at a time during a single login

session. Normally, when you type a command and hit RETURN, the shell will let

the command have control of your terminal until it is done; you can't type in fur-

ther commands until the first one is done. But if you want to run a command that

does not require user input and you want to do other things while the command

is running, put an ampersand (&) after the command.

This is called running the command in the background, and a command that runs

in this way is called a background job; by contrast, a job run the normal way is

called a foreground job. When you start a background job, you get your shell

prompt l)ack iniincdialely, cnal)ling you to enter otlicr commands.

BackgroundJobs 19

The most obvious use for background jobs is programs that take a long time to

run, such as sort or uncompress on large files. For example, assume you just got

an enormous compressed file loaded into your directory from magnetic tape.* Let's

say the file is gcc.tar.Z, which is a compressed archive file that contains well over

10 MB of source code files.

Type uncompress gcc.tar & (you can omit the .Z), and the system will start a job

in the background that uncompresses the data "in place" and ends up with the file

gcc.tar. Right after you type the command, you will see a line like this:

[1] 175

followed by your shell prompt, meaning that you can enter other commands.

Those numbers give you ways of referring to your background job; Chapter 8,

explains them in detail.

You can check on background jobs with the command jobs. For each background

job, jobs prints a line similar to the above but with an indication of the job's status:

[1]+ Running uncompress gcc.tar &

When the job finishes, you will see a message like this right before your shell

prompt:

[1]+ Done uncompress gcc.tar

The message changes if your background job terminated with an error; again, see

Chapter 8 for details.

Background I/O

Jobs you put in the background should not do I/O to your terminal. Just think

about it for a moment and you'll understand why.

By definition, a background job doesn't have control over your terminal. Among
other things, this means that only the foreground process (or, if none, the shell

itself) is "listening" for input from your keyboard. If a background job needs key-

board input, it will often just sit there doing nothing until you do something about

it (as described in Chapter 8).

If a background job produces screen output, the output will just appear on your

screen. If you are running a job in the foreground that produces output too, then

the output from the two jobs will be randomly (and often annoyingly) inter-

spersed.

* Compressed files are created by the compress utility, which packs files into smaller amounts of space;

they have names of the form filename.Z, where filename is the name of the original uncompressed file.

20 Chapter 1: bash Basics

If you want to run a job in the background that expects standard input or pro-

duces standard output, you usually want to redirect the I/O so that it comes from

or goes to a file. Programs that produce small, one-line messages (warnings,

"done" messages, etc.) are an exception to this general rule; you may not mind if

these are interspersed with whatever other output you are seeing at a given time.

For example, the diffuiiXity examines two files, whose names are given as argu-

ments, and prints a summary of their differences on the standard output. If the

files are exactly the same, diff is silent. Usually, you invoke <i//5^expecting to see a

few lines that are different.

diff, like sort and compress, can take a long time to run if the input files are very

large. Suppose that you have two large files that are called warandpeace.txt and

warandpeace.txt. old. The command diff warandpeace.txt warandpeace.txt.old*

reveals that the author decided to change the name "Ivan" to "Aleksandr" through-

out the entire file— i.e., hundreds of differences, resulting in very large amounts of

output.

If you type diffwarandpeace.txt warandpeace.txt.old &, then the system will spew

lots and lots of output at you, which will be difficult to stop—even with the tech-

niques explained in Chapter 7. However, if you type:

$ dl££ warandpeace.txt warandpeace.txt.old > txtdiff &

then the differences will be saved in the file txtdiff for you to examine later.

BackgroundJobs and Priorities

Background jobs can save you a lot of thumb-twiddling time. Just remember that

such jobs eat up lots of system resources like memory and the processor (CPU).

Just because you're running several jobs at once doesn't mean that they will run

faster than they would if run sequentially—in fact, performance is usually slightly

worse.

Every job on the system is assigned a priority, a number that tells the operating

system how much priority to give the job when it doles out resources (the higher

the number, the lower the priority). Commands that you enter from the shell,

whether foreground or background jobs, usually have the same priority. The sys-

tem administrator is able to run commands at a higher priority than normal users.

Note that if you're on a multiuser system, running lots of background jobs may eat

up more than your fair sliare of resources, and you should consider whether

* You could use diff warandpeace* as a shorthantl to save typing?— as kmg as there arc no other files

with names of that form. Remember that diff doesn't see the arguments until after the shell has

expanded the wildcards. Many people overlook this use of wildcards.

special Characters and Quoting 21

having your job run as fast as possible is really more important than being a good

citizen.

Speaking of good citizenship, there is also a UNIX command that lets you lower

the priority of any job: the aptly named nice. If you type nice command, where

command Q2Si be a complex shell command line with pipes, redirectors, etc., then

the command will run at a lower priority.* You can control just how much lower

by giving nice a numerical argument; consult the nice manpage for details.t

Special Characters and Quoting
The characters <, >, I

, and & are four examples of special characters that have

particular meanings to the shell. The wildcards we saw earlier in this chapter (*, ?,

and [...]) are also special characters.

Table 1-6 gives the meanings of all special characters within shell command lines

only. Other characters have special meanings in specific situations, such as the

regular expressions and string-handling operators that we'll see in Chapter 3 and

Chapter 4.

Table 1-6: Special Characters

Character Meaning See Chapter

~ Home directory 1

\ Command substitution (archaic) 4

Comment 4

$ Variable expression 3

& Background job 1

String wildcard 1

Start subshell 8

End subshell 8

Quote next character 1

Pipe 1

Start character-set wildcard 1

End character-set wildcard 1

Start command block 7

End command block 7

Shell command separator 3

Strong quote 1

Weak quote 1

* Complex commands following nice should be quoted.

t If you are a system administrator logged in as root, then you can also use nice to raise a job's prior-

ity.

22 Chapter 1: bash Basics

Table 1-6: Special Characters (continued)

Character Meaning See Chapter

<

>

/

?

!

Input redirect

Output redirect

Pathname directory separator

Single-character wildcard

Pipeline logical NOT

Quoting

Sometimes you will want to use special characters literally, i.e., without their spe-

cial meanings. This is called quoting. If you surround a string of characters with

single quotation marks (or quotes), you strip all characters within the quotes of

any special meaning they might have.

The most obvious situation where you might need to quote a string is with the

echo command, which just takes its arguments and prints them to the standard

output. What is the point of this? As you will see in later chapters, the shell does

quite a bit of processing on command lines—most of which involves some of the

special characters listed in Table 1-6. echo is a way of making the result of that

processing available on the standard output.

But what if we wanted to print the string 2 * 3 > 5 is a valid inequality? Suppose

you typed this:

$ echo 2 * 3 > 5 is a valid inequality.

You would get your shell prompt back, as if nothing happened! But then there

would be a new file, with the name 5, containing "2", the names of all files in your

current directory, and then the string 3 is a valid inequality. Make sure you under-

stand why.*

However, if you type:

$ echo '2 * 3 > 5 is a valid ine<iuality. '

the result is the string, taken literally. You needn't quote the entire line, just the

portion containing special characters (or characters you think might be special, if

you just want to be sure):

$ echo '2 * 3 > 5' is a valid ine<iuality.

This has exactly the same result.

* This should also teach you something about the flexibility of placing I O reciirectors .uiywhere on

the eoinmand line—even in places where they don't seeni to make sense.

special Characters and Quoting 23

Notice that Table 1-6 lists double quotes (") as weak quotes. A string in double

quotes is subjected to some of the steps the shell takes to process command lines,

but not all. (In other words, it treats only some special characters as special.)

You'll see in later chapters why double quotes are sometimes preferable; Chapter

7 contains the most comprehensive explanation of the shell's rules for quoting and

other aspects of command-line processing. For now, though, you should stick to

single quotes.

Backslash-Escaping

Another way to change the meaning of a character is to precede it with a back-

slash (\). This is called backslash-escaping the character. In most cases, when you

backslash-escape a character, you quote it. For example:

$ echo 2*3\>5isa valid inequality.

will produce the same results as if you surrounded the string with single quotes.

To use a literal backslash, just surround it with quotes (' \ ') or, even better, back-

slash-escape it (\\).

Here is a more practical example of quoting special characters. A few UNIX com-

mands take arguments that often include wildcard characters, which need to be

escaped so the shell doesn't process them first. The most common such command
is find, which searches for files throughout entire directory trees.

To use find, you supply the root of the tree you want to search and arguments

that describe the characteristics of the file(s) you want to find. For example, the

command find .
-name string searches the directory tree whose root is your cur-

rent directory for files whose names match the string. (Other arguments allow you

to search by the file's size, owner, permissions, date of last access, etc.)

You can use wildcards in the string, but you must quote them, so that the find

command itself can match them against names of files in each directory it

searches. The command find . -name '*.c' will match all files whose names end

in .c anywhere in your current directory, subdirectories, sub-subdirectories, etc.

Quoting Quotation Marks

You can also use a backslash to include double quotes within a quoted string. For

example:

$ echo \"2 * 3 \> 5\" is a valid inequality.

24 Chapter 1: bash Basics

produces the following output:

"2 * 3 > 5" is a valid inequality.

However, this won't work with single quotes inside quoted expressions. For exam-

ple, echo 'Hatter\'s tea party' will not give you Hatter's tea party. You can get

around this limitation in various ways. First, try eliminating the quotes:

$ echo HatterX's tea party

If no other characters are special (as is the case here), this works. Otherwise, you

can use the following command:

$ echo 'Hatter' \"s tea party'

That is, ' \ '
' (i.e., single quote, backslash, single quote, single quote) acts like a

single quote within a quoted string. Why? The first ' in ' \ '
' ends the quoted

string we started with ('Hatter), the \ ' inserts a literal single quote, and the next

' starts another quoted string that ends with the word "party". If you understand

this, then you will have no trouble resolving the other bewildering issues that arise

from the shell's often cryptic syntax.

Continuing Lines

A related issue is how to continue the text of a command beyond a single line on

your terminal or workstation window. The answer is conceptually simple: just

quote the RETURN key. After all, RETURN is really just another character.

You can do this in two ways: by ending a line with a backslash, or by not closing

a quote mark (i.e., by including RETURN in a quoted string). If you use the back-

slash, there must be nothing between it and the end of the line—not even spaces

or TABS.

Whether you use a backslash or a single quote, you are telling the shell to ignore

the special meaning of the RETURN character. After you press RETURN, the shell

understands that you haven't finished your command line (i.e., since you haven't

typed a "real" RETURN), so it responds with a secondary prompt, which is > by

default, and waits for you to finish the line. You can continue a line as many times

as you wish.

For example, if you want the shell to print the first sentence of Chapter 5 of Lewis

Carroll's Alice's Adventures in Wonderland, you can type this:

$ echo The Caterpillar and Alice looked at each other for some \

> time in silence: at last Caterpillar took the hookah out of its \

> mouth, and addressed her in a languid, sleepy voice.

special Characters and Quoting 25

Or you can do it this way:

$ echo 'The Caterpillar and Alice looked at each other for some
> time in silence: at last Caterpillar took the hookah out of its

> mouth, and addressed her in a languid, sleepy voice.'

Control Keys

Control keys—those that you type by holding down the CONTROL (or CTRL) key

and hitting another key—are another type of special character. These normally

don't print anything on your screen, but the operating system interprets a few of

them as special commands. You already know one of them: RETURN is actually

the same as CTRL-M (try it and see). You have probably also used the BACKSPACE

or DEL key to erase typos on your command line.

Actually, many control keys have functions that don't really concern you—yet you

should know about them for future reference and in case you type them by acci-

dent.

Perhaps the most difficult thing about control keys is that they can differ from sys-

tem to system. The usual arrangement is shown in Table 1-7, which lists the con-

trol keys that all major modern versions of UNIX support. Note that DEL and

CTRL-? are the same character.

You can use the stty command to find out what your settings are and change them

if you wish; see Chapter 8 for details. If the version of UNIX on your system is one

of those that derive from BSD (such as SunOS and Ultrix), type stty all to see your

control-key settings; you will see something like this:

kill werase rprnt flush Inext SUSP intr quit stop eof

'^U '^W ^R.
-^0

-^v ^zrx ^C ^\ ^sro. '^D

Table 1-7: Control Keys

Control Key stty Name Function Description

CTRL-C intr Stop current command

CTRL-D eof End of input

CTRL-\ quit Stop current command, if CTRL-C doesn't work

CTRL-S stop Halt output to screen

CTRL-Q Restart output to screen

DEL or CTRL-? erase Erase last character

CTRL-U kill Erase entire command line

CTRL-Z susp Suspend current command (see Chapter 8)

The ^X notation stands for CTRL-X If your UNIX version derives from System III

or System V (this includes AIX, HP/UX, SCO, Linux, and Xenix), type stty -a.

26 Chapter 1: bash Basics

The resulting output will include this information:

intr = "c; quit = "|; erase = DEL; kill = "u; eof = "d; eol = "';

swtch = "'; SUSP = "z; dsusp <undef>;

The control key you will probably use most often is CTRL-C, sometimes called the

interrupt key. This stops—or tries to stop—the command that is currently run-

ning. You will want to use this when you enter a command and find that it's tak-

ing too long, you gave it the wrong arguments, you change your mind about

wanting to run it, or whatever.

Sometimes CTRL-C doesn't work; in that case, if you really want to stop a job, try

CTRL-\. But don't just type CTRL-\; always try CTRL-C first! Chapter 8 explains

why in detail. For now, suffice it to say that CTRL-C gives the running job more of

a chance to clean up before exiting, so that files and other resources are not left in

funny states.

We've already seen an example of CTRL-D. When you are running a command
that accepts standard input from your keyboard, CTRL-D tells the process that your

input is finished— as if the process were reading a file and it reached the end of

the file, mail is a utility in which this happens often. When you are typing in a

message, you end by typing CTRL-D. This tells mail that your message is complete

and ready to be sent. Most utilities that accept standard input understand CTRL-D

as the end-of-input character, though many such programs accept commands like

q, quit, exit, etc.

CTRL-S and CTRL-Q are called flow-control characters. They represent an anti-

quated way of stopping and restarting the flow of output from one device to

another (e.g., from the computer to your terminal) that was useful when the speed

of such output was low. They are rather obsolete in these days of high-speed local

networks and dialup lines. In fact, under the latter conditions, CTRL-S and CTRL-Q

are basically a nuisance. The only thing you really need to know about them is

that if your screen output becomes "stuck," then you may have hit CTRL-S by acci-

dent. Type CTRL-Q to restart the output; any keys you may have hit in between

will then take effect.

The final group of control characters gives you rudimentary ways to edit your

command line. DEL acts as a backspace key (in fact, some systems use the actual

BACKSPACE or CTRL-H key as "erase" instead of DEL); CTRL-U erases the entire

line and lets you start over. Again, these have been superseded.* The next chapter

will look at bash's editing modes, which are among its most useful features and far

more powerful than the limited editing capabilities described here.

* Why arc so many outmoded control keys still in use? They have nothing to do with the shell fx^rse,

instead, they are recognized by the tty driver, an old and hoary part of the operating system's lower

depths ihai (onlrois input and output to/from your terminal.

Help 27

Help
A feature in bash that no other shell has is an online help system. The help com-

mand gives information on commands in bash. If you type help by itself, you'll get

a list of the built-in shell commands along with their options.

If you provide help with a shell command name it will give you a detailed descrip-

tion of the command:

$ help cd
cd: cd [-PL] [dir]

Change the current directory to DIR. The variable $HOME is the

default DIR. The variable $CDPATH defines the search path for

the directory containing DIR. Alternative directory names in

CDPATH are separated by a colon (:) . A null directory name is

the same as the current directory, i.e. '.'. If DIR begins with
a slash (/), then $CDPATH is not used. If the directory is not
found, and the shell option 'cdable_vars' is set, then try the

word as a variable name. If that variable has a value, then cd
to the value of that variable. The -P option says to use the

physical directory structure instead of following symbolic links;

the -L option forces symbolic links to be followed.

You can also provide help with a partial name, in which case it will return details

on all commands matching the partial name. For example, help re will provide

details on read, readonly, and return. The partial name can also include wildcards.

You'll need to quote the name to ensure that the wildcard is not expanded to a

filename. So the last example is equivalent to help 're*' , and help 're??' will only

return details on read.

Sometimes help will show more than a screenful of information and it will scroll

the screen. You can use the more command to show one screenful at a time by

typing help command \ more.

In this chapter:

• The History File

• emacs Editing Mode
• vi Editing Mode
• Thefc Command
• History Expansion

• readline

Command-Line
Editing

It's always possible to make mistakes when you type at a computer keyboard, but

perhaps even more so when you are using a UNIX shell. UNIX shell syntax is

powerful, yet terse, full of odd characters, and not particularly mnemonic, making

it possible to construct command lines that are as cryptic as they are complex. The

Bourne and C shells exacerbate this situation by giving you extremely limited ways

of editing your command lines.

In particular, there is no way to recall a previous command line so that you can fix

a mistake. If you are an experienced Bourne shell user, undoubtedly you know

the frustration of having to retype long command lines. You can use the

BACKSPACE key to edit, but once you hit RETURN, it's gone forever!

The C shell provided a small improvement via its history mechanism, which pro-

vides a few very awkward ways of editing previous commands. But there are

more than a few people who have wondered, "Why can't I edit my UNIX com-

mand lines in the same way I can edit text with an editor?"

This is exactly what bash allows you to do. It has editing modes that allow you to

edit command lines with editing commands similar to those of the two most popu-

lar UNIX editors, vi and emacs. It also provides a much-extended analog to the C

shell history mechanism called fc (for fix command) that, among other things,

allows you to use your favorite editor directly for editing your command lines. To

round things out, bash also provides the original C shell history mechanism.

In this chapter, we will discuss the features that are common to all of hash's com-

mand-history facilities; after that, we will deal with each facility in detail. If you

use either vi or emacs, you may wish to read the section on the emulation mode

28

Introduction 29

for only the one you use.* If you use neither vi or emacs, but are interested in

learning one of the editing modes anyway, we suggest emacs-mode, because it is

more of a natural extension of the minimal editing capability you get with the bare

shell.

We should mention up front that both emacs- and vi-modes introduce the poten-

tial for clashes with control keys set up by the UNIX terminal interface. Recall the

control keys shown in Chapter 1, bash Basics, in Table 1-7 and the sample stty

command output. The control keys shown there override their functions in the

editing modes.

During the rest of this chapter, we'll warn you when an editing command clashes

with the default setting of a terminal-interface control key.

Enabling Command-Line Editing

bash initially starts interactively with emacs-mode as the default (unless you have

started bash with the -noediting option;t see Chapter 10, bash Administration).

There are two ways to enter either editing mode while in the shell. First, you can

use the set command:

$ set -o emacs

or:

$ set -o vi

The second way of selecting the editing mode is to set a readline variable in the

file .inputrc. We will look at this method later in this chapter.

You will find that the vi- and emacs-editing modes are good at emulating the basic

commands of these editors, but not their advanced features; their main purpose is

to let you transfer "keyboard habits" from your favorite editor to the shell, fc is

quite a powerful facility; it is mainly meant to supplant C shell history and as an

"escape hatch" for users of editors other than vi or emacs. Therefore the section

on fc is mainly recommended to C shell users and those who don't use either

standard editor.

* You will get the most out of these sections if you are already familiar with the editor(s) in question.

Good sources for more complete information on the editors are the O'Reilly & Associates books Learn-

ing the vi Editor, by Linda Lamb, and Learning GNUEmacs, by Debra Cameron and Bill Rosenblatt.

t -nolineediting in versions of bash prior to 2.0.

30 Chapter 2: Command-Line Editing

The History File

All of bash's command history facilities depend on a list that records commands as

you type them into the shell. Whenever you log in or start another interactive

shell, bash reads an initial history list from the file .bash_history in your home
directory. From that point on, every bash interactive session maintains its own list

of commands. When you exit from a shell, it saves the list in .bash_history. You

can call this file whatever you like by setting the environment variable HISTFILE.

We'll look more closely at HISTFILE and some other related command history vari-

ables in the next chapter.

etnacs Editing Mode
If you are an emacs user, you will find it most useful to think of emacs editing

mode as a simplified emacs with a single, one-line window. All of the basic com-

mands are available for cursor motion, cut-and-paste, and search.

Basic Commands
emacs-mode uses control keys for the most basic editing functions. If you aren't

familiar with emacs, you can think of these as extensions of the rudimentary

"erase" character (usually BACKSPACE or DEL) that UNIX provides through its

interface to users' terminals. For the sake of consistency, we'll assume your erase

character is DEL from now on; if it is CTRL-H or something else, you will need to

make a mental substitution. The most basic control-key commands are shown in

Table 2-1. ^Important: remember that typing CTRL-D when your command line is

empty may log you off!) The basic keyboard habits of emacs-mode are easy to

learn, but they do require that you assimilate a couple of concepts that are pecu-

liar to the emacs editor.

Table 2-1: Basic emacs-Mode Commands

Command Description

CTRL-B Move backward one character (without deleting)

CTRL-F Move forward one character

DEL Delete one character backward

CTRL-D Delete one character forward

The first of these is the use of CTRL-B and CTRL-F for backward and forward cur-

sor motion. These keys have the advantage of being obvious mnemonics. You can

also use the left and right cursor motion keys ("arrow" keys), but for the rest of

this discussion we will use the control keys, as they work on all keyboards. In

emacs-mode, the fyoint (sometimes also called dot) is an iinaginaiy place just to

emacs Editing Mode 3

1

the left of the character the cursor is on. In the command descriptions in Table

2-1, some say "forward" while others say "backward." Think of forward as "to the

right of point" and backward as "to the left of point."

For example, let's say you type in a line and, instead of typing RETURN, you type

CTRL-B and hold it down so that it repeats. The cursor will move to the left until it

is over the first character on the line, like this:

$ ^grep -1 Duchess < ~cam/book/alice_in_wonderland

Now the cursor is on the f , and point is at the beginning of the line, just before

the f . If you type DEL, nothing will happen because there are no characters to the

left of point. However, if you press CTRL-D (the "delete character forward" com-

mand) you will delete the first letter:

$ §rep -1 Duchess < ~cain/book/alice_in_wonderland

Point is still at the beginning of the line. If this were the desired command, you

could hit RETURN now and run it; you don't need to move the cursor back to the

end of the line. However, you could type CTRL-F repeatedly to get there:

$ grep -1 Duchess < ~cam/book/allce_in_wonderland|

At this point, typing CTRL-D wouldn't do anything, but hitting DEL would erase

the final d.

Word Commands
The basic commands are really all you need to get around a command line, but a

set of more advanced commands lets you do it with fewer keystrokes. These com-

mands operate on words rather than single characters; emacs-mode defines a word

as a sequence of one or more alphanumeric characters.

The word commands are shown in Table 2-2. The basic commands are all single

characters, whereas these consist of two keystrokes, ESC followed by a letter. You

will notice that the command ESC X, where X is any letter, often does for a word

what CTRL-X does for a single character. "Kill" is another word for "delete"; it is

the standard term used in the readline library documentation for an "undoable"

deletion.

Table 2-2: emacs-Mode Word Commands

Command Description

ESC-B Move one word backward

ESC-F Move one word forward

ESC-DEL Kill one word backward

ESC-CTRL-H Kill one word backward

32 Chapter 2: Command-Line Editing

Table 2-2: emacs-Mode Word Commands (continued)

Command Description

ESC-D

CTRL-Y

Kill one word forward

Retrieve ("yank") last item killed

To return to our example: if we type ESC-B, point will move back a word. Since

the underscore O is not an alphanumeric character, emacs-mode will stop there:

$ grep -1 Duchess < ~cain/book/alice_in_2onderland

The cursor is on the w in wonderland, and point is between the _ and the w. Now
let's say we want to change the -1 option of this command from Duchess to

Cheshire. We need to move back on the command line, so we type ESC-B four

more times. This gets us here:

$ grep -1 Duchess < ~2ain/book/alice_in_wonderland

If we type ESC-B again, we end up at the beginning of Duchess:

$ grep -1 ^^chess < ~ccun/book/alice_in_wonderland

Why? Remember that a word is defined as a sequence of alphanumeric characters

only. Therefore < is not a word; the next word in the backward direction is

Duchess. We are now in position to delete Duchess, so we type ESC-D and get:

$ grep -1 |< ~cain/book/alice_in_wonderland

Now we can type in the desired argument:

$ grep -1 Cheshire|< ~c€un/book/alice_in_wonderland

If you want Duchess back again you can use the CTRL-Y command. The CTRL-Y

"yank" command will undelete a word if the word was the last thing deleted. In

this case, CTRL-Y would insert Duchess at the point.

Line Commands
There are still more efficient ways of moving around a command line in emacs-

mode. A few commands deal with the entire line; they are shown in Table 2-3.

Table 2-3: emacs-Mode Line Commands

Command

CTKL-A

CIRL-F

CTRL-K

Description

Move to beginning of line

Move to end of line

Kill forward to end of line

emacs Editing Mode 33

Using CTRL-A, CTRL-E, and CTRL-K should be straightforward. Remember that

CTRL-Y will always undelete the last thing deleted; if you use CTRL-K, that could

be quite a few characters.

Moving Around in the History File

Now we know how to get around the command line efficiently and make

changes. But that doesn't address the original issue of recalling previous com-

mands by accessing the history file, emacs-mode has several commands for doing

this, summarized in Table 2-4.

Table 2-4: emacs-Mode CommandsforMoving Through the History File

Command Description

CTRL-P Move to previous line

CTRL-N Move to next line

CTRL-R Search backward

ESC-< Move to first line of history file

ESC-> Move to last line of history file

CTRL-P and CTRL-N move you through the command history. If you have cursor

motion keys (arrow keys) you can use them instead. The up-arrow is the same as

CTRL-P and the down-arrow is the same as CTRL-N. For the rest of this discussion,

we'll stick to using the control keys because they can be used on all keyboards.

CTRL-P is by far the one you will use most often— it's the "I made a mistake, let

me go back and fix it" key. You can use it as many times as you wish to scroll

back through the history file. If you want to get back to the last command you

entered, you can hold down CTRL-N until bash beeps at you, or just type ESC->.

As an example, you hit RETURN to run the command above, but you get an error

message telling you that your option letter was incorrect. You want to change it

without retyping the whole thing.

First, you would type CTRL-P to recall the bad command. You get it back with

point at the end:

$ grep -1 Duchess < ~cain/book/alice_in_wonderland|

After CTRL-A, ESC-F, two CTRL-Fs, and CTRL-D, you have:

$ grep -jDuchess < ~cam/book/alice_in_wonderland

You decide to try -s instead of -1, so you type s and hit RETURN. You get the

same error message, so you give up and look it up in the manual. You find out

that the command you want is fgrep—not grep—after all.

34 Chapter 2: Command-Line Editing

You sigh heavily and go back and find the fgrep command you typed in an hour

ago. To do this, you type CTRL-R; whatever was on the line will disappear and be

replaced by (reverse-i-search) '
'

: . Then type fgrep, and you will see this:

$ (reverse-i-search)

^

fgrep' : fgrep -1 Duchess <~cain/book/ \

alice_in_wonderland||

The shell dynamically searches back through the command history each time you

type a letter, looking for the current substring in the previous commands. In this

example, when you typed f the shell would have printed the most recent com-

mand in the history with that letter in it. As you typed more letters, the shell nar-

rowed the search until you ended up with the line displayed above. Of course,

this may not have been the particular line you wanted. Typing CTRL-R again

makes the shell search further back in the history list for a line with "fgrep" in it. If

the shell doesn't find the substring again, it will beep.

If you try the fgrep command by hitting RETURN, two things will happen. First, of

course, the command will run. Second, this line will be entered into the history file

at the end, and your "current line" will be at the end as well. You will no longer

be somewhere else in the command history.

CTRL-P, CTRL-N, and CTRL-R are clearly the most important emacs-mode com-

mands that deal with the command history. The others are less useful but are

included for compatibility with the full emacs editor.

Textual Completion

One of the most powerful (and typically underused) features of emacs-mode is its

textual completion facility, inspired by similar features in the full emacs editor, the

C shell, and (originally) the old DEC TOPS-20 operating system.

The premise behind textual completion is simple: you should have to type only as

much of a filename, user name, function, etc., to identify it unambiguously. This is

an excellent feature; there is an analogous one in vi-mode. We recommend that

you take the time to learn it, since it will save you quite a bit of typing.

There are three commands in emacs-mode that relate to textual completion. The

most important is TAB.* When you type in a word of text followed by TAB, hash

will attempt to complete the name. Then one of four things can happen:

1. If there is nothing whose name begins with the word, the shell will beep and

nothing further will happen.

emacs usdTS will recogni/c this as ininilnifTcr conipiction.

etnacs Editing Mode 35

2. If there is a command name in the search path, a function name, or a filename

that the string uniquely matches, the shell will type the rest of it, followed by

a space in case you want to type in more command arguments. Command
name completion is only attempted when the word is in a command position

(e.g., at the start of a line).

3. If there is a directory that the string uniquely matches, the shell will complete

the filename, followed by a slash.

4. If there is more than one way to complete the name, the shell will complete

out to the longest common prefix among the available choices. Commands in

the search path and functions take precedence over filenames.

For example, assume you have a directory with the files tweedledee.c and tweedle-

dum, c. You want to compile the first of these by typing cc tweedledee.c. You type

cc twee followed by TAB. This is not an unambiguous prefix, since the prefix

"twee" is common to both filenames, so the shell only completes out to cc twee-

died. You need to type more letters to distinguish between them, so you type e

and hit TAB again. Then the shell completes out to "cc tweedledee.c ", leaving the

extra space for you to type in other filenames or options.

If you didn't know what options were available after trying to complete cc twee,

you could press TAB again, bash prints out the possible completions for you and

presents your input line again:

$ cc tweedled
tweedledee.c tweedledum.

c

$ cc tweedled

A related command is ESC-?, which expands the prefix to all possible choices, list-

ing them to standard output. Be aware that the completion mechanism doesn't

necessarily expand to a filename. If there are functions and commands that satisfy

the string you provide, the shell expands those first and ignores any files in the

current directory. As we'll see, you can force completion to a particular type.

It is also possible to complete other environment entities. If the text being com-

pleted is preceded by a dollar sign ($), the shell attempts to expand the name to

that of a shell variable (see Chapter 3, Customizing Your Environment, for a dis-

cussion of shell variables). If the text is preceded by a tilde (~), completion to a

username is attempted; if preceded by an at sign (@), a hostname is attempted.

For example, suppose there was a username cameron on the system. If you

wanted to change to this user's home directory, you could just use tilde notation

and type the first few letters of the name, followed by a TAB:

$ cd ~ca

36 Chapter 2: Command-Line Editing

which would expand to:

$ cd "Cameron/

You can force the shell to complete to specific things. Table 2-5 lists the standard

keys for these.

Table 2-5: Completion Commands

Command Description

TAB Attempt to perform general completion of the text

ESC-? List the possible completions

ESC-/ Attempt filename completion

CTRL-X/ List the possible filename completions

ESC-~ Attempt username completion

CTRL-X
~

List the possible username completions

ESC-$ Attempt variable completion

CTRL-X $ List the possible variable completions

ESC-@ Attempt hostname completion

CTRL-X @ List the possible hostname completions

ESC-! Attempt command completion

CTRL-X! List the possible command completions

ESC-TAB Attempt completion from previous commands in the history list

If you find that you are interested only in completing long filenames, you are

probably better off using ESC-/ rather than TAB. This ensures that the result will

be a filename and not a function or command name.

Miscellaneous Commands
Several miscellaneous commands complete emacs editing mode; they are shown

in Table 2-6.

Table 2-6: emacs-Mode Miscellaneous Commands

Command Description

CTRL-J Same as RETURN
CTRL-L Clears the screen, placing the current line at the top of the screen

CTRL-M Same as RETURN
CTRL-O Same as RETURN, then display next line in command history

CTRL-T Transpose two characters on either side of point and move point forv^'ard

by one

CTRL-U Kills the line from the beginning to point

CTRL-V Quoted insert

CTRL-(Same as ESC (most keyboards)

emacs Editing Mode 3 7

Table 2-6: emacs-Mode Miscellaneous Commands (continued)

Command Description

ESC-C Capitalize word after point

ESC-U Change word after point to all capital letters

ESC-L Change word after point to all lowercase letters

ESC-. Insert last word in previous command line after point

ESC-_ Same as ESC-.

BSD-derived systems use CTRL-V and CTRL-W as default settings for the "quote

next character" and "word erase" terminal interface functions, respectively.

A few of these miscellaneous commands are worth discussing, even though they

may not be among the most useful emacs-mode commands.

CTRL-O is useful for repeating a sequence of commands you have already entered.

Just go back to the first command in the sequence and press CTRL-O instead of

RETURN. This will execute the command and bring up the next command in the

history file. Press CTRL-O again to enter this command and bring up the next one.

Repeat this until you see the last command in the sequence; then just hit RETURN.

Of the case-changing commands, ESC-L is useful when you hit the CAPS LOCK
key by accident and don't notice it immediately. Since all-caps words aren't used

too often in the UNIX world, you probably won't use ESC-U very often.

CTRL-V will cause the next character you type to appear in the command line as

is; i.e., if it is an editing command (or an otherwise special character like CTRL-D),

it will be stripped of its special meaning.

If it seems like there are too many synonyms for RETURN, bear in mind that CTRL-

M is actually the same (ASCII) character as RETURN, and that CTRL-J is actually the

same as LINEFEED, which UNIX usually accepts in lieu of RETURN anyway.

ESC-. and ESC-_ are useful if you want to run several commands on a given file.

The usual UNIX convention is that a filename is the last argument to a command.

Therefore you can save typing by just entering each command followed by SPACE

and then typing ESC-. or ESC-_. For example, say you want to examine a file

using more, so you type:

$ more myfilewithavexYlongname

Then you decide you want to print it, so you type the print command Ip. You can

avoid typing the very long name by typing Ip followed by a space and then ESC-

.

or ESC-_; bash will insert myfilewithaverylongname for you.

38 Chapter 2: Command-Line Editing

vi Editing Mode
Like emacs-mode, vi-mode essentially creates a one-line editing window into the

history file, vi-mode is popular because vi is the most standard UNIX editor. But

the function for which vi was designed, writing C programs, has different editing

requirements from those of command interpreters. As a result, although it is possi-

ble to do complex things in vi with relatively few keystrokes, the relatively simple

things you need to do in bash sometimes take too many keystrokes.

Like vi, vi-mode has two modes of its own: input and control mode. The former is

for typing commands (as in normal bash use); the latter is for moving around the

command line and the history file. When you are in input mode, you can type

commands in and hit RETURN to run them. In addition, you have minimal editing

capabilities via control characters, which are summarized in Table 2-7.

Table 2-7: Editing Commands in vi Input Mode

Command Description

DEL Delete previous character

CTRL-W Erase previous word (i.e., erase until a blank)

CTRL-V Quote the next character

ESC Enter control mode (see below)

Note that at least some of these—depending on which version of UNIX you

have—are the same as the editing commands provided by UNIX through its termi-

nal interface.* vi-mode will use your "erase" character as the "delete previous char-

acter" key; usually it is set to DEL or CTRL-H (BACKSPACE). CTRL-V works the

same way as in emacs-mode; it causes the next character to appear in the com-

mand line as is and lose its special meaning.

Under normal circumstances, you just stay in input mode. But if you want to go

back and make changes to your command line, or if you want to recall previous

commands, you need to go into control mode. To do this, hit ESC.

Simple Control Mode Commands
A full range of vi editing commands are available to you in control mode. The sim-

plest of these move you around the command line and are summarized in Table

2-8. vi-mode contains two "word" concepts. The simplest is any sequence of non-

blank characters; we'll call this a non-blank word. The other is any sequence of

* In particular, versions of UNIX derived tioiii i.x BSD have all of these coiiiinands built in.

vi Editing Mode 39

only alphanumeric characters (letters and digits) plus the underscore (_), or any

sequence of only non-alphanumeric characters; we'll just call this a word*

Table 2-8: Basic vi Control Mode Commands

Command Description

h Move left one character

1 Move right one character

w Move right one word

b Move left one word

W Move to beginning of next non-blank word

B Move to beginning of preceding non-blank word

e Move to end of current word

E Move to end of current non-blank word

Move to beginning of line
'^

Move to first non-blank character in line

$ Move to end of line

All of these commands except the last three can be preceded by a number that

acts as a repeat count. Whenever you type a number for the repeat count, the

number replaces the command prompt for the duration of the repeat command. If

your keyboard has cursor motion keys ("arrow" keys), you can use the left and

right arrows to move between characters instead of the h and 1 keys. Repeat

counts will work with the cursor keys as well.

The last two will be familiar to users of UNIX utilities (such as grep) that use regu-

lar expressions, as well as to vi users.

Time for a few examples. Let's say you type in this line and, before you hit

RETURN, decide you want to change it:

$ fgrep -1 Duchess < ~cam/book/alice_in_wonderland|

As shown, your cursor is beyond the last character of the line. First, type ESC to

enter control mode; your cursor will move back one space so that it is on the d.

Then if you type h, your cursor will move back to the n. If you type 3h from the

n, you will end up at the r.

Now we will see the difference between the two "word" concepts. Go back to the

end of the line by typing $. If you type b, the word in question is

alice_in_wonderland, and the cursor will end up on the a:

$ fgrep -1 Duchess < ~cam/book/2lice_in_wonderland

* Neither of these definitions is the same as the definition of a word in emacs-mode.

40 Chapter 2: Command-Line Editing

If you type b again, the next word is the slash (it's a "sequence" of non-

alphanumeric characters), so the cursor ends up over it:

$ fgrep -1 Duchess < ~cain/bookJalice_in_wonderland

However, if you typed B instead of b, the non-blank word would be the entire

pathname, and the cursor would end up at the beginning of it—over the tilde:

$ fgrep -1 Duchess < [[cain/book/alice_ln_wonderland

You would have had to type b four times—or just 4b—to get the same effect,

since there are four "words" in the part of the pathname to the left of

/alice_in_wonderland\ book, slash, cam, and the leading tilde.

At this point, w and W do the opposite: typing w gets you over the c, since the

tilde is a "word," while typing W brings you to the end of the line. But whereas w
and W take you to the beginning of the next word, e and E take you to the end of

the current word. Thus, if you type w with the cursor on the tilde, you get to:

$ fgrep -1 Duchess < ~Qain/book/alice_in_wonderland

Then typing e gets you to:

$ fgrep -1 Duchess < ~ca2/book/alice_in_wonderland

And typing an additional w gets you to:

$ fgrep -1 Duchess < ~cainHbook/alice_in_wonderland

On the other hand, E gets you to the end of the current non-blank word— in this

case, the end of the line. (If you find these commands non-mnemonic, you're

right. The only way to assimilate them is through lots of practice.)

Entering and Changing Text

Now that you know how to enter control mode and move around on the com-

mand line, you need to know how to get back into input mode so you can m.ake

changes and type in additional commands. A number of commands take you from

control mode into input mode; they are listed in Table 2-9. All of them enter input

mode a bit differently.

Table 2-9: Commandsfor Entering vi Input Mode

Command Description

Text inserted before current character (insert)

Text inserted after current character (append)

Text inserted at beginning of line

vi Editing Mode 41

Table 2-9: Commandsfor Entering vi Input Mode (continued)

Command Description

Text inserted at end of line

Text overwrites existing text

Most likely, you will use either i or a consistently, and you may use R occasionally.

I and A are abbreviations for Oi and $a respectively. To illustrate the difference

between i, a, and R, say we start out with our example line:

$ fgrep -1 Duchess < ~cain/bookJalice_in_wonderland

If you type i followed by end, you will get:

$ fgrep -1 Duchess < ~cain/bookend^alice_in_wonderland

That is, the cursor will always appear to be under the / before

alice_in_wonderland. But if you type a instead of i, you will notice the cursor

move one space to the right. Then if you type miss_, you will get:

$ fgrep -1 Duchess < ~Ccun/book/miss ^lice in wonderland

That is, the cursor will always be just after the last character you typed, until you

type ESC to end your input. Finally, if you go back to the first a in

alice_in_wonderland, type R instead, and then type through_the_looking_glass,

you will see:

$ fgrep -1 Duchess < ~cain/book/through_the_looking_glas^

In other words, you will be replacing (hence K) instead of inserting text.

Why capital R instead of lowercase r? The latter is a slightly different command,

which replaces only one character and does not enter input mode. With r, the next

single character overwrites the character under the cursor. So if we start with the

original command line and type r followed by a semicolon, we get:

$ fgrep -1 Duchess < ~cain/book0alice_in_wonderland

If you precede r with a number A^, it will allow you to replace the next N existing

characters on the line—but still not enter input mode. Lowercase r is effective for

fixing erroneous option letters, I/O redirection characters, punctuation, and so on.

Deletion Commands
Now that you know how to enter commands and move around the line, you need

to know how to delete. The basic deletion command in vi-mode is d followed by

one other letter. This letter determines what the unit and direction of deletion is,

and it corresponds to a motion command, as listed previously in Table 2-8.

42 Chapter 2: Command-Line Editing

Table 2-10 shows some commonly used examples.

Table 2-10: Some vi-Mode Deletion Commands

Command Description

dh Delete one character backwards

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

dB Delete one non-blank word backwards

dW Delete one non-blank word forwards

d$ Delete to end of line

do Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead

of d, you will enter input mode after it does the deletion. You can supply a

numeric repeat count either before or after the d (or c). Table 2-11 lists the avail-

able abbreviations.

Table 2-11: Abbreviationsfor vi-Mode Delete Commands

Command Description

D Equivalent to d$ (delete to end of line)

dd Equivalent to Od$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)

cc Equivalent to Oc$ (delete entire line, enter input mode)

X Equivalent to dl (delete character backwards)

X Equivalent to dh (delete character forwards)

Most people tend to use D to delete to end of line, dd to delete an entire line, and

X (as "backspace") to delete single characters. If you aren't a hardcore vi user, you

may find it difficult to get some of the more esoteric deletion commands under

your fingers.

Every good editor provides "un-delete" commands as well as delete commands,

and vi-mode is no exception, vi-mode maintains a delete buffer that stores all of

the modifications to text on the current line only (note that this is different from

the full vi editor). The command u undoes previous text modifications. If you type

u, it will undo the last change. Typing it again will undo the change before that.

When there are no more undo's, hash will beep. A related command is . (dot),

which repeats the last text modification command.

There is also a way to save text in the delete buffer without having to delete it in

the first place: just type in a delete command but use y ("yank") instead of d. This

does not modify anything. i)ul it allows you to retrieve the yanked text as many

vi Editing Mode 43

times as you like later on. The commands to retrieve yanked text are p, which

inserts the text on the current line to the right of the cursor, and P, which inserts it

to the left of the cursor. The y, p, and P commands are powerful but far better

suited to "real vf' tasks like making global changes to documents or programs

than to shell commands, so we doubt you'll use them very often.

Moving Around in the History File

The next group of vi control mode commands we cover allows you to move

around in and search your command history. This is the all-important functionality

that lets you go back and fix an erroneous command without retyping the entire

line. These commands are summarized in Table 2-12.

Table 2-12: vi Control Mode Commandsfor Searching the Command History

Command Description

k or - Move backward one line

j or + Move forward one line

G Move to line given by repeat count

/string Search backward for string

1 string Search forward for string

n Repeat search in same direction as previous

N Repeat search in opposite direction of previous

The first two can also be accomplished with the up and down cursor movement

keys if your keyboard has them. The first three can be preceded by repeat counts

(e.g., 3k or 3- moves back three lines in the command history).

If you aren't familiar with vi and its cultural history, you may be wondering at the

wisdom of choosing such seemingly poor mnemonics as h, j, k, and 1 for back-

ward character, forward line, backward line, and forward character, respectively.

Well, there actually is a rationale for the choices—other than that they are all

together on the standard keyboard. Bill Joy originally developed vi to run on Lear-

Siegler ADM-3a terminals, which were the first popular models with addressable

cursors (meaning that a program could send an ADM-3a command to move the

cursor to a specified location on the screen). The ADM-3a's h, j, k, and 1 keys had

little arrows on them, so Joy decided to use those keys for appropriate commands

in vi. Another (partial) rationale for the command choices is that CTRL-H is the tra-

ditional backspace key, and CTRL-J denotes linefeed.

Perhaps + and - are better mnemonics than j and k, but the latter have the advan-

tage of being more easily accessible to touch typists. In either case, these are the

most basic commands for moving around the history file. To see how they work,

let's use the same examples from the emacs-mode section earlier.

44 Chapter 2: Command-Line Editing

You enter the example command (RETURN works in both input and control

modes, as does LINEFEED or CTRL-J):

$ fgrep -1 Duchess < ~cain/book/alice_in_wonderland

but you get an error message saying that your option letter was wrong. You want

to change it to -s without having to retype the entire command. Assuming you are

in control mode (you may have to type ESC to put yourself in control mode), you

type k or - to get the command back. Your cursor will be at the beginning of the

line:

$ |]grep -1 Duchess < ~cam/book/alice_in_wonderland

Type w to get to the -, then 1 to get to the 1. Now you can replace it by typing rs;

press RETURN to run the command.

Now let's say you get another error message, and you finally decide to look at the

manual page for the fgrep command. You remember having done this a while ago

today, so rather than typing in the entire man command, you search for the last

one you used. To do this, type ESC to enter control mode (if you are already in

control mode, this will have no effect), then type / followed by man or ma. To be

on the safe side, you can also type "ma; the " means match only lines that begin

with ma.*

But typing /"ma doesn't give you what you want: instead, the shell gives you:

$ make myprogram

To search for "man" again, you can type n, which does another backward search

using the last search string. Typing / again without an argument and hitting

RETURN will accomplish the same thing.

The G command retrieves the command whose number is the same as the

numeric prefix argument you supply. G depends on the command numbering

scheme described in Chapter 3, in the section "Prompting Variables." Without a

prefix argument, it goes to command number \. This may be useful to former C

shell users who still want to use command numbers.

Character-Finding Commands
There are some additional motion commands in vi-mode, although they are less

useful than the ones we saw earlier in the chapter. These commands allow you to

move to the position of a particular character in the line. They are summarized in

Table 2-13, in which jc denotes any character.

* Fan.s of vi and search utilities like grcp should note thai c.iret (") for bej^inniiig-of-line is the only

context operator vi-mode provides for search strings.

vi Editing Mode 45

All of these commands can be preceded by a repeat count.

Table 2-13: vi-Mode Character-Finding Commands

Command Description

Fx

tx

Tx

Move right to next occurrence of x

Move left to previous occurrence of x

Move right to next occurrence of x, then back one space

Move left to previous occurrence of x, then forward one space

Redo last character-finding command

Redo last character-finding command in opposite direction

Starting with the previous example: let's say you want to change Duchess to

Duckess. Make sure that you're at the end of the line (or, in any case, to the left of

the h in Duchessy, then, if you type Fh, your cursor will move to the h:

$ fgrep -1 Duchess < ~ceun/book/alice_in_wonderland

At this point, you could type r to replace the h with k. But let's say you wanted to

change Duchess to Dutchess. You would need to move one space to the right of

the u. Of course, you could just type 1. But, given that you're somewhere to the

right of Duchess, the fastest way to move to the c would be to type Tu instead of

Fu followed by 1.

As an example of how the repeat count can be used with character-fiinding com-

mands, let's say you want to change the fiilename from alice_in_wonderland to

alice. In this case, assuming your cursor is still on the D, you need to get to one

character beyond the second slash. To do this, you can type 2fa. Your cursor will

then be on the a in alice_in_wonderland.

The character-finding commands also have associated delete commands. Read the

command definitions in the previous table and mentally substitute "delete" for

move. You'll get what happens when you precede the given character-finding

command with a d. The deletion includes the character given as argument. For

example, assume that your cursor is under the a in alice_in_wonderland\

$ fgrep -1 Duchess < ~cain/book/2lice_in_wonderland

If you want to change alice_in_wonderland to natalie_in_wonderland, one possi-

bility is to type dfc. This means "delete right to next occurrence of c," i.e., delete

"alic". Then you can type i (to enter input mode) and then "natali" to complete the

change.

One final command rounds out the vi control mode commands for getting around

on the current line: you can use the pipe character (I) to move to a specific col-

umn, whose number is given by a numeric prefix argument. Column counts start

at 1; count only your input, not the space taken up by the prompt string. The

46 Chapter 2: Command-Line Editing

default repeat count is 1, of course, which means that typing | by itself is equiva-

lent to (see Table 2-8).

Textual Completion

Although the character-finding commands and
I

are not particularly useful, vi-

mode provides one additional feature that we think you will use quite often:

textual completion. This feature is not part of the real vi editor, and it was

undoubtedly inspired by similar features in emacs and, originally, in the TOPS-20

operating system for DEC mainframes.

The rationale behind textual completion is simple: you should have to type only as

much of a filename, user name, function, etc, as is necessary. Backslash (\) is the

command that tells bash to do completion in vi-mode. If you type in a word, hit

ESC to enter control mode, and then type \, one of four things will happen; they

are the same as for TAB in emacs-mode:

1

.

If there is nothing whose name begins with the word, the shell will beep and

nothing further will happen.

2. If there is a command name in the search path, a function name, or a filename

that the string uniquely matches, the shell will type the rest of it, followed by

a space in case you want to type in more command arguments. Command
name completion is only attempted when the word is in a command position

(e.g: at the start of a line).

3. If there is a directory that the string uniquely matches, the shell will complete

the filename, followed by a slash.

4. If there is more than one way to complete the name, the shell will complete

out to the longest common prefix among the available choices. Commands in

the search path and functions take precedence over filenames.

A related command is *. It behaves similarly to ESC-\, but if there is more than

one completion possibility (number four in the previous list), it lists all of them

and allows you to type further. Thus, it resembles the * shell wildcard character.

Less useful is the command =, which does the same kind of expansion as *. but in

a different way. Instead of expanding the names onto the command line, it prints

them, then gives you your shell prompt back and retypes whatever was on your

command line before you typed =. For example, if the files in your directory

include tweedledee.c and tweedledum. c, and you type twecdl followed by ESC and

then =, you will see this:

$ cc tweedl

tweedledee.c tweedledum.

c

Thefc Command 47

It is also possible to expand other environment entities, as we saw in emacs-mode.

If the text being expanded is preceded by a dollar sign ($), the shell will attempt

to expand the name to that of a shell variable. If the text is preceded by a tilde (~),

expansion to a username is attempted; if preceded by an at sign (@), a hostname.

Miscellaneous Commands
Several miscellaneous commands round out vi-mode; some of them are quite eso-

teric. They are listed in Table 2-14.

Table 2-14: Miscellaneous vi-Mode Commands

Command Description

CTRL-L

Invert (twiddle) case of current character(s)

Append last word of previous command, enter input mode

Clear the screen and redraw the current line on it; good for when your screen

becomes garbled

Prepend # (comment character) to the line and send it to the history file;

useful for saving a command to be executed later without having to retype it^

a. The line is also "executed" by the shell. However, # is the shell's comment character, so the shell

ignores it.

The first of these can be preceded by a repeat count. A repeat count of n preced-

ing the ~ changes the case of the next n characters. The cursor will advance

accordingly.

A repeat count preceding _ causes the nth word in the previous command to be

inserted in the current line; without the count, the last word is used. Omitting the

repeat count is useful because a filename is usually the last thing on a UNIX com-

mand line, and because users often run several commands in a row on the same

file. With this feature, you can type all of the commands (except the first) followed

by ESC-_, and the shell will insert the filename.

Thefc Command
fc is a built-in shell command that provides a superset of the C shell history mech-

anism. You can use it to examine the most recent commands you entered, to edit

one or more commands with your favorite "real" editor, and to run old commands

with changes without having to type the entire command in again. We'll look at

each of these uses in turn.

The -1 option to fc lists previous commands. It takes arguments that refer to com-

mands in the history file. Arguments can be numbers or alphanumeric strings;

numbers refer to the commands in the history file, while strings refer to the most

48 Chapter 2: Command-Line Editing

recent command beginning with the string, fc treats arguments in a rather complex

way:

• If you give two arguments, they serve as the first and last commands to be

shown.

• If you specify one number argument, only the command with that number is

shown.

• With a single string argument, it searches for the most recent command start-

ing with that string and shows you everything from that command to the most

recent command.

• If you specify no arguments, you will see the last 16 commands you entered.

bash also has a built-in command for displaying the history: history.

A few examples should make these options clearer. Let's say you logged in and

entered these commands:

Is -1

more myfile
vi myfile
wc -1 myfile
pr myfile

|
Ip -h

If you type fc -1 with no arguments, you will see the above list with command

numbers, as in:

1 Is -1

2 more myfile
3 vi myfile
4 wc -1 myfile
5 pr myfile

|
Ip -h

Adding another option, -n, suppresses the line numbers. If you want to see only

commands 2 through 4, type fc -1 2 4. If you want to see only the vi command,

type fc -1 3. To see everything from the vi command up to the present, type fc -I

V. Finally, if you want to see commands between more and wc, you can type fc -I

m w, fc -1 m 4, fc -1 2 4, etc.

The other important option to fc is -e for "edit." This is useful as an "escape

hatch" from vi- and emacs-modes if you aren't used to either of those editors. You

can specify the pathname of your favorite editor and edit commands from your

history file; then when you have made the changes, the shell will actually execute

the new lines.

Let's say your favorite editor is a little home-brew gem called zed. You could edit

your commands by typing:

$ fc -e /usr/local/bin/zed

Thefc Command 49

This seems like a lot of work just to fix a typo in your previous command; fortu-

nately, there is a better way. You can set the environment variable FCEDIT to the

pathname of the editor you want fc to use. If you put a line in your .bash_profile

or environment file saying:*

FCEDIT=/usr/ local /bin/ zed

you will get zed when you invoke fc. If FCEDIT isn't set, then bash uses whatever

the variable EDITOR is set to. If that's also not set, then bash defaults to vi.

fc is usually used to fix a recent command. When used without options, it handles

arguments a bit differently than it does for the fc -1 variation discussed earlier:

• With no arguments, fc loads the editor with the most recent command.

• With a numeric argument, fc loads the editor with the command with that

number.

• With a string argument, fc loads the most recent command starting with that

string.

• With two arguments to fc, the arguments specify the beginning and end of a

range of commands, as above.

Remember that fc actually runs the command(s) after you edit them. Therefore,

the last-named choice can be dangerous, bash will attempt to execute all com-

mands in the range you specify when you exit your editor. If you have typed in

any multiline constructs (like those we will cover in Chapter 5, Flow Control^, the

results could be even more dangerous. Although these might seem like valid ways

of generating "instant shell programs," a far better strategy would be to direct the

output of fc -In with the same arguments to a file; then edit that file and execute

the commands when you're satisfied with them:

$ fc -1 cp > lastcommands

$ vi lastcoimnands

$ source lastcommands

In this case, the shell will not try to execute the file when you leave the editor!

There is one final option with fc. fc -s allows you to rerun a command. With an

argument, fc will rerun the last command starting with the given string. Without an

argument, it will rerun the previous command. The -s option also allows you to

provide a pattern and replacement. For example, if you typed:

$ cs prog.c

You could correct it with fc -s cs=cc. This can be combined with the string search:

fc -s cs=cc cs. The last occurence of cs will be found and replaced with cc.

* See Chapter 3 for information on the bash startup file .bash_profile.

50 Chapter 2: Command-Line Editing

History Expansion
If you are a C shell user, you may be familiar with the history expansion mecha-

nism that it provides, bash provides a similar set of features. History expansion is a

primitive way to recall and edit commands in the history^ list. The way to recall

commands is by the use of event designators. Table 2-15 gives a complete list.

Table 2-15: Event Designators

Command Description

I

M

\n

\ string

\?string?

Start a history substitution

Refers to the last command

Refers to command line n

Refers to the current command line minus n

Refers to the most recent command starting with string

Refers to the most recent command containing string. The ending ? is

optional

stringr string2 \ Repeat the last command, replacing string 1 with string2

By far the most useful command is !!. Typing !! on the command line re-executes

the last command. If you know the command number of a specific command, you

can use the \n form, where n is the command number. Command numbers can be

determined from the history command. Alternatively, you can re-execute the most

recent command beginning with the specified string by using \ string.

You might also find the last expansion in the table to be of some use if you've

made a tvping mistake. For example, you might have typed

$ cat through_the_loking_glass
|

grep Tweedledee > dee. list

Instead of mo\ing back to the line and changing loking to looking, you could just

type ^lok^look. This will change the string lok to look and then execute tlie result-

ing command.

Its also possible to refer to certain words in a previous command by the use of a

word designator. Table 2-16 lists available designators. Note that when counting

words, bash (like most UNIX programs) starts counting with zero, not with one.

Table 2-16: Word Designators

Designator Description

The zeroth (first) word in a line

n The ^zlli word in a line
"

The first argument (the second word)

$ The last argument in a line

% The word matched by the most recent '^string search

readline 51

Table 2-16: Word Designators (continued)

Designator Description

x-y A range of words from x to y. -y is synonymous with 0-y
k All words but the zeroth (first). Synonymous with 1-$. If there is only one

word on the line, an empty string is returned.

X* Synonymous with x-$

X- The words from x to the second last word

The word designator follows the event designator, separated by a colon. You

could, for example, repeat the previous command with different arguments by typ-

ing !!:0 followed by the new arguments.

Event designators may also be followed by modifiers. The modifiers follow the

word designator, if there is one. Table 2-17 lists the available modifiers.

Table 2-17: Modifiers

Modifier Description

h Removes a trailing pathname component, leaving the head

r Removes a trailing suffix of the form .xxx

e Removes all but the trailing suffix

t Removes all leading pathname components, leaving the tail

P Prints the resulting command but doesn't execute it

q Quote the substituted words, escaping further substitutions

X Quote the substituted words, breaking them into words at blanks and

newlines

s/old/new/ Substitutes new for old

More than one modifier may be used with an event designator; each one is sepa-

rated by a colon.

History expansion is fine for re-executing a command quickly, but it has been

superseded by the command-line editing facilities that we looked at earlier in this

chapter. Its inclusion is really only for completeness, and we feel you are better off

mastering the techniques offered in the vi or emacs editing modes.

readline

bash's command-line editing interface is readline. It is actually a library of soft-

ware developed for the GNU project that can be used by applications requiring a

text-based interface. It provides editing and text-manipulation features to make it

easier for the user to enter and edit text. Just as importantly, it allows standardiza-

tion, in terms of both key strokes and customization methods, across all applica-

tions that use it.

52 Chapter 2: Command-Line Editing

readline provides default editing in either of two modes: vi or emacs. Both modes

provide a subset of the editing commands found in the full editors. We've already

looked at the command sets of these modes in the previous sections of this chap-

ter. We'll now look at how you can make your own command sets.

readline gives bash added flexibility compared to other shells because it can be

customized through the use of key bindings, either from the command line or in a

special startup file. You can also set readline variables. We'll see how you can set

up readline using your own startup file now, and then go on to examine how the

binding capability can be used from the command line.

The readline Startup File

The default startup file is called Anputrc and must exist in your home directory if

you wish to customize readline. You can change the default filename by setting

the environment variable INPUTRC (see Chapter 3 for further information on envi-

ronment variables).

When bash starts up, it reads the startup file (if there is one) and any settings there

come into effect. The startup file is just a sequence of lines that bind a keyname to

a macro or readline function name. You can also place comments in the file by

preceding any line with a #.

You can use either an English name or a key escape sequence for the keyname.

For example, to bind CTRL-T to the movement command for moving to the end of

the current line, you could place Control-t: end-of-line in your Anputrc. If you

wanted to use a key escape sequence you could have put "\C-t": end-of-line. The

\C- is the escape sequence prefix for Control. The advantage of the key sequence

is that you can specify a sequence of keys for an action. In our example, once

readline has read this line, typing a CTRL-T will cause the cursor to move to the

end of the line.

The end-of-line in the previous example is a readline function. There are over 60

functions that allow you to control everything from cursor motions to changing

text and command completion (for a complete list, see the bash manual page). All

of the emacs and vi editing mode commands that we looked at in this chapter

have associated functions. This allows you to customize the default modes or

make up completely new ones using your own key sequences.

Besides the readline functions, you can also bind a macro to a key sequence. A

macro is simply a sequence of keystrokes inside single or double quotes. Typing

the key sequence causes the keys in the macro to be entered as though you had

typed them. For example, we could bind some text to CTRL-T; "\C-t": "Curiouser

and curiouser!". Hitting CTRL-T wouki cause the phrase Curiouser and curiouser!

to appear on the command line.

readline 53

If you want to use single or double quotes in your macros or key sequence, you

can escape them by using a backslash (\). Table 2-18 lists the common escape

sequences.

Table 2-18. Escape Sequences

Sequence Description

\C- Control key prefix

\M- Meta (Escape) key prefix

\e The escape character

W The backslash character (\)

\" The double quote character (")

\' The single quote character (')

readline also allows simple conditionals in the .inputrc. There are three directives:

$if, $else, and $endif. The conditional of the $if can be an editing mode, a termi-

nal type, or an application-specific condition.

To test for an editing mode, you can use the form mode= and test for either vi or

emacs. For instance, to set up readline so that setting CTRL-T will take place only

in emacs mode, you could put the following in your .inputrc.

$if mode=emacs
"\C-t": "Curiouser and curiouser!"
$endif

Likewise, to test for a terminal type, you can use the form term=. You must pro-

vide the full terminal name on the right-hand side of the test. This is useful when

you need a terminal-specific key binding. You may, for instance, want to bind the

function keys of a particular terminal type to key sequences.

If you have other applications that use readline, you might like to keep your hash-

specific bindings separate. You can do this with the last of the conditionals. Each

application that uses readline sets its own variable which you can test for. To test

for bash specifics, you could put $if bash into your .inputrc.

readline variables

readline has its own set of variables that you can set from within your .inputrc.

Table 2-19 lists them.*

* The variables disable-completion, enable-keypad, input-meta, mark-directories, and visible-stats are

not available in versions of bash prior to 2.0.

54 Chapter 2: Command-Line Editing

Table 2-19: readline Variables

Variable Description

bell-style

comment-begin

completion-query-items

convert-meta

disable-completion

editing-mode

enable-keypad

expand-tilde

horizontal-scroll-mode

input-meta

keymap

mark-directories

mark-modified-lines

meta-flag

output-meta

show-all-if-ambiguous

visible-stats

If set to none, readline never rings the bell (beeps). If set to

visible, readline will attempt to use a visible bell. If set to

audible, it will attempt to ring the bell. The default is audible.

The string to insert when the readline insert-conmient

command is executed. The default is a #.

Determines when the user is asked to see further completions if

the number of completions is greater than that given. The

default is 100.

If set to On, converts characters with the eighth bit set to an

ASCII key sequence by stripping the eighth bit and prepending

an escape character. The default is On.

If set to On, inhibits word completion. Completion characters

will be inserted into the line as if they had been mapped to self-

insert. The default is Off.

Sets the editing mode to vi or emacs.

If set to On, readline tries to enable the keyboard's application

keypad when it is called. Some systems need this to enable the

arrow keys. The default is Off.

If set to On, tilde expansion is attempted when readline

attempts word completion. The default is Off

Set to On means that lines will scroll horizontally if you type

beyond the right-hand side of the screen. The default is Off

which wraps the line onto a new screen line.

If set to On, eight-bit input will be accepted. The default is Off.

This is synonymous with meta-flag.

Sets readline's current keymap for bindings. Acceptable names

are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-

move, vi-command and vi-insert. The default is emacs. Note that

the value of editing-mode also affects the keymap.

If set to On, completed directory names have a slash appended.

If set to On, displays an asterisk at the start of history lines that

have been modified. The default is Off.

If set to On, eight-bit input will be accepted. The default is Off.

If set to On, displays characters with the eighth bit set directly.

The default is Off

If set to On, words with more than one possible completion are

listed instead of ringing the bell. The default is Off.

If set to On, a character denoting a file's type as reported by the

Stat system call is appended to the filename when listing

possible completions. The default is Off

Keyboard Habits 55

To set any of the variables, you can use the set command in your .inputrc. For

example, to set vi-mode when you start up, you could place the line set editing-

mode vi in your .inputrc. Every time bash starts it would change to vi-mode.

Key Bindings Using bind

If you want to try out key bindings or you want to see what the current settings

are, you can do it from the bash command line by using the bind command. The

binding syntax is the same as that of the .inputrc file, but you have to surround

each binding in quotes so that it is taken as one argument.

To bind a string to CTRL-T, we could type bind ' "\C-t": "Curiouser and curi-

ouser!"'. This would bind the given string to CTRL-T just as in the .inputrc,

except that the binding will apply only to the current shell and will cease once

you log out.

bind also allows you to print out the bindings currently in effect by typing bind

-P.* If you do so, you'll see things like:

abort can be found on "\C-g", "\C-x\C-g", "\e\C-g".

accept-line can be found on "\C-j", "\C-m".

alias-expand-line is not bound to any keys

arrow-key-prefix is not bound to any keys
backward-char can be found on "\C-b", "\eOD", "\e[D".

If you just want to see the names of the readline functions, you can use bind -1.

Another option you might find useful is -p. This prints out the bindings to stan-

dard output in a format that can be re-read by bind, or used as a .inputrc file. So,

to create a complete .inputrc file that you can then edit, you could type bind -p >

.inputrc.

To read the file back in again you can use another option, -f. This option takes a

filename as its argument and reads the key bindings from that file. You can also

use it to update the key bindings if you've just modified your .inputrc.

Keyboard Habits
In this chapter we have seen that bash provides command-line editing with two

modes: vi and emacs. You may be wondering why these two editors were chosen.

The primary reason is because vi and emacs are the most widely used editors for

UNIX. People who have used either editor will find familiar editing facilities.

* Versions of bash prior to 2.0 use -d instead of -p, and -v instead of -P. Also, the -r, -V, -S, -s and

the new -v options are not available in these older versions.

56 Chapter 2: Command-Line Editing

If you are not familiar with either of these editors, you should seriously consider

adopting emacs-mode keyboard habits. Because it is based on control keys and

doesn't require you to think in terms of a "command mode" and "insert mode,"

you will find emacs-mode easier to assimilate. Although the full emacs is an

extremely powerful editor, its command structure lends itself very well to small

subsetting: there are several "mini-emacs" editors floating around for UNIX, MS-

DOS, and other systems.

The same cannot be said for vi, because its command structure is really meant for

use in a full-screen editor, vi is quite powerful too, in its way, but its power

becomes evident only when it is used for purposes similar to that for which it was

designed: editing source code in C and LISP. As mentioned earlier, a vi user has

the power to move mountains in few keystrokes—but at the cost of being unable

to do anything meaningful in very few keystrokes. Unfortunately, the latter is most

desired in a command interpreter, especially nowadays when users are spending

more time within applications and less time working with the shell. In short, if you

don't already know vi, you will probably find its commands obscure and confus-

ing.

Both bash editing modes have quite a few commands; you will undoubtedly

develop keyboard habits that include just a few of them. If you use emacs-mode

and you aren't familiar with the full emacs, here is a subset that is easy to learn yet

enables you to do just about anything:

• For cursor motion around a command line, stick to CTRL-A and CTRL-E for

beginning and end of line, and CTRL-F and CTRL-B for moving around.

• Delete using DEL (or whatever your "erase" key is) and CTRL-D; as with

CTRL-F and CTRL-B, hold down to repeat if necessary. Use CTRL-K to erase

the entire line.

• Use CTRL-P and CTRL-N (or the up and down arrow keys) to move through

the command history.

• Use CTRL-R to search for a command you need to run again.

• Use TAB for filename completion.

After a few hours spent learning these keystrokes, you will wonder how you ever

got along without command-line editing.

In this chapter:

• The .bash^profile,

.bash_logout, and

.bashrc Files

• Aliases

• Options

• Shell Variables

• Customization and
subprocesses CustomizifiQ Youv

Environment
Customization Hints

An environment is a collection of concepts that express the things a computer sys-

tem or other set of tools does in terms designed to be understandable and coher-

ent, and a look and feel that is comfortable. For example, your desk at work is an

environment. Concepts involved in desk work usually include memos, phone

calls, letters, forms, etc. The tools on or in your desk that you use to deal with

these things include paper, staples, envelopes, pens, a telephone, a calculator, etc.

Every one of these has a set of characteristics that express how you use it; such

characteristics range from location on your desk or in a drawer (for simple tools)

to more sophisticated things like which numbers the memory buttons on your

phone are set to. Taken together, these characteristics make up your desk's look

and feel.

You customize the look and feel of your desk environment by putting pens where

you can most easily reach them, programming your phone buttons, etc. In general,

the more customization you have done, the more tailored to your personal

needs—and therefore the more productive—your environment is.

Similarly, UNIX shells present you with such concepts as files, directories, and

standard input and output, while UNIX itself gives you tools to work with these,

such as file manipulation commands, text editors, and print queues. Your UNIX

environment's look and feel is determined by your keyboard and display, of

course, but also by how you set up your directories, where you put each kind of

file, and what names you give to files, directories, and commands. There are also

more sophisticated ways of customizing your shell environment.

This chapter will look at the four most important features that bash provides for

customizing your environment.

57

58 Chapter 3: Customizing Your Environment

Specialfiles

The files .bash_profile, .bash_logout, and .bashrc that are read by bash when
you log in and out or start a new shell.

Aliases

Synonyms for commands or command strings that you can define for conve-

nience.

Options

Controls for various aspects of your environment, which you can turn on and

off.

Variables

Changeable values that are referred to by a name. The shell and other pro-

grams can modify their behavior according to the values stored in the vari-

ables.

Although these features are not the only ones available, they form the basis for

doing more advanced customization. They are also the features that are common
to the various shells available on UNIX. Later chapters will cover more advanced

shell features, such as the ability to program the shell.

The .bash_profile, .bashjogout,

and .bashrc Files

Three files in your home directory have a special meaning to bash, providing a

way for you to set up your account environment automatically when you log in

and when you invoke another bash shell, and allowing you to perform commands

when you log out. These files may already exist in your home directory, depend-

ing on how your system administrator has set up your account. If they don't exist,

your account is using only the default system file /etc/profile. You can easily create

your own bash files using your favorite text editor. If you are unfamiliar with text

editors available under UNIX, we suggest that you familiarize yourself with one of

the better-known ones such as vi or emacs before proceeding further with the

techniques described in this chapter.

The most important bash file, .bash_proJile, is read and the commands in it exe-

cuted by bash every time you log in to the system. If you examine your

.bash_proJile you will probably see lines similar to:

PATH=/sbin: /usr/sbin: /bin:/usr/bin: /usr/ local /bin

SHELL=/bin/bash
MANPATH=/usr/man: /usr/Xll/man
EDITOR=/usr/bin/vi

The .bash_profile, .bash_logout, and .bashrc Files 59

PSl='\h:\w\$ '

PS2='> '

export EDITOR

These lines define the basic environment for your login account. For the moment,

it is probably best to leave these lines alone until you understand what they do.

When editing your .bash_profile, just add your new lines after the existing ones.

Note that whatever you add to your .bash_profile won't take effect until the file is

re-read by logging out and then logging in again. Alternatively, you can also use

the source command.* For example:

source .bash_profile

source executes the commands in the specified file, in this case .bash_profile,

including any commands that you have added.

bash allows two synonyms for .bash_profile\ .bash_login, derived from the C

shell's file named .login, and .profile, derived from the Bourne shell and Korn shell

files named .profile. Only one of these three is read when you log in. If .basb_pro-

file doesn't exist in your home directory, then bash will look for .bash_login. If

that doesn't exist it will look for .profile.

One advantage of bash's ability to look for either synonym is that you can retain

your .profile if you have been using the Bourne shell. If you need to add bash-

specific commands, you can put them in .bash_profile followed by the command
source .profile. When you log in, all the bash-spccihc commands will be executed,

and bash will source .profile, executing the remaining commands. If you decide to

switch to using the Bourne shell you don't have to modify your existing files. A
similar approach was intended for .bash_login and the C shell .login, but due to

differences in the basic syntax of the shells, this is not a good idea.

.bash_profile is read and executed only by the login shell. If you start up a new
shell (a subshell) by typing bash on the command line, it will attempt to read com-

mands from the file .bashrc. This scheme allows you the flexibility to separate

startup commands needed at login time from those you might need when you run

a subshell. If you need to have the same commands run regardless of whether it is

a login shell or a subshell, you can just use the source command from within

.bash_profile to execute .bashrc. If .bashrc doesn't exist then no commands are

executed when you start up a subshell.

The file .bash_logout is read and executed every time a login shell exits. It is pro-

vided to round out the capabilities for customizing your environment. If you

wanted to execute some commands that remove temporary files from your

account or record how much time you have spent logged in to the system then

You can also use the synonymous command dot (.).

60 Chapter 3' Customizing Your Environment

you would place the commands in .bash_logout. This file doesn't have to exist in

your account— if it isn't there when you log out, then no extra commands are exe-

cuted.

Aliases

If you have used UNIX for any length of time you will have noticed that there are

many commands available and that some of them have cryptic names. Sometimes

the commands you use the most have a string of options and arguments that need

to be specified. Wouldn't it be nice if there was a feature that let you rename the

commands or allowed you to type in something simple instead of half a dozen

options? Fortunately, bash provides such a feature: the alias.*

Aliases can be defined on the command line, in your .bash_profile, or in your

.bashrc, using this form:

alias name=command

This syntax specifies that name is an alias for command. Whenever you type

name as a command, bash will substitute command in its place when it executes

the line. Notice that there are no spaces on either side of the equal sign (=); this is

the required syntax.

There are a few basic ways to use an alias. The first, and simplest, is as a more

mnemonic name for an existing command. Many commonly used UNIX com-

mands have names that are poor mnemonics and are therefore excellent candi-

dates for aliasing, the classic example being:

alias search=grep

grep, the UNIX file-searching utility, was named as an acronym for something like

"Generalized Regular Expression Parser, "t This acronym may mean something to a

computer scientist, but not to the office administrator who has to find Fred in a list

of phone numbers. If you have to find Fred and you have the word search defined

as an alias for grep, you can type:

$ search Fred phonelist

Some people who aren't particularly good typists like to use aliases for typographi-

cal errors they make often. For example:

* C shell users should note that the hcish alias tcatuiv docs not suppon .iiguincnts in ali.is expansions,

as C shell aliases do. This hinttionalily is pro\ided \^\ functions, wiiieh we'll look .ii in ('ii.ipier i, Hasic

Shell I^rogrammiufj,.

t Another theoiy has it that ^^ny; stands lor the eoniniaiul "i; re \>" . in the old (v/text editor, whuh does

essentially the same thin^ as ^rep.

Aliases 61

alias emcas=emacs
alias mali=mail
alias gerp=grep

This can be handy, but we feel you're probably better off suffering with the error

message and getting the correct spelling under your fingers. Another common way

to use an alias is as a shorthand for a longer command string. For example, you

may have a directory to which you need to go often. It's buried deep in your

directory hierarchy, so you want to set up an alias that will allow you to cd there

without typing (or even remembering) the entire pathname:

alias cdvoy='cd sipp/demo /animation/voyager'

Notice the quotes around the full cd command; these are necessary if the string

being aliased consists of more than one word.*

As another example, a useful option to the Is command is -F: it puts a slash (/)

after directory files and an asterisk (*) after executable files. Since typing a dash

followed by a capital letter is inconvenient, many people define an alias like this:

alias lf='ls -F'

A few things about aliases are important to remember. First, bash makes a textual

substitution of the alias for that which it is aliasing; it may help to imagine bash

passing your command through a text editor or word processor and issuing a

"change" or "substitute" command before interpreting and executing it. Any special

characters (such as wildcards like * and ?) that resuk when the alias is expanded

are interpreted properly by the shell. t For example, to make it easier to print all of

the files in your directory, you could define the alias:

alias printall='pr *
|
Ipr'

Second, keep in mind that aliases are recursive, which means that it is possible to

alias an alias. A legitimate objection to the previous example is that the alias, while

mnemonic, is too long and doesn't save enough typing. If we want to keep this

alias but add a shorter abbreviation, we could define:

alias pa=printall

With recursive aliasing available it would seem possible to create an infinite loop:

alias ls='ls -1'

bash ensures that this loop cannot happen, because only the first word of the

replacement text is checked for further aliasing; if that word is identical to the alias

* This contrasts with C shell aliases, in which the quotes aren't required.

t An important corollary: wildcards and other special characters cannot be used in the names of

aliases, i.e., on the left side of the equal sign.

62 Chapter 3' Customizing Your Environment

being expanded, it is not expanded a second time. The above command will work

as expected (typing Is produces a long list with permissions, sizes, owners, etc.),

while in more meaningless situations such as:

alias listfile=ls
alias ls=listfile

the alias listfile is ignored.

Aliases can be used only for the beginning of a command string— albeit with cer-

tain exceptions. In the cd example above, you might want to define an alias for

the directory name alone, not for the entire command. But if you define:

alias anim= s ipp / demo / animat ion/voyager

and then type cd anim, bash will probably print a message like anim: No such file

or directory.

An obscure feature of hash's alias facility—one not present in the analogous C

shell feature—provides a way around this problem. If the value of an alias (the

right side of the equal sign) ends in a blank, then bash tries to do alias substitution

on the next word on the command line. To make the value of an alias end in a

blank, you need to surround it with quotes.

Here is how you would use this capability to allow aliases for directory names, at

least for use with the cd command. Just define:

alias cd= ' cd '

This causes bash to search for an alias for the directory name argument to cd,

which in the previous example would enable it to expand the alias anim correctly.

Another way to define a directory variable for use with the cd command is to use

the environment variable cdable_vars, discussed later in this chapter.

Finally, there are a few useful adjuncts to the basic alias command. If you type

alias name without an equal sign (=) and value, the shell will print the alias's

value or alias name not found if it is undefined. If you type alias without any argu-

ments, you get a list of all the aliases you have defined. The command unalias

name removes any alias definition for its argument.

Aliases are very handy for creating a comfortable environment, but they have

essentially been superseded by shell scripts and functions, which we will look at

in the next chapter. These give you everything aliases do plus much more, so if

you become proficient at them, you may find that you don't need aliases anymore.

However, aliases are ideal for novices who find UNIX to be a rather forbidding

place, full of terseness and devoid of good mnemonics. Chapter 4 shows the order

of precedence when, for example, an alias and a function ha\c the same name.

options 63

Options
While aliases let you create convenient names for commands, they don't really let

you change the shell's behavior. Options ^ltq one way of doing this. A shell option

is a setting that is either "on" or "off." While several options relate to arcane shell

features that are of interest only to programmers, those that we will cover here are

of interest to all users.

The basic commands that relate to options are set -o optionname and set +o

optionname. You can change more than one option with the one set command by

preceding each optionname with a -o or +o. The use of plus (+) and minus (-)

signs is counterintuitive: the - turns the named option on, while the + turns it off.

The reason for this incongruity is that the dash (-) is the conventional UNIX way

of specifying options to a command, while the use of + is an afterthought.

Most options also have one-letter abbreviations that can be used in lieu of the set

-o command; for example, set -o noglob can be abbreviated set -f. These abbre-

viations are carryovers from the Bourne shell. Like several other "extra" bash fea-

tures, they exist to ensure upward compatibility; otherwise, their use is not

encouraged.

Table 3-1 lists the options that are useful to general UNIX users. All of them are off

by default except as noted.

Table 3-1: Basic Shell Options

Option Description

emacs

ignoreeof

noclobber

noglob

nounset

vi

Enter emacs editing mode (on by default)

Don't allow use of a single CTRL-D to log off; use the exit command to log

off immediately. This has the same effect as setting the shell variable

IGNOREEOF=10.

Don't allow output redirection (>) to overwrite an existing file

Don't expand filename wildcards like * and ? (wildcard expansion is

sometimes called globbing)

Indicate an error when trying to use a variable that is undefined

Enter vi editing mode

There are several other options (21 in all; Appendix B, Reference Lists, lists them).

To check the status of an option, just type set -o. bash will print a list of all

options along with their settings.

64 Chapter 3' Customizing Your Environment

shopt

bash 2.0 introduces a new built-in for configuring shell behaviour, shopt. This

built-in is meant as a replacement for option configuration originally done through

environment variables and the set command.*

The shopt -o functionality is a duplication of parts of the set command and is pro-

vided for completeness on the part of shopt, while retaining backward compatibil-

ity by its continued inclusion in set.

The format for this command is shopt options option-names. Table 3-2 lists shopt's

options.

Table 3-2: Options to shopt

Option Meaning

-P

-s

-u

-q

-o

Display a list of the settable options and their current values

Sets each option name

Unset each option name

Suppress normal output; the return status indicates if a variable is set or unset

Allows the values of the option names to be those defined for the -o option of

the set command

The default action is to unset (turn ofO the named options. If no options and argu-

ments are given, or the -p option is used, shopt displays a list of the settable

options and the values that they currently have. If -s or -u is also given, the list is

confined to only those options that are set or unset, respectively.

A list of the most useful option names is given in Table 3-3- A complete list is

given in Appendix B.

Table 3-3: shopt Option Names

Option Meaning

cdable vars

checkhash

cmdhist

If set, an argument to the cd built-in command that is not a directory is

assumed to be the name of a variable whose value is the directory to change

to.

If set, bash checks that a command found in the hash table exists before

trying to execute it. If a hashed command no longer exists, a normal path

search is performed.

If set, bash attempts to save all lines of a multiple-line commantl in the same

history entry.

* Appendix B provides a complete list of shopt shell options and the eorrespondin>; environment \ari-

ables in eadier versions of the shell.

Shell Variables 65

Table 3-3: shopt Option Names (continued)

Option Meaning

dotglob

execfail

histappend

lithist

mailwam

If set, bash includes filenames beginning with a . (dot) in the results of

pathname expansion.

If set, a non-interactive shell will not exit if it cannot execute the file

specified as an argument to the exec command. An interactive shell does not

exit if exec fails.

If set, the history list is appended to the file named by the value of the

HISTFILE variable when the shell exits, rather than overwriting the file.

If set, and the cmdhist option is enabled, multiline commands are saved to

the history with embedded newlines, rather than using semicolon separators

where possible.

If set, and a file that bash is checking for mail has been accessed since the

last time it was checked, the message "The mail in mailfile has been read" is

displayed.

We'll look at the use of the various options later in this chapter.

Shell Variables

There are several characteristics of your environment that you may want to cus-

tomize but that cannot be expressed as an on/off choice. Characteristics of this

type are specified in shell variables. Shell variables can specify everything from

your prompt string to how often the shell checks for new mail.

Like an alias, a shell variable is a name that has a value associated with it. bash

keeps track of several built-in shell variables; shell programmers can add their

own. By convention, built-in variables should have names in all capital letters.

bash does, however, have two exceptions.* The syntax for defining variables is

somewhat similar to the syntax for aliases:

varname=value

There must be no space on either side of the equal sign, and if the value is more

than one word, it must be surrounded by quotes. To use the value of a variable in

a command, precede its name by a dollar sign ($).

You can delete a variable with the command unset varname. Normally this isn't

useful, since all variables that don't exist are assumed to be null, i.e., equal to the

empty string "". But if you use the option nounset, which causes the shell to indi-

* Versions prior to 2.0 have many more lowercase built-in variables. Most of these are now obsolete,

the functionality having been moved to the shopt command.

66 Chapter 3' Customizing Your Environment

cate an error when it encounters an undefined variable, then you may be inter-

ested in unset.

The easiest way to check a variable's value is to use the echo built-in command.

All echo does is print its arguments, but not until the shell has evaluated them.

This includes—among other things that will be discussed later—taking the values

of variables and expanding filename wildcards. So, if the variable wonderland has

the value alice, typing:

$ echo "$wonderland"

will cause the shell to simply print alice. If the variable is undefined, the shell will

print a blank line. A more verbose way to do this is:

$ echo "The value of \$varname is \"$varname\" .

"

The first dollar sign and the inner double quotes are backslash-escaped (i.e., pre-

ceded with \ so the shell doesn't try to interpret them; see Chapter 1, bash Basics),

so that they appear literally in the output, which for the above example would be:

The value of $wonderland is "alice".

Variables and Quoting

Notice that we used double quotes around variables (and strings containing them)

in these echo examples. In Chapter 1, we said that some special characters inside

double quotes are still interpreted, while none are interpreted inside single quotes.

A special character that "survives" double quotes is the dollar sign—meaning that

variables are evaluated. It's possible to do without the double quotes in some

cases; for example, we could have written the above echo command this way:

$ echo The value of \$varname is \^^%varname\" .

But double quotes are more generally correct. Here's why. Suppose we did this:

$ fred='Four spaces between these words.'

Then if we entered the command echo $fred, the result would be:

Four spaces between these words.

What happened to the extra spaces? Without the double quotes, the shell splits the

string into words after substituting the variable's value, as it normally does when it

processes command lines. The double quotes circumvent this part of the process

(by making the shell think that the whole quoted string is a single word).

Shell Variables 67

Therefore the command echo "$fred" prints this:

Four spaces between these words

.

The distinction between single and double quotes becomes particularly important

when we start dealing with variables that contain user or file input later on.

Double quotes also allow other special characters to work, as we'll see in Chapters

4, Basic Shell Programming, 6, Command-Line Options and Typed Variables, and

7, Input/Output and Command-Line Processing. But for now, we'll revise the

"When in doubt, use single quotes" rule in Chapter 1 by adding, "... unless a

string contains a variable, in which case you should use double quotes."

Built-in Variables

As with options, some built-in shell variables are meaningful to general UNIX
users, while others are arcana for hackers. We'll look at the more generally useful

ones here, and we'll save some of the more obscure ones for later chapters. Again,

Appendix B contains a complete list.

Editing mode variables

Several shell variables relate to the command-line editing modes that we saw in

the previous chapter. These are listed in Table 3-4.

Table 3-4: Editing Mode Variables

Variable Meaning

HISTCMD

HISTCONTROL

HISTIGNORE

HISTFILE

HISTFILESIZE

The history number of the current command

If set to the value of ignorespace, lines beginning with a space are not

entered into the history list. If set to ignoredups, lines matching the last

history line are not entered. Setting it to ignoreboth enables both

options.

a

A list of patterns, separated by colons (:), used to decide which

command lines to save in the history list. Patterns are considered to start

at the beginning of the command line and must fully specify the line, i.e.,

no wildcard (*) is implicitly appended. The patterns are checked against

the line after HISTCONTROL is applied. An ampersand (&) matches the

previous line. An explicit & may be generated by escaping it with a

backslash.

b

Name of history file in which the command history is saved. The default

is y.bash_history.

The maximum number of lines to store in the history file. The default is

500. When this variable is assigned a value, the history file is truncated, if

necessary, to the given number of lines.

68 Chapter 3' Customizing Your Environment

Table 3-4: Editing Mode Variables (continued)

Variable Meaning

HISTSI2E

FCEDIT

The maximum number of commands to remember in the command
history. The default is 500.

Pathname of the editor to use with the fc command.

a. history_control is synonymous with HISTCONTROL in versions of bash prior to 2.0. Versions prior to

1.14 only define history_control. ignoreboth is not available in bash versions prior to 1.14. HISTCON-

TROL is now considered to be obsolete, having been superseded by HISTIGNORE.

b. This variable is not available in versions of bash prior to 2.0.

In the previous chapter, we saw how bash numbers commands. To find out the

current command number in an interactive shell, you can use the HISTCMD. Note

that if you unset HISTCMD, it will lose its special meaning, even if you subse-

quently set it again.

We also saw in the last chapter how bash keeps the history list in memory and

saves it to a file when you exit a shell session. The variables HISTFILESIZE and

HISTSIZE allow you to set the maximum number of lines that the shell saves in the

history file, and the maximum number of lines to "remember" in the history list,

i.e., the lines that it displays with the history command.

Suppose you wanted to maintain a small history file in your home directory. By

setting HISTFILESIZE to 100, you immediately cause the history file to allow a max-

imum of 100 lines. If it is already larger than the size you specify, it will be trun-

cated.

HISTSIZE works in the same way, but only on the history that the current shell has

in memory. When you exit an interactive shell, HISTSIZE will be the maximum

number of lines saved in your history file. If you have already set HISTFILESIZE to

be less than HISTSIZE, the saved list will be truncated.

You can also cut down on the size of your history file and history list by use of the

HISTCONTROL variable. If set to ignorespace, any commands that you type that

start with a space won't appear in the history. Even more useful is the ignoredups

option. This discards consecutive entries from the history list that are duplicated.

Suppose you want to monitor the size of a file with Is as it is being created. Nor-

mally, every time you type Is it will appear in your history. By setting HISTCON-

TROL to ignoredups, only the first Is will appear in the history.

bash 2.0 introduced a new and more flexible type of histoiy control xariable.

HISTIGNORE allows you to specify a list of patterns which the command line is

checked against. If the command line matches one of the patterns, it is not entered

into the history list. You can also recjuest tiial it ignore dupiicLites by using the pal-

tern &.

Shell Variables 69

For example, suppose you didn't want any command starting with /, nor any

duplicates, to appear in the history. Setting HISTIGNORE to !*:& will do just that.

Just as with other pattern matching we have seen, the wildcard after the / will

match any command line starting with that letter.

Mail variables

Since the mail program is not running all the time, there is no way for it to inform

you when you get new mail; therefore the shell does this instead.* The shell can't

actually check for incoming mail, but it can look at your mail file periodically and

determine whether the file has been modified since the last check. The variables

listed in Table 3-5 let you control how this works.

Table 3-5: Mail Variables

Variable Meaning

MAIL

MAILCHECK

MAILPATH

Name of file to check for incoming mail

How often, in seconds, to check for new mail (default 60 seconds)

List of filenames, separated by colons (:), to check for incoming mail

Under the simplest scenario, you use the standard UNIX mail program, and your

mail file is /usr/mail/yourname or something similar. In this case, you would just

set the variable MAIL to this filename if you want your mail checked:

MAIL= /usr/mail/yourname

If your system administrator hasn't already done it for you, put a line like this in

your .bash_profile.

However, some people use nonstandard mailers that use multiple mail files; MAIL-

PATH was designed to accommodate this, bash will use the value of MAIL as the

name of the file to check, unless MAILPATH is set, in which case the shell will

check each file in the MAILPATH list for new mail. You can use this mechanism to

have the shell print a different message for each mail file: for each mail filename

in MAILPATH, append a question mark followed by the message you want printed.

For example, let's say you have a mail system that automatically sorts your mail

into files according to the username of the sender. You have mail files called

/usr/mail/you/martin, /usr/mail/you/geoffm, /usr/mail/you/paulr, etc. You define

your MAILPATH as follows:

* BSD UNIX users should note that the biffcomm2Lnd on those systems does a better job of informing

you about new mail; while bash only prints "you have new mail" messages right before it prints com-
mand prompts, biffCAn do so at any time.

70 Chapter 3' Customizing Your Environment

MAILPATH=/usr/mail /you/martin: /usr/mail/you/geof fm:

\

/usr/mail/you/paulr

If you get mail from Martin Lee, the file /usr/mail/you/martin will change, bash

will notice the change within one minute and print the message:

You have new mail in /usr/mail/you/martin

If you are in the middle of running a command, the shell will wait until the com-

mand finishes (or is suspended) to print the message. To customize this further,

you could define MAILPATH to be:

MAILPATH= "

\

/usr/mail/you/martin?You have mail from Martin. :\

/usr/mail/you/geof fmPMail from Geoff has arrived. :\

/usr/mail/you/paulr?There is new mail from Paul."

The backslashes at the end of each line allow you to continue your command on

the next line. But be careful: you can't indent subsequent lines. Now, if you get

mail from Martin, the shell will print:

You have mail from Martin.

You can also use the variable $_ in the message to print the name of the current

mail file. For example:

MAILPATH=' /usr/mail/you?You have some new mail in $_'

When new mail arrives, this will print the line:

You have some new mail in /usr/mail/you

The ability to receive notification of mail can be switched on and off by using the

mailwarn option to the shopt command.

Prompting variables

If you have seen enough experienced UNIX users at work, you may already have

realized that the shell's prompt is not engraved in stone. Many of these users have

all kinds of things encoded in their prompts. It is possible to put useful informa-

tion into the prompt, including the date and the current directory. We'll give you

some of the information you need to modify your own here; the rest will come in

the next chapter.

Actually, hash uses four prompt strings. They are stored in the variables PSl, PS2,

PS3, and PS4.* The first of these is called the primary prompt string; it is your

PS3 was not defined in Intsh mtsjoivs prior to lit.

Shell Variables 71

usual shell prompt, and its default value is "\s-\v\$ ".* Many people like to set

their primary prompt string to something containing their login name. Here is one

way to do this:

PSl="\u--> "

The \u tells bash to insert the name of the current user into the prompt string. If

your user name is alice, your prompt string will be "alice- ->". If you are a C shell

user and, like many such people, are used to having a history number in your

prompt string, bash can do this similarly to the C shell: if the sequence \! is used

in the prompt string, it will substitute the history number. Thus, if you define your

prompt string to be:

PSl="\u \!--> "

then your prompts will be like alice 1- •>, alice 2- ->, and so on.

But perhaps the most useful way to set up your prompt string is so that it always

contains your current directory. This way, you needn't type pwd to remember

where you are. Here's how:

PSl="\w-->

Table 3-6 lists the prompt customizations that are available.

t

Table 3-6: Prompt String Customizations

Command Meaning

\a The ASCII bell character (007)

\d The date in "Weekday Month Day" format

\e The ASCII escape character (033)

\H The hostname

\h The hostname up to the first "."

\n A carriage return and line feed

\s The name of the shell

\T The current time in 12-hour HH:MM:SS format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour am/pm format

\u The username of the current user

\v The version of bash (e.g., 2.00)

W The release of bash; the version and patchlevel (e.g., 2.00.0)

\w The current working directory

\W The basename of the current working directory

* In versions of bash prior to 2.0, the default was "bash\$ ".

t \[and \] are not available in bash versions prior to 1.14.

available in versions prior to 2.0.

\a, \e, \H, \T, \@, \v, and \V are not

72 Chapter 3' Customizing Your Environment

Table 3-6: Prompt String Customizations (continued)

Command Meaning

\# The command number of the current command

\! The history number of the current command

\$ If the effective UID is print a #, otherwise print a $

\min Character code in octal

W Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control

sequences

\] End a sequence of non-printing characters

PS2 is called the secondary prompt string; its default value is >. It is used when

you type an incomplete line and hit RETURN, as an indication that you must finish

your command. For example, assume that you start a quoted string but don't close

the quote. Then if you hit RETURN, the shell will print > and wait for you to finish

the string:

$ echo "This Is a long line, # PSl for the command
> which is terminated dovm here" # PS2 for the continuation

$ # PSl for the next command

PS3 and PS4 relate to shell programming and debugging. They will be explained

in Chapter 5, Flow Control, and Chapter 9, Debugging Shell Programs.

Command search path

Another important variable is PATH, which helps the shell find the commands you

enter.

As you probably know, every command you use is actually a file that contains

code for your machine to run.* These files are called executable files or just exe-

cutables for short. They are stored in various directories. Some directories, like

/bin or /usr/bin, are standard on all UNIX systems; some depend on the particular

version of UNIX you are using; some are unique to your machine; if you are a

programmer, some may even be your own. In any case, there is no reason why

you should have to know where a command's executable file is in order to run it.

That is where PATH comes in. Its value is a list of directories that the shell

searches every time you enter a command;t the directory names are separated by

colons (:), just like the files in MAILPATH.

* Unless it's a huilt-in command (one of those shown in boldface, like cd .ind echo), in which case ihc

code is simply part of the executabk' fUe lor the eniire shell.

I Unless the coninuuid name contains a slash (/), in which case the .search does not lake place.

Shell Variables 73

For example, if you type echo $PATH, you will see something like this:

/bin: /usr/bin: /usr/local/bin: /usr/X386/bin

Why should you care about your path? There are two main reasons. First, once

you have read the later chapters of this book and you try writing your own shell

programs, you will want to test them and eventually set aside a directory for them.

Second, your system may be set up so that certain restricted commands' exe-

cutable files are kept in directories that are not listed in PATH. For example, there

may be a directory /usr/games in which there are executables that are verboten

during regular working hours.

Therefore you may want to add directories to your PATH. Let's say you have cre-

ated a bin directory under your login directory, which is /home/you, for your own
shell scripts and programs. To add this directory to your PATH so that it is there

every time you log in, put this line in your .bash_profile:

PATH=$PATH" : /home/you/bin"

This sets PATH to whatever it was before, followed immediately by a colon and

/home/you/bin.

This is the safe way of doing it. When you enter a command, the shell searches

directories in the order they appear in PATH until it finds an executable file. There-

fore, if you have a shell script or program whose name is the same as an existing

command, the shell will use the existing command—unless you type in the com-

mand's full pathname to make it clear. For example, if you have created your own
version of the more command in the above directory and your PATH is set up as

in the last example, you will need to type /home/you/bin/more (or just

~/bin/more) to get your version.

The more reckless way of resetting your path is to put your own directory before

the other directories:

PATH= " /home/you/bin :

" $PATH

This is unsafe because you are trusting that your own version of the more com-

mand works properly. But it is also risky for a more important reason: system

security. If your PATH is set up in this way, you leave open a "hole" that is well

known to computer crackers and mischief makers: they can install "Trojan horses"

and do other things to steal files or do damage. (See Chapter 10, bash Administra-

tion, for more details.) Therefore, unless you have complete control of (and confi-

dence in) everyone who uses your system, use the first of the two methods of

adding your own command directory.

If you need to know which directory a command comes from, you need not look

at directories in your PATH until you find it. The shell built-in command type

74 Chapter 3" Customizing Your Environment

prints the full pathname of the command you give it as argument, or just the com-

mand's name and its type if it's a built-in command itself (like cd), an alias, or a

function (as we'll see in Chapter 4).

Command hashing

You may be thinking that having to go and find a command in a large list of possi-

ble places would take a long time, and you'd be right. To speed things up, bash

uses what is known as a hash table.

Every time the shell goes and finds a command in the search path, it enters it in

the hash table. If you then use the command again, hash first checks the hash

table to see if the command is listed. If it is, it uses the path given in the table and

executes the command; otherwise, it just has to go and look for the command in

the search path.

You can see what is currently in the hash table with the command hash:

$ hash
hits c oiTiina.nd

2 /bin/cat
1 /usr/bin/stat
2 /usr/bin/less
1 /usr/bin/man
2 /usr/bin/apropos
2 /bin/more
1 /bin/In

3 /bin/Is
1 /bin/ps
2 /bin/vi

This not only shows the hashed commands, but how many times they have been

executed (the hits) during the current login session.

Supplying a command name to hash forces the shell to look up the command in

the search path and enter it in the hash table. You can also make bash "forget"

what is in the hash table by using the -r option to hash. Another option, -p,

allows you to enter a command into the hash table, even if the command doesn't

exist.*

Command hashing can be turned on and off with the hashall option to set. In gen-

eral use, there shouldn't be any need to turn it off.

Don't be too concerned about the details of hashing. The command hashing and

lookup is all done by bash without you knowing it's taking place.

* The -p option is not available in versions of bush prior to 2.0.

Shell Variables 75

Directory search path and variables

CDPATH is a variable whose value, like that of PATH, is a list of directories sepa-

rated by colons. Its purpose is to augment the functionality of the cd built-in com-

mand.

By default, CDPATH isn't set (meaning that it is null), and when you type cd

dirname, the shell will look in the current directory for a subdirectory that is

called dirname.* If you set CDPATH, you give the shell a list of places to look for

dirname; the list may or may not include the current directory.

Here is an example. Consider the alias for the long cd command from earlier in

this chapter:

alias cdvoy='cd sipp/demo/animation/voyager

'

Now suppose there were a few directories under this directory to which you need

to go often; they are called src, bin, and doc. You define your CDPATH like this:

CDPATH=
: ~/sipp/demo/animation/voyager

In other words, you define your CDPATH to be the empty string (meaning the cur-

rent directory) followed by Vsipp/demo/animation/voyager.

With this setup, if you type cd doc, then the shell will look in the current directory

for a (sub)directory called doc. Assuming that it doesn't find one, it looks in the

directory Vsipp/demo/animation/voyager. The shell finds the doc directory there,

so you go directly there.

If you often find yourself going to a specific group of directories as you work on a

particular project, you can use CDPATH to get there quickly. Note that this feature

will only be useful if you update it whenever your work habits change.

bash provides another shorthand mechanism for referring to directories; if you set

the shell option cdabie_vars using shopt,t any argument supplied to the cd com-

mand that is not a directory is assumed to be a variable.

We might define the variable anim to be Vsipp/demo/animation/voyager. If we set

cdable_vars and then type:

cd anim

the current directory will become Vsipp/demo/animation/voyager.

* This search is disabled when dirname starts with a slash. It is also disabled when dirname starts

with . / or . . /.

t In versions of bash prior to 2.0, cdable_vars is a shell variable that you can set and unset.

76 Chapter 3' Customizing Your Environment

Miscellaneous variables

We have covered the shell variables that are important from the standpoint of cus-

tomization. There are also several that serve as status indicators and for various

other miscellaneous purposes. Their meanings are relatively straightforward; the

more basic ones are summarized in Table 3-7.

Table 3- 7; Status Variables

Variable Meaning

HOME Name of your home (login) directory

SECONDS Number of seconds since the shell was invoked

BASH Pathname of this instance of the shell you are running

BASH_VERSION The version number of the shell you are running

BASH_VERSINFO An array of version information for the shell you are running

PWD Current directory

OLDPWD Previous directory before the last cd command

The shell sets the values of these variables, except HOME (which is set by the

login process: login, rshd, etc.). The first five are set at login time, the last two

whenever you change directories. Although you can also set their values, just like

any other variables, it is difficult to imagine any situation where you would want

to. In the case of SECONDS, if you set it to a new value it will start counting from

the value you give it, but if you unset SECONDS it will lose its special meaning,

even if you subsequently set it again.

Customization and Subprocesses
Some of the variables discussed above are used by commands you may run—as

opposed to the shell itself—so that they can determine certain aspects of your

environment. The majority, however, are not even known outside the shell.

This dichotomy begs an important question: which shell "things" are known out-

side the shell, and which are only internal? This question is at the heart of many

misunderstandings about the shell and shell programming. Before we answer,

we'll ask it again in a more precise way: which shell "things" are known to sub-

processes? Remember that whenever you enter a command, you are telling the

shell to run that command in a subprocess; furthermore, some complex programs

may start their own subprocesses.

Now for llic answer, whicli (like many UNIX concepts) is unforlunalcly not as sim-

ple as you might like. A few things are known to SLibproccsscs, but the reverse is

not true: subprocesses can never niiike these things known to the processes thiit

created them.

Customization and Subprocesses 77

Which things are known depends on whether the subprocess in question is a hash

program (see Chapter 4) or an interactive shell. If the subprocess is a bash pro-

gram, then it's possible to propagate nearly every type of thing we've seen in this

chapter—options and variables—plus a few we'll see later.

Environment Variables

By default, only one kind of thing is known to all kinds of subprocesses: a special

class of shell variables called environment variables. Some of the built-in variables

we have seen are actually environment variables: HOME, MAIL, PATH, and PWD.

It should be clear why these and other variables need to be known by subpro-

cesses. For example, text editors like vi and emacs need to know what kind of ter-

minal you are using; the environment variable TERM is their way of determining

this. As another example, most UNIX mail programs allow you to edit a message

with your favorite text editor. How does mail know which editor to use? The

value of EDITOR (or sometimes VISUAL).

Any variable can become an environment variable. First it must be defined as

usual; then it must be exported wi\h the command:*

export varnames

(varnames can be a list of variable names separated by blanks). You can combine

variable assignment and the export into one statement:

export wonderland=al ice

It is also possible to define variables to be in the environment of a particular sub-

process (command) only, by preceding the command with the variable assign-

ment, like this:

varname=value command

You can put as many assignments before the command as you want.t For exam-

ple, assume that you're using the emacs editor. You are having problems getting it

to work with your terminal, so you're experimenting with different values of

TERM. You can do this most easily by entering commands that look like:

TE'RM.= trythisone emacs filename

emacs will have trythisone defined as its value of TERM, yet the environment vari-

able in your shell will keep whatever value (if any) it had before. This syntax is

* Unless automatic exporting has been turned on by set -a or set -o allexport, in which case all vari-

ables that are assigned to will be exported.

t There is an obscure option, set -k, that lets you put this type of environment variable definition any-

where on the command line, not just at the beginning.

78 Chapter 3' Customizing Your Environment

surprisingly useful, but not very widely used; we won't see it much throughout the

remainder of this book.

Nevertheless, environment variables are important. Most .bash_profile files include

definitions of environment variables; the sample built-in .bash_profile earlier in

this chapter contained six such definitions:

PATH=/sbin: /usr/sbin: /bin: /usr/bin: /usr/local/bin
SHELL= /bin/bash
MANPATH=/usr/man: /usr/Xll/man
EDITOR=/usr/bin/vi
PSl='\h:\w\$ '

PS2='> '

export EDITOR

You can find out which variables are environment variables and what their values

are by typing export without arguments or by using the -p option to the com-

mand.

Some environment variable names have been used by so many applications that

they have become standard across many shell environments. These variables are

not built into bash, although some shells, such as the Korn shell, have them as

built-ins. Table 3-8 lists the ones you are most likely to come across.

Table 3-8: Standard Variables

Variable Meaning

COLUMNS The number of columns your display has

EDITOR Pathname of your text editor

LINES The number of lines your display has

SHELL Pathname of the shell you are running

TERM The type of terminal that you are using

You may well find that some of these already exist in your own environment, most

likely set from the system /etc/profile file (see Chapter 10). You can define them

yourself in your .bash_profile and export them, as we did earlier.

Terminal types

The variable TERM is vitally important for any program that uses your entire

screen or window, like a text editor. Such programs include all screen editors

(such as vi and emacs), more, and countless third-party applications.

Because users are spending more and more time within programs, and less and

less using the shell itself, it is extremely important that your TERM is set correctly.

It's really your system administrator's job to help you do this (or to do it for you),

but in case you need to do it yourself, here are a few guidelines.

Customization and Subprocesses 79

The value of TERM must be a short character string with lowercase letters that

appears as a filename in the terminfo database.* This database is a two-tiered

directory of files under the root directory /usr/lib/terminfo. This directory contains

subdirectories with single-character names; these in turn contain files of terminal

information for all terminals whose names begin with that character. Each file

describes how to tell the terminal in question to do certain common things like

position the cursor on the screen, go into reverse video, scroll, insert text, and so

on. The descriptions are in binary form (i.e., not readable by humans).

Names of terminal description files are the same as that of the terminal being

described; sometimes an abbreviation is used. For example, the DEC VTIOO has a

description in the file /usr/lib/terminfo/v/vtlOO. An xterm terminal window under

the X Window System has a description in /usr/lib/terminfo/x/xterm.

Sometimes your UNIX software will set up TERM incorrectly; this usually happens

for X terminals and PC-based UNIX systems. Therefore, you should check the

value of TERM by typing echo $TERM before going any further. If you find that

your UNIX system isn't setting the right value for you (especially likely if your ter-

minal is of a different make from that of your computer), you need to find the

appropriate value of TERM yourself.

The best way to find the TERM value— if you can't find a local guru to do it for

you— is to guess the terminfo name and search for a file of that name under

/usr/lib/terminfo by using Is. For example, if your terminal is a Hewlett-Packard

70092, you could try:

$ cd /usr/lib/terminfo
$ Is 7/7*

If you are successful, you will see something like this:

70092 70092A 70092a

In this case, the three names are likely to be synonyms for (links to) the same ter-

minal description, so you could use any one as a value of TERM. In other words,

you could put any of these three lines in your .bash_profile:

TERM=70092
TERM=70092A
TERM=70092a

If you aren't successful. Is will print an error message, and you will have to make

another guess and try again. If you find that terminfo contains nothing that resem-

bles your terminal, all is not lost. Consult your terminal's manual to see if the

* Versions of UNIX not derived from System V use termcap, an older-style database of terminal capa-

bilities that uses the single file /etc/termcap for all terminal descriptions.

80 Chapter 3' Customizing Your Environment

terminal can emulate a more popular model; nowadays the odds for this are excel-

lent.

Conversely, terminfo may have several entries that relate to your terminal, for sub-

models, special modes, etc. If you have a choice of which entry to use as your

value of TERM, we suggest you test each one out with your text editor or any

other screen-oriented programs you use and see which one works best.

The process is much simpler if you are using a windowing system, in which your

"terminals" are logical portions of the screen rather than physical devices. In this

case, operating system-dependent software was written to control your terminal

window(s), so the odds are very good that if it knows how to handle window

resizing and complex cursor motion, then it is capable of dealing with simple

things like TERM. The X Window System, for example, automatically sets xterm as

its value for TERM in an xterm terminal window.

Other common variables

Some programs, such as mail, need to know what type of editor you would like

to use. In most cases they will default to a common editor like ed unless you set

the EDITOR variable to the path of your favorite editor and export it in your

.bash_profile.

Some programs run shells as subprocesses within themselves (e.g., many mail pro-

grams and the emacs editor's shell mode); by convention they use the SHELL vari-

able to determine which shell to use. SHELL is usually set by the process that

invokes the login shell; usually login or something like rshd if you are logged in

remotely, bash sets it only if it hasn't already been set.

You may have noticed that the value of SHELL looks the same as BASH. These two

variables serve slightly different purposes. BASH is set to the pathname of the cur-

rent shell, whether it is an interactive shell or not. SHELL, on the other hand, is set

to the name of your login shell, which may be a completely different shell.

COLUMNS and LINES are used by screen-oriented editors like vi. In most cases a

default is used if they are undefined, but if you are having display problems with

screen-oriented applications then you should check these variables to see if they

are correct.

The Environment File

Although environment variables will always be known to subprocesses, the shell

must be explicitly told which other variables, options, aliases, and so on, are to be

communicated to subprocesses. The way to do this is (o put all such definitions

into the environmoit file, hash's default cnvironnicni file is tlic hashrc file that we

touched on briefly at the i)eginning of this chaj:)ter.

Customization Hints 81

Remember that if you take your definitions out of .bash_profile and put them in

.bashrc you will have to have the line source .bashrc at the end of your .bash_pro-

file so that the definitions become available to the login shell.

The idea of the environment file comes from the C shell's .csbrc file. This is

reflected in the choice of the name .bashrc. The re suffix for initialization files is

practically universal throughout the UNIX world.*

As a general rule, you should put as few definitions as possible in .bash_profile

and as many as possible in your environment file. Because definitions add to

rather than take away from an environment, there is little chance that they will

cause something in a subprocess not to work properly. (An exception might be

name clashes if you go overboard with aliases.)

The only things that really need to be in .bash_profile are environment variables

and their exports and commands that aren't definitions but actually run or produce

output when you log in. Option and alias definitions should go into the

environment file. In fact, there are many bash users who have tiny .bash_profile

files, e.g.:

stty stop "S intr "C erase "?

date
source .bashrc

Although this is a small .bash_profile, this user's environment file could be huge.

Customization Hints
You should feel free to try any of the techniques presented in this chapter. The

best strategy is to test something out by typing it into the shell during your login

session; then if you decide you want to make it a permanent part of your environ-

ment, add it to your .bash_profile.

A nice, painless way to add to your .bash_profile without going into a text editor

makes use of the echo command and one of basts editing modes. If you type a

customization command in and later decide to add it to your .bash_profile, you

can recall it via CTRL-P or CTRL-R (in emacs-mode) or j, -, or ? (vi-mode). Let's

say the line is:

PSl="\u \!--> "

After you recall it, edit the line so that it is preceded by an echo command, sur-

rounded by single quotes, and followed by an I/O redirector that (as you will see

* According to the folklore, it stands for "run commands" and has its origins in old DEC operating sys-

tems.

82 Chapter 3' Customizing Your Environment

in Chapter 7, Input/Output and Command-Line Processing) appends the output to

y.bash_profile.

$ echo 'PSl="\u \!--> "' >> ~/.bash_profile

Remember that the single quotes are important because they prevent the shell

from trying to interpret things like dollar signs, double quotes, and exclamation

points. Also make sure that you use a double right-caret (»). A single one will

overwrite the file rather than appending to it.

In this chapter:

• Shell Scripts and
Functions

• Shell Variables

• String Operators

• Command
Substitution

• Advanced Examples:
^

pushdandpopd Bustc Shell

Programming

If you have become familiar with the customization techniques we presented in

the previous chapter, you have probably run into various modifications to your

environment that you want to make but can't—yet. Shell programming makes

these possible.

bash has some of the most advanced programming capabilities of any command
interpreter of its type. Although its syntax is nowhere near as elegant or consistent

as that of most conventional programming languages, its power and flexibility are

comparable. In fact, bash can be used as a complete environment for writing soft-

ware prototypes.*

Some aspects of bash programming are really extensions of the customization

techniques we have already seen, while others resemble traditional programming

language features. We have structured this chapter so that if you aren't a program-

mer, you can read this chapter and do quite a bit more than you could with the

information in the previous chapter. Experience with a conventional programming

language like Pascal or C is helpful (though not strictly necessary) for subsequent

chapters. Throughout the rest of the book, we will encounter occasional program-

ming problems, called tasks, whose solutions make use of the concepts we cover.

Shell Scripts and Functions
A script, which is a file that contains shell commands, is a shell program. Your

.bash_profile and environment files, discussed in the previous chapter, are shell

scripts.

* An example of this (a compiler for a simple language) is provided in the examples archive for this

book. See Appendix E, Reference Lists, for instructions on how to obtain the archive.

83

84 Chapter 4: Basic Shell Programming

You can create a script using the text editor of your choice. Once you have cre-

ated one, there are two ways to run it. One, which we have already covered, is to

type source scriptname. This causes the commands in the script to be read and

run as if you typed them in.

The second way to run a script is simply to type its name and hit RETURN, just as

if you were invoking a built-in command. This, of course, is the more convenient

way. This method makes the script look just like any other UNIX command, and in

fact several "regular" commands are implemented as shell scripts (i.e., not as pro-

grams originally written in C or some other language), including spell, man on

some systems, and various commands for system administrators. The resulting lack

of distinction between "user command files" and "built-in commands" is one factor

in UNIX's extensibility and, hence, its favored status among programmers.

You can run a script by typing its name only if the directory where the script is

located is in your command search path, or . (the current directory) is part of

your command search path, i.e., the script's directory path (as discussed in Chap-

ter 3, Customizing Your Environment^ . If these aren't in your path, you must type

. /scriptname, which is really the same thing as typing the script's absolute path-

name (see Chapter 1, bash Basics).

Before you can invoke the shell script by name, you must also give it "execute"

permission. If you are familiar with the UNIX filesystem, you know that files have

three types of permissions (read, write, and execute) and that those permissions

apply to three categories of user (the file's owner, a group of users, and everyone

else). Normally, when you create a file with a text editor, the file is set up with

read and write permission for you and read-only permission for everyone else.

Therefore you must give your script execute permission explicitly, by using the

chmod command. The simplest way to do this is to type:

$ chmod +x scriptname

Your text editor will preserve this permission if you make subsequent changes to

your script. If you don't add execute permission to the script and you try to invoke

it, the shell will print the message:

scriptname: Permission denied

But there is a more important difference between the two ways of running shell

scripts. While using source causes the commands in the script to be run as if they

were part of your login session, the "just the name" method causes the shell to do

a series of things. First, it runs anotlier copy of the shell as a subprocess; this is

called a subshell. The subshell tlien takes commands from tlie script, runs tliem.

and terminates, handing control back to tlic j')arent shell.

Shell Scripts and Functions 85

Figure 4-1 shows how the shell executes scripts. Assume you have a simple shell

script called alice ihdX contains the commands hatter 2ind gryphon. In Figure 4-1. a,

typing source alice causes the two commands to run in the same shell, just as if

you had typed them in by hand. Figure 4-l.b shows what happens when you type

just alice: the commands run in the subshell while the parent shell waits for the

subshell to finish.

You may find it interesting to compare this with the situation in Figure 4-1. c,

which shows what happens when you type alice &. As you will recall from Chap-

ter 1, the & makes the command run in the background, which is really just

another term for "subprocess." It turns out that the only significant difference

between Figure 4-l.c and Figure 4-l.b is that you have control of your terminal or

workstation while the command runs—you need not wait until it finishes before

you can enter further commands.

Shell: source alice

J

—

*K^LJ gryphon

o
Shell:

Subshell:

r alice in
^—T hatter j-

Shell: [alice &

Subshell:

J-i
^—^ hatter]| [

gryphon J
—

^

Figure 4-1: Ways to run a shell script

There are many ramifications to using subshells. An important one is that the

exported environment variables that we saw in the last chapter (e.g., TERM, EDI-

TOR, PWD) are known in subshells, whereas other shell variables (such as any

that you define in your .bash_profile without an exporf statement) are not.

Other issues involving subshells are too complex to go into now; see Chapter 7,

Input/Output and Command-Line Processing, and Chapter 8, Process Handling, for

more details about subshell I/O and process characteristics, respectively. For now,

just bear in mind that a script normally runs in a subshell.

86 Chapter 4: Basic Shell Programming

Functions

bash's function feature is an expanded version of a similar facility in the System V
Bourne shell and a few other shells. A function is sort of a script-within-a-script;

you use it to define some shell code by name and store it in the shell's memory, to

be invoked and run later.

Functions improve the shell's programmability significantly, for two main reasons.

First, when you invoke a function, it is already in the shell's memory; therefore a

function runs faster. Modern computers have plenty of memory, so there is no

need to worry about the amount of space a typical function takes up. For this rea-

son, most people define as many commonly used functions as possible rather than

keep lots of scripts around.

The other advantage of functions is that they are ideal for organizing long shell

scripts into modular "chunks" of code that are easier to develop and maintain. If

you aren't a programmer, ask one what life would be like without functions (also

called procedures or subroutines in other languages) and you'll probably get an

earful.

To define a function, you can use either one of two forms:

or:

furiction .functname

{

shell commands

>

functname

{

shell commands

}

There is no functional difference between the two. We will use both forms in this

book. You can also delete a function definition with the command unset -ffunct-

name.

When you define a function, you tell the shell to store its name and definition (i.e.,

the shell commands it contains) in memory. If you want to run the function later,

just type in its name followed by any arguments, as if it were a shell script.

You can find out what functions are defined in your login session by typing

declare -f. The shell will print not just the names but the definitions of all func-

tions, in alphabetical order by function name. Since this may result in long output,

you might want to pipe the output through more or redirect it to a file for exami-

nation with a text editor. If you just want to see the names of the functions, you

Shell Scripts and Functions 87

can use declare -F.* We will look at declare in more detail in Chapter 6, Com-

mand-Line Options and Typed Variables.

Apart from the advantages, there are two important differences between functions

and scripts. First, functions do not run in separate processes, as scripts do when
you invoke them by name; the "semantics" of running a function are more like

those of your .bash_profile when you log in or any script when invoked with the

source command. Second, if a function has the same name as a script or exe-

cutable program, the function takes precedence.

This is a good time to show the order of precedence for the various sources of

commands when you type a command to the shell:

1. Aliases

2. Keywords such as function and several others, like if and for, that we will see

in Chapter 5, Flow Control

3. Functions

4. Built-ins like cd and type

5. Scripts and executable programs, for which the shell searches in the directo-

ries listed in the PATH environment variable

Thus, an alias takes precedence over a function or a script with the same name.

You can, however, change the order of precedence by using the built-ins com-

mand, builtin, and enable. This allows you to define functions, aliases, and script

files with the same names, and select which one you want to execute. We'll exam-

ine this process in more detail in the section on command-line processing in

Chapter 7.

If you need to know the exact source of a command, there are options to the type

built-in command that we saw in Chapter 3. type by itself will print how bash

would interpret the command, based on the search locations listed above. If you

had a shell script, a function, and an alias all called dodo, type would tell you that

dodo, as an alias, would be used if you typed dodo. If you supply more than one

argument to type, it will print the information for each one in turn.

type has three options that allow you to find specific details of a command. If you

want to find out all of the definitions for dodo you can use type -all. This will pro-

duce output similar to the following:

$ type -all dodo
dodo is aliased to 'echo "Everybody has won, and all must have prizes"'

dodo is a function
dodo

The -F option is not available in versions of bash prior to 2.0.

88 Chapter 4: Basic Shell Programming

{

echo "Everybody has won, and all must have prizes"

}

dodo is . /dodo

It is also possible to restrict the search to commands that are executable files or

shell scripts by using the -path option. If the command as typed to bash executes

a file or shell script, the path name of the file is returned; otherwise, nothing is

printed.

The default output from type is verbose; it will give you the full definition for an

alias or function. By using the -type option, you can restrict this to a single word

descriptor: alias, keyword, function, builtin, or file. For example:

$ type -type bash
file

$ type -type if

keyword

The -type option can also be used with -all.

We will refer mainly to scripts throughout the remainder of this book, but unless

we note otherwise, you should assume that whatever we say applies equally to

functions.

Shell Variables

bash derives much of its programming functionality from shell variables. We've

already seen the basics of variables. To recap briefly: they are named places to

store data, usually in the form of character strings, and their values can be

obtained by preceding their names with dollar signs ($). Certain variables, called

environment variables, are conventionally named in all capital letters, and their

values are made known (with the export statement) to subprocesses.

If you are a programmer, you already know that just about every major program-

ming language uses variables in some way; in fact, an important way of character-

izing differences between languages is comparing their facilities for variables.

The chief difference between bash's variable schema and those of conventional

languages is that bash's places heavy emphasis on character strings. (Thus it has

m(3re in common with a special-purpose language like SNOBOL than a general-

purpose one like Pascal.) This is also true of the Bourne shell and the C shell, but

bash goes beyond them by having additional mechanisms for handling integers

explicitly.

Shell Variables 89

Positional Parameters

As we have already seen, you can define values for variables with statements of

the form varname=value, e.g.:

$ hatter=mad
$ echo "$hatter"

mad

Some environment variables are predefined by the shell when you log in. There

are other built-in variables that are vital to shell programming. We will look at a

few of them now and save the others for later.

The most important special, built-in variables are called positional parameters.

These hold the command-line arguments to scripts when they are invoked. Posi-

tional parameters have the names 1, 2, 3, etc., meaning that their values are

denoted by $1, $2, $3, etc. There is also a positional parameter 0, whose value is

the name of the script (i.e., the command typed in to invoke it).

Two special variables contain all of the positional parameters (except positional

parameter 0): * and @. The difference between them is subtle but important, and

it's apparent only when they are within double quotes.

" $* " is a single string that consists of all of the positional parameters, separated by

the first character in the environment variable IFS (internal field separator), which

is a space, TAB, and NEWLINE by default. On the other hand, " $@ " is equal to

"$1 " "$2"
. . . "$A^", where A'^is the number of positional parameters. That is, it's

equal to A^ separate double-quoted strings, which are separated by spaces. If there

are no positional parameters, "$@" expands to nothing. We'll explore the ramifica-

tions of this difference in a little while.

The variable * holds the number of positional parameters (as a character string).

All of these variables are "read-only," meaning that you can't assign new values to

them within scripts.

For example, assume that you have the following simple shell script:

echo "alice: $@"

echo "$0: $1 $2 $3 $4"

echo "$# arguments"

Assume further that the script is called alice. Then if you type alice in wonderland,

you will see the following output:

alice: in wonderland
alice: in wonderland
2 arguments

90 Chapter 4: Basic Shell Programming

In this case, $3 and $4 are unset, which means that the shell will substitute the

empty (or null) string for them.*

Positionalparameters infunctions

Shell functions use positional parameters and special variables like * and * in

exactly the same way as shell scripts do. If you wanted to define alice as a func-

tion, you could put the following in your .basb_profile or environment file:

function alice

{

echo "alice: $*"

echo "$0: $1 $2 $3 $4"

echo "$# arguments"

}

You will get the same result if you type alice in wonderland.

Typically, several shell functions are defined within a single shell script. Therefore

each function will need to handle its own arguments, which in turn means that

each function needs to keep track of positional parameters separately. Sure

enough, each function has its own copies of these variables (even though func-

tions don't run in their own subshells, as scripts do); we say that such variables

are local to the function.

However, other variables defined within functions are not local (they are global),

meaning that their values are known throughout the entire shell script. For exam-

ple, assume that you have a shell script called ascript that contains this:

function afunc

{

echo in function: $0 $1 $2

varl="in function"
echo varl : $varl

}

varl="outside function"
echo varl : $varl

echo $0: $1 $2

afunc funcargl funcarg2
echo varl: $varl
echo $0: $1 $2

If you invoke this script l:)y typing ascript argl arg2, you will see this output:

varl : outside function
ascript: argl arg2

in function: ascript funcargl funcarg2

* Unlcs.s the option nounsct is iiiiiKxi on. in which c.isc the slicll will ivtuiii .m cnor incss.igc.

Shell Variables 91

varl: in function
varl: in function
ascript: argl arg2

In other words, the function afunc changes the value of the variable varl from

"outside function" to "in function," and that change is known outside the function,

while $1 and $2 have different values in the function and the main script. Notice

that $0 doesn't change because the function executes in the environment of the

shell script and $0 takes the name of the script. Figure 4-2 shows the scope of

each variable graphically.

script ascript

f $var1

81^

1^° \

f$2

function afunc

CeZJ.--

r$2

[varname)
- known in script only

[varnamej - l<nown in function only

varname j - i<nown in script and function

Figure 4-2: Functions have their own positionalparameters

Local Variables in Functions

A local statement inside a function definition makes the variables involved all

become local to that function. The ability to define variables that are local to "sub-

program" units (procedures, functions, subroutines, etc.) is necessary for writing

large programs, because it helps keep subprograms independent of the main pro-

gram and of each other.

Here is the function from our last example with the variable varl made local:

function afunc

{

local varl
echo in function: $0 $1 $2

92 Chapter 4: Basic Shell Programming

varl="in function'

echo varl : $varl

Now the result of running ascript argl arg2 is:

varl : outside function
ascript: argl arg2

in function: ascript funcargl funcarg2

varl: in function
varl: outside function
ascript: argl arg2

Figure 4-3 shows the scope of each variable in our new script. Note that afunc

now has its own, local copy of varl, although the original varl would still be

used by any other functions that ascript invokes.

script ascript

^^L^
$0

$1

[^ I

function afunc

[
$var1 }

Qi_

f$2"

[varname)
- kno\Nn in script only

[varname) - l<nown in function only

varname
J|

- known in script and function

Figure 4-3. Functions can have local variables

Quoting with $@ and S"^

Now that we have this background, let's take a closer look at "$®" and "$*". These

variables are two of the shell's greatest idiosyncracies, so we'll discuss some of the

most common sources of confusion.

Shell Variables 93

• Why are the elements of "$*" separated by the first character of IFS instead of

just spaces? To give you output flexibility. As a simple example, let's say you

want to print a list of positional parameters separated by commas. This script

would do it:

IFS=,

echo "$*"

Changing IFS in a script is risky, but it's probably OK as long as nothing else

in the script depends on it. If this script were called arglist, then the command
arglist alice dormouse hatter would produce the output alice,dormouse,hatter.

Chapters 5 and 10 contain other examples of changing IFS.

• Why does "$@" act like A^ separate double-quoted strings? To allow you to use

them again as separate values. For example, say you want to call a function

within your script with the same list of positional parameters, like this:

function countargs

{

echo "$# args .

"

}

Assume your script is called with the same arguments as arglist above. Then if

it contains the command countargs "$*", the function will print 1 args. But if

the command is countargs " $@
" , the function will print 3 args.

More on Variable Syntax

Before we show the many things you can do with shell variables, we have to

point out a simplification we have been making: the syntax of $varname for tak-

ing the value of a variable is actually the simple form of the more general syntax,

^{varname}.

Why two syntaxes? For one thing, the more general syntax is necessary if your

code refers to more than nine positional parameters: you must use ${10} for the

tenth instead of $10. Aside from that, consider the following case where you

would like to place an underscore after your user ID:

echo $UID_

The shell will try to use UID_ as the name of the variable. Unless, by chance,

$UTD_ already exists, this won't print anything (the value being null or the empty

string, " "). To obtain the desired result, you need to enclose the shell variable in

curly brackets:

echo ${UID}_

It is safe to omit the curly brackets ({}) if the variable name is followed by a char-

acter that isn't a letter, digit, or underscore.

94 Chapter 4: Basic Shell Programming

String Operators
The curly-bracket syntax allows for the shell's string operators. String operators

allow you to manipulate values of variables in various useful ways without having

to write full-blown programs or resort to external UNIX utilities. You can do a lot

with string-handling operators even if you haven't yet mastered the programming

features we'll see in later chapters.

In particular, string operators let you do the following:

• Ensure that variables exist (i.e., are defined and have non-null values)

• Set default values for variables

• Catch errors that result from variables not being set

• Remove portions of variables' values that match patterns

Syntax of String Operators

The basic idea behind the syntax of string operators is that special characters that

denote operations are inserted between the variable's name and the right curly

bracket. Any argument that the operator may need is inserted to the operator's

right.

The first group of string-handling operators tests for the existence of variables and

allows substitutions of default values under certain conditions. These are listed in

Table 4-1.*

Table 4-1: Substitution Operators

Operator Substitution

${varname:--word) If varname exists and isn't null, return its value; otherwise

return word.

Purpose: Returning a default value if the variable is undefined.

Example: ${count:-0} evaluates to if count is undefined.

%{varname.--word] If varname exists and isn't null, return its value; otherwise set

it to word and then return its value. Positional and special

parameters cannot be assigned this way.

Purpose: Setting a variable to a default value if it is undefined.

Example: ${c()unt:=0} sets count to if it is undefined.

* The colon C:) in all hut the- last of ilicsc operators is actually optional. If the colon is oniittctl. then

change "cxi.sls and isn't luill lo "cxi.sts" in each definition, i.e., the operator tests for exi.stence onl>

String Operators 95

Table 4-1: Substitution Operators (continued)

Operator Substitution

$

{

varname : ? message }

Purpose:

Example:

${varname : +word}

Purpose:

Example:

${varname : offset)

${varname : offset: length

}

Purpose:

Example:

If varname exists and isn't null, return its value; otherwise

print varname: followed by message, and abort the current

command or script (non-interactive shells only). Omitting

message produces the default message parameter null or not

set.

Catching errors that result from variables being undefined.

{count: ?" undefined!"} prints "count: undefined!" and exits if

count is undefined.

If varname exists and isn't null, return word; otherwise return

null.

Testing for the existence of a variable.

${count:+l} returns 1 (which could mean "true") if count is

defined.

Performs substring expansion.^ It returns the substring of

^varname starting at offset and up to length characters. The

first character in $ varname is position 0. If length is omitted,

the substring starts at offset and continues to the end of

$ varname. If offset is less than then the position is taken

from the end of $ varname. If varname is @, the length is the

number of positional parameters starting at parameter offset

Returning parts of a string (substrings or slices).

If count is set to frogfootman, ${count:4} returns footman.

${count:4:4} returns /ooA

a. The substring expansion operator is not available in versions of bash prior to 2.0.

The first of these operators is ideal for setting defaults for command-line argu-

ments in case the user omits them. We'll use this technique in our first program-

ming task.

Task 4-1

You have a large album collection, and you want to write some software to

keep track of it. Assume that you have a file of data on how many albums you

have by each artist. Lines in the file look like this:

5 Depeche Mode
2 Split Enz

3 Simple Minds
1 Vivaldi, Antonio

96 Chapter 4: Basic Shell Programming

Write a program that prints the A^ highest lines, i.e., the A^ artists by whom you

have the most albums. The default for N should be 10. The program should

take one argument for the name of the input file and an optional second argu-

ment for how many lines to print.

By far the best approach to this type of script is to use built-in UNIX utilities, com-

bining them with I/O redirectors and pipes. This is the classic "building-block"

philosophy of UNIX that is another reason for its great popularity with program-

mers. The building-block technique lets us write a first version of the script that is

only one line long:

sort -nr $1 | head -${2:-10}

Here is how this works: the sort program sorts the data in the file whose name is

given as the first argument ($1). The -n option tells sort lo interpret the first word

on each line as a number (instead of as a character string); the -r tells it to reverse

the comparisons, so as to sort in descending order.

The output of sort is piped into the head utility, which, when given the argument

-A^, prints the first A^ lines of its input on the standard output. The expression

-${2:- 10} evaluates to a dash (-) followed by the second argument if it is given, or

to -10 if it's not; notice that the variable in this expression is 2, which is the sec-

ond positional parameter.

Assume the script we want to write is called highest. Then if the user types highest

myfile, the line that actually runs is:

sort -nr myfile
|
head -10

Or if the user types highest myfile 22, the line that runs is:

sort -nr myfile | head -22

Make sure you understand how the :- string operator provides a defauk value.

This is a perfectly good, runnable script—but it has a few problems. First, its one

line is a bit cryptic. While this isn't much of a problem for such a tiny script, it's

not wise to write long, elaborate scripts in this manner. A few minor changes will

make the code more readable.

First, we can add comments to the code; anything between # and the end of a line

is a comment. At a minimum, the script should start with a few comment lines that

indicate what the script does and what arguments it accepts. Second, we can

improvL' the variable names l^y assigning the vakics of llic positional parameters to

regular varial:)les with mnemonic names. Finally, we can add blank lines to space

things {3Ut; blank lines, like comments, are ignored. Here is a more readable

version:

String Operators 97

#

highest filename [howmany]

#

Print howmany highest-numbered lines in file filename.

The input file is assumed to have lines that start with
numbers. Default for howmany is 10.

#

filename=$l
howmany=${2 :-10}

sort -nr $filename
|
head -$howmany

The square brackets around howmany in the comments adhere to the convention

in UNIX documentation that square brackets denote optional arguments.

The changes we just made improve the code's readability but not how it runs.

What if the user were to invoke the script without any arguments? Remember that

positional parameters default to null if they aren't defined. If there are no argu-

ments, then $1 and $2 are both null. The variable howmany ($2) is set up to

default to 10, but there is no default for filename ($1). The result would be that

this command runs:

sort -nr
|
head -10

As it happens, if sort is called without a filename argument, it expects input to

come from standard input, e.g., a pipe (I) or a user's terminal. Since it doesn't

have the pipe, it will expect the terminal. This means that the script will appear to

hang! Although you could always hit CTRL-D or CTRL-C to get out of the script, a

naive user might not know this.

Therefore we need to make sure that the user supplies at least one argument.

There are a few ways of doing this; one of them involves another string operator.

We'll replace the line:

filename=$l

with:

f ilename=$ { 1 :
?

" filename missing .

"

}

This will cause two things to happen if a user invokes the script without any argu-

ments: first the shell will print the somewhat unfortunate message:

highest: 1: filename missing.

to the standard error output. Second, the script will exit without running the

remaining code. With a somewhat "kludgy" modification, we can get a slightly bet-

ter error message.

98 Chapter 4: Basic Shell Programming

Consider this code:

filename=$l
f ilenaine=$ {filename : ? "missing .

"
}

This results in the message:

highest: filename: missing.

(Make sure you understand why.) Of course, there are ways of printing whatever

message is desired; we'll find out how in Chapter 5.

Before we move on, we'll look more closely at the three remaining operators in

Table 4-1 and see how we can incorporate them into our task solution. The :=

operator does roughly the same thing as :-, except that it has the "side effect" of

setting the value of the variable to the given word if the variable doesn't exist.

Therefore we would like to use := in our script in place of :-, but we can't; we'd

be trying to set the value of a positional parameter, which is not allowed. But if

we replaced:

howmany=${2 : -10}

with just:

howmany=$2

and moved the substitution down to the actual command line (as we did at the

start), then we could use the := operator:

sort -nr $ filename
|
head -$ {howmany : =10}

Using := has the added benefit of setting the value of howmany to 10 in case we
need it afterwards in later versions of the script.

The operator :+ substitutes a value if the given variable exists and isn't null. Here

is how we can use it in our example: Let's say we want to give the user the

option of adding a header line to the script's output. If he or she types the option

-h, then the output will be preceded by the line:

ALBUMS ARTIST

Assume further that this option ends up in the variable header, i.e., $header is -h

if the option is set or null if not. (Later we will see how to do this without disturb-

ing the other positional parameters.)

The foHowing expression yields null if the variable header is null, or

ALBUMS ARTIST\n if it is non-null:

$ {header :+ "ALBUMS ARTISTXn"}

String Operators 99

This means that we can put the line:

echo -e -n ${header: + "ALBUMS ARTIST\n"}

right before the command line that does the actual work. The -n option to echo

causes it not to print a LINEFEED after printing its arguments. Therefore this echo

statement will print nothing—not even a blank line— if header is null; otherwise it

will print the header line and a LINEFEED (\n). The -e option makes echo inter-

pret the \n as a LINEFEED rather than literally.

The final operator, substring expansion, returns sections of a string. We can use it

to "pick out" parts of a string that are of interest. Assume that our script is able to

assign lines of the sorted list, one at a time, to the variable album_line. If we want

to print out just the album name and ignore the number of albums, we can use

substring expansion:

echo ${albiiin_line: 8}

This prints everything from character position 8, which is the start of each album

name, onwards.

If we just want to print the numbers and not the album names, we can do so by

supplying the length of the substring:

echo ${albiim_line: :7}

Although this example may seem rather useless, it should give you a feel for how
to use substrings. When combined with some of the programming features dis-

cussed later in the book, substrings can be extremely useful.

Patterns and Pattern Matching

We'll continue refining our solution to Task 4-1 later in this chapter. The next type

of string operator is used to match portions of a variable's string value against pat-

terns. Patterns, as we saw in Chapter 1, are strings that can contain wildcard char-

acters (*, ?, and [] for character sets and ranges).

Table 4-2 lists bash's pattern-matching operators.

Table 4-2: Pattern-Matching Operators

Operator Meaning

$ { vanable#pattern)

$ { variable**pattern)

If the pattern matches the beginning of the variable's value,

delete the shortest part that matches and return the rest.

If the pattern matches the beginning of the variable's value,

delete the longest part that matches and return the rest.

100 Chapter 4: Basic Shell Programming

Table 4-2: Pattern-Matching Operators (continued)

Operator Meaning

$ { variableVopattern)

$ { vanable%%pattern\

$ { variable/pattern/string]

^[variable//pattern/string]

If the pattern matches the end of the variable's value, delete

the shortest part that matches and return the rest.

If the pattern matches the end of the variable's value, delete

the longest part that matches and return the rest.

The longest match to pattern in variable is replaced by

string. In the first form, only the first match is replaced. In

the second form, all matches are replaced. If the pattern is

begins with a #, it must match at the start of the variable. If

it begins with a %, it must match with the end of the

variable. If string is null, the matches are deleted. If variable

is @ or *, the operation is applied to each positional

parameter in turn and the expansion is the resultant list.a

a. The pattern-matching and replacement operator is not available in versions of bash prior to 2.0.

These can be hard to remember, so here's a handy mnemonic device: # matches

the front because number signs precede numbers; % matches the rear because per-

cent signs follow numbers.

The classic use for pattern-matching operators is in stripping off components of

pathnames, such as directory prefixes and filename suffixes. With that in mind,

here is an example that shows how all of the operators work. Assume that the

variable path has the value /home/cam/book/long .file. name; then:

Expression
${path##/*/}
${path#/*/}
$path
${path%.*}
${path%%.*}

Result
long. file. name

cam/book/ long. file. name
/home /cam/book/ long. file. name

/home/cam/book/ long . file

/home/cam/book/ long

The two patterns used here are /*/, which matches anything between tu-o

slashes, and .*, which matches a dot followed by anything.

The longest and shortest pattern-matching operators produce the same output

unless they are used with the * wildcard operator. As an example, if name had the

value alicece, then both ${filename%ce} and ${filename%%ce} would produce the

result alice. This is because ce is an exact match; for a match to occur, the string

ce must appear on the end $filename. Both the short and long matches will then

match the last grouping of ce and delete it. If, however, we had used the * wild-

card, then ${filcname%ce*} would produce alice because it matches the shortest

occurrence of ce followed by anything else. ${filename%%ce*} would return ali

String Operators 101

because it matches the longest occurrence of ce followed by anything else; in this

case the first and second ce.

The next task will incorporate one of these pattern-matching operators.

Task 4-2

You are writing a graphics file conversion utility for use in creating your World

Wide Web home page. You want to be able to take a PCX file and convert it

to a GIF file for use on the Web page.*

Graphics file conversion utilities are quite common because of the plethora of dif-

ferent graphics formats and file types. They allow you to specify an input file, usu-

ally from a range of different formats, and convert it to an output file of a different

format. In this case, we want to take a PCX file, which can't be displayed with a

Web browser, and convert it to a GIF which can be displayed by nearly all

browsers. Part of this process is taking the filename of the PCX file, which ends in

.pcx, and changing it to one ending in .gifiox: the output file. In essence, you want

to take the original filename and strip off the .pcx, then append .gif. A single shell

statement will do this:

outf ile=${f ilenaine% .pcx} .gif

The shell takes the filename and looks for .pcx on the end of the string. If it is

found, .pcx is stripped off and the rest of the string is returned. For example, if

filename had the value alice.pcx, the expression ${filename%.pcx} would return

alice. The .gif is appended to form the desired alice.gif, which is then stored in the

variable outfile.

If filename had an inappropriate value (without the .pcx) such as alice.jpg, the

above expression would evaluate to alice.jpg.gif: since there was no match, noth-

ing is deleted from the value of filename, and .gif is appended anyway. Note,

however, that if filename contained more than one dot (e.g., if it were

alice. 1.pcx—the expression would still produce the desired value alice. 1.gif).

The next task uses the longest pattern-matching operator.

Task 4-3

You are implementing a filter that prepares a text file for printer output. You

want to put the file's name—without any directory prefix—on the "banner"

page. Assume that, in your script, you have the pathname of the file to be

printed stored in the variable pathname.

* PCX is a popular graphics file format under Microsoft Windows. GIF (Graphics Interchange Format)

is a common graphics format on the Internet and is used to a great extent on Web pages.

102 Chapter 4: Basic Shell Programming

Clearly, the objective is to remove the directory prefix from the pathname. The fol-

lowing line will do it:

bannername=${pathname##*/

}

This solution is similar to the first line in the examples shown before. If pathname

were just a filename, the pattern */ (anything followed by a slash) would not

match and the value of the expression would be pathname untouched. If path-

name were something like book/wonderland, the prefix book/ would match the

pattern and be deleted, leaving just wonderland as the expression's value. The

same thing would happen if pathname were something like /home/cam/

book/wonderland: since the ## deletes the longest match, it deletes the entire

/home/cam/book/.

If we used #*/ instead of ##*/, the expression would have the incorrect value

home/cam/book/wonderland, because the shortest instance of "anything followed

by a slash" at the beginning of the string is just a slash (/).

The construct $ {variable***/} is actually equivalent to the UNIX utility basename.

basename takes a pathname as argument and returns the filename only; it is meant

to be used with the shell's command substitution mechanism (see the following

explanation), basename is less efficient than ^{variable**/*) because it runs in its

own separate process rather than within the shell. Another utility, dirname, does

essentially the opposite of basename. it returns the directory prefix only. It is

equivalent to the bash expression ${variable%/*} and is less efficient for the same

reason.

The last operator in the table matches patterns and performs substitutions. Task

4-4 is a simple task where it comes in useful.

Task 4-4

The directories in PATH can be hard to distinguish when printed out as one

line with colon delimiters. You want a simple way to display them, one to a

line.

As directory names are separated by colons, the easiest way would be to replace

each colon with a LINEFEED:

$ echo -e ${PATH// :
/

'

\n')

/home /cam/bin
/usr/local/bin
/bin

/usr/bin
/usr/XllR6/bin

Command Substitution 103

Each occurrence of the colon is replaced by \n. As we saw earlier, the -e option

allows echo to interpret \n as a LINEFEED. In this case we used the second of the

two substitution forms. If we'd used the first form, only the first colon would have

been replaced with a \n.

Length Operator

There is one remaining operator on variables. It is %{#varname), which returns the

length of the value of the variable as a character string. (In Chapter 6, we will see

how to treat this and similar values as actual numbers so they can be used in arith-

metic expressions.) For example, if filename has the value alice.c, then ${#file-

name} would have the value 7.

Command Substitution

From the discussion so far, we've seen two ways of getting values into variables:

by assignment statements and by the user supplying them as command-line argu-

ments (positional parameters). There is another way: command substitution,

which allows you to use the standard output of a command as if it were the value

of a variable. You will soon see how powerful this feature is.

The syntax of command substitution is:*

$

(

UNIX command)

The command inside the parentheses is run, and anything the command writes to

standard output is returned as the value of the expression. These constructs can be

nested, i.e., the UNIX command can contain command substitutions.

Here are some simple examples:

• The value of $(pwd) is the current directory (same as the environment vari-

able $PWD).

• The value of $(ls $HOME) is the names of all files in your home directory.

• The value of $(ls $(pwd)) is the names of all files in the current directory.

• To find out detailed information about a command if you don't know where

its file resides, type Is -1 $(type -path -all command-name). The -all option

forces type to do a pathname look-up and -path causes it to ignore keywords,

built-ins, etc.

* Bourne and C shell users should note that the command substitution syntax of those shells, ' UNIX
command^ (with backward quotes, or grave accents), is also supported by bash for backward compati-

bility reasons. However, it is harder to read and less conducive to nesting.

104 Chapter 4: Basic Shell Programming

• If you want to edit (with vi) every chapter of your book on bash that has the

phrase "command substitution," assuming that your chapter files all begin with

ch, you could type:

vi $(grep -1 'command substitution' ch*)

The -1 option to grep prints only the names of files that contain matches.

Command substitution, like variable and tilde expansion, is done within double

quotes. Therefore, our rule in Chapter 1 and Chapter 3 about using single quotes

for strings unless they contain variables will now be extended: "When in doubt,

use single quotes, unless the string contains variables or command substitutions, in

which case use double quotes."

Command substitution helps us with the solution to the next programming task,

which relates to the album database in Task 4-1.

Task 4-5

The file used in Task 4-1 is actually a report derived from a bigger table of

data about albums. This table consists of several columns, ov fields, to which a

user refers by names like "artist," "title," "year," etc. The columns are separated

by vertical bars (| , the same as the UNIX pipe character). To deal with individ-

ual columns in the table, field names need to be converted to field numbers.

Suppose there is a shell function called getfield that takes the field name as

argument and writes the corresponding field (or column) number on the stan-

dard output. Use this routine to help extract a column from the data table.

The cut utility is a natural for this task, cut is a data filter: it extracts columns from

tabular data.* If you supply the numbers of columns you want to extract from the

input, cut will print only those columns on the standard output. Columns can be

character positions or—relevant in this example— fields that are separated by TAB

characters or other delimiters.

Assume that the data table in our task is a file called albums and that it looks like

this:

Depeche Mode | Speak and Spell] Mute Records | 1981

Depeche Mode | Some Great Reward] Mute Records] 1984

Depeche Mode] 101] Mute Records] 1989

Depeche Mode] Violator] Mute Records] 1990

Depeche Mode | Songs of Faith and Devotion] Mute Records] 1993

* Some older BSD-derived sysic'iiis clon'i 1ki\c cut, hut you can use (luk instcMtl. Wlu'iicNcr \()u sec

command of the form: cut -tN -dC filename, use this insieaci: awk -FC ' (print $N]

filename.

Command Substitution 105

Here is how we would use cut to extract the fourth (year) column:

cut -f 4 -d\ I albums

The -d argument is used to specify the character used as field delimiter (TAB is

the default). The vertical bar must be backslash-escaped so that the shell doesn't

try to interpret it as a pipe.

From this line of code and the getfield routine, we can easily derive the solution to

the task. Assume that the first argument to getfield is the name of the field the user

wants to extract. Then the solution is:

fieldname=$l
cut -f$ (getfield $fieldnaine) -d\

|
albums

If we called this script with the argument year, the output would be:

1981

1984

1989

1990

1993

Task 4-6 shows another small task that makes use of cut.

Task 4-6

Send a mail message to everyone who is currently logged in.

The command who tells you who is logged in (as well as which terminal they're

on and when they logged in). Its output looks like this:

root ttyl Oct 13 12:05

michael ttyS Oct 13 12:58

cam tty23 Oct 13 11:51

kilrath tty25 Oct 13 11:58

The fields are separated by spaces, not TABs. Since we need the first field, we can

get away with using a space as the field separator in the cut command. (Otherwise

we'd have to use the option to cut that uses character columns instead of fields.)

To provide a space character as an argument on a command line, you can sur-

round it by quotes:

$ who
I

cut -d' ' -fl

With the above who output, this command's output would look like this:

root
michael
cam
kilrath

106 Chapter 4: Basic Shell Programming

This leads directly to a solution to the task. Just type:

$ mail $(who | cut -d' ' -fl)

The command mail root michael cam kilrath will run and then you can type your

message.

Task 4-7 is another task that shows how useful command pipelines can be in

command substitution.

Task 4-7

The is command gives you pattern-matching capability with wildcards, but it

doesn't allow you to select files by modification date. Devise a mechanism

that lets you do this.

Here is a function that allows you to list all files that were last modified on the

date you give as argument. Once again, we choose a function for speed reasons.

No pun is intended by the function's name:

function Isd

{

date=$l
Is -1

I

grep -i "
" . \ {42\} $date" |

cut -c55-

}

This function depends on the column layout of the Is -1 command. In particular, it

depends on dates starting in column 42 and filenames starting in column 55. If this

isn't the case in your version of UNIX, you will need to adjust the column

numbers.*

We use the grep search utility to match the date given as argument (in the form

Mon DD, e.g., Jan 15 or Oct 6, the latter having two spaces) to the output of Is -1.

This gives us a long listing of only those files whose dates match the argument.

The -i option to grep allows you to use all lowercase letters in the month name,

while the rather fancy argument means, "Match any line that contains 41 characters

followed by the function argument." For example, typing Isd 'jan 15' causes grep

to search for lines that match any 41 characters followed by jan 15 (or Jan 15).t

The output of grep is piped through our ubiquitous friend cui to retrieve the file-

names only. The argument to cut tells it to extract characters in column SS through

the end of the line.

* For example, Is -1 on SunOS i.L.x has dales starting in column 55 and fiienames starling in a)lumn

46.

t Some older BSD-derived versions of UNIX (without System V extensions) l\o nn[support the \{.\M

option. For this example, use 42 periods in a row instead of .\{42\}.

Advanced Examples: pushd andpopd 107

With command substitution, you can use this function with any command that

accepts filename arguments. For example, if you want to print all files in your cur-

rent directory that were last modified today, and today is January 15th, you could

type:

$ Ip $(lsd 'jan 15')

The output of Isd is on multiple lines (one for each filename), but LINEFEEDS are

legal field separators for the Ip command, because the environment variable IFS

(see earlier in this chapter) contains LINEFEED by default.

Advanced Examples:pushd andpopd
We will conclude this chapter with a couple of functions that are already built into

bash but are useful in demonstrating some of the concepts we have covered in

this chapter.*

Task 4-8

The functions pushd and popd implement a stack of directories that enable

you to move to another directory temporarily and have the shell remember

where you were. Implement them as shell functions.

We will start by implementing a significant subset of their capabilities and finish

the implementation in Chapter 6.

Think of a stack as a spring-loaded dish receptacle in a cafeteria. When you place

dishes on the receptacle, the spring compresses so that the top stays at roughly the

same level. The dish most recently placed on the stack is the first to be taken

when someone wants food; thus, the stack is known as a "last-in, first-out" or

LIFO structure. Putting something onto a stack is known in computer science par-

lance as pushing, and taking something off the top is called popping.

A stack is very handy for remembering directories, as we will see; it can "hold

your place" up to an arbitrary number of times. The cd - form of the cd command
does this, but only to one level. For example: if you are in firstdir and then you

change to seconddir, you can type cd - to go back. But if you start out in firstdir,

then change to seconddir, and then go to thirddir, you can use cd - only to go

back to seconddir. If you type cd - again, you will be back in thirddir, because it

is the previous directory.

t

* Your copy of bash may not have pushd and popd, since it can be configured without these built-ins.

t Think of cd - as a synonym for cd $OLDPWD; see the previous chapter.

108 Chapter 4: Basic Shell Programming

If you want the "nested" remember-and-change functionality that will take you

back to firstdir, you need a stack of directories along with the pushd and popd

commands. Here is how these work:

• The first time pushd dir is called, pushd pushes the current directory onto the

stack, then cds to dir and pushes it onto the stack.

• Subsequent calls to pushd dir cd to dir and push dir only onto the stack.

• popd removes the top directory off the stack, revealing a new top. Then it cds

to the new top directory.

For example, consider the series of events in Table 4-3. Assume that you have just

logged in, and that you are in your home directory (/home/you).

Table 4-3: pushd/popd Example

Command Stack Contents Result Directory

pushd lizard /home/you/lizard /home/you /home/youAizard

pushd /etc /etc /home/you/lizard /home/you /etc

popd /home/youAizard /home/you /home/you/lizard

popd /home/you /home/you

popd <empty> (error)

We will implement a stack as an environment variable containing a list of directo-

ries separated by spaces.*

Your directory stack should be initialized to the null string when you log in. To do

this, put this in your .bash_profile.

DIR_STACK= "

"

export DIR_STACK

Do not put this in your environment file if you have one. The export statement

guarantees that DIR_STACK is known to all subprocesses; you want to initialize it

only once. If you put this code in an environment file, it will get reinitialized in

every subshell, which you probably don't want.

Next, we need to implement pushd and popd as functions. Here are our initial ver-

sions:

pushd (

)

{

dirnaine = $l

DIR_STACK="$dirnaiBe $ {DIR_STACK: -$PWD' '}"

* hash also maintains a directory stack for the pushd and popd built-ins, accessible through the envi-

ronment variable DIRSTACK. Unlike our version, however, it is implemented as an array (^Ci: Chapter

6 for details on arravs).

Advanced Examples:pushd andpopd 109

cd ${dirnaine: ? "missing directory name."}
echo "$DIR_STACK"

}

popd (

)

{

DIR_STACK=${DIR_STACK#* }

cd ${DIR_STACK%% *}

echo "$PWD"

}

Notice that there isn't much code! Let's go through the two functions and see how
they work, starting with pushd. The first line merely saves the first argument in the

variable dirname for readability reasons.

The second line of the function pushes the new directory onto the stack. The

expression ${DIR_STACK: -$PWD' '} evaluates to $DIR_STACK if it is non-null

or $PWD ' ' (the current directory and a space) if it is null. The expression within

double quotes, then, consists of the argument given, followed by a single space,

followed by DIR_STACK or the current directory and a space. The trailing space

on the current directory is required for pattern matching in the popd function; each

directory in the stack is considered to be of the form ''dirname ".

The double quotes in the assignment ensure that all of this is packaged into a sin-

gle string for assignment back to DIR_STACK. Thus, this line of code handles the

special initial case (when the stack is empty) as well as the more usual case (when

it's not empty).

The third line's main purpose is to change to the new directory. We use the : ?

operator to handle the error when the argument is missing: if the argument is

given, then the expression ${dirname: ? "missing directory name."} evaluates to

$dirname, but if it is not given, the shell will print the message pushd: dirname:

missing directory name and exit from the function.

The last line merely prints the contents of the stack, with the implication that the

leftmost directory is both the current directory and at the top of the stack. (This is

why we chose spaces to separate directories, rather than the more customary

colons as in PATH and MAILPATH.)

The popd function makes yet another use of the shell's pattern-matching operators.

Its first line uses the # operator, which tries to delete the shortest match of the pat-

tern "* " (anything followed by a space) from the value of DIR_STACK. The result

is that the top directory and the space following it are deleted from the stack. This

is why we need the space on the end of the first directory pushed onto the stack.

The second line of popd uses the pattern-matching operator %% to delete the

longest match to the pattern " *
" (a space followed by anything) from DIR_STACK.

This extracts the top directory as an argument to cd, but doesn't affect the value of

110 Chapter 4: Basic Shell Programming

DIR_STACK because there is no assignment. The final line just prints a confirma-

tion message.

This code is deficient in four ways. First, it has no provision for errors. For exam-

ple:

• What if the user tries to push a directory that doesn't exist or is invalid?

• What if the user tries popd and the stack is empty?

Test your understanding of the code by figuring out how it would respond to

these error conditions. The second problem is that if you use pushd in a shell

script, it will exit everything if no argument is given; ${varname: ? message} always

exits from non-interactive shells. It won't, however, exit an interactive shell from

which the function is called. The third deficiency is that it implements only some

of the functionality of bash's pushd and popd commands—albeit the most useful

parts. In the next chapter, we will see how to overcome all of these deficiencies.

The fourth problem with the code is that it will not work if, for some reason, a

directory name contains a space. The code will treat the space as a separator char-

acter. We'll accept this deficiency for now, but you might like to think about how
to overcome it in the next few chapters.

In this chapter:

• if/else

• for

• case

• select

• while and until

Flow Control

If you are a programmer, you may have read the last chapter—with its claim at

the outset that bash has an advanced set of programming capabilities—and won-

dered where many of the features from conventional languages were. Perhaps the

most glaringly obvious "hole" in our coverage thus far concerns flow control con-

structs like if, for, while, and so on.

Flow control gives a programmer the power to specify that only certain portions of

a program run, or that certain portions run repeatedly, according to conditions

such as the values of variables, whether or not commands execute properly, and

others. We call this the ability to control the flow of a program's execution.

Almost every shell script or function that's been shown thus far has had no flow

control—they have just been lists of commands to be run! Yet bash, like the C and

Bourne shells, has all of the flow control abilities you would expect and more; we
will examine them in this chapter. We'll use them to enhance the solutions to

some of the programming tasks we saw in the last chapter and to solve tasks that

we will introduce here.

Although we have attempted to explain flow control so that non-programmers can

understand it, we also sympathize with programmers who dread having to slog

through yet another tabula rasa explanation. For this reason, some of our discus-

sions relate bash's flow-control mechanisms to those that programmers should

know already. Therefore you will be in a better position to understand this chapter

if you already have a basic knowledge of flow control concepts.

bash supports the following flow control constructs:

if/else

Execute a list of statements if a certain condition is/is not true

HI

112 Chapter 5: Flow Control

for

Execute a list of statements a fixed number of times

while

Execute a list of statements repeatedly while a certain condition holds true

until

Execute a list of statements repeatedly until a certain condition holds true

case

Execute one of several lists of statements depending on the value of a variable

In addition, bash provides a new type of flow-control construct:

select

Allow the user to select one of a list of possibilities from a menu

We will now cover each of these in detail.

if/else

The simplest type of flow control construct is the conditional, embodied in bash's

if statement. You use a conditional when you want to choose whether or not to do

something, or to choose among a small number of things to do, according to the

truth or falsehood of conditions. Conditions test values of shell variables, charac-

teristics of files, whether or not commands run successfully, and other factors. The

shell has a large set of built-in tests that are relevant to the task of shell program-

ming.

The if construct has the following syntax:

if condition
then

statements
[elif condition

then statements .

.

.

]

[else

statements]
fi

The simplest form (without the elif and else parts, or clauses) executes the .s7^//£^-

ments only if the condition is true. If you add an else clause, you get the ability to

execute one set of statements if a condition is true or another set of statements if

the condition is false. You can use as many elif (a contraction of "else if) clauses

as you wish; they introduce more conditions, Lind thus more choices for whicli set

of statements to execute. If you use one or more eiil's, you can think of the else

clause as the "if all else fails" part.

if/else 113

Exit Status and Return

Perhaps the only aspect of this syntax that differs from that of conventional lan-

guages like C and Pascal is that the "condition" is really a list of statements rather

than the more usual Boolean (true or false) expression. How is the truth or false-

hood of the condition determined? It has to do with a general UNIX concept that

we haven't covered yet: the exit status of commands.

Every UNIX command, whether it comes from source code in C, some other lan-

guage, or a shell script/function, returns an integer code to its calling process—the

shell in this case—when it finishes. This is called the exit status. is usually the

OK exit status, while anything else (1 to 255) usually d^noi^s an error.*

if checks the exit status of the last statement in the list following the if keyword.

The list is usually just a single statement. If the status is 0, the condition evaluates

to true; if it is anything else, the condition is considered false. The same is true for

each condition attached to an elif statement (if any).

This enables us to write code of the form:

if command ran successfully
then

normal processing
else

error processing
fi

More specifically, we can now improve on the pushd function that we saw in the

last chapter:

pushd (

)

{

dirnaine=$l

DIR_STACK= " $dirname $ {DIR_STACK : -$PWD ' '
}

"

cd ${dirname: ? "missing directory name."}
echo $DIR_STACK

This function requires a valid directory as its argument. Let's look at how it han-

dles error conditions: if no argument is given, the third line of code prints an error

message and exits. This is fine.

However, the function reacts deceptively when an argument is given that isn't a

valid directory. In case you didn't figure it out when reading the last chapter, here

is what happens: the cd fails, leaving you in the same directory you were in. This

* Because this is a convention and not a "law," there are exceptions. For example, diff(Sind differ-

ences between two files) returns for "no differences," 1 for "differences found," or 2 for an error such

as an invalid filename argument.

114 Chapter 5: Flow Control

is also appropriate. But the second line of code has pushed the bad directory onto

the stack anyway, and the last line prints a message that leads you to believe that

the push was successful. Even placing the cd before the stack assignment won't

help because it doesn't exit the function if there is an error.

We need to prevent the bad directory from being pushed and to print an error

message. Here is how we can do this:

pushd (

)

{

dirname=$l
if cd $ {dirname :? "missing directory name."} # if cd was successful
then

DIR_STACK="$dirname $ {DIR_STACK: -$PWD' '}" # push the directory
Echo $DIR_STACK

else

echo still in $PWD. # else do nothing
fi

}

The call to cd is now inside an if construct. If cd is successful, it will return 0; the

next two lines of code are run, finishing the pushd operation. But if the cd fails, it

returns with exit status 1 , and pushd will print a message saying that you haven't

gone anywhere.

Notice that in providing the check for a bad directory, we have slightly altered the

way pushd functions. The stack will now always start out with two copies of the

first directory pushed onto it. That is because $PWD is expanded after the new
directory has been changed to. We'll fix this in the next section.

You can usually rely on built-in commands and standard UNIX utilities to return

appropriate exit statuses, but what about your own shell scripts and functions? For

example, what if you wrote a cd function that overrides the built-in command?

Let's say you have the following code in your .bash_profile.

cd

{

builtin cd "$(?"

echo "$OLDPWD --> $PWD"

}

The function cJ simply changes directories and prints a message saying where you

were and where you are now. Because functions have liigher priority than most

built-in commands in the shell's order of command look-up. we need to make

sure that the built-in cd is called, otherwise the shell will enter an endless loop of

calling the function, known as ififniilc fccursiofi.

The builtin comniand allows us to do this, builtin te'lls the shell to use the built-in

coniiiiand and ignore any function of that name. I 'sing builtin is easy; \'ou just

if/else 115^

give it the name of the built-in you want to execute and any parameters you want

to pass. If you pass in the name of something which isn't a built-in command,

builtin will display an appropriate message. For example: builtin: alice: not a shell

builtin.

We want this function to return the same exit status that the built-in cd returns.

The problem is that the exit status is reset by every command, so it "disappears" if

you don't save it immediately. In this function, the built-in cd's exit status disap-

pears when the echo statement runs (and sets its own exit status).

Therefore, we need to save the status that cd sets and use it as the entire func-

tion's exit status. Two shell features we haven't seen yet provide the way. First is

the special shell variable ?, whose value ($?) is the exit status of the last com-

mand that ran. For example:

cd baddir
echo $?

causes the shell to print 1, while the following command causes it to print 0:

cd gooddir
echo $?

So, to save the exit status we need to assign the value of ? to a variable with the

line es=$? right after the cd is done.

Return

The second feature we need is the statement return A^, which causes the surround-

ing function to exit with exit status N. Nis actually optional; it defaults to the exit

status of the last command. Functions that finish without a return statement (i.e.,

every one we have seen so far) return whatever the last statement returns, return

can only be used inside functions, and shell scripts that have been executed with

source. In contrast, the statement exit A^ exits the entire script, no matter how
deeply you are nested in functions.

Getting back to our example: if the call to the built-in cd were last in our cd func-

tion, it would behave properly. Unfortunately, we really need the assignment state-

ment where it is. Therefore we need to save cd's exit status and return it as the

function's exit status. Here is how to do it:

cd

{

builtin cd "$©"

es=$?

echo "$OLDPWD --> $PWD"

return $es

}

116 Chapter 5: Flow Control

The second line saves the exit status of cd in the variable es; the fourth returns it

as the function's exit status. We'll see a substantial cd "wrapper" in Chapter 7.

Exit statuses aren't very useful for anything other than their intended purpose. In

particular, you may be tempted to use them as "return values" of functions, as you

would with functions in C or Pascal. That won't work; you should use variables or

command substitution instead to simulate this effect.

Combinations ofExit Statuses

One of the more obscure parts of bash syntax allows you to combine exit statuses

logically, so that you can test more than one thing at a time.

The syntax statement1 8l8l statement2 means, "execute statement1, and if its exit

status is 0, execute statement2.'' The syntax statement1
\ \ statement2 is the con-

verse: it means, "execute statementl, and if its exit status is not 0, execute state-

ment2." At first, these look like "if/then" and "if not/then" constructs, respectively.

But they are really intended for use within conditions of if constructs—as C pro-

grammers will readily understand.

It's much more useful to think of these constructs as "and" and "or," respectively.

Consider this:

if statementl && statement2
then

fi

In this case, statementl is executed. If it returns a status, then presumably it ran

without error. Then statement2 runs. The then clause is executed if statement

2

returns a status. Conversely, if statementl fails (returns a non-zero exit status),

then statement2 doesn't even run; the last statement that actually ran was state-

mentl, which failed—so the then clause doesn't run, either. Taken all together, it's

fair to conclude that the then clause runs if statementl and statement2 both suc-

ceeded.

Similarly, consider this:

if statementl
\ \

statement2
then

fi

If Statementl succeeds, then statement2 does not am. This makes statementl the

last statement, which means that the then clause runs. On the other hand, if state-

mentl fails, then statement2 runs, and whether the then clause runs or not

depends on the success of statement2. The upshot is that the then clause runs if

statementl or statemerit2 succeeds.

if/else 117

hash also allows you to reverse the return status of a statement with the use of !,

the logical "not". Preceding a statement with ! will cause it to return if it fails and

1 if it succeeds. We'll see an example of this at the end of this chapter.

As a simple example of testing exit statuses, assume that we need to write a script

that checks a file for the presence of two words and just prints a message saying

whether either word is in the file or not. We can use grep for this: it returns exit

status if it found the given string in its input, non-zero if not:

f ilename=$l
wordl=$2
word2=$3

if grep $wordl $filenaine
| |

grep $word2 $filenaine

then
echo "$wordl or $word2 is in $filename."

fi

The then clause of this code runs if either grep statement succeeds. Now assume

that we want the script to say whether the input file contains both words. Here's

how to do it:

f ilenaine=$l

wordl=$2
word2=$3

if grep $wordl $filenaine && grep $word2 $filenaine

then
echo "$wordl and $word2 are both in $filenaine."

fi

We'll see more examples of these logical operators later in this chapter.

Condition Tests

Exit statuses are the only things an if construct can test. But that doesn't mean you

can check only whether commands ran properly. The shell provides a way of test-

ing a variety of conditions with the [. . .] construct.*

You can use the construct to check many different attributes of a file (whether it

exists, what type of file it is, what its permissions and ownership are, etc.), com-

pare two files to see which is newer, and do comparisons on strings.

[condition] is actually a statement just like any other, except that the only thing it

does is return an exit status that tells whether condition is true. (The spaces after

* The built-in command test is synonymous with [...]. For example, to test the equivalence of two
strings you can either put [stringl = string2] or test stringl = stnng2.

118 Chapter 5: Flow Control

the opening bracket "[" and before the closing bracket "]" are required.) Thus it fits

within the if construct's syntax.

String comparisons

The square brackets ([]) surround expressions that include various types of opera-

tors. We will start with the string comparison operators, listed in Table 5-1. (Notice

that there are no operators for "greater than or equal" or "less than or equal" com-

parisons.) In the table, strl and str2 refer to expressions with a string value.

Table 5-1: String Comparison Operators

Operator True if...

strl = str2^ strl matches str2

strl != str2 strl does not match str2

strl < str2 strl is less than str2

strl > str2 strl is greater than str2

-n strl strl is not null (has length greater than 0)

-z strl strl is null (has length 0)

a. Note that there is only one equal sign (=). This is a common source of error.

We can use one of these operators to improve our popd function, which reacts

badly if you try to pop and the stack is empty. Recall that the code for popd is:

popd (

)

{

DIR_STACK=${DIR_STACK#* }

cd ${DIR_STACK%% *}

echo "$PWD"

}

If the stack is empty, then $DIR_STACK is the null string, as is the expression

${DIR_STACK%% }. This means that you will change to your home directory;

instead, we want popd to print an error message and do nothing.

To accomplish this, we need to test for an empty stack, i.e., whether $DIR_STACK

is null or not. Here is one way to do it:

popd (

)

{

if [-n "$DIR_STACK"]; then

DIR_STACK=${DIR_STACK#* }

cd ${DIR_STACK%% *}

echo "$PWD"

else
echo "stack empty, still in $PWD.

"

fi

if/else 119^

In the condition, we have placed the $DIR_STACK in double quotes, so that when
it is expanded it is treated as a single word. If you don't do this, the shell will

expand $DIR_STACK to individual words and the test will complain that it was

given too many arguments.

There is another reason for placing $DIR_STACK in double quotes, which will

become important later on: sometimes the variable being tested will expand to

nothing, and in this example the test will become [-n], which returns true. Sur-

rounding the variable in double quotes ensures that even if it expands to nothing,

there will be an empty string as an argument (i.e., [-n ""
]).

Also notice that instead of putting then on a separate line, we put it on the same

line as the if after a semicolon, which is the shell's standard statement separator

character.

We could have used operators other than -n. For example, we could have used -z

and switched the code in the then and else clauses.

While we're cleaning up code we wrote in the last chapter, let's fix up the error

handling in the highest script (Task 4-1). The code for that script was:

filename=$ { 1 :
?

" filename missing ,

"

}

howmany=${2:-10}
sort -nr $ filename

|
head -$howmany

Recall that if you omit the first argument (the filename), the shell prints the mes-

sage highest: 1: filename missing. We can make this better by substituting a more

standard "usage" message. While we are at it, we can also make the command
more in line with conventional UNIX commands by requiring a dash before the

optional argument.

if [-z "$1"] ; then
echo 'usage: highest filename [-N]

'

else
filename=$l
howmany=$ {2 : --10}

sort -nr $ filename | head $howmany
fi

Notice that we have moved the dash in front of $howmany inside the parameter

expansion ${2:- -10}.

It is considered better programming style to enclose all of the code in the if-then-

else, but such code can get confusing if you are writing a long script in which you

need to check for errors and bail out at several points along the way. Therefore, a

more usual style for shell programming follows.

120 Chapter 5: Flow Control

if [-z "$1"
] ; then

echo 'usage: highest filename [-N]

'

exit 1

fi

f ilenaine=$l

howmany=${2 :--10}

sort -nr $filename
|
head $howinany

The exit statement informs any calling program whether it ran successfully or not.

As an example of the = operator, we can add to the graphics utility that we
touched on in Task 4-2. Recall that we were given a filename ending in pcx (the

original graphics file), and we needed to contruct a filename that was the same

but ended in .gifiihQ output file). It would be nice to be able to convert several

other types of formats to GIF files so that we could use them on a Web page.

Some common types we might want to convert besides PCX include XPM (X

PixMap), TGA (Targa), TIFF (Tagged Image File Format), and JPEG (Joint Photo-

graphics Expert Group).

We won't attempt to perform the actual manipulations needed to convert one

graphics format to another ourselves. Instead we'll use some tools that are freely

available on the Internet, conversion utilities from the NetPBM archive and from

the Independent JPEG Group.*

Don't worry about the details of how these utilities work; all we want to do is cre-

ate a shell frontend that processes the filenames and calls the correct conversion

utilities. At this point it is sufficient to know that each conversion utility takes a

filename as an argument and sends the results of the conversion to standard out-

put. To reduce the number of conversion programs necessary to convert between

the thirty or so different graphics formats it supports, NetPBM has its own format:

a Portable Anymap file, also called a PNM, with extensions format has a utility to

convert to and from this "central" PNM format.

The frontend script we are developing should first choose the correct conversion

utility based on the filename extension, and then convert the resulting PNM file

into a GIF:

f ilenaine=$l

extension=$ { f ilenaine##* . }

ppmf ile=${f ilenaine% .
* } .ppm

outfile=${ f ilenaine% .
* } .gif

* NetPBM is a portable j^iiipliics tonvcrsion utility package (.lcri\c-(.l tioiii anotlu-i package written in

the late '8().s by Jef Poskan/er, called I^BMpkis. It is freely available from many KIP sites includinj;

ft{)://ftp.x.orfi/conttih/iitilitws/rwll)hm-lniarl^)9i.tar.f^z. NetPBM tioesn'i include any con\ersion utilities

for handling JPF.Ci files (JPF.G. like GIF, is a popular graphics format for Web pages) but the necessar>'

utilities, which are cJlK'^ and cijpc% are available from the Independent jPFC^i drouii at

ft/):///!/) uu ni'l/i>ni/)hics/pc'fy.

if/else 121^

if [-z $ filename] ; then
echo "procfile: No file specified"
exit 1

fi

if [$extension = gif] ; then

exit
elif [$extension = tga] ; then

tgatoppm $filename > $ppmfile
elif [$extension = xpm] ; then

xpmtoppm $filename > $ppmfile
elif [$extension = pcx] ; then

pcxtoppm $filename > $ppmfile
elif [$extension = tif] ; then

tifftopnm $filename > $ppmfile
elif [$extension = jpg] ; then

djpeg $filenaiT\e > $ppmfile
else

echo "procfile: $filename is an unknovm graphics file."

exit 1

fi

ppmquant -quiet 256 $ppmfile
|

ppmtogif -quiet > $outfile

rm $ppmfile

Recall from the previous chapter that the expression ${filename%.*} deletes the

extension from filename; ${filename##*.} deletes the basename and keeps the

extension.

Once the correct conversion is chosen, the script runs the utility and writes the

output to a temporary file. The second to last line takes the temporary file, per-

forms some magic, and then converts it to a GIF.* The temporary file is then

removed. Notice that if the original file was a GIF we just exit without having to

do any processing.

This script has a few problems. We'll look at improving it later in this chapter.

File attribute checking

The other kind of operator that can be used in conditional expressions checks a

file for certain properties. There are 20 such operators. We will cover those of

most general interest here; the rest refer to arcana like sticky bits, sockets, and file

descriptors, and thus are of interest only to systems hackers. Refer to Appendix B,

Reference Lists, for the complete list. Table 5-2 lists those that we will examine.

* ppmquant quantizes the image. Some of the input formats have a higher number of colors than

GIF's maximum of 256 colors, so we have to compress the colors down to 256 or fewer. This is one
good reason why GIF shouldn't be used for "real world" images, e.g., photographs of people or land-

scapes. However, for the purposes of this and future examples, we'll stick with the GIF format.

122 Chapter 5: Flow Control

Table 5-2: File Attribute Operators

Operator True if...

-dfile file exists and is a directory

-^file file exists

-ffile file exists and is a regular file (i.e., not a directory or other special type of

file)

-tfile You have read permission on file

-sfile file exists and is not empty

-w file You have write permission on file

-xfile You have execute permission on file, or directory search permission if it

is a directory

-Ofile You own file

-Gfile file's group ID matches yours (or one of yours, if you are in multiple

groups).

filel -nt file2 filel is newer than file2^

filel -ot file2 filel is older than file2

a. Specifically, the -nt and -ot operators compare modification times of two files.

Before we get to an example, you should know that conditional expressions inside

[and] can also be combined using the logical operators && and
1 1 ,

just as we
saw with plain shell commands, in the previous section entitled "Combinations of

Exit Statuses." For example:

if [condition] && [condition]; then

It's also possible to combine shell commands with conditional expressions using

logical operators, like this:

if command && [condition] ; then

You can also negate the truth value of a conditional expression by preceding it

with an exclamation point (!), so that ! expr evaluates to true only if expr is false.

Furthermore, you can make complex logical expressions of conditional operators

by grouping them with parentheses (which must be "escaped" with backslashes to

prevent the shell from treating them specially), and by using two logical operators

we haven't seen yet: -a (AND) and -o (OR).

The -a and -o operators are similar to the «&& and
I I

operators used with exit sta-

tuses. However, unlike those operators, -a and -o are only available inside a test

conditional expression.

Here is how wc would use two of the file operators, a logical operator, and a

string operator to fix the problem of duplicate stack entries in our pushd function.

Instead of having cd determine whether the argument given is a valid directory

—

if/else 123^

i.e., by returning with a bad exit status if it's not—we can do the checking our-

selves. Here is the code:

pushd (

)

{

dirname=$l
if [-n "$dirname"] && [\ (-d "$dirname" \) -a \

\(-X "$dirname" \)] ; then
DIR_STACK="$dirname ${DIR_STACK: -$PWD' '}"

cd $dirnaine

echo "$DIR_STACK"

else
echo "still in $PWD.

"

fi

}

The conditional expression evaluates to true only if the argument $1 is not null

(-n), a directory (-d) and the user has permission to change to it (-x).* Notice

that this conditional handles the case where the argument is missing ($dirname is

null) first; if it is, the rest of the condition is not executed. This is important

because, if we had just put:

if [\(-n "$dirname" \) -a \ (-d "$dirname" \) -a \

\(-X "$dirname" \)]; then

the second condition, if null, would cause test to complain and the function would

exit prematurely.

Here is a more comprehensive example of the use of file operators.

Task 5-1

Write a script that prints essentially the same information as Is -1 but in a more

user-friendly way.

Although this task requires relatively long-winded code, it is a straightforward

application of many of the file operators:

if [! -e "$1"
] ; then

echo "file $1 does not exist."
exit 1

fi

if [-d "$1"
] ; then

echo -n "$1 is a directory that you may "

if [! -X "$1"
] ; then

echo -n "not "

fi

* Remember that the same permission flag that determines execute permission on a regular file deter-

mines search permission on a directory. This is why the -x operator checks both things depending on
file type.

124 Chapter 5: Flow Control

echo " search.

"

elif [-f "$1"
] ; then

echo "$1 is a regular file."

else

echo "$1 is a special type of file."

if [-0 "$1"
] ; then

echo 'you own the file.

'

else

echo 'you do not own the file.'

fi

if [-r "$1"
] ; then

echo 'you have read permission on the file.

'

fi

if [-w "$1"
] ; then

echo 'you have write permission on the file.'

fi

if [-X "$1" -a ! -d "$1"
] ; then

echo 'you have execute permission on the file.'

f i

Well call this scripi fileinfo. Here's how it works:

• The first conditional tests if the file gi\"en as argument does not exist uhe

exclamation point is tlie "not" operator: the spaces around it are required! If

the file does not exist, the script prints an error message and exits with error

status.

• The second conditional tests if the file is a director}-. If so. the first echo prints

part of a message; remember that the -n option tells echo not to print a LINE-

FEED at the end. The inner conditional checks if you do not have search per-

mission on the director)-. If you don't have search permission, the word "not"

is added to the panial message. Then, the message is completed with "search."

and a LINEFEED.

• The elif clause checks if the file is a regular file; if so. it prints a message.

• The else clause accounts for the various special file t\'pes on recent L'NIX sys-

tems, such as sockets, devices. FIFO files, etc. We assume that the casual user

isn't interested in details of these.

• The next conditional tests to see if the file is owned by you Cie.. if its owner

ID is tlie same as your login ID). If so, it prints a message saying that you o^^Tl

it.

• The next two conditionals lest for your read and write permission on the file.

• The last conditional checks if you can execute the file. It checks to see if you

have execute permission and that the file is not a directory. Uf the file were a

directory, execute permission would really mean director}' search permission.)

In this test we ha\ent used any brackets to gr(uip the tests and have relied on

operator precedence. Simply put. operator precedence is the order in which

-rwxr-xr-x 1 cam users
-rw-r--r-- 1 cam users
-r—r--r

—

1 root root

drwxr-xr-x 2 cam users

if/else 125^

the shell processes the operators. This is exactly the same concept as arith-

metic precedence in mathematics, where multiply and divide are done before

addition and subtraction. In our case, [-x "$1" -a ! -d "$1"
] is equivalent to

[\(-X "$1" \) -a \(! -d "$1" \)]. The file tests are done first, followed by any

negations (!) and followed by the AND and OR tests.

As an example of fileinfds output, assume that you do an is -1 of your current

directory and it contains these lines:

2987 Jan 10 20:43 adventure
30 Jan 10 21:45 alice

58379 Jan 11 21:30 core
1024 Jan 10 21:41 dodo

alice and core are regular files, dodo is a directory, and adventure is a shell script.

Typing fileinfo adventure produces this output:

adventure is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

you have execute permission on the file.

Typing fileinfo alice results in this:

alice is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

Finally, typing fileinfo dodo results in this:

dodo is a directory that you may search.

you own the file.

you have read permission on the file.

you have write permission on the file.

Typing fileinfo core produces this:

core is a regular file.

you do not own the file.

you have read permission on the file.

Integer Conditionals

The shell also provides a set of arithmetic tests. These are different from character

string comparisons like < and >, which compare lexicographic values of strings,*

not numeric values. For example, "6" is greater than "57" lexicographically, just as

"Lexicographic order" is really just "dictionary order."

126 Chapter 5: Flow Control

"p" is greater than "ox," but of course the opposite is true when they're compared

as integers.

The integer comparison operators are summarized in Table 5-3.

Table 5-3: Arithmetic Test Operators

Test Comparison

-it Less than

-le Less than or equal

-eq Equal

-ge Greater than or equal

-gt Greater than

-ne Not equal

You'll find these to be of the most use in the context of the integer variables we'll

see in the next chapter. They're necessary if you want to combine integer tests

with other types of tests within the same conditional expression.

However, the shell has a separate syntax for conditional expressions that involve

integers only. It's considerably more efficient, so you should use it in preference to

the arithmetic test operators listed above. Again, we'll cover the shell's integer con-

ditionals in the next chapter.

for
The most obvious enhancement we could make to the previous script is the ability

to report on multiple files instead of just one. Tests like -e and -d take only single

arguments, so we need a way of calling the code once for each file given on the

command line.

The way to do this—indeed, the way to do many things with bash— is with a

looping construct. The simplest and most widely applicable of the shell's looping

constructs is the for loop. We'll use for to enhance fileinfo soon.

The for loop allows you to repeat a section of code a fixed number of times. Dur-

ing each time through the code (known as an iteration), a special variable called a

hop variable is set to a different value; this way each iteration can do somcthii-ig

slightly different.

The for loop is somewhat, but not entirely, similar to its counterparts in conven-

tional languages like C and Pascal. The chief difference is that the shell's for loop

doesn't let you specify a number of limes to iterate or a range of \alucs over

which to iterate; in.stead, it only lets you give li fixed list of \alues. In other words.

for^ 127^

you can't do anything like this Pascal-type code, which executes statements 10

times:

for X := 1 to 10 do

begin
statements . .

.

end

(You need the while construct, which we'll see soon, to construct this type of

loop. You also need the ability to do integer arithmetic, which we will see in

Chapter 6, Command-Line Options and Typed Variables?)

However, the for loop is ideal for working with arguments on the command line

and with sets of files (e.g., all files in a given directory). We'll look at an example

of each of these. But first, we'll show the syntax for the for construct:

for name [in list]

do

statements that can use $naine...

done

The list is a list of names. (If in list is omitted, the list defaults to "$@", i.e., the

quoted list of command-line arguments, but we'll always supply the in list for the

sake of clarity.) In our solutions to the following task, we'll show two simple ways

to specify lists.

Task 5-2

Task 4-4 used pattern matching and substitution to list the directories in PATH,

one to a line. Unfortunately, old versions of bash don't have that particular

pattern operator. Write a general shell script, listpath, that prints each directory

in PATH, one per line. In addition, have it print out information about each

directory, such as the permissions and the modification times.

The easiest way to do this is by changing the IFS variable we saw in Chapter 4:

IFS=:

for dir in $PATH
do

Is -Id $dir
done

This sets the IFS to be a colon, which is the separator used in PATH. The for loop

then loops through, setting dir to each of the colon delimited fields in PATH. Is is

used to print out the directory name and associated information. The -1 parameter

specifies the "long" format and the -d tells Is to show only the directory itself and

not its contents.

128 Chapter 5: Flow Control

In using this you might see an error generated by Is saying, for example, Is:

/usr/TeX/bin: No such file or directory. It indicates that a directory in PATH doesn't

exist. We can modify the listpath script to check the PATH variable for nonexistent

directories by adding some of the tests we saw earlier;

IFS=:

for dir in $PATH; do

if [-z "$dir"]; then dir=.; fi

if ! [-e "$dir"] ; then
echo "$dir doesn't exist"

elif ! [-d "$dir"]; then
echo "$dir isn't a directory"

else

Is -Id $dir

fi

done

This time, as the script loops, we first check to see if the length of $dir is zero

(caused by having a value of :: in the PATH). If it is, we set it to the current direc-

tory. Then we check to see if the directory doesn't exist. If it doesn't, we print out

an appropriate message. Otherwise we check to see if the file is not a directory. If

it isn't, we say so.

The foregoing illustrated a simple use of for, but it's much more common to use

for to iterate through a list of command-line arguments. To show this, we can

enhance the fileinfo script above to accept multiple arguments. First, we write a bit

of "wrapper" code that does the iteration:

for filename in "$©"
; do

finfo "$filenaine"

echo
done

Next, we make the original script into a function called yi;^/o:*

finfo

{

if [! -e "$1"]; then
print "file $1 does not exist."

return 1

fi

}

The complete script consists of the for loop code and the above function, in either

order; good programming style dictates that the function definition should go first.

* A function can have ihc sanic name as a scripi; however, this isn't ^(hkI |-)r(\uniiiiniing practice.

for^ 129^

The fileinfo script works as follows: in the for statement, " $@ " is a list of all posi-

tional parameters. For each argument, the body of the loop is run with filename

set to that argument. In other words, the function finfo is called once for each

value of $filename as its first argument ($1). The call to echo after the call to finfo

merely prints a blank line between sets of information about each file.

Given a directory with the same files as the earlier example, typing fileinfo *

would produce the following output:

adventure is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

you have execute permission on the file.

alice is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

core is a regular file.

you do not own the file.

you have read peirmission on the file.

dodo is a directory that you may search,

you own the file.

you have read permission on the file,

you have write permission on the file.

Here is a programming task that exploits the other major use of for.

Task 5-3

It is possible to print out all of the directories below a given one by using the

-R option of Is. Unfortunately, this doesn't give much idea about the directory

structure because it prints all the files and directories line by line. Write a

script that performs a recursive directory listing and produces output that gives

an idea of the structure for a small number of subdirectories.

We'll probably want output that looks something like this:

adventure
aaiw

dodo
duchess
hatter
march_hare
queen
tarts

biog

130 Chapter 5: Flow Control

ttlg
red_queen
tweedledee
tweedledum

lewis . Carroll

Each column represents a directory level. Entries below and to the right of an

entry are files and directories under that directory. Files are just listed with no

entries to their right. This example shows that the directory adventure and the file

lewis. Carroll are in the current directory; the directories aaiw and ttlg, and the file

biog are under adventure, etc. To make life simple, we'll use TABs to line the

columns up and ignore any "bleed over" of filenames from one column into an

adjacent one.

We need to be able to traverse the directory hierarchy. To do this easily we'll use a

programming technique known as recursion. Recursion is simply referencing

something from itself; in our case, calling a piece of code from itself. For example,

consider this script, tracedir, in your home directory:

file=$l

echo $file

if [-d "$file"] ; then

cd $file

~/tracedir $(ls)

cd . .

fi

First we copy and print the first argument. Then we test to see if it is a directory. If

it is, we cd to it and call the script again with an argument of the files in that

directory. This script is recursive; when the first argument is a directory, a new

shell is invoked and a new script is run on the new directory. The old script waits

until the new script returns, then the old script executes a cd back up one level

and exits. This happens in each invocation of the tracedir script. The recursion

will stop only when the first argument isn't a directory.

Running this on the directory structure listed above with the argument adventure

will produce:

adventure
aaiw
dodo

dodo is a file and the script exits.

This script lias a few problems, but it is the basis for the solution to this task. One

major problem with the script is that it is very inefficient. Each time the script is

called, a new shell is created. We can improve on this by making the script into a

function, because (as you prol^ably remember from Chapter 4, Basic Shell

pr 131

Programming) functions are part of the shell they are started from. We also need a

way to set up the TAB spacing. The easiest way is to have an initializing script or

function and call the recursive routine from that. Let's look at this routine.

reels

{

singletab="\t"

for tryfile in "$&" ; do

echo $tryfile
if [-d "$tryfile"]; then

thisfile=$ tryfile
recdir $ (command Is $tryfile)

fi

done

unset dir singletab tab

}

First, we set up a variable to hold the TAB character for the echo command (Chap-

ter 7, Input/Output and Command-Line Processing, explains all of the options and

formatting commands you can use with echo). Then we loop through each argu-

ment supplied to the function and print it out. If it is a directory, we call our recur-

sive routine, supplying the list of files with Is. We have introduced a new
command at this point: command, command is a shell built-in that disables func-

tion and alias look-up. In this case, it is used to make sure that the Is command is

one from your command search path, PATH, and not a function (for further infor-

mation on command, see Chapter 7). After it's all^ over, we clean up by unsetting

the variables we have used.

Now we can expand on our earlier shell script.

recdir (

)

{

tab=tab singletab

for file in "$@"; do

echo -e tabfile
thisfile=$thisfile/$file

if [-d "$thisfile"]; then
recdir $ (command Is $thisfile)

fi

thisfile=${thisfile%/*}
done

tab=${tab%\t}

}

132 Chapter 5: Flow Control

Each time it is called, recdir loops through the files it is given as arguments. For

each one it prints the filename and then, if the file is a directory, calls itself with

arguments set to the contents of the directory. There are two details that have to

be taken care of: the number of TABs to use, and the pathname of the "current"

directory in the recursion.

Each time we go down a level in the directory hierarchy we want to add a TAB
character, so we append a TAB to the variable tab every time we enter recdir.

Likewise, when we exit recdir we are moving up a directory level, so we remove

the TAB when we leave the function. Initially, tab is not set, so the first time recdir

is called, tab will be set to one TAB. If we recurse into a lower directory, recdir

will be called again and another TAB will be appended. Remember that tab is a

global variable, so it will grow and shrink in TABs for every entry and exit of

recdir. The -e option to echo tells it to recognize escaped formatting characters, in

our case the TAB character, \t.

In this version of the recursive routine we haven't used cd to move between direc-

tories. That means that an Is of a directory will have to be supplied with a relative

path to files further down in the hierarchy. To do this, we need to keep track of

the directory we are currently examining. The initialization routine sets the vari-

able thisfile to the directory name each time a directory is found while looping.

This variable is then used in the recursive routine to keep the relative pathname of

the current file being examined. On each iteration of the loop, thisfile has the cur-

rent filename appended to it, and at the end of the loop the filename is removed.

You might like to think of ways to modify the behavior and improve the output of

this code. Here are some programming challenges:

1. In the current version, there is no way to determine if biog is a file or a direc-

tory. An empty directory looks no different to a file in the listing. Change the

output so it appends a / to each directory name when it displays it.

2. Modify the code so that it only recurses down a maximum of eight subdirecto-

ries (which is about the maximum before the lines overflow the right-hand

side of the screen). Hint: think about how TABs have been implemented.

3. Change the output so it includes dashed lines and adds a blank line after each

directory, thus:

I

adventure

I I

I I

aaiw

I I I

I I I

dodo

I I I

duchess

I I I

hatter

case 133

I

march_hare

I

queen

I

tarts

-biog
I

I

Hint: You'll need at least two other variables that contain the characters "I"

and "-".

case
The next flow-control construct we will cover is case. While the case statement in

Pascal and the similar switch statement in C can be used to test simple values like

integers and characters, bash's case construct lets you test strings against patterns

that can contain wildcard characters. Like its conventional-language counterparts,

case lets you express a series of if-then-else type statements in a concise way.

The syntax of case is as follows:

case expression in

patternl)

statements ;;

pattern2)

statements ;;

Any of the patterns can actually be several patterns separated by pipe characters

(I). If expression matches one of the patterns, its corresponding statements are

executed. If there are several patterns separated by pipe characters, the expression

can match any of them in order for the associated statements to be run. The pat-

terns are checked in order until a match is found; if none is found, nothing hap-

pens.

This construct should become clearer with an example. Let's revisit our solution to

Task 4-2 and the additions to it presented earlier in this chapter, our graphics util-

ity. Remember that we wrote some code that processed input files according to

their suffixes (.pcx for PCX format, Jpg for JPEG format, etc.).

We can improve upon this solution in two ways. Firstly, we can use a for loop to

allow multiple files to be processed one at a time; secondly, we can use the case

construct to streamline the code:

for filename in "$©"; do
ppmfile=${filename% . *} .ppm

case $filenaitie in

*.gif) exit ;

;

134 Chapter 5: Flow Control

*
. tga) tgatoppm Sfilename > $ppinfile ; ;

*.xpm) xpmtoppm $filenaine > $ppmfile ; ;

*.pcx) pcxtoppm $filenaine > $ppmfile ; ;

*.tif) tifftopnm $filenaine > $ppmfile ; ;

*.jpg) djpeg $filenaine > $ppmfile ; ;

*
) echo "procfile: $filename is an unknown graphics file."

exit 1 ;

;

esac

outfile=${ppmf ile% .ppm} .new.gif

ppmquant -quiet 256 $ppmfile
|

ppmtogif -quiet > $outfile
rm $ppmfile

done

The case construct in this code does the same thing as the if statements that we
saw in the earlier version. It is, however, clearer and easier to follow.

The first six patterns in the case statement match the various file extensions that

we wish to process. The last pattern matches anything that hasn't already been

matched by the previous statements. It is essentially a catchall and is analogous to

the default case in C.

There is another slight difference to the previous version; we have moved the pat-

tern matching and replacement inside the added for loop that processes all of the

command-line arguments. Each time we pass through the loop, we want to create

a temporary and final file with a name based on the name in the current com-

mand-line argument.

We'll return to this example in Chapter 6, when we further develop the script and

discuss how to handle dash options on the command line. In the meantime, here

is a task that requires that we use case.

Task 5-4

Write a function that implements the Korn shell's cd old new. cd takes the

pathname of the current directory and tries to find the string old. If it finds it, it

substitutes new and attempts to change to the resulting directory.

We can implement this by using a case statemenl to check the number of argu-

ments and the built-in cd command to do the actual clumge of directory.

case 135

Here is the code:*

cdO
{

case "$#" in

I

1) builtin cd $1 ;

;

2) newdir=$ (echo $PWD
|
sed -e "s:$l:$2:g")

case "$newdir" in

$PWD) echo "bash: cd: bad substitution" >&2 ;

return 1 ;

;

*
) builtin cd "$newdir" ;;

esac ;

;

*) echo "bash: cd: wrong arg count" 1>&2 ; return 1 ;;

esac

}

The case statement in this task tests the number of arguments to our cd command
against three alternatives.

For zero or one arguments, we want our cd to work just like the built-in one. The

first alternative in the case statement does this. It includes something we haven't

used so far; the pipe symbol between the and 1 means that either pattern is an

acceptable match. If the number of arguments is either of these, the built-in cd is

executed.

The next alternative is for two arguments, which is where we'll add the new func-

tionality to cd. The first thing that has to be done is finding and replacing the old

string with the new one. We use sed to perform this operation on the current

directory, s:$l:$2:g, meaning globally substitute string $2 for string $1. The result

is then assigned to newdir. If the substitution didn't take place, the pathname will

be unchanged. We'll use this fact in the next few lines.

Another case statement chooses between performing the cd or reporting an error

because the new directory is unchanged. If sed is unable to find the old string, it

leaves the pathname untouched. The * alternative is a catchall for anything other

than the current pathname (caught by the first alternative).

You might notice one small problem with this code: if your old and new strings

are the same you'll get bash:: cd: bad substitution. It should just leave you in the

same directory with no error message, but because the directory path doesn't

change, it uses the first alternative in the inner case statement. The problem lies in

knowing if sed has performed a substitution or not. You might like to think about

ways to fix this problem (hint: you could use grep to check whether the pathname

has the old string in it).

* To make the function a little clearer, we've used some advanced I/O redirection. I/O redirection is

covered in Chapter 7.

136 Chapter 5: Flow Control

The last alternative in the outer case statement prints an error message if there are

more than two arguments.

select

All of the flow-control constructs we have seen so far are also available in the

Bourne shell, and the C shell has equivalents with different syntax. Our next con-

struct, select, is available only in the Korn shell and bash* moreover, it has no

analogy in conventional programming languages.

select allows you to generate simple menus easily. It has concise syntax, but it

does quite a lot of work. The syntax is:

select name [in list]

do

statements that can use $naine...

done

This is the same syntax as for except for the keyword select.

And like for, you can omit the in list and it will default to "$@", i.e., the list of

quoted command-line arguments. Here is what select does:

• Generates a menu of each item in list, formatted with numbers for each choice

• Prompts the user for a number

• Stores the selected choice in the variable name and the selected number in

the built-in variable REPLY

• Executes the statements in the body

• Repeats the process forever (but see below for how to exit)

Here is a task that adds another command to our pushd and popd utilities.

Task 5-5

Write a function that allows the user to select a directory from a list of directo-

ries currently in the pushd directory stack. The selected directory is moved to

the front of the stack and it becomes the current working directory.

The display and selection of directories is best handled by using select. We can

start off with something along the lines of:t

* select i.s not available in hash versions prior to 1.1».

t Versions of hash prior to 1.14.3 have a serious hu^ with .select. These versions will crash if" the select

li.st is empty. In this ea.sc, surround selects with a test for a null li.st.

select 137

selectd (

)

{

PS3=' directory? '

select selection in $DIR_STACK; do

if [$selection] ; then
^statements that manipulate the stack. .

.

break
else

echo 'invalid selection.'
fi

done

}

If you type DIR_STACK='7usr /home /bin" and execute this function, you'll see:

1) /usr

2

)

/home

3) /bin

directory?

The built-in shell variable PS3 contains the prompt string that select uses; its

default value is the not particularly useful "#? ". So the first line of the above

code sets it to a more relevant value.

The select statement constructs the menu from the list of choices. If the user enters

a valid number (from 1 to the number of directories), then the variable selection is

set to the corresponding value; otherwise it is null. (If the user just presses

RETURN, the shell prints the menu again.)

The code in the loop body checks if selection is non-null. If so, it executes the

statements we will add in a short while; then the break statement exits the select

loop. If selection is null, the code prints an error message and repeats the menu
and prompt.

The break statement is the usual way of exiting a select loop. Actually (like its ana-

log in C), it can be used to exit any surrounding control structure we've seen so

far (except case, where the double semicolons act like break) as well as the while

and until we will see soon. We haven't introduced break until now because it is

considered bad coding style to use it to exit a loop. However, it can make code

easier to read if used judiciously, break is necessary for exiting select when the

user makes a valid choice.*

Now we'll add the missing pieces to the code:

selectd (

)

{

PS3=' directory? '

* A user can also type CTRL-D (for end-of-input) to get out of a select loop. This gives the user a uni-

form way of exiting, but it doesn't help the shell programmer much.

138 Chapter 5: Flow Control

dirstack=" $DIR_STACK "

select selection in $dirstack; do

if [$selection] ; then
DIR_STACK="$selection${dirstack%% $selection *}"

DIR_STACK="$DIR_STACK $ {dirstack##* $selection }"

DIR_STACK=${DIR_STACK% }

cd $selection
break

else

echo 'invalid selection.'
fi

done

The first two lines initialize environment variables, dirstack is a copy of

DIR_STACK with spaces appended at the beginning and end so that each directory

in the list is of the form space directory space. This form simplifies the code when
we come to manipulating the directory stack.

The select and if statements are the same as in our initial function. The new code

inside the if uses bash's pattern-matching capability to manipulate the directory

stack.

The first statement sets DIR_STACK to selection, followed by dirstack with every-

thing from selection to the end of the list removed. The second statement adds

everything in the list from the directory following selection to the end of

DIR_STACK. The next line removes the trailing space that was appended at the

start. To complete the operation, a cd is performed to the new directory, followed

by a break to exit the select code.

As an example of the list manipulation performed in this function, consider a

DIR_STACK set to /home /bin /usr2. In this case, dirstack would become /home

/bin/usr2. Typing selectd would result in:

$ selectd

1) /home

2) /bin

3) /usr2

directory?

After selecting /bin from the list, the first statement inside the if section sets

DIR_STACK to /bin followed by dirstack with everything from /bin onwards

removed, i.e., /home.

The second statement llien takes DIR_STACK and appends eveiything in dirstack

following /bin (i.e., /usr2) to it. The value of I)IR_STACK becomes bin honw

/nsr2. The trailing space is removed in the next line.

while and until 139

while and until

The remaining two flow control constructs bash provides are while and until.

These are similar; they both allow a section of code to be run repetitively while

(or until) a certain condition becomes true. They also resemble analogous con-

structs in Pascal (while/do and repeat/until) and C (while and do/until).

while and until are actually most useful when combined with features we will see

in the next chapter, such as integer arithmetic, input/output of variables, and com-

mand-line processing. Yet we can show a useful example even with what we have

covered so far.

The syntax for while is:

while condition
do

statements . .

.

done

For until, just substitute until for while in the above example. As with if, the con-

dition is really a list of statements that are run; the exit status of the last one is

used as the value of the condition. You can use a conditional with test here, just

as you can with if.

Note that the only difference between while and until is the way the condition is

handled. In while, the loop executes as long as the condition is true; in until, it

runs as long as the condition is false. The until condition is checked at the top of

the loop, not at the bottom as it is in analogous constructs in C and Pascal.

The result is that you can convert any until into a while by simply negating the

condition. The only place where until might be more meaningful is something like

this:

until command; do

statements. .

.

done

The meaning of this is essentially, "Do statements until command runs correctly."

This is not a likely contingency.

Here is an earlier task that can be rewritten using a while.

Task 5-6

Reimplement Task 5-2 without the use of the IFS variable.

140 Chapter 5: Flow Control

We can use the while construct and pattern matching to traverse the PATH list:

path=$PATH:

while [$path] ; do

Is -Id ${path%%:*}
path=${path#*:

}

done

The first line copies PATH to a temporary copy, path, and appends a colon to it.

Normally colons are used only between directories in PATH; adding one to the

end makes the code simple.

Inside the while loop we display the directory with Is as we did in Task 5-2. path

is then updated by removing the first directory pathname and colon (which is why
we needed to append the colon in the first line of the script). The while will keep

looping until $path expands to nothing (the empty string ""), which occurs once

the last directory in path has been listed.

Here is another task that is a good candidate for until.

Task 5-7

Write a script that attempts to copy a file to a directory and, if it fails, waits

five seconds, then tries again, continuing until it succeeds.

Here is the code:

until cp $1 $2; do

echo 'Attempt to copy failed, waiting. .
.

'

sleep 5

done

This is a fairly simple use of until. First, we use the cp command to perform the

copy for us. If it can't perform the copy for any reason, it will return with a non-

zero exit code. We set our until loop so that if the result of the copy is not then

the script prints a message and waits five seconds.

As we said earlier, an until loop can be converted to a while by the use of the !

operator:

while ! cp $1 $2; do

echo 'Attempt to copy failed, waiting...'
sleep 5

done

In our opinion, you'll seldom need to use until; tlierefore, we'll use while through-

out the rest of this book. We'll see further use of the while construct in Chapter 7.

In this chapter:

• Command-Line
Options

• Typed Variables

• Integer Variables and
Arithmetic

• Arrays

Command-Line
Options and

Typed Variables

You should have a healthy grasp of shell programming techniques now that you

have gone through the previous chapters. What you have learned up to this point

enables you to write many non-trivial, useful shell scripts and functions.

Still, you may have noticed some remaining gaps in the knowledge you need to

write shell code that behaves like the UNIX commands you are used to. In particu-

lar, if you are an experienced UNIX user, it might have occurred to you that none

of the example scripts shown so far have the ability to handle options preceded by

a dash (-) on the command line. And if you program in a conventional language

like C or Pascal, you will have noticed that the only type of data that we have

seen in shell variables is character strings; we haven't seen how to do arithmetic,

for example.

These capabilities are certainly crucial to the shell's ability to function as a useful

UNIX programming language. In this chapter, we will show how bash supports

these and related features.

Command-Line Options
We have already seen many examples of the positional parameters (variables

called 1, 2, 3, etc.) that the shell uses to store the command-line arguments to a

shell script or function when it runs. We have also seen related variables like *

(for the string of all arguments) and # (for the number of arguments).

Indeed, these variables hold all of the information on the user's command-line.

But consider what happens when options are involved. Typical UNIX commands

have the form command [-option^ args, meaning that there can be or more

options. If a shell script processes the command teatime alice hatter, then $1 is

141

142 Chapter 6: Command-Line Options and Typed Variables

"alice" and $2 is "hatter". But if the command is teatime -o alice hatter, then $1 is

-o, $2 is "alice", and $3 is "hatter".

You might think you could write code like this to handle it:

if [$1 = -o] ; then

code that processes the -o option
1 = $2

2 = $3

fi

normal processing of $1 and $2...

But this code has several problems. First, assignments like 1=$2 are illegal because

positional parameters are read-only. Even if they were legal, another problem is

that this kind of code imposes limitations on how many arguments the script can

handle—which is very unwise. Furthermore, if this command had several possible

options, the code to handle all of them would get very messy very quickly.

shift

Luckily, the shell provides a way around this problem. The command shift per-

forms the function of:

1 = $2

2 = $3

for every argument, regardless of how many there are. If you supply a numeric

argument to shift, it will shift the arguments that many times over; for example,

shift 3 has this effect:

1 = $4

2 = $5

This leads immediately to some code that handles a single option (call it -o) and

arbitrarily many arguments:

if [$1 = -o] ; then
process the -o option
shift

fi

normal processing of arguments . .

.

After the if construct, $1, $2, etc., are set to the correct arguments.

We can use shift together with tlie programming features we liave seen so far to

implement simple option schemes. However, we will need additional help when

things gel more complex. The gctopts buill-in command, which we will introduce

later, proxicies this \w\\).

Command-Line Options 143

shift by itself gives us enough power to implement the -A'^ option to the highest

script we saw in Chapter 4, Basic Shell Programming (Task 4-1). Recall that this

script takes an input file that lists artists and the number of albums you have by

them. It sorts the list and prints out the A'^ highest numbers, in descending order.

The code that does the actual data processing is:

filenaine=$l

howmany=${2:-10}
sort -nr $filenaine | head -$howinany

Our original syntax for calling this script was highest filename [-N], where A^

defaults to 10 if omitted. Let's change this to a more conventional UNIX syntax, in

which options are given before arguments: highest [-A^ filename. Here is how we
would write the script with this syntax:

if [-n "$(echo $1 |
grep '

^- [0-9] [0-9] *$
')

"]; tlien

]iowmany=$l

sliift

elif [-n "$(ec]io $1 |
grep '''-')"]; then

print 'usage: highest [-N] filename'

exit 1

else
howmany= "-10"

fi

f ilenaine=$l

sort -nr $ filename
|
head $howmany

This uses the grep search utility to test if $1 matches the appropriate pattern. To

do this we provide the regular expression "-[0-9][0-9]*$ to grep, which is inter-

preted as "an initial dash followed by a digit, optionally followed by one or more

digits." If a match is found then grep will return the match and the test will be

true, otherwise grep will return nothing and processing will pass to the elif test.

Notice that we have enclosed the regular expression in single quotes to stop the

shell from interpreting the $ and *, and pass them through to grep unmodified.

If $1 doesn't match, we test to see if it's an option at all, i.e., if it matches the pat-

tern - followed by anything else. If it does, then it's invalid; we print an error mes-

sage and exit with error status. If we reach the final (else) case, we assume that $1

is a filename and treat it as such in the ensuing code. The rest of the script pro-

cesses the data as before.

We can extend what we have learned so far to a general technique for handling

multiple options. For the sake of concreteness, assume that our script is called

alice and we want to handle the options -a, -b, and -c:

while [-n "$(echo $1
|

grep '-')"]; do

case $1 in

-a) process option -a ;

;

144 Chapter 6: Command-Line Options and Typed Variables

-b) process option -b ;

;

-c) process option -c ;

;

*
) echo 'usage: alice [-a] [-b] [-c] args . .

.

'

exit 1

esac

shift
done

normal processing of arguments . .

.

This code checks $1 repeatedly as long as it starts with a dash (-). Then the case

construct runs the appropriate code depending on which option $1 is. If the

option is invalid— i.e., if it starts with a dash but isn't -a, -b, or -c—then the

script prints a usage message and returns with an error exit status.

After each option is processed, the arguments are shifted over. The result is that

the positional parameters are set to the actual arguments when the while loop fin-

ishes.

Notice that this code is capable of handling options of arbitrary length, not just

one letter (e.g., -adventure instead of -a).

Options with Arguments

We need to add one more ingredient to make option processing really useful.

Recall that many commands have options that take their own arguments. For

example, the cut command, on which we relied heavily in Chapter 4, accepts the

option -d with an argument that determines the field delimiter (if it is not the

default TAB). To handle this type of option, we just use another shift when we are

processing the option.

Assume that, in our alice script, the option -b requires its own argument. Here is

the modified code that will process it:

while [-n "$(echo $1
|
grep '-')"

] ; do

case $1 in

-a) process option -a ;

;

-b) process option -b

$2 is the option' s argument
shift ;;

-c) process option -c ;

;

*
) exit 'usage: alice [-a] [-b barg] [-c] args...'

exit 1

esac

shift
done

normal processing of arguments . .

.

Command-Line Options 145

getopts

So far, we have a complete, but constrained, way of handling command-line

options. The above code does not allow a user to combine arguments with a sin-

gle dash, e.g., -abc instead of -a -b -c. It also doesn't allow one to specify argu-

ments to options without a space in between, e.g., -barg in addition to -b arg.*

The shell provides a built-in way to deal with multiple complex options without

these constraints. The built-in command getoptst can be used as the condition of

the while in an option-processing loop. Given a specification of which options are

valid and which require their own arguments, it sets up the body of the loop to

process each option in turn.

getopts takes two arguments. The first is a string that can contain letters and

colons. Each letter is a valid option; if a letter is followed by a colon, the option

requires an argument, getopts picks options off the command line and assigns

each one (without the leading dash) to a variable whose name is getopts's second

argument. As long as there are options left to process, getopts will return exit sta-

tus 0; when the options are exhausted, it returns exit status 1, causing the while

loop to exit.

getopts does a few other things that make option processing easier; we'll

encounter them as we examine how to use getopts in this example:

while getopts ":ab:c" opt; do

case $opt in

argument ; ;

[-b barg] [-c] args

,

a) process option -a ;

;

b) process option -b

$OPTARG is the option's
c) process option -c ;

;

\?) echo 'usage: alice [-a]

exit 1

esac
done
shift $(($OPTIND - 1)

)

normal processing of arguments . .

.

The call to getopts in the while condition sets up the loop to accept the options

-a, -b, and -c, and specifies that -b takes an argument. (We will explain the : that

starts the option string in a moment.) Each time the loop body is executed, it will

have the latest option available, without a dash (-), in the variable opt.

* Although most UNIX commands allow this, it is actually contrary to the Command Syntax Standard

Rules in intro of the User's Manual.

t getopts replaces the external command getopt, used in Bourne shell programming; getopts is better

integrated into the shell's syntax and runs more efficiently. C programmers will recognize getopts as

very similar to the standard library routine getopt.

146 Chapter 6: Command-Line Options and Typed Variables

If the user types an invalid option, getopts normally prints an unfortunate error

message (of the form cmd: getopts: illegal option — o) and sets opt to ?. However

if you begin the option letter string with a colon, getopts won't print the message.*

We recommend that you specify the colon and provide your own error message in

a case that handles ?, as above.

We have modified the code in the case construct to reflect what getopts does. But

notice that there are no more shift statements inside the while loop: getopts does

not rely on shifts to keep track of where it is. It is unnecessary to shift arguments

over until getopts is finished, i.e., until the while loop exits.

If an option has an argument, getopts stores it in the variable OPTARG, which can

be used in the code that processes the option.

The one shift statement left is after the while loop, getopts stores in the variable

OPTIND the number of the next argument to be processed; in this case, that's the

number of the first (non-option) command-line argument. For example, if the

command line were alice -ab rabbit, then $OPTIND would be "3". If it were alice

-a -b rabbit, then $OPTIND would be "4".

The expression $(($OPTIND - 1)) is an arithmetic expression (as we'll see later in

this chapter) equal to $OPTIND minus 1. This value is used as the argument to

shift. The result is that the correct number of arguments are shifted out of the way,

leaving the "real" arguments as $1, $2, etc.

Before we continue, now is a good time to summarize everything getopts does:

1. Its first argument is a string containing all valid option letters. If an option

requires an argument, a colon follows its letter in the string. An initial colon

causes getopts not to print an error message when the user gives an invalid

option.

2. Its second argument is the name of a variable that will hold each option letter

(without any leading dash) as it is processed.

3. If an option takes an argument, the argument is stored in the variable

OPTARG.

4. The variable OPTIND contains a number equal to the next command-line

argument to be processed. After getopts is done, it equals the number of the

first "real" argument.

The advantages of getopts are that it minimizes extra code necessary to process

options and fully supports the standard UNIX option syntax (as specified in /;//;•()

of the User's Manual).

* You can also turn off ihc gciopts incs.sa>;t'.s by selling the cnvironiucm \ariablc OITERR to 0. \\c \\i

continue to use the colon intihoti in this book.

Command-Line Options 147

As a more concrete example, let's return to our graphics utility (Task 4-2). So far,

we have given our script the ability to process various types of graphics files such

as PCX files (ending with .pcx), JPEG files i.jpg), XPM files (.xpm), etc. As a

reminder, here is what we have coded in the script so far:

f ilename=$l

if [-z $f ilename] ; then
echo "procfile: No file specified"
exit 1

fi

for filename in "$@"; do

ppmfile=$ {f ilename% . *} .ppm

case $filenaine in
* .gif) exit ;

;

*
. tga) tgatoppm $filename > $ppmfile ;;

*.xpm) xpmtoppm $filename > $ppmfile ;

;

*.pcx) pcxtoppm $filename > $ppmfile ;;

*.tif) tifftopnm $f ilename > $ppmfile ;;

*.jpg) djpeg $filename > $ppmfile ;;

*
) echo "procfile: $filename is an unknown graphics file."

exit 1 ;

;

esac

outfile=${ppmfile% .ppm} .new. gif

ppmquant -quiet 256 $ppmfile
|

ppmtogif -quiet > $outfile
rm $ppmfile

done

This script works quite well, in that it will convert the various different graphics

files that we have lying around into GIF files suitable for our Web page. However,

NetPBM has a whole range of useful utilities besides file converters that we could

use on the images. It would be nice to be able to select some of them from our

script.

Things we might wish to do to the images for our Web page include changing the

size and placing a border around them. We want to make the script as flexible as

possible; we will want to change the size of the resulting images and we might not

want a border around every one of them, so we need to be able to specify to the

script what it should do. This is where the command-line option processing will

come in useful.

148 Chapter 6: Command-Line Options and Typed Variables

We can change the size of an image by using the NetPBM utility pnmscale. You'll

recall from the last chapter that the NetPBM package has its own format called

PNM, the Portable Anymap. The fancy utilities we'll be using to change the size

and add borders work on PNM's. Fortunately, our script already converts the vari-

ous formats we give it into PNM's (actually PPM's in our script, which are full-color

instances of PNM's). Besides a PNM file, pnmscale also requires some arguments

telling it how to scale the image.* There are various different ways to do this, but

the one we'll choose is -xysize which takes a horizontal and a vertical size in pix-

els for the final image.

t

The other utility we'll need is pnmmargin which places a colored border around

an image. It takes as arguments the width of the border in pixels, and the color of

the border.

Our graphics utility will need some options to reflect the ones we have just seen:

-s 5/z^ will specify a size into which the final image will fit (minus any border), -w
width will specify the width of the border around the image, and -c color-name

will specify the color of the border.

Here is the code for the script procimage that includes the option processing:

Set up the defaults
size=320
width=l
colour="--color black"

usage="Usage: $0 [-s N] [--w N] [-C S] imagefile

while getopts ":s:w:c:" opt;; do

case $opt in

s) size=$OPTARG ; ,

w) width=$OPTARG
,; ;

c) colour=" -color $OPTARG" ; ;

\?) echo $usage
exit 1 ;;

esac

done

shift $ (($OPTIND - 1)

)

if [-z "$(i"] ; then

echo $usage
exit 1

fi

* We'll also need the -quiet option, which you may already have noticed as an option to the

ppmquant and ppmtogifuiihucs. -quiet suppresses diagnostic output from some NetPBM utilities.

t Actually, -xysize fits the image into a box defined by its arguments without changing the aspect ratio

of the image, i.e., without stretching the image horizontally or vertically. For example, if you had an

image of si/.e 200 by 100 pixels and you processed it with ptiniscale -xysize 100 100, you'd end up

with an image of si/e 100 by SO pixels.

Command-Line Options 149

Process the input files
for filename in "$*"; do

ppmfile=${filenaine% . *} .ppm

case $filename in

*.gif) giftopnm $filename > $ppmfile ;

*
. tga) tgatoppm $filename > $ppmfile ;

*.xpm) xpmtoppm $filenaine > $ppinfile ;

*.pcx) pcxtoppm $filename > $ppmfile ;

*.tif) tifftopnm $filenaine > $ppmfile

*.jpg) djpeg $filenaine > $ppmfile ;;

*
) echo "$0: Unknown filetype ' ${f ilename##* .

} '

"

exit 1;

;

outfile=${ppmfile% .ppm} .new.gif
pnmscale -quiet -xysize $size $size $ppmfile

|

pninmargin $colour $width
|

ppmguant -quiet 256
|

ppmtogif -quiet > $outfile

rm $ppmfile

done

The first several lines of this script initialize variables used as default settings. The

defaults set the image size to 320 pixels and a black border of width 1 pixel.

The while, getopts, and case constructs process the options in the same way as in

the previous example. The code for the first three options assigns the respective

argument to a variable (replacing the default value). The last option is a catchall

for any invalid options.

The rest of the code works in much the same way as in the previous example

except that we have added the pnmscale and pnmmargin utilities to the process-

ing pipeline.

The script also now generates a different filename; it appends .new.gifto the base-

name. This allows us to process a GIF file as input, applying scaling and borders,

and write it out without destroying the original file.

This version doesn't address every issue, e.g., what if we don't want any scaling to

be performed? We'll return to this script and develop it further in the next chapter.

150 Chapter 6: Command-Line Options and Typed Variables

Typed Variables

So far we've seen how bash variables can be assigned textual values. Variables can

also have other attributes, including being read only and being of type integer.

You can set variable attributes with the declare built-in.* Table 6-1 summarizes the

available options with declare. t A - turns the option on, while + turns it off.

Table 6-1: Declare Options

Option Meaning

-a The variables are treated as arrays

-f Use function names only

-F Display function names without definitions

-i The variables are treated as integers

-r Makes the variables read-only

-X Marks the variables for export via the environment

Typing declare on its own displays the values of all variables in the environment.

The -f option limits this display to the function names and definitions currently in

the environment. -F limits it further by displaying only the function names.

The -a option declares arrays—a variable type that we haven't seen yet, but will

be discussed shortly.

The -i option is used to create an integer variable, one that holds numeric values

and can be used in and modified by arithmetic operations. Consider this example:

$ vall=12 val2=5

$ resultl=val*val2

$ echo $resultl
vall*val2

$

$ declare -i val3=12 val4=5

$ declare -i result2

$ result2=val3*val4

$ echo $result2
60

In the first example, the variables are ordinary shell variables and the result is just

the string "vall*val2". In the second example, all of the variables have been

declared as type integer. The variable result contains the result of the arithmetic

computation twelve multiplied by five. Actually, we didn't need to declare vaI3

and val4 as type integer. Anything being assigned to result2 is interpreted as an

arithmetic statement and evaluation is attempted.

* The typeset buill-in is synonyinoiis with clfclarc Init is coiisick-ivtl obsolete,

t The -a and -F options are not a\ailai)le in hdsh prior to wrsion 2.0.

Integer Variables and Arithmetic 151

The -X option to declare operates in the same way as the export built-in that we
saw in Chapter 3, Customizing Your Environment. It allows the listed variables to

be exported outside the current shell environment.

The -r option creates a read-only variable, one that cannot have its value changed

by subsequent assignment statements.

A related built-in is readonly name . . . which operates in exactly the same way as

declare -r. readonly has four options: -f, which makes readonly interpret the name

arguments as function names rather than variable names, -n, which removes the

read-only property from the names, -p, which makes the built-in print a list of all

read-only names, and -a, which interprets the name arguments as arrays.

Lastly, variables declared in a function are local to that function, just like using

local to declare them.

Integer Variables and Arithmetic
The expression $(($OPTIND - 1)) in the last graphics utility example shows

another way that the shell can do integer arithmetic. As you might guess, the shell

interprets words surrounded by $((and)) as arithmetic expressions.* Variables in

arithmetic expressions do not need to be preceded by dollar signs, though it is not

wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables,

and command substitutions. We're finally in a position to state the definitive rule

about quoting strings: When in doubt, enclose a string in single quotes, unless it

contains tildes or any expression involving a dollar sign, in which case you should

use double quotes.

For example, the date command on System V-derived versions of UNIX accepts

arguments that tell it how to format its output. The argument +%j tells it to print

the day of the year, i.e., the number of days since December 31st of the previous

year.

We can use +%j to print a little holiday anticipation message:

echo "Only $(((365-$ (date +% j)) / 7)) weeks until the New Year"

We'll show where this fits in the overall scheme of command-line processing in

Chapter 7, Input/Output and Command-Line Processing.

The arithmetic expression feature is built into bash's syntax, and was available in

the Bourne shell (most versions) only through the external command expr. Thus it

* You can also use the older form $[...], but we don't recommend this because it will be phased out

in future versions of bash.

152 Chapter 6: Command-Line Options and Typed Variables

is yet another example of a desirable feature provided by an external command
being better integrated into the shell, getopts, as we have already seen, is another

example of this design trend.

bash arithmetic expressions are equivalent to their counterparts in the C language.*

Precedence and associativity are the same as in C. Table 6-2 shows the arithmetic

operators that are supported. Although some of these are (or contain) special char-

acters, there is no need to backslash-escape them, because they are within the

$((...)) syntax.

Table 6-2: Arithmetic Operators

Operator Meaning

+ Plus

- Minus
* Multiplication

/ Division (with truncation)

% Remainder

« Bit-shift left

» Bit-shift right

& Bitwise and

1
Bitwise or

~
Bitwise not

! Bitwise not
"

Bitwise exclusive or

Parentheses can be used to group subexpressions. The arithmetic expression syn-

tax also (as in C) supports relational operators as "truth values" of 1 for true and

for false. Table 6-3 shows the relational operators and the logical operators that

can be used to combine relational expressions.

Table 6-3: Relational Operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

'"^ Not equal to

* The a.s.signmcnt forms of these operators are also periiiitteci. For example. $((x += 2)) .icitis 2 to x

and stores the result haek in x.

Integer Variables and Arithmetic 153

Table 6-3: Relational Operators (continued)

Operator

&&
II

Meaning

Logical and

Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) | | (4 <= 1))) also has the

value 1, since at least one of the two subexpressions is true.

The shell also supports base A^ numbers, where A^can be from 2 to 36. The nota-

tion B#Nn\Q2ins 'Wbase B'\ Of course, if you omit the B*, the base defaults to 10.

Arithmetic Conditionals

In Chapter 5, Flow Control, we saw how to compare strings by the use of [. . .]

notation (or with the test built-in). Arithmetic conditions can also be tested in this

way. However, the tests have to be carried out with their own operators. These are

shown in Table 6-4.

Table 6-4: Test Relational Operators

Operator Meaning

-It Less than

-gt Greater than

-le Less than or equal to

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

As with string comparisons, the arithmetic test returns a result of true or false; if

true, 1 otherwise. So, for example, [3 -gt 2] produces exit status 0, as does [\(3

-gt 2 \) 1 1 \(4 -le 1 \)], but [\(3 -gt 2 \) && \(4 -le 1 \)] has exit status 1 since

the second subexpression isn't true.

In these examples we have had to escape the parentheses and pass them to test as

separate arguments. As you can see, the result can look rather unreadable if there

are many parentheses.

Another way to make arithmetic tests is to use the $((...)) form to encapsulate

the condition. For example: [$(((3 > 2) && (4 <= 1))) = 1]. This evaluates the

conditionals and then compares the resulting value to 1 (true).*

* Note that the truth values returned by $((...)) are 1 for true, for false—the reverse of the test and

exit statuses.

154 Chapter 6: Command-Line Options and Typed Variables

There is an even neater and more efficient way of performing an arithmetic test:

by using the ((...)) construct.* This returns an exit status of if the expression is

true, and 1 otherwise.

The above expression using this construct becomes: (((3 > 2) && (4 <= 1))). This

example returns with an exit status of 1 because, as we said, the second subex-

pression is false.

Arithmetic Variables and Assignment

As we saw earlier, you can define integer variables by using declare. You can also

evaluate arithmetic expressions and assign them to variables with the use of let.

The syntax is:

let intvar- expression

It is not necessary (because it's actually redundant) to surround the expression

with $((and)) in a let statement, let doesn't create a variable of type integer; it

only causes the expression following the assignment to be interpreted as an arith-

metic one. As with any variable assignment, there must not be any space on either

side of the equal sign (=). It is good practice to surround expressions with quotes,

since many characters are treated as special by the shell (e.g., *, #, and parenthe-

ses); furthermore, you must quote expressions that include whitespace (spaces or

TABs). See Table 6-5 for examples.

Table 6-5: Sample Integer Expression Assignments

Assignment Value

letx= $x

1+4 5

'1 + 4' 5

' (2+3) * 5' 25

'2+3*5' 17

'17 / 3' 5

'17 % 3' 2

'1«4' 16

'48»3' 6

'17 & 3' 1

'17
1

3' 19

'17 ^ 3' 18

((...)) is not available in versions ol hash prior to 2.0.

Integer Variables and Arithmetic 135

Task 6-1

Here is a small task that makes use of integer arithmetic. Write a script called

ndu that prints a summary of the disk space usage for each directory argu-

ment (and any subdirectories), both in terms of bytes, and kilobytes or

megabytes (whichever is appropriate).

Here is the code:

for dir in ${*:-.}; do

if [-e $dir] ; then
result=$(du -s $dir

|
cut -f 1)

let total=$result*1024

echo -n "Total for $dir = $total bytes"

if [$total -ge 1048576] ; then
echo " ($((total/1048576)) Mb)"

elif [$total -ge 1024] ; then
echo " ($((total/1024)) Kb)"

fi

fi

done

To obtain the disk usage of files and directories, we can use the UNIX utility du.

The default output of du is a list of directories with the amount of space each one

uses, and looks something like this:

6 . /toe

3 ./figlist

6 ./tablist
1 . /exlist

1 . / index/ idx

22 ./index

39 .

If you don't specify a directory to du, it will use the current directory (.). Each

directory and subdirectory is listed along with the amount of space it uses. The

grand total is given in the last line.

The amount of space used by each directory and all the files in it is listed in terms

of blocks. Depending on the UNIX system you are running on, one block can rep-

resent 512 or 1024 bytes. Each file and directory uses at least one block. Even if a

file or directory is empty, it is still allocated a block of space in the filesystem.

In our case, we are only interested in the total usage, given on the last line of du's

output. To obtain only this line, we can use the -s option of du. Once we have

the line, we want only the number of blocks and can throw away the directory

name. For this we use our old friend cutlo extract the first field.

156 Chapter 6: Command-Line Options and Typed Variables

Once we have the total, we can multiply it by the number of bytes in a block

(1024 in this case) and print the result in terms of bytes. We then test to see if the

total is greater than the number of bytes in one megabyte (1048576 bytes, which is

1024 X 1024) and if it is, we can print how many megabytes it is by dividing the

total by this large number. If not, we see if it can be expressed in kilobytes, other-

wise nothing is printed.

We need to make sure that any specified directories exist, otherwise du will print

an error message and the script will fail. We do this by using the test for file or

directory existence (-e) that we saw in Chapter 5 before calling du.

To round out this script, it would be nice to imitate du as closely as possible by

providing for multiple arguments. To do this, we wrap the code in a for loop.

Notice how parameter substitution has been used to specify the current directory if

no arguments are given.

As a bigger example of integer arithmetic, we will complete our emulation of the

pushd and popd functions (Task 4-8). Remember that these functions operate on

DIR_STACK, a stack of directories represented as a string with the directory names

separated by spaces, bash's pushd and popd take additional types of arguments,

which are:

• pushd +n takes the n\h directory in the stack (starting with 0), rotates it to the

top, and cds to it.

• pushd without arguments, instead of complaining, swaps the two top directo-

ries on the stack and cds to the new top.

• popd +n takes the mxh directory in the stack and just deletes it.

The most useful of these features is the ability to get at the mh directory in the

stack. Here are the latest versions of both functions:

pushd (

)

{

dirnaine=$l if [-n $dirnaine] && [\ (-d $dirname \) -a

\(-X $dirname \)]; then
DIR_STACK="$dirnaine $ {DIR_STACK: -$PWD' '}"

cd $dirnaine

echo "$DIR_STACK"
else

echo "still in $PWD.

"

fi

}

popd (

)

{

if [-n "$DIR_STACK"]; then

DIR_STACK=${DIR_STACK#* }

Integer Variables and Arithmetic 137

cd ${DIR_STACK%% *}

echo "$PWD"

else
echo "stack empty, still in $PWD.

"

fi

}

To get at the n\h directory, we use a while loop that transfers the top directory to

a temporary copy of the stack n times. We'll put the loop into a function called

getNdirs that looks like this:

getNdirs (

)

{

stackfront= '

'

let count=0
while [$count -le $1] ; do

target=${DIR_STACK%${DIR_STACK#* }}

stackfront= " $stackfront$target

"

DIR_STACK= $ { DIR_STACK# $ target

}

let count=count+l
done

stackfront=${ stackfront%$target}

}

The argument passed to getNdirs is the n in question. The variable target contains

the directory currently being moved from DIR_STACK to a temporary stack, stack-

front, target will contain the nth directory and stackfront will have all of the direc-

tories above (and including) target when the loop finishes, stackfront starts as null;

count, which counts the number of loop iterations, starts as 0.

The first line of the loop body copies the first directory on the stack to target. The

next line appends target to stackfront and the following line removes target from

the stack ${DIR_STACK#$target}. The last line increments the counter for the next

iteration. The entire loop executes n+\ times, for values of count from to A^+1.

When the loop finishes, the directory in $target is the ni\\ directory. The expres-

sion ${stackfront%$target} removes this directory from stackfront so that stackfront

will contain the first n-l directories. Furthermore, DIR_STACK now contains the

"back" of the stack, i.e., the stack without the first n directories. With this in mind,

we can now write the code for the improved versions of pushd and popd:

pushd (

)

{

if [$(echo $1
I

grep '

^+ [0-9] [0-9] *$
')]; then

case of pushd +n: rotate n-th directory to top

let nuin=${l#+}

getNdirs $num

158 Chapter 6: Command-Line Options and Typed Variables

DIR_STACK= " $target$stackfront$DIR_STACK"
cd $target

echo "$DIR_STACK"

elif [-z "$1"] ; then

case of pushd without args; swap top two directories
firstdir=${DIR_STACK%% *}

DIR_STACK=${DIR_STACK#* }

seconddir=${DIR_STACK%% *}

DIR_STACK=${DIR_STACK#* }

DIR_STACK="$seconddir $firstdir $DIR_STACK"

cd $seconddir

else

normal case of pushd dirname
dirnaine=$l

if [\ (-d $dirnaine \) -a \(-x $dirnaine \)] ; then
DIR_STACK="$dirnaine $ {DIR_STACK: -$PWD" " }

"

cd $dirname
echo "$DIR_STACK"

else
echo still in "$PWD."

fi

fi

popd (

)

{

if [$(echo $1
I

grep ' '^+ [0-9] [0-9] *$
')] ; then

case of popd +n: delete n-th directory from stack
let nuin=${l#+}

getNdirs $num
DIR_STACK="$stackfront$DIR_STACK"
cd ${DIR_STACK%% *}

echo "$PWD"

else

normal case of popd without argument
if [-n "$DIR_STACK"] ; then

DIR_STACK=${DIR_STACK#* }

cd ${DIR_STACK%% *}

echo "$PWD"

else
echo "stack empty, still in $PWD.

"

fi

fi

}

These functions liave grown ratlier large; let's look at them in turn. The if at the

beginning of pw.s'/7(i checks if the first argument is an option of the form +A'. If so,

ihe first body of code is run. 'I'he first let simply strips the \)\\\s sign (+) from the

Integer Variables and Arithmetic 159

argument and assigns the result—as an integer—to the variable num. This, in

turn, is passed to the getNdirs function.

The next assignment statement sets DIR_STACK to the new ordering of the list.

Then the function cds to the new directory and prints the current directory stack.

The eiif clause tests for no argument, in which case pushd should swap the top

two directories on the stack. The first four lines of this clause assign the top two

directories to firstdir and seconddir, and delete these from the stack. Then, as

above, the code puts the stack back together in the new order and cds to the new
top directory.

The else clause corresponds to the usual case, where the user supplies a directory

name as argument.

popd works similarly. The if clause checks for the +A^ option, which in this case

means "delete the nih. directory." A let extracts the A^ as an integer; the getNdirs

function puts the first n directories into stackfront. Finally, the stack is put back

together with the n\h directory missing, and a cd is performed in case the deleted

directory was the first in the list.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your under-

standing of this code:

1. Implement bash's dirs command and the options +n and -1. dirs by itself dis-

plays the list of currently remembered directories (those in the stack). The +n

option prints out the mh. directory (starting at 0) and the -1 option produces a

long listing; any tildes (~) are replaced by the full pathname.

2. Modify the getNdirs function so that it checks for N exceeding the number of

directories in the stack and exits with an appropriate error message if true.

3. Modify pushd, popd, and getNdirs so that they use variables of type integer in

the arithmetic expressions.

4. Change getNdirs so that it uses cut (with command substitution), instead of the

while loop, to extract the first A^ directories. This uses less code but runs more

slowly because of the extra processes generated.

5. bash's versions of pushd and popd also have a -A^ option. In both cases -A^

causes the nih. directory from the right-hand side of the list to have the opera-

tion performed on it. As with +A^, it starts at 0. Add this functionality.

6. Use getNdirs to reimplement the selectd function from the last chapter.

160 Chapter 6: Command-Line Options and Typed Variables

Arrays
The pushd and popd functions use a string variable to hold a list of directories and

manipulate the list with the string pattern-matching operators. Although this is

quite efficient for adding or retrieving items at the beginning or end of the string,

it becomes cumbersome when attempting to access items that are anywhere else,

e.g., obtaining item A^with the getNdirs function. It would be nice to be able to

specify the number, or index, of the item and retrieve it. Arrays allow us to do

this.*

An array is like a series of slots that hold values. Each slot is known as an element,

and each element can be accessed via a numerical index. An array element can

contain a string or a number, and you can use it just like any other variable. The

indices for arrays start at and continue up to a very large number.t So, for exam-

ple, the fifth element of array names would be names [4]. Indices can be any valid

arithmetic expression that evaluates to a number greater than or equal to 0.

There are several ways to assign values to arrays. The most straightforward way is

with an assignment, just like any other variable:

names [2] =alice
names [

] shatter
names [1] =duchess

This assigns hatter to element 0, duchess to element 1, and alice to element 2 of

the array names.

Another way to assign values is with a compound assignment:

names= ([2] =alice [0] shatter [l]=duchess)

This is equivalent to the first example and is convenient for initializing an array

with a set of values. Notice that we didn't have to specify the indices in numerical

order. In fact, we don't even have to supply the indices if we reorder our values

slightly:

names= (hatter duchess alice)

bash automatically assigns the values to consecutive elements starting at 0. If we
provide an index at some point in the compound assignment, the values get

assigned consecutively from that point on, so:

names= (hatter [5]=duchess alice)

assigns hatter to element 0, duchess to element 5, and alice to element 6.

* Support for arrays is not available in versions of hcLsh prior to 2.0.

t Actually, up to 599147937791. That's almo.st six hundred billion, so yes, it's pretty large.

Arrays 1 61

An array is created automatically by any assignment of these forms. To explicitly

create an empty array, you can use the -a option to declare. Any attributes that

you set for the array with declare (e.g., the read-only attribute) apply to the entire

array. For example, the statement declare -ar names would create a read-only

array called names. Every element of the array would be read-only.

An element in an array may be referenced with the syntax ${array[i\}. So, from

our last example above, the statement echo ${names[5]} would print the string

"duchess". If no index is supplied, array element is assumed.

You can also use the special indices @ and *
. These return all of the values in the

array and work in the same way as for the positional parameters; when the array

reference is within double quotes, using * expands the reference to one word

consisting of all the values in the array separated by the first character of the IFS

variable, while @ expands the values in the array to separate words. When
unquoted, both of them expand the values of the array to separate words. Just as

with positional parameters, this is useful for iterating through the values with a for

loop:

for i in "$ {names [@] }" ; do

echo $i

done

Any array elements which are unassigned don't exist; they default to null strings if

you explicitly reference them. Therefore, the previous looping example will print

out only the assigned elements in the array names. If there were three values at

indexes 1, 45, and 1005, only those three values would be printed.

A useful operator that you can use with arrays is #, the length operator that we
saw in Chapter 4. To find out the length of any element in the array, you can use

${^array[t\}. Similarly, to find out how many values there are in the array, use *

or @ as the index. So, for names=(hatter t5]=duchess alice), ${#names[5]} has the

value 7, and ${#names[@]} has the value 3.

Reassigning to an existing array with a compound array statement replaces the old

array with the new one. All of the old values are lost, even if they were at different

indices to the new elements. For example, if we reassigned names to be

([100]=tweedledee tweedledum), the values hatter, duchess, and alice would dis-

appear.

You can destroy any element or the entire array by using the unset built-in. If you

specify an index, that particular element will be unset, unset names[100], for

instance, would remove the value at index 100; tweedledee in the example above.

However, unlike assignment, if you don't specify an index the entire array is

unset, not just element 0. You can explicitly specify unsetting the entire array by

using * or @ as the index.

162 Chapter 6: Command-Line Options and Typed Variables

Let's now look at a simple example that uses arrays to match user IDs to account

names on the system. The code takes a user ID as an argument and prints the

name of the account plus the number of accounts currently on the system:

for i in $(cut -f 1,3 -d: /etc/passwd) ; do
array[${i#*:}]=${i%:*}

done

echo "User ID $1 is ${array [$1] }
.

"

echo "There are currently ${#array[@]} user accounts on the system."

We use cut to create a list from fields 1 and 3 in the /etc/passwd file. Field 1 is the

account name and field 3 is the user ID for the account. The script loops through

this list using the user ID as an index for each array element and assigns each

account name to that element. The script then uses the supplied argument as an

index into the array, prints out the value at that index, and prints the number of

existing array values.

Some of the environment variables in bash are arrays; DIRSTACK functions as a

stack for the pushd and popd built-ins, BASH_VERSINFO is an array of version

information for the current instance of the shell, and PIPESTATUS is an array of

exit status values for the last foreground pipe that was executed.

We'll see a further use of arrays when we build a bash debugger in Chapter 9.

To end this chapter, here are some problems relating to what we've just covered:

1. Improve the account ID script so that it checks whether the argument is a

number. Also, add a test to print an appropriate message if the user ID doesn't

exist.

2. Make the script print out the username (field 5) as well. Hint: this isn't as easy

as it sounds. A username can have spaces in it, causing the for loop to iterate

on each part of the name.

3. As mentioned earlier, the built-in versions of pushd and popd use an array to

implement the stack. Change the pushd, popd, and getNdirs code that we

developed in this chapter so that it uses arrays.

In this chapter:

• I/O Redirectors

• String I/O

• Command-Line
Processing

Input/Output and
Command-Line

Processing

The past few chapters have gone into detail about various shell programming

techniques, mostly focused on the flow of data and control through shell pro-

grams. In this chapter, we switch the focus to two related topics. The first is the

shell's mechanisms for doing file-oriented input and output. We present informa-

tion that expands on what you already know about the shell's basic I/O redirec-

tors.

Second, we'll "zoom in" and talk about I/O at the line and word level. This is a

fundamentally different topic, since it involves moving information between the

domains of files/terminals and shell variables, echo and command substitution are

two ways of doing this that we've seen so far.

Our discussion of line and word I/O will lead into a more detailed explanation of

how the shell processes command lines. This information is necessary so that you

can understand exactly how the shell deals with quotation, and so that you can

appreciate the power of an advanced command called eval, which we will cover

at the end of the chapter.

I/O Redirectors

In Chapter 1, bash Basics, you learned about the shell's basic I/O redirectors: >, <,

and I . Although these are enough to get you through 95% of your UNIX life, you

should know that bash supports many other redirectors. Table 7-1 lists them,

including the three we've already seen. Although some of the rest are broadly use-

ful, others are mainly for systems programmers.

163

164 Chapter 7: Input/Output and Command-Line Processing

Table 7-1: I/O Redirectors

Redirector Function

cmdl 1 cmd2 Pipe; take standard output of cmdl as standard input to cmd2

>file Direct standard output to file

<file Take standard input horn file

» file Direct standard output to file; append to file if it already exists

>\file Force standard output to file even if noclobber is set

n> 1 file Force output to file from file descriptor n even if noclobber is set

o file Use file as both standard input and standard output

no file Use file as both input and output for file descriptor n

« label Here-document; see text

n> file Direct file descriptor n to file

n<file Take file descriptor n from file

n» file Direct file descriptor n to file; append to file if it already exists

n>SL Duplicate standard output to file descriptor n

n<8c Duplicate standard input from file descriptor n

n>8Lm File descriptor n is made to be a copy of the output file descriptor

n<&im File descriptor n is made to be a copy of the input file descriptor

&>file Directs standard output and standard error to file

<&- Close the standard input

>&- Close the standard output

n>&- Close the output from file descriptor n

n<&- Close the input from file descriptor n

Notice that some of the redirectors in Table 7-1 contain a digit n, and that their

descriptions contain the term file descriptor; we'll cover that in a little while.

The first two new redirectors, » and >|, are simple variations on the standard

output redirector >. The » appends to the output file (instead of overwriting it) if

it already exists; otherwise it acts exactly like >. A common use of» is for adding

a line to an initialization file (such as .bashrc or .mailrc) when you don't want to

bother with a text editor. For example:

$ cat >> .bashrc

alias cdinnt= 'mount t iso9660 /dev/sbpcd /cdrom'

As we saw in Chapter 1, cat without an argument uses standard input as its input.

This allows you to type the input and end it with CTRL-D on its own line. The

alias line will be appended to the file .bashrc if it already exists; if it doesni. the

file is created with that one line.

Recall from Chapter 3, Customizing Your Environme)it. that \()u can prevent the

shell from overwriting a file with > file by typing set -o noclobber. >| oxerrides

noclobber— it's the "Do it anyway, dammit!" redirector.

I/O Redirectors 165

The redirector <> is mainly meant for use with device files (in the /dev directory),

i.e., files that correspond to hardware devices such as terminals and communica-

tion lines. Low-level systems programmers can use it to test device drivers; other-

wise, it's not very useful.

Here-documents

The « label redirector essentially forces the input to a command to be the shell's

standard input, which is read until there is a line that contains only label The

input in between is called a here-document. Here-documents aren't very interest-

ing when used from the command prompt. In fact, it's the same as the normal use

of standard input except for the label. We could use a here-document to simulate

the mail facility. When you send a message to someone with the mail utility, you

end the message with a dot (.). The body of the message is saved in a file, msgftle:

$ cat >> msgfile << .

> this is the text of

> our message.
> .

Here-documents are meant to be used from within shell scripts; they let you spec-

ify "batch" input to programs. A common use of here-documents is with simple

text editors like ed. Task 7-1 is a programming task that uses a here-document in

this way.

Task 7-1

The s file command in mail saves the current message in file. If the message

came over a network (such as the Internet), then it has several header lines

prepended that give information about network routing. Write a shell script

that deletes the header lines from the file.

We can use ed to delete the header lines. To do this, we need to know something

about the syntax of mail messages; specifically, that there is always a blank line

between the header lines and the message text. The ^^i command !,/"[] *$/d does

the trick: it means, "Delete from line 1 until the first blank line." We also need the

ed commands w (write the changed file) and q (quit). Here is the code that solves

the task:

ed i51 « EOF
1,/''[]*$/d
w
q
EOF

The shell does parameter (variable) substitution and command substitution on text

in a here-document, meaning that you can use shell variables and commands to

166 Chapter 7: Input/Output and Command-Line Processing

customize the text. A good example of this is the bashbug script, which sends a

bug report to the bash maintainer (see Chapter 11, bash for Your System). Here is

a stripped-down version:

MACHINE="i586"
OS="linux-gnu"
CC="gcc"
CFLAGS=" -DPROGRAM='bash' -DHOSTTYPE= ' 1586 ' -DOSTYPE= ' linux-gnu' \

-DMACHTYPE='i586-pc-linux-gnu' -DSHELL -DHAVE_CONFIG_H -I. \

-I. -I. /lib -g -02"

RELEASE="2.01"
PATCHLEVEL= "

"

RELSTATUS= "release

"

MACHTYPE=" 15 8 6 -pc- linux-gnu"

TEMP=/tmp/bbug. $$

case "$RELSTATUS" in

alpha* I beta*) BUGBASH=chet@po . cwru . edu ;

;

*) BUGBASH=bug-bash©prep. ai.mit.edu ;

;

esac

BUGADDR= " $ { 1 - $BUGBASH }

"

UN=
if (uname) >/dev/null 2>&1; then

UN=''unaine -a'

fi

cat > $TEMP «EOF
From: ${USER}

To: ${BUGADDR}
Subject: [50 character or so descriptive subject here (for reference)]

Configuration Information [Automatically generated, do not change]

:

Machine : $MACHINE
OS: $0S

Compiler: $CC

Compilation CFLAGS : $CFLAGS
uname output : $IJN

Machine Type: $MACHTYPE

bash Version: $RELEASE
Patch Level: $PATCHLEVEL
Release Status: $RELSTATUS

Description:
[Detailed description of the problem, suggestion, or complaint.]

Repeat-By:
[Describe the sequence of events that causes the problem

to occur .

]

I/O Redirectors 167

Fix:

[Description of how to fix the problem. If you don't know a

fix for the problem, don't include this section.]
EOF

vi $TEMP

mail $BUGADDR < $TEMP

The first eight lines are generated when bashhug is installed. The shell will then

substitute the appropriate values for the variables in the text whenever the script is

run.

The redirector « has two variations. First, you can prevent the shell from doing

parameter and command substitution by surrounding the label in single or double

quotes. In the above example, if you used the line cat > $TEMP « ' EOF ' , then

text like $USER and $MACHINE would remain untouched (defeating the purpose

of this particular script).

The second variation is «-, which deletes leading TABs (but not blanks) from the

here-document and the label line. This allows you to indent the here-document's

text, making the shell script more readable:

cat > $TEMP «-EOF
From: ${USER}

To: ${BUGADDR}
Subject: [50 character or so descriptive subject here]

Configuration Information [Automatically generated,

do not change]

:

Machine : $MACHINE
OS: $0S

Compiler: $CC

Compilation CFLAGS: $CFLAGS

EOF

Make sure you are careful when choosing your label so that it doesn't appear as

an actual input line.

File Descriptors

The next few redirectors in Table 7-1 depend on the notion of a file descriptor.

Like the device files used with <>, this is a low-level UNIX I/O concept that is of

interest only to systems programmers—and then only occasionally. You can get by

with a few basic facts about them; for the whole story, look at the entries for

readO, writeO, fcntlO, and others in Section 2 of the UNIX manual. You might

wish to refer to UNIX Power Tools by Jerry Peek, Tim O'Reilly, and Mike Loukides

(published by O'Reilly & Associates).

168 Chapter 7. Input/Output and Command-Line Processing

File descriptors are integers starting at that refer to particular streams of data

associated with a process. When a process starts, it usually has three file descrip-

tors open. These correspond to the three standards-, standard input (file descriptor

0), standard output (1), and standard error (2). If a process opens additional files

for input or output, they are assigned to the next available file descriptors, starting

with 3.

By far the most common use of file descriptors with bash is in saving standard

error in a file. For example, if you want to save the error messages from a long job

in a file so that they don't scroll off the screen, append 2> file to your command.

If you also want to save standard output, append > filel 2> file2.

This leads to another programming task.

Task 7-2

You want to start a long job in the background (so that your terminal is freed

up) and save both standard output and standard error in a single log file. Write

a script that does this.

We'll call this script start. The code is very terse:

"$©" > logfile 2>&1 &

This line executes whatever command and parameters follow start. (The command

cannot contain pipes or output redirectors.) It sends the command's standard out-

put to logfile.

Then, the redirector 2>&1 says, "send standard error (file descriptor 2) to the same

place as standard output (file descriptor 1)." Since standard output is redirected to

logfile, standard error will go there too. The final & puts the job in the background

so that you get your shell prompt back.

As a small variation on this theme, we can send both standard output and standard

error into a pipe instead of a file: command 2>&1
I

. . . does this. (Make sure you

understand why.) Here is a script that sends both standard output and standard

error to the logfile (as above) and to the terminal:

"$@" 2>&1
I

tee logfile &

The command tee takes its standard input and copies it to standard output cdhI the

file given as argument.

These scripts have one sliortcoming: yoii niusl remain log.^cd in until the job com-

pletes. Although you CLin always type jobs (see (Chapter 1) to check on progress.

String I/O 169

you can't leave your terminal until the job finishes, unless you want to risk a

breach of security.* We'll see how to solve this problem in the next chapter.

The other file-descriptor-oriented redirectors (e.g., <8cn) are usually used for read-

ing input from (or writing output to) more than one file at the same time. We'll see

an example later in this chapter. Otherwise, they're mainly meant for systems pro-

grammers, as are <«&- (force standard input to close) and >&- (force standard

output to close).

Before we leave this topic, we should just note that 1> is the same as >, and 0< is

the same as <. If you understand this, then you probably know all you need to

know about file descriptors.

String I/O
Now we'll zoom back in to the string I/O level and examine the echo and read

statements, which give the shell I/O capabilities that are more analogous to those

of conventional programming languages.

echo

As we've seen countless times in this book, echo simply prints its arguments to

standard output. Now we'll explore the command in greater detail.

Options to echo

echo accepts a few dash options, listed in Table 7-2.

Table 7-2: echo Options

Option Function

-n

Turns on the interpretation of backslash-escaped characters

Turns off the interpretation of backslash-escaped character on systems where

this mode is the default

Omit the final newline (same as the \c escape sequence)

echo escape sequences

echo accepts a number of escape sequences that start with a backslash. t These are

similar to the escape sequences recognized by echo and the C language; they are

listed in Table 7-3.

* Don't put it past people to come up to your unattended terminal and cause mischief!

t You must use a double backslash if you don't surround the string that contains them with quotes;

otherwise, the shell itself "steals" a backslash before passing the arguments to echo.

170 Chapter 7: Input/Output and Command-Line Processing

These sequences exhibit fairly predictable behavior, except for \f: on some dis-

plays, it causes a screen clear, while on others it causes a line feed. It ejects the

page on most printers. \v is somewhat obsolete; it usually causes a line feed.

Table 7-3: echo Escape Sequences

Sequence Character Printed

\a ALERT or CTRL-G (bell)

\b BACKSPACE or CIRL-H

\c Omit final NEWLINE

\E Escape character^

\f FORMFEED or CTRL-L

\n NEWLINE (not at end of command) or CIRL-J

\r RETURN (ENTER) or CTRL-M

\t TABorClRL-I

\v VERTICAL TAB or CIRL-K

\n ASCII character with octal (base-8) value n, where w is 1 to 3 digits

W Single backslash

a. Not available in versions of bash prior to 2.0.

The \n sequence is even more device-dependent and can be used for complex

I/O, such as cursor control and special graphics characters.

read

The other half of the shell's string I/O facilities is the read command, which allows

you to read values into shell variables. The basic syntax is:

read varl var2 . . .

This statement takes a line from the standard input and breaks it down into words

delimited by any of the characters in the value of the environment variable IPS

(see Chapter 4, Basic Shell Programming; these are usually a space, a TAB, and

NEWLINE). The words are assigned to variables varl, var2, etc. For example:

$ read characterl character2
alice duchess

$ echo $characterl
alice

$ echo $character2

duchess

If there are more words than varial:>les, then excess words are assigned to the last

variable. If you omit tlie varial:)les altogether, the entire line of input is assigned to

the variable REPLY.

string I/O 171

You may have identified this as the "missing ingredient" in the shell programming

capabilities we have seen thus far. It resembles input statements in conventional

languages, like its namesake in Pascal. So why did we wait this long to introduce

it?

Actually, read is sort of an "escape hatch" from traditional shell programming phi-

losophy, which dictates that the most important unit of data to process is a text

file, and that UNIX utilities such as cut, grep, sort, etc., should be used as building

blocks for writing programs.

read, on the other hand, implies line-by-line processing. You could use it to write

a shell script that does what a pipeline of utilities would normally do, but such a

script would inevitably look like:

while (read a line) do

process the line

print the processed line
end

This type of script is usually much slower than a pipeline; furthermore, it has the

same form as a program someone might write in C (or some similar language) that

does the same thing much faster. In other words, if you are going to write it in this

line-by-line way, there is no point in writing a shell script.

Reading linesfrom files

Nevertheless, shell scripts with read are useful for certain kinds of tasks. One is

when you are reading data from a file small enough so that efficiency isn't a con-

cern (say a few hundred lines or less), and it's really necessary to get bits of input

into shell variables.

Consider the case of a UNIX machine that has terminals that are hardwired to the

terminal lines of the machine. It would be nice if the TERM environment variable

was set to the correct terminal type when a user logged in.

One way to do this would be to have some code that sets the terminal information

when a user logs in. This code would presumably reside in /etc/profile, the system-

wide initialization file that bash runs before running a user's .bash_profile. If the

terminals on the system change over time—as surely they must—then the code

would have to be changed. It would be better to store the information in a file and

change just the file instead.

Assume we put the information in a file whose format is typical of such UNIX

"system configuration" files: each line contains a device name, a TAB, and a TERM
value.

/ 72 Chapter 7: Input/Output and Command-Line Processing

We'll call the file /etc/terms, and it would typically look something like this:

console consol'

ttyOl wy60
tty03 vtlOO
tty04 vtlOO
tty07 wy85
tty08 VtlOO

The values on the left are terminal lines and those on the right are the terminal

types that TERM can be set to. The terminals connected to this system are a Wyse

60 (wy60), three VTlOOs (vtlOO), and a Wyse 85 (wy85). The machines' master ter-

minal is the console, which has a TERM value of console.

We can use read to get the data from this file, but first we need to know how to

test for the end-of-file condition. Simple: read's exit status is 1 (i.e., non-zero)

when there is nothing to read. This leads to a clean while loop:

TERM=vtlOO # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line] ; then

TERM=$termtype
echo "TERM set to $TERM.

"

break
fi

done

The while loop reads each line of the input into the variables dev and termtype.

In each pass through the loop, the if looks for a match between $dev and the

user's tty ($line, obtained by command substitution from the tty command). If a

match is found, TERM is set, a message is printed, and the loop exits; otherwise

TERM remains at the default setting of vtlOO.

We're not quite done, though: this code reads from the standard input, not from

/etc/termsl We need to know how to redirect input to multiple commands. It turns

out that there are a few ways of doing this.

I/O redirection and multiple commands

One way to solve the problem is with a subshell, as we'll see in the next chapter.

This involves creating a separate process to do the reading. However, it is usually

more efficient to do it in the same process; hash gives us four ways of doing this.

The first, which we have seen already, is with a function:

f indterm () {

TERM=vtlOO # assume this as a default
line=$ (tty)

while read dev termtype; do

if [$dev = $line] ; then

string I/O 173

TERiy[= $ termtype
echo "TERM set to $TERM.

"

break;

fi

done

}

findterm < /etc /terms

A function acts like a script in that it has its own set of standard I/O descriptors,

which can be redirected in the line of code that calls the function. In other words,

you can think of this code as if findterm were a script and you typed findterm <

/etc/terms on the command line. The read statement takes input from /etc/terms a

line at a time, and the function runs correctly.

The second way is to simplify this slightly by placing the redirection at the end of

the function:

findterm () {

TERM=vtlOO # assume this as a default
line=$(tty)
while read dev termtype; do

if [$dev = $line] ; then
TERM= $ termtype
echo "TERM set to $TERM. "

break

;

fi

done

} < /etc/terms

Whenever findterm is called, it takes its input from /etc/terms.

The third way is by putting the I/O redirector at the end of the loop, like this:

a defaultTERM=vtlOO # assume; this <

line=$(tty)
while read dev termtype; do

if [$dev = $line]

;

then
TERM= $ termtype
echo "TERM set tc. $TERM
break;

fi

done < /etc /terms

You can use this technique with any flow-control construct, including if . . . fi,

case . . . esac, select . . . done, and until . . . done. This makes sense because these

are all compound statements that the shell treats as single commands for these pur-

poses. This technique works fine—the read command reads a line at a time—as

long as all of the input is done within the compound statement.

1 74 Chapter 7: Input/Output and Command-Line Processing

Command blocks

But if you want to redirect I/O to or from an arbitrary group of commands without

creating a separate process, you need to use a construct that we haven't seen yet.

If you surround some code with { and }, the code will behave like a function that

has no name. This is another type of compound statement. In accordance with the

equivalent concept in the C language, we'll call this a command block.

What good is a block? In this case, it means that the code within the curly brackets

({}) will take standard I/O descriptors just as we described in the last block of

code. This construct is appropriate for the current example because the code

needs to be called only once, and the entire script is not really large enough to

merit breaking down into functions. Here is how we use a block in the example:

{

TERM=vtlOO # assume! this as a default
line=$(tty)

while read dev• termtype; do

if [$dev = $line]; then
TERM= $ termtype
echo " TERM set tc1 $TERM.

"

break

;

fi

done
/etc/terms

To help you understand how this works, think of the curly brackets and the code

inside them as if they were one command, i.e.:

{ TERM=vtlOO; line=$(tty); while ... } < /etc/terms;

Configuration files for system administration tasks like this one are actually fairly

common; a prominent example is /etc/hosts, which lists machines that are accessi-

ble in a TCP/IP network. We can make /etc/terms more like these standard files by

allowing comment lines in the file that start with #, just as in shell scripts. This way

/etc/terms can look like this:

#

System Console is console
console console
#

Cameron's line has a Wyse 60

ttyOl wy60

We can handle comment lines by modifying the while k)()p so thai it ii^nores lines

begining witli #. We can place a i>rej) in the test:

if [-z "$(echo $dev
|
grep "#)"

] && [$dev = $line]; then

string I/O 775

As we saw in Chapter 5, Flow Control, the && combines the two conditions so

that both must be true for the entire condition to be true.

As another example of command blocks, consider the case of creating a standard

algebraic notation frontend to the dc command, dc is a UNIX utility that simulates

a Reverse Polish Notation (RPN) calculator:*

{ while read line; do

echo "$(alg2rpn $line)

"

done

}
I

dc

We'll assume that the actual conversion from one notation to the other is handled

by a function called alg2rpn. It takes a line of standard algebraic notation as an

argument and prints the RPN equivalent on the standard output. The while loop

reads lines and passes them through the conversion function, until an EOF is

typed. Everything is executed inside the command block and the output is piped

to the dc command for evaluation.

Reading user input

The other type of task to which read is suited is prompting a user for input. Think

about it: we have hardly seen any such scripts so far in this book. In fact, the only

ones were the modified solutions to Task 5-4, which involved select.

As you've probably figured out, read can be used to get user input into shell vari-

ables.

We can use echo to prompt the user, like this:

echo -n 'terminal? '

read TERM
echo "TERM is $TERM"

Here is what this looks like when it runs:

terminal? V7y60

TERM is wy60

However, shell convention dictates that prompts should go to standard error, not

standard output. (Recall that select prompts to standard error.) We could just use

file descriptor 2 with the output redirector we saw earlier in this chapter:

echo -n 'terminal? ' >&2

read TERM
echo TERM is $TERM

* If you have ever owned a Hewlett-Packard calculator you will be familiar with RPN. We'll discuss

RPN further in one of the exercises at the end of this chapter.

1 76 Chapter 7: Input/Output and Command-Line Processing

We'll now look at a more complex example by showing how Task 5-5 would be

done if select didn't exist. Compare this with the code in Chapter 5:

echo 'Select a directory:'
done=false

while [$done = false] ; do

do=true
num=l
for direc in $DIR_STACK; do

echo $nuin $direc

niim=$ ((num+l))

done
echo -n 'directory? '

read REPLY

if [$REPLY -It $num] && [$REPLY -gt] ; then

set - $DIR_STACK

^statements that manipulate the stack. .

.

break
else

echo 'invalid selection.'

fi

done

The while loop is necessary so that the code repeats if the user makes an invalid

choice, select includes the ability to construct multicolumn menus if there are

many choices, and better handling of null user input.

Before leaving read, we should note that it has four options: -a, -e, -p, and -r.*

The first of these options allows you to read values into an array. Each successive

item read in is assigned to the given array starting at index 0. For example:

$ read -a people
alice duchess dodo

$ echo $ {people [2]}

dodo

$

In this case, the array people now contains the items alice, duchess, and cicxh.

The option -e can be used only with scripts run from interactive shells. It causes

readline to be used to gather the input line, which means that you can use any of

the readline editing features that we looked at in Cliapter 2.

The -p option followed by a string argument prints the string before residing

input. We could have used this in the earlier examples of read, where we printed

* -a, -e, and -p arc not available in versions ot hcL'ih prior to 2.0.

Command-Line Processing 177

out a prompt before doing the read. For example, the directory selection script

could have used read -p 'directory? ' REPLY.

read lets you input lines that are longer than the width of your display by provid-

ing a backslash (\) as a continuation character, just as in shell scripts. The -r

option overrides this, in case your script reads from a file that may contain lines

that happen to end in backslashes, read -r also preserves any other escape

sequences the input might contain. For example, if the file hatter contains this

line:

A line with a\n escape sequence

Then read -r aline will include the backslash in the variable aline, whereas without

the -r, read will "eat" the backslash. As a result:

$ read -r aline < hatter

$ echo -e "$aline"
A line with a

escape sequence

$

However:

$ read aline < hatter

$ echo -e "$aline"
A line with an escape sequence

$

Command-Line Processing
We've seen how the shell uses read to process input lines: it deals with single

quotes ('
'), double quotes (""), and backslashes (\); it separates lines into

words, according to delimiters in the environment variable IPS; and it assigns the

words to shell variables. We can think of this process as a subset of the things the

shell does when processing command lines.

We've touched upon command-line processing throughout this book; now is a

good time to make the whole thing explicit. Each line that the shell reads from the

standard input or a script is called a pipeline, it contains one or more commands

separated by zero or more pipe characters (I). For each pipeline it reads, the shell

breaks it up into commands, sets up the I/O for the pipeline, then does the fol-

lowing for each command (Figure 7-1):

1. Splits the command into tokens that are separated by the fixed set of

metacharacters: SPACE, TAB, NEWLINE, ;, (,), <, >, I, and &. Types of tokens

include words, keywords, I/O redirectors, and semicolons.

178 Chapter 7: Input/Output and Command-Line Processing

^1

split into tokens

syntax error

tilde expansion
•mmmmmmmmsmmmm

I
parameter expansion y^
command substitution

arithmetic substitution H
word splitting

pathname expansion
iiiiip. inii ii

. i)B,i.inmii

{
iui

^^j

command lookup: function, built-in

command, executable file

Figure 7-1: Steps iji cotyimaynl-liyic Jm)ccssi}i{^

Command-Line Processing 1 79

2. Checks the first token of each command to see if it is a keyword with no

quotes or backslashes. If it's an opening keyword, such as if and other con-

trol-structure openers, function, {, or (, then the command is actually a com-

pound command. The shell sets things up internally for the compound
command, reads the next command, and starts the process again. If the key-

word isn't a compound command opener (e.g., is a control-structure "middle"

like then, else, or do, an "end" like fi or done, or a logical operator), the shell

signals a syntax error.

3. Checks the first word of each command against the list of aliases. If a match is

found, it substitutes the alias's definition and goes back to Step 1; otherwise, it

goes on to Step 4. This scheme allows recursive aliases (see Chapter 3). It also

allows aliases for keywords to be defined, e.g., alias aslongas=while or alias

procedure=function.

4. Performs brace expansion. For example, a{b,c} becomes ab ac.

5. Substitutes the user's home directory ($HOME) for tilde if it is at the beginning

of a word.* Substitutes usefs home directory for ~user.

6. Performs parameter (variable) substitution for any expression that starts with a

dollar sign ($).

7. Does command substitution for any expression of the form %istring).

8. Evaluates arithmetic expressions of the form $(istring)).

9. Takes the parts of the line that resuked from parameter, command, and arith-

metic substitution and splits them into words again. This time it uses the char-

acters in $IFS as delimiters instead of the set of metacharacters in Step 1.

10. Performs pathname expansion, a.k.a. wildcard expansion, for any occurrences

of *, ?, and [/] pairs.

11. Uses the first word as a command by looking up its source according to the

rest of the list in Chapter 4, i.e., as a function command, then as a built-in,

then as a file in any of the directories in $PATH.

12. Runs the command after setting up I/O redirection and other such things.

That's a lot of steps—and it's not even the whole story! But before we go on, an

example should make this process clearer. Assume that the following command

has been run:

alias ll="ls -1"

* Two obscure variations on this: the shell substitutes the current directory ($PWD) for ~+ and the pre-

vious directory ($OLDPWD) for ~-.

180 Chapter 7: Input/Output and Command-Line Processing

Further assume that a file exists called .hist537 in user alice's home directory,

which is /home/alice, and that there is a double-dollar-sign variable $$ whose

value is 2537 (we'll see what this special variable is in the next chapter).

Now let's see how the shell processes the following command:

11 $(type -path cc) "alice/ . *$ (($$%1000)

)

Here is what happens to this line:

1. 11 ${type -path cc) ~alice/ . *$

(

($$%1000))

Splitting the input into words.

2. 11 is not a keyword, so Step 2 does nothing.

3. Is -1 $(type -path cc) ~alice/ . *$ (($$%1000)

)

Substituting Is -1 for its alias "11". The shell then repeats Steps 1 through 3;

Step 2 splits the Is -1 into two words.

4. Is -1 $(type -path cc) ~alice/ . *$

(

($$%1000))

This step does nothing.

5. Is -1 $(type -path cc) /home/alice/ . *$

(

($$%1000))

Expanding ~alice into /home/alice.

6. Is -1 $(type -path cc) /home/alice/ .*$({2537%1000))

Substituting 2537 for $$.

7. Is -1 /usr/bin/cc /home/alice/ .*$((2537%1000))

Doing command substitution on "type -path cc".

8. Is -1 /usr/bin/cc /home/alice/ . *537

Evaluating the arithmetic expression 2537% 1000.

9. Is -1 /usr/bin/cc /home/alice/ . *537

This step does nothing.

10. Is -1 /usr/bin/cc /home/alice/ .hist537

Substituting the filename for the wildcard expression . *537.

1 1

.

The command Is is found in /usr/bin.

12. /usr/bin/ls is run with the option -1 and the two arguments.

Although this list of steps is fairly straightforward, it is not the whole stoiy. There

are still five ways to modify the process: quoting; using command, builtin. or

enable; and using the advanced command eval.

Quoting

You can think of cjuoting as a way of getting the siiell to si\ip some of the 12 steps

above. In particular:

Command-Line Processing 181

• Single quotes (' ') bypass everything through Step 10—including aliasing. All

characters inside a pair of single quotes are untouched. You can't have single

quotes inside single quotes—not even if you precede them with backslashes.*

• Double quotes ("") bypass Steps 1 through 4, plus steps 9 and 10. That is,

they ignore pipe characters, aliases, tilde substitution, wildcard expansion, and

splitting into words via delimiters (e.g., blanks) inside the double quotes. Sin-

gle quotes inside double quotes have no effect. But double quotes do allow

parameter substitution, command substitution, and arithmetic expression eval-

uation. You can include a double quote inside a double-quoted string by pre-

ceding it with a backslash (\). You must also backslash-escape $, ' (the

archaic command substitution delimiter), and \ itself.

Table 7-4 has simple examples to show how these work; they assume the state-

ment person=hatter was run and user alice's home directory is /home/alice.

If you are wondering whether to use single or double quotes in a particular shell

programming situation, it is safest to use single quotes unless you specifically need

parameter, command, or arithmetic substitution.

Table 7-4: Examples ofQuoting Rules

Expression Value

$person hatter

" $person

"

hatter

\ $person $person

' $person

'

$person
"

' $person '
"

' hatter

'

~alice /home/alice

" ^alice " ~alice

'

~aUce

'

~alice

command, huiltin, and enable

Before moving on to the last part of the command-line processing cycle, we'll take

a look at the command lookup order that we touched on in Chapter 4 and how it

can be altered with several shell built-ins.

The default order for command lookup is functions, followed by built-ins, with

scripts and executables last. There are three built-ins that you can use to override

this order: command, builtin, and enable.

* However, as we saw in Chapter 1, bash Basics, ' \ ' ' (i.e., single quote, backslash, single quote, sin-

gle quote) acts pretty much like a single quote in the middle of a single-quoted string; e.g.,

' abc ' \ ' ' def evaluates to abc ' def.

182 Chapter 7: Input/Output and Command-Line Processing

command removes alias and function lookup.* Only built-ins and commands

found in the search path are executed. This is useful if you want to create func-

tions that have the same name as a shell built-in or a command in the search path

and you need to call the original command from the function. For instance, we
might want to create a function called cd that replaces the standard cd command
with one that does some fancy things and then executes the built-in cd:

cd

{

^Some fancy things

command cd

}

In this case we avoid plunging the function into a recursive loop by placing com-

mand in front of cd. This ensures that the built-in cd is called and not the function.

command has some options, listed in Table 7-5.

Table 7-5: command Options

Option Description

-P Use a default value for PATH

-V Prints the command or pathname used to invoke the command

-V A more verbose description than with -v

Turns off further option checking

The -p option is a default path which guarantees that the command lookup will

find all of the standard UNIX utilities. t In this case, command will ignore the direc-

tories in your PATH.

builtin is very similar to command but is more restrictive. It looks up only built-in

commands, ignoring functions and commands found in PATH. We could have

replaced command with builtin in the cd example above.

The last command enables and disables shell built-ins— it is called enable. Dis-

abling a built-in allows a shell script or executable of the same name to be run

without giving a full pathname. Consider the problem many beginning UNIX shell

programmers have when they name a script test. Much to their surprise, executing

test usually results in nothing, because the shell is executing the built-in test,

rather than the shell script. Disabling the built-in with enable (nercomes this.^

* command removes alias lookup as a side effect. Because the first aruuim-nt of conmiaml is no longer

the first word that hash parses, it is not subjected to alias lookup.

t Unless hash has been compiled with a iMain-tlead \alue (or (he def.iuh. See Clh.ipier 11 for how to

change the default value.

\ Note ihai ihe wrong test may still be run. If your current director> is the last in PATH xou'll probably

execute the- system fik- test test is not a gooti name lor .i jirognun.

Command-Line Processing 183

Table 7-6 lists the options available with enable.* Some options are for working

with dynamically loadable built-ins. See Appendix C, Loadable Built-Ins, for

details on these options, and how to create and load your own built-in commands.

Table 7-6: enable Options

Option Description

-a Displays every built-in and whether it is enabled or not

-d Delete a built-in loaded with -f

-f filename Loads a new built-in from the shared-object filename

-n Disables a built-in or displays a list of disabled built-ins

-P Displays a list of all of the built-ins

-s Restricts the output to POSIX "special" built-ins

Of these options, -n is the most useful; it is used to disable a built-in. enable with-

out an option enables a built-in. More than one built-in can be given as arguments

to enable, so enable -n pushd popd dirs would disable the pushd, popd, and dirs

built-ins.

t

You can find out what built-ins are currently enabled and disabled by using the

command on its own, or with the -p option; enable or enable -p will list all

enabled built-ins, and enable -n will list all disabled built-ins. To get a complete

list with their current status, you can use enable -a.

The -s option restricts the output to POSIX 'special' built-ins. These are :, .,

source, break, continue, eval, exec, exit, export, readonly, return, set, shift, trap,

and unset.

eval

We have seen that quoting lets you skip steps in command-line processing. Then

there's the eval command, which lets you go through the process again. Perform-

ing command-line processing twice may seem strange, but it's actually very power-

ful: it lets you write scripts that create command strings on the fly and then pass

them to the shell for execution. This means that you can give scripts "intelligence"

to modify their own behavior as they are running.

The eval statement tells the shell to take eval's arguments and run them through

the command-line processing steps all over again. To help you understand the

implications of eval, we'll start with a trivial example and work our way up to a

situation in which we're constructing and running commands on the fly.

* The -d, -f, -p, and -s options are not available in versions of bash prior to 2.0.

t Be careful— it is possible to disable enable (enable -n enable). There is a compile-time option that

allows builtin to act as an escape-hatch. For more details, see Chapter 11.

184 Chapter 7: Input/Output and Command-Line Processing

eval Is passes the string Is to the shell to execute; the shell prints a list of files in

the current directory. Very simple; there is nothing about the string Is that needs to

be sent through the command-processing steps twice. But consider this:

listpage="ls
|
more"

$listpage

Instead of producing a paginated file listing, the shell will treat
I
and more as

arguments to Is, and Is will complain that no files of those names exist. Why?

Because the pipe character "appears" in Step 6 when the shell evaluates the vari-

able, after it has actually looked for pipe characters. The variable's expansion isn't

even parsed until Step 9. As a result, the shell will treat | and more as arguments

to Is, so that Is will try to find files called
I
and more in the current directory!

Now consider eval $listpage instead of just $iistpage. When the shell gets to the

last step, it will run the command eval with arguments Is,
|

, and more. This causes

the shell to go back to Step 1 with a line that consists of these arguments. It finds

I
in Step 2 and splits the line into two commands. Is and more. Each command is

processed in the normal (and in both cases trivial) way. The result is a paginated

list of the files in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that

requires considerable programming cleverness to be used most effectively. It even

has a bit of the flavor of artificial intelligence, in that it enables you to write pro-

grams that can "write" and execute other programs.* You probably won't use eval

for everyday shell programming, but it's worth taking the time to understand what

it can do.

As a more interesting example, we'll revisit Task 4-1, the very first task in the

book. In it, we constructed a simple pipeline that sorts a file and prints out the

first A^ lines, where A^ defaults to 10. The resulting pipeline was:

sort -nr $1 | head -${2:-10}

The first argument specified the file to sort; $2 is the number of lines to print.

Now suppose we change the task just a bit so that the default is to print the entire

file instead of 10 lines. This means that we don't want to use head at all in the

default case. We could do this in the following way:

if [-n "$2"
] ; then

sort -nr $1
|
head -$2

else
sort -nr $1

fi

* You could actually do this wiilinut eval. In echoing comm.iiKls to a tciuponin file aiui (hen "sourc

ing" that file with . filcfunnc Hut that is much less eKuK-nt.

Command-Line Processing 185

In other words, we decide which pipeline to run according to whether $2 is null.

But here is a more compact solution:

eval sort -nr \$1 ${2:+"| head -\$2"}

The last expression in this line evaluates to the string | head -\$2 if $2 exists (is

not null); if $2 is null, then the expression is null too. We backslash-escape dollar

signs (\$) before variable names to prevent unpredictable results if the variables'

values contain special characters like > or
I . The backslash effectively puts off the

variables' evaluation until the eval command itself runs. So the entire line is either:

eval sort -nr \$1
|
head -\$2

if $2 is given, or:

eval sort -nr \$1

if $2 is null. Once again, we can't just run this command without eval because the

pipe is "uncovered" after the shell tries to break the line up into commands, eval

causes the shell to run the correct pipeline when $2 is given.

Next, we'll revisit Task 7-2 from earlier in this chapter, the start script that lets you

start a command in the background and save its standard output and standard

error in a logfile. Recall that the one-line solution to this task had the restriction

that the command could not contain output redirectors or pipes. Although the for-

mer doesn't make sense when you think about it, you certainly would want the

ability to start a pipeline in this way.

eval is the obvious way to solve this problem:

eval "$@" > logfile 2>&1 &

The only restriction that this imposes on the user is that pipes and other such spe-

cial characters be quoted (surrounded by quotes or preceded by backslashes).

Here's a way to apply eval in conjunction with various other interesting shell pro-

gramming concepts.

Task 7-3

Implement the core of the make utility as a shell script.

make is known primarily as a programmer's tool, but it seems as though someone

finds a new use for it every day. Without going into too much extraneous detail,

make basically keeps track of multiple files in a particular project, some of which

depend on others (e.g., a document depends on its word processor input file(s)).

It makes sure that when you change a file, all of the other files that depend on it

are processed.

186 Chapter 7: Input/Output and Command-Line Processing

For example, assume you're using the troff word processor to write a book. You

have files for the book's chapters called chl.t, ch2.t, and so on; the ^rq^^^output for

these files are chl.out, ch2.out, etc. You run commands like troff chA^.t > chTV.out

to do the processing. While you're working on the book, you tend to make

changes to several files at a time.

In this situation, you can use make to keep track of which files need to be repro-

cessed, so that all you need to do is type make, and it will figure out what needs

to be done. You don't need to remember to reprocess the files that have changed.

How does make do this? Simple: it compares the modification times of the input

and output files (called sources and targets in make terminology), and if the input

file is newer, then make reprocesses it.

You tell make which files to check by building a file called makefile that has con-

structs like this:

target : soureel source2 . .

.

commands to make target

This essentially says, "For target to be up to date, it must be newer than all of the

sources. If it's not, run the commands to bring it up to date." The commands are

on one or more lines that must start with TABs: e.g., to make chV.out:

chV.out : chV.t
troff ch7.t > chV.out

Now suppose that we write a shell function called makecmd that reads and exe-

cutes a single construct of this form. Assume that the makefile is read from stan-

dard input. The function would look like the following code.

makecmd (

)

{

read target colon sources

for src in $sources; do

if [$src -nt $target] ; then

while read cmd && [$ (grep \t* $cmd)]; do

echo "$cmd"

eval ${cmd#\t}

done
break

fi

done

}

This function reads the line with the target and sources; the variable colon is just a

placeholder for the :. Then it checks each source to see if it's newer than the tar-

get, using the -nt hie attribute test operator that we saw in Chapter S. It' the

source is newer, it reads, prints, and executes the conimands until it finds a line

that doesn't start with a TAB or it reaches end-ol-hle. (The real)}Uihc does more

Command-Line Processing 187

than this; see the exercises at the end of this chapter.) After running the com-

mands (which are stripped of the initial TAB), it breaks out of the for loop, so that

it doesn't run the commands more than once.

As a final example of eval, we'll look again at procimage, the graphics utility that

we developed in the last three chapters. Recall that one of the problems with the

script as it stands is that it performs the process of scaling and bordering regard-

less of whether you want them. If no command-line options are present, a default

size, border width, and border color are used. Rather than invent some if then

logic to get around this, we'll look at how you can dynamically build a pipeline of

commands in the script; those commands that aren't needed simply disappear

when the time comes to execute them. As an added bonus, we'll add another

capability to our script: image enhancement.

Looking at the procimage script you'll notice that the NetPBM commands form a

nice pipeline; the output of one operation becomes the input to the next, until we
end up with the final image. If it weren't for having to use a particular conversion

utility, we could reduce the script to the following pipeline (ignoring options for

now):

cat $ filename
|
convert image

|

pnmscale
|

pnmmargin
|

ppmquant
|

\

ppmtogif > $outfile

Or, better yet:

convertimage $filename
|

pnmscale
|

pnmmargin
|

ppmquant
|

ppmtogif \

> $outfile

As we've already seen, this is equivalent to:

eval convertimage $ filename
|

pnmscale
|

pnmmargin
|

ppmquant
|

\

ppmtogif > $outfile

And knowing what we do about how eval operates, we can transform this into:

eval "convertimage" $filename "
|

pnmscale" "
|

pnmmargin" \

"
I

ppmquant" "
|

ppmtogif" > $outfile

And thence to:

convert= ' convertimage

'

scale='
I

pnmscale'
border='

|

pnmmargin'
standardise= '

|

ppmquant
|

ppmtogif

eval $convert $filename $scale $border $standardise > $outfile

188 Chapter 7: Input/Output and Command-Line Processing

Now consider what happens when we don't want to scale the image. We do this:

scale="

"

while getopts ":s:w:c:" opt; do

case $opt in

s) scale='
I

pnmscale' ; ;

eval $convert $filenaine $scale $border $standardise > $outfile

In this code fragment, scale is set to a default of the empty string. If -s is not given

on the command line, then the final line evaluates with $scale as the empty string

and the pipeline will "collapse" into:

$convert $filename $border $standardise > $outfile

Using this principle, we can modify the previous version of the procimage script

and produce a pipeline version. For each input file we need to construct and run a

pipeline based upon the options given on the command line. Here is the new ver-

sion:

Set up the defaults
width=l
colour^ ' -color grey'

usage="Usage: $0 [-s N] [-w N] [-c S] imagef ile. .

.

"

Initialise the pipeline components
standardise= '

|

ppmquant -quiet 256
|

ppmtogif -quiet'

while getopts ":s:w:c:" opt; do

case $opt in

s) size=$OPTARG
scale='

I

pnmscale -quiet -xysize $size $size' ;;

w) width=$OPTARG
border='

|

pnmmargin $colour $width' ;;

c) colour=" -color $OPTARG"

border='
|

pnmmargin $colour $width' ;;

\?) echo $usage
exit 1 ;

;

esac
done

shift $ (($OPTIND - 1)

)

if [-z "$@"
] ; then

echo $usage
exit 1

fi

Process the input files
for filename in "$(3"; do

Command-Line Processing 189

case $filename in

*.gif) convert=gif topnin

*
. tga) convert=tgatoppm ;

*.xpm) convert=xpmtoppm ;

*.pcx) convert=pcxtoppm ;

*.tif) convert =tiff topnin

*.jpg) convert=djpeg ;

;

*
) echo "$0: Unknown filetype ' $ {f ilename##* .

} '

"

exit 1;

;

esac

outfile=${filename% .

* } .new.gif

eval $convert $filename $scale $border $standardise > $outfile

done

This version has been simplified somewhat from the previous one in that it no

longer needs a temporary file to hold the converted file. It is also a lot easier to

read and understand. To show how easy it is to add further processing to the

script, we'll now add one more NetPBM utility.

You might have noticed that when you reduced an image in size it appeared to

get a little less sharp. NetPBM provides a utility to enhance an image and make it

sharper: pnmnlfilt. This utility is an image filter that samples the image and can

enhance edges in the image (it can also smooth the image if given the appropriate

values). It takes two parameters that tell it how much to enhance the image. For

the purposes of our script, we'll just choose some optimal values and provide an

option to switch enhancement on and off in the script.

To put the new capability in place all we have to do is add the new option (-S) to

the getopts case statement, update the usage line, and add a new variable to the

pipeline. Here is the new code:

Set up the defaults
width=l
colour= ' -color grey'

usage="Usage: $0 [-S] [-s N] [-w N] [-c S] imagef ile. .

.

"

Initialise the pipeline components
standardise= '

|

ppmquant -quiet 256
|

ppmtogif -quiet'

while getopts ":Ss:w:c:" opt; do

case $opt in

S) sharpness='
|

pnmnlfilt -0.7 0.45' ;

;

190 Chapter 7: Input/Output and Command-Line Processing

s) size=$OPTARG
scale='

I

pnmscale -quiet -xysize $size $size' ;

;

w) width=$OPTARG
border= '

|

pnmmargin $colour $width' ;

;

c) colour=" -color $OPTARG"

border= '
|

pnmmargin $colour $width' ;

;

\?) echo $usage
exit 1 ;

;

esac

done

shift $(($OPTIND - 1)

)

if [-z "$@"
] ; then

echo $usage
exit 1

fi

Process the input files

for filename in "$©"; do

case $filename in

*.gif) convert=gif topnm

*
, tga) convert=tgatoppm

*.xpm) convert=xpmtoppm

*.pcx) convert=pcxtoppm

*.tif) convert=tiff topnm

*.jpg) convert=djpeg ;

;

*
) echo "$0: Unknown filetype ' ${f ilename##* .

} '

"

exit 1;

;

outf ile=${f ilename% . *} .new.gif

eval $convert $filename $scale $border $sharpness $standardise \

> $outfile

done

We could go on forever with increasingly complex examples of eval, but well set-

tle for concluding the chapter with a few exercises. The questions in Exercise 3

are really more like items on the menu of food for thcnighl.

1. Here are a couple of ways to enhance prociniciiic the graphics utility:

a. Add an option, -q, that allows the user to turn on and off the printing of

diagnostic information from the NelPBM utilities. You'll need to map -q to

Command-Line Processing 191

the -quiet option of the utilities. Also, add your own diagnostic output for

those utilities that don't print anything, e.g., the format conversions.

b. Add an option that allows the user to specify the order that the NetPBM

processes take place, i.e., whether enhancing the image comes before bor-

dering, or bordering comes before resizing. Rather than using an if con-

struct to make the choice amongst hard-coded orders, construct a string

dynamically which will look similar to this:

"eval $convert $filenaine $scale $border $sharpness
$standardise > $outfile"

You'll then need eval to evaluate this string.

2. The function makecmd in the solution to Task 7-3 represents an oversimplifi-

cation of the real make's functionality, make actually checks file dependencies

recursively, meaning that a source on one line in a makefile can be a target on

another line. For example, the book chapters in the example could themselves

depend on some figures in separate files that were made with a graphics

package.

a. Write a function called readtargets that goes through the makefile and

stores all of the targets in a variable or temporary file.

b. makecmd merely checks to see if any of the sources are newer than the

given target. It should really be a recursive routine that looks like this:

function makecmd (

)

{

target=$l
get sources for $target
for each source src; do

if $src is also a target in this makefile then
makecmd $src

fi

if [$src -nt $target] ; then

run commands to make target

return
fi

done

}

Implement this.

c. Write the "driver" script that turns the makecmd function into a full make

program. This should make the target given as argument, or if none is

given, the first target listed in the makefile.

d. The above makecmd still doesn't do one important thing that the real

make does: allow for "symbolic" targets that aren't files. These give make

much of the power that makes it applicable to such an incredible variety

192 Chapter 7: Input/Output and Command-Line Processing

of situations. Symbolic targets always have a modification time of 0, so

that make always runs the commands to make them. Modify makecmd so

that it allows for symbolic targets. (Hint: the crux of this problem is to fig-

ure out how to get a file's modification time. This is quite difficult.)

3. Here are some problems that really test your knowledge of eval and the shell's

command-line processing rules. Solve these and you're a true bash hacker!

a. Advanced shell programmers sometimes use a little trick that includes

eval: using the value of a variable as the nanie of another variable. In

other words, you can give a shell script control over the names of vari-

ables to which it assigns values. The latest version of bash has this built in

in the form of %{\varname), where varname contains the name of another

variable that will be the target of the operation. This is known as indirect

expansion. How would you do this using only eval?

(Hint: if $object equals "person", and $person is "alice", then you might

think that you could type echo $$object and get the response alice. This

doesn't actually work, but it's on the right track.)

b. You could use the above technique together with other eval tricks to

implement new control structures for the shell. For example, see if you

can write a script that emulates the behavior of a for loop in a conven-

tional language like C or Pascal, i.e., a loop that iterates a fixed number of

times, with a loop variable that steps from 1 to the number of iterations

(or, for C fans, to iterations- 1). Call your script loop to avoid clashes

with the keywords for and do.

c. The pushd, popd, and dirs functions that we built up in previous chapters

can't handle directories with spaces in their names (because DIR_STACK

uses a space as a delimiter). Use eval to overcome this limitation.

(Hint: use eval to implement an array. Each array element is called arrayl,

array2, . . . arrayn, and each array element contains a directory name.)

d. (The following doesn't have that much to do with the material in this

chapter per se, but it is a classic programming exercise:)

Write the function alg2rpn used in the section on command blocks. Here's

how to do this: Arithmetic expressions in algebraic notation have the form

expr op exf)r, where each expr is either a number or another expression

(perhaps in parentheses), and op is -I-, -, x, ,\ ov % (remainder). In RPN,

expressions have the form expr expr op. For example: the algebraic

expression 2+3 is 2 3 + in RPN; the RPN equivalent of (2+3) x (9-5) is 2 3

+ 9 S - X. The main advantage of RI'N is that it obx iales the need for

parentheses and operator precedence rules (e.g.. x is evaluated before +).

The dc program accepts standard RPN, but each expression should have

Command-Line Processing 193

"p" appended to it, which tells dc to print its result; e.g., the first example

above should be given to tie as 2 3 + p.

e. You need to write a routine that converts algebraic notation to RPN. This

should be (or include) a function that calls itself (a recursive function)

whenever it encounters a subexpression. It is especially important that this

function keep track of where it is in the input string and how much of the

string it "eats up" during its processing. (Hint: make use of the pattern-

matching operators discussed in Chapter 4, to ease the task of parsing

input strings.)

To make your life easier, don't worry about operator precedence for now;

just convert to RPN from left to right: e.g., treat 3+4x5 as (3+4)x5 and

3x4+5 as (3x4)+5. This makes it possible for you to convert the input

string on the fly, i.e., without having to read in the whole thing before

doing any processing.

f. Enhance your solution to the previous exercise so that it supports opera-

tor precedence in the "usual" order: x, /, % (remainder) +, -. For example,

treat 3+4x5 as 3+(4x5) and 3x4+5 as (3x4)+5.

g. Here is something else to really test your skills; write a graphics utility

script, index, that takes a list of image files, reduces them in size and cre-

ates an "index" image. An index image is comprised of thumbnail-sized

versions of the original images, placed neatly in columns and rows, and

with a caption underneath (usually the name of the original file).

Besides the list of files, you'll need some options, including the number of

columns to create and the size of the thumbnail images. You might also

like to include an option to specify the gap between each image.

The new NetPBM utilities you'll need are pbmtext and pnmcat. You'll also

need our old favorites pnmscale, ppmquant, and one or more of the con-

version utilities, depending upon whether you decide to take in various

formats (as we did for procimage) and what output format you decide on.

pbmtext takes as an argument some text and converts the text into a PNM
bitmap, pnmcat is a little more complex. Like cat, it concatenates things;

in this case, images. You can specify as many PNM files as you like as

arguments and pnmcat will put them together into one long image. By

using the -Ir and -tb options, you can specify whether you want the

images to be placed one after the other going from left to right, or from

top to bottom. The first option to pnmcat is the background color. It can

be either -black for a black background, or -white for a white back-

ground. We suggest -white to match the pbmtext black text on a white

background.

194 Chapter 7: Input/Output and Command-Line Processing

You'll need to take each file, run the filename through pbmtext, and use

pnmcat to place it underneath a scaled down version of the original

image. Then you'll need to continue doing this for each file and use pnm-
cat to connect them together. In addition, you'll have to keep tabs on how
many columns you have completed and when to start a new row. Note

that you'll need to build up the rows individually and use pnmcat to con-

nect them together, pnmcat won't do this for you automatically.

in this chapter:

• Process IDs andJob
Numbers

• Job Control

• Signals

• trap

• Coroutines

• Subshells

• Process Substitution Process Handling

The UNIX operating system built its reputation on a small number of concepts, all

of which are simple yet powerful. We've seen most of them by now: standard

input/output, pipes, text-filtering utilities, the tree-structured file system, and so on.

UNIX also gained notoriety as the first small-computer operating system to give

each user control over more than one process. We call this capability user-

controlled multitasking.

If UNIX is the only operating system that you're familiar with, you might be sur-

prised to learn that several other major operating systems have been sadly lacking

in this area. For example, Microsoft's MS-DOS, for IBM PC compatibles, has no

multitasking at all, let alone user-controlled multitasking. IBM's own VM/CMS sys-

tem for large mainframes handles multiple users but gives them only one process

each. DEC'S VAX/VMS has user-controlled multitasking, but it is limited and diffi-

cult to use. The latest generation of small-computer operating systems, such as

Apple's Macintosh OS System 7, IBM's OS/2 Version 2, and Microsoft's Windows

NT, finally include user-controlled multitasking at the operating-system level.*

But if you've gotten this far in this book, you probably don't think that multitask-

ing is a big deal. You're probably used to the idea of running a process in the

background by putting an ampersand (&) at the end of the command line. You

have also seen the idea of a subshell in Chapter 4, Basic Shell Programming,

when we showed how shell scripts run.

In this chapter, we will cover most of bash's features that relate to multitasking and

process handling in general. We say "most" because some of these features are,

* Programs like Apple's Multifinder and Microsoft Windows work on top o/the operating system (Mac

OS Version 6 and MS-DOS, respectively) to give the user limited multitasking.

195

196 Chapter 8: Process Handling

like the file descriptors we saw in the previous chapter, of interest only to low-

level systems programmers.

We'll start out by looking at certain important primitives for identifying processes

and for controlling them during login sessions and within shell scripts. Then we
will move out to a higher-level perspective, looking at ways to get processes to

communicate with each other. We'll look in more detail at concepts we've already

seen, like pipes and subshells.

Dont worry about getting bogged down in low-level technical details about UNIX.

We will provide only the technical information that is necessary to explain higher-

level features, plus a few other tidbits designed to pique your curiosity. If you are

interested in finding out more about these areas, refer to your UNIX Programmer's

Manual or a book on UNIX internals that pertains to your version of UNIX. You

might also find UNIX Power Tools (published by O'Reilly & Associates) of value.

We strongly recommend that you try out the examples in this chapter. The behav-

ior of code that involves multiple processes is not as easy to understand on paper

as most of the other examples in this book.

Process IDs andJob Numbers
UNIX gives all processes numbers, called process IDs, when they are created. You

will notice that when you run a command in the background by appending & to

it, the shell responds with a line that looks like this:

$ alice &

[1] 93

In this example, 93 is the process ID for the alice process. The [1] is a job number

assigned by the shell (not the operating system). What's the difference? Job num-

bers refer to background processes that are currently running under your shell,

while process IDs refer to all processes currently running on the entire system, for

all users. The term job basically refers to a command line that was invoked from

your shell.

If you start up additional background jobs while the first one is still running, the

shell will number them 2, 3, etc. For example:

$ duchess &

[2] 102

$ hatter &

[3] 104

Clearly, 1, 2, and 3 are easier to remember than 93. \('>1, and 104!

Job Control 197

The shell includes job numbers in messages it prints when a background job com-

pletes, like this:*

[1]+ Done alice

We'll explain what the plus sign means soon. If the job exits with non-zero status

(see Chapter 5, Flow Control), the shell will indicate the exit status :t

[1]+ Exit 1 alice

The shell prints other types of messages when certain abnormal things happen to

background jobs; we'll see these later in this chapter.

Job Control
why should you care about process IDs or job numbers? Actually, you could prob-

ably get along fine through your UNIX life without ever referring to process IDs

(unless you use a windowing workstation—as we'll see soon). Job numbers are

more important, however: you can use them with the shell commands for job

controls

You already know the most obvious way of controlling a job: create one in the

background with &. Once a job is running in the background, you can let it run to

completion, bring it into the foreground, or send it a message called a signal

Foreground and Background
The built-in command fg brings a background job into the foreground. Normally

this means that the job will have control of your terminal or window and therefore

will be able to accept your input. In other words, the job will begin to act as if

you typed its command without the &.

If you have only one background job running, you can use fg without arguments,

and the shell will bring that job into the foreground. But if you have several jobs

running in the background, the shell will pick the one that you put into the back-

ground most recently. If you want some other job put into the foreground, you

need to use the job's command name, preceded by a percent sign (%), or you can

* The messages are, by default, printed before the next prompt is displayed so as not to interrupt any

output on the display. You can make the notification messages display immediately by using set -b.

t In POSIX mode, the message is slightly different: " [1] + Done (1) alice". The number
in parentheses is the exit status of the job. POSIX mode can be selected via the set command or by

starting bash in POSIX mode. For further information, see Appendix B, Table B-1, "Command-Line

Options," and Table B-5, "Options."

% If you have an older version of UNIX, it is possible that your system does not support job control.

This is particularly true for many systems derived from Xenix, System III, or early versions of System V.

On such systems, bash does not have the fg and bg commands, job number arguments to kill and wait,

typing CTRL-Z to suspend a job, or the TSTP signal. <

198 Chapter 8: Process Handling

use its job number, also preceded by %. or its process ID without a percent sign. If

you dont remember which jobs are running, you can use the command jobs to list

them.

A few examples should make this clearer. Let's say you created three background

jobs as above. Tlien if you t\pe jobs, you will see this:

[1] Running alice &

[2]- Running duchess &

[3]+ Running hatter &

jobs has a few interesting options, jobs -I also lists process IDs:

[1] 93 Running alice &

[2]- 102 Running duchess &

[3]+ 104 Running hatter &

The -p option tells jobs to list only process IDs:

93

102

104

(This could be useful with command substitution; see Task 8-T) The -n option

lists only those jobs whose status has changed since the shell last reported it

—

whether with a jobs command or othen\1se. -r restricts the list to jobs that are

running, while -s restricts the list to those jobs which are stopped, e.g., waiting for

input from the keyboard.* Finally, you can use the -x option to execute a com-

mand. Any job number provided to the command will be substituted with the pro-

cess ID of the job. For example, if alice is running in the background, then

executing jobs -x echo %1 will print the process ID of alice.

If you type fg without an argument, the shell will put hatter in the foreground,

because it was put in the background most recently. But if you t\pe fg %duchess

(or fg %2). duchess will go in the foreground.

You can also refer to the job most recently put in the background by %+. Similarly,

%- refers to the next-mosl-Tecerwly backgrounded job (duchess in this case). Tliat

explains the plus and minus signs in the above: the plus sign shows the most

recent job whose status has changed; the minus sign shows the next-most-recently

invoked job.^

If more than one background job has the same command, then Xcomnuuici will

distinguish between them by chocxsing the most recently in\oked job (as youd

expect). If this isn't what you want, you need to use the job number instead of the

Options -r and -s arc not available in bcish pnor to \crsion 2.0.

t This is analogous to '+ and ~- as references to the current and previous direaory-; see the footnote

in Chapter ". Inpul'Output anJ Commaud-I.iuc PrcKCSsifig .Mso: %% i.s a synon\Tn for %+.

Job Control 199

command name. However, if the commands have different arguments, you can

use %?string instead of %command. %?string refers to the job whose command
contains the string. For example, assume you started these background jobs:

$ hatter mad &

[1] 189

$ hatter teatime &

[2] 190

$

Then you can use %?mad and %?teatime to refer to each of them, although actu-

ally %?ma and %?tea are sufficient to uniquely identify them.

Table 8-1 lists all of the ways to refer to background jobs. Given how infrequently

people use job control commands, job numbers or command names are sufficient,

and the other ways are superfluous.

Table 8-1: Ways to Refer to BackgroundJobs

Reference Background job

%N Job number A^

%string Job whose command begins with string

%?stnng Job whose command contains string

%+ Most recently invoked background job

%% Same as above

%- Second most recently invoked background job

Suspending aJob

Just as you can put background jobs into the foreground with fg, you can also put

a foreground job into the background. This involves suspending a job, so that the

shell regains control of your terminal.

To suspend a job, type CTRL-Z while it is running.* This is analogous to typing

CTRL-C (or whatever your interrupt key is), except that you can resume the job

after you have stopped it. When you type CTRL-Z, the shell responds with a mes-

sage like this:

[1]+ stopped command

Then it gives you your prompt back. To resume a suspended job so that it contin-

ues to run in the foreground, just type fg. If, for some reason, you put other jobs

in the background after you typed CTRL-Z, use fg with a job name or number.

* This assumes that the CTRL-Z key is set up as your suspend key; just as with CTRL-C and interrupts,

this is conventional but by no means required.

200 Chapter 8: Process Handling

For example:

alice is running...

CTRL-Z
[1]+ Stopped alice

$ hatter &

[2] 145

$ fg %alice
alice resumes in theforeground...

The ability to suspend jobs and resume them in the foreground comes in very

handy when you have a conventional terminal (as opposed to a windowing work-

station) and you are using a text editor like vi on a file that needs to be processed.

For example, if you are editing a file for the trqffiexi processor, you can do the

following:

$ vi myfile
edit thefile... CTRL-Z
Stopped [1] vi

$ troff myfile

troff reports an error

$ fg

vi comes back up in the sameplace in yourfile

Programmers often use the same technique when debugging source code.

You will probably also find it useful to suspend a job and resume it in the back-

ground instead of the foreground. You may start a command in the foreground

(i.e., normally) and find that it takes much longer than you expected—for exam-

ple, a grep, sort, or database query. You need the command to finish, but you

would also like control of your terminal back so that you can do other work. If

you type CTRL-Z followed by bg, you will move the job to the background.*

You can also suspend a job with CTRL-Y. This is slightly different from CTRL-Z in

that the process is only stopped when it attempts to read input from the terminal.

Signals

We mentioned earlier that typing CTRL-Z to suspend a job is similar to typing

CTRL-C to stop a job, except that you can resume the job later. They are actually

similar in a deeper way: both are particular cases of the act of sending a signal to

a process.

A signal is a message that one process sends to anotlicr when some abnormal

event takes place or when it wants tlie other process to do something. Most of the

* Be warned, however, tli;it not all cominancls are "well-behaved" when you cK) this. He e.s[xvi.illv

eareful with eominaiuls that run nxcv a network on a remote machine; nou ma\' ent) up eonlusini; the

remote pro>;ram.

Signals 201

time, a process sends a signal to a subprocess it created. You're undoubtedly

already comfortable with the idea that one process can communicate with another

through an I/O pipeline; think of a signal as another way for processes to commu-
nicate with each other. (In fact, any textbook on operating systems will tell you

that both are examples of the general concept of interprocess communication, or

IPO*

Depending on the version of UNIX, there are two or three dozen types of signals,

including a few that can be used for whatever purpose a programmer wishes. Sig-

nals have numbers (from 1 to the number of signals the system supports) and

names; we'll use the latter. You can get a list of all the signals on your system, by

name and number, by typing kill -1. Bear in mind, when you write shell code

involving signals, that signal names are more portable to other versions of UNIX

than signal numbers.

Control-Key Signals

When you type CTRL-C, you tell the shell to send the INT (for "interrupt") signal

to the current job; CTRL-Z sends TSTP (on most systems, for "terminal stop"). You

can also send the current job a QUIT signal by typing CTRL-\ (control-backslash);

this is sort of like a "stronger" version of CTRL-C. t You would normally use CTRL-\

when (and only when) CTRL-C doesn't work.

As we'll see soon, there is also a "panic" signal called KILL that you can send to a

process when even CTRL-\ doesn't work. But it isn't attached to any control key,

which means that you can't use it to stop the currently running process. INT, TSTP,

and QUIT are the only signals you can use with control keys.+

You can customize the control keys used to send signals with options of the stty

command. These vary from system to system—consult your manpage for the com-

mand—but the usual syntax is stty signame char, signame is a name for the signal

that, unfortunately, is often not the same as the names we use here. Table 1-7 in

Chapter 1 , bash Basics, lists stty names for signals found on all versions of UNIX.

char is the control character, which you can give using the convention that " (cir-

* Pipes and signals were the only IPC mechanisms in early versions of UNIX. More modern versions

like System V and 4.x BSD have additional mechanisms, such as sockets, named pipes, and shared

memory. Named pipes are accessible to shell programmers through the mknodiX) command, which is

beyond the scope of this book.

t CTRL-\ can also cause the shell to leave a file called core in your current directory. This file contains

an image of the process to which you sent the signal; a programmer could use it to help debug the

program that was running. The file's name is a (very) old-fashioned term for a computer's memory.

Other signals leave these "core dumps" as well; unless you require them, or someone else does, just

delete them.

i Some BSD-derived systems have additional control-key signals.

202 Chapter 8: Process Handling

cumflex) represents "control." For example, to set your INT key to CTRL-X on

most systems, use:

stty intr "X

Now that we've told you how to do this, we should add that we don't recommend

it. Changing your signal keys could lead to trouble if someone else has to stop a

runaway process on your machine.

Most of the other signals are used by the operating system to advise processes of

error conditions, like a bad machine code instruction, bad memory address, or

division by zero, or "interesting" events such as a timer ("alarm") going off. The

remaining signals are used for esoteric error conditions of interest only to low-

level systems programmers; newer versions of UNIX have even more signal types.

kill

You can use the built-in shell command kill to send a signal to any process you

created—not just the currently running job. kill takes as an argument the process

ID, job number, or command name of the process to which you want to send the

signal. By default, kill sends the TERM ("terminate") signal, which usually has the

same effect as the INT signal you send with CTRL-C. But you can specify a differ-

ent signal by using the signal name (or number) as an option, preceded by a dash.

kill is so named because of the nature of the default TERM signal, but there is

another reason, which has to do with the way UNIX handles signals in general.

The full details are too complex to go into here, but the following explanation

should suffice.

Most signals cause a process that receives them to die; therefore, if you send any

one of these signals, you "kill" the process that receives it. However, programs can

be set up to "trap" specific signals and take some other action. For example, a text

editor would do well to save the file being edited before terminating when it

receives a signal such as INT, TERM, or QUIT. Determining what to do when vari-

ous signals come in is part of the fun of UNIX systems programming.

Here is an example of kill. Say you have an alice process in the background, with

process ID 150 and job number 1, that needs to be stopped. You would start with

this command:

$ kill %i

If you were successful, you would see a message like this:

[1]+ Terminated alice

Signals 203

If you don't see this, then the TERM signal failed to terminate the job. The next

step would be to try QUIT:

$ kill -QUIT %i

If that worked, you would see this message:

[1]+ Exit 131 alice

The 131 is the exit status returned by alice.* But if even QUIT doesn't work, the

"last-ditch" method would be to use KILL:

$ kill -KILL %i

This produces the message:

[1]+ Killed alice

It is impossible for a process to "trap" a KILL signal—the operating system should

terminate the process immediately and unconditionally. If it doesn't, then either

your process is in one of the "funny states" we'll see later in this chapter, or (far

less likely) there's a bug in your version of UNIX.

Here's another example.

Task 8-1

Write a script called killailjobs that kills all background jobs.

The solution to this task is simple, relying on jobs -p:

kill "$@" $(jobs -p)

You may be tempted to use the KILL signal immediately, instead of trying TERM
(the default) and QUIT first. Don't do this. TERM and QUIT are designed to give a

process the chance to "clean up" before exiting, whereas KILL will stop the pro-

cess, wherever it may be in its computation. Use KILL only as a last resort!

You can use the kill command with any process you create, not just jobs in the

background of your current shell. For example, if you use a windowing system,

then you may have several terminal windows, each of which runs its own shell. If

one shell is running a process that you want to stop, you can kill it from another

window—but you can't refer to it with a job number because it's running under a

different shell. You must instead use its process ID.

* When a shell script is sent a signal, it exits with status 12^+N, where A^is the number of the signal it

received. In this case, alice is a shell script, and QUIT happens to be signal number 3.

204 Chapter 8: Process Handling

ps

This is probably the only situation in which a casual user would need to know the

ID of a process. The command ps gives you this information; however, it can give

you lots of extra information as well.

ps is a complex command. It takes several options, some of which differ from one

version of UNIX to another. To add to the confusion, you may need different

options on different UNIX versions to get the same information! We will use

options available on the two major types of UNIX systems, those derived from Sys-

tem V (such as most of the versions for Intel 386/486 PCs, as well as IBM's AIX

and Hewlett-Packard's HP/UX) and BSD (DEC's Ultrix, SunOS, BSD/OS). If you

aren't sure which kind of UNIX version you have, try the System V options first.

You can invoke ps in its simplest form without any options. In this case, it will

print a line of information about the current login shell and any processes running

under it (i.e., background jobs). For example, if you were to invoke three back-

ground jobs, as we saw earlier in the chapter, the ps command on System

V-derived versions of UNIX would produce output that looks something like this:

PID TTY TIME COMD
146 pts/10 0:03 -bash

2349 pts/10 0:03 alice
2367 pts/10 0:17 hatter
2389 pts/10 0:09 duchess
2390 pts/10 0:00 ps

atput on BSD-derived systems looks 1

PID TT STAT TIME COMMAND
146 10 S 0:03 /bin/bash

2349 10 R 0:03 alice
2367 10 D 0:17 hatter teatime
2389 10 R 0:09 duchess
2390 10 R 0:00 ps

(You can ignore the STAT column.) This is a bit like the jobs command. PID is the

process ID; TTY (or TT) is the terminal (or pseudo-terminal, if you are using a

windowing system) the process was invoked from; TIME is the amount of proces-

sor time (not real or "wall clock" time) the process has used so far; COMD (or

COMMAND) is the command. Notice that the BSD version includes the command's

arguments, if any; also notice that the first line reports on the parent shell process,

and in the last line, ps reports on itself.

ps without arguments lists all processes started from the current terminal or

pseudo-terminal. But since ps is not a shell command, it doesn't correlate process

IDs with the shell's job numbers. It also doesn't help you find the ID of the run-

away process in another shell window.

Signals 205

To get this information, use ps -a (for "all"); this lists information on a different set

of processes, depending on your UNIX version.

System V

Instead of listing all that were started under a specific terminal, ps -a on System

V-derived systems lists all processes associated with any terminal that aren't group

leaders. For our purposes, a "group leader" is the parent shell of a terminal or win-

dow. Therefore, if you are using a windowing system, ps -a lists all jobs started in

all windows (by all users), but not their parent shells.

Assume that, in the previous example, you have only one terminal or window.

Then ps -a will print the same output as plain ps except for the first line, since

that's the parent shell. This doesn't seem to be very useful.

But consider what happens when you have multiple windows open. Let's say you

have three windows, all running terminal emulators like xterm for the X Window
System. You start background jobs alice, duchess, and hatter in windows with

pseudo-terminal numbers 1, 2, and 3, respectively. This situation is shown in Fig-

ure 8-1.

si

M

$ hatter &

[1] 2389

$^
$ duchess &

[1] 2367

$

a<aaa^j.v«!.^«a«^;S^J

Figure 8-1: Backgroundjobs in multiple windows

Assume you are in the uppermost window. If you type ps, you will see something

like this:

PID TTY
146 pts/1

2349 pts/1
2390 pts/1

TIME COMD
0:03 bash
0:03 alice
0:00 ps

206 Chapter 8: Process Handling

But if you type ps -a, you will see this:

PID TTY TIME COMD
146 pts/1 0:03 bash

2349 pts/1 0:03 alice
2367 pts/2 0:17 duchess
2389 pts/3 0:09 hatter
2390 pts/1 0:00 ps

Now you should see how ps -a can help you track dow^n a runaway process. If it's

hatter, you can type kill 2389. If that doesn't work, try kill -QUIT 2389, or in the

worst case, kill -KILL 2389.

BSD

On BSD-derived systems, ps -a lists all jobs that were started on any terminal; in

other words, it's a bit like concatenating the the results of plain ps for every user

on the system. Given the above scenario, ps -a will show you all processes that

the System V version shows, plus the group leaders (parent shells).

Unfortunately, ps -a (on any version of UNIX) will not report processes that are in

certain conditions where they "forget" things like what shell invoked them and

what terminal they belong to. Such processes are know^n as "zombies" or

"orphans." If you have a serious runaway process problem, it's possible that the

process has entered one of these states.

Let's not worry about why or how a process gets this way. All you need to under-

stand is that the process doesn't show up w^hen you type ps -a. You need another

option to ps to see it: on System V, it's ps -e ("everything"), whereas on BSD. it's

ps -ax.

These options tell ps to list processes that either weren't started from terminals or

"forgot" what terminal they were started from. The former category includes lots of

processes that you probably didn't even know existed: these include basic pro-

cesses that run the system and so-called daemons (pronounced "demons") that

handle system services like mail, printing, network file systems, etc.

In fact, the output of ps -e or ps -ax is an excellent source of education about

UNIX system internals, if you're curious about them. Run the command on your

system and, for each line of the listing that looks interesting, invoke mati on the

process name or look it up in the UNIX Programmer's Manual iov your system.

User shells and processes are listed at the very bottom of ps -e or ps -ax output;

this is where you should look for runaway processes. Notice that many processes

in the listing have ? instead of a terminal. Either these aren't supposed to have

one (such as the basic daemons) or they're runaways. Therefore it's likely that if

ps -a doesn't find a process you're trying to kill, ps -e (or ps -ax) will list it with

trap 207

? in the TTY (or TT) column. You can determine which process you want by

looking at the COMD (or COMMAND) column.

trap

We've been discussing how signals affect the casual user; now let's talk a bit about

how shell programmers can use them. We won't go into too much depth about

this, because it's really the domain of systems programmers.

We mentioned above that programs in general can be set up to "trap" specific sig-

nals and process them in their own way. The trap built-in command lets you do

this from within a shell script, trap is most important for "bullet-proofing" large

shell programs so that they react appropriately to abnormal events—just as pro-

grams in any language should guard against invalid input. It's also important for

certain systems programming tasks, as we'll see in the next chapter.

The syntax of trap is:

trap cmd sigl sig2 ...

That is, when any of sigl, sig2, etc., are received, run cmd, then resume execu-

tion. After cmd finishes, the script resumes execution just after the command that

was interrupted.*

Of course, cmd can be a script or function. The 5^^s can be specified by name or

by number. You can also invoke trap without arguments, in which case the shell

will print a list of any traps that have been set, using symbolic names for the

signals.

Here's a simple example that shows how trap works. Suppose we have a shell

script called loop with this code:

while true; do

sleep 60

done

This will just pause for 60 seconds (the sleep command) and repeat indefinitely.

true is a "do-nothing" command whose exit status is always O.t Try typing in this

script. Invoke it, let it run for a little while, then type CTRL-C (assuming that is

your interrupt key). It should stop, and you should get your shell prompt back.

* This is what usually happens. Sometimes the command currently running will abort (sleep acts like

this, as we'll see soon); at other times it will finish running. Further details are beyond the scope of this

book.

t This command is the same as the built-in shell no-op command ":".

208 Chapter 8: Process Handling

Now insert this line at the beginning of the script:

trap "echo 'You hit control-C!'" INT

Invoke the script again. Now hit CTRL-C. The odds are overwhelming that you are

interrupting the sleep command (as opposed to true). You should see the message

"You hit control-C!", and the script will not stop running; instead, the sleep com-

mand will abort, and it will loop around and start another sleep. Hit CTRL-Z to get

it to stop and then type kill %1.

Next, run the script in the background by typing loop &. Type kill %loop (i.e.,

send it the TERM signal); the script will terminate. Add TERM to the trap com-

mand, so that it looks like this:

trap "echo 'You hit control-C!'" INT TERM

Now repeat the process: run it in the background and type kill %loop. As before,

you will see the message and the process will keep on running. Type kill -KILL

%loop to stop it.

Notice that the message isn't really appropriate when you use kill. We'll change

the script so it prints a better message in the kill case:

trap "echo 'You hit control-C!'" INT

trap "echo 'You tried to kill me!'" TERM

while true; do

sleep 60

done

Now try it both ways: in the foreground with CTRL-C and in the background with

kill. You'll see different messages.

Traps and Functions

The relationship between traps and shell functions is straightforv^-ard, but it has

certain nuances that are worth discussing. The most important thing to understand

is that functions are considered part of the shell that invokes them. This means

that traps defined in the invoking shell will be recognized inside the function, and

more importantly, any traps defined in the function will be recognized by the

invoking shell once the function has been called. Consider this code:

settrap {) {

trap "echo 'You hit control-C!'" INT

}

settrap
while true; do

sleep 60

done

trap 209^

If you invoke this script and hit your interrupt key, it will print "You hit control-C!"

In this case the trap defined in settrap still exists when the function exits.

Now consider:

loop {

trap "echo 'How dare you!'" INT

while true; do

sleep 60

done

}

trap "echo 'You hit control-C! '
" INT

loop

When you run this script and hit your interrupt key, it will print "How dare you!"

In this case the trap is defined in the calling script, but when the function is called

the trap is redefined. The first definition is lost. A similar thing happens with:

loop {

trap " echo ' How dare you ! '
" INT

}

trap "echo 'You hit control-C!'" INT

loop

while true; do

sleep 60

done

Once again, the trap is redefined in the function; this is the definition used once

the loop is entered.

We'll now show a more practical example of traps.

Task 8-2

As part of an electronic mail system, write the shell code that lets a user com-

pose a message.

The basic idea is to use cat to create the message in a temporary file and then

hand the file's name off to a program that actually sends the message to its desti-

nation. The code to create the file is very simple:

msgf ile=/tmp/msg$$
cat > $msgfile

Since cat without an argument reads from the standard input, this will just wait for

the user to type a message and end it with the end-of-text character CTRL-D.

210 Chapter 8: Process Handling

Process ID Variables and Temporary Files

The only thing new about this script is $$ in the filename expression. This is a

special shell variable whose value is the process ID of the current shell.

To see how $$ works, type ps and note the process ID of your shell process

{bash). Then type echo "$$"; the shell will respond with that same number. Now
type bash to start a subshell, and when you get a prompt, repeat the process. You

should see a different number, probably slightly higher than the last one.

A related built-in shell variable is ! (i.e., its value is $!), which contains the process

ID of the most recently invoked background job. To see how this works, invoke

any job in the background and note the process ID printed by the shell next to

[1]. Then type echo "$!"; you should see the same number.

To return to our mail example: since all processes on the system must have

unique process IDs, $$ is excellent for constructing names of temporary files.

The directory Amp is conventionally used for temporary files. Many systems also

have another directory, /usr/tmp, for the same purpose.

Nevertheless, a program should clean up such files before it exits, to avoid taking

up unnecessary disk space. We could do this in our code very easily by adding the

line rm $msgfile after the code that actually sends the message. But what if the

program receives a signal during execution? For example, what if a user changes

his or her mind about sending the message and hits CTRL-C to stop the process?

We would need to clean up before exiting. We'll emulate the actual UNIX mail

system by saving the message being written in a file called dead. letter in the cur-

rent directory. We can do this by using trap with a command string that includes

an exit command:

trap 'mv $msgfile dead. letter; exit' INT TERM
msgf ile=/tinp/msg$$
cat > $msgfile

send the contents of $msgfile to the specified mail address...

rm $msgfile

When the script receives an INT or TERM signal, it will remove the temp file and

then exit. Note that the command string isn't evaluated until it needs to be run, so

$msgfile will contain the correct value; that's why we surround the string in single

quotes.

But what if the script receives a signal before msgfile is created— unlikely though

that may be? 'i'hen mv will try to rename a file that doesn't exist. To fix this, we

need to test for the existence of the file $msglilc before tiying to delete it. The

code for tiiis is a bit unwieldy to put in a single command string, so we'll use a

function instead:

trap 211

function cleanup {

if [-e $msgfile] ; then
mv $msgfile dead. letter

fi

exit

trap cleanup INT TERM

msgfile=/tmp/msg$$
cat > $msgfile

send the contents of $msgfile to the specified mail address...
rm $msgfile

Ignoring Signals

Sometimes a signal comes in that you don't want to do anything about. If you give

the null string ("
" or ' as the command argument to trap, then the shell will

effectively ignore that signal. The classic example of a signal you may want to

ignore is HUP (hangup). This can occur on some UNIX systems when a hangup

(disconnection while using a modem—literally "hanging up") or some other net-

work outage takes place.

HUP has the usual default behavior: it will kill the process that receives it. But

there are bound to be times when you don't want a background job to terminate

when it receives a hangup signal.

To do this, you could write a simple function that looks like this:

function ignorehup {

trap '
" HUP

eval "$§"

}

We write this as a function instead of a script for reasons that will become clearer

when we look in detail at subshells at the end of this chapter.

Actually, there is a UNIX command called nobup that does precisely this. The start

script from the last chapter could include nohup:

eval nohup "$©" > logfile 2>&1 &

This prevents HUP from terminating your command and saves its standard and

error output in a file. Actually, the following is just as good:

nohup "$@" > logfile 2>&1 &

If you understand why eval is essentially redundant when you use nohup in this

case, then you have a firm grasp on the material in the previous chapter. Note that

if you don't specify a redirection for any output from the command, nohup places

it in a file called nohup. out.

212 Chapter 8: Process Handling

disown

Another way to ignore the HUP signal is with the disown built-in.* disown takes as

an argument a job specification, such as the process ID or job ID, and removes the

process from the list of jobs. The process is effectively "disowned" by the shell

from that point on, i.e., you can only refer to it by its process ID since it is no

longer in the job table.

disown's -h option performs the same function as nohup; it specifies that the shell

should stop the hangup signal from reaching the process under certain circum-

stances. Unlike nohup, it is up to you to specify where the output from the pro-

cess is to go.

Resetting Traps

Another "special case" of the trap command occurs when you give a dash (-) as

the command argument. This resets the action taken when the signal is received to

the default, which usually is termination of the process.

As an example of this, let's return to Task 8-2, our mail program. After the user has

finished sending the message, the temporary file is erased. At that point, since

there is no longer any need to clean up, we can reset the signal trap to its default

state. The code for this, apart from function definitions, is:

trap abortmsg INT

trap cleanup TERM

msgf ile=/tmp/msg$$
cat > $msgfile

send the contents of $msgfile to the specified mail address...

rm $msgfile

trap - INT TERM

The last line of this code resets the handlers for the INT and TERM signals.

At this point you may be thinking that one could get seriously carried away with

signal handling in a shell script. It is true that "industrial strength" programs devote

considerable amounts of code to dealing with signals. But these programs are

almost always large enough so that the signal-handling code is a tiny fraction of

the whole thing. For example, you can bet tliat the real UNIX /?/<:/ // system is pretty

darn bullet-proof.

However, you will probably never write a shell script that is complex enough, and

that needs to be robust enough, to merit lots of signal handling. You may write a

* disown i.s not avaihihU' in MTsions of hash prior to 2.0.

Coroutines 213

prototype for a program as large as mail in shell code, but prototypes by definition

do not need to be bullet-proofed.

Therefore, you shouldn't worry about putting signal-handling code in every 20-line

shell script you write. Our advice is to determine if there are any situations in

which a signal could cause your program to do something seriously bad and add

code to deal with those contingencies. What is "seriously bad"? Well, with respect

to the above examples, we'd say that the case where HUP causes your job to ter-

minate is seriously bad, while the temporary file situation in our mail program is

not.

Coroutines
We've spent the last several pages on almost microscopic details of process behav-

ior. Rather than continue our descent into the murky depths, we'll revert to a

higher-level view of processes.

Earlier in this chapter, we covered ways of controlling multiple simultaneous jobs

within an interactive login session; now we'll consider multiple process control

within shell programs. When two (or more) processes are explicitly programmed

to run simultaneously and possibly communicate with each other, we call them

coroutines.

This is actually nothing new: a pipeline is an example of coroutines. The shell's

pipeline construct encapsulates a fairly sophisticated set of rules about how pro-

cesses interact with each other. If we take a closer look at these rules, we'll be bet-

ter able to understand other ways of handling coroutines—most of which turn out

to be simpler than pipelines.

When you invoke a simple pipeline—say. Is | more—the shell invokes a series of

UNIX primitive operations, or system calls. In effect, the shell tells UNIX to do the

following things; in case you're interested, we include in parentheses the actual

system call used at each step:

1. Create two subprocesses, which we'll call PI and P2 (the /or^ system call).

2. Set up I/O between the processes so that Pi's standard output feeds into P2's

standard input (.pipe).

3. Start /bin/Is in process PI (exec).

4. Start /bin/more in process P2 (exec).

5. Wait for both processes to finish (wait).

You can probably imagine how the above steps change when the pipeline

involve*; mnrp th^n fu/o nrorp«;<;p<;involves more than two processes

214 Chapter 8: Process Handling

Now let's make things simpler. We'll see how to get multiple processes to run at

the same time if the processes do not need to communicate. For example, we
want the processes alice and hatter to run as coroutines, without communication,

in a shell script. Our initial solution would be this:

alice &

hatter

Assume for the moment that hatter is the last command in the script. The above

will work—but only if alice finishes first. If alice is still running when the script

finishes, then it becomes an orphan, i.e., it enters one of the "funny states" we
mentioned earlier in this chapter. Never mind the details of orphanhood; just

believe that you don't want this to happen, and if it does, you may need to use

the "runaway process" method of stopping it, discussed earlier in this chapter.

wait

There is a way of making sure the script doesn't finish before alice does: the built-

in command wait. Without arguments, wait simply waits until all background jobs

have finished. So to make sure the above code behaves properly, we would add

wait, like this:

alice &

hatter
wait

Here, if hatter finishes first, the parent shell will wait for alice to finish before fin-

ishing itself.

If your script has more than one background job and you need to wait for specific

ones to finish, you can give wait the process ID of the job.

However, you will probably find that wait without arguments suffices for all

coroutines you will ever program. Situations in which you would need to wait for

specific background jobs are quite complex and beyond the scope of this book.

Advantages and Disadvantages of Coroutines

In fact, you may be wondering why you would ever need to program coroutines

that don't communicate with each other. For example, why not just mn hatter after

alice in the usual way? What advantage is there in mnning the two jobs simultane-

ously?

Fven if you are running on a computer with only one processor (CPl'). then there

may be a performance advantage.

Roughly speaking, you can characterize a j:)rocess in leniis of how it uses system

resources in three ways: whether it is (,'Fl -iHfoisirc (e.g., does lots of number

Coroutines 215

crunching), I/O-intensive (does a lot of reading or writing to the disk), or interac-

tive (requires user intervention).

We already know from Chapter 1 that it makes no sense to run an interactive job

in the background. But apart from that, the more two or more processes differ

with respect to these three criteria, the more advantage there is in running them

simultaneously. For example, a number-crunching statistical calculation would do

well when running at the same time as a long, I/O-intensive database query.

On the other hand, if two processes use resources in similar ways, it may even be

less efficient to run them at the same time as it would be to run them sequentially.

Why? Basically, because under such circumstances, the operating system often has

to "time-slice" the resource(s) in contention.

For example, if both processes are "disk hogs," the operating system may enter a

mode where it constantly switches control of the disk back and forth between the

two competing processes; the system ends up spending at least as much time

doing the switching as it does on the processes themselves. This phenomenon is

known as thrashing; at its most severe, it can cause a system to come to a virtual

standstill. Thrashing is a common problem; system administrators and operating

system designers both spend lots of time trying to minimize it.

Parallelization

But if you have a computer with multiple CPUs (such as a Pyramid, Sequent, or

Sun MP), you should be less concerned about thrashing. Furthermore, coroutines

can provide dramatic increases in speed on this type of machine, which is often

called a parallel computer; analogously, breaking up a process into coroutines is

sometimes called parallelizing the job.

Normally, when you start a background job on a multiple-CPU machine, the com-

puter will assign it to the next available processor. This means that the two jobs

are actually—not just metaphorically—running at the same time.

In this case, the running time of the coroutines is essentially equal to that of the

longest-running job plus a bit of overhead, instead of the sum of the run times of

all processes (although if the CPUs all share a common disk drive, the possibility

of I/O-related thrashing still exists). In the best case— all jobs having the same run

time and no I/O contention—you get a speedup factor equal to the number of

CPUs.

Parallelizing a program is often not easy; there are several subtle issues involved

and there's plenty of room for error. Nevertheless, it's worthwhile to know how to

parallelize a shell script whether or not you have a parallel machine, especially

since such machines are becoming more and more common.

216 Chapter 8: Process Handling

We'll show how to do this—and give you an idea of some problems involved—by
means of a simple task whose solution is amenable to parallelization.

Task 8-3

Write a utility that allows you to make multiple copies of a file at the same

time.

We'll call this script mcp. The command mcp filename destl dest2 . . . should copy

filename to all of the destinations given. The code for this should be fairly obvi-

ous:

file=$l
shift
for dest in "$@"; do

cp $file $dest
done

Now let's say we have a parallel computer and we want this command to run as

fast as possible. To parallelize this script, it's a simple matter of firing off the cp

commands in the background and adding a wait at the end:

file=$l
shift
for dest in "$@"; do

cp $file $dest &

done
wait

Simple, right? Well, there is one little problem: what happens if the user specifies

duplicate destinations? If you're lucky, the file just gets copied to the same place

twice. Otherwise, the identical cp commands will interfere with each other, possi-

bly resulting in a file that contains two interspersed copies of the original file. In

contrast, if you give the regular cp command two arguments that point to the same

file, it will print an error message and do nothing.

To fix this problem, we would have to write code that checks the argument list for

duplicates. Although this isn't too hard to do (see the exercises at the end of this

chapter), the time it takes that code to run might offset any gain in speed from

parallelization; furthermore, the code that does the checking detracts from the sim-

ple elegance of the script.

As you can see, even a seemingly trivial parallelization task has pr()i')lcins resulting

from multiple processes having concurrent access to a given systeni resource Ca

file in this case). vSuch problems, known as coricimvucy control issues, become

much more difficult as the complexity of the application increases. Complex con-

current programs often have nuich more code for handling the special cases than

for the actual job the program is .supj:)()sed to do!

Subshells 217

Therefore, it shouldn't surprise you that much research has been and is being

done on parallelization, the ultimate goal being to devise a tool that parallelizes

code automatically. (Such tools do exist; they usually work in the confines of some

narrow subset of the problem.) Even if you don't have access to a multiple-CPU

machine, parallelizing a shell script is an interesting exercise that should acquaint

you with some of the issues that surround coroutines.

Subshells

To conclude this chapter, we will look at a simple type of interprocess relation-

ship: that of a subshell with its parent shell. We saw in Chapter 3, Customizing

Your Environment, that whenever you run a shell script, you actually invoke

another copy of the shell that is a subprocess of the main, or parent, shell process.

Now let's look at subshells in more detail.

Subshell Inheritance

The most important things you need to know about subshells are what characteris-

tics they get, or inherit, from their parents. These are as follows:

• The current directory

• Environment variables

• Standard input, output, and error, plus any other open file descriptors

• Signals that are ignored

Just as important are the things that a subshell does not inherit from its parent:

• Shell variables, except environment variables and those defined in the envi-

ronment file (usually .bashrc)

• Handling of signals that are not ignored

We covered some of this in Chapter 3, but these points are common sources of

confusion, so they bear repeating.

Nested Subshells

Subshells need not be in separate scripts; you can also start a subshell within the

same script (or function) as the parent. You do this in a manner very similar to the

command blocks we saw in the last chapter. Just surround some shell code with

parentheses (instead of curly brackets), and that code will run in a subshell. We'll

call this a nested subshell.

218 Chapter 8: Process Handling

For example, here is the calculator program from the last chapter, with a subshell

instead of a command block:

(while read line; do

echo "$(alg2rpn $line)

"

done

)
I

dc

The code inside the parentheses will run as a separate process. This is usually less

efficient than a command block. The differences in functionality between subshells

and command blocks are very few; they primarily pertain to issues of scope, i.e.,

the domains in which definitions of things like shell variables and signal traps are

known. First, code inside a nested subshell obeys the above rules of subshell

inheritance, except that it knows about variables defined in the surrounding shell;

in contrast, think of blocks as code units that inherit everything from the outer

shell. Second, variables and traps defined inside a command block are known to

the shell code after the block, whereas those defined in a subshell are not.

For example, consider this code:

{

hatter=mad
trap "echo 'You hit CTRL-C!'" INT

}

while true; do

echo "\$hatter is $hatter"

sleep 60

done

If you run this code, you will see the message Shatter is mad every 60 seconds,

and if you hit CTRL-C, you will see the message, You hit CTRL-C!. You will need to

hit CTRL-Z to stop it (don't forget to kill it with kill %+). Now let's change it to a

nested subshell:

(

hatter=mad
trap "echo 'You hit CTRL-C!'" INT

)

while true; do

echo "\$hatter is $hatter"
sleep 60

done

If you run this, you will see the message $hatter is; the outer shell doesn't know

about the subshell's definition of hatter and therefore thinks it's null. Furthermore,

the outer shell doesn't know about the subshell's trap of the INT signal, so if you

hit CTRL-C, the script will terminate.

If a language supports code nesting, then it's considered desirable that definitions

inside a nested unit have a scope limited to that nested unit. In other words,

Process Substitution 219

nested subshells give you better control than command blocks over the scope of

variables and signal traps. Therefore, we feel that you should use subshells instead

of command blocks if they are to contain variable definitions or signal traps

—

unless efficiency is a concern.

Process Substitution

A unique but rarely used feature of bash is process substitution. Let's say that you

had two versions of a program that produced large quantities of output. You want

to see the differences between the output from each version. You could run the

two programs, redirecting their output to files, and then use the cmp utility to see

what the differences were.

Another way would be to use process substitution. There are two forms of this

substitution. One is for input to a process: >ilist}; the other is for output from a

process: <Uist}. list is a process that has its input or output connected to some-

thing via a named pipe. A named pipe is simply a temporary file that acts like a

pipe with a name.

In our case, we could connect the outputs of the two programs to the input of

cmp via named pipes:

cmp <(progl) <(prog2)

progl and prog2 are run concurrently and connect their outputs to named pipes.

cmp reads from each of the pipes and compares the information, printing any dif-

ferences as it does so.

This chapter has covered a lot of territory. Here are some exercises that should

help you make sure you have a firm grasp on the material. Don't worry if you

have trouble with the last one; it's especially difficult.

1. Write a shell script called pinfo that combines the jobs and ps commands by

printing a list of jobs with their job numbers, corresponding process IDs, run-

ning times, and full commands.

2. Take a non-trivial shell script and "bullet-proof" it with signal traps.

3. Take a non-trivial shell script and parallelize it as much as possible.

4. Write the code that checks for duplicate arguments to the mcp script. Bear in

mind that different pathnames can point to the same file. (Hint: if $i is "1",

then eval 'echo \${$i}' prints the first command-line argument. Make sure you

understand why.)

In this chapter:

• Basic Debugging Aids

• A bash Debugger

Debugging Shell

Programs

We hope that we have convinced you that bash can be used as a serious UNIX

programming environment. It certainly has enough features, control structures, etc.

But another essential part of a programming environment is a set of powerful,

integrated support tools. For example, there is a wide assortment of screen editors,

compilers, debuggers, profilers, cross-referencers, etc., for languages like C and

C++. If you program in one of these languages, you probably take such tools for

granted, and you would undoubtedly cringe at the thought of having to develop

code with, say, the ed editor and the adb machine-language debugger.

But what about programming support tools for basb'^ Of course, you can use any

editor you like, including vi and emacs. And because the shell is an interpreted

language, you don't need a compiler.* But there are no other tools available.

This chapter looks at some useful features that you can use to debug shell pro-

grams. We'll look at how you can utilize them in the first part of this chapter. We'll

then look at some powerful new features of bash, not present in most Bourne

shell workalikes, that will help in building a shell script debugging tool. At the end

of the chapter, we'll show step by step how to build a debugger for bash. The

debugger, called bashdb, is a basic yet functional program that will not only serve

as an extended example of various shell programming techniques, but will also

provide you with a useful tool for examining the workings of your own shell

scripts.

* Actually, if you arc really concerned about efficiency, there are shell code compilers on the marker;

they convert shell scripts to C code that often runs quite a bit faster.

220

Basic Debugging Aids 22

1

Basic Debugging Aids
what sort of functionality do you need to debug a program? At the most empirical

level, you need a way of determining what is causing your program to behave

badly, and where the problem is in the code. You usually start with an obvious

what (such as an error message, inappropriate output, infinite loop, etc.), try to

work backwards until you find a what that is closer to the actual problem (e.g., a

variable with a bad value, a bad option to a command), and eventually arrive at

the exact where in your program. Then you can worry about how to fix it.

Notice that these steps represent a process of starting with obvious information

and ending up with often obscure facts gleaned through deduction and intuition.

Debugging aids make it easier to deduce and intuit by providing relevant informa-

tion easily or even automatically, preferably without modifying your code.

The simplest debugging aid (for any language) is the output statement, echo, in

the shell's case. Indeed, old-time programmers debugged their FORTRAN code by

inserting WRITE cards into their decks. You can debug by putting lots of echo

statements in your code (and removing them later), but you will have to spend

lots of time narrowing down not only what exact information you want but also

where you need to see it. You will also probably have to wade through lots and

lots of output to find the information you really want.

Set Options

Luckily, the shell has a few basic features that give you debugging functionality

beyond that of echo. The most basic of these are options to the set -o command
(as covered in Chapter 3, Customizing Your Environment) . These options can also

be used on the command line when running a script, as Table 9-1 shows.

Table 9-1: Debugging Options

set-o

Option

Command-Line

Option
Action

noexec

verbose

xtrace

-n

—V

-X

Don't run commands; check for syntax errors only

Echo commands before running them

Echo commands after command-line processing

The verbose option simply echoes (to standard error) whatever input the shell

gets. It is useful for finding the exact point at which a script is bombing. For exam-

ple, assume your script looks like this:

alice
hatter
inarch

222 Chapter 9: Debugging Shell Programs

teatime
treacle
well

None of these commands is a standard UNIX program, and each does its work

silently. Say the script crashes with a cryptic message like "segmentation violation."

This tells you nothing about which command caused the error. If you type bash -v

scriptname, you might see this:

alice
hatter
march
segmentation violation
teatime
treacle
well

Now you know that march is the probable culprit—though it is also possible that

march bombed because of something it expected alice or hatter to do (e.g., create

an input file) that they did incorrectly.

The xtrace option is more powerful: it echoes command lines after they have been

through parameter substitution, command substitution, and the other steps of com-

mand-line processing (as listed in Chapter 7, Input/Output and Command-Line

Processing). For example:

$ set -o xtrace

$ alice=girl
+ alice=girl

$ echo "$alice"
+ echo girl

girl

$ Is -1 $(type -path vi)

++ type -path vi
+ Is -F -1 /usr/bin/vi
Irwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*

$

As you can see, xtrace starts each line it prints with + (each + representing a level

of expansion). This is actually customizable: it's the value of the built-in shell vari-

able PS4. So if you set PS4 to "xtrace— > " (e.g., in your .bash_profile ov .bashrc),

then you'll get xtrace listings that look like this:

$ Is -1 $(type -path vi)

xxtrace--> type -path vi

xtrace--> Is -1 /usr/bin/vi
Irwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*

$

Notice thai for multiple levels of expansion, only the first character of PS4 is

printed. This makes the output more readable.

Basic Debugging Aids 223

An even better way of customizing PS4 is to use a built-in variable we haven't

seen yet: LINENO, which holds the number of the currently running line in a shell

script.* Put this line in your .bash_profile or environment file:

PS4='line $LINENO: '

We use the same technique as we did with PSl in Chapter 3: using single quotes

to postpone the evaluation of the string until each time the shell prints the prompt.

This will print messages of the form line A^: in your trace output. You could even

include the name of the shell script you're debugging in this prompt by using the

positional parameter $0:

PS4='$0 line $LINENO: '

As another example, say you are trying to track down a bug in a script called alice

that contains this code:

dbfmq=$l . fmq

fndrs=$(cut -f3 -d' ' $dfbmq)

You type alice teatime to run it in the normal way, and it hangs. Then you type

bash -X alice teatime, and you see this:

+ dbfmq=teatime. fmq

+ + cut -f3 -d

It hangs again at this point. You notice that cut doesn't have a filename argument,

which means that there must be something wrong with the variable dbfmq. But it

has executed the assignment statement dbfmq=teatime.fmq properly . . . 2h-hah\

You made a typo in the variable name inside the command substitution construct.t

You fix it, and the script works properly.

The last option is noexec, which reads in the shell script, checks for syntax errors,

but doesn't execute anything. It's worth using if your script is syntactically com-

plex (lots of loops, command blocks, string operators, etc.) and the bug has side

effects (like creating a large file or hanging up the system).

You can turn on these options with set -o option in your shell scripts, and, as

explained in Chapter 3, turn them off with set +o option. For example, if you're

debugging a chunk of code, you can precede it with set -o xtrace to print out the

executed commands, and end the chunk with set +o xtrace.

* In versions of bash prior to 2.0, LINENO won't give you the current line in a function. LINENO,

instead, gives an approximation of the number of simple commands executed so far in the current

function.

t We should admit that if you had turned on the nounset option at the top of this script, the shell

would have flagged this error.

224 Chapter 9: Debugging Shell Programs

Note, however, that once you have turned noexec on, you won't be able to turn it

off; a set +o noexec will never be executed.

Fake Signals

A more sophisticated set of debugging aids is the shell's "fake signals," which can

be used in trap statements to get the shell to act under certain conditions. Recall

from the previous chapter that trap allows you to install some code that runs when

a particular signal is sent to your script.

Fake signals work in the same way, but they are generated by the shell itself, as

opposed to the other signals which are generated externally. They represent run-

time events that are likely to be of interest to debuggers—both human ones and

software tools—and can be treated just like real signals within shell scripts. Table

9-2 lists the two fake signals available in bash.

Table 9-2: Fake Signals

Fake Signal

EXIT

DEBUG

Sent When

The shell exits from script

The shell has executed a statement^

a. The DEBUG signal is not available in bash versions prior to 2.0.

EXIT

The EXIT trap, when set, will run its code whenever the script within which it was

set exits.*

Here's a simple example:

trap 'echo exiting from the script' EXIT
echo 'start of the script'

If you run this script, you will see this output:

start of the script
exiting from the script

In other words, the script starts by setting the trap for its own exit, then prints a

message. The script then exits, which causes the shell to generate the signal EXIT,

which in turn runs the code echo exiting from the script.

An EXIT trap occurs no matter how the script exits—whether normally (by finish-

ing the last statement), by an explicit exit or return statement, or by recei\ing a

"real" signal such as INT or 7TRM. Consider this inane number-guessing i')rogram:

* You can trap only llic exiting of a script. Functions dont gt-ncnitc the l-Xli' signal, as tlK-y arc p.ul of

the current shell invocation

Basic Debugging Aids 225

trap 'echo Thank you for playing! ' EXIT

magicnmn=$ (($RANDOM%10+1)

)

echo 'Guess a number between 1 and 10:'

while read -p 'Guess: ' guess ; do
sleep 4

if ["$guess" = $magicnum]; then
echo 'Right !

'

exit

fi

echo 'Wrong!

'

done

This program picks a number between 1 and 10 by getting a random number (the

built-in variable RANDOM), extracting the last digit (the remainder when divided

by 10), and adding 1. Then it prompts you for a guess, and after 4 seconds, it will

tell you if you guessed right.

If you did, the program will exit with the message, "Thank you for playing!", i.e., it

will run the EXIT trap code. If you were wrong, it will prompt you again and

repeat the process until you get it right. If you get bored with this little game and

hit CTRL-C or CTRL-D while waiting for it to tell you whether you were right, you

will also see the message.

The EXIT trap is especially useful when you want to print out the values of vari-

ables at the point that your script exits. For example, by printing the value of loop

counter variables, you can find the most appropriate places in a complicated

script, with many nested for loops, to enable xtrace or place debug output.

DEBUG

The other fake signal, DEBUG, causes the trap code to be executed after every

statement in a function or script. This has two main uses. First is the use for

humans, as a sort of "brute force" method of tracking a certain element of a pro-

gram's state that you notice has gone awry.

For example, you notice the value of a particular variable is running amok. The

naive approach is to put in a lot of echo statements to check the variable's value at

several points. The DEBUG trap makes this easier by letting you do this:

function dbgtrap

{

echo "hadvar is hadvar"

}

trap dbgtrap DEBUG

...section ofcode in which theproblem occurs...

trap - DEBUG # turn off the DEBUG trap

226 Chapter 9: Debugging Shell Programs

This code will print the value of the wayward variable after every statement

between the two traps.

One important point to remember when using DEBUG is that it is not inherited by

functions called from the shell in which it is set. In other words, if your shell sets a

DEBUG trap and then calls a function, the statements within the function will not

execute the trap. You have to set a trap for DEBUG explicitly within the function if

you want to use it.

The second and far more important use of the DEBUG signal is as a primitive for

implementing a bash debugger. In fact, it would be fair to say that DEBUG
reduces the task of implementing a useful shell debugger from a large-scale soft-

ware development project to a manageable exercise.

A bash Debugger
In this section we'll develop a basic debugger for bash* Most debuggers have

numerous sophisticated features that help a programmer in dissecting a program,

but just about all of them include the ability to step through a running program,

stop it at selected places, and examine the values of variables. These simple fea-

tures are what we will concentrate on providing in our debugger. Specifically,

we'll provide the ability to:

• Specify places in the program at which to stop execution. These are called

breakpoints.

• Execute a specified number of statements in the program. This is called step-

ping.

• Examine and change the state of the program during its execution. This

includes being able to print out the values of variables and change them when

the program is stopped at a breakpoint or after stepping.

• Print out the source code we are debugging along with indications of where

breakpoints are and what line in the program we are currently executing.

• Provide the debugging capability without having to change the original source

code of the program we wish to debug in any way.

As you will see, the capability to do all of these things (and more) is easily pro-

vided by the constructs and methods we have seen in previous chapters.

* Unfortunately, the debugger will noi work wiili Nersions of \his\) prior to 2,0, luwiiise tlK'\- tio not

implemeni the DHHIJO signal.

A bash Debugger 227

Structure of the Debugger

The bashdb debugger works by taking a shell script and turning it into a debugger

for itself. It does this by concatenating debugger functionality and the target script,

which we'll call the guinea pig script, and storing it in another file which then gets

executed. The process is transparent to the user—they will be unaware that the

code that is executing is actually a modified copy of their script.

The bash debugger has three main sections: the driver, the preamble, and the

debugger functions.

The driver script

The driver script is responsible for setting everything up. It is a script called

bashdb and looks like this:

bashdb - a bash debugger
Driver Script: concatenates the preamble and the target script
and then executes the new script

.

echo 'bash Debugger version 1.0'

_dbname=${0##*/}

if (($# < 1)) ; then
echo "$_dbname: Usage: $_dbnaine filename" >&2

exit 1

fi

_guineapig=$l

if [! -r $1] ; then
echo "$_dbname: Cannot read file ' $_guineapig' .

" >&2

exit 1

fi

shift

_tmpdir=/tmp
_libdir=.
_debugfile=$_tmpdir/bashdb. $$ # temporary file for script that is

being debugged
cat $_libdir/bashdb. pre $_guineapig > $_debugfile
exec bash $_debugfile $_guineapig $_tmpdir $_libdir "$@"

bashdb takes as the first argument the name of guinea pig file. Any subsequent

arguments are passed on to the guinea pig as its positional parameters.

If no arguments are given, bashdb prints out a usage line and exits with an error

status. Otherwise, it checks to see if the file exists. If it doesn't, exist then bashdb

prints a message and exits with an error status. If all is in order, bashdb constructs

228 Chapter 9: Debugging Shell Programs

a temporary file in the way we saw in the last chapter. If you don't have (or don't

have access to) /tmp on your system, then you can substitute a different directory

for _tmpdir.* The variable _libdir is the name of the directory that contains files

needed by bashdb (bashdb.pre and bashdb.fns). If you are installing bashdb on

your system for everyone to use, you might want to place them in /usr/lib.

The cat statement builds the modified copy of the guinea pig file: it contains the

script found in basbdb.pre (which we'll look at shortly) followed by a copy of the

guinea pig.

exec

The last line runs the newly created script with exec, a statement we haven't dis-

cussed yet. We've chosen to wait until now to introduce it because— as we think

you'll agree— it can be dangerous, exec takes its arguments as a command line

and runs the command in place of the current program, in the same process. In

other words, a shell that runs exec will terminate immediately and be replaced by

exec's arguments.

t

In our script, exec just runs the newly constructed shell script, i.e., the guinea pig

with its debugger, in another shell. It passes the new script three arguments—the

name of the original guinea pig file ($_guineapig), the name of the temporary

directory ($_tmpdir), and the name of the library directory ($_libdir)—followed by

the user's positional parameters, if any.

The Preamble

Now we'll look at the code that gets prepended to the guinea pig script; we call

this the preamble. It's kept in the file basbdb.pre and looks like this:

bashdb preamble
This file gets prepended to the shell script being debugged,

Arguments

:

$1 = the name of the original guinea pig script

$2 = the directory where temporary files are stored

$3 = the directory where bashdb, pre and bashdb.fns are stored

_debugf ile=$0
_guineapig=$l

* All function names and variables (cxcvpi tliosf local to functions) in has/uih h.i\c n.inics lx\uinnin>^

with an underscore (_), to minimize the possibility of clashes with names in the guinea pii; script.

t exec can also be used with an I/O redirector only; this makes the retiirecior take effect lor the

remainder of the script or login session. For example, the line exec 2>errl()g .it the lop of .i scn|M

directs standard error lo the file errhg for the rest of the script.

A bash Debugger 229

_tmpdir=$2
_libdir=$3

shift 3

source $_libdir/bashdb. fns

_linebp=
let _trace=0
let _i=l

while read; do

_lines [$_i] =$REPLY
let _i=$_i+l

done < $_guineapig

trap _cleanup EXIT
let _steps=l
LINEN0=-2
trap '_steptrap $LINENO' DEBUG

The first few lines save the three fixed arguments in variables and shift them out of

the way, so that the positional parameters (if any) are those that the user supplied

on the command line as arguments to the guinea pig. Then, the preamble reads in

another file, bashdb.fns, that contains all of the functions necessary for the opera-

tion of the debugger itself. We put this code in a separate file to minimize the size

of the temporary file. We'll examine bashdb.fns shortly.

Next, bashdb.pre initializes a breakpoint array to empty and execution tracing to

off (see the following discussion), then reads the original guinea pig script into an

array of lines. We need the source lines from the original script for two reasons: to

allow the debugger to print out the script showing where the breakpoints are, and

to print out the lines of code as they execute if tracing is turned on. You'll notice

that we assign the script lines to _lines from the environment variable $REPLY

rather than reading them into the array directly. This is because $REPLY preserves

any leading whitespace in the lines, i.e., it preserves the indentation and layout of

the original script.

The last five lines of code set up the conditions necessary for the debugger to

begin working. The first trap command sets up a clean-up routine that runs when

the fake signal EXIT occurs. The clean-up routine, normally called when the

debugger and guinea pig script finish, just erases the temporary file. The next line

sets the variable _steps to 1 so that when the debugger is first entered, it will stop

after the first line.

The built-in variable LINENO, which we saw earlier in the chapter, is used to pro-

vide line numbers in the debugger. However, if we just used LINENO as is, we'd

get line numbers above thirty because LINENO would be including the lines in the

preamble. To get around this, we can set LINENO to a new value and it will

230 Chapter 9: Debugging Shell Programs

happily start counting line numbers from that value. In this case we set it to the

value -2 so that the first line of the guinea pig will be line 1.*

The next line sets up the routine _steptrap to run when the fake signal DEBUG
occurs. _steptrap is passed $LINENO as an argument when it is called.

The last line is a "do-nothing" statemient (:). The shell executes this statement and

enters _steptrap for the first time. As we have set _steps to 1, the debugger will

stop and wait for a command from the user. We'll see how this works in the next

section.

Debugger Functions

The function _steptrap is the entry point into the debugger; it is defined in the file

bashdb.fns. Here is _steptrap:

After each line of the test script is executed the shell traps to

this function.

function _steptrap

{

_curline=$l # the number of the line that just ran

(($_trace)) && _msg "$PS4 line $_curline: $ {_lines [$_curline] }

"

if (($_steps >=)) ; then
let _steps="$_steps - 1"

fi

First check to see if a line number breakpoint was reached.

If it was, then enter the debugger,
if _at_linenumbp ; then

_msg "Reached breakpoint at line $_curline"

_cmdloop

It wasn't, so check whether a break condition exists and is true.

If it is, then enter the debugger.

el if [-n "$_brcond"] && eval $_brcond; then

_msg "Break condition $_brcond true at line $_curline"

_cmdloop

It wasn't, so check if we are in step mode and the number of steps

is up. If it is then enter the debugger,

elif ({ $_steps ==)) ; then
_msg "Stopped at line $_curline"
_cmdloop

fi

}

* If you arc typing or scaiiniiiK "^ '''<-" pif.mibk' code Iroin this hook, make sure tluii the l.isi lino in the

flic- is the colon (:), i.e., no hiank hnes should appear alter the tolon.

A bash Debugger 231

_steptrap starts by setting _curline to the number of the guinea pig line that just

ran. If execution tracing is on, it prints the PS4 execution trace prompt (like the

shell's xtrace mode), line number, and line of code itself. It then decrements the

number of steps if the number of steps still left is greater than or equal to zero.

Then it does one of two things: it enters the debugger via _cmdloop, or it returns

so the shell can execute the next statement. It chooses the former if a breakpoint

or break condition has been reached, or if the user stepped into this statement.

Commands

We'll explain shortly how _steptrap determines these things; now we'll look at

_cmdloop. It's a simple combination of the case statements we saw in Chapter 5,

Flow Control and the calculator loop we saw in the previous chapter.

The Debugger Command Loop

function _cmdloop {

local cmd args

lie read -e -p "bashdb> " cmd args ; do

case $cmd in

\? h) _menu ;

;

print command menu
be _setbc $args ;

;

set a break condition
bp _setbp $args ;

;

#

#

set a breakpoint at the given
line

cb _clearbp $args ; ; # clear one or all breakpoints
ds _displayscript

'

' #

#

list the script and show the

breakpoints

g return ;

;

#

#

"go": start /resume execution of

the script

q exit ;

;

quit

) let _steps=${args : -1}

return ;

;

) _xtrace ;

;

) eval ${cmd#!} $args ;

;

) _msg "Invalid command;

single step N times

(default = 1)

toggle execution trace

pass to the shell
' $cmd' " ;

;

done

At each iteration, _cmdloop prints a prompt, reads a command, and processes it.

We use read -e so that the user can take advantage of the readline command-line

editing. The commands are all one- or two-letter abbreviations; quick for typing,

but terse in the UNIX style.*

* There is nothing to stop you from changing the commands to something you find easier to remem-

ber. There is no "official" bash debugger, so feel free to change the debugger to suit your needs.

232 Chapter 9: Debugging Shell Programs

Table 9-3 summarizes the debugger commands.

Table 9-3: basbdb Commands

Command

bpiV

bp

be string

be

chN
cb

ds

g

X

h, ?

! string

q

Action

Set breakpoint at line A^

List breakpoints and break condition

Set break condition to string

Clear break condition

Clear breakpoint at line N
Clear all breakpoints

Display the test script and breakpoints

Start/resume execution

Execute A^ statements (default 1)

Toggle execution trace on/off

Print the help menu

Pass string to a shell

Quit

Before looking at the individual commands, it is important that you understand

how control passes through _steptrap, the command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as a result of the trap on

DEBUG in the preamble. If a breakpoint has been reached or the user previously

typed in a step command (s), _steptrap calls the command loop. In doing so, it

effectively "interrupts" the shell that is running the guinea pig to hand control over

to the user.

The user can invoke debugger commands as well as shell commands that run in

the same shell as the guinea pig. This means that you can use shell commands to

check values of variables, signal traps, and any other information local to the script

being debugged. The command loop continues to run, and the user stays in con-

trol, until they type g, q, or s. We'll now look in detail at what happens in each of

these cases.

Typing g has the effect of running the guinea pig uninterrupted until it finishes or

hits a breakpoint. It simply exits the command loop and returns to _steptrap,

which exits as well. The shell then regains control and runs the next statement in

the guinea pig script. Another DEBUG signal occurs and the shell traps to .step-

trap again, if there are no breakpoints then _steptrap will just exit. This process

will repeat until a breakpoint is reached or the guinea pig finishes.

The q command calls the function _cieanup, which erases the temporaiy file and

exits the program.

A bash Debugger 233

Stepping

When the user types s, the command loop code sets the variable _steps to the

number of steps the user wants to execute, i.e., to the argument given. Assume at

first that the user omits the argument, meaning that _steps is set to 1. Then the

command loop exits and returns control to _steptrap, which (as above) exits and

hands control back to the shell. The shell runs the next statement and returns to

_steptrap, which then decrements _steps to 0. Then the second elif conditional

becomes true because _steps is and prints a "stopped" message and then calls

the command loop.

Now assume that the user supplies an argument to s, say 3. _steps is set to 3- Then

the following happens:

1. After the next statement runs, _steptrap is called again. It enters the first if

clause, since _steps is greater than 0. _steptrap decrements _steps to 2 and

exits, returning control to the shell.

2. This process repeats, another step in the guinea pig is run, and _steps

becomes 1.

3. A third statement is run and we're back in _steptrap. _steps is decremented to

0, the second elif clause is run, and _steptrap breaks out to the command loop

again.

The overall effect is that the three steps run and then the debugger takes over

again.

All of the other debugger commands cause the shell to stay in the command loop,

meaning that the user prolongs the "interruption" of the shell.

Breakpoints

Now we'll examine the breakpoint-related commands and the breakpoint mecha-

nism in general. The bp command calls the function _setbp, which can do two

things, depending on whether an argument is supplied or not. Here is the code for

_setbp:

Set a breakpoint at the given line number or list breakpoints
function _setbp

{

local i

if [-z "$1"] ; then

_listbp
elif [$(echo $1

|

grep '^^[0-9]*')]; then

if [-n "${_lines[$l] }"]; then

_linebp=($(echo $((for i in ${_linebp[*] } $1; do

echo $i; done)
|
sort -n)))

_msg "Breakpoint set at line $1"

2^4 Chapter 9: Debugging Shell Programs

else
_msg "Breakpoints can only be set on non-blank lines"

fi

else
_msg "Please specify a numeric line number"

fi

}

If no argument is supplied, _setbp calls _listbp, which prints the line numbers that

have breakpoints set. If anything other than a number is supplied as an argument,

an error message is printed and control returns to the command loop. Providing a

number as the argument allows us to set a breakpoint; however, we have to do

another test before doing so.

What happens if the user decides to set a breakpoint at a nonsensical point: a

blank line, or at line 1000 of a ten-line program? If the breakpoint is set well

beyond the end of the program, it will never be reached and will cause no prob-

lem. If, however, a breakpoint is set at a blank line, it will cause problems. The

reason is that the DEBUG trap only occurs after each executed simple command in

a script, not each line. Blank lines never generate the DEBUG signal. The user

could set a breakpoint on a blank line, in which case continuing execution with

the g command would never break back out to the debugger.

We can fix both of these problems by making sure that breakpoints are set only

on lines with text.* After making the tests, we can add the breakpoint to the break-

point array, _Iinebp. This is a little more complex than it sounds. In order to make

the code in other sections of the debugger simpler, we should maintain a sorted

array of breakpoints. To do this, we echo all of the line numbers currently in the

array, along with the new number, in a subshell and pipe them into the UNIX sort

command, sort -n sorts a list into numerically ascending order. The result of this is

a list of ordered numbers which we then assign back to the _linebp array with a

compound assignment.

To complement the user's ability to add breakpoints, we also allow the user to

delete them. The cb command allows the user to clear single breakpoints or all

breakpoints, depending on whether a line number argument is supplied or not.

For example, cb 12 clears a breakpoint at line 12 (if a breakpoint was set at that

line), cb on its own would clear all of the breakpoints that have been set. It is use-

ful to look briefly at how this works; here is the code for the fimction that is called

with the cb command, _clearbp:

* Thi.s isn't a complete solution. Certain other line.s (e.j^., comments) will .ilso he i>;noretl b\ the

DEBUG trap. See the list of limitations and the exercises at the end of this cluipier

A bash Debugger 235

function _clearbp

{

local i

if [-z "$1"
] ; then

unset _linebp[*]
_msg "All breakpoints have been cleared"

elif [$(echo $1
|

grep '"[0-9]*')
] ; then

_linebp= ($ (echo $(for i in ${_linebp [*
] } ; do

if (($1 != $i)); then echo $i; fi; done)))

_msg "Breakpoint cleared at line $1"

else
_msg "Please specify a numeric line number"

fi

}

The structure of the code is similar to that used for setting the breakpoints. If no

argument was supplied to the command, the breakpoint array is unset, effectively

deleting all the breakpoints. If an argument was supplied and is not a number, we
print out an error message and exit.

A numeric argument to the cb command means the code has to search the list of

breakpoints and delete the specified one. We can easily make the deletion by fol-

lowing a procedure similar to the one we used when we added a breakpoint in

_setbp. We execute a loop in a subshell, printing out the line numbers in the

breakpoints list and ignoring any that match the provided argument. The echoed

values once again form a compound statement which can then be assigned to an

array variable.*

The function _at_linenumbp is called by _steptrap after every statement; it checks

whether the shell has arrived at a line number breakpoint. The code for the func-

tion is:

See if this line number has a breakpoint
function _at_linenumbp

{

local i=0

if ["$_linebp"]; then
while (($i < ${#_linebp[@] })) ; do

if ((${_linebp[$i] } == $_curline)); then

return
fi

let i=$i+l
done

fi

* bash versions 2.01 and earlier have a bug in assigning arrays to themselves which prevents the code

for setbp and clearbp from working. In each case, you can get around this bug by assigning _linebp to

a local variable first, unsetting it, and then assigning the local variable back to it. Better yet, update to a

more recent version of bash.

236 Chapter 9: Debugging Shell Programs

return 1

}

The function simply loops through the breakpoint array and checks the current

line number against each one. If a match is found, it returns true (i.e., returns 0).

Otherwise, it continues looping, looking for a match until the end of the array is

reached. It then returns false.

It is possible to find out exactly what line the debugger is up to and where the

breakpoints have been set in the guinea pig by using the ds command. We'll see

an example of the output later, when we run a sample bashdb debugging session.

The code for this function is fairly straightforward:

Print out the shell script and mark the location of breakpoints
and the current line

function _displayscript

{

local i=l j=0 bp cl

(while (($i < ${#_lines[©] })); do

if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then

bp='*'

let j=$j+l

else

bp=' '

fi

if (($_curline == $i)) ; then

cl=">"

else
cl=" "

fi

echo "$i:$bp $cl ${_lines [$i] }

"

let i=$i+l

done

)
I

more

}

This function contains a subshell, the output of which is piped to the I'NIX more

command. We have done this for user-friendly reasons; a long script would scroll

up the screen quickly and the users may not have displays that allows them to

scroll back to previous pages of screen output, more displays one screenful of out-

put at a time.

The core of the subshell code loops through tlie lines of the guinea pig script. It

first tests to see if the line it is about to display is in the array of breakpoints. If it

is, a breakpoint character (*) is set and the k)cal variable j is incremented, j
was

initialized to at the beginning of the function; it contains the current breakpoint

that we are up to. It should now be apparent why we went to the trouble ot sort-

ing the breakpoints in _setbp; both the line numbers and the i-)reakpoinl numbers

A bash Debugger 23 7

increment sequentially, and once we pass a line number that has a breakpoint and

find it in the breakpoint array, we know that future breakpoints in the script must

be further on in the array. If the breakpoint array contained line numbers in a ran-

dom order, we'd have to search the entire array to find out if a line number was in

the array or not.

The core of the subshell code then checks to see if the current line and the line it

is about to display are the same. If they are, a "current line" character (>) is set.

The current displayed line number (stored in i), breakpoint character, current line

character, and script line are then printed out.

We think you'll agree that the added complexity in the handling of breakpoints is

well worth it. Being able to display the script and the location of breakpoints is an

important feature in any debugger.

Break conditions

bashdb provides another method of breaking out of the guinea pig script: the

break condition. This is a string that the user can specify that is evaluated as a

command; if it is true (i.e., returns exit status 0), the debugger enters the command
loop.

Since the break condition can be any line of shell code, there's a lot of flexibility

in what can be tested. For example, you can break when a variable reaches a cer-

tain value— e.g., (($x <))—or when a particular piece of text has been written

to a file (grep string file). You will probably think of all kinds of uses for this

feature.* To set a break condition, type be string. To remove it, type be without

arguments—this installs the null string, which is ignored.

_steptrap evaluates the break condition $_brcond only if it's not null. If the break

condition evaluates to 0, then the if clause is true and, once again, _steptrap calls

the command loop.

Execution tracing

The final feature of the debugger is execution tracing, available with the x com-

mand.

The function _xtraee "toggles" execution tracing simply by assigning to the vari-

able _traee the logical "not" of its current value, so that it alternates between

(ofO and 1 (on). The preamble initializes it to 0.

* Bear in mind that if your break condition sends anything to standard output or standard error, you

will see it after every statement executed. Also, make sure your break condition doesn't take a long

time to run; otherwise your script will run very, very slowly.

238 Chapter 9: Debugging Shell Programs

Debugger limitations

We have kept bashdb reasonably simple so that you can see the fundamentals of

building a shell script debugger. Although it contains some useful features and is

designed to be a real tool, not just a scripting example, it has some important limi-

tations. The ones that we know of are described in the list that follows.

1. Debuggers tend to run programs slower than if they were executed on their

own. bashdb is no exception. Depending upon the script you use it on, you'll

find the debugger runs everything anywhere from eight to thirty times more

slowly. This isn't so much of a problem if you are stepping through a script in

small increments, but bear it in mind if you have, say, initialization code with

large looping constructs.

2. One problem with setting breakpoints is that when they are set on lines with

no simple commands (actual UNIX commands, shell built-ins, function calls,

and aliases), the DEBUG signal is never generated and the trap code never

executes. This includes reserved words like while, if, for, and so on, unless a

simple command is on the same line.

3. The debugger will not "step down" into shell scripts that are called from the

guinea pig. To do this, you'd have to edit your guinea pig script and change a

call to scriptname to bashdb scriptname.

4. Similarly, nested subshells are treated as one gigantic statement; you cannot

step down into them at all.

5. The guinea pig should not trap on the fake signals DEBUG and EXIT; other-

wise the debugger won't work.

6. Command error handling could be significantly improved.

7. The shell should really have the ability to trap before each statement, not after.

This is the way most commercial source code debuggers work. At the very

least, the shell should provide a variable that contains the number of the line

about to run instead of (or in addition to) the number of the line that just ran.

Many of these are not insurmountable; see the exercises at the end of this chapter.

A Sample bashdb Session

Now we'll show a transcript of an actual session with hcishcih, in which the guinea

pig is the solution to 'I ask 6-1, the script }iclu. Here is tlic transcript of tiic debug-

ging session:

[bash]$ bashdb ndu
bash Debugger version 1.0

Stopped at line

bashdb> ds

A bash Debugger 239

1: £or dir in ${*:-.}; do

2: if [-e $dir] ; then

3: result=$(du -s $dir
|
cut -f 1)

4:

5:

6:

7:

8:

let total=$result*1024

echo -n "Total for $dir = $total bytes

if [$total -ge 1048576]; then

9: echo " ($((total/1048576)) Mb)"

10 elif [$total -ge 1024]

;

then

11 echo " ($((total/1024)

)

Kb)"

12 fi

13 fi

14 done
bashdb> s

Stopped at line 2

bashdb> bp 4

Breakpoint set at line 4

bashdb> bp 8

Breakpoint set at line 8

bashdb> bp 11

Breakpoint set at line 11

bashdb> ds

1: for dir in ${*:-.}; do

2: > if [-e $dir] ; then

3: result=$(du -s $dir
|
cut -f 1)

4:

5:

6:

7:

8:

* let total=$result*1024

echo -n "Total for $dir = $total bytes

* if [$total -ge 1048576]

;

then

9: echo " ($((total/1048576)) Mb)"

10 : elif [$total -ge 1024]

;

then

11 . * echo " ($((total/1024)

)

Kb) "

12 fi

13 fi

14 done
bashdb> g
Reached breakpoint at line 4

bashdb> !echo $total

6840032
bashdb> cb 8

Breakpoint cleared at line 8

bashdb> ds

10:

for dir in ${*:-.}; do

if [-e $dir] ; then

result=$(du -s $dir
|
cut

let total=$result*1024
•f 1)

echo -n "Total for $dir = $total bytes

if [$total -ge 1048576] ; then

echo " ($((total/1048576)) Mb)"

elif [$total -ge 1024] ; then

240 Chapter 9: Debugging Shell Programs

11:* echo " {$((t

12: fi

13: fi

14: done
bashdb> bp
Breakpoints at lines 4 11

Break on condition:

Kb) •

bashdb> !total=5600

bashdb> g
Total for . = 5600 bytes (5 Kb)

Reached breakpoint at line 11

bashdb> cb
All breakpoints have been cleared
bashdb> ds

for dir in ${*:-.}; do

if [-e $dir] ; then
result=$ (du -s $dir

|
cut -f 1)

let total=$result*1024

echo -n "Total for $dir = $total bytes'

if [$total -ge 1048576] ; then
echo • ($((total/1048576)) Mb)"

elif [$total -ge 1024] ; then
echo " ($((total/1024)) Kb)"

fi

fi

done
bashdb> g
[bash]$

First, we display the script with ds and then perform a step, taking execution to

line 2 of ndu. We then set breakpoints at lines 4, 8, and 11 and display the script

again. This time the breakpoints are clearly marked by asterisks (*). The right

angle bracket (>) indicates that line 2 was the most recent line executed.

Next, we continue execution of the script that breaks at line 4. We print out the

value of total now and decide to clear the breakpoint at line 8. Displaying the

script confirms that the breakpoint at line 8 is indeed gone. We can also use the

bp command, and it too shows that the only breakpoints set are at lines 4 and 11.

At this stage we might decide that we want to check the logic of the if branch at

line 11. This requires that $total be greater than or equal to 1024, but less than

1048576. As we saw previously, $total is very large, so we set its value to S600 so

that it will execute the second part of the if and continue execution. The script

enters that section of the if correctly, prints out the value, and stops at the break-

point.

To finish off, we clear the breakpoints, display the script again, and then continue

execution, which exits the script.

A bash Debugger 241

Exercises

The bashdb debugger is available via anonymous FTP, as discussed in Appendix E,

Obtaining Sample Programs; if you don't have access to the Internet, you can type

or scan the code in. Either way, you can use bashdb to debug your own shell

scripts, and you should feel free to enhance it. We'll conclude this chapter with

some suggested enhancements and a complete listing of the debugger command
source code.

1. Improve command error handling in these ways:

a. Check that the arguments to s are valid numbers and print an appropriate

error message if they aren't.

b. Check that a breakpoint actually exists before clearing it and warn the

user if the line doesn't have a breakpoint.

c. Any other error handling that you can think of.

2. Add code to remove duplicate breakpoints (more than one breakpoint on one

line).

3. Enhance the cb command so that the user can specify more than one break-

point to be cleared at a time.

4. Implement an option that causes a break into the debugger whenever a com-

mand exits with non-zero status:

a. Implement it as the command-line option -e.

b. Implement it as the debugger command e to toggle it on and off. (Hint:

when you enter _steptrap, $? is still the exit status of the last command

that ran.)

5. Implement a command that prints out the status of the debugger: whether

execution trace is on/off, error exit is on/off, and the number of the last line

to be executed. In addition, move the functionality for displaying the break-

points from bp to the new option.

6. Add support for multiple break conditions, so that bashdb stops execution

whenever one of them becomes true and prints a message indicating which

one became true. Do this by storing the break conditions in an array. Try to

make this as efficient as possible, since the checking will take place after

every statement.

7. Add the ability to watch variables.

a. Add a command aw that takes a variable name as an argument and adds it

to a list of variables to watch. Any watched variables are printed out when

execution trace is toggled on.

242 Chapter 9: Debugging Shell Programs

b. Add another command cw that, without an argument, removes all of the

variables from the watch list. With an argument, it removes the specified

variable.

8. As we saw earlier, unless breakpoints are set on lines with simple commands,

they are ignored and never cause the program to break out into the debugger.

Add code that solves this problem. (Hint: if the user sets a breakpoint on such

a line, move it forward on to a line that contains a simple command. Alterna-

tively, you might consider ways to insert the "do-nothing" command (:) when

creating the temporary file from the guinea pig and preamble scripts.)

9. Although placing an underscore at the start of the debugger identifiers will

avoid name clashes in most cases, think of ways to automatically detect name

clashes with the guinea pig script and how to get around this problem. (Hint:

you could rename the clashing names in the guinea pig script at the point

where it gets combined with the preamble and placed in the temporary file.)

10. Add any other features you can think of.

Finally, here is a complete source listing of the debugger function file bashdb.fns:

After each line of the test script is executed the shell traps to

this function.

function _steptrap

{

_curline=$l # the number of the line that just ran

(($_trace)) && _msg "$PS4 line $_curline: $ {_lines [$_curline] }

"

if (($_steps >=)) ; then

let _steps="$_steps - 1"

fi

First check to see if a line number breakpoint was reached.

If it was, then enter the debugger,

if _at_linenumbp ; then

_msg "Reached breakpoint at line $_curline"

_cindloop

It wasn't, so check whether a break condition exists and is true.

If it is, then enter the debugger
elif [-n "$_brcond"] && eval $_brcond; then

_msg "Break condition $_brcond true at line $_curline"

_cmdloop

It wasn't, so check if we are in step mode and the number of

steps is up. If it is, then enter the debugger,

elif (($_steps ==)) ; then

_msg "Stopped at line $_curline"

_cmdloop

A bash Debugger 243

fi

The Debugger Command Loop

function _cmdloop {

local cmd args

'bashdb> " cmd args; dowhile read -e -p

case $cmd in

\ ?
I

h) _menu ;

;

be) _setbc $args ;

;

bp) _setbp $args ;

;

cb) _clearbp $args ;

;

ds) _displayscript ;

;

g) return ;

;

q) exit ;

;

s) let _steps=${args : -1}

return ;

;

X) _xtrace ;

;

*
) eval ${cmd#!} $args ; ; #

*
) _msg "Invalid command:

esac

done

print command menu
set a break condition
set a breakpoint at the given line
clear one or all breakpoints
list the script and show the

breakpoints
"go" : start /resume execution of

the script

quit

single step N times (default = 1)

toggle execution trace

pass to the shell
' $cmd' " ;

;

See if this line number has a breakpoint
function _at_linenumbp

{

local i=0

Loop through the breakpoints array and check to see if any of

them match the current line number. If they do return true (0)

otherwise return false.

if ["$_linebp"]; then

while (($i < ${#_linebp[@] })) ; do

if ((${_linebp[$i] } == $_curline)); then

return
fi

let i=$i+l

done
fi

return 1

Set a breakpoint at the given line number or list breakpoints

function _setbp

{

Ideal i

244 Chapter 9: Debugging Shell Programs

If there are no arguments call the breakpoint list function.

Otherwise check to see if the argument was a positive number.

If it wasn't then print an error message. If it was then check
to see if the line number contains text. If it doesn't then

print an error message. If it does then echo the current
breakpoints and the new addition and pipe them to "sort" and
assign the result back to the list of breakpoints. This results
in keeping the breakpoints in numerical sorted order.

Note that we can remove duplicate breakpoints here by using
the -u option to sort which uniquifies the list.

if [-z "$1"
] ; then

_listbp
elif [$(echo $1

|

grep '^[0-9]*')
] ; then

if [-n "${_lines[$l] }"]; then
_linebp=($ (echo $((for i in ${_linebp [*] } $1; do

echo $i; done)
|
sort -n)))

_msg "Breakpoint set at line $1"

else
_msg "Breakpoints can only be set on non-blank lines"

fi

else
_msg "Please specify a numeric line number"

fi

List breakpoints and break conditions
function _listbp

{

if [-n "$_linebp"] ; then

_msg "Breakpoints at lines: $ {_linebp [

*]

}

else
_msg "No breakpoints have been set"

fi

_msg "Break on condition:

"

_msg "$_brcond"

Clear individual or all breakpoints
function _clearbp

{

local i bps

If there are no arguments, then delete all the breakpoints.

Otherwise, check to see if the argument was a positive number.

If it wasn't, then print an error message. If it was, then

echo all of the current breakpoints except the passed one

and assign them to a local variable. (We need to do this because

assigning them back to _linebp would keep the array at the same

size and just move the values "back" one place, resulting in a

A bash Debugger 245

duplicate value) . Then destroy the old array and assign the

elements of the local array, so we effectively recreate it,

minus the passed breakpoint.

if [-z "$1"
] ; then

unset _linebp[*]
_msg "All breakpoints have been cleared"

elif [$(echo $1
|

grep '^[0-9]*')
] ; then

bps=($(echo $(for i in ${_linebp [*] } ; do
if (($1 != $i)) ; then echo $i; fi; done)))

unset _linebp[*]
_linebp=(${bps[*]})
_msg "Breakpoint cleared at line $1"

else

_msg "Please specify a numeric line number"

fi

Set or clear a break condition
function _setbc

{

if [-n "$*"
] ; then

_brcond=$args
_msg "Break when true: $_brcond"

else

_brcond=
_msg "Break condition cleared"

fi

}

Print out the shell script and mark the location of breakpoints
and the current line

function _displayscript

{

local i=l j=0 bp cl

(while (($i < ${#_lines[@] })) ; do

if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then

bp= ' *

'

let j=$j+l
else

bp=' '

fi

if (($_curline == $i)) ; then

cl=">"

else
cl=" "

fi

echo "$i:$bp $cl ${_lines [$i] }

"

let i=$i+l
done

246 Chapter 9: Debugging Shell Programs

)
I

more

Toggle execution trace on/off
function _xtrace

{

let _trace="! $_trace"

_msg "Execution trace if (($_trace)) ; then
_msg "on"

else
_msg "off"

fi

Print the passed arguments to Standard Error
function _msg

{

echo -e "$©" >&2

Print command menu
function _menu {

_msg 'bashdb commands:

bp N
bp
be string
be

cb N
cb
ds

g
s [N]

X

h, ?

! string

q

set breakpoint at line N
list breakpoints and break condition
set break condition to string
clear break condition
clear breakpoint at line N
clear all breakpoints
displays the test script and breakpoints
start/resume execution
execute N statements (default 1)

toggle execution trace on/off
print this menu
passes string to a shell

quit'

Erase the temporary file before exiting
function _cleanup

{

rm $_debugfile 2>/dev/null

}

In this chapter:

• Installing bash as the

Standard Shell

• Environment
Customization

• System Security

Features

bash
Administration

There are two areas in which system administrators use the shell as part of their

job: setting up a generic environment for users and system security. In this chap-

ter, we'll discuss bash's features that relate to these tasks. We assume that you

already know the basics of UNIX system administration.*

Installing bash as the Standard Shell

As a prelude to system-wide customization, we want to emphasize that bash can

be installed as if it were the standard Bourne shell, /bin/sh. Indeed, some systems,

such as Linux, come with bash installed instead of the Bourne shell.

If you want to do this with your system, you can just save the original Bourne

shell to another filename (in case someone needs to use it) and either install bash

as sh in the /bin directory, or better yet install bash in the /bin directory and create

a symbolic link from /bin/sh to /bin/bash using the command In -s /bin/bash

/bin/sh. The reason we think that the second option is better is because bash

changes its behavior slightly if started as sh, as we will see shortly.

As detailed in Appendix A, Related Shells, bash is backward-compatible with the

Bourne shell, except that it doesn't support " as a synonym for the pipe character

I
. Unless you have an ancient UNIX system, or you have some very, very old shell

scripts, you needn't worry about this.

But if you want to be absolutely sure, simply search through all shell scripts in all

directories in your PATH. An easy way to perform the search is to use the file com-

mand, which we saw in Chapter 5, Flow Control, and Chapter 9, Debugging Shell

* A good source of information on system administration is Essential System Administration by yEleen

Frisch (O'Reilly & Associates).

247

248 Chapter 10: bash Administration

Programs, file prints "executable shell script" when given the name of one.* Here

is a script that looks for " in shell scripts in every directory in your PATH:

IFS=:

for d in $PATH; do

echo checking $d:

cd $d

scripts=$ (f ile *
|

grep 'shell script'
|
cut -d: -fl)

for f in $scripts; do

grep '\"' $f /dev/null
done

done

The first line of this script makes it possible to use $PATH as an item list in the for

loop. For each directory, it cds there and finds all shell scripts by piping the file

command into grep and then, to extract the filename only, into cut. Then for each

shell script, it searches for the " character.

t

If you run this script, you will probably find several occurrences of
"—but these

carets should be used within regular expressions in grep, sed, or awk commands,

not as pipe characters. As long as carets are never used as pipes, it is safe for you

to install bash as /bin/sh.

As we mentioned earlier, if bash is started as sh (because the executable file has

been renamed sh or there is a link from sh to bash^ its startup behavior will

change slightly to mimic the Bourne shell as closely as possible. For login shells it

only attempts to read /etc/profile and y.profile, ignoring any other startup files like

y.bash_profile. For interactive shells it won't read the initialization file V.bashrc.^

POSIXMode
Besides its native operating mode, bash can also be switched into POSIX mode.

The POSIX (Portable Operating System Interface) standard, described in detail in

Appendix A, defines guidelines for standardizing UNIX. One part of the POSIX

standard covers shells.

bash is nearly 100% POSIX-compliant in its native mode. If you want strict POSIX

adherence, you can either start bash with the -posix option, or set it from within

the shell with set -o posix.

* The exact message varies from system to sy.stem; make sure that yours prints this message when
given the name of a shell .script. If not. just .suKsiitute the mes.sage your ///(' command prints for "shell

script" in the following code

t The inclusion of /dei>/niill in the grep command is a kludge that forces grep to print the names of

files that contain a match, even if there is only one such file in a given directory.

X bash also enters POSIX mode when .started as sh. Versions of hash prior to 2.0 donl— POSIX mode
has to be explicitly set with the —posix command-line option.

Installing bash as the Standard Shell 249

Only in very rare circumstances would you ever have to use POSIX mode. The dif-

ferences, outlined in Appendix A, are small and are mostly concerned with the

command lookup order and how functions are handled. Most bash users should

be able to get through life without ever having to use this option.

Command-Line Options

bash has several command-line options that change the behavior and pass infor-

mation to the shell. The options fall into two sets; single character options, like

we've seen in previous chapters of this book, and multicharacter options, which

are a relatively recent improvement to UNIX utilities.* Table 10-1 lists all of the

options, t

Table 10-1: bash Command-Line Options

Option Meaning

-c string

-D

-o option

-s

—dump-strings

-help

—login

—noediting

—noprofile

Commands are read from string, if present. Any arguments after string

are interpreted as positional parameters, starting with $0.

A list of all double-quoted strings preceded by $ is printed on the

standard ouput. These are the strings that are subject to language

translation when the current locale is not C or POSIX. This also turns

on the -n option.

Interactive shell. Ignore signals TERM, INT, and QUIT With job control

in effect, TTIN, TTOU, and TSTP are also ignored.

Takes the same arguments as set -o.

Read commands from the standard input. If an argument is given to

bash, this flag takes precedence (i.e., the argument won't be treated as

a script name and standard input will be read).

Restricted shell. Described later in this chapter.

Signals the end of options and disables further option processing. Any

options after this are treated as filenames and arguments, --is

synonymous with -.

Does the same as -D.

Displays a usage message and exits.

Makes bash act as if invoked as a login shell.

Does not use the GNU readline library to read command lines if

interactive.

Does not read the startup file /etc/profile or any of the personal

initialization files.

* Multicharacter options are far more readable and easier to remember than the old, and usually cryp-

tic, single character options. All of the GNU utilities have multicharacter options, but many applications

and utilities (certainly those on old UNIX systems) allow only single-character options.

t See Appendix A for a list of options for versions of bash prior to 2.0.

250 Chapter 10: bash Administration

Table 10-1: bash Command-Line Options (continued)

Option Meaning

—norc

—posix

—quiet

—rcfileyz/e

—version

Does not read the initialization file V.bashrc if the shell is interactive.

This is on by default if the shell is invoked as sh.

Changes the behavior of bash to follow the POSDC guidelines more

closely where the default operation of bash is different.

Shows no information on shell startup. This is the default.

Executes commands read from file instead of the initialization file

V.bashrc, if the shell is interactive.

Shows the version number of this instance of bash and then exits.

The multicharacter options have to appear on the command line before the single-

character options. In addition to these, any set option can be used on the com-

mand line. Like shell built-ins, using a + instead of - turns an option off.

Of these options, the most useful are -i (interactive), -r (restricted), -s (read from

standard input), -p (privileged), and -m (enable job control). Login shells are usu-

ally run with the -i, -s, and -m flags. We'll look at restricted and privileged modes

later in this chapter.

Environment Customization
Like the Bourne shell, bash uses the file /etc/profile for system-wide customization.

When a user logs in, the shell reads and runs /etc/profile before running the user's

.bash_profile.

We won't cover all the possible commands you might want to put in /etc/profile.

But hash has a few unique features that are particularly relevant to system-wide

customization; we'll discuss them here.

We'll start with two built-in commands that you can use in /etc/profile to tailor your

users' environments and constrain their use of system resources. Users can also

use these commands in their .bash_profile, or at any other time, to override the

default settings.

umask
umask, like the same command in most other shells, lets you specify the default

permissions that files have when users create them. It takes the same types of

arguments that the chmod command does, i.e., absolute (octal numbers) or sym-

bolic permission values.

Environment Customization 251

The umask contains the permissions that are turned off by default whenever a pro-

cess creates a file, regardless of what permission the process specifies.*

We'll use octal notation to show how this works. As you probably know, the digits

in a permission number stand (left to right) for the permissions of the owner,

owner's group, and all other users, respectively. Each digit, in turn, consists of

three bits, which specify read, write, and execute permissions from left to right. (If

a file is a directory, the "execute" permission becomes "search" permission, i.e.,

permission to cd to it, list its files, etc.)

For example, the octal number 640 equals the binary number 110 100 000. If a file

has this permission, then its owner can read and write it; users in the owner's

group can only read it; everyone else has no permission on it. A file with permis-

sion 755 gives its owner the right to read, write, and execute it and everyone else

the right to read and execute (but not write).

022 is a common umask value. This implies that when a file is created, the "most"

permission it could possibly have is 755—which is the usual permission of an exe-

cutable that a compiler might create. A text editor, on the other hand, might create

a file with 666 permission (read and write for everyone), but the umask forces it to

be 644 instead.

ulimit

The ulimit command was originally used to specify the limit on file creation size.

But bash's version has options that let you put limits on several different system

resources. Table 10-2 lists the options.

Table 10-2: ulimit Resource Options

Option Resource Limited

-a All limits (for printing values only)

-c Core file size (1 Kb blocks)

-d Process data segment (Kb)

-f File size (1 Kb blocks)

-1 Maximum size of a process that can be locked in memory (Kb)a

-m Maximum resident set size

-n File descriptors

-P Pipe size (512 byte blocks)

-s Process stack segment (Kb)

-t Process CPU time (seconds)

* If you are comfortable with Boolean logic, think of the umask as a number that the operating system

logically ANDs with the permission given by the creating process.

252 Chapter 1 0: bash AdministraHon

Table 10-2: ulimit Resource Options (continued)

Option Resource Limited

Maximum number of processes available to a user

Virtual memory (Kb)

a. Not available in versions of bash prior to 2.0.

Each takes a numerical argument that specifies the limit in units shown in the

table. You can also give the argument "unlimited" (which may actually mean some

physical limit), or you can omit the argument, in which case it will print the cur-

rent limit, ulimit -a prints limits (or "unlimited") of all types. You can specify only

one type of resource at a time. If you don't specify any option, -f is assumed.

Some of these options depend on operating system capabilities that don't exist in

older UNIX versions. In particular, some older versions have a fixed limit of 20 file

descriptors per process (making -n irrelevant), and some don't support virtual

memory (making -v irrelevant).

The -d and -s options have to do with dynamic memory allocation, i.e., memory

for which a process asks the operating system at runtime. It's not necessary for

casual users to limit these, though software developers may want to do so to pre-

vent buggy programs from trying to allocate endless amounts of memory due to

infinite loops.

The -v and -m options are similar; -v puts a limit on all uses of memory, and -m
limits the amount of physical memory that a process is allowed to use. You don't

need these unless your system has severe memory constraints or you want to limit

process size to avoid thrashing.

The -u option is another option which is useful if you have system memory con-

straints or you wish just wish to stop individual users from hogging the system

resources.

You may want to specify limits on file size (-f and -c) if you have constraints on

disk space. Sometimes users actually mean to create huge files, but more often

than not, a huge file is the result of a buggy program that goes into an infinite

loop. Software developers who use debuggers like sdb, dbx, and gdb should not

limit core file size, because core dumps are necessary for debugging.

The -t option is another possible guard against infinite loops. However, a program

that is in an infinite loop but isn't allocating memoiy or writing files is not particu-

larly dangerous; it's better to leave this unlimited and just let the user kill the

offending program.

In addition to the types of resources you can limit, ulimit lets you specify hard or

soft limits. Hard limits can be lowered by any user but only raised by the super-

Environment Customization 253

user (root); users can lower soft limits and raise them—but only as high as the

hard limit for that resource.

If you give -H along with one (or more) of the options above, ulimit will set hard

limits; -S sets soft limits. Without either of these, ulimit sets the hard and soft limit.

For example, the following commands set the soft limit on file descriptors to 6A

and the hard limit to unlimited:

ulimit -Sn 64

ulimit -Hn unlimited

When ulimit prints current limits, it prints soft limits unless you specify -H.

Types of Global Customization

The best possible approach to globally available customization would be a system-

wide environment file that is separate from each user's environment file—just like

/etc/profile is separate from each user's .bash_profile. Unfortunately, bash doesn't

have this feature.

Nevertheless, the shell gives you a few ways to set up customizations that are

available to all users at all times. Environment variables are the most obvious; your

/etc/profile file will undoubtedly contain definitions for several of them, including

PATH and TERM.

The variable TMOUT is useful when your system supports dialup lines. Set it to a

number A'; and if a user doesn't enter a command within A^ seconds after the shell

last issued a prompt, the shell will terminate. This feature is helpful in preventing

people from "hogging" the dialup lines.

You may want to include some more complex customizations involving environ-

ment variables, such as the prompt string PSl containing the current directory (as

seen in Chapter 4, Basic Shell Programming)

.

You can also turn on options, such as emacs or vi editing modes, or noclobber to

protect against inadvertent file overwriting. Any shell scripts you have written for

general use also contribute to customization.

Unfortunately, it's not possible to create a global alias. You can define aliases in

/etc/profile, but there is no way to make them part of the environment so that their

definitions will propagate to subshells. (In contrast, users can define global aliases

by putting their definitions in V.bashrc.)

However, you can set up global functions. These are an excellent way to cus-

tomize your system's environment, because functions are part of the shell, not sep-

arate processes.

254 Chapter 10: bash Administration

System Security Features
UNIX security is a problem of legendary notoriety. Just about every aspect of a

UNIX system has some security issue associated with it, and it's usually the system

administrator's job to worry about this issue.

bash has two features that help solve this problem: the restricted shell, which is

intentionally "brain damaged," and privileged mode, which is used with shell

scripts that run as if the user were root.

Restricted Shell

The restricted shell is designed to put the user into an environment where his or

her ability to move around and write files is severely limited. It's usually used for

"guest" accounts.* You can make a user's login shell restricted by putting rbash in

the user's /etc/passwd entry.

t

The specific constraints imposed by the restricted shell disallow the user from

doing the following:

Changing working directories: cd is inoperative. If you try to use it, you will

get the error message bash: cd: restricted.

Redirecting output to a file: the redirectors >, >|, <>, and » are not allowed.

Assigning a new value to the environment variables SHELL or PATH.

Specifying any pathnames with slashes (/) in them. The shell will treat files

outside of the current directory as "not found."

Using the exec built-in.

Specifying a filename containing a / as an argument to the . built-in command.

Importing function definitions from the shell environment at startup.

Adding or deleting built-in commands with the -f and -d options to the

enable built-in command.

Specifying the -p option to the builtin command.

Turning off restricted mode with set +r.

These restrictions go into effect after the user's .hash_proJ]le and environment files

are run. In addition, it is wise to change the owner of the users' .hash_profile and

.hashrc to root, and make these files read-only. The users' home directoiy should

also be made read-only.

* This feature i.s not clotimiciitt'tl in tlic in;iiiu;il pa^cs tor old wrsions ol hash.

t If this option h;is been inchiclfcl whrn \\\c s\\v\\ w.is loniiiikxi. Sec Ch.ipttT 11. hash for YoKf Sys-

tem, for details on conn^urin^ hash.

System Security Features 235

This means that the restricted shell user's entire environment is set up in

/etc/profile and .bash_profile. Since the user can't access /etc/profile and can't over-

write .bash_profile, this lets the system administrator configure the environment as

he or she sees fit.

Two common ways of setting up such environments are to set up a directory of

"safe" commands and have that directory be the only one in PATH, and to set up a

command menu from which the user can't escape without exiting the shell.

A System Break-In Scenario

Before we explain the other security features, here is some background informa-

tion on system security that should help you understand why they are necessary.

Many problems with UNIX security hinge on a UNIX file attribute called the suid

(set user ID) bit. This is like a permission bit (see umask earlier in this chapter):

when an executable file has it turned on, the file runs with an effective user ID

equal to the owner of the file, which is usually root. The effective user ID is dis-

tinct from the real user ID of the process.

This feature lets administrators write scripts that do certain things that require root

privilege (e.g., configure printers) in a controlled way. To set a file's suid bit, the

superuser can type chmod Al55 filename; the 4 is the suidhii.

Modern system administration wisdom says that creating suid shell scripts is a

very, very bad idea.* This has been especially true under the C shell, because its

.cshrc environment file introduces numerous opportunities for break-ins. bash's

environment file feature creates similar security holes, although the security feature

we'll see shortly make this problem less severe.

We'll show why it's dangerous to set a script's suid bit. Recall that in Chapter

3, Customizing Your Environment, we mentioned that it's not a good idea to put

your personal bin directory at the front of your PATH. Here is a scenario that

shows how this placement combines with suid shell scripts to form a security

hole: a variation of the infamous "Trojan horse" scheme. First, the computer

cracker has to find a user on the system with an suid shell script. In addition, the

user must have a PATH with his or her personal bin directory listed before the

public bin directories, and the cracker must have write permission on the user's

personal bin directory.

Once the cracker finds a user with these requirements, he or she does the follow-

ing steps.

* In fact, some versions of UNIX intentionally disable the suid feature for shell scripts.

256 Chapter 10: bash Administration

• Looks at the suid script and finds a common utility that it calls. Let's say it's

grep.

• Creates the Trojan horse, which is this case is a shell script called grep in the

user's personal bin directory. The script looks like this:

cp /bin/bash filename
chown root filename
chmod 4755 filename
/bin/grep "$@"

rm "'/bin/grep

filename should be some unremarkable filename in a directory with public

read and execute permission, such as /bin or /usr/bin. The file, when created,

will be that most heinous of security holes: an suid interactive shell.

• Sits back and waits for the user to run the suid shell script—which calls the

Trojan horse, which in turn creates the suid shell and then self-destructs.

• Runs the suid shell and creates havoc.

Privileged Mode
The one way to protect against Trojan horses is privileged mode. This is a set -o

option (set -o privileged or set -p), but the shell enters it automatically whenever

it executes a script whose suid bit is set.

In privileged mode, when an suid bash shell script is invoked, the shell does not

run the user's environment file— i.e., it doesn't expand the user's BASH_ENV envi-

ronment variable.

Since privileged mode is an option, it is possible to turn it off with the command

set +o privileged (or set +p). But this doesn't help the potential system cracker: the

shell automatically changes its effective user ID to be the same as the real user

ID— i.e., if you turn off privileged mode, you also turn off suid.

Privileged mode is an excellent security feature; it solves a problem that originated

when the environment file idea first appeared in the C shell.

Nevertheless, we still strongly recommend against creating suid shell scripts. We
have shown how hash protects against break-ins in one particular situation, but

that certainly does not imply that hash is "safe" in any absolute sense. If you really

must have .s'M/(i scripts, you shouki carefully consider all relevant security issues.

Finally, if you would like to learn more about UNIX security, we recommend

Practical UNIX and Internet Security, by Gene Spafford and Simson Garfinkel

(O'Reilly (S: Associates).

In this chapter:

• Obtaining bash

• Unpacking the

Archive

• What's in the Archive

• Who Do I Turn to?

hashfor
Your System

The first ten chapters of this book have looked at nearly all aspects of bash, from

navigating the file system and command-line editing to writing shell scripts and

functions using lesser-known features of the shell. This is all very well and good,

but what if you have an old version of bash and want the new features shown in

this book (or worse yet, you don't have bash at all)?

In this chapter we'll show you how to get the latest version of bash and how to

install it on your system, and we'll discuss potential problems you might encounter

along the way. We'll also look briefly at the examples that come with bash and

how you can report bugs to the bash maintained

Obtaining bash
If you have a direct connection to the Internet, you should have no trouble obtain-

ing bash; otherwise, you'll have to do a little more work.

bash is available from a number of anonymous FTP sites. The following list (giving

host name, IP address, and directory name) is a good starting point:

prep.ai.mit.edu (18.159.0.42) /pub/gnu

sunsite.unc.edu (152.2.254.81) /pub/gnu

plaza .aarnet.edu.au (139.130.23.2) /gnu

ftp.isy.liu.se (130.236.20.12) /pub/gnu

unix.hensa.ac.uk (129.12.200.129) /mirrors/gnu

prep.ai.mit.edu is the official GNU site and will always have the most up-to-date

copy of bash. The other sites listed mirror the official site, so barring any major

changes, they should also have the most recent version. To reduce load on the

GNU site, it's best to get bash from one of the other sources.

257

258 Chapter 11: bashfor Your System

If you've never used anonymous ftp we'll provide a quick example. The following

sample session shows what you type in boldface and comments in italics:

$ ftp unlx.hensa.ac.uk
Connected to sesame .hensa .ac .uk.

220 sesame FTP server (Version wu-2.4(20) Fri Jul 28 15:46 GMT 1995) ready.

Name (unix. hensa. ac .uk: cam) : anonymous
331 Guest login ok, send your complete e-mail address as password.

Password: alice@wonderland.oreilly.com {use your login name and host here)
230- ***

230-

230- Welcome to HENSA
230-

230- the Higher Education National Software Archive
230- at the University of Kent at Canterbury
23 0- funded by JISC
230-

230- HENSA Unix maintains copies of electronic archives from all
230- over the world. Over 40 archives are currently available,
230- providing access to a wide range of material, including
230- software, documentation, bibliographic and multimedia collections.
230- To access the mirrors, change directory to mirrors.

23 0-Please read the file README
230- it was last modified on Mon Apr 7 14:25:03 1997 - 121 days ago

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd /mirrors/gnu
250-Please read the file README
250- it was last modified on Mon Jul 8 23:00:00 1996 - 393 days ago

250-Please read the file README-about- .diff -files
250- it was last modified on Thu Mar 20 14:08:00 1997 - 139 days ago

250-Please read the file README-about- .gz- files
250- it was last modified on Tue Jul 9 16:18:00 1996 - 392 days ago

250 CWD command successful.
ftp> binary (you must specify binary transfer for compressed files)

200 Type set to I.

ftp> get bash-2 . 01. tar.gz
local: bash-2 . 01 . tar .gz remote: bash-2 . 01 . tar

.
gz

200 PORT command successful.
150 Opening BINARY mode data connection for bash-2 . 01 . tar .gz (1342563 bytes

226 Transfer complete.
1342563 bytes received in 556 sees (2.4 Kbytes/sec)

. (repeat this step for each file that you want)

ftp> quit

221 Goodbye.

$

What's in the Archive 259

You can also retrieve the files by FTPMAIL, BITFTP, and UUCP. To find out how to

use these methods, please refer to Appendix E, Obtaining Sample Programs.

Failing these methods, you can always get bash on tape or CD-ROM by ordering it

directly from the Free Software Foundation:

The Free Software Foundation (FSF)

675 Massachusetts Avenue

Cambridge MA, 02139

email: gnu@prep.ai.mit.edu

phone: (617) 876-3296

Unpacking the Archive
Having obtained the archive file by one of the above methods, you need to

unpack it and install it on your system. Unpacking can be done anywhere—we'll

assume you're unpacking it in your home directory. Installing it on the system

requires you to have root privileges. If you aren't a system administrator with root

access, you can still compile and use basb\ you just can't install it as a system-wide

utility. The first thing to do is uncompress the archive file by typing gunzip

bash-2.01.tar.gz.* Then you need to "untar" the archive by typing tar -xf

bash-2.01.tar. The -xf means "extract the archived material from the specified file."

This will create a directory called bash-2.01 in your home directory.

The archive contains all of the source code needed to compile basb and a large

amount of documentation and examples. We'll look at these things and how you

go about making a basb executable in the rest of this chapter.

Whafs in the Archive
The bash archive contains a main directory ibasb-2.01 for the current version) and

a set of files and subdirectories. Among the first files you should examine are:

• MANIFEST, a list of all the files and directories in the archive

• COPYING, the GNU Copyleft for basb

• NEWS, a list of bug fixes and new features since the last version

• README, a short introduction and instructions for compiling basb

* gunzip is the GNU decompression utility, gunzip is popular but relatively new and some systems

don't have it. If your system doesn't, you can obtain it by the same methods as you obtained basb.

gunzip is available from the FSF. gzip -d does the same thing as gunzip.

260 Chapter 11: bashfor Your System

You should also be aware of two directories:

• doc, information related to bash in various formats

• examples, examples of startup files, scripts, and functions

The other files and directories in the archive are mostly things that are needed dur-

ing the build. Unless you are going to go hacking into the internal workings of the

shell, they shouldn't concern you.

Documentation

The doc directory contains a few articles that are worth reading. Indeed, it would

be well worth printing out the manual entry for bash so you can use it in conjunc-

tion with this book. The README hie gives a short summary of what the files are.

The document you'll most often use is the manual page entry (bash. IX The file is

in ^ro/T" format—that used by the manual pages. You can read it by processing it

with the text-formatter nroff and piping the output to a pager utility: nroff -man
bash.l

I
more should do the trick. You can also print it off by piping it to the

lineprinter (/p). This summarizes all of the facilities your version of bash has and is

the most up-to-date reference you can get. This document is also available through

the man facility once you've installed the package, but sometimes it's nice to have

a hard copy so you can write notes all over it.

Of the other documents, FAQ is a Frequently Asked Questions document with

answers, readline.3 is the manual entry for the readline facility, and article. ms is

an article about the shell that appeared in Linux Journal, by the current hash

maintainer, Chet Ramey.

Configuring and Building bash

To compile bash "straight out of the box" is easy;* you just type configure and

then make! The bash configure script attempts to work out if you have various util-

ities and C library functions, and where abouts they reside on your system. It then

stores the relevant information in the file config.h. It also creates a file called con-

fig.status that is a script you can run to recreate the current configuration informa-

tion. While the configure is running, it prints out information on what it is

searching for and where it finds it.

The configure script also sets the location that bash will be installed, the default

being the /usr/local area (/usr/local/bin for the executable, /usr/local/ma?i for the

* This configuration intonnation pcnains to ha.sh version 2.0 mk\ later. The conriy;ur.nion .iiul iii.M.ilKi-

tion for earlier version.s i.s tairly ea.sy, although it differs in certain details. For liinher inform. ition, refer

to the INS'l'AI.I. instrnclions that came with your version of hash.

What's in the Archive 261

manual entries etc.). If you don't have root privilages and want it in your own
home directory, or you wish to install bash in some other location, you'll need to

specify a path to configure. You can do this with the —exec-prefix option. For

example:

$ confignre --exec-prefix /usr

specifies that the bash files will be placed under the /usr directory.

After the configuration finishes and you type make, the bash executable is built. A
script called bashbug is also generated which allows you to report bugs in the for-

mat the bash maintainers want. We'll look at how you use it later in this chapter.

Once the build finishes, you can see if the bash executable works by typing

./bash. If it doesn't, turn to the section "Potential Problems," later in this chapter.

To install bash, type make install. This will create all of the necessary directories

ibin, info, man and its subdirectories) and copy the files to them.

If you've installed bash in your home directory, be sure to add your own bin path

to your PATH and your own man path to MANPATH.

bash comes preconfigured with nearly all of its features enabled, but it is possible

to customize your version by specifying what you want with the - -^n2ih\e.-feature

and --disable-/^<2/wr^ command-line options to configure.

Table 11-1 is a list of the configurable features and a short description of what

those features do.

Table 11-1: Configurable Features

Feature Description

alias Support for aliases

array-variables Support for one dimensional arrays

bang-history C-shell-like history expansion and editing

brace-expansion Brace expansion

command-timing Support for the time command

directory-stack Support for the pushd, popd, and dirs directory manipulation

commands

disabled-builtins Whether a built-in can be run with the builtin command, even if

it has been disabled with enable -n

dparen-arithmetic Support for ((...))

help-builtin Support for the help built-in

history History via the fc and history commands

job-control Job control via fg, bg, and jobs if supported by the operating

system

262 Chapter 11: bashfor Your System

Table 11-1: Configurable Features (continued)

Feature Description

process-substitution Whether process substitution occurs, if supported by the

operating system

prompt-string-decoding Whether backslash escaped characters in PSl, PS2, PS3, and PS4

are allowed

readline readline editing and history capabilities

restricted Support for the restricted shell, the -r option to the shell, and

rbash

select The select construct

usg-echo-default Whether echo -e is the default for echo

The options disabled-builtins and usg-echo-default are disabled by default. The oth-

ers are enabled.

Many other shell features can be turned on or off by modifying the file con-

fig. h. top. For further details on this file and configuring bash in general, see

INSTALL

Finally, to clean up the source directory and remove ail of the object files and exe-

cutables, type make clean. Make sure you run make install first, otherwise you'll

have to rerun the installation from scratch.

Testing bash

There are a series of tests that can be run on your newly built version of bash to

see if it is running correctly. The tests are scripts that are derived from problems

reported in earlier versions of the shell. Running these tests on the latest version of

bash shouldn't cause any errors.

To run the tests just type make tests in the main bash directory. The name of each

test is displayed, along with some warning messages, and then it is run. Successful

tests produce no output (unless otherwise noted in the warning messages).

If any of the tests fail, you'll see a list of things that represent differences between

what is expected and what happened. If this occurs you should file a bug report

with the bash maintainer. See the "Reporting Bugs" section of this chapter for

information on how to do this.

Potential Problems

Although bash has been installed on a large number of different machines and

operating systems, there are occasional problems. Usually the problems aren't seri-

ous and a hit of investigation can result in a cjuick solution.

What's in the Archive 263

If bash didn't compile, the first thing to do is check that configure guessed your

machine and operating system correctly. Then check the file NOTES, which con-

tains some information on specific UNIX systems. Also look in INSTALL for addi-

tional information on how to give configure specific compilation instructions.

Installing bash as a Login Shell

Having installed bash and made sure it is working correctly, the next thing to do is

to make it your login shell. This can be accomplished in two ways.

Individual users can use the chsh (change shell) command after they log in to their

accounts, chsh asks for their password and displays a list of shells to choose from.

Once a shell is chosen, chsh changes the appropriate entry in /etc/passwd. For

security reasons, chsh will only allow you to change to a shell if it exists in the file

/etc/shells {if /etc/shells doesn't exist, chsh asks for the pathname of the shell).

Another way to change the login shell is to edit the password file directly. On
most systems, /etc/passwd will have lines of the form:

cam:pKlZ9BCJbzCrBNrkjRUdUiTtF0h/ : 501 : 100 : Cameron Newham: /home/ cam: /bin/bash
cc : kfDKDj fkeDJKJySFgJFWErrElpe/ : 502 : 100 : Cheshire Cat : /home/cc : /bin/bash

As root you can just edit the last field of the lines in the password file to the path-

name of whatever shell you choose.

If you don't have root access and chsh doesn't work, you can still make bash your

login shell. The trick is to replace your current shell with bash by using exec from

within one of the startup files for your current shell.

If your current shell is similar to sh (e.g., ksh), you have to add the line:

[-f /pathname/bash] && exec /pathname/hash, --login

to your .profile, where pathname is the path to your bash executable.

You will also have to create an empty file called .bash_profile. The existence of

this file prevents bash from reading your .profile and re-executing the exec—thus

entering an infinite loop. Any initialization code that you need for bash can just be

placed in .bash_profile.

If your current shell is similar to csh (e.g., tcsh^ things are slightly easier. You just

have to add the line:

if (-f /pathname/hash) exec /pathname/bash --login

to your .login, where pathname is the path to your bash executable.

264 Chapter 11: hashfor Your System

Examples

The bash archive also includes an examples directory. This directory contains

some subdirectories for scripts, functions, and examples of startup files.

The startup files in the startup-files directory provide many examples of what you

can put in your own startup files. In particular, hash_aliases gives many useful

aliases. Bear in mind that if you copy these files wholesale, you'll have to edit

them for your system because many of the paths will be different. Refer to Chapter

3, Customizing Your Environment, for further information on changing these files

to suit your needs.

The functions directory contains about twenty files with function definitions that

you might find useful. Among them are:

• basename, the basename utility, missing from some systems

• dirfuncs, directory manipulation facilities

• dirname, the dirname utility, missing from some systems

• whatis, an implementation of the 10th Edition Bourne shell whatis builtin

• whence, an almost exact clone of the Korn shell whence builtin

Especially helpful, if you come from a Korn shell background, is kshenv. This con-

tains function definitions for some common Korn facilities such as whence, print,

and the two-parameter cd builtins.

The scripts directory contains four examples of bash scripts. The two largest scripts

are examples of the complex things you can do with shell scripts. The first is a

(rather amusing) adventure game interpreter and the second is a C shell inter-

preter. The other scripts include examples of precedence rules, a scrolling text dis-

play, a "spinning wheel" progress display, and how to prompt the user for a

particular type of answer.

Not only are the script and function examples useful for including in your environ-

ment, they also provide many alternative examples that you can learn from when

reading this book. We encourage you to experiment with them.

Who Do I Turn to?

No matter how good something is or how much documentation comes with it,

you'll eventually come across something that you don't understand or that doesn't

work. In such cases it can't be stressed enough to carefully read the documenta-

Who Do I Turn to? 265

Hon (in computer parlance: RTFM).* In many cases this will answer your question

or point out what you're doing wrong.

Sometimes you'll find this only adds to your confusion or confirms that there is

something wrong with the software. The next thing to do is to talk to a local bash

guru to sort out the problem. If that fails, or there is no guru, you'll have to turn to

other means (currently only via the Internet).

Asking Questions

If you have any questions about bash, there are currently two ways to go about

getting them answered. You can email questions to bug-bash@prep.ai.mit.edu or

you can post your question to the USENET newsgroup gnu. bash. bug.

In both cases either the bash maintainer or some knowledgeable person on

USENET will give you advice. When asking a question, try to give a meaningful

summary of your question in the subject line.

Reporting Bugs

Bug reports should be sent to bash-maintainers@prep.ai.mit.edu and should

include the version of bash and the operating system it is running on, the compiler

used to compile bash, a description of the problem, a description of how the

problem was produced and, if possible, a fix for the problem. The best way to do

this is by using the bashbug script which is installed when you install bash.

Before you run bashbug, make sure you've set your EDITOR environment variable

to your favorite editor and have exported it (bashbug defaults to emacs, which

may not be installed on your system). When you execute bashbug it will enter the

editor with a partially blank report form. Some of the information (bash version,

operating system version, etc.) will have been filled in automatically. We'll take a

brief look at the form, but most of it is self-explanatory.

The From: field should be filled out with your email address. For example:

From: confused@wonderland.oreilly.com

Next comes the Subject: field; make an effort to fill it out, as this makes it easier

for the maintainers when they need to look up your submission. Just replace the

line surrounded by square brackets with a meaningful summary of the problem.

The next few lines are a description of the system and should not be touched.

Next comes the Description: field. You should provide a detailed description of

RTFM stands for "Read The F(laming) Manual."

266 Chapter 11: bashfor Your System

the problem and how it differs from what is expected. Try to be as specific and

concise as possible when describing the problem.

The Repeat-By: field is where you describe how you generated the problem; if

necessary, list the exact keystrokes you used. Sometimes you won't be able to

reproduce the problem yourself, but you should still fill out this field with the

events leading up to the problem. Attempt to reduce the problem to the smallest

possible form. For example, if it was a large shell script, try to isolate the section

that produced the problem and include only that in your report.

Lastly, the Fix: field is where you can provide the necessary patch to fix the prob-

lem if you've investigated it and found out what was going wrong. If you have no

idea what caused the problem, just leave the field blank.

Once you've finished filling in the form, save it and exit your editor. The form will

automatically be sent to the maintainers.

Related Shells

The fragmentation of the UNIX marketplace has had its advantages and disadvan-

tages. The advantages came mostly in the early days: lack of standardization and

proliferation among technically knowledgeable academics and professionals con-

tributed to a healthy "free market" for UNIX software, in which several programs

of the same type (e.g., shells, text editors, system administration tools) would often

compete for popularity. The best programs would usually become the most

widespread, while inferior software tended to fade away.

But often there was no single "best" program in a given category, so several would

prevail. This led to the current situation, where multiplicity of similar software has

led to confusion, lack of compatibility, and—most unfortunate of all—the inability

of UNIX to capture as big a share of the market as other operating platforms (MS-

DOS, Microsoft Windows, Novell NetWare, etc.).

The "shell" category has probably suffered in this way more than any other type of

software. As we said in the Preface and in Chapter 1, bash Basics, several shells

are currently available; the differences between them are often not all that great.

Therefore we felt it necessary to include information on shells similar to bash. This

appendix summarizes the differences between the latter and the following:

• The standard Version 7 Bourne shell, as a kind of "baseline"

• The IEEE POSIX 1003.2 shell Standard, to which bash and other shells will

adhere in the future

• The Korn shell iksh^, a popular commercial shell provided with many UNIX

systems

267

268 Appendix A: Related Shells

• pdksh, a widely used public domain Korn shell

• Shell workalikes on desktop PC platforms, including the MKS Toolkit shell

The Bourne Shell

bash is almost completely backward-compatible with the Bourne shell. The only

significant feature of the latter that bash doesn't support is
" (caret) as a synonym

for the pipe (
I
) character. This is an archaic feature that the Bourne shell includes

for its own backward compatibility with earlier shells. No modern UNIX version

has any shell code that uses " as a pipe.

To describe the differences between the Bourne shell and bash, we'll go through

each chapter of this book and enumerate the features discussed in the chapter that

the Bourne shell does not support. Although some versions of the Bourne shell

exist that include a few bash features,* we refer to the standard. Version 7 Bourne

shell that has been around for many years.

Chapter 1 , bash Basics

The cd - form of the cd command; tilde (") expansion; the jobs command; the

help built-in.

Chapter 2, Command-Line Editing

All. (That is, the Bourne shell doesn't support any of the readline, history, and

editing features discussed in this chapter.)

Chapter 3, Customizing Your Environment

Aliases; prompt string customization; set options. The Bourne shell supports

only the following: -e, -k, -n, -t, -u, -v, -x, and -. It doesn't support option

names (-o). The shopt buik-in. Environment files aren't supported.

The following built-in variables aren't supported:

BASH BASH_VERSION

BASH_ENV BASH_VERSINFO

CDPATH DIRSTACK

FCEDIT GROUPS
HISTCMD HISTCONTROL
HISTFILE HISTKtNORE

HISTSIZE HISTFILESIZE

HOSTFILE HOSTNAME
HOSTTYPE IGNOREEOF

* For example, the liniirnc shell clistributccl with System V suppons functions \\n{.\ a few other shell

features common to hash and the Korn shell.

The Bourne Shell 269

INPUTRC LANG
LC_ALL LC_COLLATE

LC_MESSAGES LINENO

MAILCHECK OLDPWD
OPTARG OPTERR
OPTIND OSTYPE

PROMPT_COMMAND PIPESTATUS

PS3 PS4

PWD RANDOM
REPLY SECONDS
SHELLOPTS SHLVL

TIMEFORMAT TMOUT
auto_resume histchars

Chapter 4, Basic Shell Programming

Functions; the type command; the local command; the ${#parameter} operator;

pattern-matching variable operators (%, %%, #, ##). Command-substitution syn-

tax is different: use the older ' command^ instead of $<icommand). The built-

in pushd and popd commands.

Chapter 5, Flow Control

The ! keyword; the select construct isn't supported. The Bourne shell return

doesn't exit a script when it is sourced with . (dot).

Chapter 6, Command-Line Options and Typed Variables

Use the external command getopt instead of getopts, but note that it doesn't

really do the same thing. Integer arithmetic isn't supported: use the external

command expr instead of the ^darithmetic-expy) syntax. The arithmetic condi-

tional ((arithmetic-expX) isn't supported; use the old condition test syntax and

the relational operators -It, -eq, etc. Array variables are not supported.

declare and let aren't supported.

Chapter 7, Input/Output and Command-Line Processing

The command, builtin, and enable built-ins. The -e and -E options to echo

are not supported. The I/O redirectors >| and <> are not supported. None of

the options to read is supported.

Chapter 8, Process Handling

Job control—specifically, the jobs, fg, and bg commands. Job number notation

with %, i.e., the kill and wait commands only accept process IDs. The -

option to trap (reset trap to the default for that signal), trap only accepts signal

numbers, not logical names. The disown built-in.

270 Appendix A: Related Shells

Chapter 9, Debugging Shell Programs

The DEBUG fake signal is not supported. The EXIT fake signal is supported as

signal 0.

Chapter 10, bash Administration

The ulimit command and privileged mode aren't supported. The -S option to

umask is not supported. The Bourne shell's restrictive counterpart, rsh, only

inhibits assignment to PATH.

The IEEE 1003.2 POSIX Shell Standard
There have been many attempts to standardize UNIX. Hardware companies'

monolithic attempts at market domination, fragile industry coalitions, marketing

failures, and other such efforts are the stuff of history—and the stuff of frustration.

Only one standardization effort has not been tied to commercial interests: the

Portable Operating System Interface, known as POSIX. This effort started in 1981

with the /usr/group (now UniForum) Standards Committee, w^hich produced the

/usr/group Standard three years later. The list of contributors grew to include the

Institute of Electrical and Electronic Engineers (IEEE) and the International Organi-

zation for Standardization (ISO).

The first POSIX standard was published in 1988. This one, called IEEE P1003.1,

covers low-level issues at the system-call level. IEEE PI 003- 2, covering the shell,

utility programs, and user interface issues, was ratified in September 1992 after a

six-year effort.

The POSIX standards were never meant to be rigid and absolute. The committee

members certainly weren't about to put guns to the heads of operating system

implementors and force them to adhere. Instead, the standards are designed to be

flexible enough to allow for both coexistence of similar available software, so that

existing code isn't in danger of obsolescence, and the addition of new features, so

that vendors have the incentive to innovate. In other words, they are supposed to

be the kind of third-party standards that vendors might actually be interested in

following.

As a result, most UNIX vendors currently comply with POSIX 1003- 1. Now that

POSIX 1003.2 is available, the most important shells will undoubtedly adhere to it

in the future, bash is no exception; it is nearly 100% POSIX-compliant already and

will continue to move towards full compliance in future releases.

POSIX 1003.2 itself consists of two pails. The first, 1003-2, addresses shell script

portability; it defines the shell and the standard utilities. The second. 1003.2a,

called the User Portability Extensions (UPE), defines standards of interactive shell

use and interactive utilities like the vi editor. The combined document—on the

The IEEE 1003.2 POSIX Shell Standard 271

order of 2000 pages— is available through the IEEE; for information, call (800)

678-IEEE.

The committee members had two motivating factors to weigh when they designed

the 1003.2 shell standard. On the one hand, the design had to accommodate, as

much as possible, existing shell code written under various Bourne-derived shells

(the Version 7, System V, BSD, and Korn shells). These shells are different in sev-

eral extremely subtle ways, most of which have to do with the ways certain syn-

tactic elements interact with each other.

It must have been quite difficult and tedious to spell out these differences, let

alone to reach compromises among them. Throw in biases of some committee

members towards particular shells, and you might understand why it took six

years to ratify 1003.2.

On the other hand, the shell design had to serve as a standard on which to base

future shell implementations. This implied goals of simplicity, clarity, and preci-

sion—objectives that seem especially elusive in the context of the above prob-

lems.

The designers found one way of ameliorating this dilemma: they decided that the

standard should include not only the features included in the shell, but also those

explicitly omitted and those included but with unspecified functionality. The latter

category allows some of the existing shells' innovations to "sneak through" with-

out becoming part of the standard, while listing omitted features helps program-

mers determine which features in existing shell scripts won't be portable to future

shells.

The POSIX standard is primarily based on the System V Bourne shell, which is a

superset of the Version 7 shell discussed earlier in this appendix. Therefore you

should assume that bash features that aren't present in the Bourne shell also aren't

included in the POSIX standard.

The following bash features are left "unspecified" in the standard, meaning that

their syntax is acceptable but their functionality is not standardized:

• The other syntax for functions shown in Chapter 4 is supported; see the fol-

lowing discussion.

• The select control structure.

• Code blocks ({...}) are supported, but for maximum portability, the curly

brackets should be quoted (for reasons too complicated to go into here).

• Signal numbers are only allowed if the numbers for certain key signals (INT,

TERM, and a few others) are the same as on the most important historical ver-

sions of UNIX. In general, shell scripts should use symbolic names for signals.

272 Appendix A: Related Shells

The POSIX standard supports functions, but the semantics are weaker: it is not

possible to define local variables, and functions can't be exported.

The command lookup order has been changed to allow certain built-in commands

to be overridden by functions—since aliases aren't included in the standard. Built-

in commands are divided into two sets by their positions in the command lookup

order: some are processed before functions, some after. Specifically, the built-in

commands break, : (do nothing), continue, . (source), eval, exec, exit, export,

readonly, return, set, shift, trap, and unset take priority over functions.

Finally, because the POSIX standard is meant to promote shell script portability, it

explicitly avoids mention of features that only apply to interactive shell use

—

including aliases, editing modes, control keys, and so on. The UPE covers these. It

also avoids mentioning certain fundamental implementation issues: in particular,

there is no requirement that multitasking be used for background jobs, subshells,

etc. This was done to allow portability to non-multitasking systems like MS-DOS,

so that, for example, the MKS Toolkit (see the following discussion) can be POSIX-

compliant.

The Korn Shell

One of the first major alternatives to the "traditional" shells, Bourne and C, was the

Korn shell, publicly released in 1986 as part of AT&T's "Experimental Toolchest."

The Korn shell was written by David Korn at AT&T. The first version was unsup-

ported, but eventually UNIX System Laboratories (USD decided to give it support

when they released it with their version of UNIX (System V Release 4) in 1989.

The November 1988 Korn shell is the most widely used version of this shell.

The 1988 release is not fully POSIX-compliant— less so than bash. The latest

release (1993) has brought the Korn shell into better compliance as well as provid-

ing more features and streamlining existing features.

Unlike bash, the Korn shell is a commercial product; the source code is not avail-

able and you have to purchase the executable (which is usually bundled with the

other utilities on most commercial versions of UNIX).

The 1988 Korn shell and bash share many features, but there are some important

differences in the Korn shell:

• Functions are more like separate entities than part of the invoking shell (imps

and options are not shared with the invoking shell).

• Coroutines arc supported. Two processes can communicate with one another

by using the print and read commands.

The Kom Shell 273

The command print replaces echo, print can have a file descriptor specified

and can be used to communicate with coroutines.

Function autoloading is supported. Functions are read into memory only when
they are called.

String conditional tests have a new syntax of the form [[...]].

There is an additional "fake" signal, ERR. This signal is sent when a script or

function exits with a non-zero status.

One-dimensional arrays are supported, although they are limited to a maxi-

mum size of 1024 elements.

Filename generation capabilities are substantially increased by expanding on

pattern matching and including regular expression operators.

The history list is kept in a file rather than in memory. This allows concurrent

instantiations of the shell to access the same history list, a possible advantage

in certain circumstances.

There is no default startup file. If the environment variable ENV is not defined,

nothing is read.

The type command is replaced with the more restrictive whence.

The primary prompt string (PSl) doesn't allow escaped commands.

There are no built-in equivalents to builtin, command, and enable.

There is no provision for key bindings and no direct equivalent to readline.

There are no built-in equivalents to pushd, popd, and dirs. They have to be

defined as functions if you want them.

The history substitution mechanism is not supported.

Brace expansion is not supported in the default configuration, but is a com-

pile-time option.

! is not a keyword.

Prompt strings don't allow backslash-escaped special characters.

There is no provision for online help.

Many of the bash environment variables don't exist, notably:

BASH BASH_VERSION

BASH_VERSINFO DIRSTACK

EUID FIGNORE

GLOBIGNORE HISTCMD
HISTFILESIZE HISTIGNORE

HISTCONTROL HOSTFILE

274 Appendix A: Related Shells

HOSTNAME HOSTTYPE
IGNOREEOF INPUTRC

MACHTYPE OPTERR
OSTYPE PROMPT_COMMAND
PIPESTATUS SHELLOPTS

SHLVL TIMEFORMAT
UID auto_resume

histchars

In addition, the startup and environment files for Korn are different, consisting of

.profile and the file specified by the ENV variable. The default environment file can

be overridden by using the variable ENV. There is no logout file.

For a more detailed list of the differences between bash and the 1988 Korn shell,

plus differences with the 1993 Korn shell, see the FAQ file in the doc directory of

the bash archive.

The Korn shell is a good alternative to bash. Its only major drawbacks are that it

isn't freely available and is upgraded only every few years.

pdksh
A free alternative to bash is a version of the Korn shell known as pdksh (standing

for Public Domain Korn shell), pdksh is available as source code in various places

on the Internet, including the USENET newsgroup comp.sources. unix, and the

pdksh World Wide Web home page ihttp://www.cs.mun.ca/^michael/pdksh/) of the

current maintainer, Michael Rendell.

pdksh was originally written by Eric Gisin, who based it on Charles Forsyth's pub-

lic domain Version 7 Bourne shell. It has all Bourne shell features plus some of the

POSIX extensions and a few features of its own.

pdksh's additional features include user-definable tilde notation, in which you can

set up ~ as an abbreviation for anything, not just usernames.

Otherwise, pdksh lacks a few features of the official Korn version and bash. In par-

ticular, it lacks the following bash features:

• The built-in variable PS4

• The advanced I/O redireclors >| unci <>

• I'hc ()j:)tir)ns errcxit, noclobbcr, and privileged

One important advantage that pdksh has over hash is that the executable is only

about a third the size and it runs considerably faster. Weighed against this is that it

is less POSIX-complianl, has had numerous people add code to it (so it hasn't

Workalikes on PC Platforms 275

been as strongly controlled as bash), and isn't as polished a product as bash (for

example, the documentation isn't anywhere near as detailed or complete).

However, pdksh is a worthwhile alternative for those who want something other

than bash and can't obtain the Korn shell.

Workalikes on PC Platforms
The proliferation of shells has not stopped at the boundaries of UNIX-dom. Many
programmers who got their initial experience on UNIX systems and subsequently

crossed over into the PC world wished for a nice UNIX-like environment (espe-

cially when faced with the horrors of the MS-DOS command line!), so it's not sur-

prising that several UNIX shell-style interfaces to small-computer operating systems

have appeared, Bourne shell emulations among them.

A Korn shell workalike is provided in the MKS Toolkit, available from Mortice

Kern Systems, Inc. The Toolkit is actually a complete UNIX-like environment for

MS-DOS (version 2.0 and later) and OS/2 (version 1.2 and later). In addition to its

shell, it comes with a vi editor and many UNIX-style utilities, including major ones

like awk, uucp, and make.

The MKS shell itself is very much compatible with the 1988 UNIX Korn shell, and

it has a well-written manual.

Most of the differences between the MKS shell and the Korn shell and bash are

due to limitations in the underlying operating systems rather than the shell itself.

Most importantly, MS-DOS does not support multitasking or file permissions, so

the MS-DOS version supports none of the relevant features. The OS/2 version

doesn't support file permissions either.

If you want to know more details about the differences between the 1988 Korn

shell and the MKS shell, see Appendix A, Related Shells, of the O'Reilly & Associ-

ates Nutshell Handbook, Learning the Korn Shell, by Bill Rosenblatt.

Many UNIX users who have moved to DOS PCs swear by the MKS Toolkit; it's

inexpensive, and it makes MS-DOS into a reasonable environment for advanced

users and software developers.

The Toolkit is available through most dealers that sell software tools, or through

MKS itself. For more information, contact:

MKS
185 Columbia Street West

Watedoo, Ontario, Canada N2L 5Z5

276 Appendix A: Related Shells

Or electronically as follows:

Telephone (800) 265-2797 (US & Canada)

Fax (519) 884 8861

Internet info@mks.com

CompuServe 73260,1043

BIX mks

WWW http://www. mks.com/

Reference Lists

Invocation
Tables B-1 and B-2 list the options you can use when invoking bash 2.x and 1.x,

respectively.* The multicharacter options must appear on the command line before

the single-character options. In addition to these, any set option can be used on

the command line; see Table B-6. Login shells are usually invoked with the

options -i (interactive), -s (read from standard input), and -m (enable job con-

trol).

Table B-1: Command-Line Options

Option Meaning

c string

D

-o option

-s

Commands are read from string, if present. Any arguments after string

are interpreted as positional parameters, starting with $0.

A list of all double-quoted strings preceded by $ is printed on the

standard ouput. These are the strings that are subject to language

translation when the current locale is not C or POSIX. This also turns on

the -n option.

Interactive shell. Ignore signals TERM, INT, and QUIT. With job control

in effect, TTIN, TTOU, and TSTP are also ignored.

Takes the same arguments as set -o.

Read commands from the standard input. If an argument is given to

bash, this flag takes precedence (i.e., the argument won't be treated as a

script name and standard input will be read).

Restricted shell. See Chapter 10, bash Administration.

* At the time of writing, the old 1.aversions of bash are still widely used. We strongly recommend that

you upgrade to the latest version. We have included a table of old options (Table B-2) just in case you

encounter an old version of the shell.

277

278 Appendix B: Reference Lists

Table B-1: Command-Line Options (continued)

Option Meaning

- Signals the end of options and disables further option processing. Any

options after this are treated as filenames and arguments, --is

synonymous with -.

—dump-strings Does the same as -D.

—help Displays a usage message and exits.

—login Makes bash act as if invoked as a login shell.

—noediting Does not use the GNU readline library to read command lines if

interactive.

—noprofile Does not read the startup file /etc/profile or any of the personal

initialization files.

—norc Does not read the initialization file y.bashrc if the shell is interactive.

This is on by default if the shell is invoked as sb.

—posix Changes the behavior of bash to follow the POSIX guidelines more

closely where the default operation of bash is different.

—quiet Shows no information on shell startup. This is the default.

—TcfAcfile Executes commands read from file instead of the initialization file

y.bashrc, if the shell is interactive.

—version Shows the version number of this instance of bash and then exits.

Table B-2: Old Command-Line Options

Option Meaning

-c string

-i

-s

-norc

noprofile

Tcfile file

-version

Commands are read from string, if present. Any arguments after

string are interpreted as positional parameters, starting with $0.

Interactive shell. Ignore signals TERM, INT, and QUIT. With job

control in effect, TTIN, TTOU, and TSTP are also ignored.

Read commands from the standard input. If an argument is given to

bash, this flag takes precedence (i.e., the argument won't be treated

as a script name and standard input will be read).

Restricted shell. See Chapter 10, bash Administration.

Signals the end of options and disables further option processing.

Any options after this are treated as filenames and arguments, --is

synonymous with -.

Does not read the initialization file V.bashrc if the shell is

interactive. This is on by default if the shell is invoked as sh.

Does not read the startup file /etc/profilc or Any of tiic j^crsonal

initialization files.

Executes commands read from ///c instead of the initialization file

V.bashrc. if the shell is interactive.

Shows the version nuniher of this instance of bash when starting.

Built-in Commands and Reserved Words 279

Table B-2: Old Command-Line Options (continued)

Option Meaning

-quiet Shows no information on shell startup. This is the default.

-login Makes bash act as if invoked as a login shell.

-nobraceexpansion Does not perform curly brace expansion.

-nolineediting Does not use the GNU readline library to read command lines if

interactive.

-posix Changes the behavior of bash to follow the POSIX guidelines more

closely where the default operation of bash is different.

Built-in Commands and Reserved Words
Table B-3 shows a summary of all built-in commands and reserved w^ords.

Table B-3: Commands and Reserved Words

Command Chapter Summary

1 5 Reserved word. Logical NOT of a command exit status.

: 7 Do nothing (just do expansions of any arguments).

. 4 Read file and execute its contents in current shell.

alias 3 Set up shorthand for command or command line.

bg 8 Put job in background.

bind 2 Bind a key sequence to a readline function or macro.

break 5 Exit from surrounding for, select, while, or until loop.

builtin 5 Execute the specified shell built-in.

case 5 Reserved word. Multi-way conditional construct.

cd 1 Change working directory.

command 7 Run a command bypassing shell function lookup.

continue Skip to next iteration of for, select, while, or until loop.

declare 6 Declare variables and give them attributes.

dirs 6 Display the list of currently remembered directories.

disown 8 Remove a job from the job table.

do 5 Reserved word. Part of a for, select, while, or until looping

construct.

done 5 Reserved word. Part of a for, select, while, or until looping

construct.

echo 4 Expand and print any arguments.

elif 5 Reserved word. Part of an if construct.

else 5 Reserved word. Part of an if construct.

enable 7 Enable and disable built-in shell commands.

esac 5 Reserved word. Part of a case construct.

eval 7 Run the given arguments through command-line processing.

280 Appendix B: Reference Lists

Table B-3: Commands and Reserved Words (continued)

Command Chapter Summary

exec 9 Replace the shell with the given program.

exit 5 Exit from the shell.

export 3 Create environment variables.

fc 2 Fix command (edit history file).

fg 8 Put background job in foreground.

fi 5 Reserved word. Part of an if construct.

for 5 Reserved word. Looping construct.

function 4 Define a function.

getopts 6 Process command-line options.

hash 3 Full pathnames are determined and remembered.

help 1 Display helpful information on built-in commands.

history 1 Display command history.

if 5 Reserved word. Conditional construct.

in 5 Reserved word. Part of a case construct.

jobs 1 List any background jobs.

kill 8 Send a signal to a process.

let 6 Arithmetic variable assignment.

local 4 Create a local variable.

logout 1 Exits a login shell.

popd 4 Removes a directory from the directory stack.

pushd 4 Adds a directory to the directory stack.

pwd 1 Print the working directory.

read 7 Read a line from standard input.

readonly 6 Make variables read-only (unassignable).

return 5 Return from the surrounding function or script.

select 5 Reserved word. Menu-generation construct.

set 3 Set options.

shift 6 Shift command-line arguments.

suspend Suspend execution of a shell.

test 5 Evaluates a conditional expression.

then 5 Reserved word. Part of an if construct.

time Reserved word. Run command pipeline and print execution times.

The format of the output can be controlled with TIMEFORMAT.

times Print the accumulated user and system times for processes run

from the shell.

trap 8 Set up a signal-catching routine.

type 3 Identify the source of a command.

typeset 6 Declare variables and give them attributes, Same as declare.

ulimit 10 Set/show process resource limits.

umask 10 Set/show file permi.ssion mask.

unalias 3 Remove alias definitions.

Built-in Shell Variables 281

Table B-3: Commands and Reserved Words (continued)

Command Chapter Summary

unset 3 Remove definitions of variables or functions.

until 5 Reserved word. Looping construct.

wait 8 Wait for background job(s) to finish.

while 5 Reserved word. Looping construct.

Built-in Shell Variables

Table B-4 shows a complete list of environment variables available in bash 2.0.

The letters in the Type column of the table have the following meanings: A =

Array, L = colon separated list, R = read-only, U = unsetting it causes it to lose its

special meaning.

Note that the variables BASH_VERSINFO, DIRSTACK, GLOBIGNORE, GROUPS,

HISTIGNORE, HOSTNAME, LANG, LC_ALL, LC_COLLATE, LC_MESSAGE,

MACHTYPE, PIPESTATUS, SHELLOPTS, and TIMEFORMAT are not available in ver-

sions prior to 2.0. BASH_ENV replaces ENV found in earlier versions.

Table B-4: Environment Variables

Variable Chapter Type Description

* 4 R The positional parameters given to the

current script or function.

@ 4 R The positional parameters given to the

current script or function.

4 R The number of arguments given to the

current script or function.

- R Options given to the shell on invocation.

? 5 R Exit status of the previous command.

R Last argument to the previous command.

$ 8 R Process ID of the shell process.

! 8 R Process ID of the last background command.

4 R Name of the shell or shell script.

BASH 3 The full pathname used to invoke this

instance of bash.

BASH_ENV 3 The name of a file to run as the environment

file when the shell is invoked.

BASH_VERSION 3 The version number of this instance of bash.

BASH_VERSINFO 3,6 AR Version information for this instance of bash.

Each element of the array holds parts of the

version number.

282 Appendix B: Reference Lists

Table B-4: Environment Variables (continued)

Variable Chapter Type Description

CDPATH 3 L A list of directories for the cd command to

search.

DIRSTACK 4,6 ARU The current contents of the directory stack.

EUID R The effective user ID of the current user.

FCEDIT 2 The default editor for/c command.

FIGNORE L A list of names to ignore when doing

filename completion.

GLOBIGNORE L A list of patterns defining filenames to ignore

during pathname expansion.

GROUPS AR An array containing a list of groups of which

the current user is a member.

BFS 7 The Internal Field Separator: a list of

characters that act as word separators.

Normally set to SPACE, TAB, and NEWLINE.

HISTCMD 3 U The history number of the current command.

HISTCONTROL 3 Controls what is entered in the command

history.

HISTFILE 2 The name of the command history file.

HISTIGNORE 3 A list of patterns to decide what should be

retained in the history list.

HISTSI2E 2 The number of lines kept in the command

history.

HISTFILESIZE 3 The maximum number of lines kept in the

history file.

HOME 3 The home (login) directory.

HOS'l'FlLE 3 The file to be used for hostname completion.

HOSTNAME The name of the current host.

HOSTTYPE 3 The type of machine bash is running on.

IGNOREEOF 3 The number of EOF characters received

before exiting an interactive shell.

INPUTRC 2 The readline startup file.

LANG Used to determine the locale category for any

category not specifically selected with a

variable starting with LC_.

LC_ALL Overrides the value of LANG and any other

LC_ variable specifying a locale category.

LC.COLLATE Determines the collation order used when

sorting the results of pathname expansion.

LC_MESSAGES This variable determines the locale used to

translate doulile-ciuoted strings preceded by a

$.

Built-in Shell Variables 283

Table B-4: Environment Variables (continued)

Variable Chapter Type Description

LINENO 9 U The number of the line that just ran in a

MACHTYPE
script or function.

A string describing the system on which bash

is executing.

MAIL 3 The name of the file to check for new mail.

MAILCHECK 3 How often (in seconds) to check for new
mail.

MAILPATH 3 L A list of file names to check for new mail, if

MAIL is not set.

OLDPWD
OPTARG

OPTERR

3

6

6

The previous working directory.

The value of the last option argument

processed by getopts.

If set to 1, display error messages from

OPTIND 6

getopts.

The number of the first argument after

OSTYPE

options.

The operating system on which bash is

executing.

PATH 3 L The search path for commands.

PIPESTATUS 6 A An array variable containing a list of exit

status values from the processes in the most

PROMPT_COMMAND
recently executed foreground pipeline.

The value is executed as a command before

PSl 3

the primary prompt is issued.

The primary command prompt string.

PS2

PS3

3

5

The prompt string for line continuations.

The prompt string for the select command.

PS4 9 The prompt string for the xtrace option.

PPID

PWD
RANDOM

8

3

9

R

U

The process ID of the parent process.

The current working directory.

A random number between and 32767

(215-1).

REPLY 5,7 The user's response to the select command;

result of the read command if no variable

names are given.

SECONDS 3 U The number of seconds since the shell was

invoked.

SHELL 3 The full pathname of the shell.

SHFTLOPTS

SHLVL

LR A list of enabled shell options.

Incremented by one each time an instance of

bash is invoked.

284 Appendix B: Reference Lists

Table B-4: Environment Variables (continued)

Variable Chapter Type Description

TIMEFORMAT Specifies the format for the output from using

the time reserved word on a command

pipeline.

TMOUT 10 If set to a positive integer, the number of

seconds after which the shell automatically

terminates if no input is received.

UID R The user ID of the current user.

auto_resume Controls how job control works.

histchars Specifies what to use as the history control

characters. Normally set to the string '!#'.

Test Operators
Table B-5 lists the operators that are used with test and the [. . .] construct. They

can be logically combined with -a ("and") and -o ("or") and grouped with escaped

parenthesis (\(... \)). The string comparisons < and > are not available in ver-

sions of bash prior to 2.0.

Table B-5: Test Operators

Operator True If...

-hfile file exists and is a block device file

-cfile file exists and is a character device file

-dfile file exists and is a directory

-cfile file exists

-ifile file exists and is a regular file

-gfile file exists and has its setgid bit set

-Gfile file exists and is owned by the effective group ID

-kfile file exists and has its sticky bit set

-Lfile file exists and is a symbolic link

-n string string is non-null

-Ofile file exists and is owned by the effective user ID

-pfile file exists and is a pipe or named pipe (FIFO file)

-tfile file exists and is readable

-sfile file exists and is not empty

-Sfile file exists and is a socket

-tN File descriptor N points to a terminal

-ufile file exists and has its setuid bit set

-wfile file exists and is writeable

-xfilc file exists and is executable, or file is a director^' that can be searched

set Options 285

Table B-5: Test Operators (continued)

Operator True If...

-z string string has a length of zero

JileA-ntfileB JileA is newer than JileB

JileA -ot JileB JileA is older than JileB

fileA -Qf JileB JileA and JileB point to the same file

stringA = stringB StringA equals stringB

stringA != stringB StringA does not match stringB

StringA < stringB StringA sorts before stringB lexicographically

StringA > stringB StringA sorts after stringB lexicographically

exprA -eq exprB Arithmetic expressions exprA and exprB are equal

exprA -ne exprB Arithmetic expressions exprA and exprB are not equal

exprA -It exprB e.^r/1 is less than exprB

exprA -gt exprB exprA is greater than exprB

exprA -le exprB exprA is less than or equal to exprB

exprA -ge exprB exprA is greater than or equal to exprB

exprA -a exprB exprA is true and exprB is true

exprA -o exprB exprA is true or exprB is true

set Options
Table B-6 lists the options that can be turned on with the set -arg command. All

are initially off except where noted. Full Names, where listed, are arguments to set

that can be used with set -o. The Full Names braceexpand, histexpand, history,

keyword, and onecmd are not available in versions of bash prior to 2.0. Also, in

those versions, hashing is switched with -d.

Table B-6: Options to set

Option Full Name Meaning

-a allexport Export all subsequently defined or modified variables.

-B braceexpand The shell performs brace expansion. This is on by default.

-b notify Report the status of terminating background jobs immediately.

-C noclobber Don't allow redirection to overwrite existing files.

-e errexit Exit the shell when a simple command exits with non-zero

status. A simple command is a command not part of a while,

until, or if; or part of a &«& or 1 1 list; or a command whose

return value is inverted by !.

emacs Use ^m^c5-style command-line editing.

-f noglob Disable pathname expansion.

-H histexpand Enable ! style history substitution. On by default in an

interactive shell.

286 Appendix B: Reference Lists

Table B-6: Options to set (continued)

Option Full Name Meaning

history Enable command history. On by default in interactive shells.

-h hashaU Disable the hashing of commands.

ignoreeof Disallow CTRL-D to exit the shell.

-k keyword Place keyword arguments in the environment for a command.

-m monitor Enable job control (on by default in interactive shells).

-n noexec Read commands and check syntax but do not execute them.

Ignored for interactive shells.

-P physical Do not follow symbolic links on commands that change the

current directory. Use the physical directory.

-P privileged Script is running in suid mode.

posix Change the default behavior to that of POSEX 1003-2 where it

differs from the standard.

-t onecmd Exit after reading and executing one command.

-u nounset Treat undefined variables as errors, not as null.

-V verbose Print shell input lines before running them.

vi Use z;z-sryle command-line editing.

-X xtrace Print commands (after expansions) before running them.

Signals the end of options. All remaining arguments are

assigned to the positional parameters, -x and -v are turned off.

If there are no remaining arguments to set, the positional

arguments remain unchanged.

With no arguments following, unset the positional parameters.

Otherwise, the positional parameters are set to the following

arguments (even if they begin with -).

shopt Options
The shopt options are set with shopt -sarg and unset with shopt -uarg. See Table

B-7 for options to shopt. Versions of bash prior to 2.0 had environment variables to

perform some of these settings. Setting them equated to shopt -s.

The variables (and corresponding shopt options) were: allow_null_glob_expansion

(nullglob), cdable_vars (cdable_vars), command_oriented_history (cmdhist),

glob_dot_filenames (dotglob), no_exit_on_failed_exec (execfail). These variables

no longer exist.

shopt Options 287

Table B- 7; Options to shopt

Option Meaning if Set

cdable_vars

cdspell

checkhash

checkwinsize

cmdhist

dotglob

execfail

expand_aliases

histappend

histreedit

histverify

hostcomplete

interactive_coniments

lithist

mailwarn

nullglob

An argument to cd that is not a directory is assumed to be the

name of a variable whose value is the directory to change to.

Minor errors in the spelling of a directory supplied to the cd

command will be corrected if there is a suitable match. This

correction includes missing letters, incorrect letters, and letter

transposition. It works for interactive shells only.

Commands found in the hash table are checked for existence

before being executed and non-existence forces a PATH search.

Checks the window size after each command and, if it has

changed, updates the variables LINES and COLUMNS
accordingly.

Attempt to save all lines of a multiline command in a single

history entry.

Filenames beginning with a . are included in pathname

expansion.

A non-interactive shell will not exit if it cannot execute the

argument to an exec. Interactive shells do not exit if exec fails.

Aliases are expanded.

The history list is appended to the file named by the value of

the variable HISTFILE when the shell exits, rather than

overwriting the file.

If readline is being used, the opportunity is given for re-editing

a failed history substitution.

If readline is being used, the results of history substitution are

not immediately passed to the shell parser. Instead, the resulting

line is loaded into the readline editing buffer, allowing further

modification.

If readline is being used, an attempt will be made to perform

hostname completion when a word beginning with @ is being

completed.

Allows a word beginning with # and all subsequent characters

on the line to be ignored in an interactive shell.

If the cmdhist option is enabled, mukiline commands are saved

to the history with embedded newlines rather than using

semicolon separators where possible.

If the file being checked for mail has been accessed since the

last time it was checked, the message "The mail in mailfile has

been read" is displayed.

Allows patterns which match no files to expand to null strings

rather than themselves.

288 Appendix B: Reference Lists

Table B- 7: Options to shopt (continued)

Option Meaning if Set

promptvars Prompt strings undergo variable and parameter expansion after

being expanded.

shift_verbose The shift built-in prints an error if it has shifted past the last

positional parameter.

sourcepath The source built-in uses the value of PATH to find the directory

containing the file supplied as an argument.

I/O Redirection
Table B-8 shows a complete list of I/O redirectors. (This table is also included ear-

lier as Table 7-1.) Note that there are two formats for specifying standard output

and error redirection: &>file and >&file. The second of these, and the one used

throughout this book, is the preferred way.

Table B-8: I/O Redirectors

Redirector Function

cmdl 1 cmd2 Pipe; take standard output of cmdl as standard input to cmd2

>file Direct standard output to file

<file Take standard input from file

» file Direct standard output to file; append to file if it already exists

>\file Force standard output to file even if noclobber is set

n>\ file Force output to file from file descriptor

n even if noclobber set

ofile Use file as both standard input and standard output

no file Use file as both input and output for file descriptor n

« label Here-document

n> file Direct file descriptor n to file

n<file Take file descriptor n from file

» file Direct file descriptor n to file; append to file if it already exists

n>& Duplicate standard output to file descriptor ri

n<8c Duplicate standard input from file descriptor n

rt>8cm File descriptor n is made to be a copy of the output file descriptor

n<&m File descriptor n is made to be a copy of the input file descriptor

8c>file Directs standard output and standard error lo file

<&- Close the standard input

>«&- Close the standard output

n>8c- Close the output from file descriptor n

n<&- Close the input from file descriptor n

emacs Mode Commands 289

emacs Mode Commands
Table B-9 shows a complete list of emacs editing mode commands.

Table B-9: emacs Mode Commands

Command Meaning

CTRL-A Move to beginning of line

Cl'KL-B Move backward one character

CIRL-D Delete one character forward

d'RL-E Move to end of line

CIRL-F Move forward one character

CIRL-G Abort the current editing command and ring the terminal bell

Cl'RL-J Same as RETURN

CIRL-K Delete (kill) forward to end of line

CIRL-L Clear screen and redisplay the line

CIRL-M Same as RETURN

CIKL-N Next line in command history

CIRL-O Same as RETURN, then display next line in history file

CIRL-P Previous line in command history

CIKL-R Search backward

CIKL-S Search forward

CIRL-T Transpose two characters

CIRL-U Kill backward from point to the beginning of line

CIRL-V Make the next character typed verbatim

CIRL-V TAB Insert a TAB

Cl'RL-W Kill the word behind the cursor, using whitespace as the boundary

CTRL-X/ List the possible filename completions of the current word

CIRL-X
~

List the possible username completions of the current word

CIKL-X $ List the possible shell variable completions of the current word

Cl'KL-X @ List the possible hostname completions of the current word

ClRL-X ! List the possible command name completions of the current word

Cl'RL-X (Begin saving characters into the current keyboard macro

C TRL-X) Stop saving characters into the current keyboard macro

ClRL-X e Re-execute the last keyboard macro defined

CTRL-X CTRL-R Read in the contents of the readline initialization file

CIRL-XCTRL-V Display version information on this instance of bash

CIRL-Y Retrieve (yank) last item killed

DEL Delete one character backward

Cl'RL-[Same as ESC (most keyboards)

ESC-B Move one word backward

ESC-C Change word after point to all capital letters

ESC-D Delete one word forward

ESC-F Move one word forward

290 Appendix B: Reference Lists

Table B-9: emacs Mode Commands (continued)

Command Meaning

ESC-L Change word after point to all lowercase letters

ESC-N Non-incremental forward search

ESC-P Non-incremental reverse search

ESC-R Undo all the changes made to this line

ESC-T Transpose two words

ESC-U Change word after point to all uppercase letters

ESC-CIKL-E Perform shell alias, history, and word expansion on the line

ESC-CIRL-H Delete one word backward

ESC-CIKL-Y Insert the first argument to the previous command (usually the second

word) at point

ESC-DEL Delete one word backward

ESC-^ Perform history expansion on the line

ESC-< Move to first line of history file

ESC-> Move to last line of history file

ESC-. Insert last word in previous command line after point

ESC-_ Same as above

TAB Attempt filename completion on current word

ESC-? List the possible completions of the text before point

ESC-/ Attempt filename completion on current word

ESC-- Attempt username completion on current word

ESC-$ Attempt variable completion on current word

ESC-@ Attempt hostname completion on current word

ESC-! Attempt command name completion on current word

ESC-TAB Attempt completion from text in the command history

ESC-~ Attempt tilde expansion on the current word

ESC-\ Delete all the spaces and TABs around point

ESC-* Insert all of the completions that would be generated by ESC-= before

point

ESC-= List the possible completions before point

ESC-{ Attempt filename completion and return the list to the shell enclosed

within braces

vi Control Mode Commands
Table B-10 shows a complete list of all vi control mode commands.

vi Control Mode Commands 291

Table B-10: vi Control Mode Commands

Command Meaning

h Move left one character

1 Move right one character

w Move right one word

b Move left one word

W Move to beginning of next non-blank word

B Move to beginning of preceding non-blank word

e Move to end of current word

E Move to end of current non-blank word

Move to beginning of line
^

Move to first non-blank character in line

$ Move to end of line

i Insert text before current character

a Insert text after current character

I Insert text at beginning of line

A Insert text at end of line

R Overwrite existing text

dh Delete one character backward

dl Delete one character forward

db Delete one word backward

dw Delete one word forward

dB Delete one non-blank word backward

dW Delete one non-blank word forward

d$ Delete to end of line

do Delete to beginning of line

D Equivalent to d$ (delete to end of line)

dd Equivalent to Od$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)

cc Equivalent to Oc$ (delete entire line, enter input mode)

X Equivalent to dl (delete character forwards)

X Equivalent to dh (delete character backwards)

kor- Move backward one line

j or + Move forward one line

G Move to line given by repeat count

/string Search forward for string

1 string Search backward for string

n Repeat search forward

N Repeat search backward

fx Move right to next occurrence of x

Fjc Move left to previous occurrence of x

tx Move right to next occurrence of x, then back one space

Tx Move left to previous occurrence of x, then forward one space

292 Appendix B: Reference Lists

Table B-10: vi Control Mode Commands (continued)

Command Meaning

\

•

\=

_

CTRL-L

#

Redo last character finding command

Redo last character finding command in opposite direction

Do filename completion

Do wildcard expansion (onto command line)

Do wildcard expansion (as printed list)

Invert (twiddle) case of current character(s)

Append last word of previous command, enter input mode

Start a new line and redraw the current line on it

Prepend # (comment character) to the line and send it to history

Loadable Built-Ins

bash 2.0 introduces a new feature that increases the flexibility of the shell: dynami-

cally loadable built-ins. On systems that support dynamic loading, you can write

your own built-ins in C, compile them into shared objects, and load them at any

time from within the shell with the enable built-in (see Chapter 7, Input/Output

and Command-Line Processing, for details on all of the enable options).

This appendix will discuss briefly how to go about writing a built-in and loading it

in bash. The discussion assumes that you have experience with writing C pro-

grams, compiling, and linking them.

The bash archive contains a number of pre-written built-ins in the directory exam-

ples/loadables/. You can build them by uncommenting the lines in the file Makefile

that are relevent to your system, and typing make. We'll take one of these built-ins,

tty, and use it as a "case study" for built-ins in general.

tty will mimic the standard UNIX command tty. It will print the name of the termi-

nal that is connected to standard input. The built-in will, like the command, return

true if the device is a TTY and false if it isn't. In addition, it will take an option, -s,

which specifies that it should work silently, i.e., print nothing and just return a

result.

The C code for a built-in can be divided into three distinct sections: the code that

implements the functionality of the built-in, a help text message definition, and a

structure describing the built-in so that bash can access it.

The description structure is quite straightforward and takes the form:

struct builtin structname = {

"builtin_name" ,

function_name,
BUILTIN_ENABLED

,

293

294 Appendix C: Loadable Built-Ins

help_array,
" usage"

,

};

builtin_name is the name of the built-in as it appears in bash. The next field,

function-name, is the name of the C function that implements the built-in. We'll

look at this in a moment. BUILTIN_ENABLED is the initial state of the built-in;

whether it is enabled or not. This field should always be set to

BUILTIN_ENABLED. help_array is an array of strings which are printed when help

is used on the built-in. usage is the shorter form of help; the command and its

options. The last field in the structure should be set to 0.

In our example we'll call the built-in tty, the C function tty_builtin, and the help

array tty_doc. The usage string will be tty [-s]. The resulting structure looks like

this:

struct builtin tty_struct = {

"tty",

tty_builtin,
BUILTIN_ENABLED

,

tty_doc,

"tty [-S] ",

};

The next section is the code that does the work. It looks like this:

tty_builtin (list)

WORD LIST *list;

int opt, sflag;

char * t

;

reset_internal_getopt ()

;

sflag = 0;

while ({opt = internal_getopt (list, "s")) != -1)

{

switch (opt)

{

case '

s
'

:

sflag = 1;

break

;

default:
builtin_usage ()

;

return (EX_USAGE)

;

>

}

list = loptend;

t = ttyname (0)

;

if (sflag == 0)

Appendix C: Loadable Built-Ins 295

puts (t ? t : "not a tty")

;

return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE)

;

}

Built-in functions are always given a pointer to a list of type WORD_LIST. If the

built-in doesn't actually take any options, you must call no_options(list) and check

its return value before any further processing. If the return value is non-zero, your

function should immediately return with the value EX_USAGE.

You must always use internal_getopt rather than the standard C library getopt to

process the built-in options. Also, you must reset the option processing first by

calling reset_internal_getopt.

Option processing is performed in the standard way, except if the options are

incorrect, in which case you should return EX_USAGE. Any arguments left after

option processing are pointed to by loptend. Once the function is finished, it

should return the value EXECUTION.SUCCESS or EXECUTION_FAILURE.

In the case of our tty built-in, we then just call the standard C library routine tty-

name, and if the -s option wasn't given, print out the name of the tty (or "not a

tty" if the device wasn't). The function then returns success or failure, depending

upon the result from the call to ttyname.

The last major section is the help definition. This is simply an array of strings, the

last element of the array being NULL. Each string is printed to standard output

when help is run on the built-in. You should, therefore, keep the strings to 76

characters or less (An 80-character standard display minus a 4-character margin).

In the case of tty, our help text looks like this:

char *tty_doc[] = {

"tty writes the name of the terminal that is opened for standard",

"input to standard output. If the '-s' option is supplied, nothing",

"is written; the exit status determines whether or not the standard",

"input is connected to a tty.",

(char *)NULL

};

The last things to add to our code are the necessary C header files. These are

stdio.h and the bash header files config.h, builtins.h, shell.h, and bashgetopt.h.

Here is the C program in its entirety:

#include "config.h"

#include <stdio.h>
include "builtins.h"
#include " shell. h"

#include "bashgetopt.h"

296 Appendix C: Loadable Built-Ins

extern char *ttynaine ();

tty_builtin (list)

WORD LIST *list;

int opt, sflag;

char * t

;

reset_internal_getopt ()

;

sflag = 0;

while ((opt = internal_getopt (list, "s")) != -1)

{

switch (opt)

{

case '

s
'

:

sflag = 1;

break

;

default:
builtin_usage ();

return (EX_USAGE)

;

}

}

list = loptend;

t = ttyname (0)

;

if (sflag == 0)

puts (t ? t : "not a tty")

;

return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE

)

char *tty_doc[] = {

"tty writes the name of the terminal that is opened for standard",

"input to standard output. If the '-s' option is supplied, nothing'

"is written; the exit status determines whether or not the standard'

"input is connected to a tty.",

(char *)NULL

struct built in tty_struct = {

"tty",

tty_builtin,
BUILTIN_ENABLED,
tty_doc,

"tty [-S]",

};

We now need to compile and link this as a dynamic shared object. Unfortunately,

different systems have different ways to specify how to compile dynamic shared

objects. Table C-1 lists some common systems and the commands needed to com-

pile and link tty.c. Replace archive with the path of the top level of the bcish

archive.

Appendix C: Loadable Built-Ins 297

Table C-1: Shared Object Compilation

System Commands

SunOS 4 cc -pic -larchive -larchive/hmXiins -larchive/lib -c tty.c

Id -assert pure-text -o tty tty.o

SunOS 5 cc -K pic -larchive -I^rc^zWbuiltins -larchive/lib -c tty.c

cc -dy -z text -G -i -h tty -o tty tty.o

SVR4, SVR4.2, Irix cc -K PIC -larchive -larchive/huih'ms -larchive/lib -c tty.c

Id -dy -z text -G -hi tty -o tty tty.o

AIX cc -K -larchive -I^rc/7/z;e/builtins -larchive/lib -c tty.c

Id -bdynamic -bnoentry -bexpall -G -o tty tty.o

Linux cc -fPiC -larchive -Iarchive/builtins -larchive/lib -c tty.c

Id -shared -o tty tty.o

NetBSD, FreeBSD cc -fpic -larchive -larchive/buiXlins -larchive/lib -c tty.c

Id -X -Bshareable -o tty tty.o

Further examples are given in the file examples/loadables/Makefile in the archive.

After you have compiled and linked the program, you should have a shared object

called tty. To load this into bash, just type enable -i pathAty tty, where path is the

full pathname of the shared object. You can remove a loaded built-in at any time

with the -d option, e.g., enable -d tty.

You can put as many built-ins as you like into one shared object; all you need are

the three main sections that we saw above for each built-in in the same C file. It is

best, however, to keep the number of built-ins per shared object small. You will

also probably find it best to keep similar built-ins, or built-ins that work together

(e.g., pushd, popd, dirs), in the same shared object.

bash loads a shared object as a whole, so if you ask it to load one built-in from a

shared object that has twenty built-ins, it will load all twenty (but only one will be

enabled). For this reason, keep the number of built-ins small to save loading mem-

ory with unnecessary things, and group similar built-ins so that if the user enables

one of them, all of them will be loaded and ready in memory for enabling.

Syntax

Reserved Words
The following words are reserved words and have a special meaning to the shell

when they are unquoted:

if then else elif fi case

esac for while until do done

function in select j { }

time

BNFfor bash
The following is the syntax of bash 2.0 in Backus-Naur Form (BNF):

<letter> ::=a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|vJw|x|y|z

<digit> ::= 0|l|2|3|4|5|6|7|8|9

<niiinber> ::= <digit>

I

<nuiTiber> <digit>

<word> ::= <letter>

I

<word> <letter>

I

<word> '_'

<word_list> ::= <word>

I

<word_list> <word>

<assigninent_word> ::= <word> ' = ' <word>

298

BNFfor bash

<redirection> ::== '
>

' <word>
' <

' <word>
<nuinber> ' >

'

<word>
<nuinber> '<' <word>
'
»

' <word>
<nuinber> '»' <word>
'
«

' <word>
<niiTnber> '«' <word>
'<&' <nuinber>

<nuinber> ' <&

'

<number>
'>&' <number>
<nuinber> ' >&

'

<number>
' <& ' <word>
<nuinber> '<&' <word>
' >&

' <word>
<number> ' >&

'

<word>
'«-' <word>
<number> '«- ' <word>
'>&' '-'

<nuinber> ' >&

'

'-'

'<&' '-'

<number> '<&' '-'

' &>
' <word>

<number> '<>' <word>
'<>' <word>
'

>
1

' <word>
<nuinber> ' >

|

' <word>

299

<simple_command_element> ::= <word>

I

<assigninent_word>

I

<redirection>

<redirection_list> ::= <redirection>

I

<redirection_list> <redirection>

<simple_conimand> ::= <simple_coinmand_element>

I

<simple_coiranand> <simple_cornmand_element>

<command> ::= <simple_coiTiinand>

I

<shell_command>

I

<shell_command> <redirection_list>

<she 11 command> < for_coinmand>

<case_coininand>

while <compound_list> do <compound_list> done

until <compound_list> do <compound_list> done
< se 1 ect_cominand>

<if_coiratiand>

<subshell>
<group_coinmand>

<function def>

<for_coinmand> ::= for <word> <newline_list> do <compound_list> done

I

for <word> <newline_list> '
{

' <compound_list> '
}

'

300 Appendix D: Syntax

for <word> '
;

' <newline_list> do <compound_list> done
for <word> '

;
' <newline_list> '

{
' <compound_list> '

}

'

for <word> <newline_list> in <word_list> <list_terminator>
<newline_list> do <coinpound_list> done

for <word> <newline_list> in <word_list> <list_tenninator>
<newline_list> '

{
' <compound_list> '

}

'

<select_command> :
:

=

I

select <word> <newline_list> do <list> done
select <word> <newline_list> '

{
' <list> '

}

'

select <word> '
;

' <newline_list> do <list> done
select <word> '

;
' <newline_list> '

{
' list '

}

'

select <word> <newline_list> in <word_list>
<list_tenninator> <newline_list> do <list> done

select <word> <newline_list> in <word_list>
<list_terTninator> <newline_list> '

{
' <list> '

}

'

<case_coinmand> ::= case <word> <newline_list> in <newline_list> esac

I

case <word> <newline_list> in <case_clause_sequence>
<newline_list> esac

I

case <word> <newline_list> in <case_clause> esac

<function_def> ::= <word> '(' ')' <newline_list> <group_command>

I

function <word> '
(

'
'

)

' <newline_list> <group_command>

I

function <word> <newline_list> <group_coinmand>

<subshell> ' <compound_list> '
)

'

<if_command> ::= if <compound_list> then <compound_list> fi

I

if <compound_list> then <compound_list> else <compound_list> fi

I

if <compound_list> then <compound_list> <elif_clause> fi

<group_command> {' <list> '}'

<elif_clause> ::= elif <compound_list> then <compound_list>

I

elif <compound_list> then <compound_list> else <compound_list>

I

elif <compound_list> then <compound_list> <elif_clause>

<case_clause> ::= <pattern_list>

I

<case_clause_sequence> <pattern_list>

<pattern_list> ::= <newline_list> <pattern> ')' <compound_list>

I

<newline_list> <pattern> '
)

'

<newline_list>

I

<newline_list> '
(

' <pattern> '
)

' <compound_list>

I

<newline_list> '
(

' <pattern> '
)

' <newline_list>

<case_clause_sequence> = <pattern_list> '
;

;

'

I

<case_clause_sequence> <pattern_list> '
;

;

'

<pattern> :
: = <word>

I

<pattern> '
|

' <word>

<list> <newline list> <listO>

BNFfor bash 301

<compound_list> : = <list>

I
<newline list> <listl>

<listO> : := <listl>

I

<listl>

I

<listl>

<listl> : <listl>
<listl>
<listl>
<listl>
<listl>

I

I

<pipeline_conimand>

<list_terminator> ::= '\n'

I

'
;

'

\n' <newline_list>
&' <newline_list>
;

' <newline_list>

&&' <newline_list> <listl>

I I

' <newline_list> <listl>
&' <newline_list> <listl>
; ' <newline_list> <listl>
\n' <newline_list> <listl>

<newline list> : :

I

<newline_list> '\n'

<simple_list> ::= <simple_listl>

I

<simple_listl> '&'

I

<simple_listl> '
;

'

<simple_listl> ::= <simple_listl> '&&' <newline_list> <simple_listl>

I

<simple_listl> '
|

|

' <newline_list> <simple_listl>

I

<simple_listl> '&' <simple_listl>

I

<simple_listl> '
;

' <simple_listl>

I

<pipeline_command>

<pipeline_coinmand> <pipeline>
'

!

' <pipeline>
<timespec> <pipeline>
<timespec> '

!

' <pipeline>
'

!
' <timespec> <pipeline>

<pipeline> :
:

=

<pipeline> '

I

<coinmand>

' <newline_list> <pipeline>

<time_opt> : : P'

<timespec> := time

I

time <time_opt>

Obtaining Sample Programs

Some of the examples in this book are available electronically by both FTP and

FTPMAIL. Use FTP if you are directly on the Internet. Use FTPMAIL if you are not

on the Internet but can send and receive electronic mail to Internet sites.

FTP
If you have an Internet connection (permanent or dialup), the easiest way to use

FTP is via your web browser or an FTP client. To get the examples, point your

browser to ftp://ftp.oreilly.com/published/oreilly/nutshell/bash/examples.tar.gz. If

you don't have a web browser, you can use the command-line FTP client included

with Windows NT or Windows 95.

A sample session is shown below, with what you should type in boldface.

% ftp ftp.oreilly.com
Connected to ftp.oreilly.com,
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Name (f tp. oreilly. com: useruazne) : anonymous
331 Guest login OK, send email address as password.

Password : userneune^hostname (Vse your username and host here)

230 Guest login OK, access restrictions apply.

ftp> cd /p\ibliahed/oreilly/nutshell/bash
250 CWD command successful.
f tp> binary (Very important/ Yon mnst specify binary transferfor compre.ssedfiles.)

200 Type set to I.

ftp> get examples. tar .gz

200 PORT command successful.
150 Opening BINARY mode data connection for examples . tar .gz (xxxx bytes)

226 Transfer complete, local: exercise remote: exercises
xxxx bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit
221 Goodbye.

%

302

FTPMAIL 303

FTPMAIL
FTPMAIL is a mail server available to anyone who can send electronic mail to, and

receive electronic mail from, Internet sites. Any company or service provider that

allows email connections to the Internet can access FTPMAIL.

You send mail to ftpmail@online.oreilly.com. In the message body, give the name

of the anonymous FTP host and the FTP commands you want to run. The server

will run anonymous FTP for you, and mail the files back to you. To get a complete

help file, send a message with no subject and the single word "help" in the body.

The following is an example mail session that gets you the examples. This com-

mand sends you a listing of the files in the selected directory, and the requested

examples file. The listing is useful if you are interested in a later version of the

examples.

Subject:

reply-to username@hostnaine (Where you wantfiles mailed)

open
cd /published/oreilly/nutshell /bash
dir
mode binary
uuencode
get examples. tar. gz

quit

A signature at the end of the message is acceptable as long as it appears after

"quit."

Index

Symbols

& (ampersand)

bitwise and operator, 152

running commands in background, 18,

197

&& (logical and) operator, 116, 122, 152

&> I/O redirector, l63

* (asterisk)

multiplication operator, 152

pattern-matching operator, 100

positional parameter variable, 89, 92

special array index, l6l

vi command, 46

wildcard, 11-12, 179

@ (at sign)

for hostname expansion, 35

positional parameter variable, 89, 92

I
special array index, l6l

\ (backslash)

command completion (vi), 46

escaping, 23

line continuation character, 24, 177

! (bang)

bitwise not operator, 152

conditional not operator, 117, 122

history command, 50, 26l

negation wildcard, 12

process ID shell variable, 210

!! history command, 50

!= (not equal to) operator, 152

!= (string comparison) operator, 118

] (brackets)

for condition tests, 117-125

range wildcards, 12-13

(caret)

in Bourne shell, 268

exclusive or operator, 152

representing CTRL key, 201

(colon)

:= string operator, 98

:- string operator, 96

:+ string operator, 98

:? string operator, 109

in string operators, 94

} (curly brackets)

brace expansion wildcards, 14, 179

for command blocks, 174-175, 271

with shell variable names, 93

for string operators, 94-103

i (dollar sign)

in arithmetic expressions, 151

move to end of line (vi), 39

for variable substitution, 35, 65-66, 179

$* string, 89, 92

$@ string, 89, 92

$$ shell variable, 210-211

$# string, 89

(see also string operators)

(dot)

current directory shortcut, 10

repeat last modification command (vi),

42

305

306 Index

. (dot) (cont'd)

synonym to source command, 59

.. (parent directory) shortcut, 10

= (equal sign)

expansion command (vi), 46

string comparison operator, 118

> (greater than sign)

I/O redirector, 163

redirecting output, 16

relational operator, 152

>& I/O redirector, l63, l68

>&- I/O redirector, l63

>= (greater than or equal to) operator,

152

» (bit-shift right) operator, 152

» I/O redirector, l63

> I I/O redirector, l63

(hash mark)

array element length operator, l6l

comments marker, 96

pattern-matching operator, 99, 109

positional parameter variable, 89

vi command, 47

*# (pattern-matching) operator, 99

- (hyphen)

subtraction operator, 152

vi command, 43

< (less than sign)

I/O redirector, l63

redirecting input, 16

relational operator, 152

<& I/O redirector, l63, l68

<&- I/O redirector, l63

<= (less than or equal to) operator, 152

<> I/O director, l63

« (bit-shift left) arithmetic operator, 152

« I/O redirector, 163

(see also here-documents)

<l I/O redirector, 163

() parentheses

arithmetic expressions, 152

command substitution operator, 103

in logical expressions, 122

for subshells, 217

% (percent sign)

for job numbers, 197

modulus operator. 152

patlern-UKitching operator, 99

%% (pattern-matching) operator, 99, 109

+ (plus sign)

arithmetic operator, 152

vi command, 43

xtrace output, 222

? (question mark)

shell variable, 115

wildcard, 11, 179
' (single quotation mark), 23

processing on command line. 181

" (double quotation mark), 23

processing on command line, 181

variables and, 66-67

;
(semicolon), 119

;; in case statements, 133

/ (slash) arithmetic operator, 152
~ (tilde)

bitwise not operator, 152

home directory shortcut, 179

in pathnames, 9

for username expansion, 35

vi command, 47

_ command (vi), 47

I (vertical bar)

bitwise or operator, 152

in Bourne shell, 268

in case statements. 133

I/O redirector, l63

moving to columns (vi), 45

for output redirection, 17-18

for redirecting output. 177

I I (logical or) operator. 116, 122. 152

a command (vi), 41

A command (vi), 41

-a logical operator. 122

absolute pathnames. 8

addition (+) operator, 152

alias command, 60

aliases. 60-62, 253, 261

processing on command line, 179

wildcards in, 61

ampersand (see &)

and (&) bitwise operator. 152

and (c'vl*^) operator. 116. 152

and (tS:«S[) operator. 122

anonymous PTP, getting Ixish w itii. 258

archive, bash. 259

Index 307

arithmetic conditionals, 153

arithmetic expressions, 151-159, 179

assigning values to variables, 154-159

arithmetic operators, 152

arithmetic test operators, 125

arrays, 160-162

@ and * indices, l6l

(element length) operator, l6l

assigning to themselves (bug), 235

reading values into, 176

arrow keys, 33, 39

in emacs, 30

asterisk (see *)

_at_linenumbp function (bashdb), 235

at sign (@)

for hostname expansion, 35

positional parameter variable, 89, 92

special array index, l6l

attributes

file, 121-125

variable, 150-151

awk command, 104

B
b command (vi), 39

B command (vi), 40

background jobs, 18-21, 85, 168, 195

process ID for, 210

(see also job control)

backslash (see \)

bang (see !)

bash

asking questions about, 264

configuring, 260-262

customizing environment, 250-253

documentation directory, 260

environment, 57-82

getting version of, 249, 277-278

installing as standard shell, 247-249

obtaining, 5-6, 257-259

obtaining sample programs, 302

online help for, 27

options, 63-65

POSIX mode, 248

privileged mode, 256

programming, 83-110

readline (see readline editing interface)

reporting bugs about, 265

restricted shell, 254

syntax, BNF form of, 298-301

testing, 262

unpacking, 259

using interactively, 6-7

variables (see environment variables)

versions of, ix

versus Korn shell, 272-274

bash command, 59

- option, 249, 277-278

-c option, 249, 277-278

-D option, 249, 277—dump-strings option, 249, 277—help option, 249, 277

-i option, 249, 277-278

- -login option, 249, 277-278

-n option, 223

-nobraceexpansion option, 278

—nolineediting option, 249, 277-278

- -noprofile option, 249, 277-278

- -norc option, 249, 277-278

-o option, 249, 277

options, list of, 249-250

-posix option, 248

- -posix option, 249, 277-278

- -quiet option, 249, 277-278

-r option, 249, 277-278

- -rcfile option, 249, 277-278

-s option, 249, 277-278

-V option, 221—^version option, 249, 277-278

-X option, 222

BASH environment variable, 76

.bash_history file, 30

.bashjogin file, 59

.bashjogout file, 59

.bash_profile file, 58-59, 78

BASH_VERSION environment variable, 76

bashbug script, 265

bashdb debugger, 220, 226-246

bashdb.fns file, 229

bashdb.pre file, 228-230

commands of, 232

functions of, 230-237

limitations of, 238

sample session of, 238-240

structure of, 227-228

.bashrc file, 59, 80

be command (bashdb), 237

bg command, 200

308 Index

biff command, 69

bind command, 55

bit-shift left («) operator, 152

bit-shift right (») operator, 152

bitwise and (&) operator, 152

bitwise exclusive or C) operator, 152

bitwise not (!) operator, 152

bitwise not C) operator, 152

blocks, memory, 155

blocks of commands, 174-175

BNF (Backus-Naur Form), 298-301

borders, image, 148

Bourne Again shell (see bash)

Bourne shell (sh), 3, 247, 268-270

Bourne, Steven, 3

bp command (bashdb), 233

brace expansion, 14, 179, 261, 278

braces (see { } (curly brackets))

brackets []

for condition tests, 117-125

range wildcards, 12-13

break conditions, 237

break statements, 137

breakpoints (bashdb), 233-238

BSD-derived systems, ps command on,

206-207

builtin command, 87, 114, 182, 261

built-in commands (see commands)

built-in functions in C, 293-297

built-in variables (see variables)

C built-in functions, 293-297

C shell (csh), 3

caret C)

in Bourne shell, 268

exclusive or operator, 152

representing CTRL key, 201

case sensitivity, 37

case statements, 133-136

cat utility, 16

cb command (bashdb), 234

cd command, 9, 114—116

- option, 10, 107

CDPATH variable and, 75

in restricted shell, 254

CDPATH environment variable, 75

CEDIT environment variable, 49

character-based user interfaces, 1

checking file attributes, 121-125

Cheshire cat, 16

chmod command, 84

chsh command, 263

circumflex (") (see caret)

cjpeg utility, 120

_clearbp function (bashdb), 234

_cmdloop function (bashdb), 231

cmp command, 219

code (see programming)

colon (see :)

COLUMNS environment variable, 78, 80

command aliases (see aliases)

command blocks, 174-175, 271

command command, 87, 131

command command, 181

-p option, 182

command history, 28, 30, 261

accessing with emacs, 33

accessing with vi, 43

expansion commands, 50-51

fc mechanism, 29, 47-49

size of, 68

command-line editing, 5. 28-56, 249,

277-278

textual completion

with emacs editor, 34-36

with vi editor, 46-47

variables for, 67-69

command-line options, 249-250

with arguments, 144

handling in scripts, 141-149

command-line processing, 177-194

in POSIX shell, 272

quoting in, 180-181

repeating, 183-194

command macros, binding, 52

command numbers, 68

command substitution, 103-107

commands
alias, 60

awk, 104

bash, 59, 221, 277-279

for bashdb debugger, 232

bg. 200

biff, 69

bind, 55

builtin, 87, 114, 182, 261

built-in, list of, 279-281

Index 309

commands (cont'd)

cat (catenate), 16

cd, 9, 114-116, 254

chmod, 84

chsh, 263

cmp, 219

command, 87, 131, 181

countargs, 93

CTRL-D, 6

cut, 104-106, 155, 162

date, 151

dc, 175

declare, 150

definition of, 7

determining source of, 87

diff, 113

dirs, 159

du, 155

echo, 66, 169-170, 221

editing on command line (see com-

mand-line editing)

for emacs editor, 30-33, 36-37

enable, 87, 182-183

eval, 183-194

exit, 210

exit status of, 113-117

combining multiple, 116

export, 77

fg, 197-200

file, 247

find, 23

getopts, 145-149

hashing, 74

help, 27

job, 203

jobs, 198

kill, 201-203

let, 154

local, 91-92

Is, 10

make, 260

more, 17

mukiple, and I/O redirection, 172

nohup, 211

order of precedence for, 87

popd, 108, 156

ps, 204-207

pushd, 108, 113, 156

read, 170-177

readonly, 151

running in background (see background

jobs)

sed, 135

select, 175, 261, 271

set, 29, 63, 221-224, 277

options list for, 285-286

shift, 142-144

shopt, 64-65

sort, 96-98

source, 59

stty, 25, 201

tee, 168

test, 117, 182

trap, 207-213

true, 207

type, 87

typeset, 150

ulimit, 251-253

umask, 250

unalias, 62

unset, 65

for vi editor, 38-47

wait, 214

who, 105

comments, 96, 174

comparing

file modification times, 121

strings, 118-121

concurrency control, 2l6

condition testing, 117-125

conditional constructs

case statements, 133-136

if/then statements, 112-126

conditionals

arithmetic, 153

integer, 125-126

readline, 53

configuring bash, 260-262

control-key signals, 201-202

control keys, 25-26, 29

control mode, vi, 38-40

core files, 201, 252

coroutines, 213-217

countargs command, 93

csh (C shell), 3 .

CTRL- commands in emacs, 289

CTRL- signals, 201-202

CTRL-? character, 25

310 Index

CTRL-C key, 26, 199, 208

CTRL-D command, 6, 26

to escape loops, 137

CTRL-H character, 26

CTRL-J character (LINEFEED), 37

CTRL-L command (vi), 47

CTRL-M character (RETURN), 25, 37

CTRL-Q key, 26

CTRL-S key, 26

CTRL-Y command, 32, 200

CTRL-Z key, 199, 208

CTRL-\ signal, 26, 201

CTRL— commands in emacs

CTRL-B, 30

CTRL-F, 30

CTRL-H, 30, 38

CTRL-N, 33

CTRL-O, 37

CTRL-P, 33

CTRL-R, 34

CTRL-V, 37

CTRL-W, 37

curly brackets (see { })

customizing environment (see environ-

ment)

cut command, 104-106, 155, l62

-d option, 105

d commands (vi), 39, 41^3
-d file attribute operator, 121

dash (see command-line options)

data filtering utilities, 15

date command, 151

dc command, 175

DEBUG signal, 225, 234

debugging

bashdb for, 226-246

DEBUG signals for, 226, 234

reporting bash bugs, 265

shell programs, 220-246

tracing program execution, 237

declare command, 150

-a option, 150, 161

-f option, 86, 150

-F option, 150

-i option, 150

-r option, 151, 1C)1

-X option, 151

decompressing bash archive, 259

DEL character, 26, 30, 38

deleting mail headers, l65

deleting text (vi), 41-43

delimiters, IFS (see IFS environment vari-

able)

diff command, 113

DIR_STACK environment variable, 108, 114,

118, 123, 137, 156-159

directories, 7-10

. and .. shortcuts, 10

navigating, 9-10

stacking, 107-110

tilde (~) notation, 9

working, 9

dirs command, 159

disable-completion variable, 53

disk usage, 155

disown command, 212

division (/) operator, 152

djpeg utility, 120

do keyword (see until statements; while

statements)

documentation directory, bash, 260

dollar sign (see $ (dollar sign); string oper-

ators)

dot (.)

current directory shortcut, 10

repeat last modification command (vi),

42

synonym to source command, 59

.. (parent directory) shortcut, 10

dot (point) in emacs, 30

double quotation mark (see quotation

mark)

ds command (bashdb), 236

du command, 155

-s option, 155

dynamically loadble built-in functions.

293-297

e command (vi), 40

E command (vi), 40

-e file attribute operator, 121

echo command, 66, 169-170, 221

-E option. 169

-e option, 99. 132, 169

escape sequences for, 170

Index 311

echo command (cont'd)

-n option, 99, 124, 169

ed text editor, l65

editing, command-line (see command-line

editing)

EDITOR environment variable, 77

editors

emacs (see emacs editor)

vi (see vi editor)

elements, array, l60

elif keyword (see if/then statements)

else conditional, readline, 53

else statements (see if/then statements)

emacs editor, 29-37

commands for, 30-33, 36-37, 289-290

control keys, 29

textual (minibuffer) completion, 34-36

using history file, 33

emacs shell option, 63

enable command, 87, 182-183, 293

-a option, 183

-n option, 183, 261

-p option, 183

-s option, 183

enable-keypad variable, 53

endif conditional, readline, 53

enhancing images, 187

environment, 57-82

customizing, 250-253

environment file (see .bashrc file)

environment variables, 65-82

? (question mark), 115

BASH, 76

BASH_VERSION, 76

built-in, list of, 281-284

CDPATH, 75

COLUMNS, 78, 80

DIR_STACK, 108, 114, 118, 123, 137,

156-159

EDITOR, 77

exported, 77, 85

HISTCMD, 68

HISTCONTROL, 68

HISTFILESIZE, 68

HISTSI2E, 68

HOME, 76

IFS, 89, 127

LINES, 78, 80

MAIL, 69

MAILPATH, 69

OLDPWD, 76

PATH, 72-74, 127

PWD, 76

SECONDS, 76

SHELL, 78, 80

TERM, 77-80, 171

TMOUT, 253

VISUAL, 77

-eq arithmetic test operator, 126

equal sign (=)

expansion command (vi), 46

string comparison operator, 118

equal (-eq) operator, 126, 153

erase character, 26

in emacs editor, 30

in vi editor, 38

esac keyword (see case statements)

ESC key in vi editor, 38-40

ESC- commands in emacs, 31-32, 289-290

ESC ., 37

ESC ?, 35

ESC _, 37

ESC-1, 37

eval command, 183-194

event designators, history, 50-51

exclamation point (see ! (bang))

exclusive or C) bitwise operator, 152

exec command, 228

executable files, 7

(see also programs)

execute permission, 84

execution tracing, 237

exit command, 210

EXIT signal, debugging with, 224-225

exit statements, 120

exit status of commands, 113-117

combining multiple, 116

export command, 77

f command (vi), 45

F command (vi), 45

-f file attribute operator, 121

fake signals, 224-226

fc mechanism, 29, 47-49

-e option, 48

-1 option, 47

-m option, 48

312 Index

fc mechanism (cont'd)

-n option, 48

-s option, 49

-V option, 48

fg command, 197-200

fi keyword (see if/then statements)

file attribute operators, 121-125

file command, 247

file descriptors, 164, 167-169

file names, 8

wildcards for, 11-14

(see also pathnames)

files

comparing modification times of, 121,

186

creation size limits, 251-253

overwriting, 63, 164

permissions for, 250

reading lines from, 171-172

redirecting output to, 15-16

temporary, 210

types of, 7

filtering utilities, data, 15

find command, 23

flow control, 111-140

case statements, 133-136

conditional constructs, 112-126

looping constructs, 126-133

select statements, 136-138

while and until statements, 139-140

folders (see directories)

for statements, 126-133

foreground jobs, 197

Fox, Brian, 4

Free Software Foundation (FSF), 259

FTP, obtaining bash via, 257

sample programs, 302

FTPMAIL, obtaining bash via, 303

full pathnames, 8

functions, 86-88, 172, 253

built-in, 293-297

debugging (bashdb), 230-238

handling command options in, 141-149

I/O redirection, 172

local variables in, 91-92

positional parameters in, 90-91

versus scripts, 87

traps and, 208-209

G
G command (vi), 44

-G file attribute operator, 121

-ge arithmetic test operator, 126, 153

generating menus (see select statements)

getopt command (Bourne shell), 269

getopts command, 145-149

GIF format, converting to (example),

\2Qh-\2\

GIF graphics file format, 101

globbing (see wildcards)

GNU project, 4

graphical user interface (GUI), 1

graphics file conversion utilities, 101

greater than (-gt) operator, 126, 153

greater than or equal to (>=) operator, 152

greater than or equal to (-ge) operator,

126, 153

greater than sign (see >)

grep -1 command, 104

group permission, 84

-gt arithmetic test operator, 126, 153

GUI (see graphical user interface), 1

gunzip utility, 259

H
h command (vi), 39

hash command, 74

hash mark (see #)

hash tables, 74

head utility, 96

header files, C, 295

headers, mail, 165

help

for built-in functions, 295

getting, about bash, 264

online, 27

help command, 27

here-documents, 165-167

HISTCMD environment variable, 68

HISTCONTROL environment variable. 68

mSTFILF environment variable. 30

I IISTFILFSIZE environment variable, 68

I IISTIGNORF variable. 68

liisloiy, command (see command history)

history designators, 50-51

I IISTSIZF environment variable. 68

home directory, 9

HOME einironiiicnl \anable, 76

Index 313

HUP (hangup) signal, 211

hyphen (-)

for options (see command-line options)

subtraction operator, 152

vi command, 43

i command (vi), 41

I command (vi), 41

IEEE POSIX 1003.2 (see POSIX shell)

if conditional, readline, 53

IPS environment variable, 89, 127

if/then statements, 112-126

(see also case statements)

ignoredups option, 68

ignoreeof shell option, 63

ignoring signals, 211

images

borders of, 148

changing size of, 148

converting between formats (example),

120-121

creating thumbnail listings of, 193

enhancing, 187

quantizing, 121

indices of array elements, 160

indirect expansion, 192

input

how shell handles, 14-18

mode, vi, 38

redirecting, 16

user, reading, 175-177

input-meta variable, 53

INPUTRC environment variable, 52

inputrc file, 29, 52-55

(see also readline editing interface)

installing bash

as standard shell, 247-249

as login shell, 263

INT (interrupt) signal, 201, 271

trapping, 208

integer conditionals, 125-126

integer variables, 151-159

interactive shell use, 6-7

internal field operator (see IFS environment

variable)

I/O redirection, 15-18, 163-169

exec command with, 228

list of redirectors, 288

multiple commands and, 172

in restricted shell, 254

I/O scheme, UNIX, 14-18

iteration, definition of, 126

/
j command (vi), 43

job control, 5, 18-21, 197-200, 261

background and foreground control, 197

parallelization, 215-217

in POSIX shell, 272

suspending jobs, 199-200

System V vs. BSD-derived systems,

205-207

job numbers, 196-197

as arguments, 197

jobs command, 198

-1 option, 198

-n option, 198

-p option, 198, 203

-r option, 198

-s option, 198

-X option, 198

Joy, Bill, 3

K
k command (vi), 43

key bindings

with bind command, 55

with readline, 52-55

keywords, processing on command line,

179

kill command, 202-203

-1 option, 201

KILL signal, 201

ksh (Korn shell), 4, 272-274

-le arithmetic test operator, 126, 153

length operators, 103

less than (-It) operator, 126, 153

less than or equal to (<=) operator, 152

less than or equal to (-le) operator, 126,

153

less than sign (see <)

let command, 154

line commands, emacs, 32

_linebp function (bashdb), 234

314 Index

LINEFEED character, 37

LINENO variable, 223, 229

LINES environment variable, 78, 80

_listbp function (bashdb), 234

loadables directory, 293

loading built-in functions, 293-297

local statement, 91-92

logging in, 58-59

logging out, 59

logical operators

&& (and), 116, 122, 152

! (not), 117

I I (or), 116, 122, 152

-a, 122

-o, 122

login directory, 9

loop variables, 126

looping constructs

for statements, 126-133

while and until statements, 139-140

Is command, 10

-a option, 11

-F option, 61

-1 option, 11

with modification dates, 106

-R option, 129

-It arithmetic test operator, 126, 153

M
macros, command, 52

mail, deleting headers from, l65

MAIL environment variable, 69

mail variables, 69-70

MAILPATH environment variable, 69

make utility, 185, 260

mark-directories variable, 53

math operators, 125

memory
disk, 155

size limitations, 251-253

menus, generating (see select statements)

metacharacters, processing, 177

minibuffer completion, 34

MKS shell, 275

modification times, comparing. 121, 186

modular code (see functions; program-

ming)

modulus (%) operator. 1S2

more command, 17

multitasking (see coroutines; job control;

process control)

mutiplication (*) operator, 152

A^

n command (vi), 44

-n string comparison operator, 118

named pipes, 219

navigating directories, 9-10

-ne arithmetic test operator, 126, 153

negating expressions (see not (!) operator)

negating wildcards, 12

nested subshells, 217-219

NetPBM utility package, 120, 147

pnmcat utility, 193

pnmmargin utility, 148

pnmnlfilt utility, 189

pnmscale utility, 148

pnmtext utility, 193

ppmquant utility, 121

noclobber shell option, 63

noglob shell option, 63

nohup command, 211

not (!) operator, 117, 122, 152

not (") operator, 152

not equal to (!=) operator, 152

not equal to (-ne) operator, 126, 153

nounset shell option, 63

-nt file attribute operator, 121

numbers, command, 68

o
-O file attribute operator, 121

-o logical operator, 122

obtaining bash, 257-259

sample programs. 302

octal notation, 251

OLDPWD environment variable, 76

online help, 27

options, command, 7

(see also commands)

options, shell, 63-65

or (I) operator, 152

or (I I) operator, 116. 122, 152

or exclusive C) bitwise operator, 152

orphan processes. 206

OS/2 version of MKS shell, 275

-ot file attribute operator, 121

Index 315

output

how shell handles, 14-18

redirecting to file, 15-16

redirecting to other program, 15

overwriting files, 63, 164

parallelization, 215-217

parameter

definition of, 7

positional, 89-91, 141-142

substitution of, 222

parent directory, 10

parentheses (see () (parentheses))

PATH environment variable, 72-74, 127

pathnames, 8

expansion of, 179

tilde (~) notation, 9

wildcards for, 11-14

pattern-matching operators

(hash mark), 99, 109

(double hash mark), 99

% (percent sign), 99

%% (double percent sign), 99, 109

patterns, 99-103

PBMplus package, 120

pbmtext utility, 193

PC platforms, 275-276

PCX graphics file format, 101

pdksh (public domain Korn shell), 274-275

percent sign (see %)
period (see dot)

permissions, 84, 250

PID (see process ID)

pipe (see I (vertical bar))

pipelines, 15, 17-18, 177

(see also coroutines)

pipes, named, 219

plus sign (+)

arithmetic operator, 152

vi command, 43

xtrace output, 222

PNM (Portable Anymap) format, 120, 148

pnmcat utility, 193

pnmmargin utility, 148

pnmnlfilt utility, 189

pnmscale utility, 148

point, emacs, 30

popd command, 107-110, 156

+ option, 156

-N option, 159

popping (see stacking directories)

Portable Anymap (PNM) format, 120, 148

positional parameters, 89-91, 141-142

POSIX mode, bash, 248

POSIX shell, 270-272

bash operating as, 249, 277-278

enable -s command for, 183

Poskanzer, Jef, 120

pound sign (see # (hash mark))

ppmquant utility, 121

privileged mode, 256

procedures, 86

process control, 204-207

coroutines, 213-217

traps, 207-213

(see also job control)

process ID (PID), 196-197

variables for, 210-211

process substitution, 219, 26l

procimage utility (example), 148, 187-194

.profile file, 59

programming

bash, 83-110

command blocks, 174-175

coroutines, 213-217

debugging, 220-246

functions, 86

parallelization, 215-217

programs

definition of, 7

piping output into other, 15

running multiple (see job control)

prompting variables, 70

ps command, 204-207

-a option, 205

-ax option, 206

-e option, 206

PS# environment variables, 70

pushd command, 107-110, 113, 156

+ option, 156

-N option, 159

pushing (see stacking directories)

PWD environment variable, 76

316 Index

Q
quantizing images, 121

question mark (?)

shell variable, 115

wildcard, 11, 179

QUIT signal, 201

quotation mark ('), 23

processing on command line, 181

quotation mark ("), 23

processing on command line, 181

variables and, 66-67

quoting, 22-23

$@ and $* strings, 92

arithmetic expressions, 151

and command substitution, 104

command-line processing and, 180-181

golden rule, 151

quotation marks, 23

variables and, 66-67

R command (vi), 41

-r file attribute operator, 121

Ramey, Chet, 4

RANDOM variable, 225

range wildcard notation (see set construct)

read command, 170-177

-a option, 176

-e option, 176

-p option, 176

-r option, 177

in while loops, 172

reading lines from files, 171-172

reading user input, 175—177

Readline editing interface, 261

readline editing interface, 51-55

conditionals, 53

variables for, 53

readline variable, 29

readonly command, 151

recursion, 130-133

recursive aliases, 61, 179

redirection (see I/O redirection)

regular files, 7

relational operators, 152-1 S3

relative pathnames, 9

remainder (%) operator, 152

reserved words, 298

list of, 279-281

resetting traps, 212

restricted shell, 254

resuming stopped jobs, 199

RETURN character, 37

return statements, 115

root, definition of, 8

RPN (Reverse Polish Notation), 175, 192

-s file attribute operator, 121

scaling images, 148

scripts, 83-88

handling command options, 141-149

inside other scripts, 86-88

modularizing (see functions)

parallelizing, 215-217

scripts in other (see functions)

SECONDS environment variable, 76

security, 254-256

sed command, 135

select command, 261, 271

versus read command, 175

select statements, 136-138

semicolon (;), 119

;; in case statements, 133

set command, 29, 63, 221-224, 277

- option, 285— option, 285

-k option, 77, 285

noexec option, 223

priviliged option, 256

verbose, 221

xtrace, 222

all other options, 285

set construct, 12-13

_setbp function (bashdb), 233

sh (Bourne shell). 3

shared objects, 293-297

SHELL environment variable, 78, 80

shell options, 63-65

shell scripts, 83-88

handling command options, 141-149

shell variables, 65-76, 88-93

? (question mark), 115

built-in, list of, 281-284

(see also environment Nariables")

shells, 1-2

Bourne (sh), 247, 26^270
debugging programs in. 220-246

Index 317

shells (cont'd)

functions, 86-88

handling I/O, 14-18

installing bash as login, 263

Korn (ksh), 272-274

on PC platforms, 275-276

POSIX, 270-272

public domain Korn (pdksh), 274-275

restricted, 254

subshells (see subshells)

shift command, 142-144

shift left («) bitwise operator, 152

shift right (») bitwise operator, 152

shopt command, 64-65, 286-288

signals, 200-207

debugging programs with, 224-226

fake, 224-226

ignoring, 211

with POSIX shell, 271

trapping, 207-213

single quotation mark (see quotation mark)

size, image, 148

slash (/) division operator, 152

sort command, 96-98, 234

-n option, 96

-r option, 96

source command, 59

special characters, 21-26

stacking directories, 107-110

Stallman, Richard, 4

standard error, 14, 168, 175

standard input, 14, 168

standard output, 14, 168

_steptrap function (bashdb), 230, 232

stopping jobs (see suspending jobs)

string comparison operators, 118

string I/O, 169-177

string operators, 94-103

for pattern matching, 99-103

strings, comparing, 118-121

stty command, 25, 201

subprocesses (see background jobs)

subroutines, 86

subshells, 84, 172, 217-219

substitution of commands, 103-107

substitution operators, 94

subtraction (-) operator, 152

suid (set user ID) bit, 255

suspending jobs, 199-200

switch statement (see case statements)

system calls, 213

System V, job control on, 205-206

t command (vi), 45

T command (vi), 45

TAB command (emacs), 34

tar utility, 259

tee command, 168

temporary files, 210

TERM environment variable, 77-80, 171

TERM (terminate) signal, 202, 271

trapping, 208

termcap, 79

terminal types, 78-80

terminfo database, 79

test command, 117, 182

test files, 7

test operators, list of, 284-285

test relational operators, 153

testing bash, 262

testing conditions, 117-125

textual completion

with emacs editor, 34-36

with vi editor, 46-47

then keyword (see if/then statements)

thrashing, 215

thumbnail images, creating, 193

tilde (see ~)

TMOUT environment variable, 253

tokens, processing, 177

tracing program execution, 237

trap command, 207-213

- as argument, 212

debugging with, 224-226

with exit command, 210

traps, 207-213

fake signals for, 224-226

trees, definition of, 8

true command, 207

TSTP (terminal stop) signal, 201

tty built-in, 293

type command, 87

-all option, 87

-path option, 88

-type option, 88

types of variables (see variables)

typeset command, 150

318 Index

u
u command (vi), 42

ulimit command, 251-253

umask command. 250

unalias command, 62

underscore O command (vi), 47

unequal operator (see not equal to opera-

tors)

UNIX operating system I/O, 14-18

UNIX shells, history of, 3-5

unpacking bash archive, 259

unset command, 65, l6l

until statements, 139-140

user input, reading, 175-177

variables

arithmetic (see arithmetic expressions)

attributes of, 150-151

command-line editing, 67-69

environment (see environment vari-

ables)

exporting, 151

LINENO, 223, 229

local, in functions, 91-92

mail, 69-70

for process IDs, 210

prompting, 70

quoting and, 66-67

RANDOM, 225

readline, 53

shell (see shell variables)

syntax for, 93

versions of bash, ix

vertical bar (see I

)

vi editor. 38-47

character-finding commands, 44-46

commands for, 38-47, 290-292

control keys, 29

deletion commands. 41^3
textual (minibuffer) completion, 46-A7

using history file, 43

vi shell option, 63

visible-stats variable, 53

VISUAL environment variable, 77

w
w command (vi), 40

W command (vi), 40

-w file attribute operator, 121

wait command. 214

while statements, 139-140

getopts command with (see getopts

command)
with read command, 172

who command. 105

wildcards, 11-14

in aliases, 6l

word designators, history, 50

words, definition of, 2

working directory, 9

X
-X file attribute operator, 121, 123

Y
Y command (vi), 42

z
-z string comparison operator, 118

zombie processes, 206

About the Authors

Cameron Newham is an information technology developer living in the United

Kingdom. After completing a Bachelor of Science degree in information technology

and geography at the University of Western Australia, Cameron worked for Austra-

lian Defence Industries for several years. He is now an IT contractor based in

London. In his spare time Cameron can be found surfing the Internet or working on

his project to document buildings of architectural interest in England. He also has

more than a passing interest in space science, 3D graphics, synthesizer music, and

Depeche Mode.

Bill Rosenblatt is the author of the O'Reilly book Learning the Kom Shell; co-author,

with Deb Cameron and Eric Raymond, of Learning GNU Emacs] and a contributor

to UNLX Power Tools. He is a native of Philadelphia. Bill is a market development

manager for media and publishing at Sun Microsystems in New York. He received a

B.S.E. from Princeton University, and an M.S. and A.B.D. from the University of

Massachusetts at Amherst, each in some variant of Computer Science. Bill's interests

in the computing field include digital libraries, digital intellectual property, and

internet/intranet software development tools. Outside of the computing field, he's

interested in French cooking, classical music, jazz, and Sherlock Holmes pastiche

novels. Bill lives with his wife Jessica on the Upper West Side of Manhattan, in a

location that is strategically close to some of the best food and bookstores anywhere.

Colophon

Our look is the result of reader comments, our own experimentation, and distribu-

tion channels. Distinctive covers complement our distinctive approach to technical

topics, breathing personality and life into potentially dry subjects. UNIX and its atten-

dant programs can be unruly beasts. Nutshell Handbooks help you tame them.

The fish featured on the cover of Learning the bash Shell, Second Edition, is a silver

bass, one of the 400-500 species of sea bass. The silver bass, also known as the white

perch, is found in freshwater bays and river mouths along the Atlantic coast of North

America from Nova Scotia to South Carolina, and is most abundant in the Chesa-

peake region. Silver bass live in large schools and feed on small fishes and

crustaceans. Although many bass never stray far from one place their whole lives,

silver bass swim upstream to spawn, often becoming landlocked in the process. Like

most bass, the silver bass is attracted to bright, shiny objects, and they can be drawn

quite close to swimmers and divers in this way.

Edie Freedman designed the cover of this book, using a 19th-century engraving from

the Dover Pictorial Archive. The cover layout was produced with Quark XPress 3-3

using the ITC Garamond font.

The inside layout was designed by Edie Freedman and modified by Nancy Priest. It

was implemented in gtroff by Lenny Muellner. The text and heading fonts are ITC

Garamond Light and Garamond Book. The illustrations that appear in the book were

created by Chris Reilley and updated in Macromedia Freehand 5.0 for the second

edition by Robert Romano. This colophon was written by Clairemarie Fisher O'Leary.

Whenever possible, our books use RepKover™, a durable and flexible lay-flat

binding. If the page count exceeds RepKover's limit, perfect binding is used.

More Titles from O'Reilly ^^^[
Linux

Linux in a Nutstiell, 2nd Edition

T^^J By Ellen Siever &

L ^ the Staffof O'Reilly & Associates

Mi 2nd Edition February 1999

^ 628pages, ISBN 1-56592-585-8

This complete reference covers the core

commands available on common Linux

distributions. It contains all user, programming,

administration, and networking commands with

options, and also documents a wide range of

GNU tools. New material in the second edition includes popular ULO

and Loadlin programs used for dual-booting, a Perl quick-reference,

and RCS/CVS source control commands.

Linux l\/luitimedia Guide

ByJeff Tranter

1st Edition September 1996

386pages, ISBN 1-56592-219-0

Linux is increasingly popular among

computer enthusiasts of all types, and one

of the applications where it is flourishing

is multimedia. This book tells you how to

program such popular devices as sound cards,

CD-ROMs, and joysticks. It also describes the best free software

packages that support manipulation of graphics, audio, and video

and offers guidance on fitting the pieces together.

Linux Networl(Administrator's Guide

By OlafKirch

1st EditionJanuary 1995

370pages, ISBN 1-56592-087-2

One of the most successful books to come

^^^^t from the Linux Documentation Project,

^MSj^^9 Linux Network Administrator 's Guide touches

^^^^^B on all the essential networking software

^^^^^^—^^ included with Linux, plus some hardware

LINUX

considerations. Topics include serial connections, UUCP, routing

and DNS, mail and News, SLIP and PPP, NPS, and NIS.

Running Linux, 3rd Edition

By Matt Welsh, Matthias Kalle Dalheimer &
Lar Kaufman

3rd Edition August 1999

752 pages, ISBN 1-56592-469-X

This book explains everything you need to

understand, install, and start using the Linux

operating system. It includes an installation

tutorial, system maintenance tips, document

development and programming tools, and guidehnes for network,

file, printer, and Web site administration. New topics in the third

edition include KDE, Samba, PPP, and revised instructions for

installation and configuration (especially for the Red Hat, SuSE

and Debian distributions).

Linux Device Drivers

By Alessandro Rubini

1st Edition February 1998

442 pages, ISBN 1-56592-292-1
LNUX

This practical guide is for anyone who

wants to support computer peripherals

under the linux operating system or who

wants to develop new hardware and run it

under Linux. It shows step-by-step how to

write a driver for character devices, block devices, and network

interfaces, illustrated with examples you can compile and run.

Focuses on portabifity.

Ttie Catiiedral & tiie Bazaar

THE CATHEDRAL

HHE BAZAAR

By Eric S Raymond

1st Edition October 1999

288pages, ISBN 1-56592-724-9

After Red Hat's stunning IPO, even people

outside the computer industry have now

heard of Linux and open-source software.

This book contains the essays, originally

pubhshed onhne, that led to Netscape's

decision to release their browser as open

source, put Linus Torvalds on the cover

of Forbes Magazine and Microsoft on the defensive, and helped

Linux to rock the world of commercial software. These essays

have been expanded and revised for this edition, and are in

print for the first time.

EfflClilAlfMOND

O'REILLY
TO order: 800-998-9938 • order@orellly.com • http://www.orellly.com/

Our products are available at a bookstore or software store near you.

FOR information: 800-998-9938 • 707-829-0515 • info@orellly.com

Linux

Using Samba
By Peter Kelly, Perry Donham &
David Collier-Broum

1st Edition November 1999

416pages, Includes CD-ROM

ISBN 1-56592-449-5

Samba turns a UNIX or Linux system into a

file and print server for Microsoft Windows

network clients. This complete guide to

Samba administration covers basic 2.0 configuration, security,

logging, and troubleshooting. Whether you're playing on one note

or a hill three-octave range, this book will help you maintain an

efficient and secure server Includes a CD-ROM of sources and

ready-to-install binaries.

Learning Red Hat Linux

By Bill McCarty

RED HAT
LIMJX

1st Edition September 1999

394pages, Includes CD-ROM

ISBN 1-56592-627-7

Learning Red Hat Linux will guide any new

Linux user through the installation and use

of the free operating system that is shaking

up the world of commercial software. It

demystifies Linux in terms famihar to Windows users and gives

readers only what they need to start being successful users of this

operating system.

MySQL & mSQL
'

I

By Rajidyjay Yarger, George Reese & Tim King

j|v .^^ 1st Edition July 1999

J^s^ 4^ 506pages, ISBN 1-56592-434-7

fSgrnrngfj^ ^s ^^^^ teaches you how to use MySQL

'HhQ&JI^B and mSQL, two popular and robust database

|[myj|^§2| products that support key subsets of SQL on

both Linux and UNIX systems. Anyone who
J!^ 1 knows basic C, Java, Perl, or Pydion can

write a program to interact with a database, either as a stand-

alone application or through a Web page. This book takes you

through the whole process, from installation and configuration to

programming interfaces and basic administration, hicludes ample

tutorial material.

Programming witti Qt

By Matthias Kalle Dalheimer

1st Edition April 1999

384pages, ISBN 1-56592-588-2

This indispensable guide teaches you how

to take full advantage of Qt, a powerful,

easy-to-use, cross-platform GUI toolkit, and

guides you through the steps of writing your

first Qt apphcation. It describes all of the

GUI elements in Qt, along widi advice about when and how to

use them. It also contains material on advanced topics Hke 2D

transformations, drag-and-drop, and custom im^e file filters.

Open Sources:

Voices from tfie Open Source Revolution

Edited by Chris DiBona,

Sam Ockman & Mark Stone

1st EditionJanuary 1999

280 pages, ISBN 1-56592-582-3

In Cpen Sources, leaders of Open Source

come together in print for the first time

to discuss the new vision of the software

industry they have created, through essays

that explain how the movement works, why it succeeds, and

where it is going. A powerful vision from the movement's spiritual

leaders, this book reveals the mysteries of how open development

builds better software and how businesses can leverage freely

available software for a competitive business advantage.

Programming with GNU Software

By Mike Loukides & Andy Oram

1st Edition December 1996

260 pages. Includes CD-ROM

ISBN 1-56592-112-7

This book and CD combination is a complete

package for programmers who are new to

UNIX or who would like to make better use

of the system. The tools come from Cygnus

Support, Inc., and Cyclic Software, companies that provide support

for free software. Contents include GNU Emacs, gcc, C and C++

libraries, gdb, RCS, and make. The book provides an introduction

to all these tools for a C programmer.

O'REILLY*
TO order: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

Our products m avahabu ai a hooksjohi oh sot im'iV s'lW near you.

FOR information: 800-998-9938 • 707-829-0515 • into@oreilly.com

UNIX Basics

Learning the UNIX Operating System, 4tl) Edition

ByJerry Peek, Grace Todino &John Strang

4th Edition December 1997

106pages, ISBN 1-56592-390-1

If you are new to UNIX, this concise

introduction will tell you just what you

need to get started and no more. The new

fourth edition covers the Linux operating

system and is an ideal primer for someone

just starting with UNIX or Linux, as well

as for Mac and PC users who encounter a UNIX system on the

Internet. This classic book, still the most effective introduction

to UNIX in print, now mcludes a quick-reference card.

Learning tiie vi Editor, 6tii Edition

By Linda Lamb & Arnold Robbiiis

6th Edition October 1998

348pages, ISBN 1-56592-426-6

This completely updated guide to editing with

vi, the editor available on nearly every UNIX

system, now covers four popular vi clones

and includes command summaries for easy

reference. It starts with the basics, followed

by more advanced editing tools, such as ex commands, global

search and replacement, and a new feature, multi-screen editing.

Learning tiie Korn Siieii

By Bill Rosenblatt

1st EditionJune 1993

Korn Shel 1 36o pages, isbn 1-56592-054-6

A thorough introduction to the Korn

shell, both as a user interface and as a

programming language. This book provides

a clear explanation of the Korn shell's

features, including ksh string operations,

co-processes, signals and signal handUng,

and command-hne interpretation. Learning the Korn Shell also

includes real-Hfe programming examples and a Korn shell

debugger (kshdb).

GNl Emac\s

Learning GNU Emacs, 2nd Edition

By Debra Cameron, Bill Rosenblatt &

^—

^

> Eric Raymond

t|^^BMB||^ 2nd Edition September 1996

^W^^B 560 pages, ISBN 1-56592-152-6

. J} A Learning GNUEmacs is m mlToduclion to

Version 1930 of the GNU Emacs editor, one

of the most widely used and powerful editors

available under UNIX. It provides a sohd

introduction to basic editing, a look at several important "editing

modes" (special Emacs features for editing specific types of

documents, including email, Usenet News, and the World Wide

Web), and a brief introduction to customization and Emacs LISP

programming. The book is aimed at new Emacs users, whether

or not they are programmers. Includes quick-reference card.

Using csii and tcsli

By Paul DuBois

1st Edition August 1995

^ 242pages, ISBN 1-56592-132-1

^^^^^^ Using csh and tcsh describes fi-om the

^HgBjH^ beginning how to use these shells interactively

JTS to get your work done faster with less typing.

^
You'll learn how to make your prompt tell

you where you are (no more pwd); use what

you've typed before (history); type long command lines with few

keystrokes (command and filename completion); remind yourself

of filenames when in the middle of typing a command; and edit a

botched command without retyping it.

]/oiume 3M: X Window System User's Guide,

Motif Edition, 2nd Edition

By Valerie Quercia & Tim OReilly

2nd EditionJanuary 1993

956pages, ISBN 1-56592-015-5

TheX Window System User's Guide,

MotifEdition orients the new user to

window system concepts and provides

detailed tutorials for many chent programs,

including the xtermterminal emulator

and the twm, uwm, and mwmwindow manners. Later chapters

explain how to customize the X environment. Revised for Motif

1.2 andXll Release 5.

O'REILLY
JO order: 800-998-9938 • order@orellly.com • http://www.oreilly.com/

Our products are available at a bookstore or software store near you.

FOR information: 800-998-9938 • 707-829-0515 • lnfo@oreilly.com

Web Programming

CGI Programming with Perl, 2nd Edition

By Shishir Gundavaram

2nd EditionJune 2000 (est.)

450pages (est.), ISBN 1-56592-419-3

E'-'^

—^sssssw*^ Completely rewritten, this comprehensive

|: explanation of CGI for those who want to

^
provide their own Web servers features Perl 5

techniques and shows how to use two popular

Perl modules, CGI.pm and CGI_lite. It also

covers speed-up techniques, such as FastCGI and mod_perl, and

new material on searching and indexing, security, generating

graphics through ImageMagick, database access through DBI,

Apache configuration, and combining CGI with JavaScript.

Dynamic HTML: The Definitive Reference

By Danny Goodman

1st Edition July 1998

1088pages, ISBN 1-56592-494-0

Dynamic HTML: The Definitive Reference is an

indispensable compendium for Web content

developers. It contains complete reference

material for all of the HTML tags, CSS style

attributes, browser document objects, and

JavaScript objects supported by the various standards and the latest

versions of Netscape Navigator and Microsoft hitemet Explorer

Frontier: The Definitive Guide

By Matt Neuburg

^^Ijk 1st Edition February 1998

(^^^^ 616pages, ISBN 1-56592-383-9

^^Kf This definitive guide is the first book devoted

^ * exclusively to teaching and documenting

Userland Frontier, a powerful scripting

environment for Web site man^ement and

system level scripting. Packed with examples,

advice, tricks, and tips, Frontier: The Definitive Guide teaches you

Frontier from the ground up. Learn how to automate repetitive

processes, control remote computers across a network, beef

up your Web site by generating hundreds of related Web p^es

automatically and more. Covers Frontier 4.2.3 for the Macintosh.

JavaScript: The Definitive Guide, 3rd Edition

By David Flanagan

^^^ ^ 3rd Edition June 1998

jflHyn 800 pages, ISBN 1-56592-392-8

W^^^^ This third edition of the definitive reference

to JavaScript covers the latest version of the

language, JavaScript 1.2, as supported by

Netscape Navigator 4 and Internet Explorer

4. JavaScript, which is being standardized

under the name ECMAScript, is a scripting language that can be

embedded direcdy in HTML to give Web pages programming-

language capabihties.

Learning VBScript

By Paul Lomax

1st Edition July 1997

616pages, Includes CD-ROM

ISBN 1-56592-247-6

This definitive guide shows Web developers

how to take fiill advantage of client-side

scripting with the VBScript language, hi

addition to basic language features, it covers

the hitemet Explorer object model and discusses techniques for

client-side scripting, Uke adding ActiveX controls to a Web page

or validating data before sending it to the server hicludes CD-ROM

with over 170 code samples.

ASP in a Nutshell

_ By A. Keyion Weissinger

^fc 1st Edition February 1999

^P^ 426pages. ISBN 1-56592-490-8

^HJHjjjk This detailed reference contains all—~™». the information Web developers need to

create effective Active Ser\er Pages (ASP)

applications. It focuses on how features

are used in a real appUcation and highhghts

little-known or undocumented aspects,

enabhng even experienced developers to advance their ASP

apphcations to new levels.

OREILLY
TO order: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUH PRODUCJS AHI AVAIIAHII AJ A HOOKSfORl OH SOflWAHl SJORt NtAR)Oil

FOR information: 800-998-9938 • 707-829-0515 • info@oreilly.com

Web Programming

Writing Apaciie l^odules witii Perl and C
By Lincoln Stein & Doug MacEachem

1st Edition March 1999

746pages, ISBN 1-56592-567-X

This guide to Web programming teaches

you how to extend the capabihties of die

Apache Web server. It explains die design

of Apache, mod_perl, and the Apache API,

then demonstrates how to use them to

rewrite CGI scripts, filter HTML documents on the server-side,

enhance server log functionahty, convert file formats on the fly,

and more.

JavaScript Application Cookbook

ByJerry Bradenbaugh

J^ltf^^^ 1st Edition September 1999

#^^^^^ 478pages, ISBN 1-56592-577-7

^^ VWr JavaScriptApplication Cookbook hterally

hands the Webmaster a set of ready-to-go,

chent-side JavaScript apphcations widi

diorough documentation to help them

understand and extend the applications.

By providing such a set of ^c^'^'^c^MonsJavaScript Application

Cookbook allows Webmasters to immediately add extra

functionality to their Web sites.

Webmaster in a Nutshell, 2nd Edition

By Stephen Spainhour & Robert Eckstein

2nd EditionJune 1999

540 pages, ISBN 1-56592-325-1

This indispensable book takes all the

essential reference information for the

Web and pulls it together into one volume.

It covers HTML 4.0, CSS, XML, CGI, SSI,

JavaScript 1.2, PHP, HTTP 1.1, and

administration for the Apache server.

DocBook: The Definitive Guide

By Norman Walsh & Leonard Muellner

1st Edition October 1999

652 pages, Includes CD-ROM

ISBN 1-56592-580-7

DocBook is a Document Type Definition

(DTD) for use with XML (the Extensible

Markup Langu^e) and SGML (the Standard

GeneraUzed Markup Language). DocBook

lets audiors in technical groups exchange and reuse technical

mformation. This book contains an introduction to SGML, XML,

and die DocBook DTD, plus the complete reference information

for DocBook.

Practical Internet Groupware

ByJon Udell

"^^^^
1st Edition October 1999

524pages, ISBN 1-56592-537-8

^^^ This revolutionary book tells users,

M ^^^St programmers, IS managers, and system

^^MHH^ administrators how to build Internet

^"^I^BiP groupware apphcations that organize the

casual and chaotic transmission of onfine

mformation into useful, disciphned, and documented data.

Java Servlet Programming

ByJason Hunter with William Crawford

1st Edition November 1998

-,iL 528pages, ISBN 1-56592-391-X

VA) Java servlets offer a fast, powerful, portable

^^^^ replacement for CGI scripts. Java Servlet

^^^^ Programming covers everything you need

^HBBI^ to know to write effective servlets. Topics

include: serving dynamic Web content,

maintaimng state information, session tracking, database

connectivity using JDBC, and applet-servlet communication.

O'REILLY'
TO order: 800-998-9938 • order@oreilly.com • http://www.orellly.com/

Our products are available at a bookstore or software store near you.

FOR information: 800-998-9938 • 707-829-0515 • info@orellly.com

In a Nutshell Quick References

Perl in a Nutshell

By Ellen Sieier, Stephen ipainhour &
Natkui Pahrardhau

1st Edition December 1998

6^4 pages. ISB.X 1-56592-286-7

The perfect companion for working

programmers, Perl in a Nutshell is a

comprehensive reference guide to the

world of Perl. It contains everything you

need to know for all but the most obscure

Perl questions. This wealth of information is packed into an

efificient, extraordinarily usable format.

SCO UNIX In a Nutshell

By Ellie Cutler & the Staffof O'Reilly & AssociatesA 1st Edition February 1994

\
590 pages. ISBS 1-56592-03^-6

The desktop reference to SCO UNIX and

Open Desktop (R), this version of UNIX in

a Nutshell shows you what's under the

hood of your SCO system. In addition to

all commands and options, this reference

covers shell syntax for the Bourne, Kom, C,

and SCO shells; compiler and debugging commands; net>^'orking

vvith email, TCP/IP. NPS, and WCP; and SN'stem administration

commands.

Tcl/Tk In a Nutshell

By Paul Raines & Jeff Tranter

1st Edition March 1999

456pages. LSBX 1-56592-433-9

The Tel language and Tk graphical toolkit

are powerful building blocks for custom

applications. This quick reference briefly

describes every command and option in

the core Tcl/Tk distribution, as well as the

most popular extensions. Keep it on your

desk as you write scripts, and you'll be able to quickly And the

particular option you need.

UML In a Nutshell

By Sifian Si Alhir

1st Edition September 1998

290 pages. ISBN 1-56592-448-7

The Unified Modeling Language (UML),

T 11 JfT
^^^ ^^ ^^ ^^ ^ ^^ history of systems

UJVIL* 1

engineering, gives practitioners a common

language. This concise quick reference

explains how to use each component of the

langu^e, including its extension mechanisms

and the Object Constraint Language (OCL). A uitorial with realistic

examples brings those new to the UML quickly up to speed.

UNIX In a Nutshell: System V Edition, 3rd Edition

By Arnold Robbins

3rd Edition September 1999

616 pages. ISBN 1-56592-42^-4

The bestseUing, most informative UMX
reference book is now more complete

and up-to-date. Not a scaled-do\Mi quick

reference of common commands, UNIX in

a Nutshell is a complete reference containing

all commands and options, with descriptions

and examples that put the commands in context. For all but the

thorniest UNIX problems, this one reference should be all you

need. Covers System V Release 4 and Solaris 7.

Year 2000 in a Nutshell

By Sorman Shakespeare

1st Edition September 1998

330 pages. ISBN 1-56592-421-5

This reference guide addresses the awareness,

the managerial aspect, and the technical issues

of the \'ear 2000 computer dilenmia, pro\iding

a compact compendium of solutions and

reference information useful for addressing

the problem. Includes a comprehensive Cobol

reference for due- related functions in many

includes templates, worksheets, and action

quick reference, plus

other languages. .\lso

plans.

OREILLY
TO order: 800 998-9938 • order(^oreilly.com • http://www.oreilly.com/

Our PRODUCJS AHL AWMhWlt AJ a HOOhSIOHt oh SOH;\AHt SIORt NtAH)Oll

FOR information: 800-998-9938 • 707-829-0515 • info@oreilly.com

How to stay in touch with O'Reiliy

1. Visit Our Award-Winning Web Site

http://www. oreilly, com/

*"Top 100 Sites on the Web" —PCMagazine

^"Top 5% Web sites" —Point Communications

*"3-Star site" —TheMcKinley Group

Our web site contains a library of comprehensive product

information (including book excerpts and tables of

contents), downloadable software, background articles,

interviews with technology leaders, links to relevant sites,

book cover art, and more. File us in your Bookmarks or

Hothst!

2. Join Our Email Mailing Lists

New Product Releases
To receive automatic email with brief descriptions of all

new O'Reilly products as they are released, send email to:

listproc@online.oreilly.coin

Put the following information in the first line of your

message (not in the Subject field):

subscribe oreilly-news

O'Reilly Events

If you'd also Uke us to send information about trade show

events, special promotions, and other O'Reilly events,

send email to:

listproc@online.oreilly.coni

Put the following information in the first line of your

message (not in the Subject field):

subscribe oreilly-events

3. Get Examples from Our Books

via FTP
There are two ways to access an archive of example files

from our books:

Regular FTP
• ftp to:

f^.oreilly.com

(login: anonymous

password: your email address)

• Point your web browser to:

ftpy/ftp.oreilly.com/

FTPMAIL
• Send an email message to:

ftpniail@online.oreilly.coni

(Write "help" in the message body)

4. Contact Us via Email
order®oreilly.com

To place a book or software order online. Good for

North American and international customers.

subscriptions@oreilly.com

To place an order for any of our newsletters or

periodicals.

books@oreilly.com

General questions about any of our books.

software@oreilly.com
For general questions and product information about

our software. Check out O'Reilly Software Online at

http'y/software.oreilly.com/ for software and technical

support information. Registered O'Reilly software users

send your questions to: website-support@oreilly.com

cs@oreilly.com

For answers to problems regarding your order or our

products.

booktech@oreilly.com

For book content technical questions or corrections.

proposals@oreilly.com

To submit new book or software proposals to our

editors and product managers.

intemational@oreilly.com

For information about our international distributors

or translation queries. For a fist of our distributors

outside of North America check out:

httpi/Avww.oreilly.comAvww/order/country.html

O'Reilly & Associates, Inc.

101 Morris Street, Sebastopol, CA 95472 USA

TEL 707-829-05 1 5 or 800-998-9938

(6am to 5pm PST)

FAX 707-829-0104

O'REILLY'
TO order: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

Our products are available at a bookstore or software store near you.

FOR information: 800-998-9938 • 707-829-0515 • info@oreilly.com

International Distributors
UK, Europe, Middle East and

Africa (except France, Germany,

Austria, Switzerland, Luxembourg,

Liechtenstein, and Eastern Europe)

inquiries

O'Reilly UK Limited

4 Castle Street

Famham

Surrey, GU9 7HS

United Kingdom

Telephone: 44-1252-711776

Fax:44-1252-734211

Email: josette@oreillycom

ORDERS

Wiley Distribution Services Ltd.

1 Oldlands Way

Bognor Regis

West Sussex P022 9SA

United Kingdom

Telephone: 44-1243-779777

Fax: 44-1243-820250

Email: cs-books@wileyco.uk

France

Orders

GEODIF

61, Bd Saint-Germain

75240 Paris Cedex 05, France

Tel: 33-1-44-41-46-16 (French books)

Tel: 33-1-44-41-11-87 (English books)

Fax:33-1-44-41-11-44

Email: distribution@eyroUes.com

Inquiries

fidiUons O'Reilly

18 rue Seguier

75006 Paris, France

Tel: 33-1-40-51-52-30

Fax:33-1-40-51-52-31

Email: france@editions-oreillyfr

Germany, Switzerland,

Austria, Eastern Europe,

Luxembourg, and Liechtenstein

inquiries & Orders

O'Reilly Verlag

Balthasarslr. 81

0-50670 Koln

Germany

Telephone: 49-221-973160-91

Fax:49-221-973160-8

Email: anfragen@oreillyde (inquiries)

Email: order@oreillyde (orders)

Canada (French language books)

Les Editions Flammarion Itee

375, Avenue Laurier Ouest

Montreal (Quebec) H2V 2K3

Tel: 00-1-514-277-8807

Fax: 00-1-514-278-2085

Email: info@flammarion.qc.ca

Hong Kong

City Discount Subscription Service, Ltd.

Unit D, 3rd Floor, Van's Tower

27 Wong Chuk Hang Road

Aberdeen, Hong Kong

Tel: 852-2580-3539

Fax: 852-2580-6463

Email: citydis@ppn.com.hk

Korea

Hanbit Media, Inc.

Sonyoung Bldg. 202

Yeksam-dong 736-36

Kangnam-ku

Seoul, Korea

Tel: 822-554-9610

Fax: 822-556-0363

Email: hant93@chollian.dacom.co.kr

Philippines

Mutual Books, Inc.

429-D Shaw Boulevard

Mandaluyong City, Metro

Manila, Phihppines

Tel: 632-725-7538

Fax:632-721-3056

Email: mbikikog@mnl.sequel.net

Taiwan

O'Reilly Taiwan

No. 3, Lane 131

Hang-Chow South Road

Section 1, Taipei, Taiwan

Tel: 886-2-23968990

Fax: 886-2-23968916

Email: taiwan@oreilly.com

China

O'Reilly Beijing

Room 2410

160, FuXingMenNeiDaJie

XiCheng District

Beijing, China PR 100031

Tel: 86-10-66412305

F;lx: 86-10-86631007

Email: beijing@oreillycom

O'REILLY*
TO order: 800-998-9938 • order@oreilly.coni • http://www.oreilly.com/

Our producjs ahi avahahii ai a HOOKsroRt or soFrwARt: sroRf war you.

FOR information: 800-998-9938 • 707-829-0515 • info@oreilly.com

India

Computer Bookshop (India) Pvt. Ltd.

190 Dr D.N. Road, Fort

Bombay 400 001 India

Tel: 91-22-207-0989

Fax: 91-22-262-3551

Email: cbsbom@giasbm01.vsnl.net.in

Japan

O'Reilly Japan, Inc.

Kiyoshige Building 2F

12-Bancho, Sanei-cho

Shinjuku-ku

Tokyo 160-0008 Japan

Tel: 81-3-3356-5227

Fax: 81-3-3356-5261

Email: japan@oreillycom

All Other Asian Countries

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol,CA 95472 USA

Tel: 707-829-0515

Fax: 707-829-0104

Email: order@oreilly.com

Australia

WoodsLane Pty., Ltd.

7/5 Vuko Place

Warriewood NSW 2102

Australia

Tel: 61-2-9970-5111

Fax: 61-2-9970-5002

Email: info@woodslane.com.au

New Zealand

Woodslane New Zealand, Ltd.

21 Cooks Street (PO. Box 575)

Waganui, New Zealand

Tel: 64-6-347-6543

Fax: 64-6-345-4840

Email: info@woodslane.com.au

Latin America

McGraw-Hill Intenimericana

Editores, S.A. de C.V.

CedroNo. 512

Col. Atlampa

06450, Mexico, D.E

Tel: 52-5-547-6777

Fax: 52-5-547-3336

Enuiil: mcgniw-hill@infoscl.net.mx

>-.

o

fVI

u
c On

1 6

00

1

ioa S "o §
^H o. 00^ f-) o >)

^ ^ ^
O

c52

I ®

O'REILLY WOULD LIKE TO HEAR FROM YOU
Which book did this card come from?

Where did you buy this book?

Bookstore Computer Store

Direct from O'Reilly Class/seminar

Bundled with hardware/software

Other

What operating system do you use?

UNIX Macintosh

Windows NT PC(Windows/DOS)

Other

What is your job description?

System Administrator

Network Administrator

Web Developer

Other

Programmer

Educator/Teacher

Please send me O'Reilly's catalog, containing

a complete listing of O'Reilly books and

software.

Name Company/Organization

Address

City State Zip/Postal Code Country

Telephone Internet or other email address (specify network)

Nineteenth century wood engraving

of a bear from the OReilly &

Associates Nutshell Handbook®

Using & Managing UUCP.

^OST CA/?£)^ PLACE

STAMP

HERE

NO POSTAGE

NECESSARY IF

MAILED IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL CA

Postage will be paid by addressee

O'Reilly & Associates, Inc.

1 1 Morris Street

Sebastopol, CA 95472-9902

II.I...I.I..I..II...ImI.II.I..I.I..II I.I. .11. 1

UNIX/Linux

O'REILLY

Learning the bash Shell

Learning the bash Shell, Second Edition, is the definitive guide to bash, the Free

Software Foundation's "Bourne Again Shell." It's a freely available replacement for the

popular UNIX Bourne shell, and is also the shell of choice for Linux users around the

world.

You'll find this guide valuable whether you're interested in bash as a user interface or for its

powerful programming capabilities. It will teach you how to use bash's advanced command-line

features, like command history, command-line editing, and command completion.

This book also introduces shell programming, a skill no UNIX or Linux user should be without.

The book demonstrates what you can do with bash's programming features. You'll learn about

flow control, signal handling, and command-line processing and I/O. There is also a chapter on

debugging your bash programs.

Finally, Learning the bash Shell, Second Edition, shows you how to acquire, install, configure,

and customize bash, and gives advice to system administrators managing bash for their user

community.

This second edition covers all of the features of bash version 2.0, while still applying to bash

version Lx. New features include the addition of one-dimensional arrays, parameter expansion,

and more pattern-matching operations, bash 2.0 provides even more conformity with POSIX.2

standards, and in POSIX.2 mode, it is completely POSIX.2 conformant. This second edition also

covers several new commands, security improvements, additions to readline, improved

configuration and installation, and an additional programming aid—the bash shell debugger.

Unfailingly practical and packed with examples and questions for future study, Learning the hash

Shell, Second Edition, is a valuable asset for Linux and other LINIX users.

aEED

* I INI 'X /nf()n)uili(>n hicludcd

US $29 95
ISBN 1-56592 --347-2 CAN $42.95

90000

9 781565"923478

Visit O'Reilly on the Web at www.oreilly.com

RepKover-

6 "'36920"923A7

