
Advanced

UNIX'
Programming

Advanced UNIX
Programming

Warren W. Gay

Sams Publishing
A Division of Macmillan USA, Inc.

201 West 103rd St., Indianapolis, Indiana, 46290 USA

Advanced UNIX Programming
Copyright © 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,

or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,

without written permission from the publisher. No patent liability is assumed with respect

to the use of the information contained herein. Although every precaution has been taken

in the preparation of this book, the publisher and author assume no responsibility for errors

or omissions. Nor is any liability assumed for damages resulting from the use of the infor¬

mation contained herein.

International Standard Book Number: 067231990X

Library of Congress Catalog Card Number: 00-103678

Printed in the United States of America

First Printing: October 2000

02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trade¬

marks or service marks have been appropriately capitalized.

Sams Publishing cannot attest to the accuracy of this informa¬

tion. Use of a term in this book should not be regarded as affect¬

ing the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and

as accurate as possible, but no warranty or fitness is implied.

The information provided is on an “as is” basis. The author and

the publisher shall have neither liability nor responsibility to any

person or entity with respect to any loss or damages arising from

the information contained in this book.

ASSOCIATE PUBLISHER

Michael Stephens

ACQUISITIONS EDITOR

Carol Ackerman

DEVELOPMENT EDITOR

Tony Amico

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

George E. Nedeff

COPY EDITOR

Gene Redding

INDEXERS

Greg Pearson
Heather McNeill

PROOFREADER

Candice Hightower

TECHNICAL EDITOR

Hang Lau

TEAM COORDINATOR

Pamalee Nelson

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Alan Clements

CONTENTS AT A GLANCE

INTRODUCTION 1

PART I: Files and Directories 7

CHAPTER 1 Compiler Notes and Options .9

CHAPTER 2 UNIX File System Objects.33

CHAPTER 3 Error Handling and Reporting.51

CHAPTER 4 UNIX Input and Output .65

CHAPTERS File Locking .87

CHAPTER 6 Managing Files and Their Properties .105

CHAPTER 7 Directory Management .129

CHAPTER 8 Temporary Files and Process Cleanup .151

PART II: Library Functions 171

CHAPTER 9 UNIX Command-Line Processing .173

CHAPTER 10 Conversion Functions .189

CHAPTER 11 UNIX Date and Time Facilities .207

CHAPTER 12 User ID, Password, and Group Management .227

CHAPTER 13 Static and Shared Libraries .247

CHAPTER 14 Database Library Routines .273

PART III: Advanced Concepts 305

CHAPTER 15 Signals .307

CHAPTER 16 Efficient I/O Scheduling .329

CHAPTER 17 Timers .351

CHAPTER 18 Pipes and Processes .371

CHAPTER 19 Forked Processes .385

CHAPTER 20 Pattern Matching .405

CHAPTER 21 Regular Expressions .431

CHAPTER 22 Interprocess Communications .447

CHAPTER 23 Message Queues .457

CHAPTER 24 Semaphores .481

CHAPTER 25 Shared Memory .515

CHAPTER 26 Memory-Mapped Files .537

CHAPTER 27 X Window Programming .557

INDEX 577

TABLE OF CONTENTS

INTRODUCTION.1

PART I: Files and Directories 7

CHAPTER 1: Compiler Notes and Options.9

Online Manual Pages.9

Manual References Used in This Book.10

man(l) Resources on the Internet.11

Example Code in This Book .12

Compiling C Programs .13

The C Compile Command .13

Managing Compiler Warnings.18

Working with Compiler Warning Messages.19

Compiling to Standards.25

FreeBSD 3.4-Release Feature Tests .27

HPUX 10.2 Feature Tests .28

AIX 4.3 Feature Tests .28

SunOS 5.6 Feature Tests.29

Feature Test Summary .30

Summary.30

CHAPTER 2: UNIX File System Objects.33

File System Objects.33

Regular Files.33

Directories .34

Block Devices .35

Character Devices.36

Named Pipes (FIFOs).37

Sockets.38

Symbolic Finks.39

Special Files .39

Permissions.41

Access of Regular Files .41

Access of Directories.42

Working with Files Under UNIX.43

Opening and Closing Files .44

Opening Special Files.46

Working with Sockets.47

Duplicating File Descriptors.47

UNIX File VO .49

Summary.50

ADVANCED UNIX PROGRAMMING

CHAPTER 3: Error Handling and Reporting.51

Determining Success or Failure.51

General Rules for Error Indication .51

Exceptions to the General Rule.51

Classifying Successful Return Values.52

Other Return Indications .52

Determining the Reason for Failure.52

The Old errno Value.53

Referencing Error Codes by Name .54

Applying errno Correctly.55

The New errno Value .56

Declaring the New errno Variable.56

Using the New errno Variable .57

Reporting on errno Values .57

Using the perror(3) Function. .57

Using the sys_errlist[] Array.58

The strerror(3) Function.60

Testing for Errors Using stdio (3) .62

Pitfalls of the terror (3) Function .62

Avoiding the f close(3) Pitfall .63

Delaying the Reporting of an Error.63

Summary.64

CHAPTER 4: UNIX Input and Output .65

The umask(2) Function and umask Bits .65

Permission Bits.65

Understanding the Need for umask .67

Understanding the Scope of umask.67

Using the umask(2) Function.68

Example Using the umask Value.68

The umask(2) Function .68

The creat (2) Function .70

Reading and Writing.70

Introducing read(2) andwrite(2) .71

Applying UNIX I/O.72

Seeking Within a File .74

Applying lseek(2) .74

Truncating Files.75

The truncate(2) Function.76

The ftruncate(2) Function.76

Sparse Files.77

Creating a Sparse File.77

CONTENTS vii

Forcing Data to Media.79

The sync(2) Function .80

The Disadvantages of sync(2) .81

The fsync(2) Function .81

Scattered Reading and Writing.81

The readv(2) andwritev(2) Functions .82

Determining Your tty Name.83

Summary.85

CHAPTERS: File Locking.87

Understanding Lock Types .87

The Lock File Technique.89

Limitations of the Lock File .93

Using an Advisory Lock on the Entire File .94

Locking with flock (2) 94

Record Locking.96

Locking with lockf (2) 96

POSIX Locking with fcntl (2) 99

Mandatory Locking.102

Enabling Mandatory Locking .103

Summary.103

CHAPTER 6: Managing Files and Their Properties .105

Removing Files .105

Linking Files.106

Moving Files .107

Obtaining File System Information .108

The stat(2) Function .109

The fstat (2) Function .Ill

Working with File Properties .Ill

Testing for File Type .117

Modification, Access, and Creation Times.118

Testing Access to a File .119

Symbolic Links .120

The symlink(2) Function .120

The lstat(2) Function .120

Reading the Contents of the Symbolic Link with readlink(2) .121

File Permissions and Ownership.122

Changing Permissions.122

Changing Ownership .123

Named Pipes (FIFOs) .124

Obtaining Size and Configuration Information .125

Summary.128

Viii ADVANCED UNIX PROGRAMMING

CHAPTER 7: Directory Management .129

Obtaining the Working Directory .129

Specifying a Null Buffer Argument .130

Changing the Current Directory .130

Saving a Working Directory .131

A Limitation of fchdir(2) .132

Making a New Directory.132

Removing a Directory .133

Opening a Directory for Searching.134

Closing a Directory .135

Searching a Directory.136

Rewinding to the Start of a Directory.138

Saving Position Within a Directory .138

Restoring Position Within a Directory.139

Scanning a Directory. 139

Declaring Your Own select Function for scandir(3) .140

Declaring Your Own compar Function for scandir(3) .140

SysV Variations.141

A scandir(3) Example.141

Walking a Directory Structure.144

Changing Your Root Directory.146

Summary.149

CHAPTER 8: Temporary Files and Process Cleanup .151

Creating Temporary Files.151

Using the tmpnam(3) Function.151

Using the mktemp(3) Function.154

Using the mkstemp(3) Function.155

Using the mkstemps (3) Function .157

Using the tmpfile (3) Function.157

Using the tempnam(3) Function.159

Making Files Temporary .161

Using unlink(2) to Make Files Temporary.161

Performing Exit Cleanup.162

Using the at ex it (3) Function.162

Using C++ Destructors .165

Avoiding Cleanup with _exit (2) 169

Summary.

CONTENTS ix

PART II: Library Functions 171

CHAPTER 9: UNIX Command-Line Processing .173

Command-Line Conventions.173

Using Multiple Options.173

Combining Multiple Options .174

Using Options with Arguments.174

Identifying Options or Arguments .174

Arguments That Look Like Options.174

Thegetopt(3) Function.175

The getopt(3) External Values.175

Thegetopt(3) Function Call.176

Defining the optstring Argument .177

Defining an Option-Processing Loop .177

The getsubopt (3) Function.179

Determining the End of Suboption Processing .180

A Full getsubopt (3) Example .180

GNU Long Options Extension.183

The GNU getopt_long(3) Function .183

Understanding the option Structure.184

Setting Up the option Structure.184

Using a Null option.flag Pointer .184

Using a Non-Null option.flag Pointer .185

Summary.187

CHAPTER 10: Conversion Functions.189

Simple Conversion Functions .189

Scrutinizing the Functions atoi(3) and atol(3) .189

The atof (3) Function .191

Using sscanf (3) for Conversion and Validation.192

Applying sscanf (3) to Numeric Conversion .192

Testing Numeric Conversions Using sscanf (3) .193

Improving the s s c a n f (3) Conversion .193

The Limitations of sscanf (3) 194

The strtol(3) and strtoul(3) Functions.194

Using the strtol(3) Function.195

Testing for Errors .195

Testing the Conversion Pointer.196

Performing Multiple Conversions.196

Using the base Argument for Radix Conversions .196

Testing for Overflows and Underflows .199

Testing for strtoul(3) Overflows .201

ADVANCED UNIX PROGRAMMING

Large Integer Conversions.201

BSD strtoq(3) and strtouq(3) Functions.202

The strtod(3) Function.202

Using the strtod (3) Function.203

Testing for Math Errors.203

Flowchart of Math Error Tests.204

Summary.205

CHAPTER 11: UNIX Date and Time Facilities .207

Time Zones.207

Introducing World Time Standards.208

Defining the Date and Time Data Type.209

Time Conversion Functions.210

Converting Time to String Form Using ctime(3) .212

The ctime_r(3) Function .213

The localtime(3) and gmtime(3) Functions ..214

The Members of the struct tm .216

Conversion of Date/Time Components to Strings Using the

asctime(3) Function.217

The tzset (3) Function .218

Creating Epoch Time Values with the mktime (3) Function.220

Customizing Date and Time Formats with strftime(3) .221

The strftime(3) Format Specifiers .222

Implementing the DTime:: strftime () Method .223

Testing Class DTime .224

Understanding the Effects of Locale .f.226

Summary.226

CHAPTER 12: User, Password, and Group Management .227

Introduction to UNIX User Management.227

Understanding Username and User ID Numbers .228

Understanding Username root .228

The Group Name and Group ID Numbers .228

Understanding gid Zero .228

Thegetuid(2) and geteuid(2) Functions.228

Thegetgid(2) and getegid (2) Functions.229

Real, Effective, and Saved User ID.229

The Effective User ID .229

The Real User ID.229

The Saved User ID .230

The Identification Role Summary .230

Setting User ID .230

Setting Group ID.232

CONTENTS

The FreeBSD Function issetugid(2) .232

The /etc/passwd File.233

The Comment Field .234

Using the & Feature of the Comment Field .234

The Password Database Routines.235

The passwd Structure .235

Error Handling for getpwent (3) 235

The fgetpwent(3) Function.236

The putpwent(3) Function.236

The getpwuid(3) Function.237

The getpwnam(3) Function.237

The Group Database .238

The /etc/group File.238

Functions getgrent(3), setgrent(3), and endgrent(3) .239

Understanding the group Structure.239

The fgetgrent (3) Function.240

The getgrgid(3) Function.241

The getgrnam(3) Function.241

Related Re-entrant Functions.241

Supplementary Groups .242

The getgroups(2) Function.242

Setting Groups with setgroups(2) .244

Setting Groups for a Specific Username .245

Summary.246

CHAPTER 13: Static and Shared Libraries .247

The Static Library .247

Examining the Process Memory Image .247

Implementing a Static Library.248

Using the ar (1) Command to Create an Archive .253

Listing the Contents of an Archive .254

Obtaining a Verbose Listing of an Archive.254

Linking with Static Libraries.255

The Shared Library .256

Limitations of Static Libraries .256

Creating a Shared Library.257

Linking with a Shared Library.257

Choosing Static or Dynamic Libraries.257

Listing Shared Library References.258

The Dynamic Loader.258

Position-Independent Code .260

Controlling What Is Shared.261

xii ADVANCED UNIX PROGRAMMING

Comparing Static and Shared Libraries .261

The Benefits of Static Libraries .262

The Benefits of Shared Libraries .263

Dynamic Library Loading .264

Opening the Shared Library .264

Reporting Errors.265

Obtaining a Shared Reference Pointer.265

Closing a Shared Library.266

Initialization and Destruction .266

Applying Dynamic Loading .266

HPUX 10.2 Dynamic Library Loading.269

Summary.271

CHAPTER 14: Database Library Routines.273

The NDBM Database.274

Error Handling. 274

Opening an NDBM Database .275

Closing an NDBM Database .276

Storing Information .276

Fetching Information .277

Deleting Information.278

Visiting All Keys.278

Deleting Keys with dbm_nextkey (3) 279

An NDBM Database Example .280

Directory Software .280

The Dbm Class./.283

The InoDb Class .288

The Snapshot Application .291

Running the Snapshot Application.299

Visiting All Keys and Deletion.301

Summary.303

PART III: Advanced Concepts 305

CHAPTER 15: Signals.307

Understanding UNIX Signals.307

Reliable and Unreliable Signals .308

The Unreliable signal(3) API .308

The Reliable Signal API .311

Emptying a Signal Set.312

Filling a Signal Set .312

Adding Signals to a Signal Set.312

Removing Signals from a Signal Set.313

Testing for Signals in a Set.313

CONTENTS xiii

Setting Signal Actions.314

Signal Action Flags.315

Applying Reliable Signals .316

Controlling Signals .317

Blocking Signals .318

Obtaining Pending Signals .319

The sigsuspend(2) Function.319

Applying the alarm(3) Function.320

Calling Functions from a Signal Handler.322

Avoiding Re-entrant Code Issues.324

Re-entrancy Issues with errno in a Signal Handler .324

Applying the EINTR Error Code.325

Raising Signals.326

Summary.328

CHAPTER 16: Efficient I/O Scheduling .329

Non-Blocking I/O .329

Opening Files in Non-Blocking Mode.330

Setting Non-Blocking Mode .330

Performing Non-Blocking I/O.331

The Problem with Non-Blocking I/O .333

I/O Scheduling Functions .333

File Descriptor Sets and Their Macros.334

The timeval Structure .335

The select (2) Function .335

Using the select (2) Function.338

I/O Polling.342

Poll Events .344

Poll Priorities .345

A poll(2) Example .345

Summary.349

CHAPTER 17: Timers.351

The Sleep Functions .351

The UNIX Implementation of sleep (3) 352

Sleeping in Microsecond Units .355

Sleeping in Nanosecond Units .357

Interval Timer Functions.361

The Interval Timer API.361

Interval Timer Macros.363

Interval Timer Restrictions .363

Creating One-Shot Timers .364

Establishing Repeating Timers .366

Summary.369

XIV ADVANCED UNIX PROGRAMMING

CHAPTER 18: Pipes and Processes.371

UNIX Pipes.371

Creating UNIX Pipes.371

Opening Pipes to Other Processes.373

Reading from Pipes.374

Writing to Pipes .375

Closing a Pipe.378

Handling a Broken Pipe .378

External Processes Without Pipes .379

Interpreting system(3) Return Values .381

Invoking Commands .381

Scrutinizing the system(3) Function .384

Summary.384

CHAPTER 19: Forked Processes.385

Overview of the UNIX Fork Process .:.385

The fork(2) Function.387

Applying fork(2) 388

Waiting for Process Completion.389

Zombie Processes .389

The wait (2) Function .391

Interpreting the Exit Status.393

Other Wait System Calls.395

Executing New Programs.397

Other exec(2) Family Members.401

Summary. 403

CHAPTER 20: Pattern Matching.405

Shell Patterns.405

The * Meta-Character.406

The ? Meta-Character.406

The [and] Meta-Characters.406

The ! Meta-Character.407

Escaping Characters with \ 408

String Pattern Functions .408

The glob(3) Function.416

Return Values for glob(3) .417

Summary.429

CHAPTER 21: Regular Expressions .431

Understanding Regular Expressions.431

Anchors .431

Sets. 432

CONTENTS

Range .433

Character Classes .433

The . Meta-Character .433

Parenthesized Match Subexpression .434

Atoms.434

Piece.434

Branch .435

Expression Bounds.436

Quoted Characters .436

The Regular Expression Library.436

Compiling Regular Expressions.437

Reporting Errors.438

Freeing Regular Expressions.439

Matching Regular Expressions .440

Applying Regular Expressions.441

Summary.446

CHAPTER 22: Interprocess Communication Concepts.447

Types of IPC .447

The Message Queue.448

Shared Memory.450

Semaphores.450

Referencing IPC Resources.452

The IPC Key Value .452

Creating an IPC Resource .452

Accessing by IPC Key.453

Accessing by IPC ID .454

Destroying IPC Resources .454

Summary.455

CHAPTER 23: Message Queues .457

Controlling a Message Queue .457

Creating Message Queues.457

Accessing a Message Queue .457

Destroying a Message Queue.458

Obtaining Message Queue Information.458

Altering a Message Queue.459

Sending and Receiving Messages.460

Sending Messages.460

Receiving Messages.461

Applying Message Queues.463

Summary.479

xvi ADVANCED UNIX PROGRAMMING

CHAPTER 24: Semaphores.481

Semaphore Utility Program.481

Creating and Accessing Semaphore Sets .483

Destroying Semaphore Sets.486

Controlling Semaphores .488

Querying Semaphore Sets.488

Changing Semaphore Access.492

Querying the Value of a Semaphore .494

Query the Entire Semaphore Set of Values .495

Change the Value of a Semaphore.496

Change the Entire Semaphore Set of Values .497

Querying the Process ID for a Semaphore.498

Query the Number of Processes Waiting for Notifies.499

Query the Number of Processes Waiting for Zero .500

Using Semaphores. 500

Waiting on Semaphores .502

Notifying Semaphores.505

Waiting for Zero .505

Semaphore Undo Processing.506

The semop Utility Program .507

Summary.514

CHAPTER 25: Shared Memory.515

The globvar Utility Program.515

Creating Global Variable Pools .516

Destroying Global Variable Pools . 516

The GLOBVAR Environment Variable.517

Creating Global Variables .517

Accessing Global Variables .517

Removing Global Variables.518

Clearing Global Variable Pools .518

Shared Memory System Calls.518

Creating and Accessing Shared Memory.519

Obtaining Information About Shared Memory .521

Changing Shared Memory Attributes .522

Attaching Shared Memory.523

Detaching Shared Memory .524

Destroying Shared Memory.526

Using Shared Memory.526

Summary..

CONTENTS xvii

CHAPTER 26: Memory-Mapped Files .537

Determining the Page Size.538

Creating Memory Mappings .539

Controlling Memory-Mapped Regions.548

Changing the Access Protection .548

Advising the Kernel About Memory Use.549

Querying Pages in Memory.552

Synchronizing Changes.553

Destroying Memory Mappings.554

Summary.555

CHAPTER 27: X Window Programming.557

Event-Driven Programming.557

An Event-Driven Model .558

Client/Server Processing .559

Software Layers.560

An Xlib Client Program.561

Summary.575

INDEX.577

ABOUT THE AUTHOR

Warren W Gay is a supervisor at Mackenzie Financial Corporation in Toronto, Canada. There

he supervises a small team of UNIX programmers who manage the Mackenzie Investment

Management System (IMS). Warren is also the author of Sams Teach Yourself Linux Programming

in 24 Hours and Que’s Linux Socket Programming by Example.

Programming professionally since 1980, he has used a number of assembler languages and

PL/1, Lisp, C, and C++. He has been programming UNIX since 1986 and Linux since 1994.

Warren has contributed Linux software packages, such as the ftp backup program and the

rewrite of the popular wavplay program. You can find these and his other Linux packages at

sunsite. unc. edu and its mirror FTP sites.

Warren holds an advanced amateur radio license and is occasionally active on 75 meters with

radio call sign VE3WWG. On August 3, 1991, he made contact with Musa Manarov, call sign

U2MIR, aboard the Soviet MIR space station using a PC and packet radio gear. The contact
was made on the 2-meter band.

Warren lives with his wife Jacqueline and his three children, Erin, Laura, and Scott, in St.

Catherines, Ontario, Canada.

DEDICATION

I dedicate this book to my wife Jackie, my daughters Erin and Laura, and my son

Scott. Without their willingness to put up with a virtually absent husband and

father, this book would not have been possible.

ACKNOWLEDGMENTS

A complete set of acknowledgements would require another book to be written. In it, I would

thank my parents, relatives, and the various secular and Sunday school teachers that I have

had. I would also thank many friends and acquaintances with whom I have had the pleasure

to meet. I must thank them all but briefly here.

I gratefully thank Carol Ackerman, Acquisitions Editor for this project, for her patience as I

wrestled with deadlines. I thank Tony Amico as Development Editor for his enthusiasm for

this project. I am also thankful for the watchful eye of Hang Lau as the Technical Editor. This

book enjoys many improvements from his helpful suggestions. Thanks go to George Nedeff as

Project Editor and Gene Redding as Copy Editor for their diligent efforts. To the rest of the

publishing team, please accept my thanks for your contributions.

Many others have helped me to progress in my career. To all of you, please accept my humble

thanks for your support and patient help.

TELL US WHAT YOU THINK!

As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we’re doing right, what we could do better, what areas you’d

like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax, email,

or write me directly to let me know what you did or didn’t like about this book—as well as

what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book and that,

due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or fax number. I will carefully review your comments and share them with the

author and editors who worked on the book.

Fax: 317-581-4770

Email: opsys_sams@macmillanusa.com

Mail: Michael Stephens

Sams Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

INTRODUCTION

This is a book about UNIX programming. It starts with basic concepts and ends with coverage

of advanced topics. It is a self-teaching guide, and yet it functions as a UNIX reference book.

The examples provided are written in the C and C++ languages. The examples are short pro¬

grams, each intended to demonstrate use of a particular programming facility. The C++ pro¬

grams are written as simple programs and should be well understood by those that do not

program in C++.

This book attempts to be UNIX platform neutral. Throughout the book, differences in func¬

tionality are noted for your convenience. This will save you time when you must write projects

that must be UNIX portable.

FreeBSD 3.4 release is used throughout this book for demonstration purposes. This guarantees

that the example programs will compile and run without any additional effort on that plat¬

form. This also grants a specific level of functionality, since some functions are lacking or vary

on other platforms. You can obtain FreeBSD from the Internet or purchase it on a CD-ROM at

a nominal cost. This allows you to work through the book on a platform that is on a par with

other professional UNIX platforms.

Who Should Use This Book
This book is written for C and C++ UNIX programmers, but it is not limited to that audience.

Even a Java or Perl programmer might have an occasional need to write a small C function to

invoke a UNIX system call.

Programmers at both the application and system levels will benefit from this book. There is

coverage ranging from basic to advanced functionality that will aid any UNIX application

developer. And difficult topics such as semaphores and memory-mapped files are covered for

system level programmers.

What You Should Know
To gain the most from this book, the reader should be comfortable with the C programming

language. A rudimentary understanding of C++ is helpful but not mandatory. Most C language

texts cover the use of the standard I/O stream functions such as fopen (3) and fgets (3).

Consequently, these file stream functions are not repeated in this book.

2 ADVANCED UNIX PROGRAMMING

It is assumed that the reader has mastered the basics of working with the UNIX shell and has a

basic familiarity with the standard commands. Some examples used in this book run the pro¬

grams in the background using the shell & character. Consequently, the reader should be famil¬

iar with basic job control within the shell.

What You Will Learn
This book should appeal to both the beginning and the advanced programmer. The first part

of the book covers the basics of UNIX file system concepts, file input and output, and direc¬

tory management. For the advanced reader, this functions as a review and a reference.

The second part of the book covers intermediate basics, such as numeric conversion and

date/time facilities. Other application concepts such as command-line processing and embed¬

ded database routines are also covered. Consequently, this part tends to be focused somewhat

toward UNIX applications.

The third and final part of the book covers advanced topics. It begins with coverage of signals,

input and output scheduling, and interval timers. Process control and the use of pipes and

forked processes are also covered. Combined with complete coverage of interprocess commu¬

nication, this part tends to benefit primarily the system programmer. Chapters on pattern

matching and regular expressions and an introduction to X Window programming are helpful

to the application programmer.

The Structure of This Book
This section outlines the general structure of the book and describes what each chapter

explores.

Chapter 1: Compiler Notes and Options
Chapter 1 begins with basic coverage of the man (1) command and provides references to

Internet resources for manual pages of other UNIX platforms. An introduction to compiling

under FreeBSD is included, with a review of standard compile options for all UNIX platforms.

The remainder of the chapter provides helpful hints on how to manage compiler warnings
effectively.

Chapter 2: UNIX File System Objects
This chapter reviews the various UNIX file system object types. Some discussion of the unique

characteristics of each is provided, primarily for the beginner’s benefit. The chapter continues

with a review of the role that access permissions play with each file object type. The remainder

of the chapter introduces file descriptors and illustrates how UNIX files are opened, dupli¬
cated, and closed.

INTRODUCTION 3

Chapter 3: Error Handling and Reporting
This is a foundation builder, primarily for the benefit of the novice, and demonstrates how sys¬

tem and library calls interact with the global variable errno. The reader is shown the various

ways that system error codes are translated into text error messages.

Chapter 4: UNIX Input and Output
This chapter provides an overview of the basics of UNIX input and output. It begins with a

review of permission bits and discusses the effect of the umask (2) system call. The chapter

continues with coverage of the read (2) and write (2) system calls, with examples. The seek¬

ing and truncation file operations are also covered. Other topics include sparse files, the

sync (2) and f sync(2) system calls, and scatter read and scatter write calls.

Chapter 5: File Locking
Here we cover all aspects of locking files and file regions under UNIX. This includes the use of

lock files and the use of advisory and mandatory locks on regions and entire files.

Chapter 6: Managing Files and Their Properties
Chapter 6 concerns itself with the management of files and their UNIX properties. The system

calls covered allow a program to remove, link, rename, and inquire of file properties.

Functions that manage symbolic links are also covered. The chapter concludes with coverage

of the system calls that permit changing permissions and ownership of file system objects.

Chapter 7: Directory Management
This chapter is focused on the UNIX handling of directories. Functions that change, save, and

restore the current directory are covered. Additional coverage includes creating, removing,

opening, searching, and closing directories. Finally, changing the root directory is explored.

Chapter 8: Temporary Files and Process Cleanup
In Chapter 8, we cover the various library functions that are available for creating and manag¬

ing temporary files. The chapter also explores ways that applications can clean up temporary

files, even when they terminate unexpectedly.

Chapter 9: UNIX Command-Line Processing
Even X Window graphical programs accept command-line arguments. This chapter explores

the UNIX standard method of parsing command-line arguments, with a minimum of written

user code. Coverage includes the GNU long option support for the GNU-based function

getopt_long(3). Suboption processing is also explored using the getsubopt (3) function.

4 ADVANCED UNIX PROGRAMMING

Chapter 10: Conversion Functions
This chapter looks at the challenges that programmers must face when they convert ASCII

strings into numeric values. The simplest methods are contrasted with the more effective func¬

tions such as strtol(3). Detailed instruction for dealing with conversion errors is included.

Chapter 11: UNIX Date and Time Facilities
Date and time facilities are the focus of this chapter. Functions that obtain date and time com¬

ponents are described in detail. Conversion to and from various date and time formats is cov¬

ered.

Chapter 12: User ID, Password, and Group
Management

Complete descriptions of the UNIX user and group ID functions are provided in this chapter.

The effects of real, saved, and effective IDs are documented. Supplementary user and group

IDs are discussed, complete with their management functions.

Chapter 13: Static and Shared Libraries
This chapter explores the differences between static and shared libraries, covering the creation

and management of each type of library. It concludes with the functions that permit a program

to dynamically load shared libraries upon demand.

Chapter 14: Database Library Routines
Chapter 14 explores the embedded database routines known as the NDBM functions. It covers

the functions necessary to create, open, and close these databases. Additionally, the text

explains and demonstrates how to create, retrieve, and delete records from the database.

Chapter 15: Signals
This chapter explores the UNIX concept of signals. The reliable signal interface is described,
complete with all functions that manage aspects of signal handling.

Chapter 16: Efficient I/O Scheduling
The select (2) and poll(2) system calls are explained with examples in this chapter. These

system calls permit applications to perform input and output effectively on several different file
descriptors.

Chapter 17: Timers
This chapter focuses its discussion on sleep function calls and interval timers. A possible

implementation of the sleep (3) system call is demonstrated in an example program.

INTRODUCTION 5

Chapter 18: Pipes and Processes
In this chapter we introduce the concept of process management by looking at the functions

popen (3) and system(3). These are described and explored with example programs.

Chapter 19: Forked Processes
This chapter examines the more advanced methods of process management by describing the

fork(2) and exec(2) sets of system calls. The chapter also includes a discussion of zombie

processes and the wait (2) family of system calls.

Chapter 20: Pattern Matching
Library functions that perform simple file pattern matching, as used by the shell, are exam¬

ined. The chapter includes a description of the fnmatch(3) and glob (3) functions, with test

programs that permit you to put them through their paces.

Chapter 21: Regular Expressions
Building upon the previous chapter, the more advanced regular expression matching functions

are explored. A review of regular expression syntax is provided before presenting the support

functions. A demonstration program puts the various optional features to the test.

Chapter 22: Interprocess Communications
This chapter provides an introduction to interprocess communications. The reader is intro¬

duced to IPC keys, IPC IDs, and how various IPC resources are created and accessed.

Chapter 23: Message Queues
The message queue is a member of the interprocess communication set of resources. The sys¬

tem calls that manage its creation, use, and destruction are covered with a demonstration pro¬

gram.

Chapter 24: Semaphores
This chapter continues the interprocess communications theme by exploring what a sema¬

phore is, how it helps, and how it is used. An example program allows you to experiment.

Chapter 25: Shared Memory
The last on the topic of interprocess communication, this chapter focuses on the creation, use,

and destruction of shared memory. An example program that makes use of the semaphore and

shared memory demonstrates its use.

6 ADVANCED UNIX PROGRAMMING

Chapter 26: Memory-Mapped Files
Memory-mapped files are explored, with a description of the different ways they can be

applied. A demonstration program shows how a memory-mapped file can be used to select the

language of text messages within an application.

Chapter 27: X Window Programming
The emphasis of this chapter is on event-driven programming. The reader is introduced to

some of the basic concepts of X Window programming, focusing on the event loop and X

Window event processing, which the example program demonstrates.

PART I

FILES AND DIRECTORIES

1 Compiler Notes and Options

2 UNIX File System Objects

3 Error Handling and Reporting

4 UNIX Input and Output

5 File Locking

6 Managing Files and Their Properties

7 Directory Management

8 Temporary Files and Process Cleanup

• '

CHAPTER 1

COMPILER NOTES AND OPTIONS

You are reading this book because you want to write software for UNIX. Perhaps you

are interested in developing software to run on several UNIX platforms. Whether you

must write for several platforms or a few, writing your software to compile success¬

fully for each UNIX platform is a challenge. This chapter is aimed at reducing that challenge

and improving your success rate. Additionally you will find some valuable Internet resources

in this chapter, along with some cross-platform examples and advice.

Online Manual Pages
Throughout this text, you will see references to online documents that exist on most UNIX

systems. These online documents save the programmer a great deal of time when he is writing

programs. Rather than fetch a book and look in the index for the correct page, you can pull up

the information within seconds, instead. This electronic documentation can be brought into

an editor, or segments of it can be cut and pasted using the normal X Window facilities. For

this reason, this text places some emphasis on online manual page references for your conve¬

nience.

A document reference will appear in this text in the form open (2), for example. To view the

online document for that reference, you would normally enter

$ man 2 open

This causes the manual page for the open entry in section 2 to be displayed (the section is

specified first). The section number is not always necessary, but it often is (otherwise, a man¬

ual entry from an earlier section will be presented instead).

A manual page section is a grouping of related documents. The following sections will be the

sections of primary importance throughout this book:

User commands 1

System calls 2

Library calls 3

10 ADVANCED UNIX PROGRAMMING

Most of this book will be focused on facilities documented in sections 2 and 3. Functions that

interface to the UNIX kernel are grouped into section 2. Other function calls, which are docu¬

mented in section 3, are those functions that perform commonly required services. These may

or may not involve additional calls to the UNIX kernel. Commands such as the man (1) com¬

mand are grouped in section 1.

If you don’t know the name of the man (1) page you want, you can perform a keyword search.

The following shows how you could search for information about changing owners of a file:

$ man -k owner
chown(2), fchown(2), lchown(2) - change owner and group of a file
chown(8) - change file owner and group

$

This produces a number of references that have the keyword owner in them. Another way this

can be done on most systems is to use the apropos (1) command:

$ apropos owner
chown(2), fchown(2), lchown(2) - change owner and group of a file
chown(8) - change file owner and group

$

Both of these commands result in the same action being taken. If you have an unusual UNIX

system and these don’t work, then you might look up man (1) for additional insight.

Most sections are documented on most UNIX systems. For example, to find out what section 8

is all about under FreeBSD, you would enter

$ man 8 intro

A lookup of the man page int ro (x), where x is the section, will usually yield additional docu¬
mentation about the section specified.

Note

On some systems, you may have to specify the section number differently. For example, Solaris 8 sup¬
ports the following syntax:

$ man -s 2 open

In this example, the section number follows the -s option. Some implementations of the man(1)
command will work with or without the - s option for section numbers.

Manual References Used in This Book
References to man (1) pages will be used throughout this book when referring to functions and

other programming entities. However, as you might expect, different UNIX platforms place the

same information in different sections and sometimes under completely different headings.

An example of this problem is the function strf time (3). For many UNIX implementations,

including FreeBSD, the reference strf time (3) will provide the correct location of the online

Chapter 1 • COMPILER NOTES AND OPTIONS 11

document for the strftime() function. However, UnixWare 7 uses the manual reference

strftime(3C) instead. UnixWare has chosen to split some of its functions into a separate sec¬
tion 3C.

Consequently, a choice in convention had to be made for this book. The manual page refer¬

ences used throughout this text are based on the FreeBSD (3.4 release) platform. This should

provide a good reference for users of most UNIX systems. In places where it is important, the
differences will be noted.

man (1) Resources on the Internet
If you must write code that is portable to many UNIX platforms, one valuable resource is the

Internet. Table 1.1 lists a few Internet resources that can be used when you want to review

manual pages for different UNIX platforms.

TABLE 1.1 Table of Internet man (1) Resources

URL Description

http://www.FreeBSD.org/egi/man.cgi BSD

http://docs.hp.com/index.html HPUX 10 & 11

http://docs.sun.com/ SunOS, Solaris

http://www.ibm.com/servers/aix/ IBM's AIX

http://support.sgi.com/search/ SGI IRIX/Linux

http://doc.sco.com/ UnixWare & SCO

There are probably many more resources available, in addition to those listed in Table 1.1. The

www. FreeBSD. org reference is worth special mention because its Web site appears to have

man (1) pages for a wealth of other releases listed next.

• 2.8 BSD, 2.9.1 BSD, 2.10 BSD, and 2.11 BSD

• 386BSD 0.0 and 386BSD 0.1

• 4.3BSD NET/2, 4.3BSD Reno, 4.4BSD Lite2

• FreeBSD 1.0-RELEASE to FreeBSD 4.0-RELEASE

• FreeBSD 5.0-current

• FreeBSD Ports

• Linux Slackware 3.1

• Minix 2.0

• NetBSD 1.2 to NetBSD 1.4

12 ADVANCED UNIX PROGRAMMING

• OpenBSD 2.1 to OpenBSD 2.6

• Plan 9

• RedHat Linux/i386 4.2, 5.0, and 5.2

• SunOS 4.1.3, 5.5.1, 5.6, and 5.7

• ULTRIX 4.2

• UNIX Seventh Edition

There will likely be additions to this list by the time you read this.

Example Code in This Book
Even more challenging than having uniform man page references is the creation of example

programs that would compile for all UNIX platforms. While this could be attempted, it has the

danger that it would not be universally successful unless the code was tested on every plat¬

form. Even then, pitfalls abound, because there exist many different choices in compilers,

libraries, and other customizable aspects of the UNIX platform.

The examples in this book have tried to be UNIX platform neutral. Practical considerations,

however, made it necessary to pick one development platform for the examples. The major

differences are addressed in the text as they come up. Look for additional tips, warnings, and

notes for other UNIX differences that may be worth noting.

The challenges of supporting multiple UNIX platform differences include the following:

• Subtle differences in the different make (1) commands

• Differences in the feature set macros required to compile the programs

• Differences in location of the include files

• Differences in function prototype definitions

• Differences in C data types (int vs. size_t)

To deal with all of these problems would end up leaving the reader with a rat’s nest of ugly

source code to look at. Rather than give you difficult-to-read source code and complicated

make (1) procedures, this book will simply use the FreeBSD Release 3.4 platform as the foun¬

dation for all program examples. Important differences in compilers and other areas will be
noted along the way

This approach provides the professional the advantage that learning can take place at home.

FreeBSD is a stable and secure platform that can be loaded onto just about any reasonable Intel

PC. Yet it remains very similar to many commercial UNIX platforms in the workplace.

Chapter 1 • COMPILER NOTES AND OPTIONS 13

While FreeBSD can be installed with many useful Linux enhancements, the FreeBSD 3.4 Release used

for the examples in this book did not have any Linux support installed. This was intentionally done to

present a more traditional UNIX experience.

Compiling C Programs
This is an area in which there is considerable variation among the different UNIX platforms.

The FreeBSD 3.4 Release of UNIX uses the very capable GNU compiler:

$ gcc --version
2.7.2.3

$

This is linked to the same command as the more commonly recognized UNIX command name

cc, as demonstrated in the next FreeBSD session:

$ type cc
cc is a tracked alias for /usr/bin/cc
$ Is -li /usr/bin/cc
7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/cc
$ type gcc
gcc is a tracked alias for /usr/bin/gcc
$ Is -li /usr/bin/gcc
7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/gcc
$

Since both /usr/bin/cc and /usr/bin/gcc link to the same i-node 7951 in the example, you

know that these two files are linked to the same executable file.

Other UNIX platforms that provide their own proprietary forms of C and C++ compilers differ

substantially from the GNU compiler in the options they support, the warning messages they

produce, and their optimizing capability. This chapter will look at some of the commonality

between them and some of the differences.

The C Compile Command
Most UNIX platforms invoke their C compilers by the name cc. Linux and FreeBSD platforms

support the gcc command name in addition to the standard cc name. Sometimes the GNU

compiler will be installed as gcc on commercial platforms to distinguish it from the standard

offering or in addition to the crippled (non-ANSI) one. For example, HP includes a non-ANSI

compiler with the HPUX operating system, which is called the “bundled” compiler (this com¬

piler is sufficient to rebuild a new HPUX kernel). The ANSI-capable compiler must be pur¬

chased separately and, when installed, replaces the bundled cc command.

14 ADVANCED UNIX PROGRAMMING

However, within the same platform, there can also be choices. HPUX 10.2 supports

HP-UX C compiler cc

HP-UX POSIX-conforming C C89

The IBM AIX 4.3 platform supports:

C language "extended" cc

ANSI C compiler xlc or c89

The difference between the xlc and c89 compilers under AIX is the configured defaults. In the

following sections, the relatively standardized options will be examined.

The - c Compile Option
This option is probably the most universally standardized. The - c option indicates that the

compiler should produce a translated object file (*. o file) but not attempt to link the transla¬

tion into an executable. This option is used when compiling several separate source modules

that will be linked together at a later stage by the linker. The following demonstrates a compile
and link in one step:

$ cc hello.c

This all-in-one step command translates the C source file hello. c into the final output exe¬

cutable file a. out. The filename a. out is the default executable name for linker output. This

practice dates back to at least 1970 when UNIX was written in assembler language on the

PDP-11. Digital Equipment’s (DEC) default linker output file name was a.out.

Alternatively, the object file can be produced separately and then linked as a separate step, as
follows:

$ cc -c hello.c
$ cc hello.o

In this example, the first cc command with the -c option, produces the file hello. o as the

result of the compile. Then the second cc command accepts the object file hello. o as input
and produces the final executable file name a. out, which can then be run.

The - o Compile Option
This option is fairly standard also. The -o option allows the user to specify the name of the
output file. For example, it could be explicit, as follows:

$ cc -c hello.c -o hello.o

The -c option indicates that an object file is being produced, and the -o option names the out¬

put object file as hello. o. The -o option can also be used to name the executable file, if that is
the type of output requested:

$ cc hello.o -o my_hello_prog

Chapter 1 • COMPILER NOTES AND OPTIONS 15

The example shown indicates that the output executable file name will be named
my_hello_prog.

The -g Option (Debug)
This standard option indicates to the compiler that debugging information should be gener¬

ated in the output of the compile. This debugging information makes source code and variable

name references possible in the debugger or when analyzing the core file after a program

abort. Include this option whenever you need to debug the program interactively or perform a

post-mortem on the core file. Be sure to use this option on all object modules that will be
inspected by the debugger.

Warning

Most C compilers will not accept both the -g (debug) and -0 (optimize) options at the same time.

The GNU compiler will tolerate -g and first-level optimization (-0), but this may lead to a few sur¬

prises in the debugger.

The - D Option (Define)
This standard compiler option permits you to define a macro symbol from the compiler com¬

mand line. It is most frequently done from a Makefile but is not limited to this practice. For

example

$ cc -c -D_POSIX_C_SOURCE=199309L hello.c

defines the C macro constant _P0SIX_C_S0URCE with a value of 199309L. This macro definition

has the effect of choosing a particular POSIX standard from the files included in the compile.

Additional macros can be defined on the same command line:

$ cc -C -D_P0SIX_C_S0URCE=199309L -DNDEBUG hello.c

In this example, the additional C macro NDEBUG was defined (with no value), in order to dis¬

able the code generation in the assert (3) macro invocations used within the program.

The -1 Option (Include)
The standard - I compile option permits you to specify additional places to look for include

files. For example, if you have additional include files located in an unusual place such as

/usr/local/include for example, you could add the - I option as follows:

$ cc -c -I/usr/local/include -I/opt/include hello.c

Additional -1 options can be added as shown, and the directories will be searched in the order

given. Many UNIX compilers (non-GNU) will process the C statement

#include "file.h"

by looking in the current directory first, and then all of the directories given by the -1 options,

and then finally in the directory /usr/include.

16 ADVANCED UNIX PROGRAMMING

The same (non-GNU) UNIX compilers will process the C language statement

#include <file.h>

by the same means, except that the current directory is not searched. However, the GNU com¬

piler extends the -1 option somewhat, as follows:

• -1 directories preceding a -1 - option are searched only for statements of the form

#include "file.h" only.

• Directories provided with -1 options following a -1 - option are searched for both forms

#include "file.h" and #include <file.h>.

• If no -1 - option appears on the command line, then the behavior is the same as the non-

GNU C compiler.

An example of this is provided in the following compile command:

$ gcc -c -I/usr/informix/include -I- -I/opt/oracle/include convutil.c

The example shown would allow the C language statement

#include "sqlca.h"

to include the file /usr/informix/include/sqlca. h. Another C language statement

#include <sqlca.h>

would include the file /opt/oracle/include/sqlca.h instead. This happens because the

<f ile. h> form is not searched in the directories preceding the -1 - separating option.

The - E Option (Expand)
This option is relatively standard among UNIX C compilers. It permits you to modify the com¬

mand line to cause the compiler to emit the preprocessed C text to standard output without

actually compiling the code.

This is useful when attempting to wade through C preprocessing directives and C macros. The

output of a would-be compile can be directed to a file and then examined with an editor:

$ cc -c -E hello.c >cpp.out

In the example shown, the -E option causes the include files and the program to be pre-

processed and redirected to the file cpp. out. You can then examine the file cpp. out with an

editor or paging command and determine what the final C language code looks like. This is

especially helpful when trying to debug new C macros that are causing compile errors that are
difficult to diagnose.

The -0 Option (Optimize)
This option is not standard among compilers. Some compilers require an argument to follow

the -0, some don’t, and some will optionally take an argument. FreeBSD accepts the following:

• -0 and -01 specify level 1 optimization.

• -02 specifies level 2 optimization (increased optimization).

Chapter 1 • COMPILER NOTES AND OPTIONS 17

• -03 specifies level 3 optimization (more than -02).

• -00 specifies no optimization.

For the GNU compiler, these options can be repeated, with the last appearing option establish¬
ing the final optimization level. For example

$ gcc -c -03 -00 hello.c

would compile with no optimization, because -00 appears last.

Recall that the debug option (- g) is incompatible with optimization with most C compilers.

As a contrast to the GNU compiler, HP’s compiler supports the following optimizing options in

increasing levels of optimization:

Default optimization +00

Level 1 optimization +01

Level 2 optimization +02 (-0)

Level 3 optimization +03

Level 4 optimization +04

The -0 (with no argument) option is equivalent to the HP option +02 (note the plus sign).

The IBM AIX 4.3 compiler supports the options -0, -02, and -03 in increasing levels of opti¬

mization.

All of this emphasizes a need to review the compiler options in the cc (1) man page for the

compiler you are using.

Warning Options
Warning messages is one area in which the GNU compiler excels. This compiler is so good at

this that there is no need for a lint (1) command under FreeBSD or Linux. However, the

warnings options for compilers vary considerably by platform and vendor.

The GNU compiler uses the -W option with an argument to indicate what is to be reported as

warnings. In this book, the option -Wall will be used to cause the GNU compiler to report

anything that looks suspicious.

It is also possible to specify individual warnings of interest. For example, -Wreturn -type can

be specified to cause the compiler to report any return values that are missing or mismatched

or a function that is defaulting to returning an int because no return type was declared for the

function.

While the -Wreturn - type warning appears to be included with the specification of the -Wall

option under FreeBSD, there were versions of the GNU compiler in which -Wreturn -type was

not included under Linux. Since this is an important warning that can save you a lot of time,

you may want to include it in addition to the -Wall option, just to be certain it is enabled.

18 ADVANCED UNIX PROGRAMMING

ANSI C Compile Options
On some UNIX platforms you must indicate to your compiler that you are compiling ANSI C

source code. HPUX UNIX compilers, for example, will assume the older K&R C code is being

compiled instead, usually leading to a lot of compile errors. Therefore, for HPUX you will need

to supply the option -Aa to compile any modern C source code. A few other commercial UNIX

compilers have similar requirements.

Managing Compiler Warnings
The C compiler will often report messages. These messages can be divided into error messages

and warning messages. Error messages indicate things that must be corrected in order for the

compile to succeed. Warnings alert the programmer to bad practices and problems that might

occur later when the program is run.

With the maximum compile warning level set, the compiler reports on the smallest of infrac¬

tions, but it usually does so intelligently and diligently. Sometimes warnings are issued for

valid C programming practices, and some developers disable these warnings with certain com¬

piler options. By doing this, they prevent the C compiler from providing useful advice.

The best advice that can be provided here is to always use the maximum warning level avail¬

able. This forces the developer to address all source code issues until the warnings disappear

from the compilation. The only justifiable reason for going to a lower warning level is when

you’ve inherited someone else’s source code and you do not have the luxury of time to fix all

the causes of warnings.

Always compile with the maximum warning level turned on. Time spent eliminating causes of

warning messages, can save a lot of time later while debugging your program.

With the GNU compiler under FreeBSD and Linux, this is done by adding the -Wall option.

The following shows how to use the GNU compiler under FreeBSD with the maximum warn¬
ing level enabled:

bash$ gcc -Wall hello.c

The compile examples in this book will all use the -Wall option unless the example involves a
non-GNU compiler.

Most UNIX command-line options do not require a space to appear between the option letter and

the option's argument. For example, the option may be specified as -Wall or -w all, since these are
equivalent.

Chapter 1 • COMPILER NOTES AND OPTIONS 19

Working with Compiler Warning Messages
When a high warning level is used by the compiler, every possible warning message is

reported. A low warning level will report only the most important messages and suppress the

rest.

As noted earlier, there is one drawback to using a high warning level with your C compiler:

Sometimes you’ll receive warning messages for valid C language constructs. Well-designed

compilers will help you cope with these problems, however, since they allow you to use tricks

to convey your real intention.

Warnings About Assignments
A programmer often loves the economy of expression available in the C language. This means

that the programmer will employ the smallest number of statements or operators to accom¬

plish a task. Sometimes this involves doing an assignment and a test for non-zero all in one

step. Consider the if statement in Listing 1.1.

LISTING 1.1 asgnl. c—Warnings About Value Assignment in the if Statement

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

#include <string.h>

char *
Basename(char ‘pathname) {

char *cp; /* Work Pointer */

if (cp = strrchr(pathname,'/'))
return cp + 1; /* Return basename pointer */

return pathname; /* No directory component */

}

Note

The program listings in this book include line numbers at the extreme left. Do not type these if you

are entering the example programs manually. They are included only for ease of reference.

Here is the compile session for Listing 1.1:

$ cc -c -Wall asgnl.c
asgnl.c: In function 'Basename':
asgnl.c:7: warning: suggest parentheses around assignment used as truth value

$

Notice the statement in line 7. The reason the compiler flags this statement as a possible error

is that often the C programmer really intends to use the comparison operator == to compare

values instead of assigning a value in an if statement. The compiler has no way of confirming

whether the actual assignment is correct or whether a comparison was intended instead. The

developer is left to decide the issue after the compiler has issued the warning.

20 ADVANCED UNIX PROGRAMMING

Note that the statement is not incorrect, but neither is it certain that it reflects the program¬

mer’s true intention. Some might be tempted to argue that comparison is normal in an if

statement and that the assignment in an if statement is unusual. The fact remains, however,

that the C language is defined such that both are equally valid expressions.

Compiler writers have developed clever tricks for dealing with these thorny issues. This partic¬

ular case can be resolved this way: If an assignment is coded as shown in Listing 1.1, it is

flagged with a warning because it represents a possible error on the programmer’s part. If this

does represent an error, the programmer replaces the single equals symbol with a double

equals symbol and recompiles. If the assignment is the intent, the programmer encloses the

assignment with a set of brackets. When this is done, the compiler will assume that the pro¬

grammer knows what he is doing.

Listings 1.2 and 1.3 show two different ways to resolve the warning issue in favor of the
assignment.

LISTING 1.2 asgn2. c—Additional Parentheses Quiet an Assignment Warning

1:
o •

#include <string.h>
C- .
3: char *
4: Basenamefchar ‘pathname) {
5: char *cp; /* Work Pointer */

7: if ((cp = strrchr(pathname, '/')))
8: return cp + 1; /* Return basename pointer */
9: return pathname; /* No directory component */
10: }

LISTING

1:
2:
3:
4:

1.3 asgn3. c—Parentheses and Comparison Quiet an Assignment Warning

#include <string.h>

char *
Basename(char ‘pathname) {

5:
R •

char *cp; /* Work Pointer */

7: if ((cp = strrchr(pathname, '/')) != 0)
8: return cp + 1; /* Return basename pointer */
9:
10:

return pathname;

}
/* No directory component */

Note the extra pair of parentheses around the assignment in line 7 of both Listings 1.2 and

1.3. The C syntax here did not require the parentheses, but the compiler took this as a cue

from the developer that he knows what he is doing. While Listing 1.2 shows a solution accept¬

able to the GNU compiler, some other UNIX compilers will insist on the construct shown in

Listing 1.3. For this reason, the solution in Listing 1.3 is preferred. It is clearer to the reader of
the source code.

Chapter 1 • COMPILER NOTES AND OPTIONS 21

Tip

There is normally no longer a need to economize in C language expressions for the sake of optimiza¬

tion. Today's optimizing compilers are very effective at producing optimal code without any help

from the programmer. For this reason it is better to make an expression easier to read than to reduce

it to the fewest number of C operators.

This discussion has been presented using the C language if statement, but this issue applies to

other statements as well. Warnings about assignments in the switch and while statements can

be quieted in the same manner.

Warnings About Unused Arguments
Some compilers will complain about unused arguments. The thinking appears to be that if the

argument is defined, then it was meant to be used. The truth of the matter is that the function

arguments define an interface. There is no real requirement to fully use the interface that is

defined, since an interface may also be intended for future use.

An example of the unused argument problem is the ubiquitous main () program. The main

program interface is often defined as follows:

int mainfint argc,char *argv[]);

If the program being written does not use the arguments that are present, it doesn’t seem

proper to remove the arguments simply because they are unused. This is what often is done by

programmers to eliminate the compiler warnings.

Instead, it seems preferable to leave the arguments declared to indicate that the interface sup¬

ports passing those values in that way. Listing 1.4 shows a simple way to avoid this problem.

LISTING 1.4 uargs.c—Quieting Unused Argument Warnings

1: #include <stdio.h>
2:
3: int
4: mainfint argc,char **argv) {

5:
6: (void) argc;
7: (void) argv;

8:
9: puts("Hello World!");
10: return 0;
11: }

The C language permits a reference of a value in isolation, within a statement. Normally, this is

not a useful construct, since there is no useful side effect in this case. However, it can be used

as a useful compiler side effect, and this is exactly what is done with the (void) cast in lines 6

and 7 of Listing 1.4.

It should be noted that the GNU compiler in the FreeBSD 3.4 Release does not warn about

unused arguments (gcc version 2.7.2.3). However, the compiler that you are using might.

22 ADVANCED UNIX PROGRAMMING

Resolving Unused Variable Warnings
Sometimes the compiler will warn you about unused variables that you have declared in your

code. These warnings create a strong temptation to remove the variables from your code

immediately. You should exercise great care before doing so.

Warning

Be extremely careful about removing unused variables and buffers. Make sure that you fully evaluate

the C preprocessing directives of the source code before you assume that these values are never

used. Sometimes compiling a program with different macro settings can cause these variable decla¬

rations to be needed. This is especially true when source code is compiled on different UNIX plat¬

forms.

The problem of unused variables often occurs in code that is designed to be portable to many

different UNIX platforms. The specific problem is normally that the original developer never

properly allowed for the unused declarations at the right time with the help of the correct C

preprocessing directives. What often happens is that the source code is patched and modified

by several people, and those changes never get fully retested on the other platforms on which

it was meant to compile.

Listing 1.5 illustrates a program that, when compiled a certain way, will have unused variables

But are these variables truly unnecessary?

LISTING 1.5 uvars. c—An Example of Unused Variable Declarations

/* uvars.c */ 1:
2:
3:
4:
5:
6:
7:
8:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int
main(int argc,char **argv) {

9: pid_t PID; /* Process ID */
10:
11: (void) argc;
12: (void) argv;
13:
14: #ifdef SH0W_PID
15: PID = getpid(); /* Get Process ID */
16: printf("Hello World! Process ID is %d\n",(int)PID)
17: #else
18: puts("Hello World!11) J

19: #endif
20:
21 : return 0;
22: }

Chapter 1 • COMPILER NOTES AND OPTIONS 23

When Listing 1.5 is compiled without defining the C macro SHOW_PID, the result looks like
this:

$ cc -Wall uvars.c
uvars.c: In function 'main':
uvars.c:9: warning: unused variable 'PID1
$

The compiler in this example has complained that the declared variable PID in line 9 is not

used. This happens because the macro SH0W_PID is not defined, causing line 18 to be com¬

piled in the place of lines 15 and 16. In this compile, the variable PID is unreferenced.

However, if you take this warning message at face value and remove the declaration of variable

PID in line 9, then you will solve the immediate problem but create another, longer-term prob¬

lem. If you define the macro SHOW_PID in the next compile, you find that it is necessary under

different compile conditions:

$ cc -Wall -DSH0W_PID uvars.c
$./a.out
Hello World! Process ID is 73337

$

Adding the option -DSH0W_PID to the cc command line defined the SH0W_PID macro for this

particular compile. As shown, you can see that the compile was successful and without any

warning messages.

While this concept is obvious in this small example program, this same scenario often occurs

in many real-life examples of UNIX code that are much more complex. The message here is to

be careful about what you assume should be deleted from the source code when you get

unused variable warnings.

Resolving Unreferenced String Warnings
Unreferenced string constants will also cause warnings to be generated. Sometimes program¬

mers leave a string constant in a program so that it will become part of the final executable. A

common practice is to define version strings in a program so that the executable file can be

dumped and matched up with a particular version of a source module.

Tip

To eliminate compiler warnings about unreferenced string constants, simply declare the string con¬

stant as a constant using the C language const keyword.

The solution to these warnings is simply to define the string constant as a constant using the

const keyword. The compiler does not complain about unreferenced constants. Listing 1.6

shows an example of an embedded CVS string that causes an unreferenced string warning to

be issued by the compiler.

24 ADVANCED UNIX PROGRAMMING

LISTING 1.6 ustring. c—Example of an Unreferenced CVS String

1: /* ustring.c */
2:
3: #include <stdio.h>
4:
5: static char cvsid[] =
6: "$Header: /home/cvs/prj/ustring.c,v 1.6 2010/03/30 01:59:34 uid Exp $";

7:

8: int
9: main(int argc,char **argv) {
10:
11: (void) argc;
12: (void) argv;
13:
14: puts("Hello World!");
15: return 0;
16: }

The compile session for Listing 1.6 is as follows:

$ cc -Wall ustring.c
ustring.c:5: warning: 'cvsid' defined but not used

$

Note lines 5 and 6 of Listing 1.6, where the string array cvsid [] is declared. The purpose of

this declaration is simply to have the string constant appear in the final executable file. This

allows you to identify the version of the source code that went into the executable program. It

can be displayed with the ident command:

$ ident a.out
a.out:

SHeader: /home/cvs/prj/ustring.c,v 1.6 2010/03/30 01:59:34 uid Exp $

$

The ident (1) command locates the string constants that start with $Header: and end with the

$ character. The problem is that the compiler complains about this string constant because the
string itself is not used within the code.

Some prefer to use the CVS/RCS identification string id instead of $Header$, since the string is

shorter (the directory path is not included). However, note that some versions of the ident (1) com¬

mand will not report the ld string (for example, HPUX 10.2 and 11.0 will not report ld, but

Linux and FreeBSD will).

Other UNIX platforms may not have the ident (1) command at all (AIX 4.3 and SunOS 5.6, for

example). In that case you can use the strings (1) command and grepfl) for the string
'$Header: ' instead:

$ strings a.out | grep 'SHeader:'

The compiler is easily quieted about the unreferenced string by simply defining the string as a

constant. The compiler does not require constants to be referenced. See Listing 1.7 for the cor¬
rected source code.

Chapter 1 • COMPILER NOTES AND OPTIONS 25

LISTING 1.7 ustring2. c—Eliminating the Unused String Constant Warning

1: /* ustring.c */
2:

3: #include <stdio.h>
4:

5: static const chan cvsid[] =

6: "$Header: /home/cvs/prj/ustring.c,v 1.6 2010/03/30 01:59:34 uid Exp $";
7:
8: int
9: main(int argc.char **argv) {
10:

11: (void) argc;
12: (void) argv;
13:

14: puts("Hello World!")!
15: return 0;
16: }

Line 5 of Listing 1.7 shows the added const keyword that is necessary to soothe the compiler.
The compile session that follows confirms this:

$ cc -Wall ustring2.c
$

Unlike the other compile, there are no warning messages.

Compiling to Standards
Many UNIX platforms strive to adhere to various C and C++ standards where possible.

Additionally, they all tend to support various enhancements that are not included in these

standards. Most UNIX development environments will also support multiple C standards. So

how does the programmer choose the standard to which he is compiling his source code?

Under UNIX, the choice of compile standard is established by a feature test macro that is

defined. Generally, for any given platform, a standard is chosen by default. However, it is wiser

to choose one explicitly to avoid difficulties compiling your project on the various UNIX plat¬

forms that you might be supporting. This may avoid other compile error surprises that might

come about with newer releases of a vendor’s UNIX platform.

FreeBSD 3.4-Release describes its standards support in posix4(9). There you will find the fol¬

lowing two feature test macros that will be used in this book:

• _P0SIX_S0URCE

• _P0SIX_C_S0URCE

The _P0SIX_S0URCE feature macro is an older C macro that indicates that only POSIX and

ANSI functionality should occur in the name space.

26 ADVANCED UNIX PROGRAMMING

The one that will be used in this book is the _P0SIX_C_S0URCE macro, because it allows you to

choose a specific POSIX standard for compiling. The two FreeBSD documented values are

_P0SIX_C_S0URCE=199009L POSIX. 1

_P0SIX_C_S0URCE=199309L POSIX. IB

Since the second selection allows the newer standard features to be compiled, it is preferred
for new programs.

Listing 1.8 shows a simple feature macro test program. You can compile it in different ways

and have it report information about standards to you.

LISTING 1.8 posix. c—Feature Macro Test Program

1: /* posix.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5:
6: int
7: main(int argc,char **argv) {
8:
9: (void) argc;
10: (void) argv;
11:
12: #ifdef _P0SIX_S0URCE

13: printf("_P0SIX_S0URCE = %ld\n",(long)_POSIX_SOURCE);
14: #endif
15:
16: #ifdef _P0SIX_C_S0URCE

17: printf("_P0SIX_C_S0URCE = %ld\n",(long)_POSIX_C_SOURCE);
18: #endif
19:
20: #ifdef _P0SIX_VERSI0N

21: printf("_P0SIX_VERSI0N = %ld\n",(long)_POSIX_VERSION);
22: #endif
23:
24: return 0;
25: }

Note that the include file <unistd. h> is necessary for this program to evaluate the various

POSIX C feature macros. You will find that there is a considerable variety of responses to this
test on different UNIX platforms.

Chapter 1 • COMPILER NOTES AND OPTIONS 27

FreeBSD 3.4-Release Feature Tests
When Listing 1.8 is compiled with various combinations of the _P0SIX_S0URCE and

_P0SIX_C_S0URCE feature macros, you will see the following program responses:

$ cc posix.c && ./a.out
_P0SIX_VERSI0N = 199009

$

In these examples, the a. out file is both compiled and invoked on the same command line for

convenience (the shell && operator will invoke the next command if the previous command

was successful). In the above test, it is evident that FreeBSD defines the macro _P0SIX_

VERSION to indicate the version of the system for which the system is built. Here, it is reported

that the default is the POSIX.l standard (199009). It will be seen later, however, that not all

UNIX environments will provide a _P0SIX_VERSI0N value by default.

$ cc posix.c -D_P0SIX_S0URCE && ./a.out
_P0SIX_S0URCE = 1
_P0SIX_VERSI0N = 199009

$

In this example, the compile explicitly defines the feature test macro _POSIX_SOURCE. It can be

seen that the same macro is reassigned the value of 1 and that the _P0SIX_VERSI0N macro is

set to the value of 199009.

$ cc posix.c -D_P0SIX_C_S0URCE=199009L && ./a.out
_P0SIX_C_S0URCE = 199009
_P0SIX_VERSI0N = 199009

$

Here the standard is chosen by setting the feature macro _POSIX_C_SOURCE and specifically

choosing POSIX.l (199009). The _P0SIX_VERSI0N macro is set to match in this example.

$ cc posix.c -D_POSIX_C_SOURCE=199309L && ./a.out
_P0SIX_C_S0URCE = 199309
_P0SIX_VERSI0N = 199009

$

This example chooses the POSIX.1B standard, but the feature test macro remains at the

POSIX.l value of 199009. The FreeBSD posix4(9) documentation indicates that this tells your

program that the operating system features are based on the POSIX. 1 standard (even thought

POSIX.1B was requested).

$ cc posix.c -D_P0SIX_C_S0URCE=199506L && ./a.out
_P0SIX_C_S0URCE = 199506
_P0SIX_VERSI0N = 199009

$

This example is similar to the preceding one. A more recent standard is requested, but the

_P0SIX_VERSI0N macro suggests that only POSIX.l (199009) is being supported.

28 ADVANCED UNIX PROGRAMMING

HPUX 10.2 Feature Tests
For comparison, the posix.c module was tested under HPUX 10.2. With only the option -Aa

specified to request a compile of ANSI C code, the following output was obtained from run¬

ning posix.c:

$ cc -Aa posix.c && ./a.out
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (posix.o)
*-was detected. The linked output may not run on a PA 1.x system.
$

Even though a. out was invoked, there was no output. This indicates that none of the feature

test macros were defined by default (unlike FreeBSD). The next example defines the macro

_P0SIX_S0URCE:

$ cc -Aa -D_P0SIX_S0URCE posix.c && ./a.out
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (posix.o)
‘♦was detected. The linked output may not run on a PA 1.x system.
_P0SIX_S0URCE = 1
_P0SIX_VERSI0N = 199009

$

This is now identical to the FreeBSD output (with the exception of the pesky HP loader warn¬

ing, which can be eliminated with several other options). Choosing the POSIX. IB standard
yields the following results:

$ cc -Aa -D_POSIX_C_SOURCE=199309L posix.c && ./a.out
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (posix.o)
**was detected. The linked output may not run on a PA 1.x system.
_P0SIX_C_S0URCE = 199309
_P0SIX_VERSI0N = 199309
$

This differs from the FreeBSD example in that the _P0SIX_VERSI0N value shows support for
POSIX.IB here (the value is 199309).

AIX 4.3 Feature Tests
The AIX tests are presented here because of a few other wrinkles that were encountered. The
next example shows the results of the default compile case:

$ cc posix.c && ./a.out
"posix.c", line 13.55: 1506-046 (S) Syntax error.
"posix.c", line 21.58: 1506-276 (S) Syntax error: possible missing ')'?
$

The error messages indicate that no defaults are established here. Defining the macro
_P0SIX_S0URCE helps and yields the following results:

$ cc -D_P0SIX_S0URCE posix.c && ./a.out
_P0SIX_S0URCE = 1
_P0SIX_VERSI0N = 199506

$

Chapter 1 • COMPILER NOTES AND OPTIONS 29

Notice that _POSIX_SOURCE is redefined with the value 1, and the macro _P0SIX_VERSI0N is

given the value 199506, indicating the most recent POSIX standard value of all of the tests that

are reported in this chapter. Specifically choosing an older standard is attempted next:

$ cc -D_POSIX_C_SOURCE=199309L posix.c && ./a.out
"posix.c", line 13.55: 1506-046 (S) Syntax error.
"posix.c", line 17.60: 1506-276 (S) Syntax error: possible missing ')'?

$

This just seems to buy trouble. Another attempt is made to specify the version that is appar¬

ently supported using the _POSIX_C_SOURCE feature test macro:

$ cc -D_P0SIX_C_S0URCE=199506L posix.c && ./a.out
"posix.c", line 13.55: 1506-046 (S) Syntax error.
"posix.c", line 17.60: 1506-276 (S) Syntax error: possible missing ')'?
$

This seems to yield more compile errors. For AIX compiles, it would appear that you should

only specify the _P0SIX_S0URCE macro and avoid defining the _POSIX_C_SOURCE macro for a

specific standard release.

SunOS 5.6 Feature Tests
The last example presented involves the reaction of the SunOS 5.6 release to various standards

settings. The default case is attempted first:

$ cc posix.c && ./a.out
_P0SIX_VERSI0N = 199506
$

Isn’t this fun? In this case, the _P0SIX_VERSI0N macro is set to the value of 199506, but no

_P0SIX_S0URCE macro is defined. In the next test, _POSIX_SOURCE is defined:

$ cc -D_P0SIX_S0URCE posix.c && ./a.out
_P0SIX_S0URCE = 1
_P0SIX_C_S0URCE = 1
_P0SIX_VERSI0N = 199506
$

This gets even more interesting. Now the _P0SIX_S0URCE macro is redefined with the value of

1, which is what was expected. Here, the _POSIX_C_SOURCE macro now gets the value 1, which

is interesting. Finally, the _POSIX_VERSION macro gives us the value of 199506, which indicates

the level of support the C program can expect. The next test explicitly asks for this version of

the standard:

$ cc -D_P0SIX_C_S0URCE=199506 posix.c && ./a.out
_P0SIX_C_S0URCE = 199506
_P0SIX_VERSI0N = 199506
$

30 ADVANCED UNIX PROGRAMMING

In this output, we lose the _P0SIX_S0URCE macro, and the _P0SIX_VERSI0N macro matches

what was requested. One more test was conducted, this time requesting an older standard of

POSIX.1B (199309):

$ cc -D_P0SIX_C_S0URCE=199309L posix.c && ./a.out
_P0SIX_C_S0URCE = 199309
_P0SIX_VERSI0N = 199506
$

The _P0SIX_C_S0URCE macro remains at the level that was requested, but the _P0SIX_VERSI0N

macro remains at the value 199506. What does this tell you? It would seem that _P0SIX_

VERSION indicates what you have at your disposal, while _P0SIX_C_S0URCE tells you what was

requested.

Feature Test Summary
A writer of portable UNIX code must face a number of challenges to support multiple UNIX

platforms. From the foregoing sections, it is plain that even just choosing the POSIX standard

that you want to compile to is somewhat platform specific.

It would appear that the safest route with the platforms tested here is to specify the compile

option. -D_P0SIX_S0URCE is the most platform-neutral course to take, from a feature macro

point of view. However, this is not a perfect solution, because it is evident that different POSIX

standards were chosen on different UNIX platforms. This may cause other compile problems.

It seems that until UNIX vendors reach more agreement on the way that the feature test

macros work, each UNIX platform will require its own special tweaking of feature test macros.

You must first determine the lowest common denominator of the standard that your code is

written for. Then determine how to select that standard on the UNIX platform chosen.

To simplify matters for this book, FreeBSD will be used for the program examples. The

POSIX. IB standard will be requested in the example compiles (_P0SIX_C_S0URCE=199309L),

even though the FreeBSD 3.4-Release’s _P0SIX_VERSI0N macro indicates that only the POSIX. 1

standard is supported.

Summary
This chapter has been a primer of sorts, to prepare you for all of those nasty compile issues

that jump out at you when you begin a new project or port an old project on a new UNIX

platform. The relatively standard compile options were covered to give you a quick start. You

may find, however, that you still need to visit the vendor-specific options that were not dis¬

cussed here. For example, HP has options that permit you to choose different instruction sets

for the different PA-RISC platforms that are supported by the compiler.

You also learned (or reviewed) some tips on how to eliminate warning messages. This should

enable you to keep the highest level of warnings enabled on your compiler and still accom¬
plish tasks that the compiler might otherwise question.

Chapter 1 • COMPILER NOTES AND OPTIONS 31

Finally, you had an introduction to compiler feature test macros, which let you choose a stan¬

dard to compile to. This treatment was by no means complete, since the other possibilities

such as _GNU_SOURCE for Linux or _HPUX_SOURCE for HP were not tested. While these are not

standards, they are often chosen to get the best combination of features for the specific plat¬

forms in question.

The next chapter will cover the subject of UNIX file system objects. For non-UNIX veterans,

this is an essential foundation to build upon. Consequently, you are encouraged to absorb that

chapter carefully. After an introduction to the various types of UNIX file system objects, the

chapter will cover basic UNIX permissions as they affect the different objects. Then the core

set of UNIX system calls as they affect the file system objects will be covered, giving you the

core knowledge necessary for the remainder of this book.

■

CHAPTER 2

UNIX FILE SYSTEM OBJECTS

The early aspects of the UNIX file system design were conceived in the summer of

1969, largely by Ken Thompson at Bell Telephone Labs (BTL). An early version of the

UNIX file system was loaded onto disk by paper tape. This allowed Ken Thompson

and Dennis Ritchie to “drive the file system into the contortions that we wanted to measure,”

as Ken has been quoted.

Since this humble beginning, the basic ideas of the UNIX file system design have been copied

in all other modern operating systems. This chapter will focus mostly on the objects that the

UNIX file system presents to the users of the system. You will also examine some of the most

basic operating system calls for working with file system objects from within your C program.

File System Objects
Modern UNIX file systems support the following types of file system objects:

• Regular Files (S_IFREG)

• Directories (S_IFDIR)

• Character Devices (S_IFCHR)

• Block Devices (S_IFBLK) \

• Named Pipes (S_IFIF0)

• Sockets (S_IFS0CK)

• Symbolic Links (S_IFLNK)

The C macro names given within parentheses are provided by the include file <sys/stat. h>

(see stat (2)). You’ll see more of these in Chapter 6, “Managing Files and Their Properties.”

Regular Files
A regular file is generally what is most important to users of a system. It stores the data that

the user wants to retrieve and work with at a later time. The UNIX file system presents this

data as a continuous stream of bytes.

34 ADVANCED UNIX PROGRAMMING

A regular file consists of any number of data bytes, from zero to some maximum number. This

is an important distinction to note, since many file systems, including CP/M and DOS, will

present only multiples of a particular block size. This forces the DOS operating system to

adopt the AZ character as a marker for the end of a text file. Without this marker byte, it is oth¬

erwise impossible to have a file logically contain 3 bytes or 300 bytes, for example. However,

UNIX has no such restriction, since it is logically able to present a file of any byte length.

Note

Although the UNIX file system is able to logically present a file of any size, it will still physically
occupy a multiple of some block size. The precise nature of file allocation is hidden from the user and
is determined by the type of file system in use.

Another feature of the UNIX file system is that the programmer can work with the file logically.

There is no longer any need for the program to care about the block size in use by the underly¬

ing file. This permits the program to seek to any offset within the file and read any number of

bytes, which may or may not span multiple disk blocks. For operating systems in 1969, this

was a radical concept.

A regular file is identified by Is (1) as follows:

$ Is -1 /etc/hosts
-rw-r--r-- 1 root wheel 112 Feb 19 11:07 /etc/hosts
$

The first character of the Is (1) output is a - (hyphen) to indicate that /etc/hosts is a regular
file.

Directories
You cannot have more than one file in a file system without a directory. The first version of

DOS created files only under the root directory. However, when a file was opened, this direc¬

tory was searched to see if the file existed and where it was physically allocated.

The second step is important to the operating system in question.

UNIX supports a hierarchical file system, which allows directories to contain subdirectories.

This allows the file system to be subdivided into logical groups of files and other file system

objects. Can you imagine how difficult UNIX would be to use if the FreeBSD 3.4-Release con¬
tained all of its 60,014 (or more) files under the root directory?

Early releases of UNIX permitted directories to be read and written like regular files. Over
time, several problems with this open concept emerged:

• Program errors or accidental writes to a directory could cause the loss of several files.

• New file systems supported different directory structure entries.

• Tong filename support made it inconvenient to work directly with directory entries.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 35

The first point illustrates one of the big weaknesses of early directory management. It was pos¬

sible to lose the contents of an entire directory by accidentally overwriting the directory. The
following command used to create havoc:

$ echo OOPS >directory

If directory was the name of a directory, this command would overwrite its contents, causing

UNIX to lose track of all the files that it managed. Even worse, it usually meant that the space

occupied by the files in that directory was lost, since the file system was not notified of any

deletion. The following shows a modern response to this problem:

$ mkdir testdir
$ echo STUFF >testdir/file
$ Is -1 testdir
total 1
-rw-r--r-- 1 myid megrp 5 Apr 15 15:16 file
$ echo OOPS >testdir
testdir: Is a directory.
$ Is -1 testdir
total 1
-rw-r--r-- 1 myid megrp 5 Apr 15 15:16 file
$

The example creates a test directory and file and then attempts to overwrite the directory. The

response from the UNIX kernel is that testdir: Is a directory.

When all file object names were limited to 14 characters, as they were in the earlier days, it

was simple to work with the directories using direct file reads and writes. However, as different

directory formats emerged and long filename support was introduced, this method proved to

be unsafe and inconvenient.

For all of the reasons listed here, modern UNIX provides a set of library routines to search and

manage directories. These will be covered in Chapter 7, “Directory Management.”

A directory is identified by Is (1), as the following example illustrates:

$ Is -dl /etc
drwxr-xr-x 14 root wheel 2048 Apr 5 01:47 /etc
$

The first character shown by Is (1) is the letter d, indicating that /etc is a directory. Note

especially the use of the -d option in the Is (1) command line. Without this option, Is (1) will

attempt to list the contents of the directory, rather than the directory itself.

Block Devices
A block device is within a class of devices that work with fixed block sizes. A disk drive is a

good example of this type of device. While the operating system permits you to logically read

and write to your regular files using any transfer size, the operating system must read and

write the disk device in terms of disk blocks of a fixed size.

Although disk devices get faster and larger each year, they are still slow when compared to the

speed of the CPU. In addition to slow data transfer, disk rotation and head seek latencies add

36 ADVANCED UNIX PROGRAMMING

to the overall wait time involved in a disk I/O operation. Consequently, block devices are

buffered with a disk cache by the UNIX kernel.

The disk cache will usually retain the most recently used disk blocks, but cache algorithms

vary in order to achieve different performance goals. Because disk cache dramatically improves

the performance of the file system, all file systems tend to be mounted using the block device.

Block devices can be readily identified by the Is (1) command as follows:

$ mount
/dev/wd0s2a on / (ufs, local, writes: sync 4505 async 92908)
/dev/wd0s2e on /usr (ufs, local, writes: sync 6924 async 118551)
procfs on /proc (proofs, local)
$ Is -1 /dev/wd0s2a
brw-r. 1 root operator 0, 0x00030000 Feb 19 11:05 /dev/wd0s2a
$

The mount (8) (on many systems mount (1M)) command is used to find out what block devices

have been used. Then the device /dev/wd0s2a was chosen in this example. The first character,

shown by Is (1) in this example, is the letter b, indicating that /dev/wd0s2aisa block device.

Block devices are not necessarily representative of the entire disk. In most cases, these repre¬

sent a disk partition so that an error in file system software cannot corrupt another partition.

Additionally, each block device within the system usually has a corresponding character device

as well. Block and character devices are also referred to as block raw devices and character raw

devices, respectively.

When applied to a device, the word “raw” indicates that the disk space and structure are not

managed. The raw device does not maintain a structure of files and directories within it. This

is the job of file system software. Similarly, a database manages tables and rows within a raw

device.

The cache feature of block devices may seem to suggest that a block device should be a good

candidate for a database. This is usually not the case, however, since the database engine has

its own custom cache algorithms that are tuned to the way that the database accesses the disk

device. For this reason, database engines like Oracle, Sybase, and Informix usually perform

better with the corresponding character device. This is one of the reasons that raw (character)

device access to disks and partitions is being added to the Linux 2.4 kernel.

Character Devices
Character devices are a class of devices that work with various byte-sized inputs and outputs.

These generally work with variable lengths of data, but not necessarily so (disks will insist on

fixed block sizes). Your terminal (or pseudo-tty) is a special form of character device. As you

type characters at your keyboard on the console, the operating system must read the characters

and make them available to the program that is currently reading input from the terminal. This

differs from the way that block devices work, in that the amount of data input is often small or
variable in length.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 37

QIC (Quarter-Inch Cartridge) tapes are another example of character devices. Tape devices will

accept a program’s idea of a record (within limits) and write a physical record to tape matching
that size.

A character device is easily identified by the Is (1) command as shown below:

$ Is -1 /dev/tty
crw-rw-rw- 1 root wheel 1, 0 Apr 15 14:56 /dev/tty
$

The device /dev/tty is always known to the current session as your terminal device (the

actual device name is different). The first character shown in the Is (1) output is c, telling you

that this is a character device.

The mouse attached to the console is another example (FreeBSD):

$ Is -1 /dev/sysmouse
crw. 1 root wheel 12, 128 Feb 19 11:05 /dev/sysmouse
$

Flere again, you can see that the mouse is considered a character device.

Disks are also accessible using UNIX character devices. The same disks can be accessed using

the corresponding block device that you read about earlier. However, character raw devices

(for disks) are often provided to the database engines. Database engines manage the perfor¬

mance of disk I/O better than the block device cache because of their intimate knowledge of

the data structures being used by the database.

By convention, the character raw device name of a block device usually has the letter r in front

of it. See the following FreeBSD example:

$ mount
/dev/wd0s2a on / (ufs, local, writes: sync 4505 async 92982)
/dev/wd0s2e on /usr (ufs, local, writes: sync 6926 async 118585)
procfs on /proc (proofs, local)
$ Is -1 /dev/rwd0s2a
crw-r. 1 root operator 3, 0x00030000 Feb 19 11:05 /dev/rwd0s2a
$

The mount (8) command was used to discover the block device names. Note that the Is (1)

command adds the letter r to the device name to arrive at the character raw device name of

/dev/rwd0s2a for the root mount. The first character of the Is (1) output shows the letter c,

confirming that this is a character device.

Named Pipes (FIFOs)
In the period between 1970 and 1972, Doug Mcllroy at BTL would sketch out how he would

like to connect processes by saying “who into cat into grep.” In 1972, Ken Thompson finally

said, “I’m going to do it!” Overnight Ken worked to implement the pipe concept. Ken also had

to rework many of the tools because, at the time, the tools did not support the idea of standard

input—they read from files named on the command line instead. UNIX, starting with Third

38 ADVANCED UNIX PROGRAMMING

Edition, was forever changed that night. The pipe feature was so well accepted that anyone

who had seen it would not give it up.

Pipes are now routinely used on the command line under UNIX for all sorts of purposes, using

the | pipe (vertical bar) symbol. These are anonymous pipes, since they exist only between the

processes that are communicating with each other. They disappear from the system when both

ends of the pipe become closed.

It is also possible to create a named pipe that exists in the file system. These are also known as

FIFOs, since data that is written first in is first out of the pipe. The following shows a simple

example:

$ mkfifo myFIFO
$ Is -1
total 0
prwxr-xr-x 1 myid mygrp 0
$ Is -1 >myFIF0 &
$ tr '[a-z]' '[A-Z]' cmyFIFO
TOTAL 0
PRWXR-XR-X 1 MYID MYGRP 0
[1] 77637 Exit 0
$

Apr 15 16:55 myFIFO

APR 15 16:55 MYFIFO
Is -1 >myFIF0

The example illustrates how the Is (1) command was able to redirect its output into the FIFO

myFIFO (is was placed into the background so that another command could be started in the

same session). Then the tr(1) command was started to accept input from myFIFO, translating

all lowercase letters into uppercase.

Notice also that the first letter of the Is (1) output is the letter p. This is how FIFO file system

objects can be identified.

Sockets
The socket was a Berkeley University concept that found its way into 4.1BSD and 4.2BSD

implementations of UNIX circa 1982. Sockets permit processes on one UNIX host to commu¬

nicate over a network with processes on a remote host. Sockets can also be used to communi¬

cate with other processes within the same host. (The BSD lpr (1) command does this to accept
output for spooling to a printer.)

Local sockets can also exist within the file system. This is the type of socket that can be used

only between processes within the same host. If you have the PostgreSQL database installed on
your FreeBSD system, you might have a socket like this one:

$ Is -1 /tmp/.s.PGSQL.5432
srwxrwxrwx 1 postgres wheel 0 Mar 7 04:43 /tmp/.s.PGSQL.5432
$

The example shows that the Is (1) command identifies the socket with the starting letter s.

Sockets that connect to remote systems, however, do not appear anywhere in the file system.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 39

Symbolic Links
UNIX has supported linked files for quite some time. However, the symbolic link is a relatively

new concept by UNIX standards. It was added to address the limitations of the normal link,
sometimes now referred to as the “hard link.”

Normally, files can be linked only when both links are contained on the same file system. On

some systems, the /usr file system is different from other parts of the root file system. An

attempt to create a link on a file system that is different from the file being linked will fail:

$ In /etc/hosts /usr/me/work/my_link
In: /home/me/work/my_link: Cross-device link
$

The UNIX kernel tells us that these two ends of a would-be link are on different devices. The

symbolic link makes it possible to overcome this limitation:

$ In -s /etc/hosts /usr/me/work/my_link
$ Is -dl my_link
lrwxr-xr-x 1 me mygrp 10 Apr 15 17:22 my_link -> /etc/hosts
$

Note that the In (1) command shown here uses the - s option to request a symbolic link, as if

to say, “If you list the contents of my_link you will see the contents of your /etc/hosts file.”

The Is (1) command output for the symbolic link shows a starting letter 1.

Symbolic links work around the original problem with hard links because they are actually a

special kind of file that contains a pathname. When the UNIX kernel sees that it is a symbolic

link, the kernel reads this special file to find out what the real pathname is. However, it is pos¬

sible that the pathname listed is yet another symbolic link. The UNIX kernel will return the

error ELOOP if the symbolic link is a circular reference or simply has too many indirect refer¬

ences. Chapter 6 will examine symbolic links further.

The maximum symlink recursion in FreeBSD is defined by the macro maxsymlinks. The macro is

defined in the include file <sys/param. h>. For FreeBSD 3.4 Release, its value is 32. Other UNIX plat¬

forms may differ.

Special Files
While you may not have realized it, you already know about special files. These are file system

objects that allow access to devices. Here are some of the examples that you have seen already:

/dev/tty Terminal device

/dev/sysmouse Mouse

/dev/wd0s2a Block disk device

/dev/rwd0s2a Character disk device

40 ADVANCED UNIX PROGRAMMING

These are special files because they represent only the actual device in question (FreeBSD see

intro (4)). It is only by convention that you tend to find these devices in the /dev directory.

They could be placed in other directories.

Another important quality about special files is that their existence does not imply that the

device or its driver support exists. For example, on a FreeBSD 3.4 Release system you might

list a device:

$ Is -1 /dev/da0
brw-r. 1 root operator 4, 0x00010002 Feb 19 11:05 /dev/da0
$ Is -1 /dev/rda0
crw-r. 1 root operator 13, 0x00010002 Feb 19 11:05 /dev/rda0
$

The example shows a SCSI disk block and character device. Yet, if you were to switch to root

to access this device, you would see the following:

dd if=/dev/da0 of=/dev/null
dd: /dev/da0: Device not configured

The dd (1) command is told that the device is not configured (on the particular system on

which it was tried). The file system object /dev/da0 is just a placeholder that informs the ker¬

nel what device you want access to, if this special file is accessed.

Harking back to an earlier example

$ mount
/dev/wd0s2a on / (ufs, local, writes: sync 4505 async 92982)
/dev/wd0s2e on /usr (ufs, local, writes: sync 6926 async 118585)
procfs on /proc (proofs, local)
$ Is -1 /dev/rwd0s2a
crw-r. 1 root operator 3, 0x00030000 Feb 19 11:05 /dev/rwd0s2a
$

The /dev/rwd0s2a device is listed as the disk device (partition) for use by the root file system.

You can also access this same device with another special file, if you create one of your own:

$ mknod /usr/me/work/root c 3 0x30000
mknod: /usr/me/work/root: Operation not permitted
$ su •
Password:
cd /usr/me/work
mknod root c 3 0x30000
Is -1 root
crw-r--r-- 1 root mygrp 3, 0x00030000 Apr 15 18:03 root
rm root
exit
$

The mknod (1) command requires root access (note the failed first attempt). As root, the

mknod(1) command was used to create an entirely new special file /usr/me/work/root, which

even used a different filename. Once that is created, you will find that you could access the

same device by using either /dev/rwd0s2a or /usr/me/work/root (but I wouldn’t advise that
you do anything with your root file system!).

Chapter 2 • UNIX FILE SYSTEM OBJECTS 41

The special file root in the example was deleted also. Did that make the device disappear? No.

Not only is the special file /dev/rwd0s2a still available, even if that entry was deleted, you
could always re-create it with the mknod (1).

The special file entry specifies three pieces of information:

• Block or character device (b or c)

• The major number for the device

• The minor number for the device

The major number (3 in the example above) indicates what type of device it is (based upon the

kernel configuration). The minor number can be as simple as the value zero, or it can refer¬

ence a particular unit within a set. For example, a minor number of 2 might choose a second

partition of the disk drive, and a minor number of 0 might reference the entire disk drive.

Minor numbers can also include bit flags. Some character devices such as tape drives have a

bit set to indicate that the tape drive should be rewound upon close. In all cases, special file

major and minor numbers are very kernel specific. You cannot use the same special files saved

on an HPUX UNIX platform and restore them to an AIX 4.3 platform. This would be a recipe

for disaster!

Special files are given attention here because they are important for those system programmers

who want to take up daunting challenges such as writing database engines. The writer of any

new device support must also be keenly interested in the special device entry for the hardware

device.

Some device entries are pseudo devices. They don’t actually represent hardware, but special¬

ized kernel services. One pair of such devices under FreeBSD is the /dev/kmem and /dev/mem

devices (see mem (4)). With the correct permissions, it is possible to inspect kernel memory

through these special files. For example, a writer of a ps (1) command could choose to work

through kernel structures this way (there are better ways).

Permissions
It is generally assumed in this book that the reader is already familiar with the UNIX access

conventions that are applied. At the risk of stating the obvious, it is often useful at this stage to

restate the precise way that permissions affect certain categories of file system objects. This is

important because there are some minor semantic differences that depend on the file system

object type.

Access of Regular Files
This is perhaps the simplest case to consider. Files can be controlled by

• Read access

• Write access

• Execute access

42 ADVANCED UNIX PROGRAMMING

These are relatively simple concepts. However, a couple of interesting combinations exist:

• A file that has read and execute access

• A file that has execute-only access

The first case is necessary for shell scripts. In order for the shell interpreter to be started by the

kernel with the ! /bin/ksh hack, the UNIX kernel insists that the execute permission be given

on the shell script. Additionally, the shell itself must interpret the file, so it must access enough

to read the script. A shell script is unsuccessful if it has only one access permission or the

other.

The execute permission is necessary to load and execute a binary executable as a process. This

should be nothing new. However, an executable file, for instance /usr/local/bin/gzip, can¬

not be copied to your home directory with only execute permission. In this case, you are able

only to execute gzip, but you are unable to ftp (1) it to your friends.

On older UNIX systems, there used to be a sticky bit available, which had meaning for exe¬

cutable files. When set on an executable file, this would cause the kernel to attempt to keep

the program text (instructions) in its memory and swap other memory out instead. This opti¬

mization was often used on frequently accessed commands.

Access of Directories
Since directories are different from files, the semantics of directory access is a bit different also:

• Read grants permission to list the directory’s contents.

• Write grants permission to modify the directory’s contents.

• Execute grants permission to search the directory’s contents and open a file or change to
a subdirectory within it.

The read and execute permissions are similar, but distinct. You cannot list what files or subdi¬

rectories exist in a directory without read permission on that directory. However, if you already

know the name of a file under that directory and you have execute access on the directory,

then you can open that file (assuming the file grants read access).

You can also change to a subdirectory of a directory with execute-only access, if you already

know the subdirectory’s name (if the named subdirectory itself permits it with execute permis¬

sion). A subdirectory without execute permission will not permit you to change to that direc¬
tory, nor will it permit you to open files within it.

Many new UNIX users have difficulty understanding write access to directories. Write access

permits users to create, rename, or delete files and other file system objects in that directory.

Imagine a directory that contains a read-only file granting write access. That read-only file can

be deleted because of the write permission available at the directory level. To disallow deleting

of files, you must withdraw write permission on the directory containing the file. This also

prevents the user from creating new files or renaming the existing ones in that directory.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 43

Many UNIX systems allow a sticky bit to be set for directories. FreeBSD 3.4 Release describes

this in its man page sticky (8). This feature is necessary for dealing with shared directories

such as the /tmp directory. Without the sticky bit, all users would have write access to the
/tmp directory and be able to

• Rename another user’s temp file

• Delete another user’s temp file

• Move another user’s temp file to another writable directory on the system

In short, there is room for a lot of mischief without any special treatment of the / tmp directory.

Rather than customize the operating system to make special allowances for fixed directories,

the sticky bit was permitted for directories. Look at your /tmp directory now. Under FreeBSD
you would see:

$ Is -dl /tmp
drwxrwxrwt 2 root wheel 512 Apr 15 03:33 /tmp
$

Notice the t where the x should go (last position in drwxrwxrwt). This indicates that both the

execute bit (for others) and the sticky bit are present. The sticky bit (S_ISVTX) for directories

imposes the rules that the file system object can be removed or renamed only when

• The user has write permission for the directory containing the object.

• The user is the owner of the file system object itself.

The only exception is for the root user, who is permitted to do anything. The sticky bit in this

way permits only the user’s own files in a given directory to be tampered with.

The sticky bit enables you to create a directory in which other users can create files of their

own, but they cannot remove other users’ files. Additionally, you can create read-only files for

those users without worrying about those read-only files being renamed or deleted.

Working with Files Under UNIX
A file or device under UNIX is opened with the open(2) system call. Before open (2) is consid¬

ered in detail, let’s first examine the way UNIX references open files in general.

When you want to read from a file, such as /etc/hosts, you must indicate which file you

want to read. However, if you had to name the path as a C string " / etc /hosts" each time you

wanted to read part of the file, this would not only be tedious and inefficient, it would also be

inflexible. How would you read from different parts of the same file? Obviously, a method by

which the file can be opened more than once is much more flexible.

When you open a file under UNIX, you are given a reference to that file. You already know

(since this is review) that it is a number. This is also known as a file unit number or a file

descriptor. Conceptually, this number is a handle that refers back to the file that you named in

the open(2) call.

44 ADVANCED UNIX PROGRAMMING

File descriptors returned from an open (2) call allow you to name the path of the file system

object once. After you have a file descriptor, you can read the /etc/hosts file one line at a

time by providing the file descriptor to the read(2) function. The UNIX kernel then knows

which file you mean, because it remembers it from the earlier open (2) call.

This provides flexibility also, since open(2) can be called a second (or nth) time for the same

file. In this way, one part of your application can be reading one part of the file while another

part is reading another. Neither read disturbs the other. The read (2) call can manage this

because file state information is associated with each different file descriptor.

Finally, it should be apparent that an open file descriptor eventually needs to be closed. The

close (2) function fills that need. When a process terminates because of a signal or for any

other reason, including a normal exit, any file descriptors that are still open are closed by the

UNIX kernel. If this were not done, the UNIX kernel would suffer from a serious memory

leak, among other problems.

Less obvious is that, when anexecve(2) is called to start a new program within a process,

some file descriptors can be closed automatically, while others are left open. See fcntl (2) and

the F_SETFD flag if this is of interest. The execve(2) call is covered in Chapter 19, “Forked
Processes.”

Opening and Closing Files
Files under UNIX are opened and closed with the following functions:

#include <sys/types.h> /* for mode_t */
#include <sys/stat.h> /* for mode_t */
#include <fcntl.h> /* For open */

int open(const char *path, int flags, ... /* mode_t mode */);

#include <unistd.h>

int close(int d);

The open (2) call accepts a C string that represents the pathname of the file system object to be

opened, some flags, and optionally some permission bits in the mode argument. The return

value is either -1 (with errno) if the call fails or a file descriptor value that starts at the value
zero.

Note

The handling of errno is covered in Chapter 3, "Error Handling and Reporting," if you need to know
more about this variable.

The returned file descriptor is always the lowest unused file descriptor number. If you have

standard input already open (file unit 0), standard output (file unit 1), and standard error (file
unit 2), then the next successful open (2) call will return file unit 3.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 45

When you are finished with a file descriptor (an open file system object), you must close it
with a call to close (2).

Flags for open(2)

The second argument to open (2) can consist of several flag bits. These are given in Table 2.1.

TABLE 2.1 FreeBSD open(2) Flag Bits

Flag Description

0_RD0NLY Open for read only

0_WR0NLY Open for write only

0_RDWR Open for read and write

0_N0NBL0CK Do not block on open

o_append Append with each write

0_CREAT Create file if necessary

0_TRUNC Truncate file to 0 bytes

0_EXCL Error if creating and the file already exists

0_SHL0CK Atomically obtain a shared lock

0_EXL0CK Atomically obtain an exclusive lock

The flag 0_N0NBL0CK causes the open(2) call not to block while waiting for the device to be

ready. For example, opening a modem device can cause it to wait until a carrier is detected. On

some UNIX platforms such as SGTs IRIX 6.5, there is also the 0_NDELAY flag, which has special

semantics when combined with the 0_N0NBL0CK flag.

The 0_APPEND flag will cause each write to the file to be appended to the end of the file. This

applies to all write (2) calls, not just the first one (intervening appends can be done by other

processes).

The 0_CREATE flag can be used to cause the file to be created, if necessary. However, when

combined with the 0_EXCL flag, if the file already exists, the open (2) call returns an error. A

special case of this is when flags 0_CREATE and 0_EXCL are used and the pathname given is a

symbolic link. The call will fail even if the pathname resolved by the symbolic link does not

exist. Another way to state this is that if the symbolic link exists, the open call treats this as if

the file already exists and returns an error.

When opening a file in order to overwrite it, you can specify the 0_TRUNC flag. This causes the

file to be emptied prior to open (2) returning successfully. Any prior content of the file is lost.

46 ADVANCED UNIX PROGRAMMING

Flags O SHLOCK and 0_EXL0CK are permitted on FreeBSD 3.4 Release and cause certain

flock (2) semantics to be applied. Chapter 5, “File Locking,” will cover the topic of locking

files under UNIX.

Closing Files Automatically
All files are closed when the current process terminates. Flowever, by default they remain open

across calls to the execve (2) function. If you need the open file descriptor to close prior to

executing a new program (with execve(2)), then you should apply a call to fcntl(2) using

the F_SETFD operation.

#include <fcntl.h>

int fcntl(int fd, int cmd, ...)i

To change a file descriptor given by variable f d to close automatically before another exe¬

cutable is started byexecve(2), perform the following:

int fd; /* Open file descriptor
int b0; /* Original setting */

if ((b0 = fcntl(fd,F_GETFD)) == -1) /* Get original setting
/* Error handling... */

if (fcntl(fd,F_SETFD,1)) == -1) /* Set the flag TRUE */
/* Error handling... */

Flere both the fetching of the current setting and the setting of the close-on-exec flag are

shown. Some platforms use a C macro to identify this bit. For example, SGI’s IRIX 6.5 uses the

FD_CLOEXEC macro instead of assuming it is the least significant bit.

Opening Special Files
There is actually nothing unusual about opening a special file. You open it as you would any

other file. For example, if you have permission to open a disk partition, your program can use

the open (2) call to open it for reading and writing. For example

int fd;

fd = open("/dev/wd0s2f",0_RDWR);
if (fd == -1)

/* Error handling... */

From this point on, this sample program would have access to the entire disk or disk partition,

assuming that the open call succeeded. File systems have their special files protected so that

normal users cannot open them this way. If they could, they could seriously corrupt the file
system.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 47

The open (2) and close (2) functions can return the error eintr. It is easy to overlook this fact for

the close(2) function. See Chapter 15, "Signals," for a discussion of this error code.

Working with Sockets
Sockets require special treatment. They are not opened with the normal open (2) call. Instead,

sockets are created with the socket (2) or socketpair(2) call. Other socket function calls are

used to establish socket addresses and other operating modes. Socket programming is outside

the scope of this book.

It should be noted, however, that once a socket is created and a connection is established (at

least for connection-oriented protocols), reading and writing to a socket can occur like any

open file, with calls to read (2) and write (2). Sockets are like bi-directional pipes, and seek¬

ing is not permitted.

Duplicating File Descriptors
UNIX provides this unique capability to have one open file descriptor available as two (or

more) separate file descriptors. Additionally, it is possible to take an open file descriptor and

cause it to be available on a specific file unit number, provided the number is not already

in use.

The function synopses for dup(2) and dup2(2) are as follows:

#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd, int newfd);

In the case of dup (2), the returned file descriptor when successful is the lowest unused file

unit number available in the current process. For dup2 (2), however, the new file descriptor

value is specified in the argument newfd. When dup2(2) returns successfully, the return value

should match newfd.

On some UNIX platforms, the dup(2) and dup2(2) calls can return the error eintr (known to be

documented for SGI's IRIX 6.5). See Chapter 15 for a discussion of this error code.

One situation in which dup(2) is helpful is in opening FILE streams to work with an existing

socket. The following example takes the socket s and creates one input stream rx and another

tx stream for writing:

48 ADVANCED UNIX PROGRAMMING

int s;
FILE *rx;
FILE *tx;

/* Open socket */
/* Read stream */
/* Write stream */

rx = fdopen(s,"r");
tx = fdopen(dup(s),“w");

/* Open stream for reading on s */
/* Open stream for writing on s */

Did you spot the dup(2) call? Why is it necessary? The dup(2) call is necessary because when

the fclose(3) call is later made to close the rx stream, it will also close the file descriptor

(socket) s. The dup(2) call ensures that the tx stream will have its own file descriptor to use,

regardless of if stream rx is still open.

If the dup (2) were omitted from the example, the final data held in the buffers for tx would

fail to be written to the socket when fclose (3) was called for tx (assuming rx has been

closed first). The reason is that the underlying file descriptor will already have been closed.

The dup(2) call solves an otherwise thorny problem.

Changing Standard Input
If you need to change your standard input, how is this accomplished? This may be necessary

for the sort (1) command for example, since it processes the data presented on its standard

input.

Assume that the input file to be sorted has been opened on unit 3 and held in variable f d. You

can place this open file on standard input as follows:

int fd; /* Open input file for sort(1) */

close(0); /* Close my standard input */
if (dup2(fd,0) == -1) /* Make fd available on 0 */

/* Error handling... */
close(fd); /* This fd is no longer required */

The basic principle here is that once you close unit 0 (standard input), you can make the file

that is open on unit 3 available as unit 0 by calling dup2(2). Once you have accomplished

that, you can close unit 3, since it is not needed any longer.

You can apply this principle for standard output, standard error, or any other file unit you
would like to control.

Warning

Note that the example avoided testing for errors for close (2), which should be done. Test for the

error eintr, and retry the close(2) call if the eintr error occurs.

Chapter 2 • UNIX FILE SYSTEM OBJECTS 49

UNIX File I/O
Many C programming texts teach the reader how to do I/O using the stdio (3) functions

f open (3), fgets(3), f read (3), fwrite(3), and the rest. Because UNIX supports the

stdio (3) interface, many new UNIX programmers think of this as UNIX file I/O. However,

this interface is simply the stdio (3) set of routines, which is layered on top of the UNIX sys¬

tem calls. The underlying system calls perform the real UNIX file I/O.

There will be times where you’ll need to use the “bare metal calls” such as read (2) and

write(2) under UNIX. These and other UNIX I/O functions will be covered in Chapter 4,

“UNIX Input and Output.” These ultimately give you the most control and, in some cases,

relief from bugs in stdio (3).

Figure 2.1 illustrates how the stdio(3) functions call upon the section 2 functions. The

read (2) and write (2) calls are serviced by the UNIX kernel, shown at the bottom of the

figure.

FIGURE 2.1

The I/O software layers.

Systen
read(2)/

n Calls
write(2)

> f

UNIX kernel

Library Calls
stdio(3) routines

An example of a shortcoming of the stdio (3) routines is that they behave differently on differ¬

ent platforms. On some UNIX platforms, the error EINTR is returned when a signal handler

returns, while on others this error is not returned at all. On still other UNIX platforms, the

stdio (3) routines get confused dealing with EINTR and do not work correctly.

Sometimes you can live with the stdio(3) interface, but you’ll want to perform a special con¬

trol function on the open FILE. For example, you might need to issue an I/O control operation

with ioctl(2) or set the close-on-exec flag using fcntl(2). In these cases, you can gain access

to the underlying file descriptor by using the stdio (3) macro f ileno (3). To set the close-on-

exec flag on FILE stream tx, do the following:

FILE *tx; /* Opened by fopen(3) */

if (fcntlffileno(tx),F_SETFD,1)) == -1) /* Set the flag TRUE */
/* Error handling... */

The example shows how the macro call f ileno(tx) exposes the underlying UNIX file descrip¬

tor to the f cntl(2) function. This technique can sometimes be used with other functions such

50 ADVANCED UNIX PROGRAMMING

as ioctl(2). However, be careful that what you are doing in this scenario does not upset what

is being managed by the stdio(3) routines. For example, it might seem harmless to duplicate

a file descriptor being used by stdio (3) and then call lseek (2) on the duplicated file descrip¬

tor. However, this will also change the file position for the original file descriptor. For some

implementations of the stdio(3) library, this may cause you grief.

Summary
For many readers, this chapter has been a review. For those ramping up their knowledge to

program in C under UNIX, this chapter will have exposed you to some important UNIX con¬

cepts. Perhaps you learned a few historical tidbits along the way.

Chapter 3 is another foundation-building chapter. Veterans can skip that chapter if they are in

a hurry If you are still building up your knowledge about UNIX programming, you will want

to pay special attention to this chapter. It will help you master the material in the remainder of

this book.

CHAPTER 3

ERROR HANDLING AND REPORTING

The UNIX operating system and its associated C libraries offer a rich set of system and

function library calls, respectively. Within this set of calls there are very few functions,

which cannot return an error. Reasons for errors include the incorrect use of parame¬

ters, inadequate buffer sizes, missing or misnamed file system objects, or simply a lack of

access to a resource. A mechanism must exist to return an error indication to the caller of the

function.

This chapter examines the error reporting mechanism used by the UNIX system and library

function calls. This includes a discussion of the original error reporting mechanism that was

used in the past and the implementation now in use. Additionally, it will be shown how UNIX

error codes can be translated into meaningful text messages that can be reported to a user.

Determining Success or Failure
When a C function is called, the programmer is interested in two things upon its return:

• Did the function call succeed?

• If not, why did the call fail?

General Rules for Error Indication
The UNIX convention used by most system calls and library functions is that the return value

indicates a general success or failure. Return values fall into two major categories:

• The return value is an integer value (int or long). Normally failure is indicated by a

value of negative one (-1).

• The return value is a pointer type, such as pointers (char *), (void *) or a pointer to a

structure. Failure is indicated by a null return pointer and success by a non-null pointer.

Exceptions to the General Rule
There are exceptions to the general rule just listed, but these are rare. When the functions

wait (2), waitpid(2), wait3(2), and wait4(2) return an error indication, they return the

integer value (pid_t) (-1). This is similar to the integer return case, except that the value -1 is

returned in a process ID data type.

52 ADVANCED UNIX PROGRAMMING

An exception to the pointer rule is the shmat (2) function call. When it returns an error indica¬

tion, it returns the pointer value (void *) (-1).

Unusual exceptions to the general rule can be found in the functions strtol(3), strtoul(3),

and strtod (3), which return special values like L0NG_MIN, LONGJVIAX, UL0NG_MAX, +HUGE_VAL,

and -HUGE_VAL. These will be covered in detail in Chapter 10, “Conversion Functions.”

Classifying Successful Return Values
For integer return values, a successful return value is normally anything other than -1. Often

this is a value that is greater than or equal to zero. For example, the UNIX open (2) call returns

a file descriptor number that can be zero or greater.

For pointer return values, a successful return value is normally a non-null pointer. An example

is the fopen(3) function, which returns a pointer to a FILE object.

As noted previously, under unusual circumstances the null pointer can indicate a successful

return from certain exceptional functions (recall shmat (2)). For this reason, the best program¬

ming practice is for the programmer to test for failure indication upon return from a function.

Anything that does not classify as a failure should be considered a successful indication.

Other Return Indications
Before leaving the topic of function return indications, it is worth pointing out that some func¬

tions offer a third indication, in addition to the normal success or failure. These generally fall

into two categories:

• No more information exists (examples include waitpid(2), wait3(2), wait (4)).

• A timeout has occurred without returning any “interesting” event (examples include

select(2),poll(2)).

In these examples, the designers of these functions have decided not to treat the “no informa¬

tion” or “timeout” case as an error. At the same time, these cases cannot be considered success¬

ful returns, since either no information is returned or a timeout has occurred.

This type of indication can be treated as an error by the programmer, with the exception that

there will be no value provided in the global variable err no.

Determining the Reason for Failure
The foregoing discussion identifies most function calls as returning an indication of

• success

• failure

• in rare cases, no information

Chapter 3 • ERROR HANDLING AND REPORTING 53

Once you have discovered that the function call has failed, you need to know why. For exam¬

ple, the UNIX make(1) command needs to know from open(2) when it fails that

• It was unable to open makefile because it did not exist.

• It lacked the permissions necessary to open makefile for reading.

The reason for the failure might have a bearing on the action taken by the command. For

example, if it finds that file makefile does not exist, make (1) tries to open the file Makefile

instead. However, when it discovers that it lacks permissions to open file makefile, some

implementations of the make(1) command report this as an error to the user. See the following

Note for variations on this theme by the different UNIX platforms tested.

The make(l) command's behavior varies on the different UNIX platforms tested. The following plat¬
forms report an error if they lack permission to read the file makefile:

Linux (GNU make 3.77)

SunOS 5.6 (reports a warning and tries to open Makefile)

The make(1) command on the following platforms ignores the file access error and proceeds to
open Makefile instead:

FreeBSD 3.4 Release

HPUX 10.2 and HPUX 11.0

AIX4.3

The nature of a failure is clearly important to the programmer of any software or utility pro¬

gram. The error-reporting mechanism that early developers of UNIX chose was the special

external integer variable named errno. Whenever a function call returned a failure indication,

it would first assign a reason code for the failure to the external errno variable. The calling

program could then examine this external variable if it cared to know the reason for the fail¬

ure. When the function returned a successful indication (or “no information” indication), the

value of errno was left unchanged.

This mechanism was suitable for early versions of UNIX. However, this older method has limi¬

tations. To remove the inherent limitations of the errno variable, its definition has changed

somewhat in modern versions of UNIX. If it is applied correctly, this change is transparent to

you as a programmer.

The Old errno Value
The original method that the programmer used to gain access to the error code was to declare

an external reference to the int value errno:

extern int errno;

54 ADVANCED UNIX PROGRAMMING

When an attempt to open a file fails, a program can simply query the external variable errno

to determine the reason for the failure. The following example shows how the make (1) com¬

mand could be written using the old errno method:

#include <errno.h> /*
extern int errno; /*
int fd; /*

/* Attempt to open makefile */
if ((fd = open("makefile",0_RD0NLY)) == -1)

if (errno == ENOENT) /*
fd = open("Makefile",0_RD0NLY); /*

}

if (fd == -1) { /*
/* Yes, report the open failure... */

} else {
/* makefile or Makefile is open on file unit fd */

}

The example shows that if makefile fails to open, with the error ENOENT, Makefile is opened.

The example also illustrates that the reason for the error is never returned directly by the func¬

tion, nor is it returned by an argument reference. Instead, using this older external variable

methodology, the programmer queries this value when a function returns a failure indication.

Defines ENOENT */
Error code */
File descriptor */

{ /* Fail to open? */
File does not exist? */
No, so try Makefile instead */

Did either open(2) fail? */

yffr'T)
Note

ENOENT means No Such File or Directory. This error code indicates that the requested file system

object was not found (does not exist).

Referencing Error Codes by Name
Using the errno external variable convention for errors required that a series of error codes be

agreed on in advance. Since numeric error codes might vary on different UNIX platforms, a set

of C macros is defined to refer to these error codes (for example, error code ENOMSG is 83 for

FreeBSD 3.4, 35 for HPUX, and 42 for Linux). The symbolic macro names can be used to refer

to the same error codes on different UNIX platforms. These C macros are defined in the
include file errno.h.

#include <errno.h>

Using symbolic macro references for error codes is important, since it allows your C programs

to be portable to other UNIX platforms. Only a compile is required to reference the correct
numeric value for these codes on a given platform.

Chapter 3 • ERROR HANDLING AND REPORTING 55

UNIX errno codes are non-zero values and usually start at 1 and work up. Zero is sometimes

used to indicate “no error” (this convention is used in rare cases with the functions strtol(3),

strtoul(3), and strtod(3), for example).

Applying errno Correctly
There is a temptation for novice programmers to use the errno value to test for success.

However, it is incorrect to do so because the purpose of the errno value is to be a central place

to which to post error codes. As a general policy, never expect the errno value to be cleared to

zero for success. Only errors (failures) are posted to this variable.

There are special situations that require you to clear the errno value to zero before making a

function call (some examples are strtol(3), strtoul(3), strtod(3), and getpwent (3)).

This is necessary because the function will not clear the errno value to zero when success is

returned. Under these special circumstances, if the errno value remains as the value 0 (pre¬

suming it was cleared prior to the call), then this indicates a successful return. This technique

must only be applied to specially indicated functions. This technique cannot be extended for

use on other functions. The special cases will be carefully indicated within this book.

Warning
■

The errno value is updated by system and library functions only after an error indication is returned.

This value is never cleared to zero for a successful operation. Always test the function's return value

to determine if an error has been indicated. If so, then the value of errno has meaning.

Testing for Failure with Integer Return Values
Earlier it was shown how functions, which return integer results, use the value of -1 to indi¬

cate that a call has failed. The following open(2) example indicates when the value of errno is

valid:

extern int errno; /* Old way of gaining access to errno */
int fd; /* File descriptor */

if ((fd = open("makefile",0_RD0NLY)) == -1) {
/* Failed: errno holds a valid error code */

} else {
/* Success: fd holds file descriptor, and errno is meaningless here */

}

If the open (2) call returns a failed indication by a return value of -1, then we know that the

error code will have been posted to the integer errno.

56 ADVANCED UNIX PROGRAMMING

Testing for Failure with Pointer Results
Other functions that report their failure by returning a null pointer can identify when to use

errno as follows:

FILE *fp = fopen("makefile","r"); /* Attempt to open makefile */

if (fp == NULL) { /* Failed? */
/* Open Failed: the value of errno holds an error code */

} else {
/* Open succeeded: the value of errno has no meaningful value */

}

Here the fopen(3) call indicates failure by returning a null pointer (which matches the C

macro value NULL). Again, only when it is determined that the function has returned a failure

indication is the value errno valid and does it contain an error code.

The New errno Value
If you’ve been a veteran of UNIX C/C++ code for some time, then you’ve probably noticed

some changes in the declaration of the variable errno over the years. Modern UNIX platforms

have undergone some changes in order to support threads.

While threads are a welcome addition to the UNIX platform, they have required a number of

internal changes to the underlying C libraries and the way in which the errno variable is

defined. A thread is a separate flow of instructions within one memory environment (all

threads share one memory address space). Consequently, the traditional single global integer

value of errno no longer suffices, since function calls in one thread would alter the errno val¬

ues being referenced in another thread.

In order to support threads without requiring all existing software to be redesigned, a new

declaration has been crafted for the errno value (usually a C macro). This new definition

defines a separate copy of errno for each thread. Rather than have the programmer declare

this variable, it is now done by the provided include file <errno. h> instead. This change in

definition should be transparent to most UNIX source code. Note that there were older

releases of the GNU libraries under Linux, where the extern int errno declaration was in

conflict and required removal to compile successfully. The modern GNU libraries no longer
suffer from this problem.

Declaring the New errno Variable
The new errno value is now defined in a platform-dependent manner. This means that you

should let the system define it for you by including the file <errno. h>. You should no longer
declare it as an external integer variable.

The <errno.h> include file will define errno in a manner that is appropriate for your specific

UNIX platform. This also defines the errno macro constants for the error codes.

Chapter 3 • ERROR HANDLING AND REPORTING 57

Using the New errno Variable
Once variable errno is appropriately declared for your platform, you can still use it as you did
before. For example

int saved_errno;

saved_errno = errno;
printf("errno = %d\n",errno);
errno = ENOENT;
errno = 0;

/* Saving errno */
/* Inspecting errno */
/* Changing errno */
/* Clearing errno to zero */

You can obtain value of errno and change its value, just as before its definition changed. The

change in the way errno is defined is meant to be transparent to you.

Reporting on errno Values
When an error occurs, it is simple for the program to test for a specific case and act upon it.

The problem becomes more complex when all you want to do is report the error to the user.

Users do not like to memorize error codes, so a method must exist to translate an errno code

into a readable message.

Meaningful error messages can be reported by a UNIX program to the user, in the following

ways:

• Use the perror(3) function to generate a message from the errno value and report it to

stderr.

• Use the provided sys_errlist[] array of messages (on FreeBSD this is described by the

man page strerror(3)).

• Use the strerror(3) function to return a message for the error code provided in the

function argument.

Using the perror(3) Function
One function provided for reporting errors is the library function perror (3). This function

takes one string argument and writes that string to stderr, followed by a colon and then a

message for the current errno value. The function synopsis is as follows:

#include <stdio.h>

void perror(const char *s);

This function is easily tested by simply assigning an error of our choice to errno and calling

perror(3). An example is provided in Listing 3.1.

58 ADVANCED UNIX PROGRAMMING

LISTING 3.1 perror.c—A Test Program for perror (3)

1: #include <stdio.h>
2: #include <errno.h>
3:
4: int
5: main(int argc,char **argv) {
6:
7: errno = EIO;
8: perror("Test EIO Message");
9: return 0;
10: }

Line 7 shows how an I/O error was assigned to the errno variable (the error code was arbitrar¬

ily chosen to simulate an error). Line 8 calls upon the perror(3) function to report the error.

The test session is shown below:

$ make perror
cc -c -D_POSIX_C_SOURCE=199309L -Wall perror.c
cc perror.o -o perror
$./perror
Test EIO Message: Input/output error
$

The session output shows the program-supplied message, which is followed by a colon and

then by an interpretation of the error code that was assigned to variable errno. The value, EIO

in this example, was translated to the message Input/output error.

Evaluating the perror(3) Function
At first sight, the perror(3) function might appear to be a good solution. In practice, how¬

ever, this function is not very useful. The first problem is that the message must go to standard

error. If the message must be

• Written to a log file

• Reported to an X Window pop-up

• Reported in a different format

• Stored as a string

then the function perror (3) is not able to help. Another problem that often occurs is this:

What if the error code is not coming from errno but some other variable? The perror (3)

function seems best left to academic examples because of its simplicity.

Using the sys_errlist[] Array
If you lookup the perror(3) function in the FreeBSD man(1) pages (and on most UNIX plat¬

forms), you will also see that it describes the sys_errlist [] array. The synopsis of this array
is this:

Chapter 3 • ERROR HANDLING AND REPORTING 59

#include <stdio.h> /* Defines sys_errlist[] and sys_nerr */

extern const char *sys_errlist[];
extern const int sys_nerr;

Variations:

#include <errno.h>
/* None */
/* None */
/* None */
#include <errno.h>

/* HPUX 10.2 & 11.0 */
/* AIX 4.3 */
/* SunOS 5.6, Solaris 8 */
/* UnixWare 7 */
/* SGI IRIX 6.5 */

The sys_errlist[] array is an external array of pointers to string constants. Each string

describes a particular error that corresponds to an errno code. The array and the error codes

are structured so that the error message can be obtained by using the errno value as the sub¬

script into the array. For example

errno = EIO; /* Simulate an error */
printf("The EIO Message is '%s'\n",sys_errlist[errno]);

Having access to the error message text for each error code provides much more flexibility.

When the fopen(3) call fails, you can report the reason for the failure, the pathname being

opened, and whether it is being opened for reading or writing:

FILE *fp = fopen(pathname,"r"); /* Attempt to open a file */

if (!fp) { /* Did the open fail? */
fprintf(stderr,"%s: Unable to open %s for read.\n",

sys_errlist[errno], /* The error message text */
pathname); /* The file being opened */

exit(13);

}

This example shows a typical format for error messages from UNIX programs. This typical for¬

mat used can be summarized as

Explanation of error code: Explanation of the operation being attempted

Notice that this convention contradicts the format used by the perror(3) function.

Using sys_nerr to Range Check Errors
The largest error code that is provided for in the sys_errlist [] array is given by the external

integer value of sys_nerr minus one. To be safe, you should technically always test the errno

value before using it as a subscript:

int fd; /* File descriptor */

fd = open(pathname,0_RD0NLY); /* Attempt to open for read */
if (fd == -i) { /* Did open(2) fail? */

/* The open(2) call failed: */
fprintf(stderr,"%s: opening %s for read\n",

errno < sys_nerr ? sys_errlist[errno] : "?",

pathname);

60 ADVANCED UNIX PROGRAMMING

In the example shown, the C operator ? is used to test errno to make sure that it is less than

the value of sys_nerr. If it is, the value of sys_errlist [errno] can be safely supplied to

fprintf (3). If the errno value fails to be less than the sys_nerr value, the C string "?" is

supplied instead, to prevent a program abort.

Evaluating the sys_errlist [] Array Method
While range-checking errno with the sys_nerr value is the correct thing to do, it is consid¬

ered tedious and pedantic by many programmers. Therefore, many programmers ignore this

test completely. Because programmers fail to apply this test, the practice of using the

sys_errlist [] array has fallen out of favor, and another way has been subsequently provided.

Note

The man (1) pages provided by SGI for its IRIX 6.5 operating system state "Code using sys_errlist,

and sys_errlist directly, will not be able to display any errno greater than 152." It is unclear from

this text whether it is simply stating the SGI value of sys_nerr or whether this is a limitation of using

the array on that platform.

The tone of the message suggests that the sys_errlist[] array falls short of strerror(3) and

thus should be avoided in new code. A possible reason for this is that dynamic content could be pro¬

vided by the strerror (3) function for errors with codes greater than 152.

The strerror(3) Function
This is the last of the error code conversion methods that will be examined. The synopsis of
the strerror(3) function is as follows:

#include <string.h>

char *strerror(int errnum);

A common mistake is to include the file <errno.h> instead of <string.h>. It is commonly assumed

that the strerror(3) function is declared in the <errno.h> include file because it reports an error

message. However, this function is grouped with the string functions, instead.

The strerror (3) function provides the flexibility afforded by the sys_errlist[] array, but it

also performs the necessary range check on the error code being converted. If the error code is

outside of the known list of error codes, an unknown error message is returned instead of a
bad pointer.

Using the strerror(3) Function
Listing 3.2 shows a short program that we can use to test the strerror(3) function.

Chapter 3 • ERROR HANDLING AND REPORTING 61

LISTING 3.2 strerror.c—Test Program for strerror(3)

1: #include <stdio.h>
2: #include <errno.h>
3: //include <string.h>
4:
5: extern int sys_nerr; /* Highest supported error code */
6:
7: int
8: main(int argc,char **argv) {
9: int x;
10: static int ecodes[] = { -1, EIO, 0 };
11:
12: /* Get maximum code and add 4096 */
13: ecodes[2] = sys_nerr + 4096; /* A very high code */
14:
15: for (x=0; x<3; ++x) {
16: errno = ecodes[x];
17: printf(''%4d = '%s'\n", ecodes[x], strerror (errno)) 1;
18: }
19:
20: return 0;

21: }

This test program tries strerror(3) with a -1 value, EIO, and a very high error code, which

should not exist.

Testing the Range Check in strerror(3)

When the program in Listing 3.2 is compiled and run, the following results are obtained under

FreeBSD (3.4 Release):

$ make strerror
cc -c -D_P0SIX_C_S0URCE=199309L -Wall strerror.c
cc strerror.o -o strerror
$./strerror

-1 = 'Unknown error: -1'
5 = 'Input/output error'

4183 = 'Unknown error: 4183'
$

This shows how well behaved the strerror(3) function is, despite the bad errno values that

were provided to it. The error code 5 (EIO) correctly translated to the message Input/output

error. The values -1 and 4183 both provided a meaningful clue to a programming problem

with a message of the form Unknown error: 4183. Had this program used the sys_errlist[]

array instead, a program abort may have occurred.

Applying strerror(3) Correctly
One important thing to note about using the strerror(3) function is that the pointer

returned by this function is only valid until the next call to the same function is made. The fol¬

lowing code is incorrect:

62 ADVANCED UNIX PROGRAMMING

chan *eptr1 = strerror(EIO);
char *eptr2 = strerror(ENOENT); /*** value of eptrl is now invalid ***/

printf("Msgl=1%s', msg2='%s'\n",eptrl,eptr2); /*** INCORRECT ***/

This code is not acceptable because by the time strerror(3) is called the second time and its

return value is assigned to eptr2, the pointer value eptrl is rubbish. Even if your experimen¬

tation proves this practice to be apparently safe, code should not be written to rely on this

behavior. There is a possibility that someday (if not already), strerror(3) may return

dynamic content and cause this to fail.

Warning

The value returned by strerror (3) is valid only until the next call to strerror (3).

Testing for Errors Using stdio(3)
One area that is often overlooked in various texts that describe the stdio(3) set of routines is

the proper treatment of errors. You have already seen how to discriminate between an error

return and a success return with the f open (3) call. Immediately after a f open (3) failure, the

value of errno contains the reason for the open failure. However, the situation may not be so

clear in other circumstances, which will be examined next.

Pitfalls of the f error (3) Function
By way of review, examine the function synopsis for the f error (3) function:

#include <stdio.h>

int ferror(FILE *stream); /* Test stream for an error */
void clearerr(FILE ‘stream); /* Clear an error indication */

The terror (3) function returns a non-zero value (a logical True) when an error has occurred

at some point on the FILE stream identified by the argument stream. This indicator remains

True until the function clearerr(3) is called for the same stream. This in itself is not a
problem.

What can be a problem is when terror (3) is called to test for an error on a stream after sev¬

eral other stdio(3) calls have been made. If the value of errno is consulted at this later point,
it may report incorrect results.

Only the indication of the occurrence of the error is saved within the stream object FILE by

the stdio(3) set of routines. The errno value itself is valid only immediately after the

stdio(3) call that failed (up to the point of the next errno modifying function call).

Consequently, while f error (3) can be useful in telling you that something went wrong on a

FILE stream at some point in time, it will not provide you with the details of the error. This is

because the value of errno may have been lost by other intervening calls.

Chapter 3 • ERROR HANDLING AND REPORTING 63

Avoiding the fclose(3) Pitfall
When using stdio(3) function calls, you must check for errors immediately after the call that

caused the error, when you want to consult err no. Errors can occur in surprising places when

buffering is being used (see setbuf (3) for how to control this feature).

Data previously written by a call to fwrite(3) may have returned a successful indication ear¬

lier in the program. Later a failure can be reported by the f close (3) function. To see why,
look at the following example:

fwrite(buf,strlen(buf),1,fptr);
if (ferror(fptr)) {

/* Process write error */
}
if (fclose(fptr) == EOF) {

/* errno = ENOSPC */
}

Some programmers are surprised to realize that f close (3) can fail in the example provided.

This can happen because the data written by fwrite(3) is still contained in a buffer provided

by the stream f ptr. When f close (3) is finally called, it is first necessary to force the unwrit¬

ten data in the buffer out to disk before closing the underlying file descriptor. If the disk is full,

the fclose(3) call will fail and errno will report the error as code ENOSPC.

Note that in this scenario, f error (3) cannot be used to test for an error because the FILE

stream is destroyed by the f close (3) call. Here it is essential to test the return value from

fclose(3) and then report the reason contained within errno immediately upon detecting the

failure.

Note

ENOSPC means No Space Left On Device. This error code is returned when there is insufficient disk

space to enlarge a file. It frequently happens when write(2) is called and the size of the file would

have increased as a result of the call, but no free space remained.

/* Write out a C string in buf[] */
/* Write error occur? */
/* Yes, process error.. */

/* Did the close succeed? */
/* A failure during close occurred */

Delaying the Reporting of an Error
There are times when error reporting must wait until other steps are taken in the program to

recover. Sometimes those steps can cause the value of errno to be lost. The following example

illustrates this:

int z;
int fd;

/* status code */
/* open file descriptor */

z = write(fd,buf,n); /* Write some data */
if (i == -i) { /* Did this write fail? */

unlink(pathname); /* Yes, delete half baked file */
fprintf(stderr,"%s: write error on %s\n",

strerror(errno),
pathname);

64 ADVANCED UNIX PROGRAMMING

In this example, the program insists on calling unlink (2) first to remove the file that the

write has failed to write to. It then reports the error, after the file has been deleted.

The problem is that by the time the error is reported byfprintf(3),theerrno value for the

failed write(2) call could be lost. The errno value may instead contain an error from the

unlink(2) call (if it fails) that is more recent.

At the risk of stating the obvious, the value of errno can be saved in another variable and then

reported later. Here is the modified example:

int z;
int fd;
int e;

/* status code */
/* open file descriptor */
/* Saved errno value */

z =
if

write(fd,buf,n); /
(z == -1) { /
e = errno; /
unlink(pathname); /
fprintf(stderr,"%s: write error

strerror(e), /
pathname);

Write some data */
Did this write fail? */
Preserve the value of errno */
Delete this half baked file */

i %s\n",
Report e here (not errno) */

While it is true that you could simply move the fprintf (3) call to execute prior to the

unlink (2) call, this is not always possible. If you must clean up something prior to opening a

pop-up error message window, this might not be practical.

Summary
In this chapter, the general philosophy behind the UNIX C library method of reporting success

and failure has been covered. You have studied the global variable errno and learned how to

declare it and use it. Also very importantly, you learned when the value of errno is valid.

You have seen the different ways that error codes can be converted into a user-friendly mes¬

sage. Some of the pitfalls of error reporting were also examined, such as that of detecting an

error too late with the function f error (3).

While this chapter has been a review for seasoned programmers, this material is vitally impor¬

tant to those that are just starting out programming for UNIX. With this foundation, you are

better equipped to tackle the upcoming chapters successfully.

CHAPTER 4

UNIX INPUT AND OUTPUT

Chapter 2, “UNIX File System Objects,” reviewed the open (2) and close (2) system

calls. Once you have your file open on a file unit, you need some other routines that

let you manipulate that file. That is largely what this chapter is all about.

However, before jumping into that topic, another topic related to open (2) should be discussed

first. This is the UNIX umask(2) bits and how they affect the permissions that are established

in new file system objects.

The umask(2) Function and umask Bits
When new files and directories are created, the designer of the program must decide which

permissions to use. These are usually specified as quite liberal permissions. Sometimes greater

security is required when you do not want to give away certain permissions to the group or to

the world.

Permission Bits
Just by way of review, the permission bit scheme will be presented. Not everyone is used to

working with permissions in the octal form, which is the way umask is discussed for conve¬

nience.

The data type used for permission bits in modern UNIX systems is the mode_t data type.

Under older versions of UNIX, it was the int data type. The permission bits are laid out in

three groups:

rwx rwx rwx

Each of the three groupings consists of bits rwx, representing

read permission r

write permission w

execute permission X

66 ADVANCED UNIX PROGRAMMING

respectively. From left to right, the permission groups are

owner permissions u

group permissions g

all others permissions 0

The letters u, g, and o are the ones used on the chmod (1) command line when octal notation is

not used. Since octal notation encodes each digit with three bits, it proves to be a convenient

way to specify the permissions. For example, the octal value 0740 specifies

rwx permissions for the owner u

r permission only for the group g

no permissions for others 0

Standards bodies are encouraging programmers not to rely on octal encoding. The C macros in

Table 4.1 have been defined for use in programs:

TABLE 4.1 C Macros for Permission Bits

C Macro Octal Meaning

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1; enable mandatory

file/record locking if # is 6, 4, 2, or 0.

S_ISVTX 01000 Save text image after execution (sticky bit).

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWX0 00007 Read, write, execute (search) by others.

S_IR0TH 00004 Read by others.

Chapter 4 • UNIX INPUT AND OUTPUT 67

C Macro Octal Meaning

S_IW0TH 00002 Write by others.

S_IX0TH 00001 Execute by others.

Based on the values in Table 4.1, the permissions 0740 would be defined in macro form as fol-
lows:

S_IRWXU | | S_IRWXU

Alternatively, it can be spelled out as

S_IRUSR | S_IWUSR | S_IXUSR I S_IRWXU

The permission S_ISVTX (sticky bit) is not supported by FreeBSD for executables, but is sup¬

ported for directories.

Understanding the Need for umask
Consider an example in which you are working in a student environment with a number of

other students on the same machine. You create a program to hand in as an assignment and

save it. The vi editor creates the text file with read and write permissions for the owner, the

group, and the world. Another enterprising student copies your assignment to his home direc¬

tory and later hands it in. He can do this because he can read your saved assignment. Because

he also has write permission on your text file, he overwrites your file with something else so

that you have nothing to hand in. All of this happened because vi gave the owner, the group,

and the world permission to read and write the file.

The manner in which the designers of UNIX have chosen to deal with this problem is to allow

program designers to specify the most liberal permissions they dare apply for the application

involved. Then a mask is applied on a process-level basis to exclude permissions the user does

not want to give away. In the example, the student would have been prudent to exclude group

and world access to his new files.

Your UNIX process maintains a umask value to allow you to have control over the permissions

being handed out. This is a mask value since it is used to mask out certain permission bits that

you do not want to give away. To prevent the group or the world from being granted any per¬

mission on your top secret new files, you could set the umask value to octal 077. This would

allow the umask value to remove any permission at the group and world (other) levels.

Understanding the Scope of umask
The umask value is maintained by the UNIX kernel at the process level. The umask built-in

command for the Korn shell sets the umask value for that shell process (in other words, its own

process). However, whenever the shell creates a new process, that new process inherits the

shell’s umask setting. In this manner, setting the umask value in the shell causes it to be set for

the entire user session, even in new shell processes.

68 ADVANCED UNIX PROGRAMMING

The scope of the umask value is also limited to file system objects. This means that it applies to

files and directories, but it does not apply to IPC objects such as semaphores, message queues,

and shared memory.

Using the umask(2) Function
The umask value applies to file system objects. Therefore, whenever your current process cre¬

ates a new directory or file, the umask value is applied before the final permission bits are

established.

In C language terms, the umask value is computed like this:

actual_permissions = requested_permissions & (-umask);

The value requested_permissions represents the most liberal set of permissions that might

be given in the open (2) call that was covered earlier. Note the use of the unary - (tilde) opera¬

tor to invert the umask bits before using the binary & (and) operator. The resulting

actual_permissions bits are the ones then that are actually applied when the file or directory

is created.

Example Using the umask Value
If the vi editor was to create a new text file requesting permission bits 0666 (read and write for

everyone), and the current umask value was 0077 (exclude group and others), the following

computations would occur (successively simplifying):

1. actual_permissions = requested_permissions & (-umask)

2. actual_permissions = 0666 & (-0077)

3. actual_permissions = 0666 & 0700

4. actual_permissions = 0600

The final permission bits would be computed as 0600, which represents read and write for the
owner of the file but no permission for the group or for others.

The umask(2) Function
The umask setting is queried and set by the function umask(2). The function prototype is as
follows:

#include <sys/types.h>
#include <sys/stat.h>

mode_t umask(mode_t new_umask);

The value provided in the argument is the new umask value that you want to apply. The value

returned is the umask value that was in effect before the current call. The umask (2) function
never returns an error.

Chapter 4 • UNIX INPUT AND OUTPUT 69

In the following code, a new umask value of 077 is being established. At the same time, the

original umask setting is saved in the variable old_mask:

int old_mask;

oldjnask = umask(0077);

Setting umask with umask(2)

The procedure for setting the umask value is as follows:

1. Call umask (2) with the new mask value.

2. Save the old umask value if there is a possibility that you need to restore the present

umask setting.

The original umask value is frequently saved because it may need to be restored later. This is

often done in a library function, where the umask value may need to be temporarily changed.

Querying umask with umask(2)

There is no function to inquire about the umask(2) value. For this reason, you must inquire

using a procedure that sets one umask value and then restores the original. This procedure is

outlined as follows:

1. Call umask (2) with a new mask value. Zero will do.

2. Save the returned value as the present umask value in a variable.

3. Call umask(2) again, with the original umask value to restore it.

Listing 4.1 shows an example of a function named query_umask(), which performs this very

process:

LISTING 4.1 umask. c—Program Example Querying the umask Value

1: /* umask.c */
2:
3: #include <stdio.h>
4: #include <sys/types.h>
5: #include <sys/stat.h>

6:
7: mode_t
8: query_umask(void) {
9: mode_t old_umask;

10:
11: umask(old_umask = umask(0));

12: return old_umask;

13: }
14:
15: int
16: main(int argc,char **argv) {

17:

70 ADVANCED UNIX PROGRAMMING

continued from previous page

18: printf("umask = %04o\n",query_umask());

19: return 0;
20: }

The following session shows the compile and run of the example program:

$ make umask
cc -c -D_P0SIX_C_S0URCE=199309L -Wall umask.c

cc umask.o -o umask
$./umask
umask = 0022
$ umask
0022

$

The program is invoked with the command . /umask, and it reports a mask value of 0022. The

shell’s built-in umask (1) command is then invoked, and its results agree.

The creat(2) Function
A companion function to the open(2) call is the creat (2) function. Its function synopsis is as

follows:

//include <fcntl.h>

int creat(const char *path,mode_t mode);

This function is equivalent to the following open(2) function call:

open(path,0_CREAT|0_TRUNC|OJVRONLY,mode);

This means that creat (2) function will

• Create the file if necessary

• Truncate the file to zero bytes of length

• Open it for writing only

The umask (2) setting will be applied to mode to arrive at the final permissions on the regular

file created.

Reading and Writing
The UNIX kernel readies a file for I/O by giving you a file descriptor, which is returned by

open(2) or creat (2). The file descriptor might represent an I/O device, a socket or, most

often, a regular file. The I/O semantics vary somewhat, depending on what it is that your pro¬

gram is interacting with. This will be noted in a few places as you are introduced to the system

calls for I/O.

Chapter 4 • UNIX INPUT AND OUTPUT 71

Introducing read(2) andwrite(2)
These are perhaps the most basic of all UNIX I/O system calls. Their function synopsis is as
follows:

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize_t read(int fd,void *buf,size_t nbytes);

ssize_t wnite(int fd,const void *buf,size_t nbytes);

The read(2) and write(2) calls take the same arguments, with the exception that the

write (2) function does not modify the buffer it is supplied with. Each must be supplied with

an open file descriptor, which can be a socket.

The read(2) Function
The read (2) function reads into the buffer but [] to a maximum of nbytes. The number of

bytes actually read is the return value. If an error occurs, -1 is returned (with errno).

A return value of zero indicates that end-of-file has been reached. There is no error code asso¬

ciated with end-of-file, since this is not an error.

In some read contexts, you may receive fewer bytes than requested by the nbytes argument.

This can happen when reading from regular files, when the end-of-file is reached while trying

to satisfy the count. Otherwise, when reading from a regular file, you are guaranteed that the

function will not return until nbytes is returned.

In all other read contexts, such as when reading from a socket, the count nbytes serves as a

maximum number. Any number of bytes from one to nbytes may be returned.

Tip

For any slow device, it is possible for read(2) to return the error EINTR if a signal handler has han¬

dled a signal. Simply retry the read(2) call when this error is received.

A regular file is not considered a slow device.

The write(2) Function
The write (2) function writes from the supplied buffer but exactly nbytes. It returns the

number of bytes actually written. If an error occurs, the value -1 is returned (with errno).

For regular files, write (2) should always write the requested number of bytes nbytes. In

other write contexts, the return value indicates the actual number of bytes written.

72 ADVANCED UNIX PROGRAMMING

Tip

For any slow device, it is possible for write(2) to return the error EINTR if a signal handler has han¬

dled a signal. Simply retry the write (2) call when this error is received.

A regular file is not considered a slow device.

Applying UNIX I/O
The program in Listing 4.2 shows a simple I/O example, using the basic system calls. This pro¬

gram opens the file /etc/motd by default and copies its contents to the standard output device

(file unit 1). A different pathname can be supplied by specifying it as the first command-line

argument.

LISTING 4.2 unixio. c—A Simple UNIX I/O Example Program

1:
o •

/* unixio.c */
A .
3: #include <stdio.h>
4: #include <fcntl.h>
5: #include <unistd.h>
6: #include <errno.h>
7: #include <string.h>
8: #include <sys/types.h>
9: #include <sys/uio.h>
10
11 int
12 mainfint argc,char **argv) {
13 int z; /* Return status code */
14 int n; /* # of bytes written */
15 int fd; /* Read file descriptor */
16 char buf[128]; /* I/O Buffer */
17 char ‘pathname = "/etc/motd"; /* Default file to open */
18
19 if (argc > 1)
20 pathname = argvfl]; /* Choose a different file */
21
22 fd = open(pathname,0_RD0NLY); /* Open /etc/motd file */
23
24 if (fd == -1) {
25 fprintf(stderr,"%s: opening %s for read\n",
26 strerror(errno).pathname);
27 return 1; /* Failed */
28 }
29
30 for (;;) {
31 z = read(fd,buf,sizeof buf); /* Fill buf with read data */
32 if (!z)
33 break; /* End of file */
34 if (z == -1) {

Chapter 4 • UNIX INPUT AND OUTPUT 73

35: fprintf(stderr,"%s: reading file %s\n",
36: strerror(errno),pathname);
37: return 2; /* Failed */
38: }
39:

40: n = write(1,buf,z); /* Write out buffer contents */
41: if (n == -1) {

42: fprintf(stderr,"%s: writing to stdout\n",strerror(errno));
43: return 3; /* Failed */
44: }
45: }
46:

47: close(fd); /* Close the file */
48:
49: return 0;
50: }

The basic procedure used in Listing 4.2 is this:

1. The pathname variable defaults to the C string " /etc/motd" (line 17) or uses the com¬

mand line argument (lines 19 and 20).

2. The file is opened with a call to open(2) (line 22).

3. If the open (2) call fails, the error is reported (lines 24 to 28).

4. An I/O loop is started in lines 30 to 45.

5. The read (2) call reads as many bytes as it can to fill the buffer buf []. The maximum

number of bytes read is indicated by the argument sizeof buf.

6. If there is no more data to be read, the return value will be zero, and the loop is exited

(lines 32 and 33) with the break statement.

7. If a read error occurs, the error is reported (lines 34 to 38).

8. The data read into array buf [] is now written out to standard output (file unit 1 in line

40). Note that the number of bytes being written is z. This is the value returned from

step 5.

9. If a write error occurs, the error is reported (lines 41 to 44).

10. When the loop is exited, the close (2) function is called (line 47).

The program in Listing 4.2 is called a simple program because it does not allow for the possi¬

bility that the write (2) call may not always write the full amount of data expected if the stan¬

dard output is not a regular file. Furthermore, it does not allow for the possibility of the error

EINTR, which it needs to do if there is any signal catching used in this program.

In a production quality program, the buffer size would be declared a larger size. Generally, a

buffer like this should be a minimum of 1024 bytes in length to better match the I/O size that

is being used by the operating system.

74 ADVANCED UNIX PROGRAMMING

Seeking Within a File
The last example showed a program that sequentially read through the / etc/motd file, copying

it to standard output. Sometimes it is necessary to access portions of a file randomly. Perhaps

your file represents a series of a million fixed-length records that must be retrieved at random.

UNIX provides this functionality in the form of the lseek (2) function.

Applying lseek(2)
The lseek(2) function is actually a dual-purpose function. It not only allows the program to

seek a specified offset within the open file, but the program can also find out what the current

offset is, within the specified file. The function synopsis for lseek(2) is as follows:

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int tildes, off_t offset, int whence);

This function requires a file descriptor in the first argument and then a file offset and an inte¬

ger value named whence. The combination of arguments offset and whence indicates how the

seek is to be performed within the file.

Upon successful completion of the seek operation, the new file offset is returned. If the opera¬

tion fails, an (off_t) -1 value is returned, with errno holding the reason for the error. Note

that this function call does not return the error EINTR. The error code ESPIPE is returned if the

file descriptor is for a non-seekable device.

Values for whence are provided in Table 4.2. These values are defined in the include file

<unistd.h>.

TABLE 4.2 Values for lseek(2) Argument whence

C Macro Meaning

SEEK_SET The file offset is set to offset bytes.

SEEK_CUR The file offset is set to its current location plus offset bytes.

SEEK_END The file offset is set to the size of the file plus offset bytes.

The value SEEK_SET allows you to set an absolute file position, while SF.EK_CUR lets you adjust

your offset relative to your current offset. The SEEK_END value is usually used to position at the

end of the file but, by applying a negative offset, you can establish some other position.

Chapter 4 • UNIX INPUT AND OUTPUT 75

FIGURE 4.1

lseek(2) changes to a

file offset.

To establish a new file position at the offset of 1024, you would code

off_t new_off; /* New offset */
int fd; /* File descriptor */

new_off = lseek(fd,1024,SEEK_SET);
if (new_off == (off_t)(-1))

I* Report error */

To find out what your current file offset is, you could use the following form of the lseek(2)

call, which does not change your current position:

off_t offset; /* File offset */
int fd; /* File descriptor */

offset = lseek(fd,0,SEEK_CUR);

In this form of the call, you seek 0 bytes from the current position, which changes nothing.

However, the lseek(2) function tells you in the return value what the unchanged file offset is.

Truncating Files
You have already seen that the open (2) and creat (2) calls are capable of truncating an exist¬

ing file. There are times when it is necessary to empty a file of its contents at some later point

after the file is open. In other situations, perhaps you simply want to shorten the file because

you have compacted your file. To perform these functions, you can call upon the truncate (2)

and ftruncate(2) functions.

76 ADVANCED UNIX PROGRAMMING

The truncate(2) Function
The truncate (2) function does not work with an open file. Instead, it allows you to truncate

a file without actually opening it. The function synopsis is as follows:

#include <unistd.h>

int truncate(const char *path, off_t length);

Quite simply, you supply a pathname and the size in bytes that you want it to be (this is equiv¬

alent to specifying the length of the offset at which to truncate). The function returns zero if it

is successful; otherwise -1 is returned (with errno).

To force a file to become an empty file (zero bytes), you would call

int z;

z = truncate(pathname,0);
if (z == -1)

/* Report error */

Warning

On some UNIX platforms, the error eintr can be returned by truncate(2)

Tip

On some UNIX platforms, the function truncate (2)

ill
: v

is documented under truncate(3C) instead.

The ftruncate(2) Function
The truncate (2) function performs the function of truncation well, but it proves to be incon¬

venient at times. If you have written some form of data management library, you may have the

file descriptor given to your function as an argument. However, you will not have the path¬

name necessary for the call to truncate(2). The ftruncate(2) function comes to the rescue,

since it works with open files:

#include <unistd.h>

int ftruncate(int tildes, off_t length);

The file that is truncated is specified by the file descriptor tildes. Otherwise, the function is

identical to the truncate (2) function. To force the file open on fd to become an empty file,
you would code

int z;
int fd;

/* Return status */
/* Open file descriptor */

Chapter 4 • UNIX INPUT AND OUTPUT n

z = ftruncate(fd,0);
if (z == -1)

/* Report Error */

When files are written, they are enlarged automatically by the UNIX kernel, as needed. The

truncate system calls are the only way you can shorten the length of a file.

Sparse Files
The previous sections have focused on reading, writing, and truncating files. Now turn your

attention briefly to the physical makeup of UNIX regular files. UNIX regular files have a spe¬

cial quality, which is supported by the kernel, that permits them to be sparsely populated.

A sparse file is a lot like the sparse matrixes that you learned about in school. The following
represents a sparse matrix:

0 0 0 0 9
0 0 0 7 0
0 0 8 0 0
0 10 0 0
3 0 0 0 0

You can see that this matrix is made up entirely of zeros, except for the one diagonal. Storing

this matrix requires 5*5 = 25 cells to store all the values. Yet, it would be wasteful to store

this matrix with 25 cells when only 5 of them are non-zero. One form of sparse matrix might

be optimized to store only the diagonal values and to supply zeros when requested for any of

the non-diagonal cells.

Creating a Sparse File
Sparse files work the same way. It is possible to create a 1GB file with only a few bytes of real

data in it. The program in Listing 4.3 illustrates a simple program that does this.

LISTING 4.3 bigf ile. c—Creating a Sparse File

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13

/* sparse.c */

#include <stdio.h>
#include <fcntl.h>
#include <unistd,h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/uio.h>

int
main(int argc,char **argv) {

int z; /* Return status code */

78 ADVANCED UNIX PROGRAMMING

continued from previous page

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

off_t o;
int fd;

/*

/* Offset */
/* Read file descriptor */

* Create/truncate sparse.dat
*/

fd = open("sparse.dat",0_CREAT|0_WR0NLY|0_TRUNC,0640);
if (fd == -1) {

fprintf(stderr,"%s: opening sparse.dat for write\n",
strerror(errno));

return 1; /* Failed */
}

/*

* Seek to almost the 1GB mark :
*/

o = lseek(fd,1023*1024*1024,SEEK_SET); /* Seek to -1GB */
if (o == (off_t)(■1)) {

fprintf(stderr,"%s: lseek(2)\n",strerror(errno));
return 2;

}

/*

* Write a little message :
*/

z = write(fd,"END-OF-SPARSE-FILE",18);
if (z == -1) {

fprintf(stderr,"%s: write(2)\n",strerror(errno));
return 2;

}

close(fd);

return 0;

/* Close the file */

}

A compile-and-test session for this program is shown next:

$ make sparse
cc -c -D_P0SIX_C_S0URCE=199309L -Wall sparse.c
cc sparse.o -o sparse
$./sparse
$ Is -1 sparse.dat
-rw-r. 1 me mygrp 1072693266 Apr 17 02:36 sparse.dat
$ od -cx sparse.dat
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*
0000 0000 0000 0000 0000 0000 0000 0000

7774000000 E N D 0 F S P A R S E F
4e45 2d44 464f 532d 4150 5352 2d45 4946

7774000020 L E
454C

7774000022
$

Chapter 4 • UNIX INPUT AND OUTPUT 79

After the program is compiled and run, the Is (1) command lists the file sparse. dat that it

creates. Notice its huge size of 1072693266 bytes. You may not even have that much free space
left! Yet the file exists.

Next, the od (1) command is used to dump the contents of this file in both hexadecimal and in

ASCII where possible (options - cx). This command may run a very long time, since the od (1)

command will read almost 1GB of zero bytes before reaching the end of the file.

Looking at the od (1) output, you can see that UNIX has provided zero bytes between the

beginning of the file and the point where the seek was done, and it finally found the string

"END-OF-SPARSE-FILE" that was written by the program. At the left of the output, where

od (1) shows the file offset, you can see that the string was written at a very large file offset.

Now that sparse. dat exists, there is really only a small amount of disk space allocated to this

file. There is no need to panic about wasted disk space, because just enough space is allocated

to hold the C string that was written. Whenever any program reads other parts of this sparse

file, which is largely one big hole, the UNIX kernel simply returns zero bytes.

It is probably a good idea to delete the sparse.dat file that was created by the example program.
Sparse files can provide a real headache for backup programs, because many backup programs sim¬
ply copy the file in question to the backup medium. If a backup is performed for your sparse. dat
file, almost a gigabyte of zeros will be copied to the backup medium. For this reason, smarter
backup utility programs know about sparse files and copy only the active information within them.

Sparse files can also be a problem when you copy them. If you attempt to copy your sparse. dat file
to another location in your current directory, you may run out of disk space.

Forcing Data to Media
When the UNIX file system objects were reviewed in Chapter 2, it was documented that file

systems use block raw devices. This is done so that disk accesses are buffered in the UNIX disk

cache for performance reasons. However, a disk cache presents certain dangers for your valu¬

able data.

When a file is opened, written to, and closed to update its contents, changes may still be sit¬

ting in disk cache in the kernel’s memory for quite some time. If the system suddenly loses

power or your UNIX kernel panics for some other reason, those changes may never be written

to your disk media. When you examine the file after such a catastrophe, you’ll discover that

the file’s content is not what you had thought it was. There must be a way to force critical data

to be written to the intended media immediately.

80 ADVANCED UNIX PROGRAMMING

The sync(2) Function
A popular command for those writing a lot of source code under UNIX is the sync (8) com¬

mand (on many UNIX platforms it is sync (1M)). After making several changes to shell scripts

or to source code, it is nice to be able to say

$ sync

and know that all your changes are being written to the disk media. After the command fin¬

ishes, you can rest assured that your work will not be lost if the lights should suddenly go out

The sync(8) command ends up calling the system call sync(2). The function synopsis is as

follows:

#include <unistd.h>

void sync(void);

As you can see, this function takes no arguments and returns no values. It couldn’t be simpler

to use.

If you should find that the sync (8) command is restricted on the system on which you have

an account, you can easily write one of your own. Listing 4.4 shows how simple it is to do so.

LISTING 4.4 sync. c—Building Your Own sync Command

1: /* sync.c */
2:
3: #include <unistd.h>
4:
5: int
6: main(int argc,char **argv) {
7:
8: sync();
9: return 0;
10: }

The following shows the program being compiled and run:

$ make sync

cc -c -D_POSIX_C_SOURCE=199309L -Wall sync.c
cc sync.o -o sync
$./sync
$

If you were running this program on your own computer, then you might have heard some

disk activity when the command was invoked. Perhaps you watched the disk activity light

instead. In any case, this was the result of all unwritten changes being forced out to the disk
media.

Chapter 4 • UNIX INPUT AND OUTPUT 81

The Disadvantages of sync (2)
The sync(8) command is sometimes restricted in shared UNIX environments to prevent its

abuse. For example, an abusive user can issue the following command:

$ while true; do sync; sleep 1; done

This shell command would be forcing disk writes every second. Of course, this would hurt the
performance of the disk cache.

Assume you have an application that updates a custom database, which is stored within a file.

At certain points in the update process, you will want to make certain that these changes are

forced out to disk. However, to issue a frequent call to sync (2) would affect other users too

much. The solution is found in the fsync(2) function.

Thefsync(2) Function
This function provides the power of sync(2) but limits the scope to one file. See the function
synopsis:

#include <unistd.h>

int fsync(int fd);

This function simply accepts the file descriptor as an argument, which indicates the file for

which all cached changes must be written out. Note that if several processes are modifying the

same file, all changed data for that file is written out. Changes are not traced back to a particu¬

lar file descriptor and kept separate.

The f sync (2) function returns zero if successful and -1 if an error occurs. One of the more

interesting possible errors is EIO, which will tell your application that an I/O error has

occurred, while it was forcing the written data out to disk.

Tip

If you need to be certain that all data changes for a file have been successfully written to the disk

media, call fsync(2) prior to calling close(2). Without a call to fsync(2), the close(2) call may

succeed, since the changes remain in the disk cache. Later the UNIX kernel may discover that the

cached changes cannot be written out due to a media error. By this time, your application not only is

unaware of the problem, it also cannot take corrective action.

Calling fsync(2) prior to close(2) allows your application to decide what to do about media

problems.

Scattered Reading and Writing
There are times when the read (2) and write (2) calls are not convenient. This happens fre¬

quently with socket programming, where data is scattered around in different buffers. To

address this issue, the UNIX kernel provides scatter read and write functions.

82 ADVANCED UNIX PROGRAMMING

The readv(2) andwritev(2) Functions
neadv(2) and writev(2) are known as the scatter read and write functions. This is because

they can read and write a number of scattered I/O buffers. The function synopsis is as follows:

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssizejt readv(int fd, const struct iovec *iov, int iovcnt);

ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

struct iovec {
char *iov_base; /* Base address. */
size_t iov_len; /* Length. */

};

In addition to the file descriptor, these functions accept two other arguments:

• The I/O vector pointer iov

• The count of I/O vector items iovcnt

The argument iov is actually an array of type struct iovec. Each array entry points to one

buffer (by iov_base) of a specific size (size iov_len). The count iovcnt indicates how many

array elements the function call should use.

The return values are otherwise identical to the read (2) and write(2) calls. The number of

bytes read or written is returned. If an error occurs, -1 is returned (with errno).

Listing 4.5 shows a simple example of using writev (2). It simply writes from three separate

buffers to the standard output.

LISTING 4.5 writev. c—An Example of a writev(2) Call

1:
2:
3:

/* writev.c */

#include <stdio.h>
4: #include <fcntl.h>
5: #include <unistd.h>
6: #include <errno.h>
7: #include <string.h>
8: #include <sys/types.h>
9: #include <sys/uio.h>
10:
11: int
12: main(int argc.char **argv) {
13: int z; /* Return status code */
14: static char buf1[] = "by writev(2)" ;/* Middle buffer */
15: static char buf 2[] = /* Last buffer */
16: static char buf3[] = /* First buffer */

Chapter 4 • UNIX INPUT AND OUTPUT 83

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

static char buf4[] = "\n";
struct iovec iov[4];

iov[0].iov_base = buf3;
iov[0].iov_len = strlen(buf3);
iov[1].iov_base = buf1;
iov[1],iov_len = strlen(buf1);
iov[2].iov_base = buf2;
iov[2].iov_len = strlen(buf2);
iov[3].iov_base = buf4;
iov[3].iov_len = strlen(buf4);

z = writev(1,&iov[0],4);
if (z == -1)

abort();

return 0;

/* Newline at end */
/* Handles 4 buffers */

/* scatter write 4 buffers */

/* Failed */

The session for compiling and running this program is shown next:

$ make writev
cc -c -D_POSIX_C_SOURCE=199309L -Wall writev.c
cc writev.o -o writev
$./writev
«<by writev(2)>»
$

When the program . /writev is invoked, the standard output shows the result of four buffers

being combined, including the trailing ' \n ' character that was written.

Determining Your tty Name
If your application must request input from the terminal, you can always open the special

pathname " /dev/tty". This special pathname causes the UNIX kernel to open the real path¬

name necessary to gain access to the controlling terminal. This allows your application to

request a password from the user, for example.

There are other times when you need to know if a particular file descriptor is a tty device or

not. This frequently occurs when dealing with standard input, which is provided by the shell.

How does the application tell when the standard input is redirected to take data from a file, or

when the data is coming from a terminal? Perhaps the user prompt is to be suppressed if the

input is coming from a file. The ttyname(3) and isatty(3) functions solve these thorny

problems.

//include <unistd.h>

char * ttyname(int fd);

int isatty(int fd);

84 ADVANCED UNIX PROGRAMMING

The ttyname(3) function accepts an open file descriptor as its only input argument. It returns

a string pointer for the tty device if isatty (3) returns true. Otherwise, ttyname(3) will

return a null pointer. The errno value is not affected.

Function isatty (3) accepts an open file descriptor as its only input argument. It returns true

if the file descriptor represents a terminal and false when it is not a tty.

Listing 4.6 shows a simple program putting these functions to work on standard input, output,
and error.

LISTING 4.6 tty.c—A Test Program for ttyname(3) andisatty(3)

1:
2:

/* tty.c */

3: //include <stdio.h>
4:
C .

//include <unistd.h>
0 .
6: void
7: tty_info(int fd) {
8: int b = isatty(fd); /* Test if a tty */
9:
10: printf("fd=%d %s a tty\n " ,fd,b?"is":"isn't");
11: if (b)
12: printf("tty name is '%s'\n", ttyname(fd));
13: }
14:
15: int
16: main(int argc,char **argv) {
17:
18: tty_info(0); /* Query standard input */
19: tty_info(1); /* Query standard output */
20: tty_info(2); /* Query standard error */
21 : return 0;
22: }

The program in Listing 4.6 tests the status of each of the shell-provided file descriptors, stan¬

dard input, output, and error. The following shows a compile-and-execute session:

$ make tty
cc -c -D_P0SIX_C_S0URCE=199309L -Wall tty.c
cc tty.o -o tty
$./tty
fd=0 is a tty
tty name is '/dev/ttyp21
fd=1 is a tty
tty name is '/dev/ttyp2'
fd=2 is a tty
tty name is '/dev/ttyp2'
$./tty 2>/dev/null </dev/null
fd=0 isn't a tty
fd=1 is a tty
tty name is '/dev/ttyp2'
fd=2 isn't a tty
$

Chapter 4 • UNIX INPUT AND OUTPUT 85

The first time . / tty is invoked, all three file descriptors are identified as a tty device. The sec¬

ond time the program is invoked, the standard input and standard error are redirected to

/dev/null. The program correctly identifies that file descriptors 0 (standard input) and 2
(standard error) are not terminal devices.

When running this program with standard output redirected, just keep in mind that standard

output is where the program output is going.

Summary
This chapter presented an overview of the UNIX philosophy of working with file I/O. You saw

how the umask(2) function controls how permissions are given out when new file system

objects are created. The chapter also covered various aspects of performing reading, writing,

seeking, truncating, and working with sparse files. UNIX truly does provide the programmer a

rich environment in which to write applications.

The next chapter is going to extend this programming knowledge further. Building databases

and updating files are almost trivial tasks for a system that has only one user. However, on the

multiuser operating system that UNIX is, you need to be concerned about when and where

certain update events occur in files being updated by more than one process. File locking is

the topic of the next chapter.

CHAPTER 5

FILE LOCKING

Jf you were in the business of selling a piano on consignment, then you would only make

a profit if you could sell the piano for more than the owner required for it. However, if

the owner kept raising the price of his piano every time you had a buyer for it, then

you’d soon have to give up selling it or lose money on the sale.

Working with data records within a file of a multi-processing system can present the same

challenge. If one process must update records while another process is doing the same, then

some form of coordination is required to prevent chaos. One UNIX solution to this problem is

the file locking facility.

In this chapter, you will learn about

• Lock files

• Advisory locking

• Applying region locks

• Mandatory locking

Understanding Lock Types
There are two basic forms of file locking. They are

• Lock files

• Locked regions

The first form requires that a process create and open a lock file before it writes to the pro¬

tected data file. If a process fails to create the lock file, then it sleeps for a while and tries again.

For example, if the data file database. dat is the data file, then the lock file might be named

database. lck. The contents of the lock file are not important to the procedure, and it may

even be empty. When the updating process has finished with its update of database. dat, then

the lock file database. lck is released. This method works only when all processes cooperate

and obey this procedure.

The UNIX kernel also will permit a process to lock regions of a data file. A region consists of

one or more bytes at a specified starting offset. The offset can extend beyond the end of the

88 ADVANCED UNIX PROGRAMMING

current file size. In this way, all processes agree to tell the kernel which regions of the file they

are about to update. If a requested lock region is in conflict with presently granted locks on

that file, the requesting process is put to sleep until the conflict is removed. When all processes

obey this procedure, the integrity of the file is preserved. Figure 5.1 shows four processes that

want to update one data file concurrently.

FIGURE 5.1

Three locked file regions

and one pending request

to lock a file region.

0)

LL

03
03

O

r

<

Process IDs 1000, 1001, and 1002 in Figure 5.1 have their regions locked within the data file.

The UNIX kernel grants these locks because they do not overlap. This allows these three

processes to update the same file concurrently. Notice that process ID 1003 has requested a

lock for a region that conflicts with a presently locked Region 3, owned by process ID 1002.

Consequently, process 1003 sleeps until Region 3 becomes unlocked.

File locking under UNIX occurs under one of two lock enforcement models:

Advisory locking—No enforcement

Mandatory locking—Enforced locking

The lock file and lock region methods just discussed require process cooperation to maintain

the integrity of the data file. Cooperative locking methods are known as advisory locking. The

UNIX kernel cannot enforce such cooperative methods. Consequently, when advisory locking

methods are employed, processes that disobey the locking convention can corrupt the data

file.

Many UNIX kernels also support mandatory locking of files. When a process attempts to write

to a region of a file that has enforced locking enabled, all other processes are prevented from

interfering. Similarly, the writing process is blocked from executing until its conflicts with
other processes have vanished.

Chapter 5 • FILE LOCKING 89

The Lock File Technique
The lock file technique is a coarse-grained locking technique, since it implies that the entire

file is locked. The technique is simple, however:

1. Attempt to create and open the lock file.

2. If step 1 fails, sleep for a while and repeat step 1.

3. If step 1 succeeds, then you have successfully locked the resource.

The success of this method depends on the fact that the creation and opening of the lock file

must be atomic. In other words, they must either succeed completely or fail completely.

This is easily accomplished with the UNIX open (2) call, when the options 0_CREAT|0_EXCL

are used together:

fd = open("file.lck",0_WR0NLY|0_CREAT|0_EXCL,mode);

The 0_CREAT flag tells open (2) to create the file if it does not exist. However, the flag 0_EXCL

tells open (2) to return an error if the file already exists when the flag 0_CREAT has also been

supplied. This causes the open (2) call to succeed only if the file did not already exist and it

was possible to create the file.

Listing 5.1 shows how locking can be performed using a lock file.

LISTING 5.1 lockf ile. c—Using a Lock File to Promote Safe Updates

1: /* lockfile.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <string.h>
6: #include <fcntl.h>
7: #include <errno.h>
8:
9: /*
10: * Lock by creating a lock file :
11: */

12: static void
13: Lock(void) {
14: int fd = -1; /* Lock file descriptor */
15:
16: do {
17: fd = open("file.lck",O_WRONLY|O_CREAT|O_EXCL,0666);
18: if (fd == -1) {
19: if (errno == EEXIST) {
20: sleep(1); /* Nap for a bit.. */

90 ADVANCED UNIX PROGRAMMING

continued from previous page

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

} else {
fprintf(stderr,"%s: Creating lock file.lck\n",

strerror(errno));
abort(); /* Failed */

}
}

} while (fd -= -1);

close(fd); /* No longer need file open */

}

/*

* Unlock by releasing the lock file :
*/

static void
Unlock(void) {

unlink("file.lck"); /* Release the lock file */

}

int
main(int argc,char **argv) {

FILE *f = NULL;
int i;
int ch;
int lck = 1;

/*

* If command line argument 1 is nolock or NOLOCK,
* this program runs without using the Lock() and
* Unlock() functions :
*/

if (argc >= 2 && !strcasecmp(argv[1],"NOLOCK"))
lck = 0; /* No locking */

printf(“Process ID %ld started with %s\n",
(long)getpid(),
lck ? "locking" : "no locking");

/*

* Now create some rows of data in file.dat :
*/

for (i=0; i<1000; ++i) {
if (lck) /* Using locks? */

Lock(); /* Yes, get lock */

/*

* Here we just update file.dat with new records. If
* no locking is used while multiple processes do this,
* some records will usually be lost. However, when
* locking is used, no records are lost.
*

* Here we just open the file if it exists, otherwise

Chapter 5 • FILE LOCKING 91

74: * the file is opened for write.
75: */
76: f = fopen("file.dat","r+"); /* Open existing file */
77:
78: if (If && errno == ENOENT)
79: f = fopen("file.dat","w"); /* Create file */
80:
81: if (If) {
82: fprintf(stderr,"%s: opening file.dat for r/w\n",
83: strerror(errno));
84: if (lck)
85: Unlock(); /* Unlock */
86: return 1; /* Failed */
87: }
88:
89: /*
90: * Seek to the end of the file, and add a record :
91: */
92: fseek(f,0,SEEK_END); /* Seek to end of file */
93:
94: fprintf(f,"%051d i=%06d ",(long)getpid(),i);
95: for (ch=' ch<=1z'; ++ch)
96: fputc(ch,f); /* A bunch of data to waste time */
97: fputc('\n1,f);
98:
99: fclose(f);
100:
101: if (lck) /* Using locks? */
102: Unlock(); /* Yes, unlock */
103: }
104:
105: /*
106: * Announce our completion :
107: */
108: printf("Process ID %ld completed.\n",(long)getpid());
109: return 0;
110: }

The program in Listing 5.1 loops 1000 times to append records to the file file.dat. The func¬

tion Lock () calls on open (2) with the 0_CREAT 10_EXCL flags in order to exclusively open and

create the file. If the create call fails, the function invokes sleep (3) for one second and then

tries again.

Notice that Lock () closes the lock file after it successfully opens and creates it. The opening of

the file is required only to prove that the file was created successfully by your current process

and not some other. This is how the Lock() function determines that it has “acquired” the

lock.

The procedure for unlocking the lock file is as simple as releasing the lock file (line 38 in func¬

tion Unlock()). The unlink(2) function is discussed in Chapter 6, “Managing Files and Their

Properties.”

92 ADVANCED UNIX PROGRAMMING

Compiling the program in Listing 5.1 is as follows:

$ make lockfile
cc -c -D_POSIX_C_SOURCE=199309L -Wall lockfile.C
cc lockfile.o -o lockfile
$

Next, make sure that the file file.dat does not exist:

$ rm file.dat
rm: file.dat: No such file or directory
$

This removal of file. dat is especially important if you run the test multiple times. If you pre¬

fer, you can do the following instead:

$ make cleanfiles
rm -f file.dat file.lck
$

The make cleanfiles command removes both the data file and the lock file if it should exist.

Next, using the compiled executable lockfile, run a test using three processes with no lock¬

ing. This is done by providing the argument NOLOCK on the command line as follows:

$./lockfile NOLOCK & ./lockfile NOLOCK & ./lockfile NOLOCK &
$ Process ID 83554 started with no locking
Process ID 83556 started with no locking
Process ID 83555 started with no locking
Process ID 83556 completed.
Process ID 83555 completed.
Process ID 83554 completed.

[1] 83554 Exit 0
[2] 83555 Exit 0
[3] 83556 Exit 0
$

It is very important that you start these processes as shown (the & character causes each of the

commands to run in the background). If there is too much time delay between starting each of

these processes, you will not see the expected problem. If this should still be a problem

because of the speed of your system, change the number 1000 in line 63 of Listing 5.1 to
something much larger.

In the session shown above, the three processes ran without using any locking and finished

successfully. Now check the file file.dat, which was updated by all three:

$ wc -1 file.dat
2999 file.dat

$

The wc (1) command shown counted only 2999 lines, when there should have been 3000

(three times 1000 for each process). Remove file. dat and repeat the test. You may occasion¬

ally find that the count will change. You might get 2998, instead. This shows that you are not
getting the full count.

./lockfile N0L0CK

./lockfile N0L0CK

./lockfile N0L0CK

Chapter 5 • FILE LOCKING 93

Now repeat the test, but this time use the locking (which is the default for this program):

$ rm file.dat

$./lockfile & ./lockfile & ./lockfile &
$ Process ID 83606 started with locking
Process ID 83607 started with locking
Process ID 83608 started with locking
Process ID 83606 completed.
Process ID 83608 completed.
Process ID 83607 completed.

[1] 83606 Exit 0
[2] 83607 Exit 0
[3] 83608 Exit 0
$ wc -1 file.dat

3000 file.dat
$

In this test, you can see that the final resulting line count in file. dat is 3000 lines, which is

correct. The locking file file. lck prevented lost data by ensuring that only one process at a

time was updating the file file. dat.

Limitations of the Lock File
One of the things that you probably noticed about running the program lockfile from Listing

5.1 was that when locks were enabled, the test took much longer to run. The reason for this

has to do with the need for the Lock() function in line 20 to call upon sleep(3) when it was

unsuccessful creating the lock file. While you could omit the sleep(3) function call, this

would be unwelcome on a multiuser system.

Other functions could be used to reduce the sleep(3) time to less than one second, but the

real problem lies in the fact that this is a polling method.

Another limitation of the lock file method is that it is reliable only on a local file system. If

your lock file is created on an NFS file system, NFS cannot guarantee that your open (2) flags

0_CREAT 10_EXCL will be respected (the operation may not be atomic). The operation must be

atomic to be a reliable lock indicator.

Additionally, the lock file technique can only operate at a file level. Successful locking with a

lock file implies that the process has access to update the entire data file. All other processes

must wait, even if they want to update different parts of the same file.

Summarized, some lock file disadvantages are

• There is high latency time between failed attempts when used with sleep (3).

• It is unreliable when used on NFS file systems.

• It is a coarse-grained lock (this implies that a process has locked the entire data file).

These are reasons why you should consider other file locking methods.

. /lockfile

. /lockfile

. /lockfile

94 ADVANCED UNIX PROGRAMMING

Using an Advisory Lock on the Entire File
An improvement over the file locking method was the creation of a UNIX kernel service that

would allow a process to lock or unlock an entire file. Additionally, it was desirable to indicate

when a file was being read or written. When a file is locked for reading, other processes can

safely read the file concurrently. However, while the file remains read-locked, write-lock

requests are blocked to ensure the safety of the data being read. Once all read locks are

released, a write lock can be established on the file.

This kernel service provides the following benefits to the programmer:

• Higher performance, since sleep(3) is not called

• Finer lock granularity: read and write locks

The performance of the application is greatly improved because the kernel is able to resume

process execution at the earliest opportunity, once the lock can be granted. This is in contrast

to application calls to the sleep(3) function.

Granularity is finer because applications can acquire read locks or write locks. Read locks (also

known as shared locks) allow multiple processes to read the same data regions concurrently.

Write locks (also known as exclusive locks) are exclusive to any read locks and other write

locks. This capability is in contrast to one file lock, allowing only one process to access the file

at once.

Locking with flock (2)
The file locking service is provided by the f lock(2) function on a BSD platform. This function

provides the programmer with the following file locking capabilities:

Shared locks—for reading

Exclusive locks—for writing

Shared locks allow one or more concurrent reading processes to share access to the file.

However, when an exclusive lock is obtained on the file, there can be no shared locks. Only

one process is permitted to obtain an exclusive lock on the file. Consequently, exclusive locks

are used when updates to the file are taking place.

The function synopsis for the flock(2) function is as follows:

#include <sys/file.h>

int flock(int fd, int operation);

#define L0CK_SH 0x01 /* shared file lock */
#define L0CK_EX 0x02 /* exclusive file lock */
#define LOCKJMB 0x04 /* don't block when locking */
#define LOCKJJN 0x08 /* unlock file */

Chapter 5 • FILE LOCKING 95

The function flock (2) requires an open file descriptor fd. This open file descriptor must be

open for read access to gain shared locks with L0CK_SH. The file descriptor must have write

access in order to apply exclusive locks with L0CK_EX.

A shared lock is requested by using the operation L0CK_SH in the call. Other processes can

request shared locks and succeed with existing shared locks. However, once a process estab¬

lishes an exclusive lock (L0CK_EX), no shared lock will succeed.

When L0CK_NB is not used, a request that cannot be granted immediately causes the process to

be put to sleep. When a shared lock is attempted when an exclusive lock is established, the

calling process is put to sleep until the exclusive lock is released. Similarly, if a process has a

shared lock and attempts to upgrade it to an exclusive lock, the calling process will sleep until

the conflicting shared locks are released.

When LOCK_NB is used, the lock request immediately fails by returning -1, if the request can¬

not be granted. The value EWOULDBLOCK is returned in errno. This allows a process to attempt

a lock without its execution being suspended if the request cannot be granted.

Some platforms will provide a compatibility function. Sun's Solaris 8 flock (3UCB) documentation

states that the "compatibility version of flock() has been implemented on top of fcntl(2) lock¬

ing. It does not provide complete binary compatibility."

The flock (2) function has a few advantages over the lock file technique.

• No additional lock file is involved.

• sleep(3) is not called for retry attempts, providing improved performance.

• Finer-grained locking allows locks to be shared or exclusive.

• Allows locks to be held on NFS mounted file systems.

NFS can be configured to support a lock manager (rpc. lockd(8) under FreeBSD), to allow

file locking on remote file systems. This overcomes the lock file limitation on remote file sys¬

tems, where open and create are not atomic operations.

According to simple tests performed under FreeBSD by the author, the flock (2) function does not

appear to return the EINTR error after a signal handler return. However, the FreeBSD documentation

states that "processes blocked awaiting a lock may be awakened by signals." For this reason, you

might want to allow for the eintr signal in your code.

96 ADVANCED UNIX PROGRAMMING

Warning

Locks created by flock (2) are managed by file—not by file descriptors. Additional file descriptors

obtained by dup(2) and dup2(2) manage the same locks.

The parent process that has fork(2) calls can lose locks on a file if its child process unlocks the file

when it uses the open file descriptors obtained from the parent.

Record Locking
The BSD flock(2) approach provides improved performance over the lock file but still suffers

from the fact that it locks the entire file.

Even better performance can be obtained when the regions of the file are locked instead of the

entire file. System V provided the lockf (2) function to accomplish this. Later, POSIX defined

yet another application interface using the f cntl(2) function.

To visualize locked regions, review Figure 5.1, in which three processes successfully obtained

region locks. The execution of the fourth process was suspended because its request to lock a

region overlapped with another granted lock.

Locking with lockf (2)
The lockf (2) function is not documented under FreeBSD, presumably because it was a

System V development, which was superceded by the POSIX fcntl(2) interface. For those

interested in porting existing applications that call it, the lockf (2) function will be presented
here:

#include <sys/lockf.h> /* AIX */
#include <unistd.h>

int lockf(int fd,int request,off_t size);

#define FJJLOCK 0
#define F_L0CK 1
#define F_TL0CK 2
#define F TEST 3

/* unlock a region */
/* lock a region */
/* test and lock a region */
/* test region for lock */

The lockf (2) function uses the current offset in the file open on f d. The request to lock a

region of the file starts at this implied offset and includes size bytes. If size is negative, the
region works backward from the current offset.

Regions are locked when request is F_L0CK and unlocked when request is FJJLOCK. The

operation F_TEST returns zero if the specified region is not locked. Otherwise, -1 and
errno=EACCES are returned instead.

Chapter 5 • FILE LOCKING 97

EACCES—Permission Denied. This error is returned when the permissions on an object prevent the

access that is requested. In the context of calls like lockf (2), it simply means that the specified

region is already locked and the request cannot be granted.

Note that the macro name eacces is frequently misspelled: there is only one S.

The lockf (2) function requires that the file descriptor fd must be open for write (0_WR0NLY)

or for read/write (0_RDWR). A file that is open only for reading cannot obtain a locked region

with lockf (2).

HP-UX notes in lockf (2) that "If the calling process is a member of a group that has the

PRIV_L0CKRD0NLY privilege (see getprivgrp(2)), it can also use lockf (2) to lock files opened with

read-only permission (0_rdonly).''

iSalSI
Warning

All locks that a process owns for a given file are released when any one of the file descriptors associ¬

ated with that file is closed with close (2). This is true even when the process may still have other

dup(2) file descriptors open for the same file.

Process termination and calls to execve(2) with the close-on-exec flag set have the same effect.

When a process provides multiple lock requests for overlapping regions that are already

locked, the lock regions are merged. Figure 5.2 shows two overlapping regions that merge into

one larger locked region for the calling process.

FIGURE 5.2

Two overlapping lock

regions merge into one.

Region 1 Re9ion 2

A

X

f- -\

f >

II

.

V :. .
.. ; :

. ...

-v ■■

.

1 . J
Overlap

> File

J

98 ADVANCED UNIX PROGRAMMING

It is possible to arbitrarily unlock regions within a larger locked region. For example, the over¬

lapping area shown in Figure 5.2 can be subsequently unlocked if the calling application

issues the request to do so.

As noted in the earlier Warning, any call to close (2) by the current process releases all of its

presently held locks. There are no separately managed lock regions by file descriptor. All lock

regions are managed strictly on a file basis for each process. This can sometimes present a

challenge to software design.

EDEADLK—Resource Deadlock Avoided. This error can be returned by lockf (2) to indicate that the

operation being attempted would have been blocked indefinitely if an error had not been returned

instead. This frequently occurs when two processes are locking overlapping sets of resources and

each is waiting for the other to give way.

Avoiding Deadlock
Whenever the error EDEADLK is returned, your application should release all of the locks it has

acquired so far and try again. Eventually your process or the other process will then acquire all

of the locks needed.

The best avoidance of deadlocks is accomplished if all processes attempt to lock records in the

same sequence. For example, you might have all applications lock lowest offset records first. If

multiple files are involved, you might also lock the files with the lowest i-node numbers first

(see Chapter 6).

Advisory Locking
Unless you take steps to enable mandatory locking, the lockf (2) function provides advisory

locking only. Advisory locking works when all processes accessing the same file agree to use

lockf (2) voluntarily when accessing the file. Any process that chooses to ignore this conven¬

tion can still do as it pleases without regard to the locks in place.

With mandatory locking enabled, the UNIX kernel enforces locking on the file. With locking

enforced, reads and writes that overlap with a locked region put the calling process to sleep

until the lock is released. Enabling mandatory locking is discussed in the section “Mandatory
Locking,” later in this chapter.

0
HP-UX documentation states that some system functions like execve(2) are not subject to enforce¬

ment of mandatory locks. See lockf (2).

Chapter 5 • FILE LOCKING 99

POSIX Locking with fcntl(2)
The POSIX method for locking files uses the fcntl(2) application interface. The function syn¬
opsis for fcntl(2) as it applies to file locking is as follows:

#include <fcntl.h>

int fcntl(int fd, int cmd, struct flock *lck);

cmd:

F_GETLK, F_SETLK, or F_SETLKW

struct flock
of f_t
off_t
pid_t
short
short

{
l_start;
l_len;
l_pid;
l_type;
l_whence;

/* starting offset */
/* len = 0 means until end of file */
/* lock owner (F_GETLK only) */
/* F_RDLCK, FJVRLCK or F_UNLCK */
/* SEEK_SET, SEEK_CUR or SEEK_END */

The fcntl(2) interface permits two different locks to be applied when the cmd argument is

F SETLK or F SETLKW:

Shared locks—F RDLCK

Write locks—F WRLCK

The argument lck points to the structure flock where the structure member l_type is set to

F_RDLCK or F_WRLCK. When a region of the file needs to be unlocked, the member l_type is

set to FJJNLCK instead.

The cmd values F_SETLK and F_SETLKW differ as follows:

• When F_SETLK is used, the lock operation is attempted as described by the supplied

structure flock, which is pointed to by the argument lck. If the operation cannot suc¬

ceed because of another process’s locks, an error return value of -1 is returned and

errno=EAGAIN.

• The operation for F_SETLKW is the same as F_SETLK, except that the operation will block

until the operation can succeed.

Initializing struct flock

The l_start member of the flock structure indicates the starting file offset of the region

involved. Member l_len indicates in bytes how long the file region is. A value of zero for

l_len indicates that the entire file should be locked.

The structure member l_pid is used only by the fcntl(2) command F_GETLK. This value is

returned to the caller and will be discussed later.

100 ADVANCED UNIX PROGRAMMING

The structure member l_type indicates what type of lock is being applied. The values possible

here are F_RDLCK for shared locks, F_WRLCK to establish a write (exclusive) lock, or F_UNLCK to

unlock the specified region.

The value of l_whence indicates how the offset in l_start should be interpreted. The values

possible are SEEK_SET, SEEK_CUR, and SEEK_END. This follows the convention used by

lseek(2).

Locking a Region
The following code segment shows how a region of an open file descriptor f d would be

locked:

int fd;
struct flock lck;

lck.l_start = 0;
lck.l_len = 0;
lck.l_type = F_RDLCK;
lck.l_whence = SEEK_SET;

if (fcntl(fd,F_SETLKW,&lck) ==
/* Error handling */

/* Open file descriptor */
/* Lock structure */

/* Start at beginning of file */
/* Lock entire file */
/* Shared lock */
/* Absolute offset */

-1) {

This example locks the entire file with a shared (read) lock on the file descriptor f d. Since

F_SETLKW was used, this function call will block until it is successful.

Warning

The fcntl(2) function will return the error eintr when command f_setlkw is used and the

process has finished handling a signal.

When fcntl(2) is called with command F_SETLK instead of F_SETLKW, a return value of -1 is

provided with errno=EAGAIN if the operation cannot immediately succeed. This prevents the

process from blocking in the function call.

EAGAIN —Resource Temporarily Unavailable In the context of the fcntl(2) function call

using f_setlk, it means that some other lock currently conflicts with the request. However, retrying

the operation later may yield success.

i

Chapter 5 • FILE LOCKING 101

Unlocking a Region
Unlocking a region is almost identical to the lock procedure:

int fd; /* Open file descriptor */
struct flock lck; /* Lock structure */

lck.l_start = 0;
lck.l_len = 0;
lck.ljtype = F_UNLCK;
lck.l_whence = SEEK_SET;

/* Start at beginning of file */
/* Lock entire file */
/* unlock */
/* Absolute offset */

if (fcntl(fd,F_SETLKW,&lck) == -1) {
/* Error handling */

The only difference in the code shown is the line:

lck.l_type = F_UNLCK; /* Shared lock */

The example code shown will undo the shared lock established in the previous section.

Obtaining Lock Information
The POSIX fcntl(2) lock operations permit the program to query the given file for locks

using the command F_GETLK. The following shows an example:

int fd; /* Open file descriptor */
struct flock lck; /* Lock structure */

lck.l_start = 0;
lck.l_len = 0;
lck.l_type = F_RDLCK;
lck.l_whence = SEEK_SET;

/* Start at beginning of file */
/* Lock entire file */
/* Shared lock */
/* Absolute offset */

if (fcntl(fd,F_GETLK,&lck) == -1) {
/* Error handling */

} else if (lck.l_type == FJJNLCK) {
/* Operation F_RDLCK would have succeeded */

} else {
printf("PID %ld is preventing F_RDLCK\n",(long)lck.l_pid);

}

The command F_GETLK indicates that the operation would have been successful by leaving the

structure lck intact, with the exception that lck. l_type is set to FJJNLCK. However, if the

request would have failed, the structure member lck. l_pid is set to the process ID of the

process holding the first conflicting lock (there may be more than one conflict).

All locks that a process owns for a given file are released when any one of the file descriptors associ¬

ated with that file is closed with close (2). This is true even when the process may still have other

dup (2) file descriptors open for the same file.

Process termination and calls to execve(2) with the close-on-exec flag set have the same effect.

102 ADVANCED UNIX PROGRAMMING

Note that the POSIX implementation of record locking using f cntl(2) suffers from the same

limitations noted in the discussion of lockf (2).

Mandatory Locking
The discussions so far have covered only advisory locking. As long as all processes cooperate

and use the locking conventions in agreement, the integrity of the file is maintained. However,

if one or more processes do not obey the locking convention established, then updates to the

file can result in file corruption and data loss.

To enable mandatory locking on a file, the setgid bit is established for the file without the

execution permission being given. More precisely, permission bit S_ISGID must be enabled,

and S_IXGRP must be reset (on some systems, the macro S_ENFMT can be used).

Note

The functions read(2), write(2), readv(2), wnitev(2), open(2), creat(2), mmap(2),

truncate(2), and ftruncate(2) are among the functions affected by mandatory locking.

Note that truncate(2) and ftruncate(2) are considered to be write actions for locking purposes.

All lock requests are still performed with the fcntl(2) function, as they were for advisory

locks. However, with mandatory locking enabled, all read/write I/O calls will be affected as fol¬

lows:

• Any write call will be blocked if another process has a conflicting region locked with a

shared or exclusive lock.

• Any read attempt will be blocked if another process has a conflicting region locked with

an exclusive lock.

This form of locking imposes a performance penalty, because every read and write on the file

must go through lock tests within the UNIX kernel. Additionally, mandatory locking is not

supported on all UNIX platforms. Mandatory locking was not part of the POSIX. 1 standard, so

some vendors have chosen not to support it.

Note

SGI IRIX 6.5, HPUX 10 and 11, UnixWare 7, Solaris 8, AIX 4.3, and Linux 2.1 .x and later support

mandatory file locking.

BSD derivatives, including FreeBSD, do not appear to support mandatory locking.

To see if your platform supports mandatory locking, look atchmod(2) and stat(2). Most platforms

that support it will define the macro S_enfmt. Alternatively, look for a discussion of enforced or

mandatory file locking.

Chapter 5 • FILE LOCKING 103

Mandatory locking provides the following benefits:

• All processes are forced to synchronize their access to the file, whether they explicitly

lock regions or not.

• The application does not have to issue lock and unlock requests for simple updates.

Mandatory locking suffers from the following disadvantages:

• Additional UNIX kernel overhead is required to check locks for every read and write

system call on the file.

• A malicious process can hold an exclusive lock on the file indefinitely, preventing any

reads or writes to the file.

• A malicious process can hold a shared lock on a mandatory lock to deny any process to

write to the file.

• Mandatory locks may not be supported on NFS mounted file systems.

• Mandatory locks are not supported on all UNIX platforms.

Lower efficiency and potential lack of portability are the most serious disadvantages that you

need to consider.

If the file being opened with open (2) has outstanding read or write mandatory locks, and the flag
0_trunc or 0_CREAT has been supplied, the call will fail with the error eagain on many UNIX plat¬
forms.

Enabling Mandatory Locking
The following example shows how you can enable mandatory locking for a file named

file.dat:

$ Is -1 file.dat
-rw-rw- 1 me mygrp 596 Apr 24 16:55 file.dat
$ chmod g+s,g-x file.dat
$ Is -1 file.dat
-rw-rwS--- 1 me mygrp 596 Apr 24 16:55 file.dat

$

Notice the large S in the group permissions shown for file. dat. This indicates that manda¬

tory locking is in effect for this file.

Summary
This chapter covered the different forms of locking, from the primitive file-based locks to the

more advanced region locks. The next chapter will look at the basic UNIX functions that allow

your programs to manage files and to obtain property information about them.

■

'

CHAPTER 6

MANAGING FILES AND THEIR
PROPERTIES

When you first started using UNIX, the first interaction you had with the system was

through the shell. With the shell’s help you listed, copied, linked, moved, and even

removed files. All of these routine jobs were accomplished with the shell.

The purpose of this chapter is to introduce you to the C library functions that permit you to

delete, link, and move files. Additionally, the very important stat (2) and fstat(2) functions

that give you information about file system objects will be covered. With the exception of

directories, this chapter will enable you to manage files from your C program without any help

from the shell.

Removing Files
You delete files under UNIX using the unlink(2) system call. The function synopsis for it is as

follows:

#include <unistd.h>

int unlink(const char *pathname);

A UNIX file can have more than one name linked to a copy of the file. When the last link is

removed, the file itself is deleted and the disk space is returned to the file system for re-use.

The function returns -1 if it fails and leaves the error code in errno. Upon a successful return,

the value 0 is returned.

The following example code shows how the pathname /tmp/12345. tmp is deleted from a C

program:

if (unlink("/tmp/12345.tmp") == -1) {
fprintf(stderr,"%s: removing /tmp/12345.tmp\n",strerror(errno));
abort();

}

All links to the same file must be released this way before the disk space is returned to the file

system.

106 ADVANCED UNIX PROGRAMMING

Warning

The unlink(2) call can take a long time to delete a large file. Time is required to update many inter¬

nal file system blocks and pointers. Consequently, on some UNIX platforms the unlink(2) call can

return the error EINTR (SGI IRIX 6.5 for example).

Note that if any links remain for the file, the file's stat(2) value st_ctime (create time) is updated.

The stat (2) values st_ctime and stjntime (time last modified) are updated for the directory con¬

taining the link that was removed.

In addition to the unlink(2) function, the programmer has the remove (3) function, which

was formalized by the ISO 9899: 1990 (“ISO C”) standard. Its function synopsis is as follows:

#include <stdio.h>

int remove(const char *path);

The remove(3) function differs from unlink(2) in that it is able to remove a file or an empty

directory. remove(3) calls upon unlink(2) or rmdir(2) as appropriate. When argument path

is a directory, the function rmdir(2) is called. Otherwise, unlink(2) is called. rmdir(2) is

described in Chapter 7, “Directory Management.”

When remove(3) is successful, the value 0 is returned. Otherwise -1 is returned and the error

code is left in global variable errno. For a list of error codes possible, consult the functions

unlink(2) and rmdir(2).

Note

While remove(3) is able to remove a directory, it does require that it be empty. This restriction is due

to limitation of rmdir(2).

Linking Files
This is accomplished by the link(2) system call:

#include <unistd.h>

int link(const char *oldpath, const char *newpath);

The function returns -1 if it fails and leaves the error code in errno. Upon a successful return,
the value 0 is returned.

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 107

The following example shows how the function can be used to link the filename a. out to
my_app:

if (link("a.out","my_app") == -1) {
fprintf(stderr,"%s: link(2)\n",strerror(errno));
abort();

}

Warning

Some UNIX platforms allow link(2) to return the error EINTR (SGI IRIX 6.5 for example).

Ill Note
, - '> ><*•'- • '

The st_ctime (create time) value of the file is updated upon successful completion of a link(2)

call. The values st_ctime and st_mtime (time of last modification) of the directory containing the

new link are updated. See the section "The stat(2) Function," later in this chapter.

Moving Files
The mv(1) command uses the link(2) and unlink(2) calls in order to move a file. However,

if the file is moved to another file system, the mv (1) command must copy it. Assuming that the

file is being moved within the same file system, an example command looks like this:

$ mv ./a.out ./bin/my_app

In C terms, this is accomplished as follows:

if (link("./a.out","./bin/my_app") == -1) {
fprintf(stderr,"%s: link(2)\n",strerror(errno));
abort();

}
if (unlink("./a.out") == -1) {

fprintf(stderr,"%s: unlink(2)\n",strerror(errno));
abort();

}

The idea behind moving a file is to create a new link and then remove the old link. This gives

the illusion of moving the file from one path to another. However, if the source and destination

pathnames are on different file systems, you will get the error EXDEV.

Note

EXDEV —Cross-device link. When link(2) returns this error, it indicates that the operation failed

because both pathnames were not on the same file system.

108 ADVANCED UNIX PROGRAMMING

While pathnames can be moved using individual calls to link(2) and unlink (2), the opera¬

tion occurs frequently enough that the rename (2) function has been provided for conve¬

nience. This simplifies your coding effort, since you have to test only one source of error

instead of two. The synopsis for this function is as follows:

#include <stdio.h>

int rename(const char *from, const char *to);

The rename (2) function returns 0 if it succeeds. Otherwise the value -1 is returned and an

error code is provided in errno.

It is also worth noting that if the final component of the pathname from is a symbolic link, the

symbolic link is renamed—not the file or directory that the symbolic link points to.

Warning

The rename(2) function will unlink(2) the to pathname if it already exists.

Additionally, SGI IRIX 6.5 documents this function as being capable of returning eintr if a signal is

caught.

Obtaining File System Information
The UNIX kernel maintains considerable detail about every file system object. This is true

whether the object is a file, a directory, a special device node, or a named pipe. Whatever the

file system object is, several properties are tracked and maintained for it.

The stat (2) and fstat (2) functions return information about file system objects in a struc¬

ture named stat. The synopsis for the stat structure is as follows:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t stjnode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;

#ifndef _P0SIX_S0URCE
struct timespec st_atimespec
struct timespec st_mtimespec
struct timespec st_ctimespec

#else
time_t st_atime;
long st_atimensec;
time_t st_mtime;
long stjntimensec;
time_t st_ctime;
long st_ctimensec;

/* device */
/* inode */
/* protection */
/* number of hard links */
/* user ID of owner */
/* group ID of owner */
/* device type (if inode dev) */

/* time of last access */
/* time of last data modification */
/* time of last file status change */

/* time of last access */
/* nsec of last access */
/* time of last data modification */
/* nsec of last data modification */
/* time of last file status change */
/* nsec of last file status change */

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 109

#endif
off_t st_size;
int64_t st_blocks;
u_int32_t st_blksize;
u_int32_t st_flags;
u_int32_t st_gen;

};

#ifndef _P0SIX_S0URCE
#define st_atime st_atimespec.tv_sec
#define st_mtime st_mtimespec.tv_sec
#define st_ctime st_ctimespec.tv_sec
#endif

struct timespec {
time_t tv_sec;
long tv_nsec;

};

The definition shown is the one documented by FreeBSD Release 3.4. This definition shows

the difference that exists, depending on whether or not POSIX standards are being used. When

POSIX standards are not in use, the members st_atimespec, st_mtimespec, and

st_ctimespec are defined in terms of the structure timespec. Then macros are used to equate,

for example, the name st_atime to st_atimespec.

When POSIX standards are used, the st_atime member is defined in terms of the C type

time_t, as has been the traditional type for this member. If finer-grained time information is

required, the member st_atimensec can be consulted when compiling to POSIX standards.

SGI's IRIX 6.5 describes the access, modified, and create date/time structure members in terms of

the C data type timespecjt. Many other UNIX systems such as HPUX 10 and 11, Solaris 8, and

UnixWare 7 describe the stat members in simple terms of the C data type time_t.

/* seconds */
/* and nanoseconds */

/* file size, in bytes */
/* blocks allocated for file */
/* optimal blocksize for I/O */
/* user defined flags for file */
/* file generation number */

The stat (2) Function
The stat (2) function allows the programmer to supply the pathname of the file system object

and retrieve file system properties. The function synopsis for stat (2) is as follows:

//include <sys/types.h>
//include <sys/stat.h>
//include <unistd.h>

int stat(const char *file_name, struct stat *buf);

The stat (2) function returns 0 when it is successful. When the call fails, -1 is returned with

an error code placed in the global variable errno.

110 ADVANCED UNIX PROGRAMMING

You can use the following code to obtain information about the executable file bin/a.out:

struct stat sbuf;

if (stat("bin/a.out",&sbuf) == -1) {
fprintf(stderr,"%s: stat(2)\n",strerror(errno));
abort();

}

The code shows how the properties are returned to the structure sbuf for the file a.out. The

programmer can then access the members of variable sbuf to work with the file properties.

Table 6.1 reviews the stat structure members in detail, complete with units.

TABLE 6.1 The stat Structure

Data Type Member Name Description

dev_t st_dev The device number for this file system.

ino_t st_ino The i-node number for this file system entry.

mode_t st_mode File system object permission bits.

nlink_t st_nlink The number of hard links to this file.

uid_t st_uid The uid number of the owning user for this file system object.

gid_t st_gid The gid number of the group for this file system object.

dev_t st_rdev The device type, if the device is an i-node device.

time_t st_atime The time this file system object was last accessed.

long st_atimensec The last access time in nanoseconds.

time_t st_mtime The time this file system object was last modified.

long st_mtimensec The time of last modification in nanoseconds.

time_t st_ctime The time of creation for this file system object.

long st_ctimensec The time of creation in nanoseconds.

of f_t st_size The total size in bytes of this file system object.

int64_t st_blocks The number of blocks allocated to this file system object.

u_int32_t st_blksize The block size for file system I/O.

Warning

stat (2) and f stat (2) under SGI IRIX 6.5 are capable of returning EINTR if a signal is caught.

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES ill

Data Type Member Name Description

u_int32_t st_flags User-defined flags for file. This appears to be a FreeBSD extension.

u_int32_t st_gen File generation number. This appears to be a FreeBSD extension.

The HPUX operating system also includes another useful piece of information:

struct stat {

uint

};

When set, the flag bit member st_acl indicates that access control list (ACL) entries exist for

that file. Only certain types of file systems, including HP’s HFS file system, support access con¬

trol list entries.

The fstat (2) Function
There are situations where it is necessary to obtain properties of the file system object that is

open on a file descriptor. In this situation, you may not have the pathname for the object. The

f stat (2) function solves this problem by allowing you to retrieve properties for the object

open on the file descriptor.

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int fstat(int fd, struct stat *sb);

For a file that is open on file descriptor fd, the following example shows how f stat (2) is

used:

int fd; /* Open file descriptor */
struct stat sbuf;

if (fstat(fd,&sbuf) == -1) {
fprintf(stderr,"%s: fstat(2)\n",strerror(errno));
abort();

}

In this example, the structure sbuf receives all of the file properties for the object open on file

unit fd.

Working with File Properties
In order to put the stat (2) and f stat (2) functions through their paces, a simple C++ object

will be created to allow a few simple tests to be performed. The system call functions will be

encapsulated in the object and then tested by calling upon the object methods. Listing 6.1

shows the C++ program.

st_acl:1; /* Set if the file has optional */
/* access control list entries */
/* HFS File Systems only */

112 ADVANCED UNIX PROGRAMMING

LISTING 6.1 stat. cc—The Stat Class and Test Program

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// stat.cc

#include <iostream.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>

//
// Simple Stat object :
//

class Stat : public stat {

private:
char *path;
int fd;

// Pathname
// File descriptor

public:
Stat() { path = 0; fd = -1; }
-Stat();

Stat & examine(const char *pathname);
Stat & examine(int fd);
int operator==(Stat &o);

friend ostream & operator«(ostream &out,Stat &o);
};

//
// Destructor :
//

Stat::-Stat() {
if (path) // Path allocated?

delete path; // Yes, release string
}

//
// stat(2) on pathname :
//

Stat &
Stat::examine(const char *pathname) {

if (path)
delete path;

// Is there a prior path?
// Yes, release string

path = strdup(pathname); // Create a new string
fd = -1; // Not using fd here

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 113

53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81 :
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101 :
102:
103:
104:
105:

// Obtain stat info :
if (::stat(path,this) == -1)

throw errno; // Oops- error

return *this; // Successful
}

//
// Perform fstat(2) on fd :
//

Stat &
Stat:: examine(int fd) {

if (path) { II Is there a path?
delete path; II Yes, release string

}
path = 0; 1/ Mark as gone

this->fd = fd; II Save fd

II Obtain stat info :
if (: :fstat(fd,this) == •1)

throw errno; II Oops- error

return *this; II Successful

//
// This friend function can be called to dump the
// contents of the stat structure :
//

ostream &
operator«(ostream &out,Stat &o) {

// If there is no information, say so :
if (o.fd == -1 && lo.path) {

out « "No current information.";
return out;

}

// Otherwise, show what sort of stat() info it is:
if (o.path)

cout « "stat(" « o.path « ") {\n";
else

cout « "fstat(" <<: o.fd « ") {\n";

// Dump all other structure members :

cout« "\tst_dev =\t" « o.st_dev « ";\n"
« "\tst_ino =\t" « o.st_ino « ";\n";

114 ADVANCED UNIX PROGRAMMING

continued from previous page

106
107
108
109
110 cout« "\tst
111 « " \tst
112 « " \tst
113 << " \ tst
114 « " \tst
115 « "\tst
116 « " \tst
117 « " \tst
118 « " \tst
119 << " \tst
120 « " \tst
121 « " \tst
122 « " \ n };
123
124 return out;
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

cout.setf(ios::oct,ios::basefield);
cout« "\tst_mode =\t" « '0' « o.stjnode « ";\n";

cout.setf(ios::dec,ios::basefield);
_nlink =\t" « o.st_nlink
uid =\t" « o.st uid «

« ";\n"
; \ n"

_gid =\t" « o.st_gid « ";\n"
rdev =\t" « o.st_rdev « ";\n"
atime =\t" « o.st_atime « ";\n"

_mtime =\t" « o.stjntime « ";\n"
ctime =\t“ « o.st_ctime « ";\n"
size =\t" « o.st_size « ";\n"
blocks =\t" « o.st_blocks « ";\n"
blksize =\t" « o.st_blksize « ";\n"

_flags =\t" « o.st_flags « ";\n"
_gen = \t" « o.st_gen « ";\n"

}

//
// This method tests to see if two file system objects
// are the same one :
//

int
Stat::operator==(Stat &o) {

// Does either object lack information?

if (fd == -1 && !path)
throw EINVAL;

if (o.fd == -1 && !path
throw EINVAL;

// No information here

// No information there

// Now test to see if these are the same objects:

if (o.st_dev !=
o.st_ino !=

return 0;

st
st

dev
ino

// Devices match?
// Inodes match?
// Devices or inodes don't match

return 1
}

// Return TRUE, they are the same

//
// Test Main Program :
//

int
main(int argc.char **argv) {

int x;
Stat t;

//
II

work index
state. /stat'

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 115

159 Stat s; // work stat object
160
161 t.examinee . /stat"); // Do stat(2j
162
163 // Now try all command line arguments :
164
165 for (x=1; x<argc; ++x) {
166
167 try {
168 s.examine(argv[x]); // Stat this pathname
169 } catch (int e) {
170 // e is errno value :
171 cerr « strerror(e) « stat(2) of ii

172 « argv[x] « 1\n';
173 continue;
174 }
175
176 cout « s « ' \n'; // Dump stat info
177
178 // Test if s is same as t :
179
180 cout « . « argv[x] « " ' is "
181 « (s == t ? "same" : "not the same')
182 « " file as ./stat\n";
183 }
184
185 return 0;
186 }
187
188 // End stat.ee

The program in Listing 6.1 defines the class Stat, beginning at line 14. This class inherits from

the stat structure and leaves the stat members exposed for simplicity (note the public key¬

word in line 14). Two additional private members, path and fd, are declared in lines 17 and

18 for tracking purposes.

Two examine C++ methods are declared in lines 24 and 25 to allow the object to inquire by

pathname or by file descriptor. This eventually translates to a call to stat (2) or f stat (2),

respectively.

Lines 45-58 declare the implementation of the inquiry by pathname. Line 54 shows the call to

stat (2). Note that this method is coded to throw the errno value if an error is returned by

stat (2). Lines 64-79 likewise define the implementation of the inquiry by open file descrip¬

tor. The f stat (2) call appears in line 75, and again, errno is thrown if an error is returned.

Lines 86-125 define a friend function (see line 28) that allows the class Stat to be sent to

cout with the « operator. This provides a simple dump of the stat structure members.

The loop in the main () program in lines 165-183 performs the task of examining every path¬

name provided on the command line (line 168). Any error is caught in line 169 and reported

in lines 171-173. Ifs.examine(argv[x]) executes successfully, control passes to line 176,

where the contents of the object are formatted for output.

116 ADVANCED UNIX PROGRAMMING

The following session shows the program in Listing 6.1 being compiled and tested using the

file Makefile:

$ make stat
cc -c -D_POSIX_C_SOURCE=199309L -Wall -fhandle-exceptions stat.cc
cc stat.o -o stat -lstdc++
$./stat Makefile
stat(Makefile) {

st_dev = 196613;
st_ino = 125953;
stjnode = 0100644;
st_nlink = i;
st_uid = 1001;
st_gid = 1001;
st_rdev = 525400;
st_atime = 956797796;
stjntime = 956723168;
st_ctime = 956723168;
st_size = 378;
st_blocks = 2;
st_blksize = 8192;
st_flags = 0;
st_gen = 0;

};
'Makefile' is not the same file as ./stat
$

Notice that, if we verify a few attributes of the file Makefile, they will agree with the output

shown:

$ Is -li Makefile
125953 -rw-r--r-- 1 me mygrp 378 Apr 26 00:26 Makefile
$

The file size of 378 bytes matches the value shown for st_size, and the permissions

-rw-r - - r- - match the lower 3 octal digits of st_mode for permission bits. The -i option of

the Is (1) command causes the i-node number to be displayed. It is shown as 125953 and

agrees with the st_ino value shown.

Testing Links for the Same File
When the device number in st_dev and the i-node in st_ino match for two different path¬

names, this indicates that these are links to the same file. The method int operator==(Stat

&o) is defined in the class Stat of Listing 6.1 to allow the user of Stat objects to perform such

a comparison test. The method is implemented in lines 132-149.

This class method is tested in the main () program by initially obtaining the stat (2) informa¬

tion on the executable file . / stat in line 161. Then the command-line argument is compared

against this in line 181 (note the s == t expression before the ? operator).

In the earlier test run, the message

'Makefile' is not the same file as ./stat

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 117

was shown. However, if this program is tested again with new_link as the argument that is
linked to . /stat, then the following results are obtained:

$ In ./stat new_link
$./stat new link
stat(new_link) {

st_dev = 196613;
st_ino = 125955;
st_mode = 0100755;
st_nlink = 2;
st_uid = 1001;
st_gid = 1001;
st_rdev = 525312;
st_atime = 956797797
st_mtime = 956797797
st_ctime = 956798301
st_size = 12080;
st_blocks = 24;
st_blksize = 8192;
st_flags = 0;
st_gen = 0;

};
'new_link' is same file as ./stat
$ Is -li new_link stat
125955 -rwxr-xr-x 2 me mygrp 12080 Apr 26 21:09 new_link
125955 -rwxr-xr-x 2 me mygrp 12080 Apr 26 21:09 stat
$

After creating a link new_link to . / stat, the program correctly states that the pathname

new_link is the same file as . /stat. This is reported from lines 180-182 of the main () pro¬

gram.

Testing for File Type
The st_mode member also holds information about the type of file system object. To determine

the object type, use one of the following macros, where m is the stjnode value to be tested.

The following tests and macros can be used:

symbolic link S_ISLNK(m)

regular file S_ISREG(m)

directory S_ISDIR(m)

character special device S_ISCHR(m)

block special device S_ISBLK(m)

named pipe (FIFO) S_ISFIF0(m)

socket S_ISS0CK(m)

These macros test the high order bits in the stat structure member st_mode

118 ADVANCED UNIX PROGRAMMING

The following code shows how a function could report the type of the file system object path

that is provided as an argument:

static void
report_type(const char *path) {

struct stat sbuf;
char *cp = ;

if (stat(path,&sbuf) == -1) {
/* Report stat(2) error */
fprintf(stderr,"%s: stat(%s)\n",

strerror(errno),path);
return;

}

if (S_ISDIR(sbuf.st_mode))
cp = "directory";

else if (S_ISREG(sbuf.stjnode))
cp = "regular file";

else if (S_ISCHR(sbuf.stjnode))
cp = "character raw device";

else if (S_ISBLK(sbuf.st_mode))
cp = "block raw device";

else if (S_ISFIFO(sbuf.st_mode))
cp = "named pipe (FIFO)";

else if (S_ISSOCK(sbuf.stjnode))
cp = "UNIX socket";

else if (S_ISLNK(sbuf.st_mode))
cp = "symbolic link";

printf("Path %s is a %s\n“,path,cp);

}

This example shows how the stat structure member st_mode is used in each of the test macro

calls.

Modification, Access, and Creation Times
The time values st_atime, st_mtime, and st_ctime are sometimes valuable assets to the pro¬

grammer. Most of the time, the value st_mtime is examined, which represents the last modifi¬

cation for the object. However, the time of last access, st_atime, can be extremely useful if

you need to see if the object has been recently accessed. The creation time, st_ctime, indicates

when the object was created. The data type time_t is discussed in Chapter 11, “UNIX Date

and Time Facilities.”

Calling stat (2) or fstat (2) to query a file system object's properties does not alter its date and

time accessed.

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 119

Testing Access to a File
Sometimes it is necessary to test the access of a file system object prior to its actual use. For

example, if your application must provide the pathname of an executable to another applica¬

tion, you might want to make sure that you possess execute rights on that file. Testing access

ahead of time may be simpler for corrective action. This is accomplished with the UNIX func-
tion access (2):

#include <unistd.h>

int access(const char

mode:

*path, int mode);

F_0K, R_OK, W_0K and/or X_0K

The pathname of the object to be tested for access is provided in the first argument. The mode

argument contains the bit-wise OR of the following values:

File exists F_0K

Read access R_0K

Write access W_0K

Execute access X_0K

The real user ID and group ID are used for testing the access to the file (not the effective user

ID and group ID). If the access is not successful, -1 is returned and an appropriate error in

errno is returned (EACCES if the problem is a lack of access rights). If the function succeeds,

the value 0 is returned instead.

The following example shows how a program could test to see if the shell script my_script is

executable:

if (access("./my_script",R_0K|X_0K) == -1)
/* Report error */

else
/* ./my_xeq has execute access */

Note

Script files must be readable and executable. Executable files require only execute access.

120 ADVANCED UNIX PROGRAMMING

The value F_0K simply tests for the existence of the pathname. SGI’s IRIX 6.5 and UnixWare 7

allow the additional flag bits to be supplied:

Regular executable file EX_0K

Test using effective IDs EFF_0NLY_0K

However, these tests are not universally available.

Warning

SGI's IRIX 6.5 and Solaris 8 document the access(2) function returning the error eintr.

Symbolic Links
Symbolic links solve the thorny problem of providing a link to a file on another file system.

They represent a file system “re-director” of sorts. In order to allow programs to work with

symbolic links, the UNIX kernel provides a few system calls specific to symbolic links.

The symlink(2) Function
The symlink(2) function permits the caller to create a symbolic link, as opposed to a hard

link that is created by link(2). The synopsis for symlink (2) is as follows:

#include <unistd.h>

int symlink(const char *path, const char *symlnk);

The symbolic link named by the argument symlnk is created to point to the pathname pro¬

vided by the argument path. The function returns 0 if successful; otherwise -1 and a value for

errno are returned. The pathname in path does not need to exist already.

The following example shows how a symbolic link named my_hosts can be created to point to
the file /etc/hosts:

if (symlink(“/etc/hosts"/my_hosts") == -1)
/* Report error */

else
/* Success */

FreeBSD has an extensive man (1) page describing how symbolic links work, in section seven,
symlink(7).

The lstat(2) Function
There are times when your program may need status information about the symbolic link,
rather than the file it points to. The 1st at (2) function fills this need:

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 121

#include <sys/types.h>
#include <sys/stat.h>

int lstat(const char *path, struct stat *sb);

The structure sb is filled with the same type of information that is provided for stat (2) and

f stat (2). The difference, of course, is that the information is returned for the symbolic link

itself. The function returns 0 when successful; otherwise -1 and a value for errno are returned
instead.

lstat (2) under SGI IRIX 6.5 is capable of returning eintr if a signal is caught.

Reading the Contents of the Symbolic Link with
readlink(2)

In order to determine what an existing symbolic link points to, you call upon the function

readlink(2):

//include <unistd.h>

int readlink(const char *path, char *buf, int bufsiz);

The symbolic link of interest is provided in the argument path. The buffer pointer but indi¬

cates where the symbolic link information should be returned. The argument bufsiz indicates

the maximum number of bytes that can be returned by readlink(2).

The value returned by readlink (2) is the number of characters that were placed into the

buffer buf. There is no null byte returned by readlink (2). If an error occurred, -1 is returned

and errno holds the error code. The following example shows how to report the link informa¬

tion for symbolic link my_symlink:

int z;
char buf[1024];

z = readlink("my_symlink",buf,sizeof buf-1);
if (z == -1)

/* Report error */
else {

/* Success */
buf[z] = 0; /* Null terminate */
printf("symlink is 1%s'\n",buf);

}

Notice how the null byte has to be added by the caller, since readlink(2) does not

provide one.

122 ADVANCED UNIX PROGRAMMING

File Permissions and Ownership
The stat (2) family of functions allows you to inquire about a file system object’s permissions

and ownership. Permissions are described by the stat structure member stjnode. To alter this

permission setting, you change its mode. This is covered next, using the functions chmod(2),

fchmod(2),and lchmod(2).

Each user on a UNIX system owns files that he has created. He is the owner of his files and, as

the owner, possesses the right to change its permissions (mode). Likewise, the user is a mem¬

ber of a group. Consequently, there exists group ownership on file system objects. The owner

of a file (with exceptions) can give his ownership away to another user or group on the system.

This is known as changing the owner or group of the file.

Changing Permissions
The chmod (2) function permits the program to alter the permission bits of a file system object.

The functions chmod(2), fchmod(2), and lchmod(2) have the following synopsis:

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fd, mode_t mode);

int lchmod(const char *path, mode_t mode);

The chmod(2) function follows symbolic links to arrive at the file that will have its permissions

altered. The lchmod (2) function, which is not available on all UNIX platforms, allows the

caller to alter the permissions on the symbolic link itself.

FreeBSD and HPUX 10 support the lchmod(2) function.

Documentation for HPUX 11 does not show support for lchmod (2). No documented support for

lchmod(2) exists in IBM AIX4.3, Solaris 8, UnixWare 7, SGI IRIX 6.5, or Linux.

The functions chmod (2) and lchmod (2) require the pathname of the file system object.

Function fchmod(2) changes the permissions on the object open on the file descriptor fd.

The permission bits in argument mode replace the existing permissions on the file system

object. These functions return 0 when successful or -1 with an error code in errno if they fail.

The following example shows how a C program could make the shell script my_script exe¬
cutable for the owner and group:

if (chmod(11./my_script" ,0550) == -1)
/* Report error */

else
/* Successful */

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 123

Alternatively, using macro constants, this example could have been written as follows:

if (chmod("./my_script",S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP) == -1)
/* Report error */

else
/* Successful */

Calling these functions will not affect the access of objects that have already been opened.

Warning

chmod(2) and fchmod(2) under SGI IRIX 6.5, UnixWare 7, and Solaris 8 are capable of returning

eintr if a signal is caught.

Changing Ownership
In order to change the ownership of a file, the function chown (2) must be called. The synopsis

for this family of functions is as follows:

#include <sys/types.h>
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

int fchown(int fd, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

Function chown (2) follows the symbolic links starting with path to arrive at the file that will

be changed. The function fchown(2) affects the file that is open on file descriptor fd. The

lchown (2) function affects the ownership of the symbolic link itself, rather than the file it

points to.

The arguments owner and group set the ownership user ID and group ID, respectively.

Argument owner or group may be given the value -1 (with one exception) to leave the user ID

or group ID unchanged. This is useful when changing only one of the two values of a file sys¬

tem object. See Chapter 12, “User ID, Password, and Group Management,” for more about

how to obtain user and group ID numbers.

HPUX 10 and 11 documents that you should use the macro value uid_no_CHANGE to leave the

owner as is. Additionally, macro gid_no_CHANGE is used to leave the group ownership as is.

AIX 4.3, Solaris 8, SGI IRIX 6.5, UnixWare 7, FreeBSD, and Linux document the use of -1 for leaving

the owner or group as is.

124 ADVANCED UNIX PROGRAMMING

Most UNIX platforms clear the set-user-ID and set-group-ID bits when these functions are

called. This helps to prevent accidental or mischievous security holes in file system permis¬

sions. However, when the caller is root, the set-user-ID and set-group-ID bits are not reset.

The following example sets the ownership of the file /etc/hosts to root (value 0), while leav¬

ing the group ID unchanged:

if (chown(''/etc/hosts'',0,-1) == -1)
/* Report error */

else
/* Successful */

Some systems may restrict these calls, since they can represent a security risk under the right

conditions.

Tip

Whether chown(2) is restricted or not can be tested using pathconf(2) or fpathconf (2) and the
test _PC_CHOWN_RESTRlCTED. This is covered later in this chapter.

Named Pipes (FIFOs)
Command lines are formed regularly under UNIX to pipe information from one process to

another. These pipes are anonymous. When unrelated processes want to pipe information,

they usually require the help of a named pipe. Because pipes process information on a first-in,

first-out basis, they are also known as FIFOs.

A FIFO can be created from a C/C++ program using the mkf if o (2) function. The function

synopsis is as follows:

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *path, modejt mode);

The FIFO is created with the pathname path with permissions specified by the argument

mode. The permission bits in mode are subject to the current umask (2) value in effect.

The function mkfifo(2) returns 0 when successful or -1 with an error code in errno when it

fails. The following shows how a named pipe, /tmp/my_pipe, can be created with read and

write access for everyone (subject to the umask(2) setting):

if (mkfifo("/tmp/my_pipe",0666) == -1)
/* Report errors */

else
/* Successful */

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 125

Note

On some platforms, the mkfifo(2) call may be implemented in terms of another function. For

example, SGI's IRIX 6.5 and Solaris 8 implement mkfifo(2) by calling

mknod(path,(mode|S_IFIF0),0).

Obtaining Size and Configuration Information
If you are writing applications for several UNIX platforms, it is wisest if your application can

determine the size of certain platform-specific values. One frequently needed piece of informa¬

tion is the maximum length of a pathname. This is needed so that pathname buffers can be
safely allocated.

The pathconf (2) and f pathconf (2) functions can answer your query about the size of a

pathname buffer required. The function synopsis is as follows:

#include <unistd.h>

long pathconf(const char *path, int name);

long fpathconf(int fd, int name);

A number of configured values can be returned to the program with these functions. The tests

that can be performed are summarized in Table 6.2.

Warning

When the pathconf (2) or fpathconf (2) function fails, the value

tains reason for the error.

pi
IIP

-1L is returned, and errno con-

If the parameter queried is not supported or does not have a limit in the system, the value -1L is also

returned, and the value of errno is left unchanged. To detect this, you should clear the value of

errno before making the call.

TABLE 6.2 pathconf (2) and fpathconf (2) Tests

Test Description

_PC_LINK_MAX The maximum file link count.

PC_MAX_CANON The maximum number of bytes in terminal canonical input line. Input

must represent a terminal.

_PC_MAX_INPUT The number of bytes for which space is available in a terminal input

queue. Input must represent a terminal.

126 ADVANCED UNIX PROGRAMMING

continued from previous page

Test Description

_PC_NAME_MAX The maximum number of bytes in a filename (excludes null bytes). The

input must represent a directory.

_PC_PATH_MAX The maximum number of bytes in a pathname (excludes null bytes). The

input must represent a directory.

_PC_PIPE_BUF The maximum number of bytes that will be written atomically to a pipe.

Input must represent a pipe, FIFO, or directory.

_PC_CHOWN_RESTRICTED Returns 1 if appropriate privileges are required for the chown(2) system

call, 0 otherwise. Input must represent a file or directory.

_PC_NO_TRUNC Return 1 if pathnames longer than _PC_NAME_MAX are truncated.

Otherwise, long pathnames cause an error to be returned. Input must be

a directory.

_PC_VDISABLE Returns the terminal character disabling value.

Most of the time, programmers will be interested in the value _PC_PATH_MAX. However, a num¬

ber of other useful values are provided as well, including the test _PC_CHOWN_RESTRICTED. A

feature test program is presented in Listing 6.2.

LISTING 6.2 pathconf.c—A pathconf (2) and f pathconf (2) Test Program

1: /* pathconf.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <string.h>
6: #include <errno.h>
7:
8: int
9: main(int argc,char **argv) {
10: int x;
11: struct {
12: int test;
13: char *desc;
14: } tests[] = {
15: { _PC_LINK_MAX, "The maximum file link count." },
16: { _PC_MAX_CANON, "The maximum number of bytes \n"
17: "\tin terminal canonical input line." },
18: { _PC_MAX_INPUT, "The minimum maximum numberin'1
19: "\tof bytes for which space is available\n"
20: "\tin a terminal input queue." },
21: { _PC_I\IAME_MAX, "The maximum number of bytes in\n"
22: "\ta file name." },
23: { _PC_PATH_MAX, "The maximum number of bytes\n"
24: "\tin a pathname." },

Chapter 6 • MANAGING FILES AND THEIR PROPERTIES 127

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

{ _PC_PIPE_BUF, "The maximum number of bytes\n"
"\twhich will be written atomically to a pipe." },

{ _PC_CH0WN_RESTRICTED, "Return 1 if appropriated"
"Uprivileges are required for the chown(2)\n"
"\tsystem call, otherwise 0." },

{ _PC_NO_TRUNC, "Return 1 if file names longer\n"
"\tthan K E R N_NAME_MAX are truncated." },

{ _PC_VDISABLE, "Returns the terminal character\n"
"\tdisabling value." },

};
long lv;

for (x=0; x<sizeof tests/sizeof tests[0]; ++x) {
errno = 0; /* Clear */
lv = pathconf(".",tests[x].test); /* Use dir . */
if (lv == -1L && errno == EINVAL)

lv = fpathconf(0,tests[x].test);/* Use fd=0 */

if (lv == -1L) { /* Test if error */
if (errno)

printf("%s: %s\n",strerror(errno),tests[x].desc);
else

printf("The value test[%d] is not supported.\n",x);
continue;

}

printf("%ld:\t%s\n",lv,tests[x].desc);
}

return 0;

The program in Listing 6.2 takes the very simple approach of calling pathconf (2) (line 39)

using the current directory "." and the test macro found in array tests [] (lines 11-34). If the

call should fail with the value EINVAL, then the function fpathconf (2) is called in line 41,

using standard input instead (file unit zero). Unless the input has been redirected, this gives

the program the input it needs to query certain terminal settings.

Notice that line 38 clears errno to zero. This allows line 44 to test if the returned value was an

error or an unsupported value. Line 45 reports errors, and line 47 reports unsupported para¬

meters.

A compile and run under FreeBSD Release 3.4 is shown:

$ make pathconf
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall pathconf.c
cc pathconf.o -o pathconf
$./pathconf
32767: The maximum file link count.
255: The maximum number of bytes

in terminal canonical input line.
255: The minimum maximum number

of bytes for which space is available
in a terminal input queue.

128 ADVANCED UNIX PROGRAMMING

255: The maximum number of bytes in
a file name.

1024: The maximum number of bytes
in a pathname.

512: The maximum number of bytes
which will be written atomically to a pipe

1: Return 1 if appropriate
privileges are required for the chown
system call, otherwise 0.

(2)

1: Return 1 if file names longer
than KERN_NAME_MAX are truncated.

255: Returns the terminal character
disabling value.

$

The session output shows you the various values that are obtained from pathconf (2) and

fpathconf(2). Notice in this example that the maximum filename length is 255 bytes and the

maximum pathname length is 1024 bytes.

Note that the maximum filename length and pathname length can vary according to the file system
in question. For example, a pathconf (2) query on a mounted DOS floppy will return 12 for
_pc_name_MAX (an 8-character filename, a dot, and a 3-character extension). Additionally, 1 is
returned for _pc_link_MAX, since DOS file systems do not support links.

Summary
This chapter has covered the essential UNIX functions that manipulate and provide informa¬

tion about file system objects. While directories are also file system objects, they are given their

own special treatment by UNIX. Consequently, the next chapter will introduce you to the

essential directory-related functions.

CHAPTER 7

DIRECTORY MANAGEMENT

The previous chapter dealt with system calls that work primarily with files. This chap¬

ter will focus on operations that are specific to directories. In this chapter you will
learn how to

• Change, save, and restore a current directory

• Create and remove directories

• Open, search, and close directories

• Change the root directory

Obtaining the Working Directory
As an application writer, you will sometimes want to know what the current directory is from

within your C/C++ program. The function getcwd(3) returns this information, and its synop¬

sis is presented as follows:

#include <unistd.h>

char *getcwd(char *buf, size_t size);

char *getwd(char *buf); /* FreeBSD: For compatibility only */

The function getwd (3) is provided by FreeBSD for compatibility and should not be used in

new programs. The getwd (3) function assumes the buffer is of size MAXPATHLEN. If the sup¬

plied buffer is shorter than this, then a security breach is possible due to the buffer overrun.

A better function is the getcwd(3) function, which is supported by all modern UNIX systems.

The argument buf of length size is filled with the name of the current working directory

pathname. The size value must include the size of the returned pathname, including the null

byte.

Both getcwd (3) and getwd (3) return the pointer to buf if the call is successful. A null pointer

is returned when the call has failed, and the error code is left in the global variable err no.

130 ADVANCED UNIX PROGRAMMING

ERANGE —Result Too Large This error is returned by getcwd(3) and getwd(3) when the path¬

name to be returned will not fit in the buffer provided. The buffer must allow enough space for the

pathname and the terminating null byte.

Specifying a Null Buffer Argument
The buf argument can be specified as null for some UNIX platforms. FreeBSD states that the

“ability to specify a NULL pointer and have getcwd () allocate memory as necessary is an

extension.”

When the buf argument is a null pointer, a buffer of size bytes is allocated and its pointer is

returned with the pathname in it. The argument size must be specified greater than zero and

one byte greater than the largest expected pathname being returned. See the following Note for

the Linux extension that applies when size is negative.

Under Linux, specifying argument size as -1 when the argument buf is null will cause the correct

size to be allocated for the returned pathname. When size is greater than zero, size bytes are allo¬

cated for the pathname instead.

Warning

The null buf argument is an extension to the standard for getcwd(3). It should not be used for code

that must be used on all UNIX platforms.

FreeBSD, Linux, SGI IRIX 6.5, UnixWare 7, HPUX-10, HPUX-11, and Solaris-8 appear to support a null

buf argument when size is greater than zero. HP warns that its support of a null buf argument may

be withdrawn in the future.

Linux is the only one that documents support for a null buf argument and size less than zero. With

this combination, the buffer is allocated as large as required.

The pointer that is returned when buf is null must later be released with a call to free (3)

when you no longer require the pathname string.

Given all the variation in the levels of support for the null buf argument, the best advice that

can be given is to keep control in your own hands. Allocate your own buffer and provide its
correct size in the size argument when calling getcwd(3).

Changing the Current Directory
In order to change the current directory for the program, the function chdir (2) can be used.
The synopsis for this function is as follows:

Chapter 7 • DIRECTORY MANAGEMENT 131

#include <unistd.h>

int chdir(const char *path);

This function simply accepts the pathname of the directory that is to become the current direc¬

tory. To be successful, the current process must have execute access to the directory name

given. When successful, the value 0 is returned. Otherwise, -1 is returned, and errno contains
the error code.

The following shows how a program can change to the games home directory:

if (chdir("/home/games") == -1) {
fprintf(stderr,"%s: chdir(2)\n",strerror(errno));
exit(13);

}

If the chdir (2) call fails, this program reports the error and exits with status code 13.

Otherwise, the program continues with the current directory set to /home/games.

Saving a Working Directory
Traditionally, programmers have written code to get the current directory in order to restore it

later. This allows the program to change to some other directory for a time and return to the

original later. A disadvantage of this approach is that the directory name saved may be

renamed by some other process. This would make it impossible for the program to restore the

original current directory.

Another approach is possible using the fchdir (2) function in combination with the open(2)

function. The function synopsis for f chdir (2) is as follows:

#include <unistd.h>

int fchdir(int fd);

The input argument f d is the directory that is open on that file descriptor. In order for

f chdir (2) to succeed, it must be able to search the directory. The function returns 0 when

successful and -1 with an error code in errno when it fails.

The following example shows how the directory /etc can be opened and given to fchdir (2)

to set it as the current directory.

int fd;

fd = open(''/etc'1,0_RD0NLY); /* Open the directory */

if (fd == -1)
/* Report open error */

if (fchdir(fd) == -1) /* Change to directory ref'd by fd */
/* Report error */

else
/* Current directory is now /etc */

132 ADVANCED UNIX PROGRAMMING

A Limitation of fchdir(2)
The one limitation of the approach just presented using fchdir(2) is that open (2) will not be

able to open a directory that provides execute-only permission. For example

$ Is -dl /tmp/x_only
d--x--x--x 2 me mygrp 512 Apr 29 14:38 /tmp/x_only

$

Here the directory /tmp/x_only can be visited with chdir (2) but not opened by open (2).

You can test chdir(2) using the shell

$ cd /tmp/x_only

$

You can see that the shell cd command, which calls chdir (2), succeeds without complaint.

However, open(2) must have read access on the directory in order to open it.

This situation does not occur often in practice, since a directory normally grants both read and

execute permissions together. However, you should be aware of this limitation, since this

could come back to bite you in highly secure application environments.

Making a New Directory
A C/C++ program may create a directory by calling upon the UNIX mkdir (2) system call. Its

synopsis is as follows:

#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The argument path is the pathname of the new directory that is to be created. All intermediate

directory names in the pathname must already exist. Only the last component of the pathname

is actually created. The argument mode specifies the permission bits that are to be given to the

new directory being created. In most cases, the S_ISGID, S_ISUID, and S_ISVTX bits are

silently deleted from the value given in mode. The final permission bits assigned to the new

directory are affected by applying the current umask(2) setting.

The function returns 0 when successful or -1 with a code in errno if it fails. A number of pos¬

sible errors can be returned, but EROFS and EDQUOT are introduced in the following Note.

Note

EROFS —Read Only File System An attempt was made to create a directory when the file sys¬
tem has been mounted in read-only mode.

EDQUOT The directory create failed because the user's quota of disk blocks on the containing file
system has been exhausted. Alternatively, the user's quota of i-nodes has been exhausted on the file
system.

Chapter 7 • DIRECTORY MANAGEMENT 133

The following example shows how a directory /tmp/my_dir could be created from a C pro¬
gram:

int z;

z = mkdir("/tmp/my_dir",S_IRWXU|S_IRWXG|S_IROTH|S_IXOTH); /* 0775 */
if (z == -1)

/* report error */

The example gives all access to the user and the group, and all others receive only read and

execute. The final permissions given to the directory will be determined by the umask(2) that
is in effect at the time.

Removing a Directory
The opposite of creating a directory with mkdir(2) is the removal of a directory with

rmdir(2). Its function synopsis is as follows:

#include <unistd.h>

int rmdir(const char *path);

The function returns 0 if it succeeds and -1 with the error code in errno when it fails. The

directory name given by path must be empty in order to succeed. If the directory is not empty,

the error ENOTEMPTY is returned.

Note

ENOTEMPTY —Directory not empty This error indicates that the directory pathname given to

rmdir(2) contains one or more files or subdirectories (or any other file system object). Files must all

be released with the unlink (2) function prior to releasing the directory containing them.

Warning

HPUX documents that rmdir(2) will not remove the root directory. While it is hard to imagine a situ¬

ation where this functionality would be desirable, it may be an important consideration in a special¬

ized application.

Some platforms may not permit you to remove the current working directory for the current process

(for example, HPUX and SGI IRIX prevent this). See the Note about EINVAL, later in this section.

However, most UNIX platforms will permit the current directory to be deleted by a different process

(HPUX, for example).

134 ADVANCED UNIX PROGRAMMING

The rmdir(2) function is capable of returning a number of different errors. Two that will be

introduced here are EBUSY and EINVAL.

ISP Note

EBUSY —Device busy In the context of rmdir(2), this error code indicates that the directory is a

mount point and cannot be deleted until the file system is unmounted.

EINVAL — Invalid argument This error return from rmdir(2) indicates that the directory to be

removed is the current directory.

The following shows how the empty directory /tmp/my_dir is deleted:

int z;

z = rmdir("/tmp/my_dir");
if (z == -1)

/* Report error */

Opening a Directory for Searching
It is often necessary to search a directory to determine what entries the directory contains. For

example, a backup utility would need to visit all files and subdirectories as it is backing them

up. A family of functions, starting with opendir(3), is provided for that purpose:

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char ‘pathname);

int dirfd(DIR *dirp);

In the synopsis, note the return value provided by the function opendir (3). This is similar to

the f open (3) call in the way that it returns a pointer to a structure. Here, the opendir(3)

function returns a pointer to the data type DIR. The argument pathname is the name of the

directory to be opened for searching.

The function opendir (3) returns a pointer when successful and a null pointer when it fails.

The error code is placed in errno when the function call fails.

The pointer to DIR cannot be used in other functions such as fchdir(2), for example, so a

function dirtd (3) is provided (this may be implemented as a macro). The following example

shows how opendir(3) and dirfd(3) might be used together:

DIR *dirp; /* Ptr to open directory */
int fd; /* fd of open directory */

dirp = opendir("/etc");
if (! dirp) {

/* report error */

Chapter 7 • DIRECTORY MANAGEMENT 135

} else {
/* Do some stuff here */

fd = dirfd(dirp); /* Get fd of open directory */
if (fchdir(fd) == -1) {

/* Report failed fchdir(2) */
}

Note

The dirfd (3) function is not available on many UNIX platforms. FreeBSD and SGI IRIX 6.5 support

this function.

IRIX 6.5 supports the dirfd (3) function if you include the 4.3BSD file <sys/dir .h> instead of the

System V include file <dirent. h>.

The example shows how opendir(3) opens the directory /etc. Later, with the help of the

function dirfd (3), the file descriptor is fetched out of the structure pointed to by dirp and

assigned to variable fd. Once fd is established, the function fchdir (2) can be called to make

the open directory the current directory.

Closing a Directory
An open directory needs to be closed when the program is finished with it. The synopsis for

closedir(3) is as follows:

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

This function is simply called with a pointer to an open DIR structure. The value returned is -1

if the close operation fails, and the error is posted to errno. Otherwise, closedir (3) returns

0 upon success. An example is as follows:

DIR *dirp; /* Ptr to open directory */

dirp = opendirf"/etc");
if (!dirp) {

/* report error */
} else {

/* Close the directory now */
if (closedir(dirp) == -1) {

/* Report closedir(3) error */

}
}

The example simply opens the directory /etc and then closes it again.

136 ADVANCED UNIX PROGRAMMING

Searching a Directory
Opening and closing directories might be fun, but it doesn’t accomplish too much without any

additional functions. The function readdir(3) allows an open directory to be searched for one

directory member at a time. The function synopsis for readdir(3) is as follows:

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

struct dirent {
/* etc. */ /*
char d_name[256]; /*

};

The input to readdir(3) is simply a pointer to an open DIR structure provided by

opendir(3). The value returned is a pointer to the structure dirent, or a null pointer if it fails

or reaches the end of the directory. FreeBSD does not document any error codes being

returned in errno, while Linux documents one error (EBADF). SGI’s IRIX 6.5 documents sev¬

eral possible errors, although EINTR is not among them.

Other members are implementation specific */
Max POSIX name is 255 bytes */

Note

The structure dirent is very implementation specific. According to the POSIX standard, you can

depend upon only the member d_name[] for the directory entry name. Some implementations

include a member d_ino to describe the i-node of the entry. Not all UNIX implementations provide

for this, however.

In order to distinguish the difference between the end of the directory and an error, it is neces¬

sary for the caller to clear errno before calling readdir(3). The example program in Listing

7.1 demonstrates this.

LISTING 7.1 readdir. c—A Program That Lists a Directory

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11 :
12:
13:

/* readdir.c */

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <dirent.h>

int
mainfint argc,char **argv)

DIR dirp = 0;
struct dirent *dp;

if (argc < 2) {

/* Open directory */
/* Directory entry pointer */

Chapter 7 • DIRECTORY MANAGEMENT 137

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

fputs("A pathname argument is required.\n",stderr);
return 1;

dirp = opendir(argv[1]); /* Open directory */
if (!dirp) { /* errors? */

perror("opendir(3)");
return 2;

errno = 0; /* Clear errno for readdir(3) */

while ((dp = readdir(dirp)) != NULL) {
printf("%s\n",dp->d_name);
errno = 0;

if (errno != 0) /* EOF or error? */
perror("readdir(3)"); /* Error occurred in readdir(3) */

if (closedir(dirp) == -1) /* Close the directory */
perror("closedir(3)"); /* Close error- report it */

return 0;

The essential points of the program in Listing 7.1 are

• errno is cleared to zero in line 24 before the while loop in lines 26-29 begins.

• readdir(2) is called in the while clause on line 26. If a null pointer is returned, control

exits the loop.

• errno is cleared to zero in line 28, to prepare for the next call to readdir(3) in the

while clause on line 26.

The while loop exits when readdir(3) returns a null pointer. The errno test in line 31 tests

to see if an error was encountered. If so, it is reported in line 32. If errno remained the zero

value that was established in line 24 or 28, then it is known that the end of the directory was

reached without encountering any errors.

Line 27 reports the directory member name using the printf (3) function. The following

shows the compile and run of the program in Listing 7.1:

$ make readdir
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall readdir.c
cc readdir.o -o readdir
$./readdir /etc/ppp

ppp.deny
ppp.shells.sample
ppp.conf
$

138 ADVANCED UNIX PROGRAMMING

The program requires a directory name to be provided as a command-line argument. The

example shows the listing of directory /etc/ppp on a FreeBSD system.

Rewinding to the Start of a Directory
To permit a directory to be searched more than once, the open directory must be rewound.

This is what the rewinddir (3) function achieves.

#include <sys/types.h>
#include <dirent.h>

void rewinddir(DIR *dirp);

When the directory is initially opened with opendir(3),itis implicitly positioned at the start

of the directory. When rewinddir (3) is called, the open directory is repositioned at the start.

The input argument dirp is simply the pointer to the open DIR structure that was returned by

opendir(3). There is no return value for rewinddir (3), and there are no documented errors

for this call.

The following shows how the function can be called:

DIR *dirp; /* Open DIR pointer */

rewinddir(dirp);

Saving Position Within a Directory
It is possible to use the function telldir(3) to save a position within a directory. The function

synopsis is as follows:

#include <sys/types.h>
#include <dirent.h>

long telldir(const DIR *dirp);

Given the input pointer dirp, which points to an open DIR structure returned by opendir (3),

this function returns an offset into the directory for later use byseekdir(3). The offset

returned is greater than or equal to zero if it is successful. A -1L value is returned if it fails, and
the error code is found in errno.

Note

Some UNIX platforms may have a slightly different type definition for telldir(3). For example,

SGI's IRIX 6.5 defines its telldir (3) as follows:

off_t telldir (DIR *dirp);

Note that the returned offset is type off_t, and that the input argument lacks the keyword const.

Chapter 7 • DIRECTORY MANAGEMENT 139

Restoring Position Within a Directory
In order to position the directory randomly according to information saved from a prior call to

telldir(3), the function seekdir(3) must be used to restore the directory position. The

function synopsis is as follows:

#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long loc);

The seekdir (3) function simply accepts the pointer to an open DIR structure and an offset

loc to restore as a directory position. No success or error indication is returned for this call.

The following example shows how telldir (3) and seekdir (3) can be used together:

DIR *dirp;
long dirpos;

dirpos = telldir(dirp);

seekdir(dirpos);

/* Open DIR pointer */
/* Directory offset */

/* Get offset in directory */

/* Restore directory position */

, i 4 ■ T

'

mKSBlm
:

Note

Note that some UNIX platforms such as SGI's IRIX 6.5 may use a slightly different definition

seekdir(3):

of

void seekdir(DIR *dirp, off_t loc);

This definition uses the data type of f_t for the directory offset.

Scanning a Directory
While the family of routines (see directory (3)) starting with opendir (3) performs the func¬

tions that a programmer might need, they are somewhat tedious to code if you need them fre¬

quently enough. The scandir(3) and alphasort(3) routines assist in reducing the

programmer effort required:

#include <sys/types.h>
#include <dirent.h>

int scandirf
const char *dirname,
struct dirent ‘“namelist,
int (‘select)(struct dirent *),
int (*compar)(const void *, const void *));

int alphasort(const void *d1, const void *d2);

140 ADVANCED UNIX PROGRAMMING

Function scandir(3) might look somewhat intimidating. However, once you spend a moment

examining it, you will see that it is easy to use. The argument dirname is given the pathname

of the directory that you want to scan. The argument namelist points to a (struct dirent

**) pointer, so that a list of directory entries can be returned. The argument select can be left

null, if you want to select all directory names. When the argument compar is given a null

pointer, the directory entries returned are unsorted.

Upon a successful return, scandir(3) returns the number of entries that are returned in the

namelist array (this may include the value 0). The value -1 is returned when there is an error

(no errno values appear to be formally documented).

The function alphasort (3) is a function that can be supplied in the argument compar if you

require that namelist be sorted alphabetically.

Note

The namelist array is dynamically allocated and must be freed when your program no longer

requires it. You must first call free (3) for each entry in the array and then free the array itself by

calling free(3).

Declaring Your Own select Function for scandir(3)
The function pointer supplied for the select argument is called with one pointer to a dirent

structure. Based on this, the function must return non-zero (true) if the entry is to be included

(selected) in the final list of entries. If zero (false) is returned by this function, the entry is to be

excluded. The following shows an example function that selects only the entries starting

with h.

/*

* Select only those directory entries that start with 'h'
*/

int
my_select(struct dirent *dp) {

if (dp->d_name[0] != 1h1)
return 0;

return 1;
}

The function my_select () will be called for each directory entry found by scandir (3). When

my_select () returns zero, the directory entry is excluded from the final list.

Declaring Your Own compar Function for scandir (3)
The function supplied for compar is called with two void pointer arguments. The IBM AIX and

FreeBSD platforms define their arguments this way. See the next section for platforms that
declare these arguments differently.

/* Don't include this */
/* else include this one */

Chapter 7 • DIRECTORY MANAGEMENT 141

The man (1) page provided by FreeBSD is not abundantly clear how you should interpret these

void pointer arguments. The void pointers are actually pointers to a pointer to a dirent struc¬

ture. The following example illustrates in code how they should be cast and used:

int
my_compar(const void *d1,const void *d2) {

struct dirent *dir1 = ‘(struct dirent **)d1;
struct dirent *dir2 = ‘(struct dirent “)d2;

return strcmp(dir1->d_name,dir2->d_name);

}

The code shown implements what the function alphasort(3) provides. The two void point¬

ers are cast to a (struct dirent “) and then dereferenced once to point to the struct

dirent entry itself. Once this is done, then strcmp(3) can be called upon to provide a com¬

parison result to be returned.

SysV Variations
You will find that some systems will declare the compar and alphasort(3) functions differ¬

ently. These systems use the following synopsis:

#include <sys/types.h>
#include <dirent.h>

/* SysV Definiton : */

int scandir(const char ‘dirname,
struct dirent “namelist!],
int (‘select)(struct dirent *),
int (‘compar) (struct dirent struct dirent “));

int alphasort(struct dirent “dl, struct dirent **d2);

The notable difference here is that the compar function pointer is defined in terms of a func¬

tion that receives pointers to (struct dirent “) instead of (void *). In this case, you

would define the function my_compar() in the following manner:

int
my_compar(struct dirent “dl,struct dirent **d2) {

struct dirent ‘dirl = ‘dl;
struct dirent *dir2 = *d2;

return strcmp(dir1->d_name,dir2->d_name);

}

Platforms that use this definition include SGI’s IRIX 6.5, UnixWare-7, Sun’s Solaris 8, and

HPUX 11.

A scandir(3) Example
An example program making use of the scandir (3) function is provided in Listing 7.2.

142 ADVANCED UNIX PROGRAMMING

LISTING 7.2 scandir.c—A Demonstration Program Using scandir (3)

1: #include <stdio.h>
2: #include <stdlib.h>
3: #include <unistd.h>
4: #include <errno.h>
5: #include <sys/types.h>
6: #include <dirent.h>
7:
8: extern int scandir(const char *dirname, struct dirent ***namelist,
9: int (‘select)(struct dirent *),
10: int (*compar)(const void *, const void *));
11:
12: extern int alphasort(const void *d1, const void *d2);
13:
14: /*
15: * Select only those directory entries that start with
16: * 'h' to demonstrate the selection ability :
17: */
18: static int
19: my_select(struct dirent *dp) {
20:
21: if (dp->d_name[0] != 1h')
22: return 0; /* Don't include this */
23: return 1; /* else include this one */
24: }
25:
26: /*
27: * Sort entries in reverse order for demonstration
28: * purposes :
29: */
30: static int
31: my_compar(const void *d1,const void *d2) {
32: struct dirent *dir1 = ‘(struct dirent “)d1;
33: struct dirent *dir2 = ‘(struct dirent “)d2;
34:
35: /*
36: * Reverse the comparison by reversing
37: * dir2 with dirl in the strcmp(3) call:
38: */
39: return strcmp(dir2->d_name,dir1->d_name);
40: }
41 :
42: /*
43: * A good test is the directory /etc
44: */
45: int
46: main(int argc,char “argv) {
47: int x;
48: int n;
49: struct dirent “namelist;
50:
51: if (argc < 2) {

52: fputs("A pathname argument is required.\n"

/* Work index */
/* namelist[n] */
/* List of names */

Chapter 7 • DIRECTORY MANAGEMENT 143

53: "Try /etc for the directory.\n",stderr);
54: return 1;
55: }
56:
57: /*

58: * Scan the directory given :
59: */

60: n = scandir(argv[1],&namelist,my_select,my_compar);
61:
62: /*
63: * Report the directory entries :
64: */

65: printf("%d entries for %s:\n",n,argv[1]);
66: for (x=0; x<n; ++x)
67: printf("%3d: %s\n",x,namelist[x]->d_name);
68:
69: if (n > 0) {
70: for (x=0; x<n; ++x)
71: free(namelist[x]);
72: free(namelist);
73: }
74: return 0;
75: }

The main program shown in Listing 7.2 is straightforward. The scandir(3) function is called

on line 60, using argv[1] as the directory that is to be scanned. The list of directory entries

will be returned to the pointer namelist, which is declared in line 49. The number of entries

returned byscandir(3) is stored to variable n, which is declared in line 48.

You have seen the function my_select () before, for example on page 140. The function

my_compar() was altered slightly from the example shown on page 141 to sort the entries in

reverse order (lines 30-40).

Finally, notice how the allocated storage is released in lines 69-73 of the main () program. First

all of the array elements are released (line 71), and then the array itself (line 72).

Compiling and running the program yields the following results:

$ make scandir
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall scandir.c
cc scandir.o -o scandir
$./scandir /etc
5 entries for /etc:

0: hosts.lpd
1: hosts.equiv
2: hosts.allow
3: hosts
4: host.conf

$

Using the directory /etc, you can see that, indeed, only the filenames starting with h were

selected. Thanks to the custom sort function my_compar(), the entries were sorted in reverse

alphabetical order as well.

/* Release entry */
/* Release the array */

144 ADVANCED UNIX PROGRAMMING

Walking a Directory Structure
Some UNIX platforms provide the function ftw(3C) and the newer function nftw(3C) to

make it simpler to perform a tree walk of a file system. These functions do not appear on the

FreeBSD system, so only a cursory description of them will be provided here. The HPUX-11

f tw(3C) page provides this function synopsis:

#include <ftw.h>

int ftw (const char *path,
int (*fn)(const char *obj_path,

const struct stat *obj_stat,
int obj_flags),

int depth);

int nftw (const char *path,
int (*fn)(const char *obj_path,

const struct stat *obj_stat,
int obj_flags,
struct FTW obj_FTW),

int depth,
int flags);

These functions start by examining the directory provided by the argument path. From this

point on, the directory is recursively searched for subdirectories until all file system objects

under path have been processed.

Both of these functions also require a pointer to a function f n that will be called for each file

system object being considered.

The depth argument determines how many levels deep the tree will be traversed. HP’s docu¬

mentation indicates that this will also be limited by “the number of file descriptors currently

available for use.” A negative or zero value for the depth argument is equivalent to specifying

depth=1.

The nftw(3C) function accepts an additional flags argument. This argument accepts values

like FTW_DEPTH to cause a depth-first tree walk to be performed. Flag FTW_PHYS is useful

because it prevents the tree walk from following symlinks. This prevents the tree walk from

visiting files more than once. See Table 7.1 for a complete list of these flags.

TABLE 7.1 Macro Names of nftw(3C) Flags

Macro Name Description

FTW_PHYS Causes nftw(3C) to perform a physical walk. No symbolic links are followed.

Hard links are followed unless the path crosses itself. When FTW PHYS is not

given, nftw(3C) follows symbolic and hard links but does not walk a path that

crosses itself.

FTW_M0UNT The tree walk will not cross a mount point. Only files on the same mounted

device as the starting path are considered.

Chapter 7 • DIRECTORY MANAGEMENT 145

Macro Name Description

FTW_DEPTH A depth-first walk is performed, causing a directory's entries to be visited before

the directory itself.

FTW_CHDIR A call to chdir(2) is performed prior to reading the directory being visited.

FTW_SERR The tree walk normally exits with a return value of -1 if lstat(2) fails (error

code in errno). When FTW_SERR is specified, a failure of lstat (2) causes the

function f n to be called, and the tree walk is allowed to continue.

The ftw(3C) and nftw(3C) functions call a user-supplied function fn. The function fn that is
called by ftw(3C) looks like this:

int fn(const char *obj_path, /* Pathname of object */
const struct stat *obj_stat, /* struct stat info */
int obj_flags); /* flag bits */

The obj_path argument contains the pathname of the object being considered, and obj_stat

is a pointer to a stat structure describing the object. The additional flags in argument

obj_flags are provided and contain the values shown in Table 7.2.

TABLE 7.2 Table of ftw(3C) and nftw(3C) obj_flags

Macro Description

FTW_F Object is a file.

FTW_D Object is a directory.

FTW_SL Object is a symbolic link (nftw(3C) only).

FTW_DNR Object is a directory without read permission. Function f n will not be called for

any of its descendants.

FTW_NS lstat (2) failed to obtain information about the object, leaving the stat struc¬

ture contents undefined. For ftw(3C), if the failure is because the directory

containing the object could not be searched, f n is called and the walk contin¬

ues. For nftw(3C), the value for errno is set, and nftw(3C) returns -1 after

calling f n, instead. Other lstat (2) failures cause f n not to be called, and the

value -1 is returned, with errno set. This behavior is modified by the nftw(3C)

flag FTW_SERR.

The function nftw(3C) calls a slightly different user-supplied function fn. Its definition

includes an additional argument named obj_FTW:

int fn(const char *obj_path, /* pathname of object */
const struct stat *obj_stat, /* struct stat info */
int obj_flags, /* flag bits */
struct FTW *obj_FTW); /* additional info */

146 ADVANCED UNIX PROGRAMMING

The structure FTW contains the following members:

struct FTW {
int base; /* Offset into pathname to the start of the basename */
int level; /* Relative depth level (root is level 0) */
/* private members.. */

>;

The only members of struct FTW that should be used are the base and level members. Other

members of the structure, if present, are not portable to all platforms. If function f n is called

with the arguments obj_path and the argument obj_FTW as shown earlier, then the basename

of the object can be displayed as follows:

printf("Basename = '%s'\n“,obj_path+obj_FTW->base);

If your application must be portable to the widest possible range of UNIX platforms, then you

would be wise to avoid the ftw(3C) and nftw(3C) functions. These will be found on most

SysV-derived UNIX platforms but may not exist on a BSD-derived UNIX.

Changing Your Root Directory
The UNIX file system has one root directory, on which all other file systems are mounted. It is

often desirable to limit the exposure of the entire file system to a smaller portion when dealing

with potentially hostile users. This approach is commonly used by ftp(1) servers.

An anonymous ftp (1) server could be established with all of its files and subdirectories in the

directory /home/ftp. Additionally, the directory /home/ftp/pub might contain public files for

downloading. At startup, the ftp (1) server would change its root directory to the directory

/home/ftp. From that point forward, the public directory would be known to the server as

/pub instead of /home/ftp/pub. This prevents the client user from accessing anything outside

of the ftp (1) server’s root directory, which in actual fact is /home/ftp on the host system.

The system call chroot (2) allows a new root directory to be established for the current session

and all subsequent child processes. The function synopsis is given as follows:

#include <unistd.h>

int chroot(const char *dirname);

The chroot (2) function simply accepts the pathname that will become the new effective root

for the current process. The function returns 0 if it is successful and -1 if it fails (errno holds
the error code).

Warning

When chroot (2) returns 0 indicating success, the current directory for the current process remains

unaffected. When writing programs that must be secure, make certain that you change the current

directory to the new root level or to a subdirectory of the new root.

Additionally, large software projects may have other directories open on other file descriptors, which

may be exploitable by fchdir(2). One way to avoid exploitable directories is to close all file descrip¬
tors prior to calling chroot (2).

Chapter 7 • DIRECTORY MANAGEMENT 147

The chroot (2) call is restricted to the root account for security reasons. The reason for this is

simply that the ability to set a new root directory also permits a new password file to be in
force, among other security problems.

Once you have established a new root directory, it becomes impossible for the process to return to

the original root directory.

Setting a new root directory also brings with it a number of other complications, including the

need to set up hard links to support files, including shared libraries. Symbolic links cannot be

used in a chroot (2)-ed file system to refer back to a normal non-chroot (2) pathname.

Consequently, files in the new root file system must be copies of the original support files or

hard links to them. However, hard links are not always possible when the files are on different

file systems.

The program provided in Listing 7.3 shows the chroot (2) function in action. It calls

chroot (2) to set directory /tmp as the new root file system. It then lists the current directory

to demonstrate the fact that the current directory is unaffected. It follows with a listing of the

new root directory (which is really the /tmp directory).

LISTING 7.3 chroot. c—A Demonstration Program for chroot (2)

1: /* readdir.c */
2:
3: #include <stdio.h>
4: #include <errno.h>

5: #include <sys/types.h>

6: #include <dirent.h>

7:
8: extern int chroot(const char *dirname);

y.
10 static int
ii ls(const char *pathname) {

12 DIR dirp = 0; /* Open directory */

13 struct dirent *dp; /* Directory entry pointer */

14 int count = 0; /* Count of files */

15
16 printf("DIRECTORY LISTING OF %s : \n",pathname);

17
18 dirp = opendir(pathname); /* Open directory */

19 if (!dirp) { /* errors? */

20 perror("opendir(3)");

21 return -1;

22 }
23
24 errno = 0; /* Clear errno for readdir(3)

25

148 ADVANCED UNIX PROGRAMMING

continued from previous page

26 while ((dp = readdir(d irp)) !
27 printf('%s\n",dp->d _name);

28 ++count
29 errno = 0;
30 }
31
32 if (errno != 0) { /*
33 perror(Teaddir(3)"); /*
34 return -i;
35 }
36
37 if (closedir(dirp) == -1) /*
38 perror(“closedir(3) "); /*
39
40 printf("%6d entries\n\n ",count

41
42 return 0;
43 }
44
45 int
46 main(int argc,char **argv) {
47 int z;
48
49 z = chroot(''/tmp");

50 if (z == - 1) {
51 perror("chroot(2)") i

52 return i;
53 }
54
55 Is (li n \ ■

•) J

56 ls(■/");
57
58 return 0;
59 }

Error occurred in readdir(3) */

Notice that the functions opendir(3), readdir(3), and closedir(3) were used to list the

directories (function Is () in lines 10-43). This was necessary because a call to system (3) to

invoke the Is (1) command will not work. The system (3) call would fail because the Is (1)

command does not exist in the new root file system (/tmp), nor do any of the necessary sup¬

port files such as the shared libraries.

The chroot(2) function requires root access to be successful. Consequently, the compile and

run session that follows shows the user changing to the superuser account:

$ make chroot
CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall chroot.c
cc chroot.o -o chroot
$./chroot
chroot(2): Operation not permitted
$ su root
Password:
./chroot

Chapter 7 • DIRECTORY MANAGEMENT 149

DIRECTORY LISTING OF . :

Makefile
chroot.c
chroot.0

readdir.c
chroot
scandir.c

8 entries

DIRECTORY LISTING OF / :

.s.PGSQL.5432
psql.edit.1001.13867
t.t

5 entries

In the session shown, the executable . /chroot was attempted without root access. This caused

the error chroot (2): Operation not permitted to be reported. However, once the user

switched to the root account, the program was able to list both the current directory and the

new root directory (which was /tmp). This demonstration shows why special care needs to be

exercised with the current directory. Directories currently open also present a risk, since a sim¬

ple call to fchdir(2) on an open directory will allow it to become the current directory.

Summary
This chapter focused on directory functions. The next chapter will complete this coverage of

files and directories by looking at functions that are specific to temporary files and their

cleanup.

'

>

t

CHAPTER 8

TEMPORARY FILES AND PROCESS
CLEANUP

A program occasionally requires temporary storage to contain unknown quantities of

data. When the quantity of data is potentially large, it is stored in a temporary file.

The temporary file is then released later, when the processing is complete.

In this chapter, you will learn how to

• Create temporary files

• Automatically cleanup temporary files that have been created

Creating Temporary Files
This chapter will examine a number of ways that a temporary file can be created under UNIX.

Each of these has its advantages and disadvantages. The tmpnam(3) function is discouraged

and is covered only because you will encounter it in existing code. The remaining functions

can be used in new software.

Using the tmpnam(3) Function
The tmpnam(3) function generates a pathname for a new temporary file but does not create the

temporary file itself. Its function synopsis is as follows:

#include <stdio.h>

char *tmpnam(char *buf); /* Discouraged */

This function generates a temporary pathname in the directory given by the macro name

P_tmpdir (defined in <stdio. h>). The argument but must be null or point to a character

buffer of a minimum length of L_tmpnam bytes. When the argument buf is null, the function

tmpnam(3) returns a pointer to an internal static buffer containing the name of the temporary

file. When buf is not null, the buffer buf is populated with the pathname of the temporary

file.

When it is successful, the function returns a valid pointer to buf or to an internal buffer. A

null pointer is returned when the function fails, and errno contains the reason for the error.

152 ADVANCED UNIX PROGRAMMING

Note

The function tmpnam(3) should not be used in new code. The disadvantages of this function include

the fact that the temporary directory is hard-wired to the directory P_tmpdir and that filename gen¬

eration is subject to race conditions on some UNIX platforms.

Using tmpnam(3) with a Null Argument
The argument to tmpnam(3) is a buffer pointer, which must be a minimum of L_tmpnam bytes

in length. However, the argument can be specified as a null pointer, as is illustrated in the

example program in Listing 8.1. Note, however, that when this is done, the pointer returned is

valid only until the next call to tmpnam(3) is performed.

LISTING 8.1 tmpnam.c—A Program Using tmpnam(3) with a Null Argument

1: /* tmpnam.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <string.h>
7: #include <errno.h>
8:
9: int
10: mainfint argc,char *argv[]) {
11: chan *tmp_pathname; /* Temp. File Pathname */
12: FILE *tmpf = 0; /* Opened temp, file */
13: char cmd[256];
14:
15: if (!(tmp_pathname = tmpnam(NULL))) {
16: fprintf(stderr,"%s: tmpnam(3)\n",strerror(errno));
17: abort();
18: }
19:
20: printff"Using temp file: %s\n",tmp_pathname);
21 :

22: if (!(tmpf = fopen(tmp_pathname,"w"))) {
23: fprintf(stderr,"%s: creating temp %s\n",
24: strerror(errno),tmp_pathname);
25: abort();
26: }
27:
28: sprintf(cmd,"Is -1 %s",tmp_pathname);
29: system(cmd);
30:

31: fclose(tmpf); /* Close the temp file */
32: unlink(tmp_pathname); /* Release the temp file */
33:
34:
35: }

return 0;

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 153

This program generates a temporary pathname in lines 15-18. Then the temporary file is cre¬

ated by calling fopen(3) in line 22. In lines 28-29, the temporary file is listed by a system(3)

command, which invokes the Is (1) command. Finally, the temporary file is released in line 32
before the program exits.

Compiling and invoking the program yields the following results on a FreeBSD system:

$ make tmpnam

cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall tmpnam.c
cc tmpnam.o -o tmpnam
$./tmpnam
Using temp file: /var/tmp/tmp.0.H49596
-rw-r--r-- 1 me mygrp 0 May 1 21:22 /var/tmp/tmp.0.H49596
$./tmpnam
Using temp file: /var/tmp/tmp.0.U49599
-rw-r--r-- 1 me mygrp 0 May 1 21:22 /var/tmp/tmp.0.U49599
$

The program . / tmpnam was invoked twice to demonstrate the differences in the generated

temporary filename. Note that the pathname generated for your temporary filename will differ

for different UNIX platforms.

Using tmpnam() with a Buffer

An improved way to use the tmpnam(3) function is to supply a buffer to the function, so that

the generated pathname can be stored there indefinitely. When the argument to tmpnam(3) is

null, the returned pathname string is only valid until the next call to the function. Listing 8.2

shows an example program that supplies its own buffer.

LISTING 8.2 tmpnam2.c—A Program Using tmpnam(3) with a Supplied Buffer

1: /* tmpnam2.c */
2:
3: //include <stdio.h>
4: #include <stdlib.h>
5: //include <unistd.h>
6: //include <string.h>
7: //include <errno.h>
8:
9: int
10: main(int angc,char *argv[]) {
11: char tmp_pathname[L_tmpnam]; /* Temp, pathname */
12: FILE *tmpf = 0; /* Opened temp, file */
13: char cmd[256];
14:
15: if (!tmpnam(tmp_pathname)) {
16: fprintf(stderr,"%s: tmpnam(3)\n",strerror(errno));
17: abort();
18: }
19:
20: printf("Using temp file: %s\n",tmp_pathname);
21:

154 ADVANCED UNIX PROGRAMMING

continued from previous page

22: if (!(tmpf = fopen(tmp_pathname,"w"))) {
23: fprintf(stderr,"%s: creating temp %s\n",
24: strerror(errno),tmp_pathname);
25: abort();
26: }
27:
28: sprintf(cmd,"Is -1 %s",tmp_pathname);
29: system(cmd);
30:
31: fclose(tmpf); /* Close the temp file */
32: unlink(tmp_pathname); /* Release the temp file */
33:
34: return 0;
35: }

The program shown in Listing 8.2 is almost identical to the program shown in Listing 8.1.

However, this time the buffer is declared in line 11 as an array with a length of L_tmpnam bytes

and provided as an argument to the tmpnam(3) function in line 15.

Compiling and running the program yields the same result as before:

$ make tmpnam2
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall tmpnam2.c
cc tmpnam2.o -o tmpnam2
$./tmpnam2
Using temp file: /var/tmp/tmp.0.E49652
-rw-p-.p.. i wwg wheel 0 May 1 21:37 /var/tmp/tmp.0.E49652

$

Using the mktemp(3) Function
Another function that is available for generating temporary filenames is the mktemp(3) func¬

tion. Its synopsis is as follows:

#include <unistd.h> /* <== Use for FreeBSD */
#include <stdlib.h> /* <== Use for Solaris, AIX, Linux, HPUX, UnixWare 7 */
#include <stdio.h> /* <== Use for SGI IRIX 6.5 */

char *mktemp(char *template);

The mktemp(3) function accepts as input a C string that acts as a pathname template. The last

characters are specified as the character X and are replaced to generate a unique pathname. For

this reason, never pass a C string constant as an argument to the function. For example, the

argument template may contain the string " /tmp/temp.XXXX", allowing the last four X charac¬

ters to be replaced to generate a unique filename.

The following example code shows how a temporary filename can be generated and displayed:

char template[256]; /* Holding buffer for the template */

strcpy(template,"/var/tmp/tmp.XXXX");
printf("A temp file is '%s'\n",mktemp(template));

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 155

The pointer value returned is the same pointer template that was passed as an argument if the
call is successful. Otherwise, a null pointer is returned and errno is set.

The X characters must be at the end of the string. Placing them in other positions will not work. For
example, the string "/tmp/xxxx.tmp" will not work.

Using the mkstemp(3) Function
The mkstemp(3) function goes one step further than mktemp(3). It not only generates a tem¬

porary filename from the template given, but it creates and opens the temporary file. The func¬
tion synopsis is as follows:

#include <unistd.h> /* <== Use for FreeBSD */
#include <stdlib.h> /* <== Use for Solaris, AIX, Linux, HPUX, UnixWare 7 */
#include <stdio.h> /* <== Use for SGI IRIX 6.5 */

int mkstemp(char ‘template);

The rules for the template string are the same as the function mktemp(3). The function returns

an open file descriptor when it is successful or -1 and an error code in errno if it fails.

The temporary file is created with read (S_IRUSR) and write (S_IWUSR) permissions for the

owner only. The final permissions assigned are determined by the umask (2) value currently in

effect, however. The following code shows how a temporary filename can be generated, cre¬

ated, and opened:

char template[256]; /* Holding buffer for the template */
int tmpf; /* Open temp, file descriptor */

strcpy (template,11 /var/tmp/tmp.XXXX");
tmpf = mkstemp(template); /* Create and open the temp, file */

Listing 8.3 demonstrates how the mkstemp(3) function can be used with the standard I/O

functions.

LISTING 8.3 mkstemp.c—A Program Using mkstemp(3) to Create a Temporary File

1: /* mkstemp.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <string.h>
7: #include <errno.h>

8:
9: extern int mkstemp(char ‘template);

10:

156 ADVANCED UNIX PROGRAMMING

continued from previous page

11: int
12: main(int argc,char *argv[]) {
13: char tf_path[64]; /* Temp. File Pathname */
14: int tfd = -1; /* File Descriptor */
15: FILE *tmpf = 0; /* Opened temp FILE */
16:
17: /*
18: * Initialize the temp, file template :
19: */
20: strcpy(tf_path,"/var/tmp/tmp.XXXXXX");
21:
22: /*
23: * Generate temp file pathname, create and open
24: * the temporary file on file unit tfd :
25: */
26: if ((tfd = mkstemp(tf_path)) < 0) {
27: fprintf (stderr, "%s: generating a temp file name.\n'',
28: strerror(errno));
29: abort();
30: }
31:
32: printf("Using temp file: %s\n",tf_path);
33:
34: /*
35: * Use standard I/O on temp, file :
36: */
37: tmpf = fdopen(tfd,"w+");
38: fprintf(tmpf,"Written by PID=%ld\n",(long)getpid());
39: fclose(tmpf);
40:
41: unlink(tf_path); /* Release the temp, file */
42:
43: return 0;
44: }

The program shown in Listing 8.3 initializes the template in line 20 and then creates and

opens the temporary file in line 26, where mkstemp(3) is called. To allow the standard I/O

routines to be used, the function fdopen(3) is called in line 37 with the open file descriptor

tfd. Then a write to the temporary file is performed in line 38 using fprintf (3).

Compiling and running the program under FreeBSD yields the following result:

$ make mkstemp
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall mkstemp.c
cc mkstemp.o -o mkstemp
$./mkstemp
Using temp file: /var/tmp/tmp.m49798
$

The temporary file generated and used for this run was the file /var/tmp/tmp.m49798, which
agrees with the template used in line 20 of the program.

The program in Listing 8.3 used a temporary filename template, as shown below:

strcpy(tf_path,“/var/tmp/tmp.XXXXXX");

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 157

The characters preceding the Xs may be modified to allow more than one temporary file in

your program. For example, the first and second temporary files might use the following tem¬
plates instead:

strcpy(templateOI,"/var/tmp/01-XXXXXX");
strcpy(template02, '7var/tmp/02-XXXXXX'');

This technique is not absolutely necessary for using multiple temporary files, but it can be

helpful when debugging your program. When you see temporary files named in this fashion in

the /var/tmp directory, you will know that the temporary file starting with 01 - is the first tem¬

porary file that the application created and that 02- indicates the second.

Using the mkstemps(3) Function
FreeBSD supports the mkstemps (3) function, which permits a suffix to be appended to the

temporary filename. In all other ways, it is similar to mkstemp(3). The synopsis lor it is as fol¬

lows:

#include <unistd.h>

int mkstemps(char ‘template, int suffixlen);

The template argument is the same as the template argument for mkstemp(3), except that

the X characters no longer need to be at the end of the string. The argument suffixlen indi¬

cates how many characters at the end of the string represent the suffix. The following code

illustrates:

char template[256]; /* Holding buffer for the template */
int tmpf; /* Open temp, file descriptor */

strcpy(template,"/var/tmp/XXXX.tmp");
tmpf = mkstemps(template,4); /* Create and open the temp, file */

In this example, the last four characters form the suffix. The X characters can now be at the

start or middle of the temporary file’s basename.

Warning

The function mkstemps(3) is not universally available. For this reason, it is not recommended for

portable code.

Using the tmpfile(3) Function
The tmpf ile (3) function creates and opens a temporary file, returning a FILE stream pointer

instead of a file descriptor. The following is its synopsis:

#include <stdio.h>

FILE *tmpfile(void);

158 ADVANCED UNIX PROGRAMMING

Listing 8.4 shows a short program that creates a temporary file, writes one line to it, and then

reads back one line from it.

LISTING 8.4 tmpfile.c—A Program Using the tmpfile(3) Function

1: /* tmpfile.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <string.h>
6: //include <errno.h>
7:
8: int
9: main(int argc,char *argv[]) {
10: FILE *tmpf = 0; /* Opened temp, file */
11: char buf[128]; /* Input buffer */
12:
13: if (!(tmpf = tmpfile())) {
14: fprintf(stderr,"%s: generating a temp file name.\n",
15: strerror(errno));
16: abort();
17: }
18:
19: fprintf(tmpf,"PID %ld was here.\n",(long)getpid());
20: fflush(tmpf);
21 :
22: rewind(tmpf);
23: fgets(buf,sizeof buf,tmpf);
24:
25: printf("Read back: %s\n“,buf);
26:
27: fclose(tmpf);
28:
29: return 0;
30: }

The program does not show a pathname for the temporary file, nor does it call unlink (2) to

remove it later. This is because the file has already been deleted. Even so, it remains available

to you as long as the file remains open. The disk space is automatically reclaimed by the UNIX

kernel when the file is closed. This saves you from having to make sure that it is deleted later.

Compiling and running this program under FreeBSD looks like this:

$ make tmpfile
CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall tmpfile.c
cc tmpfile.o -o tmpfile
$./tmpfile
Read back: PID 10058 was here.

$

Notice the extra line feed displayed following the line starting with Read back:. This is due

to the line feed written in line 19 and then included in the buffer from the f gets (3) call in
line 23.

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 159

Using the tempnam(3) Function
The last temporary file function that will be covered in this chapter is the tempnam(3) func¬
tion. Its function synopsis is as follows:

#include <stdio.h>

char *tempnam(const char *dir, const char *prefix);

This function accepts two arguments. The second argument, prefix, is optional and may be

supplied with a null pointer. However, when it is not null, it points to a C string that specifies

up to five characters that can be used as a prefix to the temporary filename generated.

The first argument, dir, is more complicated. It can be specified as a null pointer, or it may

point to a string specifying a directory that the programmer has chosen. Whether dir is null or

not, the following procedure determines the final directory chosen for the temporary filename:

1. Attempt to obtain exported environment variable TMPDIR. If this variable is defined and

it specifies a directory that is writable to the current process, then this directory will be

used. In effect, the TMPDIR variable overrides the program’s choice of directory.

2. When step 1 fails, the dir argument of the tempnam(3) call is examined. If this argu¬

ment is not a null pointer, then this directory will be used if the specified directory

exists.

3. When step 2 is not satisfied, the directory specified by the stdio. h macro P_tmpdir is

tried.

4. As a last resort, the directory /tmp will be used.

Normally, step 1 or 2 specifies the directory. Steps 3 and 4 represent fallback directory names.

The returned pointer is to a dynamically allocated pathname string, or a null pointer if it fails.

Be certain to free this returned pointer later, when your program is finished using this path¬

name. Note that no file is created; only the temporary pathname is created by tempnam(3).

Listing 8.5 shows a short program that uses the tempnam(3) function.

LISTING

1:
2:
3:
4:
5:
6:
7:
8:
9:

8.5 tempnam.c—A Program Using the tempnam(3) Function

/* tempnam.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

extern char *tempnam(const char *tmpdir, const char *prefix);

10:
11: int
12: main(int argc,char *argv[]) {

160 ADVANCED UNIX PROGRAMMING

continued from previous page

13: char *tf_path = NULL; /* Temp. File Pathname */
14: FILE *tmpf = 0; /* Temp. File stream */
15:
16: if (!(tf_path = tempnam(11./my_tmp", "tmp-"))) {
17: fprintf(stderr,“%s: generating a temp file name.\n",
18: strerror(errno));
19: abort();
20: }
21 :
22: printf("Temp, file name is %s\n",tf_path);
23:
24: if (!(tmpf = fopen(tf_path,"w+"))) {
25: fprintf(stderr,"%s: opening %s for I/0\n",
26: strerror(errno),tf_path);
27: abort();
28: }
29:
30: fprintf(tmpf,"PID %ld was here.\n",(long)getpid());
31: fclose(tmpf);
32:
33: unlink(tf_path); /* Release the temp file */
34: free(tf_path); /* Free allocated string */
35:
36: return 0;
37: }

In line 16 this program uses tempnam(3) to generate a pathname to be used for a temporary

file. The temporary file is created and opened in line 24. Notice that the pathname string must

be freed, since it is dynamically allocated (see line 34).

To test the TMPDIR environment variable, the program can be run and tested as follows:

$ make tempnam

cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall tempnam.c
cc tempnam.o -o tempnam
$ TMPDIR=/tmp ./tempnam

Temp, file name is /tmp/tmp-g50054
$

Note that the pathname generated uses the directory /tmp as was given in the TMPDIR environ¬

ment variable. If you look at line 16, the program would normally create the temporary file in

subdirectory . /my_tmp. However, the TMPDIR environment variable successfully overrode that

choice.

Now run the same program without TMPDIR defined:

$ unset TMPDIR

$./tempnam

Temp, file name is ./my_tmp/tmp-D50059
No such file or directory: opening ./my_tmp/tmp-D50059 for I/O
Abort trap - core dumped
$

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 161

In this case, the fopen (3) call failed because the subdirectory . /my_tmp does not exist yet. If

you create it now and repeat the test, you will obtain the following result:

$ mkdir ./my_tmp
$./tempnam

Temp, file name is ./my_tmp/tmp-a5006l
$

This time, the program . / tempnam is successful at creating a temporary file in the subdirectory

. /my_tmp. This comes from the specification in line 16 of Listing 8.5.

If you remove the permissions on your . /my_tmp directory, you can test the fallback plans for
tempnam(3):

$ chmod 0 my_tmp
$./tempnam
Temp, file name is /var/tmp/tmp-w50063
$ Is -1 my_tmp
Is: my_tmp: Permission denied
$

The chmod (1) command takes all permissions away from the subdirectory my_tmp. When the

program is run, the directory /var/tmp is used instead for the temporary filename. This agrees

with FreeBSD’s P_tmpdir macro value.

Making Files Temporary
Once a temporary file is created, a program must release it when finished with it. Otherwise,

the temporary file directory will fill with many abandoned files over time. Calling unlink (2)

is trivial, but making sure it is done when the program prematurely exits is more of a chal¬

lenge.

Using unlink(2) to Make Files Temporary
One way to make sure that the temporary file is released is to release it immediately after it is

created and opened. This looks illogical to those who are new to UNIX, but a UNIX file can

exist after it has been unlinked, as long as the file remains open. When the last open file

descriptor for the file is closed, the disk space is reclaimed by the UNIX kernel.

Recall function tmpf ile (3), which creates temporary files with no pathname. It uses this gen¬

eral procedure:

1. Generate a unique temporary filename.

2. Create and open the file.

3. Call unlink (2) on the temporary filename. This effectively makes the file nameless, but

the file itself exists as long as it remains open.

4. Call fdopen(3) to open a FILE stream, using the open file descriptor from step 2.

5. Return the FILE stream pointer to the caller.

162 ADVANCED UNIX PROGRAMMING

This temporary but nameless file has two advantages:

• The file has already been released. No temporary file cleanup is required.

• No other process can subsequently open and tamper with the temporary file. This also

provides a measure of privacy.

The second point is still subject to a window of opportunity, since the file must be created and
then passed to unlink(2). However, the main advantage presented here is that no matter how
your program exits or aborts, the temporary file will not be left in a directory, since it has
already been unlinked.

Performing Exit Cleanup
There are situations in which the unlink(2) approach is not convenient. If the file must be
closed and then reopened, then you have no choice but to keep a name associated with the
temporary file. For this reason, the C programmer must rely on other methods, such as the
atexit(3) function.

Using the atexit(3) Function
The C library function atexit (3) allows the programmer to register a function that can be
used for all types of cleanup tasks. Of primary interest here is the removal of temporary files.
The function synopsis for atexit (3) is as follows:

#include <stdlib.h>

int atexit(void (*func)(void));

The argument provided to atexit (3) is simply the function pointer to a function, declared as
follows:

void func(void) {
/* My cleanup code... */

}

The function atexit (3) returns 0 when it registers the function successfully and returns non¬
zero when it fails. FreeBSD returns -1 and an error code in errno when atexit(3) fails, but

be sure to read the Warning in this section about this. For maximum portability, it is best to
test for zero to see if atexit (3) succeeded.

The functions registered by atexit (3) are called in the reverse order from which they are reg¬
istered.

Note

FreeBSD and UnixWare 7 document that a minimum of 32 functions may be registered. Additional

entries are limited only by available memory. Linux appears to support as many registrations as
remaining memory permits.

HPUX 11 and IBM's AIX 4.3 state that the atexit(3) function is limited to a maximum of

atexit_max registered functions. For HPUX, this is defined by the include file <limits. h>; for AIX, it
is <sys/limits.h>.

The limit for Solaris 8 is defined by sysconf (3C) using the parameter _SC_atexit max.

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 163

Warning

FreeBSD documents that atexit(3) sets errno when -1 is returned (ENOMEM is one documented

error returned). Linux (Red Hat 6.0) documentation states that atexit(3) returns -i if it fails, and

errno is not set.

SGI's IRIX 6.5, UnixWare 7, and HPUX 11 document that they return "non-zero when [they] fail." No

error codes for errno are documented.

For these reasons, always test for a successful return (a 0 return) of atexit(3) for maximum porta¬

bility. Additionally, the errno code should be ignored unless the specific platform is taken into

account.

The program in Listing 8.6 shows an example that calls on the atexit (3) function. This

causes a cleanup function to be called upon program termination.

LISTING 8.6 atexit. c—A Program Using atexit (3) to Register a Cleanup Function

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/* atexit.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
^include <errno.h>

extern char *tempnam(const char *tmpdir,const char *prefix);

static char *tf_path = NULL; /* Temp. File Pathname */

/*

* Cleanup function :

*/

static void
mr_clean(void) {

puts("mr_clean() started:");

/*
* Here we assume, that if tf_path is not NULL, that
* the main program has not released the temporary

* file on its own.

*/

if (tf_path != NULL) {
printf("unlinking temp, file %s\n",tf_path);

/*
* Unlink the temporary file, and release the

* pathname string :

*/
if (unlink(tf_path) == -1)

fprintf(stderr,"%s: unlink(2)\n",strerror(errno));
free(tf_path); /* Free the pathname string */

164 ADVANCED UNIX PROGRAMMING

continued from previous page

36: tf_path = NULL; /* Indicate that this is released */

37: }
38:
39: puts("mr_clean() ended.");
40: }
41:
42: /*
43: * Main program :
44: */
45: int
46: main(int argc,char *argv[]) {
47: FILE *tmpf = 0; /* Temp. File stream */

48:
49: atexit(mr_clean); /* Register our cleanup func */

50:
51: /*
52: * Create a temp, file pathname :
53: */
54: if (!(tf_path = tempnam("/tmp", "tmp-''))) {
55: fprintf(stderr,"%s: creating temp file.\n",strerror(errno));
56: abort();
57: }
58: printf("Temp, file is %s\n“,tf_path);
59:
60: /*
61: * Create, open and write to the temp, file :
62: */
63: if (!(tmpf = fopen(tf_path,"w+"))) {
64: fprintf(stderr,"%s: opening %s\n",strerror(errno),tf_path);
65: abort();
66: }
67: fprintf(tmpf,"PID %ld was here.\n",(long)getpid());
68:
69: /*
70: * Normal program exit, without unlinking the temp file:
71: */
72: fclose(tmpf); /* Notice no unlink(2) here.. */
73: return 0; /* Normal program exit */
74: }

An examination of the program shows that first the mr_clean () function is registered with

atexit (3), in line 49. Lines 54-72 create a temporary file, write to it, and then close it. The

program takes a normal exit in line 73.

Exiting causes the registered function mr_clean () to be called to release the temporary file

that was created. This is demonstrated by the compile and run session shown, as follows:

$ make atexit
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall atexit.c
cc atexit.o -o atexit
$./atexit
Temp, file is /tmp/tmp-D52582
mr_clean() started:

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 165

unlinking temp, file /tmp/tmp-D52582
mr_clean() ended.

$

The program announces (line 58 of Listing 8.6) that it has created the temporary file

/tmp/tmp-D52582 and then silently returns from the main() program (line 73). This causes

the registered cleanup function mr_clean () to be called, which then produces the last three

lines of output, indicating that it has called unlink (2) to remove the temporary file.

One of the major portability concerns that you should bear in mind is that some platforms will

limit the number of registered functions to a maximum of 32. This is especially critical if you

are designing a C library, where you have no direct control over how the user is using

at ex it (3). If the caller of your library has already used up all 32 possible registrations, then

your library will be out of luck.

One way that this problem can be circumvented is by registering one special function, which

can then invoke as many additional cleanup functions as you choose.

Using C++ Destructors
The C++ programmer has the capability to rely on destructors for cleanup operations. Listing

8.7 shows a very simple example of a class named Temp that makes use of a temporary file.

LISTING 8.7 destruct. cc—A C++ Program Using a Destructor for Temporary File Cleanup

1: // destruct.cc
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <string.h>
7: #include <stdarg.h>
8: #include <errno.h>

9:
10: extern "C" {
11: extern char *tempnam(const char *tmpdir,const char ‘prefix);

12: }
13:
14: //
15: //A demonstration class, showing how a temp file can
16: // be used within a C++ class, with automatic

17: // destruction.
18: //

19:
20: class Temp {
21: char *tf_path;
22: FILE *tf;

23: public:
24: Temp();
25: -Temp();

// Temp. File Pathname
// Open temp, file

// Constructor
// Destructor

166 ADVANCED UNIX PROGRAMMING

continued from previous page

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Temp &printf(const char *format,...);
Temp &rewind(); // Rewind
Temp &gets(char *buf,int bufsiz);

//
// Constructor :

//

Temp::Temp() {

/*

* Create a temp, file pathname :

*/

if (!(tf_path = tempnam("/tmp","tmp-")))
throw errno; // Temp, file generation failed

/*

* Create, open and write to the temp, file :

*/

if (!(tf = fopen(tf_path,"w+")))
throw errno; // Open failed

printf("Created temp file: %s\n",tf_path);

}

//
// Destructor :

//

Temp::-Temp() {
fclose(tf);
unlink(tf_path);
delete tf_path;

// Close the open file
// Delete the temp file
// Free pathname string

}
write(1,"Temp::~Temp() called.\n",22);

//
// The printf() method :

II
II Allows the caller to write to the temp, file with the
// convenience of printf().

///////////////////////////////////////t/ / // // // // // // // // // /

Temp &
Temp::printf(const char ‘format,...) {

va_list ap;

va_start(ap,format);
vfprintf(tf,format,ap);
va_end(ap);

80:
81 :
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 167

return *this;

}

//
// Rewind the temp, file :

//

Temp &
Temp::rewind() {

::rewind(tf); // Rewind the temp file
return *this;

}

//
// Read back one text line from the temp, file :

//

Temp &
Temp::gets(char *buf,int bufsiz) {

int e;

if (!fgets(buf,bufsiz,tf)
if (feof(tf))

throw EOF;
e = errno;
clearerr(tf);
throw e;

}

return *this;

}

//
// Main program :

//

int
main(int argc,char *argv[]) {

Temp tf; // Create a temp file

char buf[256];

(void) argc;
(void) argv;

// Announce start of program :
printf("PID %ld started:\n",(long)getpid());

// Now write one text line to the temp file :
tf.printf("PID %ld was here.\n",(long)getpid());

) {
// EOF ?
// Indicate EOF

// Throw the error

tf.rewind(); // Rewind temp file

168 ADVANCED UNIX PROGRAMMING

continued from previous page

133: // Now read back the one text line from the temp file
134:
135: try {
136: tf.gets(buf,sizeof buf);
137: } catch (int e) {
138: fprintf(stderr,"%s: tf.gets()\n",strerror(e));
139: exit(1);
140: }
141:
142: printf("Read back: %s\n",buf);
143:
144: puts(''Now exiting..");
145: return 0;
146: }
147:
148: // End destruct.cc

The program shown in Listing 8.7 declares a class Temp in lines 20-29. The class method

Temp:: printf () allows the caller to format a text line to be written to the temporary file.

Method Temp:: rewind() rewinds the temporary file, and method Temp: :gets() allows the

caller to retrieve one text line from the temporary file.

The constructor is implemented in lines 36-51. Note the call to the C function tempnam(3) in

line 41, and the call to fopen(3) in line 47 to create and open the file. The pathname is stored

in private member tf_path, and the open FILE is saved in private member tf (declared in

lines 21 and 22).

When the Temp object is destroyed, the destructor, which is implemented in lines 57-63, is

called upon. The destructor closes the temporary file, deletes the pathname of the file, and

then frees the pathname string (lines 58-60).

The main() program constructs one instance of the Temp class in line 119 (the object is named

tf). The object is destroyed when the main () program exits in line 145 (the return state¬

ment).

Lines 129-142 simply exercise some of the methods of the object tf. One text line is written

to the temporary file, the file is rewound, and the one text line is read back.

Compiling and running this program should yield results similar to the following:

$ make destruct
cc -C -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall

-fhandle-exceptions destruct.cc
cc destruct.o -o destruct -lstdc++
$./destruct
PID 52982 started:
Read back: Created temp file: /tmp/tmp-Q52982

Now exiting..
Temp::-Temp() called.

$

Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 169

The line starting with Read back: shows how the temporary file was being exercised. The line

Temp::-Temp() called, shows the output from the write (2) call in line 62 of the destructor,

proving that the destructor was called. In fact, if the pathname is checked, it will be nonexis¬
tent:

$ Is -1 /tmp/tmp-Q52982
Is: /tmp/tmp-Q52982: No such file or directory
$

This proves that the destructor did its job.

While this technique seems to address the cleanup issue, you should be aware that pitfalls still

exist. For example, if you change the statement in line 145 that now reads return 0; to read

exit (0);, you will discover that the destructor for the object tf is not called. If your applica¬

tion has calls to exit (3) sprinkled throughout, you may still wish to use the services of the

atexit(3) function.

Avoiding Cleanup with exit (2)
Sometimes it is necessary for a program to exit without invoking any cleanup at all. This is

highly desirable when something has gone wrong and you want your program to leave things

as they are. This allows you to keep all temporary files around so that they can be inspected

for troubleshooting purposes. This can be done with the _exit (2) function:

#include <unistd.h>

void _exit(int status);

The function is called in the same manner as exit (3), except that no atexit (3) processing is

invoked when _exit (2) is called.

Summary
This completes this chapter’s tour of the temporary file functions. You should now have a well-

rounded knowledge of file, directory, and temporary file operations under UNIX. The

atexit (3) and C++ techniques shown in this chapter should have provided you with some

tips for managing the cleanup of temporary files. Finally, the _exit (2) function provides a

way to skip cleanup, if required for program debugging.

The next chapter examines the very important getopt (3) function. This function makes it

possible for you to easily parse command-line options in your applications. Furthermore, the

getopt (3) function will make your command-line processing consistent with the many exist¬

ing UNIX utilities on your system.

PART II

LIBRARY FUNCTIONS

9 UNIX Command-Line Processing

10 Conversion Functions

11 UNIX Date and Time Facilities

12 User ID, Password, and Group Management

13 Static and Shared Libraries

14 Database Library Routines

' '■ criT .

,

CHAPTER 9

UNIX COMMAND-LINE PROCESSING

Anyone who has been using UNIX at the shell prompt for a time has unwittingly

become acquainted with how UNIX commands work. Some of the most frequently

used commands—Is (1), mv (1), cp (1), rm (1), and In (1), for example—use the
same general command-line conventions.

This level of consistency is a result of a convention being adopted by UNIX developers and a

library mechanism to make it easy to adhere to. In this chapter, you will look at

• UNIX command-line conventions

• Parsing command lines with g e t o p t (3)

• Parsing suboptions with getsubopt(3)

• Parsing command lines with the GNU’s getopt_long (3)

Command-Line Conventions
The general conventions used for most UNIX commands are as follows:

$ command_name [-options] [argl [arg2 [argn]]]

The square brackets indicate optional item zones on the command line. Options immediately

follow the command name and begin with a hyphen. Each option consists of a single

character—usually a letter but possibly a number or another character. When used, arguments

follow the options. The number of valid arguments is determined by the command being

invoked. An example of a typical UNIX command is as follows:

$ rm -f core

The option shown is specified by the hyphen and the letter f. The option -f is then followed

by one argument, the filename core in this case.

Using Multiple Options
There can be several options used on a command line. An example using multiple options is

$ Is -1 -u b*

The example uses the options -1 and -u. In this case, the command argument is a wildcard

filename.

174 ADVANCED UNIX PROGRAMMING

Combining Multiple Options
Options can be grouped together behind a hyphen. The previous command is functionally

equivalent to the following:

$ Is -lu b*

This Is (1) command demonstrates that option characters can be grouped following the initial

hyphen character.

Using Options with Arguments
Some options accept arguments other than the command-line arguments already shown.

Examine the following tar(1) command:

$ tar -cvf project.tar project

In this FreeBSD example, the options are grouped together as -cvf. However, the tar(1) -f

option must be followed by a filename, which is given as project .tar. At the end of the com¬

mand line is a command-line argument project, which is the directory name to be archived.

The command could also have been written this way:

$ tar -cv -fproject.tar project

In this example, the argument immediately follows the option name. Options that take an

argument can have the argument value immediately follow the option letter or specified next

on the command line as in a regular argument.

Identifying Options or Arguments
You might wonder how to know if what follows the option letter is an option argument or

more options. This can’t be determined by the appearance of the command line. This behavior

is defined by the option itself, which is declared within the program.

Arguments That Look Like Options
You may have encountered a situation in which you wanted to specify an argument that started

with a hyphen, and your command complained about the improper options that were being

used. For example, if grep (1) were used to search a source program for the string —help, you
might experience the following under FreeBSD:

$ grep --help tempnam.c
grep: illegal option -- -

usage: grep [-[AB] <num>] [-CEFGLVXHPRSZabchilnqsvwxy]
[-e <expr>] [-f file] [files ...]

$

The problem with this grep(1) command is that the command was confused about how to

treat the text -help. The following technique shows how to avoid this little problem:

$ grep -- -help tempnam.c

$

Chapter 9 • UNIX COMMAND-LINE PROCESSING 175

The example shows that grep (1) understood the — (double hyphen) on the command line to

indicate that there were no further options. This permitted grep(1) to understand that --help

was the text being searched for in the file tempnam. c.

Thegetopt(3) Function
What helps to make UNIX commands consistent in their syntax is that most commands use
the library function getopt (3). Its synopsis is as follows:

#include <unistd.h>

extern char *optarg;
extern int optind;
extern int optopt;
extern int opterr;
extern int optreset;

/* initialized to 1 */

/* initialized to 1 */
/* extension to IEEE Std1003.2 "P0SIX.2'1 */

int getopt(int argc, char * const *argv, const char *optstring);

extern void getoptreset(void); /* SGI IRIX 6.5 only */

The getopt (3) function returns the option letter that is parsed. Alternatively, -1 is returned

when the end of the options has been reached. The value ? is returned when an unrecognized

option character has been encountered. If the argument optstring begins with a : character,

then : is returned when an option expecting an argument does not have one given.

Thegetopt(3) External Values
Before you can use getopt (3), you need to be aware of how the external values are used by it.

The two most important of these variables are the optarg and optind variables.

The opt a rg External Variable
The optarg external pointer variable is set to point at the argument supplied for the option

being processed. However, this is only done for those options that take arguments (this will be

expanded upon later). If getopt (3) were processing the option -f project, tar or

-f project .tar, then the variable optarg would point to the C string containing

project.tar when getopt(3) is returned.

The optind External Variable
The external variable optind is initially set to the value 1. It is used by getopt (3) to point to

the next argv[] value to be processed. This initial value causes getopt(3) to start processing

options in argv[1]. When the end of the options is reached on the command line, the value of

optind indicates where on the command line the first argument is located. For example, if the

following command were to be processed by getopt (3)

$ rm -f core

then the optind value after all options are processed would be 2. This indicates that argv[2]

has the first command-line argument following the options that were just processed.

176 ADVANCED UNIX PROGRAMMING

The opt err External Variable
The external value opt err is initialized to the value of 1 (indicating true) and is used as input

to the getopt (3) function. When it is true and an unrecognized option character is encoun¬

tered, getopt(3) prints an error message to stderr indicating the unrecognized option. This

behavior is suppressed when opterr is set to 0 (false). This is usually necessary when your

program will be doing the error reporting itself or when the error message must go somewhere

other than stderr.

The opt reset External Variable
The FreeBSD platform exposes the external variable opt reset. This is an extension to the

IEEE Stdl003.2 POSIX.2 standard and is not supported by other UNIX platforms. Setting this

variable to 1 allows a new scan of options to be processed. This is normally accompanied by

resetting the variable optind to 1.

To cause getopt (3) to rescan the command line a second time, the following procedure is

used under FreeBSD:

optreset =1; /* Restart scan in getopt(3) */
optind =1; /* Restart scan with argv[1] */

This pair of assignments readies getopt (3) to start over. SGI’s IRIX 6.5, for example, provides
a getopt reset (3) function instead:

optind =1; /* Restart scan with argv[1] */
getoptreset(); /* Reset getopt(3) to start over */

Although the IRIX 6.5 documentation states that getoptreset (3) “can be used to reset all the

internal state of getopt so that it may be used again on a different set of arguments,” it might
be wise to set optind=1 prior to making the call.

The UNIX systems UnixWare 7, HPUX-11, Solaris 8, and AIX 4.3 do not document a formal way to

reset the scanning of a command line.

The getopt (3) Function Call
The getopt (3) function returns an integer value that fits into one of the following categories:

• The option character just parsed.

• The character ?, indicating that an unrecognized option character was encountered.

• The character :, indicating that an option is missing its argument (this is supported only

when the argument optstring begins with a colon character).

• The value -1, indicating that no more options exist (see the Note about EOF).

Chapter 9 • UNIX COMMAND-LINE PROCESSING 177

Note

Prior to the IEEE Stdl 003.2-1992 (POSIX.2) standard, the macro EOF was documented as the return

value from getopt(3) when no more options remain to be processed. Now the standard documents

that the value -1 is returned, and the use of the macro EOF in this context is discouraged.

The first argument argc for getopt (3) states how many argument values we have in the sec¬

ond array argv[]. This second argument is an array of C string pointers that point to each

command-line argument. The values argc and argv[] are normally taken directly from the
main () function interface.

The last argument to getopt (3) is the C string that drives the processing. It tells getopt (3)

which options are supported and which options take arguments. This single string determines

the whole personality of the command line.

Defining the opt string Argument
To support a few options such as the tar(1) example earlier, the optstring argument would

be defined as follows:

int main(int argc,char **argv) {
static char optstring!] = "cvf:";

Note how a colon (:) character follows the f character in the string optstring. The colon

indicates that the option -f requires an argument. Option order is not significant in the

optstring. The following would be equally acceptable:

int main(int argc,char **argv) {
static char optstring!] = 11 vf: c";

Whenever getopt (3) processes an option, it searches the optstring argument. If the option

character is not present in optstring, then it is not a supported option character, and it is

treated as an error (a ? is returned). When the option character is found within optstring, the

getopt (3) function checks the next immediate character in the optstring. If it finds a colon,

then it knows that it must extract an argument to go with this option.

optstring can be begun with a colon character, as shown:

int main(int argc,char **argv) {
static char optstring!] = ":cvf:";

When the optstring is specified with a leading colon, getopt (3) will return a : character

when a valid option was parsed but no argument was found following it. This allows your pro¬

gram to assume some other default for the option argument.

Defining an Option-Processing Loop
Listing 9.1 shows a typical option-processing loop using getopt (3). The options supported in

this program are the -c, -v, and -f options that were demonstrated by the earlier example

using tar(1).

178 ADVANCED UNIX PROGRAMMING

LISTING 9.1 getopt.c—-A Typical Option-Processing Loop Using getopt(3)

1: /* getopt.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5:
6: int
7: main(int argc,char **argv) {
8: int rc;
9: int optch;
10: static char optstring[] = "cvf:";
11:
12: while ((optch = getopt(argc,argv,optstring)) != -1)
13: switch (optch) {
14: case ’c1 :
15: puts("-c processed.")!
16: break;
17: case 'v' :
18: puts("-v processed.");
19: break;
20: case 1f1 :
21: printf("-f '%s‘ processed.\n",optarg);
22: break;
23: default : /* '?' */
24: rc = 1; /* Usage error has occurred */
25: }
26:
27: for (; optind < argc; ++optind)
28: printf("argv[%d] = '%s'\n",optind,argv[optind]);
29:
30: return rc;
31: }

When the program is compiled and run, the output should appear as follows:

$ make getopt
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall getopt.c
cc getopt.o -o getopt
$./getopt -cvf project.tar project_dir
-c processed.
-v processed.
-f 'project.tar' processed.
argv[3] = 'project_dir‘
$

The session output shows how the various case statements in the program were exercised by

the options -c, -v, and -f. Notice the use of the external variable optarg for the -f option

case (lines 20-22). After all the options were processed, the for loop in lines 27-28 reported

the remaining command-line arguments. This was shown to be the single argument
project_dir.

Chapter 9 • UNIX COMMAND-LINE PROCESSING 179

The getsubopt(3) Function
Many UNIX platforms support suboptions. Suboptions are useful when your application has

many possible parameter values and suboptions, which are best specified by name. SGI’s IRIX

6.5 documents an example of suboptions using its mount (1) command:

mount -o rw,hard,bg,wsize=1024 speed:/usr /usr

In this example, the -o represents the option, which is then followed by an argument consist¬

ing of suboptions. The argument rw,hard,bg,wsize=1024 has several suboptions, which are

separated by commas. As the example illustrates, some suboptions take arguments and others

do not.

To make it easier for the application writer to parse suboptions, the function getsubopt (3) is

provided. Its synopsis is as follows:

#include <stdlib.h>

extern char *suboptarg

int getsubopt(char **subopts_str, char *const *tokens, char **valuep);

The first argument subopts_str is a pointer to the string that is to be parsed. This pointer is

updated with each call to the function.

The argument tokens is an array of token string pointers that represent valid suboption val¬

ues. The last element of the array should be a null pointer, to mark the end of the array. Using

the SGI mount (1) example shown earlier, the array could be declared and initialized as fol¬

lows:

static char *tokens[] = {
"rw", /* [0] */
“hard", /* [1] */
"bg", /* [2] */
"wsize", /* [3] */
NULL

};

The last argument, valuep, is a pointer to a character pointer. After the getsubopt (3) call

returns the pointer to which it points, it will be null if there was no value for the parameter, or

it will point to the value string. The following shows how the third argument is used:

char *valuep = NULL;

x = getsubopt(&optarg,&tokens[0],&valuep) ;

printf("The value = '%s'\n",valuep != NULL ? valuep : "<NULL>");

The return value from getsubopt(3) is the index into the tokens!] array if the value is a rec¬

ognized suboption. The returned pointer for the valuep argument will contain a pointer to the

value part of the subopt=value in the suboption or null if no value was provided. The index

value -1 is returned when the suboption is not recognized as an option in the tokens [] array.

180 ADVANCED UNIX PROGRAMMING

Determining the End of Suboption Processing
The suboption parsing ends when the pointer being passed into the first argument of

getsubopt (3) points to a null byte. An example will illustrate this best.

Assume that you must parse the option argument string found in the getopt (3) external vari¬

able optarg. Assume further that the tokens[] array was declared as shown earlier. The gen¬

eral loop used for getsubopt (3) then is as follows:

extern char *optarg; /* getopt(3) */

char *valuep;
int x;

while (*optarg != 0)
switch ((x = getsubopt(&optarg,tokens,&valuep))) {
case 3 : /* wsize=arg */

printf(" %s = '%s'\n",tokens[x],valuep ? valuep : "<NULL>");

When the suboption wsize=1024 is parsed, the value for x that is returned by getsubopt (3)

will be 3 (due to the tokens!] array). The pointer optarg is updated by getsubopt (3) to

point to the next suboption. When no suboptions remain, the pointer optarg in this example

will point to a null byte in the string.

Platforms that support getsubopt (3) include FreeBSD, Solaris 8, AIX 4.3, HPUX-11, and SGI IRIX

6.5. Linux (Red Hat 6.0) shows no support for this option.

A Full getsubopt (3) Example
The program shown in Listing 9.2 processes command-line arguments using both getopt (3)

and getsubopt (3) in order to demonstrate how they work together. It implements a few

options that might be used in a hypothetical tape transport control command xmt, similar to

the mt (1) that is available on most UNIX platforms. The synopsis for this hypothetical com¬
mand is as follows:

xmt [-f /dev/tape_device] [-c suboptions]

where -f /dev/tape_device specifies the tape device to use and -c suboptions specifies
various tape commands:

rewind Rewind the tape drive

we of=n Write file mark(s)

f sf=n Forward space file(s)

bsf=n Backspace file(s)

Chapter 9 • UNIX COMMAND-LINE PROCESSING 181

The program presented in Listing 9.2 simply parses these options and suboptions and then
lists the remaining command-line arguments.

LISTING 9.2 xmt.c—An Example Using getsubopt(3) andgetopt(3)

/* xmt.c */ 1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

extern char *suboptarg;
int getsubopt(char **optionp, char * const *tokens, char **valuep);

int
main(int argc,char **argv) {

int rc = 0; /* Return code */
int x; /* Arg index */
int n; /* Int value */
char *valuep; /* Ptr to subopt value */
int optch; /* Option character */
static char optstring[] = "f:c:";

/* Suboptions Table of Tokens : */
static char *tokens[] = {

21: #define SO WEOF 0

22: "weof", /* Write n EOF marks

23: #define SO FSF 1

24: "fsf", /* Forward space file

25: #define SO BSF 2

26: "bsf", /* Back space file */

27: #define _S0_REWIND 3

28: "rewind", /* Rewind tape */

NULL

};

r
* Process all command line options :

*/
while ((optch = getopt(argc,argv,optstring)) != -1)

switch (optch) {

case 'f' : /* -f device */
printf (" -f 1 %s ' (tape device).\n\optarg);

break;

/* -c commands */

182 ADVANCED UNIX PROGRAMMING

continued from previous page

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

* Process all suboptions for -c :

*/

while (*optarg != 0)
switch ((x = getsubopt(&optarg,tokens,&valuep))) {

case _S0_WE0F :
n = Ivaluep ? 1 : atoi(valuep);
printf("Write %d EOF marks (%s=%s)\n",

n,suboptarg,valuep);
break;

case _S0_FSF :
n = Ivaluep ? 1 : atoi(valuep);
printf("Forward space %d file(s) (%s=%s)\n",

n,suboptarg,valuep);
break;

case _S0_BSF :
n = Ivaluep ? 1 : atoi(valuep);
printf("Backspace %d file(s) (%s=%s)\n",

n,suboptarg,valuep);
break;

case _S0_REWIND :
if (valuep) {

printf("Suboption %s does not take a arg\n",
suboptarg);

re = 1; /* Flag usage error */
} else

printf("Rewind tape (%s)\n",suboptarg);
break;

case -1 :
printf("Illegal suboption %s%s%s\n",

suboptarg,
valuep ? "=" :
valuep ? valuep : "");

break;

default :
abort(); /* Should never get here */

}
break;

default : /* '?' */
re = 1; /* Usage error has occurred */

}

/*

* Report all arguments :

*/

for (; optind < arge; ++optind)

Chapter 9 • UNIX COMMAND-LINE PROCESSING 183

96: printf("argv[%d] = ‘%s'\n",optind,argv[optind]);
97:

98: return rc;
99: }

Compiling and running this xmt command produces the following session output:

$ make xmt
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -g xmt.c
cc xmt.o -o xmt
$./xmt -f /dev/tape -crewind,fsf=3,weof=2
-f '/dev/tape1 (tape device).
Rewind tape (rewind)
Forward space 3 file(s) (fsf=3)
Write 2 EOF marks (weof=2)
$

From the example, you can see that the rewind suboption was processed first, followed by

f sf=3 and then weof=2 to write two end-of-file marks on the tape.

GNU Long Options Extension
A number of GNU commands like the gcc (1) compiler for example have a large number of

options to support. Besides the fact that you can exhaust all possible characters for those

options, a user just cannot remember them all. The GNU solution to this problem is the con¬

vention of long options.

FreeBSD 3.4 Release includes gcc (1), allowing the following demonstration of a long option:

$ gcc - -version
2.7.2,3

$

Long options begin with two hyphens and must be followed by one or more characters. In

order to process long options, the GNU function getopt_long(3) must be used.

The GNU getopt_long(3) Function
The getopt_long(3) function will process both the traditional short options and the newer

GNU long options. The synopsis for getopt_long(3) is as follows:

//include <getopt.h>

int getopt_long(int argc, char * const argv[],
const char *optstring,
const struct option *longopts,
int *longindex);

The function prototype is almost identical to getopt (3), except for the two new arguments

longopts and longindex. The argument longindex points to an integer, where an index value

is returned.

184 ADVANCED UNIX PROGRAMMING

Understanding the option Structure
The longopts structure pointer points to the array of option structure entries. The option

structure is composed of four members:

• name points to a C string containing the name of the long option, without the leading

hyphens.

• has_arg is defined as an integer but used as a Boolean value. It must be zero (false) if

there is no argument or non-zero (true) if there is an argument for this option.

• flag either points to an integer or is null.

• val is used in different ways, depending upon how flag is initialized.

Setting Up the option Structure
The last array entry in the option structure array must be initialized with a null pointer for its

name member, zero for the has_arg member, a null pointer for the flag member, and zero for

the val member. This entry indicates to getopt_long (3) that there are no more entries in that

array. Here is an example of two long options defined in the static option structure

long_opts[].

static struct option long_opts[] = {
{ "help", 0, 0, 'h' }, /* name, has_arg, flag, val */
{ "version", 0, 0, 'v1 }, /* name, has_arg, flag, val */
{ 0, 0, 0, 0 }

};

Using a Null option.flag Pointer
The members flag and val of the option structure work together as a team. The easiest way
to use these is through the following procedure:

1. Set flag to null.

2. Set the int member val to the value that you want getopt_long (3) to return. Often

this is the ASCII character code for the equivalent short option letter.

Making a Long Option Look Short
A common practice is to set val to the short option letter equivalent of the long option. For

example, if a command supports both -help and -h, then option member flag would be set

to a null pointer, and val would be set to the ASCII value 1 h'. The structure would be initial¬
ized as follows:

static struct option long_opts[] = {
{ "help", 0, 0, 1h1 }, /* name, has_arg, flag, val */
{ 0, 0, 0, 0 }

};

Chapter 9 • UNIX COMMAND-LINE PROCESSING 185

Processing when the option.flag Pointer Is Null
When processing the long option —help, the getopt_long(3) function performs the following
basic steps:

1. The getopt_long(3) scans the long_opts[] array, using an index that we will call x. It
will start with x=0.

2. A strcmp(3) is done to see if our option string "help" matches the entry in

long_opts[x] .name (x is currently the value zero). Note that the hyphens are already

stripped off the option string.

3. The strcmp (3) function returns zero because the strings match.

4. Now getopt_long (3) knows the correct index value x. This is returned to the caller by

using the integer pointer provided in the fifth argument (longindex).

5. The pointer in long_opts [x]. flag is tested for a null pointer. If it is null, then pro¬

cessing proceeds to the next step.

6. The value of long_opts[x]. val is used as the return value for getopt_long(3).

A C code fragment illustrates the last three steps:

longindex = x; / 4. Return array index */
if (!long_opts[x].flag) /* 5. if flag is null then */

return long_opts[x].val; /* 6. return 1h' */

Your options loop within your program is now tricked into thinking the - h option was

processed instead, because the value ' h' was returned. This is the easiest way to use long

options.

Using a Non-Null option.flag Pointer
When the structure option member flag is a non-null pointer, something different happens.

First, examine Listing 9.3.

LISTING 9.3 A Non-Null option. flag Member

1: static int cmdopt_v = 0; /* Initialized to false */
2: static struct option long_opts[] = {
3: { "help", 0, 0, ’h' }, /* name, has_arg, flag, val */

4: { "version", 0, &cmdopt_v, 1 },

5: { 0, 0, 0, 0 }

6: };

Listing 9.3 shows how the variables and the long_opts [] array are declared. The following

points explain the reasoning behind this code:

1. Line 1 declares our -v option flag variable cmdopt_v. It is initialized to false (zero).

2. Array element long_opts [1] is initialized to accept the long option -version (line 4).

186 ADVANCED UNIX PROGRAMMING

3. Member long_opts [1]. flag (line 4) is initialized with a pointer to our variable

cmdopt_v (in line 1).

4. Member long_opts [1]. val (line 4) is initialized with the int value of 1.

5. Array element long_opts[2] has all members initialized to null or zero. This marks the

end of the long options array.

With the declarations arranged as they are in Listing 9.3, the actions of getopt_long(3) when

it processes the —version option can be explained.

1. Internally to getopt_long (3) an array index is initialized to zero. We will call this vari¬

able x.

2. A strcmp(3) is done to see if the option string version matches the entry in

long_opts[x] .name (x is currently the value zero).

3. The strcmp(3) function returns non-zero, because the strings do not match

(long_opts[0]. name points to C string "help").

4. The getopt_long(3) function increments x to the value 1.

5. A strcmp (3) is done to see if our option string version matches the entry in

long_opts[x].name (x=l).

6. The strcmp (3) function returns zero, because the option string version matches

long_opts[x] .name, which also points to a string "version".

7. Now getopt_long (3) knows the correct index value x. This is returned to the caller by

using the integer pointer provided in argument five (longindex) (x=l).

8. The pointer value long_opts [1] .flag is tested to see if it is null. It is not null, so the

processing moves on to the next step.

9. The integer value from long_opts [1]. val is fetched and then stored at the location

pointed to by long_opts[1] .flag.

10. The getopt_long (3) function returns the value zero to indicate that this special long

option has been processed.

Steps 9 and 10 are carried out when the flag member is not null. Step 6 in the list from the

“Processing when option .flag Pointer Is Null” section is used when the flag member is null.
Note again how getopt_long (3) returns zero in step 10.

The following code fragment summarizes steps 7 through 10 of the procedure:

longindex = x; / 7. Return array index */
if (!long_opts[x].flag) /* 8. if flag is null */

return long_opts[x].val; /* return val */
/* Return val via flag ptr */

(long_opts[x].flag) = long_opts[x].val; / 9. Use ptr */
return 0; /* 10. Indicate flag use */

Chapter 9 • UNIX COMMAND-LINE PROCESSING 187

FreeBSD does not document or include development libraries for getopt_long(3) when Linux

extensions are not installed.

Summary
This chapter has covered the operation of the getopt (3) and getsubopt (3) functions.

Additionally, the getopt_long (3) function was included to cover the GNU/Linux method of

parsing command lines. All of these functions help keep your applications smaller, simpler,

and more reliable.

The next chapter covers the very important topic of performing numeric conversions.

* ■<

l

CHAPTER 10

CONVERSION FUNCTIONS

The need for data conversions is always present within an application program.

Arithmetic is performed using int, float, and double types because it is efficient

and convenient. The same data must then be converted into ASCII strings in order

for it to be displayed on a terminal. Data input also must undergo conversions.

In this chapter, you will examine

• The atoi(3), atol(3), and atof (3) family

• The sscant(3) function

• Thestrtol(3) and strtoul(3) functions

• The strtod(3) function

All of these functions concern themselves with conversion from ASCII to a numeric C data

type.

Simple Conversion Functions
These are the simplest functions for a C programmer to use, because they require no prepara¬

tion or subsequent tests for conversion errors. With the exception of atof (3) on some UNIX

platforms, the entire issue of conversion errors is ignored. For this reason, they are frequently

not the best choice of conversion functions available.

Before the alternatives are explored, let’s examine these traditional functions more closely.

Scrutinizing the Functions atoi(3) and atol(3)
The functions atoi(3) and atol(3) have the following synopsis:

#include <stdlib.h>

int atoi(const char *nptr);
long atol(const char *nptr);

190 ADVANCED UNIX PROGRAMMING

These functions simply take the starting address of a C string and return the result as an int or

a long data type value. Any leading whitespace characters, as defined by the C library function

isspace(3), are skipped before the conversion is begun. If the conversion fails, the functions

atoi(3) and atol(3) simply give up and return zero.

Using the atoi(3) Function
The following is a simple example of using the atoi(3) function:

char buf[32];
int i;

strcpy(buf,"23");
i = atoi(buf);

In this example, the string " 23" is converted to an integer value 23 and assigned to the variable

i. However, had the input string contained bad input, the value of i would not contain a

meaningful result (zero).

Understanding the Conversion Error Problem
As an example, consider the problem where the function atoi(3) is used. Assume that there is

a debug command-line option of the form -x n, where n is the debug level between 0 and 9.

Within the getopt (3) processing loop, the optarg value for -x must be converted to an inte¬

ger value.

switch(optch) {
case 'x' :

cmdopt_x = atoi(optarg); /* Get debug level */
break;

Assume that the user supplied the option as -x high on the command line because he didn’t

know any better. The atoi(3) function will glibly return the value 0 in this case because it

cannot convert high to an integer numeric value. The program will be unaware that there

should be a debug level set because the conversion value was 0 (due to the conversion error).

Consequently, the program will run without any debug level at all. This results in a program

action that is not user friendly

Converting Garbled Data

A similar problem develops when the user supplies the debug option as -x 5oops because he

is all thumbs on the keyboard. The program will glibly accept the value 5 that atoi(3) was

able to convert successfully. The remaining part of the string oops is ignored.

The functions atoi(3), atol(3), and atof (3) all lack error return information. A better indi¬
cation of when the conversion succeeded or failed is required.

Knowing Where the Conversion Ended

An additional limitation of the atoi (3) family of functions is that the caller is not given infor¬

mation about where the conversion ends in the input string. If it is necessary to write a

Chapter 10 • CONVERSION FUNCTIONS 191

function to extract the month, day, and year from a date string, you would have a challenge

using the atoi(3) function. Consider the following variations in date strings that might be
provided as input from a terminal:

• 01/01/2000

• 1/2/2000

• 12/1/2000

• 1/ 9/2000

• 1/31 / 2000

• 6-31-2001

The atoi(3) function can help only with the month extraction (assuming month/day/year

format). After extracting the month, you are left with these questions: How many blanks were

skipped over? How many digits were there? Were any trailing blanks present? Because no scan

information is returned by atoi(3), your code doesn’t know where to start the extraction for

the following day or year field.

The atof (3) Function
The atof (3) function is very similar to the atoi(3) function, except that it converts string

values into floating point values. The synopsis for atof (3) is as follows:

#include <stdlib.h>

double atof(const char *nptr);

Its use is equally simple. The following is an example:

char buf[32];
double f;

strcpy(buf," -467.01E+02");
f = atof(buf);

The example shows some leading whitespace, a sign character, a decimal number, and a signed

exponent. The atof (3) function skips over the leading whitespace and converts the remaining

characters into a double C type value, which is assigned to variable f.

Again, the simplicity of this call woos many a C programmer into using this form of conver¬

sion. However, the problems that exist for atoi(3) and atol(3) also apply to the atof (3)

function.

Most UNIX platforms implement the atof (3) function as a call to the function strtod (3):

strtod(nptr, (char * *)NULL);

The function strtod(3) does return the special values +HUGE_VAU -HUGE_VAL, and 0 (zero), in

conjunction with the external variable errno (see the section “Testing for Math Errors,” later in

this chapter). Since the implementation of atof (3) might not always be in terms of the

strtod(3) function, you should use strtod(3) to test for errors.

192 ADVANCED UNIX PROGRAMMING

Using sscanf (3) for Conversion and Validation
The function sscanf (3) is like a Swiss Army Knife for C input and conversion. While this

mechanism is not a perfect solution for all conversions, it still enjoys simplicity of use and pro¬

vides some measure of error detection.

Applying sscanf (3) to Numeric Conversion
Listing 10.1 shows a simple program that extracts the month, day, and year from a string. The

input data has been deliberately made as messy as possible (lines 15-18) with lots of white-
space.

LISTING 10.1 sscanf. c—Extracting Date Fields Using sscanf (3)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/* sscanf.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc,char *argv[]

int x;
char *datestr; /*
int nf; /*
int n; /*
int mm, dd, yyyy; /*

{

Date string to parse */
Number of fields converted
of characters scanned */
Month, day and year */

*/

static char *sdate[] = {
11 1 / 2 / 2000 ",
" 03 - 9-2001,etc."

};

for (x=0; x<2; ++x) {
datestr = sdatefx]; /* Parse this date */
printf("Extracting from '%s'\n",datestr);

nf = sscanf(datestr,"%d %*[/-]%d %*[/-]%d%n",&mm,&dd,&yyyy,&n);

printf("%02d/%02d/%04d nf=%d, n=%d\n",mm,dd,yyyy,nf,n);

if (nf >= 3)
printf("Remainder = '%s'\n",&datestr[n]);

}

return 0;

}

The variables used in this program are as follows:

• Variable nf receives the number of the conversions that sscanf (3) successfully accom¬
plishes (line 11).

Chapter 10 • CONVERSION FUNCTIONS 193

• Variable n receives the number of characters scanned so far (line 12).

• Variables mm, dd, and yyyy are the month, day, and year extracted values, respectively
(line 13).

• The character pointer array sdate[] contains the two strings that are going to be used
for extraction of the date components (lines 15-18).

Testing Numeric Conversions Using sscanf (3)
Compiling and running this program yields the following results under FreeBSD:

$ make sscanf
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall sscanf.c
cc sscanf.o -o sscanf
$./sscanf
Extracting from 1 1 / 2 / 2000 1
01/02/2000 nf=3, n=18
Remainder = '
Extracting from ' 03 - 9-2001,etc.'
03/09/2001 nf=3, n=12
Remainder = ',etc.'

$

The first example shows how the date 01 /02/2000 is successfully parsed. The second result

03/09/2001 is parsed out of the date string using hyphens instead. This is possible because the

sscanf (3) %[] format feature was used to accept either a slash or a hyphen (line 24). The full

format specifier used was %*[/-]. The asterisk indicates that the extracted value is not

assigned to a variable (nor is it counted for the purposes of %n).

Notice that a space character precedes the %*[/-] format specification. This causes sscanf (3)

to skip over preceding spaces prior to the slash or hyphen, if spaces are present.

The extracted results are reported in line 26, along with the values nf and n. Line 28 tests the

value of nf before reporting the remainder string in line 29. This is necessary because the

value of n is undefined if the sscanf (3) function did not work its way to the point of the %n

specification (at the end of line 24).

The remainder strings show the points where the date extractions ended in both data exam¬

ples. The last example shows the parse ending at the point , etc..

Note that there are only three conversions present in the sscanf (3) call of line 24. This is

because the %n specification does not count as a conversion.

Improving the sscanf (3) Conversion
One irritation that remains in our example in Listing 10.1 is that it does not skip over the trail¬

ing whitespace. This makes it difficult to test whether the entire input string was consumed

when the date was extracted. Leftover data usually indicates that not all of it was valid.

This problem is remedied by altering the sscanf (3) statement on line 24 to read

194 ADVANCED UNIX PROGRAMMING

nf = sscanf(datestr,"%d %*[/-]%d %*[/-]%d %n“,&mm,&dd,&yyyy,&n);

If you look carefully at the format string, you will notice that one space was inserted before the

%n specifier. This coaxes sscanf (3) into skipping over more whitespace before reporting how

many characters were scanned. With the whitespace skipped, the test for leftovers is simple:

if (datestr[n] != 0) {
printf C'EEK! Leftovers = 1 %s' \n11,&datestr[n]);

If the expression datestr[n] points to a null byte after the conversion, then it is known that

all the input string was valid for the conversion.

The Limitations ofsscanf(3)
The sscanf (3) return count indicates whether or not the conversion(s) was successful. When

the %n specifier is processed, the caller can also determine where the scanning ended.

However, sscanf (3) still suffers from the limitation that it does not indicate to the caller

where in the string the point of failure is when the conversion fails.

The strtol(3) and strtoul(3) Functions
The function sscanf (3) calls upon the functions strtol(3) and strtoul(3) to carry out its

dirty work. You can go right to the source by calling them. The synopses for strtol(3) and

strtoul(3) are as follows:

#include <stdlib.h>
#include <limits.h>

long strtol(const char *nptr, char **endptr, int base);

unsigned long strtoul(const char *nptr, char **endptr, int base);

Macros from <limits.h> :
LONGJ/IAX
L0NG_MIN
UL0NG_MAX
L0NGL0NG_MAX
L0NGL0NG_MIN
UL0NGL0NG_MAX

The function strtol(3) converts a possibly signed integer within a character string to a long

integer data type value. The function strtoul(3) is functionally identical, except that no sign

is permitted, and the returned conversion value is an unsigned long integer.

Within this section, only the strtol(3) function will be examined in detail, with the under¬

standing that the same principles can be applied to the strtoul(3) function.

Chapter 10 • CONVERSION FUNCTIONS 195

Using the strtol(3) Function
Listing 10.2 shows a short program that attempts to convert the first signed value in a charac¬

ter array named snum[]. Not only will it extract the integer value, but it will also indicate
where the conversion ended.

LISTING 10.2 strtol.c—A Conversion Program Using strtol(3)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

/* strtol.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc,char *argv[]) {

long lval;
char *ep;
static char snum[] = " -2567,45,39";

lval = strtol(snum,&ep,10);

printf("lval = %ld, ep = '%s'\n",lval,ep?ep:"<NULL>");

return 0;

}

When the program is compiled and run, the following results are observed:

$ make strtol
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall strtol.c
cc strtol.0 -0 strtol
$./strtol
lval = -2567, ep = 1,45,39'

$

From the output, you can see that the value lval was assigned the converted value. The char¬

acter pointer ep pointed to the part of the string where the conversion stopped, namely

, 45,39. Another parse could be continued after the comma is skipped, if the program were

required to do this.

Testing for Errors
The strtol(3) and strtoul(3) functions return zero if the conversion fails completely.

However, zero is a valid conversion value, and it should not be used as the only basis for con¬

cluding that an error took place.

If the returned pointer (variable ep in Listing 10.2) points to the starting point in the string,

this indicates that a conversion error took place. This shows that no progress whatsoever was

made in the conversion process. In Listing 10.2, you would test for the error in this manner:

196 ADVANCED UNIX PROGRAMMING

if (ep == snum) {
printf("Cannot convert value '%s'\n",snum);

This tests to see if the end pointer ep matches the starting point snum. If they are equal, then

no progress was made in the conversion.

Testing the Conversion Pointer
It has already been demonstrated in Listing 10.2 that the return pointer ep shows where the

conversion ended. This permits the caller to see if all of the input string was used to participate

in the conversion. This can be tested as follows:

if (*ep != 0) {
printf("Conversion of '%s' failed near '%s'\n",snum,ep);

This not only tests that the conversion consumed all of the input, but it shows the point of

failure if one occurs.

Performing Multiple Conversions
In Listing 10.2, three values separated by commas were used as input. A test for a successful

field parse can be performed by testing for the delimiting comma:

if (*ep 1= V)
printf("Failed near '%s'\n",ep);

else {
++ep; /* Skip comma */
/* Parse next field */

In this example, it is known that the next character should be a comma. If it is not a comma,

then an error has been encountered. Otherwise, the expected comma is skipped and the con¬

version proceeds with the next numeric value, using strtol(3).

Using the base Argument for Radix Conversions
The base argument of the strtol(3) and strtoul(3) functions specifies the radix value of the

number system. For the decimal number system, the radix value is 10.

The program shown in Listing 10.3 will allow you to run some tests with strtol(3) using dif¬

ferent radix values.

LISTING 10.3 radix, c—Testing the base Argument of strtol(3)

1:
2:
3:
4:
5:
6:
7:
8:

/* radix.c */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int
main(int argc,char *argv[]) {

Chapter 10 • CONVERSION FUNCTIONS 197

9: ir|t i; /* Iterator variable */
10: char *ep; /* End scan pointer */
11: long base; /* Conversion base */
12: long lval; /* Converted long value */
13:
14: /*

15: * Test for arguments :
16: */
17: if (argc < 2) {

18: printf("Usage: %s base 'string' [base 'string]...\n",argv[0]);
19: return 1;
20: }
21:
22: /*

23: * Process arguments :
24: */
25: for (i=1; i<argc; ++i) {
26: /*
27: * Get conversion base :
28: */
29: base = strtol(argv[i],&ep,10);
30: if (*ep != 0) {
31: printf("Base error in '%s' near '%s'\n",argv[i],ep);
32: return 1;
33: } else if (base > 36 || base < 0) {
34: printf("Invalid base: %ld\n",base);
35: return 1;
36: }
37: /*
38: * Get conversion string :
39: */
40: if (++i >= argc) {
41: printf("Missing conversion string! Arg # %d\n",i);
42: return 1;
43: }
44:
45: errno = 0; /* Clear prior errors, if any */

46:
47: lval = strtol(argv[i],&ep,(int)base);

48:
49: printf("strtol('%s',&ep,%ld) => %ld; ep='%s', errno=%d\n",
50: argv[i], base, lval, ep, errno);

51: }
52:
53: return 0;
54: }

This program is invoked with the radix (base) value as the first argument of a pair. The second

argument of the pair is the input string that you want to convert. The following shows a

compile-and-test run:

$ make radix
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall radix.c

cc radix.0 -0 radix

198 ADVANCED UNIX PROGRAMMING

$./radix 10 ' +2345' 10 -456 10 '123 '
strtol(' +2345',&ep,l0) => 2345; ep=’1, errno=0
strtol(’-456’,&ep,10) => -456; ep=l1, errno=0
strtol('123 1,&ep,10) => 123; ep=' errno=0
$

Three decimal conversions are attempted in the session shown. The first shows that the white-

space was skipped successfully. The second shows that it was successful at converting a nega¬

tive value. The third conversion shows how the variable ep points to the trailing whitespace.

Running Hexadecimal Tests
Setting the base to 16 will allow some hexadecimal conversions to be attempted:

$./radix 16 012 16 0x12 16 FFx
strtol('012',&ep,16) => 18; ep='', errno=0
strtol('0x12',&ep,16) => 18; ep='’, errno=0
strtol('FFx',&ep,16) => 255; ep=1x', errno=0
$

The first conversion converts the string 012 to 18 decimal, clearly a hexadecimal conversion.

The second conversion demonstrates that the strtol(3) function will skip over the leading 0x

characters when the base is 16. The third shows how FFx was properly converted, leaving a

trailing unprocessed x.

Testing a Radix of Zero
When the radix is set to 0, the function strtol (3) will adapt to different number bases.

Numbers are considered decimal unless they are prefixed by a leading zero (such as 017) or a

leading zero and the letter x (such as 0XDEADBEEF or 0XDEADBEEF). The 0x notation introduces

a hexadecimal number, for radix 16. If the leading zero is present without the letter x, then the
conversion radix is set to 8, for octal.

The following demonstrates these types of conversions:

$./radix 0 '012' 0 '0x12' 0 '12'
strtol('0121,&ep,0) => 10; ep=1', errno=0
strtol('0x121,&ep,0) => 18; ep=‘', errno=0
strtol('12',&ep,0) => 12; ep='', errno=0
$

The session shown tests octal, hexadecimal, and decimal conversions, in that order.

Testing Binary Conversions

Even binary conversions are possible. The following session output shows some examples in
which the radix is 2.

$./radix 2 '00001010' 2 '00010110'
strtol('00001010',&ep,2) => 10; ep=1', errno=0
strtol('00010110',&ep,2) => 22; ep='', errno=0
$

Chapter 10 • CONVERSION FUNCTIONS 199

Testing Radixes Above 16

Numbers can be represented in radixes above 16. These are not used very often, but they are
available if you have the need:

$./radix 36 'BSD1 36 'FREEBSD' 36 'LINUX!1 36 'UNIX!' 36 'HPUX' 36 'SUN'
strtol(1 BSD1,&ep,36) => 15277; ep=1’, errno=0
strtol('FREEBSD' ,&ep,36) => 2147483647; ep=", errno=34
strtol('LINUX!',&ep,36) =>36142665; ep='!', errno=0
strtol('UNIX!',&ep,36) => 1430169; ep='!', errno=0
strtol('HPUX' ,&ep,36) => 826665; ep=", errno=0
strtol('SUN',&ep,36) =>37391; ep='', errno=0
$

Above base 10, the conversion routines consider the letter A to be the digit 10, B to be the digit

11, and so on. Lowercase letters are treated the same as their uppercase counterparts. Radix 36

is the highest base supported and uses the letter Z defined as the value 35.

The radix 36 value of the string UNIX is 1430169. Others, including the value for the string

FREEBSD, were reported. Could these be magic numbers in some contexts?

Testing for Overflows and Underflows
If an attempt is made to convert a very large value, the test program fails:

$./radix 10 '99999999999999999999'
strtol('99999999999999999999',&ep,10) =>2147483647; ep=", errno=34

$

Notice how the result 2147483647 was obtained instead of the correct decimal value of

99999999999999999999. Yet, the ep variable shows that the scan made it to the end of the

string. The display of errno=34 provides a clue to the problem.

Interpreting long_max and erange

Overflows are handled by a special return value L0NG_MAX for strtol(3). When strtol(3)

returns the value LONGJVIAX, the value of errno must be tested as well. If it has the value

ERANGE posted to it, then it can be concluded that an overflow has indeed occurred.

The overflow example tried in the previous section reported a return value of 2147483647.

This is the value L0NG_MAX (FreeBSD). Additionally, the value of errno=34 was reported.

Under FreeBSD, this is the value ERANGE. Clearly, these two indications together conclude that

an overflow has occurred.

The Overflow Test Procedure
Having strtol(3) return 2147483647 (L0NG_MAX) whenever an overflow occurs would seem

to preclude the function from ever being able to return this value normally. However, the over¬

flow is further indicated by setting errno to ERANGE. This leads to the following procedure for

testing for overflows and underflows:

200 ADVANCED UNIX PROGRAMMING

1. Clear variable errno to zero. This is necessary because strtol(3) will not zero it.

2. Call strtol(3) to perform the conversion.

3. If the value returned is not L0NG_MAX (and not LONGJVIIN), then no overflow has

occurred, and you are finished. Otherwise, proceed to step 4.

4. Test the value of errno. If it is still cleared to zero from step 1, then there was no over¬

flow during the conversion, and the value returned truly represents the converted input

value.

5. If the errno value is ERANGE, then an overflow during the conversion has occurred and

the returned value L0NG_MAX is not representative of the input value.

The same logic can be applied to testing for underflows when the value L0NG_MIN is returned

in step 3.

Proving the Overflow Test Procedure
You can prove this procedure with the test program from Listing 10.3:

$./radix 10 '99999999999999999999' 10 2147483647
Strtol('999999999999999999991,&ep,10) =>2147483647; ep=' *, errno=34
strtol('2147483647',&ep,10) => 2147483647; ep=", errno=0
$

The first conversion fails and returns L0NG_MAX (value 2147483647) and shows an errno value
of 34, which is known to be the value ERANGE (under FreeBSD).

Notice that the second decimal conversion uses as input the maximum long value of

2147483647, and it converts successfully and returns L0NG_MAX. This time, however, errno is

not the value of ERANGE but remains as zero instead. This is due to line 45 in Listing 10.3,
which reads

errno = 0; /* Clear prior errors, if any */

Recall that the errno value is never cleared by a successful operation. It is only used to post

errors. To allow differentiation between a successful conversion and an overflow, the value

errno must be cleared before calling strtol(3). Otherwise, you will be testing a leftover error
code if the conversion is successful.

Coding an Overflow/Underflow Test
If lval is assigned the strtol(3) return value, the overflow/underflow test should be written
like this:

if (lval == L0NG_MAX || lval == LONGJVIIN) {
/* Test for over / under flow */
if (errno == ERANGE) {

puts("Over/Under-flow occurred!");

This test only works if you clear errno to zero before calling the conversion function.

Chapter 10 • CONVERSION FUNCTIONS 201

Testing for strtoul(3) Overflows
Function strtoul(3) does unsigned integer conversions. The maximum unsigned value is not

the same as the maximum signed value. Consequently, the maximum value returned is

UL0NG_MAX. Otherwise, the general test procedure for overflow is quite similar to the one just
covered.

1. Clear variable err no to zero.

2. Call strtoul(3) to perform the conversion.

3. If the value returned is not UL0NG_MAX, then no overflow has occurred and you are fin¬

ished. Otherwise, proceed to step 4.

4. Test the value of errno. If it is still cleared to zero from step 1, then there was no over¬

flow during the conversion, and the value returned truly represents the input value.

5. If the errno value is ERANGE instead, then an overflow during conversion has occurred

and the returned value ULONGJVIAX is not truly representative of the input value.

Because strtoul (3) is an unsigned conversion, you have no minimum value to test like the

L0NG_MIN value for strtol(3).

Large Integer Conversions
With the migration of UNIX systems to 64-bit CPUs, the C language now supports 64-bit inte¬

gers. These data types are

• long long int

• unsigned long long int

or simply

• long long

• unsigned long long

With the appearance of these C data types comes the need to make conversions from strings to

these 64-bit types.

Some UNIX platforms now support the strtoll(3) and strtoull(3) functions. Their synop¬

sis is as follows:

#include <stdlib.h>

long long strtoll(const chan *str, char **endptr, int base);

unsigned long long strtoull (const char *str, char **endptr, int base);

These functions work the same as their strtol(3) and strtoul(3) counterparts. The only

difference is that you must use the macro L0NGL0NG_MAX or L0NGL0NGJ/IIN when testing for

overflow/underflows for strtoll(3). Use the macro UL0NGL0NG_MAX for strtoull(3).

202 ADVANCED UNIX PROGRAMMING

Note

Many UNIX systems of today define the C data type long to be the same size as the type int. As

UNIX operating systems move to 64-bit CPU platforms, and as the application software migrates

with it, the long data type will become 64 bits in length. When that happens, the strtol(3) and

strtoul(3) functions will perform 64-bit conversions instead of the present 32-bit.

Consequently, some implementations such as HPUX-11 do not provide a strtoll(3) function.

Instead, a 32- or 64-bit data model is chosen, and the correct implementation of strtol(3) and

strtoul(3) is linked in to match the data model.

BSD strtoq(3) and strtouq(3) Functions
BSD is a little different in its large integer conversions. FreeBSD supports its strtoq (3) and

strtouq(3) functional equivalents of the strtoll(3) and strtoull(3) functions. The 64-bit

C data types that FreeBSD uses are

Signed 64-bit quad_t

Unsigned 64-bit u_quad_t

The function synopsis of the conversion routines for these data types is as follows:

#include <sys/types.h>
#include <stdlib.h>
#include <limits.h>

quad_t strtoqfconst chan *nptr, char **endptr, int base);

u_quad_t strtouq(const char *nptr, char **endptr, int base);

The C macros that you should use with strtoq(3) are QUADJVIAX and QUADJVIIN, when testing

for overflow and underflow, respectively. For strtouq (3), you must use the C macro

UQUAD_MAX instead. Neither of these appears in the man (1) pages for these routines, but they
can be found in the include file <machine/ limits. h>.

Note

It seems likely that FreeBSD will change its C data type long to be 64-bit in the future. This will result

in the strtol(3) and strtoul(3) functions performing 64-bit conversion when that happens.

The strtod(3) Function
The strtod (3) function is used to perform string-to-floating point conversions. This function

is quite similar in operation to the integer conversion functions just covered, but it has a few
new wrinkles. The synopsis for strtod (3) is as follows:

Chapter 10 • CONVERSION FUNCTIONS 203

#include <stdlib.h>
#include <math.h>

double strtod(const char *nptr, char **endptr);

Note that there is no base argument. No radix conversions are available for floating-point con¬
versions other than base 10.

The input string nptr and the second argument endptr are used in precisely the same way
they are used in the strtol(3) function.

Using the strtod(3) Function
The following shows how the strtod (3) function can be used to convert a floating-point
value in a string buffer to the C double type:

static char buff] = "-32000.009E+01";
char *ep; /* Returned pointer */
double dval; /* Converted value */

dval = strtodfbuf,&ep); /* Convert but to double */

The input string is converted and the floating-point result is returned and assigned to the vari¬

able dval. The point where the conversion ends is passed back to the caller by storing the

pointer in pointer variable ep. In this example, ep should end up pointing to the null byte at

the end of the buff] array.

Testing for Math Errors
This function adds a new twist to overflow and underflow detection. In order to test for over¬

flows and underflows, you must include the file <math. h>:

#include <math.h>

This include file defines the macro HUGE_VAL, which will be needed in the tests. Three return

values from strtod(3) require further investigation by the program:

• +HUGE_VAL

• 0.0

• -HUGE_VAL

The test procedure will rely on the fact that the errno value is cleared before calling

strtod(3).

Testing for Overflow
When the value +HUGE_VAL is returned, you must check errno to see if the value ERANGE was

posted there. If errno is set to ERANGE, then the conversion process had an overflow. If errno

remains cleared to zero, then the value returned is a valid number.

204 ADVANCED UNIX PROGRAMMING

Testing for Underflow
When the value -HUGE_VAL is returned, you must also check errno to see if the error ERANGE

was posted there. If errno remains cleared to zero, then the returned value is a valid number.

Testing for Exponent Underflow
The function strtod(3) returns 0.0 when the converted value is extremely small in value

fractionally—so small that the underlying data type cannot represent it. When zero is returned

and ERANGE is posted to the errno variable, then it is known that the conversion failed because

the input value was too small a fraction to represent. Another way to state this is that the expo¬

nent value underflowed.

Handling Exponent Underflow
In many cases, you might be happy just to round that small fractional value to zero and move

on. However, this may not be suitable for all applications, especially scientific ones.

A scientific model may depend on the precision of that variable to represent a very small value.

If precision is maintained, then that value might be later multiplied by a large value to com¬

pute a reasonable result.

However, if you simply allow the value to round to zero, then the multiplied result will be zero

also—leading to an incorrect answer. Thus, it is better to abort the computation and point out

that the value could not be contained with the necessary precision.

A significant loss of precision is likely when operating in this extreme exponent range.

Flowchart of Math Error Tests
The entire procedure for math error testing for strtod(3) is shown in Figure 10.1 as a flow¬

chart. This should help summarize the overflow and underflow detection logic that should be
used.

Chapter 10 • CONVERSION FUNCTIONS 205

FIGURE 10.1

Testing for overflow and

underflow after calling

strtod(3).

Summary
In this chapter, you learned about the limitations of the simple atoi(3) family of functions.

The sscanf (3) function was discussed as a better replacement, and it was noted that some

limitations remain with that approach. The remainder of the chapter covered the details of the

strtol(3), strtoul(3), and strtod(3) functions.

The next chapter covers the UNIX library calls for working with dates and times. There you

will learn how each user can manage his own concept of a time zone, and the system manages

time for everyone. Conversions from strings to dates and dates to strings

£ • h4 X 4^ - * ■»«£ ; -ft *V- -''V

CHAPTER 11

UNIX DATE AND
TIME FACILITIES

Date and time facilities are important to nearly everything you do in UNIX. When a

process starts, the time is recorded in a kernel table. When you create a new file, the

creation date and time are recorded. Modification times are recorded when you edit a

file. Even when you just view a file, its access time is updated.

In this chapter, you will learn about date and time management functions that are available for

your use in applications. This chapter covers

• UNIX Epoch Time

• Local, GMT, and UTC time zones

• The localtime(3) and gmtime(3) functions

• The asctime(3) function

• The tzset (3) function

• The mktime(3) function

• the strftime(3) function

UNIX Epoch Time

When reading the man(1) pages regarding time functions for UNIX, you will frequently encounter

the term Epoch Time. This is the beginning of time for UNIX: January 1, 1970, at 00:00:00 GMT

(Greenwich Mean Time). This coincides with the value of zero for the data type time_t.

Time Zones
Since the UNIX kernel bases its Epoch Time on the Greenwich Mean Time (GMT) time stan¬

dard, it is instructive to do a review of time standards in general. Then, local time zones will

be covered to provide a clear understanding of how they are related to the UNIX kernel clock.

208 ADVANCED UNIX PROGRAMMING

Introducing World Time Standards
Originally, the GMT time standard was the world standard. Since then, a new world standard

has emerged to coordinate the precise synchronization needed for distributed computer sys¬

tems.

UNIX had its beginnings when GMT was the still the world standard. Consequently, much of

the UNIX literature is steeped in the references to GMT today.

The GMT Time Standard
Greenwich Mean Time is based on the prime meridian of the Earth, which in 1884 was estab¬

lished as passing through Great Britain’s Greenwich Observatory. Since then, the observatory

has moved and been renamed the Royal Greenwich Observatory. However, its original location

is still used to define the prime meridian.

The precise GMT time is determined by observations of the Sun. Due to variations in the

Earths rotation and its orbit around the Sun, small corrections are computed regularly and

applied to arrive at the precise time.

The UTC Time Standard
UTC is the abbreviation for the time standard named Universelle Tempes Coordinate in

French, or Coordinated Universal Time in English. This standard is based on atomic clock

measurements instead of solar observations, but it still uses the prime meridian. This standard

replaced the GMT in 1986.

Choosing a World Time Standard
For many people, a fraction of a second is insignificant. They can set their UNIX system clocks

according to the GMT time standard or the UTC time standard. The standards are so similar

that they are sometimes used interchangeably.

The correct designation to use for the world time standard today is UTC. Consequently, new
software should be written to display UTC instead of GMT.

Understanding Local Time Zones
UNIX allows for those people who do not live in the UTC time zone. This is done by taking

your local time zone and adding an offset to arrive at UTC. In the Eastern time zone in North

America, for example, UTC time is local time plus five hours. For much of Europe, it is the
local time minus one hour.

Customizing Local Time Zones
Since UNIX is a multiuser operating system, it is designed to permit a user to define his own

concept of local time. The tzset(3) function is used internally by a number of date and time

functions to determine the local time zone. This function will be examined in more detail later

in this chapter. The important thing to note is that it looks for an exported environment vari¬

able TZ to define your preference for local time. Your TZ value may be different from what
other users on your system are using.

Chapter 11 • UNIX DATE AND TIME FACILITIES 209

Setting the tz Variable

When the environment variable TZ is found and has a properly defined value, the tzset (3)

function will configure your local time zone. This will be used by the rest of the date and time

functions where necessary. If the value TZ is not defined or is incorrectly set, the tzset (3)
function falls back on the following zone information file (for FreeBSD):

/etc/localtime

Failing variable TZ and the zone information file, UTC time is assumed.

To configure your session for Eastern Standard Time and no daylight saving time, you can use

$ TZ=EST05
$ export TZ

This sets the time zone name to EST. Since it is west of the prime meridian, the offset is a posi¬

tive 05 hours (think of this as local time + 5 hours = UTC). Eastern Daylight Saving Time can
be configured as follows:

$ TZ=EST05EDT
$ export TZ

If you need more information on time zone configuration, a good place to start is the man (1)

page for tzset(3). More advanced information is found in the tzfile(5) man pages.

Defining the Date and Time Data Type
Originally, the UNIX time and date value was stored in the C data type long. As time passed,

and as standardization efforts got underway, it was recognized that this was not good for long-

range planning. The capacity of the long integer was going to run out someday (January 19,

2038, at 03:14:07 UTC, to be precise). The next second after that will cause the 31-bit positive

number to roll over to a 32-bit value, making it a negative number.

Since the long integer data type was going to overflow in the near future, it was decided that

date and time deserved its own special data type: time_t. This permits the underlying data

type to be changed at a future date, requiring that applications only be recompiled.

To obtain the current system date and time from the UNIX kernel, you call upon the time (3)

library function. Its synopsis is as follows:

#include <time.h>

time_t time(time_t *tloc);

The single argument provided to the time(3) function is optional (it must be null when not

provided). When provided, it must point to a time_t variable that is to receive the current

date and time. This will be the same value returned by the function. For example

time_t cur_time;

time(&cur_time);

210 ADVANCED UNIX PROGRAMMING

If the pointer argument cur_time is invalid, the value (time_t) -1 is returned and errno is set

to the value EFAULT.

While the time since Epoch Time is useful to the UNIX kernel, it must be converted into vari¬

ous other forms to be displayed or to work with its components. The next section examines

the library functions that are available for this.

Time Conversion Functions
All date and time functions in this section require the include file <time. h>. In the remainder

of this chapter, the following conversions will be examined:

• time_t values to ASCII date/time strings

• time_t values to date/time components (second, minute, hour, day, month, year, and

so on)

• Date/time components to ASCII strings

• Date/time components to time_t values

In addition to looking at the various conversion functions, a simple C++ class DTime will be

built and illustrated. This object has been left as simple as possible to prevent obscuring the

underlying functions being discussed. For this reason, the DTime class in its present form is not

entirely suitable for use in production-mode programs. The include file and the class definition

for DT ime are shown in Listing 11.1.

LISTING 11.1 dtinie. h—The Declaration of Class DTime

1: // dtime.cc
2:
3: #include <iostream.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <string.h>
7: #include <errno.h>
8: #include <time.h>
9:
10: extern "C" {
11: extern char *ctime_r(const time_t *clock, char *buf);
12: extern struct tm *localtime_r(const time_t *clock, struct tm *result);
13: extern struct tm *gmtime_r(const time_t *clock, struct tm ‘result);
14: extern char *asctime_r(const struct tm *tm, char *buf);
15: }
16:
17: //
18: // Experimental DTime Class :
19: //
20:
21: class DTime : public tm {

Chapter 11 • UNIX DATE AND TIME FACILITIES 211

22: private:
23: time_t dt; // Date/time in epoch time
24: char but[128]; // ctime(3)/strftime(3) buffer
25: public:
26: DTime();
27: DTime &operator+=(long secs); // Add time
28: DTime &operator-=(long secs); // Subtract time
29: inline time_t time() { return dt; }
30: time_t getTime(); // time(3)
31: timejt putTime(time_t dt); // Put a time value into this->dt
32: char *ctime(); // ctime(3)
33: struct tm *localtime(); // localtime(3)
34: struct tm *gmtime(); // gmtime(3)
35: char *asctime(); // asctime(3)
36: time_t mktime(); // mktime(3)
37: char *strftime(const char *format); // strftime(3)
38: };
39:
40: extern ostream &operator«(ostream &ostr,DTime &obj);
41:
42: // End dtime.h

The class DTime inherits structure members from the public tm (line 21), which will be dis¬

cussed later. Private member dt is the time_t data type that is required for several of the func¬

tions being discussed (line 23). A number of other functions require the use of a buffer. These

use buf [] in line 24.

Listing 11.2 shows the constructor, the operators += and -=, and the getTime() and

putTime() methods.

LISTING 11.2 gettime.cc—The Constructor and getTime() Methods of DTime

1: // gettime.cc
2:
3: #include "dtime.h"
4:
5: //
6: // Constructor:
7: //
8:
9: DTime::DTime() {
10: dt = (time_t)(-1); // No current time
11: }
12:
13: //
14: // Add seconds to the current time in this->dt :
15: //
16:
17: DTime &
18: DTime::operator+=(long secs) {
19: dt += (time_t) secs;
20: return *this;

212 ADVANCED UNIX PROGRAMMING

continued from previous page

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

}

//
// Subtract seconds to the current time in this->dt :
//

DTime &
DTime::operator-=(long secs) {

dt -= (time_t) secs;
return *this;

}

//
// Return current time :
//

time_t
DTime::getTime() {

return ::time(&dt);

}

//
// Allow the caller to plug-in a time value :
//

time_t
DTime::putTime(time_t dt) {

return this->dt = dt;
}

// End gettime.cc

The constructor initializes the member dt to the value (time_t) (-1) (lines 9-11). This is the

error value that is returned by mktime (3), which is used here to indicate that no time is set.

The operators += and - = are overloaded for this class to allow the user to add or subtract time

from the object (lines 17-31). This will be demonstrated later in the chapter.

The member getTime() retrieves the current time into member dt using the function time (3)

that was discussed earlier (lines 37-40). The same value is returned.

The putTime () method is provided so that the user can supply a time_t value of his own

choosing (lines 46-49).

Converting Time to String Form Using ctime(3)
This is perhaps the easiest of the date and time conversion functions to use. This function

takes the time_t value as input and converts it to an ASCII string that can be displayed. The

synopsis for ctime(3) is as follows:

Chapter 11 • UNIX DATE AND TIME FACILITIES 213

#include <time.h>

char * ctime(const time_t *timep);

The ctime(3) function requires a pointer to the time variable that contains the time and date

to be converted. The following example shows how to obtain the current system date and pass

it to ctime (3). The string returned is then displayed:

time_t td; /* Time and Date */

time(&td); /* Get current date */
printf("Today is %s", ctime(&td));

The 26-byte string returned by ctime (3) is a date and time string of the form

Mon Jan 18 22:14:07 2038

The function returns a pointer to an internal static buffer, which is valid only until the next

call. One annoying aspect of this returned date string is that a newline character is placed at

the end.

The ctime_r(3) Function
The ctime (3) function returns a pointer to its internal static buffer. This makes it unsafe for

threaded programs. A thread-safe version of this routine is available as ctime_r (3):

#include <time.h>

char *ctime_r(const time_t *clock, char *buf);

The buffer supplied for argument but must be at least 26 characters long. The pointer value

returned is the same pointer supplied for but.

The DTime:: ctime () method is shown in Listing 11.3.

LISTING 11.3 ctime. cc—The Implementation of the DTime:: ctime () Method

1: // ctime.cc
2:
3: #include "dtime.h"
4:
5: //
6: // Returns the ctime(3) string for the current time_t
7: // value that is stored in this->dt. This routine assumes
8: // that this->getTime() has been previously called:
9: //
10:
11: char *
12: DTime::ctime() {
13: char *cp;
14:
15: ::ctime_r(&dt,buf); // Put ctime(3) string into buf[]

214 ADVANCED UNIX PROGRAMMING

continued from previous page

16: if ((cp = strchr(buf, 1 \n')) ! = NULL)

17: *cp = 0; // Eliminate pesky newline character

18: return buf; // Return ptr to buffer

19: }
20:
21 : II End ctime.cc

The DTime: :ctime() method calls on the function ctime_r(3). The function ctime_r(3)

takes the time that is in the member dt and converts it to ASCII form in the private buffer

buf [] (line 15). The annoying newline character is eliminated in lines 15 and 16. Line 18

returns the pointer to the private buffer containing the string.

The localtime(3) and gmtime(3) Functions
The programmer often needs direct access to the date and time components. The time_t data

type may be convenient for math, but it is not always convenient for all forms of date arith¬

metic. To extract the date components from a time_t value, the function localtime(3) or

gmtime(3) can be used:

#include <time.h>

struct tm *localtime(const time_t *timep);

struct tm *gmtime(const time_t *timep);

struct tm *localtime_r(const time_t *clock, struct tm *result);

struct tm *gmtime_r(const time_t *clock, struct tm *result);

The localtime(3) function returns time and date components according to the local time. To

obtain time components according to the UTC time zone, use the gmtime(3) function. These

functions both accept a pointer to a time_t value that is to be converted. The result from these

functions is only valid until the next call.

The functions localtime_r (3) and gmtime_r(3) are thread-safe versions of the older

localtime(3) and gmtime(3) functions, respectively. They have the additional pointer

argument result, into which the results are written. This is different from returning the

results in an internal static buffer as the older localtime (3) and gmtime (3) functions do.

The returned result is a pointer to a struct tm, which provides access to date and time com¬

ponents such as the day of the month and the year. The following example obtains the current

date using time(3) and then calls on localtime(3). The returned results are copied to the
structure variable dc in this example:

time_t dt; /* Current date */
struct tm dc; /* Date components */

time(&td); /* Get current date */
dc = *localtime(&dt); /* convert dt -> dc */

Chapter 11 • UNIX DATE AND TIME FACILITIES 215

A better way to place the results into the dc structure is to use the new re-entrant counterpart

oflocaltime(3):

time_t dt; /* Current date */
struct tm dc; /* Date components */

time(&td); /* Get current date */
localtime_r(&dt,&dc); /* convert dt -> dc */

In this manner, the results are placed into dc straightaway, rather than copying the results from

one structure to another.

Listing 11.4 shows the implementation of DTime: :localtime() and DTime: :gmtime() meth¬

ods using localtime_r(3) and gmtime_r(3), respectively.

LISTING 11.4 localtime, cc—The Implementation of DTime:: localtime () and

DTime::gmtime()

1: // localtime.cc
2:
3: #include "dtime.h"
4:
5: //
6: // Return the local time components, based upon the
7: // current value of this->dt; assumes that a prior
8: // call to getTime() has been made:
9: //
10:
11: struct tm *
12: DTime::localtime() {
13: ::localtime_r(&dt,this);
14: return this;
15: }
16:
17: //
18: // Return the UTC (GMT) time components, based upon the
19: // current value of this->dt; assumes that a prior
20: // call to getTime() has been made:
21: //
22:
23: struct tm *
24: DTime::gmtime() {
25: ::gmtime_r(&dt,this);
26: return this;
27: }
28:
29: // End localtime.cc

In both of these methods, the DTime class itself is used in the second argument because it

inherits from struct tm. The pointer to the class is returned.

216 ADVANCED UNIX PROGRAMMING

The Members of the struct tm
This is the structure that is used by several of the date/time functions, including

local-time(3), gmtime(3), and mktime(3). The structure is defined as follows:

struct tm {
int tm_sec; /* seconds */
int tm_min; /* minutes */
int tm_hour; /* hours (0-23) */
int tm_mday; /* day of the month (1-31) */
int tm_mon; /* month (0-11) */
int tm_year; /* year 2000=100 */
int tm_wday; /* day of the week (0-6) */
int tm_yday; /* day in the year (0-365) */
int tm_isdst; /* daylight saving time */

};

This C structure is defined in the file <time. h>. The individual members of this structure are

documented in Table 11.1.

Warning

Note that member tm_mon starts at zero. To produce a month number 1-12, you must add 1 to this

value.

Note also that you must add 1900 to member tm_year to arrive at the century.

0 Note

TABLE 11.1

The member tm_isdst has three possible states:

When it is positive, daylight saving time is in effect.

When it is zero, daylight saving time is not in effect.

When it is negative, daylight saving time information is not known or is not available.

The struct tm Structure Members

Member Description

tm_sec The number of seconds after the minute. Normally the range is 0 to 59, but this value can

be as high as 61 to allow for leap seconds.

tmjnin The number of minutes after each hour; it ranges in value from 0 to 59.

tm_hour The hour past midnight, from 0 to 23.

tmjnday The day of the month, from 1 to 31.

tm_mon The month of the year, from 0 to 11.

Chapter 11 • UNIX DATE AND TIME FACILITIES 217

Member Description

tm_year The year, expressed as years since 1900. For example, the year 2010 is represented as 110.

tm_wday The day of the week, in the range 0 to 6. Day 0 is Sunday, 1 is Monday, and so on.

tm_yday The day of the year, in the range 0 to 365.

tm_isdst This is a flag with three possible states. See the Note immediately prior to this table.

The class DTime that is developed in this chapter inherits from the struct tm. Consequently,

the members are available to the programmer directly. (Its access is public; see line 21 of

Listing 11.1.)

Conversion of Date/Time Components to Strings Using
the asctime(3) Function

The asctime(3) function accepts the date and time components from the struct tm and com¬

poses an ASCII-formatted date string. Its synopsis is as follows:

#include <time.h>

char *asctime(const struct tm *tm_ptr);

char *asctime_r(const struct tm *tm, char *buf);

The single argument is a pointer to an input struct tm, which will be used to format a date

string. The returned pointer from asctime(3) is to a static buffer that is valid only until the

next call. Function asctime_r(3) is the re-entrant counterpart, which requires a destination

buffer buf [] that is at least 26 bytes in size.

LISTING 11.5 asctime. cc—The Implementation of DTime: :asctime()

1: // asctime.cc
2:
3: #include "dtime.h"
4:
5: //
6: // This function returns the asctime(3) string, for the
7: // present members of this class (struct tm). This method
8- // assumes that the present struct tm members are valid.
9: lltlllllllllllltll
10:
11: char *
12: DTime::asctime() {
13: return ::asctime_r(this,buf);
14: }
15:
16: // End asctime.cc

218 ADVANCED UNIX PROGRAMMING

In the implementation of this DTime method, the function asctime_r (3) is used, passing the

pointer this as input in the first argument. This works because the class inherits from the

struct tm. The second argument is set as buf in line 13 to receive the ASCII result, which is

then returned.

Thetzset(3) Function
Previously, it was indicated that the tzset (3) function is responsible for establishing your def¬

inition of local time. This function looks for the exported TZ environment variable and falls

back to the system-configured zone information file if it is not defined. The synopsis for

tzset (3) is as follows:

#include <time.h>

extern long int timezone; /* Not BSD */
extern char *tzname[2];
extern int daylight; /* Not BSD */

void tzset(void);

The tzset (3) function is called on by any of the library date functions that need to know

about the configured local time for this session. For example, after the function localtime(3)

returns, it is known that the function tzset (3) has been called, because it must know about

local time.

Once the function tzset (3) has been called, it does not need to be called again. However, if

you aren’t certain that it has been called, there is no harm in calling it again.

Thetzset(3) External Variables
The side effect of calling function tzset (3) is that certain external variables are assigned val¬

ues. These indicate to the date library routines what the local time zone is. These variables are

extern long int timezone; /* Not BSD */
extern char *tzname[2];
extern int daylight; /* Not BSD */

Understanding the timezone External Variable
The value timezone is the number of seconds you must add to your local time to arrive at

UTC time. If you are in the Eastern Standard Time zone, then you need to add five hours to

the local time to arrive at UTC time. To configure the external variable timezone, this value
should be +18000 (seconds).

FreeBSD, OpenBSD, and NetBSD do not appear to support the external variable timezone.

Chapter 11 • UNIX DATE AND TIME FACILITIES 219

Understanding the daylight External Variable
The value of the daylight external variable indicates the following:

• When daylight is true (non-zero), daylight saving time is in effect.

• When daylight is false (zero), daylight saving time is not in effect.

' ■ ; ~ ' y * . ■ . ' 4 .„,, .

Note

FreeBSD, OpenBSD, and NetBSD do not appear to support the external variable daylight.

Understanding the tzname[] External Array
The tzname [] array of two-character strings provides the name strings of two time zones. The

normal time zone string is provided in tzname[0], and the daylight saving time zone is pro¬

vided in tznamef 1]. Examples might be EST and EDT for Eastern Standard Time and Eastern

Daylight Saving Time, respectively.

When daylight saving time is not in effect, array elements tzname[0] and tzname[1] will

point to the same C string.

Using the tzname [] External Array
To display the time zone currently in effect, use the following code on a non-BSD system:

tzset(); /* Make sure externs are set */
printf("Zone is ’%s'\n", tznamefdaylight ? 1 : 0]);

Warning

Do not rely on the daylight external variable to be exactly one or zero. The documentation simply

states that this value will be non-zero if daylight saving time is in effect.

Determining the Time Zone Under BSD
If you find that there is no support for the external variables timezone and daylight, the time

zone can be determined by a more tedious procedure:

Date/time components */
Current time/date */
tmvals.is_dst */

Get current time */
Populate tmvals */

x = tmvals.tm_isdst < 0 ? 0 : tmvals.tm_isdst;/* Assume not DST if unknown */
printf("Zone is '%s1\n",tzname[x ? 1 : 0]); /* Print time zone */

It must be noted that the assignment to x in the example was done because the value in

tmvals. tm_isdst is a three-state flag. It can be negative, indicating that the time zone is not

known. In the example, the code assumed that daylight saving time was not in effect, if it was

not known.

struct tm tmvals; /*
time_t td; /*
int x; /*

time(&td); /*
localtime_r(&td,&tmvals); /*

220 ADVANCED UNIX PROGRAMMING

Creating Epoch Time Values with the mktime(3)
Function

If you want to construct a time_t value based on a specific date, you need the mktime (3)

function. Its synopsis is as follows:

#include <time.h>

time_t mktime(struct tm *tm_ptr);

The mktime(3) function requires a pointer to a struct tm. This input/output structure con¬

tributes date and time components that are used to compute a time_t value, which is

returned. Some values are also returned in this structure.

Testing for inktime(3) Errors
If the values in the struct tm are such that a date cannot be computed, the value (time_t)

(-1) is returned. This happens when tm_year is set to a year before 1970 or when non¬

existent dates are supplied, such as February 30 or June 35.

Setting Input Members of struct tm for mktime(3)

Not all of the struct tm members are used for input when passed to the mktime (3) function.

The following members are mandatory for input and are not altered by mktime (3):

• tm_sec (seconds: 0 to 61)

• tm_min (minutes: 0 to 59)

• tm_hour (hours: 0 to 23)

• tm_mday (days of month: 1 to 31)

• tm_mon (months: 0 to 11)

• tm_year (years: year 2000 is value 100)

• tm_isdst (positive for daylight saving time, zero if no daylight saving time in effect)

Be sure to make the tm_mon member a zero-based month value (0 to 11).

Members of struct tm Altered by mktime(3)

The following members are ignored as input but are recomputed and altered before the
mktime(3) function returns:

• tm_wday is ignored as input and is recomputed for output.

• tm_yday is ignored as input and is recomputed for output.

The fact that these two values are recomputed allows you to plug in a date and time and call

mktime (3). The returned values in the structure will tell you what the weekday and day of the
year are.

Chapter 11 • UNIX DATE AND TIME FACILITIES 221

Do not forget to set tm_isdst before calling mktime(3). This input value determines whether day¬

light saving time is in effect for the local date and time specified in the other members.

Failure to set this value correctly can allow the computed UTC time_t value to be incorrect by the

amount of the daylight saving time difference.

Warning

Since the tm_wday and tm_yday values are replaced by recomputed values, never pass a constant or

read-only structure to mktime(3).

Implementing the DTime: :mktime() Method
Listing 11.6 shows how the DTime:: mktime () method was implemented. This method calls

upon the C function mktime(3) to convert the current struct tm members that this class

inherits into time_t values, which are returned. This method will be tested later in the

chapter.

LISTING 11.6 mktime. cc—The Implementation of the DT ime:: mktime () Method

1: // mktime.cc
2:
3: #include "dtime.h"
4:
5: //
6: // This method assumes that the struct tm members of this
7: // class already contain valid values (tm_wday and tm_yday
8: // are ignored in this case):
9: //
10:
11: time_t
12: DTime::mktime() {
13: return dt = ::mktime(this);
14: }
15:
16: // End mktime.cc

Customizing Date and Time Formats with
strftime(3)

The string format of the date and time can vary considerably with the preference of each user.

The strftime(3) function makes it easier for the C programmer to implement custom date

and time formats. Its synopsis is as follows:

222 ADVANCED UNIX PROGRAMMING

#include <time.h>

size_t strftime(char *buf, size_t maxsize,
const char *format, const struct tm *timeptr);

The arguments but and maxsize specify the receiving buffer and its maximum size, respec¬

tively. The argument format specifies a printf (3)-like format string. The last argument,

timeptr, points to a struct tm structure that will supply all of the input date and time values.

The final output string size is returned, excluding the null byte.

If the output buffer is not large enough, the value maxsize is returned, indicating that maxsize

characters were placed into the buffer. However, since there is no room for the null byte when

this happens, do not expect one to be there.

The strftime(3) Format Specifiers
The format specifiers are quite different from the sprintf(3) variety. Table 11.2 lists the for¬

mat specifiers that are supported. Notice that each specifier starts with the percent character

(%) and is followed by a letter. All other text in the format string is copied verbatim, in the

same way that sprintf(3) does. To include a percent character, use two successive percent

characters.

TABLE 11.2 Format Specifiers for strftime(3)

Specifier Description

%a The abbreviated weekday name is substituted according to the locale.

%A The full weekday name is substituted according to the locale.

%b The abbreviated month name is substituted according to the locale.

%B The full month name is substituted according to the locale.

%c The preferred date and time representation for the current locale.

%d The day of the month in decimal.

%H The hour of the day in 24-hour form (00 to 23).

%I The hour in 12-hour form (01 to 12).

The day of the year as a decimal number (001 to 365).

%m The month as a decimal number (01 to 12).

%M The minute as a decimal number.

%p The string AM or PM according to the time.

%S The second as a decimal value.

Chapter 11 • UNIX DATE AND TIME FACILITIES 223

Specifier Description

%U The week number of the current year, expressed as a decimal number. The first

Sunday is considered the first day of the first week.

%w The week number of the current year, expressed as a decimal number. The first

Monday is considered the first day of the first week.

%w The day of the week as a decimal number (0 to 6).

%x The preferred date representation without time, for the current locale.

%X The preferred time representation without date, for the current locale.

The year without a century (00 to 99).

%Y The year with the century.

%Z The time zone or zone abbreviation.

0,0.
'O'O A single percent character (%).

Implementing the DTime: :strftime() Method
To enable you to try out the strftime(3) C function, it has been included in the class DTime

as the method DTime::strftime().Thisis shown in Listing 11.7.

LISTING 11.7 strftime.cc—The Implementation of the DTime:: strf time () Method

1: // strftime.cc
2:
3: #include "dtime.h"
4:
5: //
6: // Call strftime(3) to format a string, based upon the
7: // current struct tm members. This method assumes that the
8: // struct tm members contain valid values.
9: //
10:
11: char *
12: DTime::strftime(const char *format) {
13: size_t n = ::strftime(buf,sizeof buf-1,format,this);
14: buf[n] = 0; // Enforce a null byte
15: return buf; // Return formatted string
16: }
17:
18: //
19: // Output operator for the DTime object :
20: //
21 :
22: ostream &

224 ADVANCED UNIX PROGRAMMING

continued from previous page

23: operator«(ostream &ostr,DTime &obj) {
24:
25: if (obj.time() == (time_t)(-1))
26: ostr « "[No current time]";
27: else
28: ostr « obj.ctime();
29: return ostr;
30: }
31:
32: // End strftime.cc

A C++ function operator«() was implemented in Listing 11.7 to make it possible to display

this DTime class using the overloaded C++ « operator. Line 25 checks to see if there is a cur¬

rent time for the object and, if so, the DTime:: ctime () method is called to format a date/time

string (line 28). This string is then sent to the output stream.

Testing Class DTime
Listing 11.8 shows a main program that will instantiate a DTime class and then invoke some

operations on it.

LISTING 11.8 main.cc—Themain() Program for Demonstrating the DTime Class

1: // main.cc
2:
3: #include "dtime.h"
4:
5: int
6: main(int argc,char **argv) {
7: DTime obj;
8:
9: (void) argc;
10: (void) argv;
11:
12: // Set and display epoch time in the local time zone :
13: obj.putTime(0); // Establish epoch time
14: cout « "Local UNIX Epoch time is 1" « obj « "'\n\n";
15:
16: // Get and display the current time and date :
17: obj.getTime(); // Get current date/time
18: cout « "Current time is « obj « "'\n\n";
19:
20: // Compute a date 30 days from today :
21 : obj += 30 * 24 * 60 * 60;
22: cout « "30 days from now is « obj « "1 \n";
23:
24: // Get UTC values :
25: obj.gmtimeO; // Set struct tm values from timejt
26: cout « "That date is " « obj.tmjnon + 1 « "/" « obj.tm_mday
27: « "/" « obj.tm_year + 1900 « " 11

Chapter 11 • UNIX DATE AND TIME FACILITIES 225

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cout « "which is the same as "
« obj.strftime("%A %B %d, %Y at %I:%M %p") « "\n";

obj.mktime() ;
cout « "The 1st is

obj.tm_hour = obj.tm_min = obj.tm_sec = 0;

return 0;

// Reset to local time
obj.getTime();
obj.localtime();
obj.tmjnday = 1;

« obj .tm_hour « « obj.tm_min « ":11 « obj.tm_sec
« 11 UTC\n\n";

// Now set the time_t value
« obj « in this month\n";

and set to 1st of the month :
// Get current time
// In local time components
// Set to 1st of the month

43: }

Compiling and running this program yields output similar to the following:

$ make

cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall gettime.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall ctime.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall asctime.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall localtime.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall mktime.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall strftime.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall main.cc
cc -0 dtime gettime.o ctime.o asctime.o localtime.0 mktime.o strftime.o main.o -
lstdc++
$./dtime
Local UNIX Epoch time is 'Wed Dec 31 19:00:00 1969'

Current time is 'Sun May 7 22:05:54 2000'

30 days from now is 'Tue Jun 6 22:05:54 2000'
That date is 6/7/2000 2:5:54 UTC

The 1st is 'Mon May 1 00:00:00 2000' in this month
which is the same as Monday May 01, 2000 at 12:00 AM

$

The first line of program output states your local time for UNIX Epoch Time. The example

output was produced in the EST zone. Yours will differ if you are in a different time zone. This

is accomplished in lines 13 and 14 of main.cc, shown in Listing 11.8. Line 13 sets the UNIX

Epoch Time, which is the value (time_t) (0).

The next line of output beginning with Current time is is produced by lines 17 and 18. Line

17 sets the current date and time by calling obj. get Time ().

Line 21 adds 30 days to the current time in obj using the overloaded += operator. Then the

object is directed to cout in line 22 to display the date.

226 ADVANCED UNIX PROGRAMMING

Line 25 establishes UTC values in the struct tm members that DTime inherits. Lines 26-29

access the structure members to send a manually formatted UTC time to cout.

Line 32 obtains the current time again for object ob j. Lines 33-35 establish the first of the cur¬

rent month at midnight. Method DTime: :mktime() is invoked at line 36, and then the object

is sent to cout in line 37, displaying what the first of the current month is.

The last test in lines 39 and 40 tests the strftime (3) function by calling on the method

DTime::strftime().

Understanding the Effects of Locale
Some of the format specifiers that strftime (3) supports format according to a locale. An

example of this is the %A specifier (the full weekday name).

In the UNIX context, the locale represents the language and cultural rules that are used on a

particular host system. It defines the language used for certain messages and the lexicographic

conventions for date and time. Locale also establishes the character set that is to be used.

The locale setting will determine whether, for example, your system uses the English names for

the days of the week or French names. The names of the months are also affected by locale.

Lexicographical conventions such as the %X specifier dictate whether the time should be shown

in 12- or 24-hour format, for example.

For more information about locale, view the man (1) page for mklocale (1) under FreeBSD.

Summary
This chapter covered the UNIX time management and conversion functions. The

next chapter covers the subject of converting user ID and group ID names into

usernames and group names, and vice versa. These are useful functions when

working with stat (2) and f stat (2), for example. In addition, the password data¬

base routines will be covered.

CHAPTER 12

USER ID, PASSWORD, AND
GROUP MANAGEMENT

When you log into your UNIX system, you provide a username and a password at the

login prompt. The login (1) program looks up that username in a database and

obtains your registered password. It encrypts the password you supply at login and

compares it to the one that is registered. If they are equal, the login (1) program lets you pass

in peace.

Once you are logged in, however, you become just a number to the UNIX kernel. This user ID

number simplifies user and security management for the kernel. In addition to logging in with

a user ID, you log in with a group ID.

In this chapter, you will learn about the following:

• User ID functions getuid(2) and geteuid(2)

• Group ID functions getgid(2) and getegid(2)

• How to change your effective user ID and group ID

• The /etc/password file and its support functions

• The /etc/group file and its support functions

• Supplementary groups and their functions

Introduction to UNIX User Management
To find out what user ID number you are, the id (1) command can be used:

$ id
uid=1001(me) gid=2010(mygrp) groups=2010(mygrp), 2011(dev)

$

The id (1) command indicates that the user me is user ID number 1001 and is a member of

group number 2010. The user and group names are shown in brackets. These were obtained

by looking up the user ID and group ID numbers in the password and group file databases,

respectively.

228 ADVANCED UNIX PROGRAMMING

Understanding Username and User ID Numbers
The id (1) command previously reported that username me was user ID 1001. Another term

for the user ID number is the uid number. This is derived from the fact that UNIX systems

today keep the user ID number in the C data type uid_t. The following summarizes these

ideas:

Username me

User ID (uid) number 1001

The uid number is how the UNIX kernel knows you. Files and IPC resources that you create

will have the owner set to this number.

Understanding Username root
The uid number 0 is special under UNIX. It is known as the root user ID, though it need not

be named root. Another term used for this user account is super user. The 0 (zero) uid num¬

ber enjoys unrestricted access to the UNIX system as a whole. This is naturally the reason that

this account is very strictly guarded.

If you administer a UNIX system (possibly your own), you can be root when you want to be.

While this might be fun or convenient, you should do most of your chores in a non-root

account where possible. This allows the kernel to protect itself from harm when accidents

occur (and they will).

The Group Name and Group ID Numbers
In the same way that the uid number refers to a username, the group ID number is used by

UNIX to refer to a group name. The C data type gid_t is used for group numbers.

Consequently, the group ID number is frequently referred to as the gid number.

The group file permits one user to be a member of multiple groups. This permits more flexibil¬

ity in giving out access, since users can frequently be members of several functional groups.

Understanding gid Zero
Like the uid value of zero, the gid value of zero grants unrestricted access to resources at the

group level. While this is not the same as being the super user, it still grants dangerous access.

Consequently, this group is usually granted only to the root account, or a special administra¬
tion account.

The getuid(2) and geteuid(2) Functions
When the id (1) command runs, it needs to find out what user and group it is running under.

This is accomplished by the getuid(2) and geteuid(2) functions. The function synopsis is as
follows:

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 229

#include <unistd.h>
#include <sys/types.h>

uid_t getuid(void);

uid_t geteuid(void);

The getuid(2) function returns the real uid number it is operating under, while geteuid(2)

returns the effective uid. There are no errors returned; these functions always succeed.

The geteuid (2) function returns the effective uid that is currently in force. UNIX processes

can arrange to become other uid values temporarily through functions such as setuid(2). For

security reasons, setuid (2) functionality is severely restricted. The differences between a real
user ID and an effective user ID will be discussed shortly

Thegetgid(2) and getegid(2) Functions
The id (1) command must determine the gid it is operating under. The getgid (2) and

getegid(2) functions are shown in the synopsis for this purpose:

#include <sys/types.h>
#include <unistd.h>

gid_t getgid(void);

gid_t getegid(void);

The getgid(2) function returns the real group ID number, and the getegid(2) function

returns the effective group ID. There are no errors to check; these functions always succeed.

Real, Effective, and Saved User ID
The preceding functions dealt with real and effective user IDs and group IDs. There is a third

level of identification known as the saved user ID and group ID. Three levels of user ID and

group ID can be very confusing. The explanations provided for user ID in the following sec¬

tions apply equally to group ID.

The Effective User ID
Although the setuid (2) call has not been covered yet, recall that it can change the effective

user ID for a process. The effective user ID determines what level of access the current process

has. When the effective user ID is zero (root), then the process has unrestricted access, for

example.

The Real User ID
The real user ID is what it sounds like. It identifies who you really are. For example, even

when you have the effective user ID of root, the real user ID identifies who really is perform¬

ing functions under UNIX.

230 ADVANCED UNIX PROGRAMMING

The real user ID is normally set only by the login (1) program and remains unchanged for the

remainder of the session. The exception to this rule is that root can change its real user ID.

This is how login (1) is able to establish your real ID.

The Saved User ID
The saved user ID value is established by root calling setuid (2) or when a new program is

started by execve(2) (see Chapter 19, “Forked Processes”). When a new executable file is

started, the effective user ID that is in force at the time is copied to the saved user ID.

This is helpful when the current process is running an effective user ID that is different from

the real user ID. When the current process needs to call execve (2) to start a new executable,

its effective user ID might be changed if the new executable has the set - user - ID bit on. By

saving the effective user ID, the process is permitted to call setuid(2) to switch back to the

saved user ID.

The Identification Role Summary
The following list summarizes the purpose of the various identifications that are made within

the UNIX kernel and the controlling ID involved:

Real user ID Identifies the real user

Real group ID Identifies the real group

Effective user ID Determines access

Effective group ID Determines access

Supplementary groups Determine access

Saved user ID Saves the effective user ID

Saved group ID Saves the effective group ID

Notice in this list that the effective user ID, effective group ID, and supplementary groups

determine the access that the process has to restricted objects such as files. The discussion of

supplementary groups will be deferred until the end of this chapter.

Setting User ID
The real and effective user IDs can be changed under the correct conditions. These UNIX func¬

tions are strictly controlled because they change the accountability and the access of the calling
process involved.

The setuid(2) function permits the real user ID to be changed. seteuid(2) allows the effec¬

tive user ID to be altered. The function synopsis for both is as follows:

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 231

#include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);

int seteuid(uid_t euid);

These functions return 0 when successful and -1 if they fail. The value of errno will be set
when the call fails (errors EPERM or EINVAL can be returned).

EPERM—Operation Not Permitted
that is not permitted.

Note

This error states that the function requested an operation

Table 12.1 summarizes how the setuid(2) function affects the various user ID values that the

kernel maintains for the process. Note that a non-root process can change the effective user
ID only for the current process.

TABLE 12.1 User ID Changes Made by setuid(2)

User ID As root As non-root

Real Set Unchanged

Effective Set Set

Saved Set Unchanged

Table 12.2 summarizes the ways that executing a new program affects the user ID values.

Notice that the real user ID is never changed by executing a new program. The effective user

ID is changed by execve (2) only when executables have the set - uid bit enabled. The saved

user ID value is always the effective user ID that was in effect.

TABLE 12.2 User ID Changes Made by execve (2)

User ID Noset-uidBit With set-uid Bit

Real Unchanged Unchanged

Effective Unchanged Owner of executable file

Saved Effective Effective

232 ADVANCED UNIX PROGRAMMING

Note

Group ID values function in the same manner as the user ID values shown in Tables 12.1 and 12.2.

The exception is that when execve(2) starts an executable with the set -gid bit on, the effective

group ID comes from the group owner of the file.

Setting Group ID
Group ID values can be altered according to the same rules as user ID values. For complete¬

ness, these functions are shown in the following sections.

The functions setgid(2) and setegid(2) establish the new real and effective group ID values,

respectively. The function synopsis is as follows:

#include <sys/types.h>
#include <unistd.h>

int setgid(gid_t gid);

int setegid(gid_t egid);

These functions return 0 when successful. Otherwise, -1 is returned, and an error code is

available in errno.

The FreeBSD Function issetugid(2)
Since FreeBSD release 3.0, the function issetugid(2) has been supported. Its synopsis is as

follows:

#include <unistd.h>

int issetugid(void);

The issetugid(2) function returns the value 1 if the process is considered tainted and 0 oth¬

erwise. A tainted process is one in which the execve(2) call established new effective user ID

and/or group ID values because of the set - uid/gid bits on the executable file. A process can

also become tainted if any of the real, effective, or saved user ID/group ID values has changed

since the executable file started its execution.

Processes inherit the tainted status when fork(2) is called. The tainted status can be cleared

by restoring the effective user ID and group ID values to the real user ID and group ID values.

Then call execve(2) to execute a new program that has not had the set -uid/set - gid bits set

(or the ID values matched the real ones).

The purpose of this function is to give the library functions a reliable way to determine if the

present user ID and group ID values can be trusted to identify the user.

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 233

Warning

The issetugid (2) function is not portable to non-BSD platforms.

The /etc/passwd File
The information database for the username is stored in a simple text file named /etc/passwd.

This file is formatted as a number of different colon-separated fields. A small example is
shown:

root:bbCsSRB7BZfM.:0:0:root:/root:/bin/sh
bin:*:1:1:bin:/bin:
daemon:*:2:2:daemon:/sbin:
adm:*:3:4:adm:/var/adm:
lp:*:4:7:lp:/var/spool/lpd:
mail:*:8:12:mail:/var/spool/mail:
news:*:9:13:news:/var/lib/news:
uucp:*:10:14:uucp:/var/spool/uucppublic:
man:*:13:15:man:/usr/man:
postmaster:*:14:12:postmaster:/var/spool/mail:/bin/sh
www:*:99:103:web server:/etc/httpd:/bin/sh
nobody:*:-1:100:nobody:/dev/null:
ftp:*:404:1::/home/ftp:/bin/sh
jan:/WzbqfJwMa/pA:503:100:Jan Hassebroek:/home/j hassebr:/bin/ksh
postgres :gXQrO/hl\lwy5IQ: 506:102:Postgres SQL:/usr/local/postgres:/bin/sh
student 1:6YI\IV6cIZxiM2E :507:104:Student 01: / home/student 1: / bin/ksh
$

Table 12.3 describes the fields, using user jhassebrasan example.

TABLE 12.3 The /etc/passwd Fields

Field Number Value Shown Description

1 jan Username

2 /WzbqfJwMa/pA Encrypted password, if present

3 503 The user ID number for this user

4 100 The group ID number for this user

5 Jan Hassebroek The name of the user; also known as the GECOS field

6 /home/jhassebr The home directory

7 /bin/ksh The shell program for this user

234 ADVANCED UNIX PROGRAMMING

Notice that field 5 contains the user’s full name.

Note

UNIX systems today also implement shadow password files. These are readable and writable only to

the super user. This improves system security by keeping the encrypted passwords hidden.

If a shadow password file is being used, a single asterisk (*) or x replaces the password in the tradi¬

tional /etc/passwd file.

The Comment Field
The Comment field is also known as the GECOS field, presumably due to influence from the

Honeywell GECOS operating system in times past. This field can be subdivided into comma-

delimited subfields, as described in Table 12.4.

TABLE 12.4 The Subfields of the Comment/GECOS Field

Field Example Description

1 Jan Hassebroek User's full name

2 3rd Floor Office location

3 X5823 Office telephone or extension number

4 905-555-1212 Home telephone number

In the /etc/passwd file, this would appear as

...:Jan Hassebroek,3nd Floor,x5823,905-555-1212:...

These extra subfields are optional. Comment subfields supply extra information to facilities
like the finger(1) command does.

Using the & Feature of the Comment Field
The Comment field also supports the use of the ampersand (&) as a substitution character.

When this appears, the username from field 1 is substituted and the first letter is capitalized.

The Comment field could take advantage of this feature as follows:

...:& Hassebroek,3rd Floor,x5823,905-555-1212:...

Here, the username j an is substituted for the ampersand character, and the j is capitalized.

After the substitution is complete, the first subfield would indicate the name is Jan
Hassebroek.

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 235

The Password Database Routines
To ease the burden of searching the /etc/passwd file, the getpwent (3) function can be used:

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent(void);

void setpwent(void);

void endpwent(void);

The getpwent (3) function will automatically open the /etc/passwd file, if it hasn’t already

been opened. Then a database entry with the fields already parsed and converted is returned

in the structure passwd. The returned pointer is valid only until the next call to getpwent (3)

is made.

If the first entry did not contain the information you wanted, you can continue to call

getpwent (3) for more entries until it returns a null pointer. The null pointer indicates that it

has reached the end of the file (or an error has occurred).

When you cease processing password file entries, the endpwent (3) function is called to close

the implicitly opened password file. Alternatively, if you need to scan the database again, you

call setpwent (3) to rewind to the start. Calling setpwent (3) is more efficient than calling

endpwent (3), because endpwent (3) requires the file to be reopened the next time

getpwent (3) is called.

The passwd Structure
The getpwent (3) function returns a pointer to a static structure, which looks like this:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user id */
gid_t pw_gid; /* group id */
char *pw_gecos; /* comment field */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

Reviewing the layout of the /etc/passwd fields, you’ll see a one-to-one correspondence

between them and the passwd structure. The getpwent (3) function performs all of the grunt

work of converting / etc/passwd numeric fields and separating the other fields into C strings.

Error Handling for getpwent (3)
When the getpwent (3) function returns a null pointer, this can indicate that the end of the

password database was reached or that an error occurred. You must check the errno value to

distinguish between them. To do this, you must zero errno prior to calling getpwent (3).

236 ADVANCED UNIX PROGRAMMING

struct passwd *pwp;

errno = 0; /* IMPORTANT: Clear error code */
pwp = getpwent(); /* Get passwd entry */
if (!pwp) {

if (errno != 0) {
perror("getpwent() failed!");
abort();

}
/* Else end of password database */

}

It is very important to remember that you must zero the errno value before calling

getpwent(3).

The fgetpwent(3) Function
Sometimes it is desirable to maintain a password file separately from the system password file

A private password file might be used to protect access to certain server resources. The

fgetpwent (3) function on some UNIX systems is available for this purpose:

#include <stdio.h>
#include <pwd.h>
#include <sys/types.h>

struct passwd *fgetpwent(FILE *f);

Notice that this function requires that you provide a FILE pointer. This implies that you have

opened the stream, and the pointer represents a valid open file.

The fgetpwent (3) file otherwise performs precisely the same as the getpwent (3) function.

Each successive password entry is returned by a pointer to a passwd structure.

BSD and AIX 4.3 do not support the fgetpwent (3) function. However, SGI IRIX 6.5, UnixWare 7,

HPUX-11, and Linux do support fgetpwent (3).

The putpwent(3) Function
The naming of this function is not quite consistent with the fgetpwent () function, but the

putpwent (3) function is indeed its counterpart. The fgetpwent (3) function lets you scan a

password database of your choice, and the putpwent (3) function allows you to write a pass¬
word database of your choice.

#include <stdio.h>
#include <pwd.h>
#include <sys/types.h>

int putpwent (const struct passwd *p, FILE *f);

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 237

The input argument p consists of a passwd structure to be written out. The second argument f
must be an open FILE that is capable of writing.

The function returns the integer value 0 if the function succeeds. Otherwise, -1 is returned
and an error code can be found in errno.

FreeBSD does not support the putpwent(3) function. SGI's IRIX 6.5, UnixWare 7, Solaris 8, AIX4.3,

HPUX-11, and Linux do support the putpwent (3) function, however.

The getpwuid(3) Function
Sequentially calling the getpwent (3) function to look up one user ID is not convenient to the

programmer. The function getpwuid(3) is an improvement:

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

To obtain the password entry for the current real uid, you could write

struct passwd *pwp;

if (!(pwp = getpwuid(getgid())))
puts("No password entry found!")!

else
printf("real username %s\n",pwp->pw_name);

It can happen that there is no password entry for a user ID being looked up, so errors should

be tested. Even when your current process is running under its real ID, it is possible that the

database entry being sought was deleted. Always test for errors.

When you must distinguish between “not found” and an error, it is recommended that you

clear errno prior to calling getpwuid(3). Otherwise, it is impossible to make the distinction.

When a null pointer is returned and errno remains zero, then it is likely that the entry being

sought does not exist.

The Is (1) command is an example of a UNIX command that must map the numeric user ID

from the information returned by stat (2) to a username that can be displayed. The

getpwuid (3) function is used for this purpose.

The getpwnam(3) Function
Sometimes you need to look up the password entry by username, such as in the login (1)

program, for example. The function synopsis for getpwname(3) is as follows:

238 ADVANCED UNIX PROGRAMMING

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwnam(const char *name);

The getpwnam(3) function simply takes the C string that contains the username and performs

the lookup for you. If a match in the password database is found, the pointer to the passwd

structure is returned. Otherwise, a null pointer is returned (not found, or an error occurred).

To display the home directory of the mail user account, you might code

struct passwd *pwp;

if ((pwp = getpwnam("mail")) != 0)
printf("mail H0ME=%s\n",pwp->pw_dir);

Since a null pointer returned may indicate an error, you should clear errno before calling

getpwnam(3) to make the distinction. If errno is not zero when a null pointer is returned, an

error has occurred.

The Group Database
The previous section covered library functions that work with the password database.

Functions that search the group database will be covered in this section.

The /etc/group File
The group database has traditionally been a simple text file /etc/group. Its format is similar to

the password database, and a small example is as follows:

root::0:root
bin::1:root,bin,daemon
daemon::2:root,bin,daemon
sys::3:root,bin,adm
adm::4:root,adm,daemon,wwg
lp::7:lp
mem::8:
kmem::9:
mail::12:mail
news::13:news
uucp::14:uucp
man::15:man
users::100:student 1,jan
postgres::102:wwg
nogroup::-1:
nobody::-1:

The format of the group database is illustrated in Table 12.5.

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 239

TABLE 12.5 The Group Database Fields

Field Example Description

1 users Group name

2 Group password (if any—none shown here)

3 100 The group ID number

4 studentl,jan The list of usernames that belong to this group

Each text line in the /etc/group database is composed of colon-separated fields. The fourth

field is a list of usernames that belong to this group, separated by commas.

Functions getgrent(3), setgrent(3), and endgrent(3)
Like the password database, the group database has its own set of functions for lookups. The

function synopsis for getgrent (3), setgrent (3), and endgrent (3) is as follows:

#include <sys/types.h>
#include <grp.h>

struct group *getgrent(void);

int setgrent(void);

void endgrent(void);

The function getgrent (3) automatically opens the group database when necessary. The

getgrent (3) function can be used to scan the group database by calling it until a null pointer

is returned. The database is rewound by calling setgrent (3), or you can close the database by

calling endgrent (3).

When getgrent (3) returns a null pointer, this can indicate that an error occurred. To distin¬

guish between end of file and an error, you must test errno. This requires that errno be

zeroed before making the call.

Understanding the group Structure
The routines just presented return the group structure. This structure is shown in the follow¬

ing synopsis:

struct group {
char *gr_name;
char *gr_passwd;
gid_t gr_gid;
char **gr_mem;

/* group name */
/* group password */
/* group id */
/* group members */

240 ADVANCED UNIX PROGRAMMING

Again, there is a correspondence between the group structure members and the group file

fields. The gr_name entry points to a C string that contains the group name. The gr_passwd

entry will point to a C string containing the group’s password, if one exists. If no password is

configured, this will be a pointer to an empty string (it will not be a null pointer). The gr_gid

member holds the group ID value.

The last structure member, gr_mem, points to a list of C strings. The last pointer in this list is a

null pointer to mark the end of the list. Each string in this list is a username that is a member

of the group.

The following example shows how the entire group database can be scanned, with the group

and member usernames listed as shown:

struct group *gp;
int x;

while ((gp = getgrent()) != 0) {
printf("gr_name='%s', gr_passwd='%s'\n",

gp->gr_name,
gp->gr_passwd);

for (x=0; gp->gr_mem[x] != 0; ++x)
printf(" member='%s'\n",gp->gr_mem[x]);

}

endgrent(); /* Close the database */

Notice how the for loop tests for the null pointer in gp->gr_mem[x].

The fgetgrent(3) Function
To allow the programmer to process private copies of a group-formatted database, the

fgetgrent (3) function is available on some platforms. Its synopsis is as follows:

#include <stdio.h>
#include <grp.h>
#include <sys/types.h>

struct group ‘fgetgrent(FILE ‘stream);

The input argument requires an open FILE. The function fgetgrent (3) returns null if no

more entries exist on the stream or an error occurs. To test for an error, clear the err no value
prior to making the call.

Note that there is no putgrent (3) function or equivalent available. If you need to write group
database records, you will have to write the code yourself.

Note

There is no support for fgetgrent(3) from BSD or AIX 4.3. However, IRIX 6.5, UnixWare 7, Solaris

8, HPUX-11, and Linux do support fgetgrent (3).

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 241

The getgrgid(3) Function
The getgrgid (3) function is provided for programmer convenience to allow lookup of group

ID values. Its synopsis is as follows:

#include <sys/types.h>
#include <grp.h>

struct group *getgrgid(gid_t gid);

The input argument is the group ID number. The function returns a pointer to a group struc¬

ture, or a null pointer. This pointer is valid only until the next call to getgrgid (3). If the

returned pointer is null, then no matching group entry was found, or an error occurred. To

determine if an error occurred, the caller must clear errno before calling getgrgid(3).

The getgrnam(3) Function
The getgrnam(3) convenience function allows the caller to look up a group database record

by group name.

#include <grp.h>
#include <sys/types.h>

struct group *getgrnam(const char *name);

The input argument to getgrnam(3) is a C string holding the group name to look up. The

returned pointer points to a structure; the pointer is valid only until the next call. If a match to

the name could not be made or an error occurs, a null pointer is returned. In order to distin¬

guish between a failed lookup and an error, you must clear the errno value before calling the

function.

Related Re-entrant Functions
A number of functions covered in this chapter so far have re-entrant counterparts on some

platforms. For example, the function synopsis for getgrnam_r (3C) under IRIX 6.5 is as fol¬

lows:

#include <stdio.h>
#include <grp.h>
#include <sys/types.h>

int getgrnam_r(const char *name,
struct group *grent,
char *buffer,
int bufsize,
struct group **grp);

/* Group name to search */
/* Used for storage */
/* Used for storage */
/* Size of buffer in bytes */
/* Pointer to return pointer */

To be re-entrant, the caller must supply the function with all of its needs. In the case of

getgrnam_r(3C) shown, argument grent and buffer are two storage areas that are provided

to the function for its own internal use. The buffer points to an I/O buffer, and it is suggested

242 ADVANCED UNIX PROGRAMMING

to be BUFSIZ bytes in size. The last argument, grp, is a pointer to a pointer, which is used to

return the group structure pointer of interest.

Most of the re-entrant functions work similarly to this one. These functions are preferred when

they are available, because they permit multithreaded code to be used. Check the man (1)

pages by appending the characters _r to the normal function name to see if you have docu¬

mentation and support for them.

Note

At the time of this writing, FreeBSD and Linux do not support re-entrant functions such as

getgrnam_r(3) for password and group files.

Supplementary Groups
Many people are members of several functional groups. Having access to files based on a single

group designation is inconvenient. This often requires the user to switch between groups,

using the newgrp(1) command, simply to gain the correct access permissions.

Supplementary groups makes it possible for a user to have access to all files at the group level,

even when the groups differ. An example illustrates this problem:

• Account erin is a member of group projectx.

• Account scott is a member of group projectq.

Erin and Scott are working on similar programs within each of their own projects (projects X

and Q), and they are in dispute. Laura, their supervisor, wants to compare the files to see how

much they differ.

The difficulty is that Erin and Scott each own their files. However, Erin’s file grants read per¬

mission to the group projectx, and Scott’s file grants read permission to the group projectq.

Laura cannot be in the correct group to read both of them at the same time.

Supplementary groups allow Laura to be a member of both groups at the same time. This

allows her to be granted read access to both files at once, even when the groups differ. Laura is

able to perform a dif f (1) command without having to copy one file and then perform a

newgrp(l) command.

The getgroups(2) Function
The id (1) command reports all of the supplementary groups that you are currently in. This is

accomplished with a call to the getgroups(2) function. Its synopsis is as follows:

#include <sys/types.h>
#include <unistd.h>

int getgroups(int gidsetlen, gid_t *gidset);

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 243

The getgroups (2) function returns a list of group ID values in the array pointed to by gidset.

The list can have no more than gidsetlen values, and the number of groups returned in the

array is the return value. A return value of -1 indicates that an error has occurred (check

errno). If your platform has the sysconf (2) value for _SC_NGROUPS_MAX defined as zero, then

zero is returned by getgroups (2). This indicates no supplementary group support.

When the argument gidsetlen is zero, the return value indicates how many supplementary

groups there are to be returned. No change is made to the set given by the gidset argument in

this case. This can be used to determine how large the array should be.

Note

For many systems, the maximum possible number of supplementary groups is determined by calling

sysconf(2) using _SC_NGROUPS_MAX.

An example of getgroups(2) is found in Listing 12.1.

LISTING 12.1 getgroups.c—An Example Using getgroups(2)

1: /* getgroups.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <sys/types.h>
7: #include <grp.h>
8: #include <errno.h>
9:
10: int
11: main(int argc.char **argv,char **envp) {
12: int x;
13: int n;
14: struct group *grp;
15: int setlen = sysconf(_SC_NGROUPS_MAX);
16: gid_t *gidset = 0;
17:
18: printf("setlen = %d\n",setlen);
19: if (setlen < 1)
20: exit(1);
21:
22: /*
23: * Allocate the set to maximum size :
24: */
25: gidset = (gid_t *) malloc(setlen * sizeof *gidset);

26:
27: /*
28: * Obtain the list of supplementary groups :

29: */

/* Index */
/* groups returned */
/* /etc/group entry */
/* Max # groups */
/* sup. grp array */

/* Print max # groups */

/* Quit if we have none */

244 ADVANCED UNIX PROGRAMMING

continued from previous page

30: n = getgroups(setlen,gidset);
31:
32: /*
33: * Display the supplementary groups found :
34: */
35: for (x=0; x<n; ++x) {
36: grp = getgrgid(gidset[x]);
37: printf("Supplemental group: %5d %s\n",
38: gidset[x],
39: grp ? grp->gr_name :
40: }
41 :
42: return 0;
43: }

The program in Listing 12.1 first calls on sysconf (2) to determine what the maximum num¬

ber of supplementary groups is for this system (line 15). Once that value is known (variable

setlen), then the array gidset is allocated, in line 25, by calling malloc(3). An alternative

would have been to call getgroups (2) with a zero value for the array length. This would have

indicated how many group ID values to expect.

After the getgroups(2) function is called in line 30, the entries are displayed in the for loop

in lines 35-40. Notice the use of getgrgid (3) in line 36 to convert the group ID number into

a name (displayed in line 39).

Compiling and running the program on your system should return results similar to this:

$ make
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall getgroups.c
cc -o getgroups getgroups.o
$./getgroups
setlen = 16
Supplemental group: 1001 me
Supplemental group: 2010 mygrp
$

On this FreeBSD system, you can see that a maximum of 16 supplementary groups is sup¬

ported. Two supplementary groups are returned and reported here.

Setting Groups with setgroups(2)
The login (1) program, which determines the groups to which your account belongs, must

call on a function to establish your list of supplementary groups. This is accomplished with the
setgroups(2) function:

//include <sys/param.h>
//include <unistd.h>

int setgroups(int ngroups, const gid_t *gidset);

Chapter 12 • USER ID, PASSWORD, AND GROUP MANAGEMENT 245

The number of groups being established is given in ngroups, and the array of values is given

by the pointer g id set. This function returns 0 upon success or -1 if an error occurs. Expect to

get the error EPERM if you call this function without being the super user, because only the

super user is permitted to set supplementary groups.

Setting Groups for a Specific Username
The function initgroups(3) is a convenience function that might be used by login(1)

instead of building its own array of groups. The FreeBSD and AIX synopsis for initgroups (3)

is as follows:

/* FreeBSD and IBM AIX 4.3 */

#include <unistd.h>

int initgroups(const char *name, int basegid);

There is considerable variation of this on other UNIX platforms. Variation occurs with the

include files used and the type of the second argument. The synopsis for HPUX-11 is as

follows:

/* HPUX-11 */

#include <unistd.h>

int initgroups(char *name, gid_t basegid);

The next synopsis is valid for UnixWare 7, Solaris 8, and Linux:

/* UnixWare 7, Solaris 8, and Linux */

#include <grp.h>
#include <sys/types.h>

int initgroups(char *name, gid_t basegid);

The last synopsis is for SGI IRIX 6.5. There is no <grp. h> file included.

/* SGI IRIX 6.5 */

#include <sys/types.h>

int initgroups(char *name, gid_t basegid);

With this function, a program such as login (1) needs only to supply the user’s name in argu¬

ment name and a current group ID basegid. The function initgroups(3) builds an array of

all groups to which the named user belongs and calls on setgroups (2) to make it so.

The function returns 0 when successful or -1 when it fails (check errno). Since

initgroups (3) calls on setgroups (2), only a super user will be successful in making this

call.

246 ADVANCED UNIX PROGRAMMING

Summary
In this chapter, you learned about usernames, user ID numbers, group names, and group ID

numbers. The password and group database access routines were covered in detail. You now

should have a clear understanding of the role of real, effective, and saved user ID and group ID

identifiers. The chapter concluded with supplementary groups and how to control them.

The next chapter digs into the topic of library functions. You’ll start with static libraries and

then leap into the exciting functionality of shared and dynamically loaded libraries.

CHAPTER 13

STATIC AND SHARED LIBRARIES

Jn the early days of computer programming, a program was written completely from

scratch, because there was no code to reuse. Each program was new and unique.

Since then, programmers have recognized the value of subroutines and collected
them into libraries of one form or another.

UNIX C libraries come in two basic forms: static and shared. Each of these formats has its own
advantages. In this chapter you will learn how to

• Create and maintain static libraries

• Create and maintain shared libraries

• Define shared library search paths

• Load and execute shared libraries on demand

The Static Library
A static library is a collection of object modules that are placed together in an archive file.

Think of it as a repository of code, which is linked with your object code at link time, rather

than at runtime. In this section, you will examine how to create, use, and maintain a static

library.

Examining the Process Memory Image
Figure 13.1 shows how a small program memory image is allocated in FreeBSD and Linux.

Other UNIX platforms will use similar arrangements, but their addresses will be different.

The addresses indicated in Figure 13.1 are only approximate. In the uppermost region of

memory are the environment variables. Below them is the top of the stack, which grows

downward for most UNIX platforms. At the bottom of the stack is a slack area of unallocated

memory.

At the left side of the figure is a series of boxes that represent static library modules and pro¬

gram object modules that are used as input to the linking process. The arrows show how the

linker brings them together to form a memory image, which begins at 0x80000000 and works

its way up to 0x80049F18. This collection of regions forms what is stored in the executable

file.

248 ADVANCED UNIX PROGRAMMING

FIGURE 13.1

The composition of a

process memory image.

_ co O ®
<D 13

O £

_ CO o ® 0) 3
la -o
o -i

Input to Linker Process Memory Image

The region below 0x80000000 is reserved for any dynamic (shared) libraries that may need to

be brought into memory when the program begins its execution. This area is also used for

attaching to shared data regions of memory.

The library code, which is linked to the executable image and resides beneath the main pro¬

gram in Figure 13.1, is called static library code. It is static because once it is linked to the pro¬

gram, it never changes. This is in contrast to shared library modules, which are loaded at

execution time beneath the address 0x80000000. If you change the shared libraries, it is the

changed libraries that are loaded and executed with your program. The participating static

library code never changes once the executable file has been written.

Implementing a Static Library
To demonstrate the use of a static library, a small project that implements a Passwd class is

used. This project reinforces the concepts that were covered in Chapter 12, “User ID,

Password, and Group Management.” Listing 13.1 shows the class definition.

Chapter 13 • STATIC AND SHARED LIBRARIES 249

LISTING 13.1 passwd. h—The Include File for the Passwd Class Example

1:
2:

// passwd.h

3: #include <sys/types.h>
4:
c •

#include <pwd.h>
3 •
6: class Passwd : public passwd {
7: enum {
8: undefined, // object has no content
9: defined // object has content
10: } state; // This object's state
11: int e; // Last errno
12: protected:
13: void _dispose(); // Dispose of current content
14: void _import(struct passwd *p); // Import new contents
15: public:
16: Passwd() // Constructor
17: { state = undefined; e = 0; }
18: -Passwd() // Destructor
19: { _dispose(); }
20: inline int isValid()
21: { return state == defined ? 1 0; }
22: inline int getError() II Get errno value
23: { return e; }
24: char *getuid(uid_t uid); II Lookup uid, return name
25: int getnam(const char *name); II Lookup name, return Boolean
26: };
27:
28: // End passwd.h

The code in Listing 13.2 implements the methods for Passwd_getuid () and

Passwd::getnam().

LISTING 13.2 getuid.cc—The Implementation of Passwd:getuid() and Passwd: :getnam()

Methods

1: // getuid.cc
2:
3: #include <errno.h>
4: #include "passwd.h"
5:
6: //
7: // LOOKUP UID VALUE:
8: // Returns ptr to this->pw_name
9: // Throws errno if call fails
10: //
11:
12: char *
13: Passwd::getuid(uid_t uid) {
14: passwd *p = 0;
15:

250 ADVANCED UNIX PROGRAMMING

continued from previous page

16 if (state == defined)
17 _dispose(); II Dispose of content
18
19 e = errno = 0; II Clear errno
20 p = ::getpwuid(uid); II Look up uid
21
22 if (!p) {
23 if (!errno)
24 e = ENOENT; II Use ENOENT for "not found"
25 else
26 e = errno; II Capture errno
27 throw e; II throw the error
28 }
29
30 _import(p); 1/ Copy to this object
31 return this->pw_name; II Return login name
32 }
33
34 ///./////////////
35 II LOOKUP LOGIN NAME :
36 II Returns uid_t value
37 II Throws errno if call fails
38 ///////////////////IIIIII///////////////////////////////////
39
40 int
41 Passwd::getnam(const char *name) {
42 passwd *p = 0;
43
44 if (state == defined)
45 _dispose(); // Dispose of content
46
47 e = errno = 0; II Clear errno
48 p = ::getpwnam(name); 1/ Look up uid
49
50 if (!p) {
51 if (!errno)
52 e = ENOENT; II Use ENOENT for "not found"
53 else
54 e = errno; II Else capture errno
55 throw e; II Throw the error
56 }
57
58 _import(p); II Copy to this object
59 return p->pw_uid; II Return uid #
60 }
61
62 II End getuid.cc

Listing 13.3 shows code that implements the protected methods Passwd: :_import () and

Passwd: :_dispose (). These methods manage dynamic string memory allocation and

destruction.

Chapter 13 • STATIC AND SHARED LIBRARIES 251

LISTING 13.3 import, cc—The Implementation of the Protected Passwd: :_import () and
Passwd: :_dispose() Methods

1: // import.cc
2:
3: #include "passwd.h"
4: #include <string.h>
5:
6: extern "C" char *strdup(const char *str);
7:

8: //
9: // DISPOSE OF OBJECT'S CONTENTS (IF ANY):
10: // 1. Check state (if defined)
11: // 2. Delete all allocated strings
12: // 3. Set state to "undefined"
13: //
14:
15: void
16: Passwd::_dispose() {
17: if (state == defined
18: delete pw_name;
19: delete pw_passwd;
20: delete pw_gecos;
21: delete pw_dir;
22: delete pw_shell;
23: }
24: state = undefined;
25: }
26:
27: //
28: // IMPORT A STRUCT PW INTO THIS OBJECT :
29: // 1. Dispose of current contents
30: // 2. Copy and strdup(3) member components
31: // 3. Set state to "defined"
32: //
33:
34: void
35: Passwd::_import(passwd *pw) {

36:
37: if (state == defined)
38: _dispose(); // Dispose of present content

39:
40: pw_name = strdup(pw->pw_name);
41: pw_passwd = strdup(pw->pw_passwd);

42: pw_uid = pw->pw_uid;
43: pw_gid = pw->pw_gid;
44: pw_gecos = strdup(pw->pw_gecos);
45: pw_dir = strdup(pw->pw_dir);
46: pw_shell = strdup(pw->pw_shell);

47:
48: state = defined; // Set into defined state

49: }
50:
51: // End import.cc

) {

pw_name = 0;
pw_passwd = 0;
pw_gecos = 0;
pw_dir = 0;
pw_shell = 0;

252 ADVANCED UNIX PROGRAMMING

In order to test the Passwd class that is implemented in Listings 13.1 to 13.3,amain() pro¬

gram is provided in Listing 13.4.

LISTING 13.4 main. cc—The main () Test Program for the Passwd Class

1: // main.cc
2:
3: #include <iostream.h>
4: #include <string.h>
5: ^include "passwd.h"
6:
7: int
8: main(int argc,char **argv) {
9: unsigned ux;
10: Passwd pw;
11: const char *accts[] = { "uucp", "xyzzy", "games" };

12:
13: (void) argc;
14: (void) argv;
15:
16: // Report root's home directory :
17:
18: try {
19: pw.getuid(O); // Lookup root
20: cout « "Root's home dir is " « pw.pw_dir « ".\n";

21: } catch (int e) {
22: cerr « strerror(e) « 11: looking up uid(0)\n";

23: }
24:
25: // Try a few accounts :

26:
27: for (ux=0; ux<sizeof accts/sizeof accts[0]; ++ux)

28: try {
29: pw.getnam(accts[ux]); // Lookup account
30: cout « "Account " « accts[ux]
31: « " uses the shell " « pw.pw_shell << ".\n";
32: } catch (int e) {
33: cerr « strerror(e) « ": looking up account "
34: « accts[ux] « ". \ n";

35: }
36:
37: return 0;
38: }

The main() program instantiates the Passwd class in line 10 of Listing 13.4. The first test (lines

18-23) simply looks up root’s home directory and reports it (line 20).

The second group of tests are performed in the for loop of lines 27-35. This loop looks up

the account names uucp, xyxxy, and games. The shell program for each is listed if the account

exists. Account xyzzy is not expected to exist on most systems and is provided as a test of the

error exception raised by the object pw.

Chapter 13 • STATIC AND SHARED LIBRARIES 253

The result of compiling and running this test should be something like this:

$ make getuid
CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -fPIC
**-fhandle-exceptions -g import.cc
CC -C -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fPIC
*-fhandle-exceptions -g getuid.cc
ar -r libpasswd.a import.o getuid.o
cc -C -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fPIC
^■-fhandle-exceptions -g main.cc
cc -o getuid main.o -L/home/wwg/book3-code/13 -lpasswd -lstdc++
$./getuid
Root's home dir is /root.
Account uucp uses the shell /usr/libexec/uucp/uucico.
No such file or directory: looking up account xyzzy.
Account games uses the shell /sbin/nologin.
$

To aid you with following the upcoming text, please remove the archive file, which the make
file above has produced:

$ rm libpasswd.a

The project, when compiled, consists of the following object files, which form input to the
linker:

The main program main.o

Some protected methods import.o

Methods getuid and getnam getuid.o

The object module main. o is not a reusable piece of code, but the import. o and getuid. o

modules implement a class that can be used by other projects. These two object modules will

be placed into a static library for general use.

Using the ar (1) Command to Create an Archive
The ar (1) command is used to create and maintain archive files. Since a static library is a spe¬

cial form of an archive, then the ar (1) command can be used to create a static library.

If you have the object modules import. o and getuid. o, the static library libpasswd. a can be

created as follows:

$ ar r libpasswd.a import.o getuid.o

The ar (1) command is one of those UNIX commands that break from the traditional

getopt (3) processing standard. However, most UNIX platforms today now support a leading

hyphen character for this command, allowing it to be given as follows:

$ ar -r libpasswd.a import.o getuid.o

254 ADVANCED UNIX PROGRAMMING

The - r (or simply r) that follows the command name is an option letter that causes the archive

libpasswd. a to be created if necessary and replaces the listed object modules if they already

exist. If they do not exist in the archive, the listed object modules are added to it.

The normal convention for a library is that it begins with the three letters lib. Archives use the

suffix . a. Following these conventions, you end up with a static library named libpasswd. a.

Archives can be updated after their initial creation. If you discover that the getuid. o module

has bugs in it, you can replace it with the fixed and recompiled version of the object module,

as follows:

$ ar -r libpasswd.a getuid.o

This type of update is generally performed only for large libraries. Smaller archives are usually

re-created from scratch by the make file. The following example shows how a make file creates

the static library libpasswd. a:

$ make libpasswd.a
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fhandle-exceptions
‘♦import.cc
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fhandle-exceptions
‘♦getuid.cc
ar -r libpasswd.a import.o getuid.o
$

At the completion of this session, the static library libpasswd. a is ready to be used by other
projects.

Listing the Contents of an Archive
You can list the contents of an existing archive by performing the following:

$ ar -t libpasswd.a
import.0
getuid.o
$

The option -t (or simply t) causes ar (1) to list the table of contents for the archive named.

Obtaining a Verbose Listing of an Archive
More information can be displayed by adding the option letter v for a verbose table of con¬
tents:

$ ar -tv libpasswd.a

rw-r. 1001/2010 2536 May 11 12:18 2000 import.o
rw-r. 1001/2010 2948 May 11 12:18 2000 getuid.o
$

The leftmost column shows the permission bits that were present when the module was added

to the archive. These are displayed in the same form as the Is (1) command. The numbers

1001 and 2010 in the example represent the user ID and group ID numbers, respectively. The
date and time are also shown, just left of the module filenames.

Chapter 13 • STATIC AND SHARED LIBRARIES 255

Linking with Static Libraries
The link step for shared libraries is easy to accomplish. The filename of the static library can

be placed on the link command line like any object module. Alternatively you can place the

library in a certain directory and link with it using the -1 option. The following example

shows the former method of specifying the filename:

$ cc -o getuid main.o libpasswd.a -lstdc++

In the command shown, the file libpasswd. a is simply specified on the command line, where

any *. o object file could have been given. In larger projects, it’s often desirable to place the

shared library in a central directory, /usr/local/lib, for example. When this is done, you

need to tell the linker where this special directory is, using the -L option. One or more library

can then be specified using the -1 option. The following is a simple example:

$ make getuid
cc -c -D_P0SIX_C_S0URCE=199309L -D_POSIX_SOURCE -Wall -fhandle-exceptions
*-main. cc
cc -o getuid main.o -L/home/me/myproject -lpasswd -lstdc++
$

In this example, the link step specified -L/home/me/myproject to indicate that libraries will

be found there. The option - lpasswd caused the linker to look for the library libpasswd. a, in

the indicated directory (in addition to system standard directories).

The highlights of the linking process are shown in Figure 13.2.

FIGURE 13.2

The static library linking

process.

r

CO

•d

CO A

.92, "O

256 ADVANCED UNIX PROGRAMMING

The steps used in the linking process can be summarized as follows:

1. The linking process begins with the loading of the main. o module (in this example).

2. Then, the linker notes that there are undefined references to symbols Passwd: getuid ()

and Passwd:: getnam () referenced by the main () function.

3. Since a library has been provided (libpasswd. a), this archive file is searched for an

object module that defines the symbol Passwd:: getuid. The linker locates a function

named Passwd: getnam () in the object module getuid. o, which is contained within the

archive file. The linker then extracts module getuid. o from the archive file and loads it.

In the process of doing this, the symbol Passwd:: getnam () is resolved as well, since it is

also contained in the same object module.

4. The linker reviews its list of unresolved symbols. The symbol Passwd: :_import () is

now unresolved. This new reference is from the object module getuid. o that the linker

just loaded.

5. Working from the top of the list, the linker searches the archive libpasswd. a again and

determines that it must extract and load module import. o. This satisfies the symbol

Passwd::_import().

This is an oversimplification of the linking process, since references to the C library functions

such as free(3) were ignored (for the delete C++ keyword). However, this illustrates what

happens when a static library is involved in the linking process.

From this process, it has been demonstrated that object modules are brought in by the linker

only as required. This bodes well for those who wish to use only a few functions in a large col¬

lection of functions. After all, you do not want to link with every object module if you need

only a small part of the library.

The Shared Library
In this section, you’ll learn how to create and use shared libraries. You’ve already seen hints

about the shared library, in Figure 13.1.

Limitations of Static Libraries
Figure 13.2 shows how the linker automatically extracts object modules from an archive and

loads them as required. Although linking only what you need with your program provides a

certain amount of economy, there is still duplication when looking at the system-wide picture.

Imagine a huge hypothetical static library that contains 90% of the functions used by the

Netscape Web browser. Netscape is then linked with this library, producing perhaps a 5MB

executable file. Approximately 90% of this executable file will be a copy of what was contained
in the static library.

Assume that you want to build a Web-enabled program that creates a Netscape X Window

from within your application. Your 200KB object module links with this Netscape static

Chapter 13 • STATIC AND SHARED LIBRARIES 257

library, and the resulting executable program is written out with a size of 4.5MB. Now you

have a 5MB Netscape executable and a 4.5MB program, but 90% of both programs is the same
code.

Consider further that five users running Netscape and three users running your custom appli¬

cation consume a large amount of memory within the system. Add more users, and the UNIX
kernel will start doing some serious swapping.

Shared libraries provide a mechanism that allows a single copy of code to be shared by several
instances of programs in the system.

Creating a Shared Library
In times past, shared library creation and maintenance required some real hand waving by

UNIX system administration wizards. To create a shared library for your own use under

FreeBSD or Linux, you can simply use the - shared option of the gcc (1) command. Using the

earlier example, the shared library for the class Passwd is created as follows:

$ cc -o libshared.so import.o getuid.o -shared

The gcc(1) command is executed with the -shared option, causing the output file to be writ¬

ten as a shared library rather than an executable file. In this case, file libshared. so is the

library created. The suffix . so is used to indicate shared library files under FreeBSD and

Linux.

Linking with a Shared Library
Using the shared library is straightforward, but there can be some complications. First, exam¬

ine how the link step is performed:

$ gcc main.o -o getuid -L. -lshared -lstdc++

Note the use of the -L and -1 options. The -L option specifies an additional directory to

search for a shared library. The -lshared option tells it the name of the library to search (the

prefix lib and the suffix . so are added for shared libraries, resulting in libshared. so being

searched). Because the linker knows that methods Passwd:getuid() and Passwd: :getnam()

are in the shared library, the linker simply “makes a note” about this in the final executable file

that is written. These notes allow the shared library to be loaded when the program is exe¬

cuted.

Choosing Static or Dynamic Libraries
When both shared and static libraries are available, gcc (1) normally will choose the shared

library. However, if you specify the option -static on the gcc(1) command line, the link

phase will use static libraries instead where possible.

258 ADVANCED UNIX PROGRAMMING

Listing Shared Library References
Under FreeBSD and Linux, you can check the new executable file getuid, to see if it is refer¬

encing the new shared library that was created earlier:

$ ldd ./getuid
. /getuid:

libshared.so => not found (0x0)
libstdc++.so.2 => /usr/lib/libstdc++.so.2 (0x28063000)
libc.so.3 => /usr/lib/libc.so.3 (0x2809a000)
libm.so.2 => /usr/lib/libm.so.2 (0x2811b000)

$

From the output shown, it can be seen that . /getuid is indeed referencing a shared library

named libshared. so. The not found message indicates that ldd (1) cannot locate the library.

Running the program under these conditions would confirm this:

$./getuid
/usr/libexec/ld-elf.so.1: Shared object "libshared.so" not found

$

Why didn’t the dynamic loader find the shared library? To find out why, you need to under¬

stand more about the dynamic loader.

The Dynamic Loader
Shared libraries require more attention than do static libraries. This is because shared libraries

must be found and loaded on demand.

When ldd (1) was used earlier, the dynamic loader was used to test each referenced library

found in the executable. This dynamic loader is used to perform the loading and dynamic

linking of other shared libraries.

Searching for Shared Libraries
In order for the shared library to be loaded at runtime, the dynamic loader must know where

to locate it at runtime. Just as the shell must have a search path for commands, the dynamic

loader needs a search mechanism for its libraries.

FreeBSD and Linux both share a cache file that indicates where libraries can be found. The fol¬

lowing lists where the cache files are located:

FreeBSD a.out cache /var/run/ld.so.hints

FreeBSD ELF cache /var/run/Id-elf.so.hints

Linux cache /etc/ld.so.cache

These cache files are updated by the ldconf ig(8) command under FreeBSD and Linux.

Other UNIX platforms use environment variables to select custom library directories. FreeBSD

and Linux also support these environment variables. Among the different UNIX platforms,

Chapter 13 • STATIC AND SHARED LIBRARIES 259

there are three search path variables in use. Table 13.1 lists these variables and the platforms
that use them.

TABLE 13.1 Shared Library Search Path Variables

Environment Variable UNIX Platforms

LD_LIBRARY_PATH Solaris, UnixWare, IRIX, Alpha OSF, FreeBSD, and Linux

LIBPATH AIX

SHLIB_PATH HPUX

All of these environment variables work in the same fashion as the PATH variable. A colon-

separated list of directories to be searched is provided.

Using the ld_library_path Variable
Since FreeBSD inspects the LD_LIBRARY_PATH variable, the examples given will use it. Recall

the example that was shown earlier:

$ ldd ./getuid
./getuid:

libshared.so => not found (0x0)
libstdc++.so.2 => /usr/lib/libstdc++.so.2 (0x28063000)
libc.so.3 => /usr/lib/libc.so.3 (0x2809a000)
libm.so.2 => /usr/lib/libm.so.2 (0x2811b000)

$

To fix the search difficulty with your newly created shared library, the LD_LIBRARY_PATH vari¬

able can be modified to include your current directory (using the shell variable $PWD):

$ LD_LIBRARY_PATH=$PWD
$ export LD_LIBRARY_PATH
$ ldd ./getuid
./getuid:

libshared.so => /home/me/myproject/libshared.so (0x28063000)
libstdc++.so.2 => /usr/lib/libstdc++.so.2 (0x28065000)
libc.so.3 => /usr/lib/libc.so.3 (0x2809c000)
libm.so.2 => /usr/lib/libm.so.2 (0x28l1d000)

$

Notice that, with the LD_LIBRARY_PATH modified to include your current directory, the

dynamic loader is able to locate your shared library file libshared. so. If you have other direc¬

tories already included in the present LD_LIBRARY_PATH variable, this is a better approach:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD

This simply appends your current directory to the values you already have in effect.

260 ADVANCED UNIX PROGRAMMING

Testing the ld library path Variable
With the LD_LIBRARY_PATH variable properly set, you can now run the test program, as

follows:

$./getuid
Root's home dir is /root.
Account uucp uses the shell /usr/libexec/uucp/uucico.
No such file or directory: looking up account xyzzy.
Account games uses the shell /sbin/nologin.

$

If you download the source code for this project, you will see that the output reflects a suc¬

cessful run for this test program. The No such file or directory: error message was sup¬

posed to occur as part of this test.

Position-Independent Code
There is one small matter that has been overlooked, which is important to shared libraries. For

a shared library to be effective at sharing its code with several programs, it should be compiled

in position-independent code form.

When a program is compiled in position-independent code form, it can be executed from any

memory location without regard to its starting address. This makes it possible for the same

physical memory segments to be shared virtually at different relative positions in each process

that references it.

Figure 13.3 shows Program_A and Program_B, two programs that call upon the same shared

library. The shaded areas in the memory images show where in the address space the shared

code appears. Notice that the shared library code in Program_A is lower than it is in

ProgramJB. Only one physical copy of this code exists in the system’s physical memory, which

is managed by the UNIX kernel. The shaded areas represent virtual memory mappings of the

same shared code in both processes.

For shared library code to execute in the way Figure 13.3 shows, the code must be compiled

as position-independent code. If this is not done, the dynamic loader must create multiple

copies of the same library in memory, with different starting addresses.

To compile a module as position-independent code, the gcc (1) compile option -f PIC can be
used under FreeBSD and Linux:

$ CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -fPIC
^►-fhandle-exceptions import.cc
$ cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -fPIC
^■-fhandle-exceptions getuid.cc

These commands compile the given modules into position-independent code that can be
made into a shared library.

Chapter 13 STATIC AND SHARED LIBRARIES

FIGURE 13.3

A shared library compiled

as position-independent

code.

Environment and Stack

Shared Code

_'

Program_A

Low Memory

✓

Environment and Stack

Shared Code

Program_B

Low Memory

Controlling What Is Shared
When you make a UNIX shared library, you must control what is externally visible to the user

of your library. By default, whatever remains external in the normal sense of executables will

also be visible externally to the user of your shared library. If you have functions internal to

your library, it is a good idea to define them as static functions wherever possible. This keeps

them private.

Likewise, it is a good practice to have no unnecessary global variables or common storage.

They will be visible from your shared library, also. Sloppiness in this area can cause programs

to invoke functions or global variables in your shared library that you did not intend to release

to the general public.

Comparing Static and Shared Libraries
Now is a good time to review what you have learned, and compare the pros and cons of each

type of library.

262 ADVANCED UNIX PROGRAMMING

The Benefits of Static Libraries
Static libraries cannot eliminate duplicated code in the system. However, there are other bene¬

fits to using static libraries. Some of these benefits are as follows:

• Static libraries are simple to use.

• The executable does not depend on related external components (shared libraries). The

executable contains everything it needs.

• There are no environmental or administrative issues for static libraries.

• The static library code does not need to be position-independent code.

Enjoying the Ease of Static Linking
Ease of use is often the reason for choices in the early stages of project development. Later,

when the project is reviewed, the developer might make the switch to shared libraries if this

approach makes sense.

The Independence of Static Linking
This is probably the strongest point in favor of static libraries. Once an executable is linked

statically, the program has everything it needs in its own executable file. This is important

when you want to install a program on another system, where the versions of shared libraries

that you need may or may not be present. This is also desirable if the shared libraries are

always being updated.

Examples of this principle at work can be found in your FreeBSD /sbin directory. The follow¬

ing illustrates:

$ ldd /sbin/mount
ldd: /sbin/mount: not a dynamic executable
$

If the mount (1) command requires a shared library in /usr/lib, but /usr has not been

mounted yet, then the mount (1) command would fail.

Installing Made Simpler

Statically linked programs do not require any environment variables like LD_LIBRARY_PATH to

be set up (nor would you have to choose LIBPATH or SHLIB_PATH when the code was ported

to any UNIX platform). This makes things easier for unsophisticated administrators and users
to install.

Linking when Shared Libraries Are Not Supported

Statically linking a program is important if you are running UNIX on a platform that does not

support shared libraries. This may happen on platforms in which Linux or FreeBSD is ported

to a new platform. You will also want to revert to static linking, in which the code is not com¬
piled as position-independent code.

Chapter 13 • STATIC AND SHARED LIBRARIES 263

Avoiding Licensing Restrictions

Sometimes static libraries are used only to avoid licensing issues. For example, a suite of pro¬

grams that is statically linked to a MOTIF library can be legally released. However, it cannot be

released using the shared library mechanism, because each site installing this software would

have to buy a MOTIF library license. The original developer licensed and paid for the use of

the library product, but he is not permitted to redistribute it.

The Benefits of Shared Libraries
Shared libraries have their own advantages:

• Code sharing saves system resources.

• Several programs that depend on a common shared library can be fixed all at once by

replacing the common shared library.

• The environment can be modified to use a substitute shared library.

• Programs can be written to load dynamic libraries without any prior arrangement at link

time. For example, Netscape can be told about a plug-in, which it is immediately able to

load and execute without any recompiling or linking.

Enjoying the Savings with Shared Memory
Code sharing is the shared library’s main claim to fame. A properly implemented shared

library means that you’ll have only a small amount of real memory assigned in the system to

the library code being used. The programs using the shared library require little or no addi¬

tional memory from the system. The benefit is greatest for large libraries, such as those dealing

with the X Window system.

Centralizing Code in a Shared Library
Centralizing code in a shared library is both an advantage and a disadvantage. Only you can

decide which it is for your application.

Favoring Centralized Code
If you are running production-level code in several executables, and you discover a bug in the

common shared library that they use, fixing that library will instantly fix all programs that use

it. None of the executables that use that common shared library require recompiling or re¬

linking.

Discouraging Centralized Code
At the same time, a working set of production-level executable programs can be busted by a

single change in the common shared library. Be especially critical of changes to include files

that change the structure and class definitions and macros. Existing programs calling on

shared libraries may need to be recompiled to reference the correct member offsets within

structures and classes.

264 ADVANCED UNIX PROGRAMMING

Redirecting Shared Libraries
The use of shared libraries allows you to control which library is used by a program by chang¬

ing the LD_LIBRARY_PATH variable. This allows you to substitute libraries without recompiling

and linking the executable. For example, you might try different versions of a shared library

for quality assurance testing. This type of substitution would require relinking the executables

if you were using static libraries.

Linking Dynamically at Runtime
This is something you simply cannot do with a static library. Your program can indicate a

shared library filename and function entry-point name, and the dynamic loader will take care

of loading the shared library module and pass control to it. This allows your program to call

on library modules without any prior arrangement.

Dynamic Library Loading
Most shared libraries are loaded dynamically when the program is started (on some platforms

this behavior can be customized). However, when Netscape starts up, it does not know, for

example, that it is going to need the Adobe Acrobat plug-in. The user does not want to wait

while Netscape loads every possible plug-in at program startup. Consequently, only when

Netscape has determined that it needs Adobe Acrobat support does it call on the dynamic

library loader.

Opening the Shared Library
Opening a shared library causes a search for the library file to be performed. Then it is loaded

into shared memory and made available for use. The function that accomplishes all of this is

thedlopen(3) function:

#include <dlfcn.h>

void *dlopen(const char *path, int mode);

When calling diopen (3), argument mode must be specified as RTLD_LAZY or RTLD_NOW. This

determines how references are resolved within the shared library itself.

The pointer returned by dlopen (3) is a handle to the open shared library. The path argument
specifies the name of the shared library.

Mode RTLD_LAZY

When a shared library is loaded into memory, it may have shared library dependencies of its

own. For example, a shared library may need to call on printf (3), which is in another shared
library.

When the mode argument is given as RTLD_LAZY, these references are resolved as the execution

encounters them. For example, when printf (3) is called from within the shared library, the

Chapter 13 • STATIC AND SHARED LIBRARIES

call will automatically reference the shared library that contains that code (it may or may not

already be loaded).

Mode RTLD_N0W

This mode causes all outstanding references to the shared library to be resolved immediately

upon being loaded. For example, if the shared library calls printf (3), this reference will be

resolved before the execution of the shared library begins.

This is useful when you don’t want the execution to proceed if any of the other shared libraries

cannot be found and loaded. This method can lead to faster execution, because the dynamic

symbols are resolved all at once. Otherwise, RTLD_LAZY is preferred for its efficiency.

Reporting Errors
The dlopen (3) call returns a null pointer when it fails. To provide a meaningful error message

to the user, you call on the dlerror(3) function:

#include <dlfcn.h>

const char *dlerror(void);

The dlerror(3) function returns a string pointer describing the last error that occurred. It is

only valid until the next call to any of the dynamic library functions is made.

Obtaining a Shared Reference Pointer
Once the shared library is open, you can obtain a pointer to a function or a data structure by

calling on dlsym(3):

#include <dlfcn.h>

void *dlsym(void *handle, const char *symbol);

The first argument handle is the (void *) pointer returned from the function dlopen(3). The

argument symbol is the C string containing the name of the function or external data structure

that you are interested in. If dlh contains a valid handle, you can call printf (3) dynamically

as follows:

void *dlh; /* handle from dlopen(3) */
int (*f)(const char ‘format, ...); /* Function pointer */

f = (int(*) (const char *,...))dlsym(dlh, "printf11); /* Get reference */

f("The dlsym(3) call worked!\n"); /* Call printf(3) now */

Since the function dlsym(3) returns a (void *) pointer, be very careful to code the correct

cast operator when assigning the returned pointer (f in the example). If the symbol could not

be located in the shared library, a null pointer is returned.

265

266 ADVANCED UNIX PROGRAMMING

Closing a Shared Library
When your application knows that it no longer requires the services of the shared library, it

may call upon diclose(3):

#include <dlfcn.h>

int dlclose(void *handle);

The diclose (3) function simply accepts a handle that was returned by dlopen (3) in a previ¬

ous call. Reference counts are maintained by dlopen (3) and diclose(3). When the reference

count drops to zero, the shared library is unloaded and the resources are freed.

Initialization and Destruction
When a shared library is loaded for the first time by dlopen (3), the symbol _init () is called,

if it exists. When the shared library is being unloaded, the symbol _f ini() is called, if it

exists. The function prototypes for these functions are as follows:

void _init(void); /* Called by dlopen(3) */
void _fini(void); /* Called by dlclose(3) */

This mechanism allows a shared library to initialize itself and clean up.

Applying Dynamic Loading
To apply your knowledge of dynamically loaded libraries, a dynamic library and a main pro¬

gram will be used. The program presented in Listing 13.5 is a simple subroutine that will be

dynamically loaded and exercised.

LISTING 13.5 dyn001. c—A Dynamically Loaded Shared Library

1: /* dyn001.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <stdarg.h>
6:
7: int
8: sum_ints(int n,...) {
9: va_list ap;
10: int x;
11 : int sum = 0;
12:
13: va_start(ap,n);
14:
15: for (; n>0; --n) {

16: x = va_arg(ap,int);
17: sum += x;
18: }
19:

Chapter 13 • STATIC AND SHARED LIBRARIES 267

20: va_end(ap);
21:
22: return sum;
23: }
24:
25: /* End dyn001.c */

The program in Listing 13.5 is a simple test function that sums a variable number of argu¬

ments. The program in Listing 13.6 is the main () program, which will invoke it.

LISTING 13.6 dlmain. c—An Example Program That Dynamically Loads and Calls a Function

1: /* dlmain.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <string.h>
6: #include <dlfcn.h>
7:
8: extern int strcasecmp(const char *s1, const char *s2);
9:
10: int
11: main(int argc,char **argv) {
12: int isum = 0; // Sum variable
13: void *dlh = 0; // Dynamic library handle
14: int (*sum_ints)(int n,...); // Dynamic function pointer

15:
16: if (argc <= 1 || strcasecmp(argv[1],"D0NT_L0AD") != 0) {
17: dlh = dlopenj"libdyn001.so",RTLD_LAZY);
18: if (!dlh) {
19: fprintf(stderr,"%s: loading ./Iibdyn001.so\n",dlerror());

20: return 1;
21: }
22: }
23:
24: sum_ints = (int (*)(int,...)) dlsym(dlh,"sum_ints");

25: if (!sum_ints) {
26: fprintf(stderr,"%s: finding symbol sum_ints()\n",dlerror());

27: return 1;

28: }
29:
30: /*
31: * Call the dynamically loaded function :

32: */
33: isum = sum_ints(5,1,2,3,4,5);
34: printf("isum = %d\n",isum);

35:
36: if (dlh)
37: dlclose(dlh);

38:
39: return 0;
40: }
41:
42: /* End dlmain.c */

268 ADVANCED UNIX PROGRAMMING

An examination of Listing 13.6 reveals that the main () program uses the following basic steps:

1. A test is made in line 16 to see if any arguments were supplied on the command line. If

not, or if the argument was not DON' T_L0AD, then the function dlopen (3) is called to

open the shared library libdyn001. so, using RTLD_LAZY.

2. The symbol sum_ints is looked up in line 24. It is expected to be a pointer to a function

int (*)(int,.. .).

3. The pointer from step 2 is tested. If null, it means that the function was not known to

the shared library, and an error message is reported (line 26).

4. The dynamically loaded function sum_ints () is called in line 33.

5. The shared library is closed and unloaded in lines 36 and 37.

Compiling the program is accomplished as follows:

$ make dlmain
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall dlmain.c
CC -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall dyn001.c
cc -o libdyn001.so -shared dyn001.o
cc -o dlmain dlmain.o
$

Create a new login session, or log out and log in again. This will bring LD_LIBRARY_PATH to

your system default value again. Now invoke . / dlmain:

$./dlmain
Shared object "libdyn001.so" not found: loading ./Iibdyn001.so
$

Note that the error message is the one produced by the code in line 19 of Listing 13.6. This

tells you that library libdyn001. so does not exist in the system standard library directories or

in any directories listed in the current LD_LIBRARY_PATH variable. Now add one entry to your
variable as follows:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD
$ export LD_LIBRARY_PATH
$

Now run the program again with the LD_LIBRARY_PATH modified:

$./dlmain
isum = 15

$

This session demonstrates that the library was loaded, and the function executed successfully.

To prove that your dlopen (3) call is doing the work, run the program one more time as fol¬
lows:

$./dlmain dont_load

Undefined symbol "sum_ints": finding symbol sum_ints()
$

If you look at line 16 of Listing 13.6, you’ll see that the argument dont_load causes the pro¬

gram to skip the dlopen (3) call. This is the reason the error message is reported instead.

Chapter 13 • STATIC AND SHARED LIBRARIES 269

HPUX 10.2 Dynamic Library Loading
Some UNIX platforms provide similar dynamic library functionality in a different API. As an

example, the HPUX 10.2 API will be briefly presented. Only the important functions will be
discussed from the function synopsis:

#include <dl.h>

shl_t shl_load(const char ‘path, int flags, long address);

int shl_findsym(
shl_t *handle,
const char *sym,
short type,
void *value

);

int shl_definesym(
const char *sym,
short type,
long value,
int flags

int shl_getsymbols(
shl_t handle,
short type,
int flags,
void *(‘memory) (),
struct shl_symbol “symbols,

);

int shl_unload(shl_t handle);

int shl_get(int index, struct shl_descriptor “desc);

int shl_gethandle(shl_t handle, struct shl_descriptor “desc);

int shl_get_r(int index, struct shl_descriptor *desc);

int shl_gethandle_r(shl_t handle, struct shl_descriptor *desc);

A functional equivalence table showing the HPUX 10.2 functions with the dlopen(3) follows:

shl_load(3X) dlopen(3)

shl_findsym(3X) dlsym(3)

shl_unload(3X) dlclose(3)

270 ADVANCED UNIX PROGRAMMING

The HP shl_load(3X) function requires the path of the shared library. The flags argument

accepts one of these values:

BIND_IMMEDIATE Resolve the symbol references when the library is loaded. This is

equivalent to RTLD_N0W.

BINDJDEFERRED Resolve when the symbol is referenced. This is similar to RTLD_LAZY.

In addition to the above flags, a number of additional flags can be ORed with the above. These

include

• BIND_FIRST

• BIND_N0NFATAL

• BIND_N0START

• BIND_VERB0SE

• BIND_RESTRICTED

• DYNAMIC_PATH

• BIND_T0GETHER

The address argument of shl_load(3X) allows the value 0L to be used. This recommended

practice directs the function to choose an appropriate address at which to load the library.

Otherwise, the caller must have an intimate knowledge of the memory address space and sup¬
ply a suitable address.

The function shl_load (3X) returns a handle to the library loaded, or NULL is returned when it

fails. The shl_load (3X) function sets the value of errno when it fails. Errors can be reported

with strerror (3), as usual. This is in contrast to the dlerror (3) routine discussed earlier.

The shl_f indsym(3X) function is similar to the dlsym(3) function call. The handle and sym

arguments specify the shared library handle and the symbol to look up, respectively. The

handle argument can be null, which causes all currently loaded libraries to be searched for the

symbol. The return pointer value is passed via argument pointer value, and NULL is returned if
the symbol search is unsuccessful.

Argument type in the shl_f indsym(3X) call must be one of these:

• TYPE_PROCEDURE

• TYPE_DATA

• TYPE_ST0RAGE

• TYPE TSTORAGE

• TYPE UNDEFINED

Chapter 13 • STATIC AND SHARED LIBRARIES 271

The value TYPE_UNDEFINED is useful when you don’t want type-checking rules to be applied.

In fact, HP’s own documentation further states that the “first four constants may not be sup¬
ported in future 64-bit HP-UX releases.”

The function shl_f indsym(3X) returns an integer result of 0 if it is successful. Otherwise -1 is

returned, and errno is set. However, note that errno is set to 0 if the symbol could not be

found. If the symbol was found but other symbol references on which it depends could not be
satisfied, the errno value will be ENOSYM.

Finally, shl_unload(3X) performs a function equivalent to dlclose(3). The handle provided

by shl_load(3X) is used in the call to shl_unload (3X) to close and unload the shared library.

The following is a simple example that uses the HPUX 10.2 shared library functions:

shl_t h; /* HP handle to shared library */
int (*f)(int argl/* Function pointer for sum_int() */
int sum ; /* Sum variable */

if ((h = shl_load("libdyn001.si",BIND_DEFERRED,0L)) == NULL)
{ perror("shl_load()"); abort(); }

if (shl_findsym(h,"sum_ints",TYPE_UNDEFINED,&f) == -1)
{ perror("shl_findsym()"); abort(); }

sum = f(5,1,2,3,4,5); /* Sum 5 arguments */

shl_close(h); /* Close shared library */

This was a brief look at the HPUX 10.2 shared library functions. You are encouraged to view

the shl_load(3X) manual pages on the HP system to learn more about them. This brief cover¬

age allows you to plan your porting to HPUX 10.2, if you need to support it. HPUX 11 sup¬

ports the dlopen (3) functions, which you’ll find on most other UNIX platforms today.

Summary
In this chapter, you learned about the differences between static and shared libraries, how to

create and maintain them, and how shared libraries can be loaded and called dynamically. The

dynamic library support for HPUX 10.2 was also discussed to expand your knowledge for

porting purposes.

The next chapter will discuss the NDBM database routines, which are available on most UNIX

systems today. These routines allow you to manage large collections of application data within

a compact and efficient database.

: ' i ' ■ : ■ • • ■ - ■

■v!

■

CHAPTER 14

DATABASE LIBRARY ROUTINES

Applications often manage large collections of data. The larger the data set, the more

difficult it is to retrieve information quickly. Applications today can use relational

database management systems (RDBMS), but for small applications, this may not be

the most practical choice. For this reason, this chapter will explore a set of functions designed

to provide lightweight database services.

Ken Thompson produced the original Data Base Management (DBM) library at Bell Labs. A

description of the original DBM routines is found in the UNIX Seventh Edition documentation

at http://plan9.bell-labs.com/7thEdMan/index.html.

Visit the link voll /man3. bun - libraries and search for “DBM”. The original implementa¬

tion consisted of the following API set:

int dbminit(char *file)

int dbmclose(void)

datum fetch(datum key)

int store(datum key,datum content)

int delete(datum key)

datum firstkey(void)

datum nextkey(datum key)

The severest limitation of this API set was that there could be only one database open at one

time. To overcome this and other limitations, a newer implementation, known as NDBM (New

DBM), was developed by the University of California, Berkeley. This API is available on most

UNIX platforms.

The Free Software Foundation (FSF) has since improved upon the NDBM routines with the

GDBM (GNU DBM) set of routines. Software for GDBM can be downloaded and compiled on

most UNIX platforms without a hitch.

In this chapter, you will focus on the NDBM routine that is most common. This will help you

understand how existing code uses it and will allow you to use the software you have. Only a

small effort is required to graduate to GDBM, once the NDBM routines have been mastered.

274 ADVANCED UNIX PROGRAMMING

In this chapter, you will learn about

• Concurrency limitations of the NDBM database.

• How to create, open, and close an NDBM database.

• How to insert, replace, and delete records.

• How to retrieve records.

• How to process all record keys.

The NDBM Database
Before you design your application program around a NDBM database, you need to answer the

following questions:

• Will readers and writer(s) need access at the same time?

• How many writers will there be at one time?

Having multiple readers is not a problem when there is no write activity occurring. However,

the NDBM routines do not provide any protection against readers and writers in conflict. For

example, one process might delete a key that conflicts with another process that is visiting all

the keys in the database. Additionally, these routines do not permit multiple writers to the

database at one time. Despite these limitations, the NDBM routines still find many uses in

standalone and single-user solutions.

Error Handling
With the exception of dbm_close (3), all NDBM functions return an indication of success or

failure. Some functions return zero for success. A negative value is returned for failure. Other

cases are unique. These will be detailed as you review them in the upcoming sections.

You can test for errors using the call to dbm_error (3). This function returns a non-zero value

when an error has occurred. However, this function continues to return an error indication

until dbm_clearerr (3) is called. A function synopsis is provided as follows:

#include <ndbm.h>

int dbm_error(DBM *db);

int dbm_clearerr(DBM *db);

The NDBM routines will influence the errno value, but there are no standardized errors docu¬

mented for them. For portability reasons, you should rely on only the dbm_error(3) and
dbm_clearerr (3) routines and avoid interpreting errno.

Chapter 14 • DATABASE LIBRARY ROUTINES 275

Most UNIX systems will provide man(1) pages for NDBM routines under ndbm(3) or ndbm(3X).

FreeBSD does not provide any documentation for these routines. This is perhaps because dbopen(3)

is being promoted as its replacement.

Documentation for ndbm(3) can be found on the Internet, however, at the URL

http://www,opengroup.org/public/pubs/online/7908799/xsh/dbm_open.html

While FreeBSD lacks documentation on routines such as dbm_open(), this book will use section

three, as in dbm_open(3). Sun Solaris places its documentation for these routines in section 3, while

others place it in section 3X or 3C.

Opening an NDBM Database
The dbm_open (3) function is used to create or open a database for use. Its synopsis is as fol¬

lows:

//include <ndbm.h>

DBM *dbm_open(const char *file, int open_flags, int filejnode);

The first argument, file, specifies the pathname of the database. Note that some implementa¬

tions append a suffix to this name (FreeBSD adds .db). Other implementations may create two

files with different suffixes appended. The string supplied in the argument file remains

unchanged.

The argument open_f lags specifies flag bits that would be supplied to the open (2) call. These

include

• 0_RD0NLY

• 0_RDWR

• 0_CREAT

• 0_EXCL

The behavior for some flags, such as the 0_APPEND flag, will not be defined for this function

call.

The third argument, mode, forms the permission bits to apply to the creation of the new file(s).

These are passed onto the open(2) call and are subject to the current umask(2) setting.

The return value is a pointer to a DBM object if the call is successful or the value (DBM *) 0 if it

fails. The following example shows how a database might be created:

DBM *db;

db = dbm_open("mydatabase",O_RDWR|O_CREAT,0666);

Under FreeBSD, this creates a database file named mydatabase. db and opens it for reading

and writing.

276 ADVANCED UNIX PROGRAMMING

Closing an NDBM Database
An open database should always be closed before the program exits. This is accomplished with

the dbm_close(3) function:

#include <ndbm.h>

void dbm_close(DBM *db);

There is no error return from this function. The input argument db must point to an open

database or a fault may occur.

Storing Information
To insert a new record or to update an existing record, the dbm_store(3) function is used. Its

function synopsis is as follows:

#include <ndbm.h>

typedef struct {
char *dptr; /* Pointer to data */
int dsize; /* Byte length of data */

} datum;

int dbm_store(DBM *db, datum key, datum content, int store_mode);

The first argument, db, specifies the open database into which to store the record. The argu¬

ments key and content are described by the C data type datum. The key argument defines the

start of the key and its length. The content argument defines the record content and its

length.

The final argument store_mode must contain one of the following values:

• DBM_INSERT

• DBM_REPLACE

When store_mode is equal to DBM_INSERT, the new record is inserted into the database, even if

a record already exists with a matching key value. When store_mode is equal to DBM_REPLACE,

an existing record with a matching key is replaced with the content being supplied. Otherwise,
a new record is simply inserted.

The return value from the dbm_store(3) call is 0 or 1 when successful. A negative value repre¬

sents a failure. The dbm_store(3) function returns a 1 when store mode equals DBM_INSERT

and the function finds an existing record with a matching key value.

The following example shows how a phone number acting as a key and an address acting as

the data record are supplied to the dbm_store(3) function:

DBM *db;
int z;

// Open database
// Status return code

Chapter 14 • DATABASE LIBRARY ROUTINES 277

char phone_no[20];
datum key;
char address[64];
datum content;

// Phone #
// Key datum
// Record data (address information)
// Content datum

key.dptr = phone_no; // Point to key value
key.dsize = strlen(phone_no); // Set key length
content.dptr = address; // Point to record content
content.dsize = strlen(address); // Set record length

z = dbm_store(db,key,content,DBM_REPLACE); // Replace if exists
if (z < 0) {

// Handle error
dbm_clearerr(db);

The example shown will replace the record if a match is made on the telephone number in the

database. Duplicate keys can be inserted by changing the DBM_REPLACE macro to DBM_INSERT.

Fetching Information
Once information is stored, it is necessary to retrieve it quickly. The function dbm_f etch (3)

performs this function:

#include <ndbm.h>

datum dbm_fetch(DBM *db, datum key);

The dbm_fetch (3) function accepts a db argument, which specifies the database to search. The

key argument specifies the key value to look up.

The return value from dbm_f etch (3) is a datum type. A successful search is indicated by

returning a datum, which contains a non-null member, dptr. The following example illus¬

trates:

DBM *db; II Open database
char phone_no[20]; 1/ Phone #

datum key; II Key datum
char address[64]; II Record data (address information
datum content; 1/ Content datum

key.dptr = phone_no; II Point to key value
key.dsize = strlen(phone_no); II Set key length

content = dbm_fetch(db,key); II Lookup phone #
if (Icontent.dptr) {

// Key was not found in database

} else {
// Content was returned:
strncpy(address,content.dptr,

min(sizeof address-1,content.dsize));
address[sizeof address-1] = 0; // Null terminate

}

278 ADVANCED UNIX PROGRAMMING

The example shows how the telephone address is extracted from the returned datum content.

Deleting Information
Data that has been created must sometimes be destroyed later. This includes when the key

changes: The record must be deleted and inserted again with the new key. The synopsis of the

dbm_delete(3) function is as follows:

#include <ndbm.h>

int dbm_delete(DBM *db, datum key);

The function call setup is identical to the dbm_fetch(3) function. The database is chosen by

argument db, and the key value is given by the key argument. The return value is zero if the

call is successful and is negative if the call fails.

The following example deletes a telephone entry from a telephone database of addresses:

DBM *db; II Open database
char phone_no[20]; // Phone #
datum key; // Key datum

key.dptr = phone_no; II Point to key value
key.dsize = strlen(phone_no); II Set key length

if (dbm_delete(db,key) < 0) II Delete phone #
// Key was not found in database

} else {
// Record was deleted

}

Visiting All Keys
All records managed by a NDBM database are stored and managed by key values. Effective

hashing algorithms are applied to keys to make accessing specific records very efficient.

However, it often happens that you need to examine all or most records in the database. In
these situations, you may not know all the key values in advance.

The functions dbm_f irstkey (3) and dbm_nextkey (3) allow you to iterate through the keys

stored within your database. The key values will be presented in an unsorted sequence, how¬

ever. This is because hashing algorithms are used for the index. Hashed indexes cannot offer

sorted keys like the B-tree indexing algorithm, for example. If you need a sorted list, you must
first visit all the keys and then sort them in a temporary file.

The dbm_firstkey (3) and dbm_nextkey (3) synopsis is as follows:

#include <ndbm.h>

datum dbm_firstkey(DBM *db);
datum dbm_nextkey(DBM *db);

Chapter 14 • DATABASE LIBRARY ROUTINES 279

The functions both require one argument db as input. The function dbm_f irstkey (3), as its

name implies, returns the first database key. Once that function has been invoked successfully,

successive calls should be made to dbm_nextkey (3) to retrieve the remaining keys.

To visit all keys within a database, the general loop construct is as follows:

DBM *db; // Open database
datum key; // Key datum

for (key=dbm_firstkey(db); key.dptr != NULL; key=dbm_nextkey(db)) {
// Process key

}

The functions dbm_f irstkey (3) and dbm_nextkey (3) can both indicate the end of the keys,

by returning a datum, which has a null dptr pointer. When dbm_f irstkey (3) returns null in

the datum member dptr, this indicates that there are no keys in the database.

Deleting Keys with dbm_nextkey (3)
Special attention should be paid to modifications to the database during key visits. If you have

a loop constructed as in the previous example and you use the key value to delete entries in

the database, you will encounter trouble. The following shows what not to do:

DBM *db; // Open database
datum key; // Key datum

// DO NOT DO THIS:
for (key=dbm_firstkey(db);

dbm_delete(db,key);
if (dbm_error(db))

abort();

}

key.dptr != NULL; key=dbm_nextkey(db)
// Delete this key

// Something failed

) {

The example runs into trouble because the routines dbm_f irstkey (3) and dbm_nextkey (3)

assume that no changes to keys will occur while the loop runs. When keys are deleted, the

hash index blocks are modified, which may affect the way the next key is retrieved (these are

implementation-specific problems.)

If you need to perform the function just shown, another approach works:

DBM *db; // Open database
datum key; // Key datum

for (key=dbm_firstkey(db); key.dptr != NULL; key=dbm_firstkey(db)) {
dbm_delete(db,key); // Delete this key
if (dbm_error(db))

abort(); // Something failed

}

The change is subtle, but important. The next key is fetched by calling upon

dbm_firstkey(3) instead. This works because the loop always deletes the first key. By calling

dbm_f irstkey (3) again, you get the next “first” key.

280 ADVANCED UNIX PROGRAMMING

An NDBM Database Example
An example of a small application employing a NDBM database is presented in the upcoming

listings. The purpose of the application is to tree walk one or more directory names, calling

1st at (2) on each file system object. Then the 1st at (2) information is stored in the snapshot

database and indexed by the device number and i-node number. The application has been

named Snapshot.

Once a snapshot has been taken, it is possible to invoke the application again with different

command-line options. With the -c option provided, the Snapshot program will then walk

the named directories, comparing each file system’s lstat (2) information to what is stored in

the database. Any differences are then reported. This provides similar functionality to the

Tripwire[r] file integrity software.

Directory Software
In order to perform the directory tree walk, a C++ class named Dir was created. Listing 14.1

shows the Dir. h include file, which declares the class.

LISTING 14.1 Dir.h—The Dir Class Definition Source File

1: // dir.h
2:
3: #ifndef _dir_h_
4: #define _dir_h_
5:
6: #include <sys/types.h>
7: #include <dirent.h>
8:

9: //
10: //A Directory class object :
11: //
12:
13: class Dir {
14: DIR *dir;
15: char *name;
16: int error;
17: public:
18: Dir();
19: -Dir();
20: Dir &open(const char *path);
21: Dir &rewind();
22: Dir &close();
23: char *read();
24: inline int getError() { return error; }
25: inline char *getEntry() { return name; }
26: };
27:
28: #endif // _dir_h_
29:
30: // End dir.h

Chapter 14 • DATABASE LIBRARY ROUTINES 281

The class shown in Listing 14.1 implements methods to open a directory

(Dir: :open()),rewind it (Dir:: rewind ()), read entries (Dir:: read()), and close it

(Dir: :close()). Additional inline methods Dir: :getError() and Dir: :getEntry() are pro¬

vided. The destructor takes care of automatically closing the directory if necessary.

Listing 14.2 shows how the class is implemented.

LISTING

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2 Dir. cc—The Implementation of the Dir Class

// dir.cc

#include "Dir.h"
#include <errno.h>
#include <string.h>

extern "C" char *strdup(const char *str);

//
// Dir Constructor :
//

Dir::Dir() {
dir = 0;
name = 0;

//
// Dir Destructor :
//

Dir::~Dir() {
if (dir)

closed;

}

//
// Opena directory :
//

Dir &
Dir::open(const char *path) {

if (dir)
throw error = EINVAL; // Object is already open

dir = ::opendir(path); // Attempt to open directory
if (!dir)

throw error = errno; // Open failed

}
return *this;

282 ADVANCED UNIX PROGRAMMING

continued from previous page

43:
44: 11
45: // Close a directory :
46: 11
47:
48: Dir &
49: Dir::close() {
50: int z;
51:
52: if (!dir)
53: throw error = EINVAL; // Nothing to close
54: if (name) {
55: delete name;
56: name =0; //No name now
57: }
58: z = ::closedir(dir);
59: dir = 0; // No dir now
60: if (z == -1)
61: throw error = errno;
62: return *this;
63: }
64:
65: //
66: // Read a directory :
67: //
68:
69: char *
70: Dir::read() {
71: dirent *p;
72:
73: if (!dir)
74: throw error = EINVAL; // Nothing to read
75: if (name) {
76: delete name;
77: name = 0;
78: }
79:
80: p = readdir(dir); // Read the next entry
81: if (!p)
82: return name; // End of directory
83:
84: return name = strdup(p->d_name);
85: }
86:
87: //
88: // Rewind a directory :
89: //
90:
91: Dir &
92: Dir::rewind/) {
93:

Chapter 14 • DATABASE LIBRARY ROUTINES 283

94: if (!dir)
95: throw error = EINVAL; // Nothing to rewind
96: ::rewinddir(dir); // Rewind directory
97: return *this;
98: }
99:
100: // End dir.cc

The methods in the Dir class throw errno values if errors are detected. An example of this is

in lines 38 and 39 of Listing 14.2. If the opendir(3) call fails, the value in errno is thrown in

line 39. The error EINVAL is thrown if the directory is not open, and an operation such as

Dir:: read() is attempted (lines 73 and 74, for example).

The implementation of this class should be review, since Chapter 7, “Directory Management,”

covered the directory functions in detail. Only the file system object name is returned by the

Dir:: read () method (see line 84).

The Dbm Class
The Dbm class is declared in the include file Dbm. h, which is shown in Listing 14.3. This class

wraps the NDBM functions in a C++ object for convenience and simplicity. Additionally, this

approach allows exceptions and destructors to be used. The object destructor ensures that the

database is properly closed.

LISTING 14.3 Dbm.h—The Dbm Class Definition

1: // Dbm.h
2:
3: #ifndef _Dbm_h_
4: #define _Dbm_h_
5:
6: #include <sys/types.h>
7: #include <unistd.h>
8: #include <ndbm.h>
9: #include <fcntl.h>
10:
11: //
12: // A Class for the DBM Routines :
13: //
14:
15: class Dbm {
16: int flags;
17: char *path;
18: DBM *db;
19: protected:
20: int error;
21: public:
22: Dbm();
23: -Dbm();
24: Dbm &open(const

// Open flags
// Pathname of database
// Open database

// Last error

char *path,int flags=0_RDWR,int mode=0666);

284 ADVANCED UNIX PROGRAMMING

continued from previous page

25: Dbm &close();
26: datum fetch(datum key);
27: Dbm &store(datum key,datum content,int flags);
28: Dbm &deleteKey(datum key);
29: datum firstKey();
30: datum nextKey();
31: inline int getError() { return error; }
32: inline int getFlags() { return flags; }
33: inline char *getPath() { return path; }
34: };
35:
36: #endif // _Dbm_h_
37:
38: // End Dbm.h

The Dbm object manages private members flags, path, and db. The flags and path members

can be examined with the inline member functions getFlags () and getPath (). The protected

member error holds the last err no value thrown and can be examined with the inline func¬

tion getError().

The member functions open(), close(), fetch(), store(), deleteKey (), firstKey (), and

nextKey () are simply wrapper methods for the various NDBM routines you have learned about

in this chapter. The method deleteKey () could not be named delete (), since this conflicts

with the reserved C++ keyword delete.

Listing 14.4 shows the implementation of the Dbm class.

LISTING 14.4 Dbm . cc—The Implementation of the Dbm Class

1: // Dbm.cc
2:
3: #include <string.h>
4: #include <errno.h>
5: #include "Dbm.h"
6:
7: //
8: // Constructor :
9: //
10:
11: Dbm::Dbm() {
12: flags = 0;
13: path = 0;
14: db = 0;
15: error = 0;
16: }
17:
18: //
19: // Destructor :
20: //
21:
22: Dbm::-Dbm() {

// No flags
// No path
//No database
// No logged errors

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Chapter 14 • DATABASE LIBRARY ROUTINES

if (db)
close();

}
// Close database

//
// Open/Create a Database :
// NOTES:
// flags 0_RDWR, 0_RD0NLY, 0_CREAT etc. (see open(2))
// mode Permission bits
//

Dbm &
Dbm::open(const char *path,int flags,int mode) {

if (db)
throw error = EPERM;

db = ::dbm_open(path,this
if (!db)

throw error = EIO;

path = strdup(path);

return *this;

// Database already open

>flags = flags,mode);

// Open failed

// Save pathname

}

//
// Close the open database :
//

Dbm &
Dbm::close() {

if (!db)
throw error = EPERM; // Database is not open

dbm_close(db); // Close Database
db = 0;
delete path; // Free pathname
path = 0;

return *this;

}

//
// Fetch data by key :
//

datum
Dbm::fetch(datum key) {

datum content;

285

if (!db)

286 ADVANCED UNIX PROGRAMMING

continued from previous page

76:
77:
78:
79:
80:
81 :
82:
83:
84:
85:
86:
87:
88:
89:
90:
91 :
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

throw error = EPERM; // No database

content = ::dbm_fetch(db,key);
if (dbm_error(db)) {

dbm_clearerr(db);
throw error = EIO;

}
if (Icontent.dptr)

throw error = ENOENT; // Not found

return content; // Found content

//
// Replace or Insert new data by key :
//

Dbm &
Dbm::store(datum key,datum content,int flags) {

if (!db)
throw error = EPERM; // No database

if (::dbm_store(db,key,content,flags) < 0) {
dbm_clearerr(db);
throw error = EIO; // Failed

}
return *this;

}

//
// Delete data by key :
//

Dbm &
Dbm::deleteKey(datum key) {

if (!db)
throw error = EPERM; // No database

if (::dbm_delete(db,key) < 0) {
dbm_clearerr(db);
throw error = EIO; // Failed

}
return *this;

//
// Retrieve the first data key :
//

datum
Dbm::firstKey() {

Chapter 14 • DATABASE LIBRARY ROUTINES 287

128: datum d;
129:
130: if (!db)
131: throw error = EPERM; // No database
132:
133: d = ::dbm_firstkey(db);
134:
135: if (dbm_error(db)) {
136: dbm_clearerr(db);
137: throw error = EIO; // Database error
138: }
139:
140: return d;
141: }
142:
143: //
144: // Retrieve the next data key :
145: //
146:
147: datum
148: Dbm::nextKey() {
149: datum d;
150:
151: if (!db)
152: throw error = EPERM; // No database
153:
154: d = ::dbm_nextkey(db);
155:
156: if (dbm_error(db)) {
157: dbm_clearerr(db);
158: throw error = EIO; // Database error
159: }
160:
161: return d;
162: }
163:
164: // End Dbm.cc

The destructor Dbm:: -Dbm () in Listing 14.4 calls upon Dbm:: close () if it finds that private

member db is not null. This allows the database to be closed automatically, when the Dbm

object is destroyed. However, the user may call upon Dbm:: close() himself. This allows him

to re-use the object by calling the Dbm:: open () method to open a different database.

The methods Dbm: :fetch(), Dbm: :store(), Dbm::deleteKey(), Dbm: :firstKey(), and

Dbm: : nextKey () all use the datum data type in the same manner as the ndbm(3) routines. The

InoDb class that inherits from Dbm will tailor the interfaces to the application, as you will see in

listings later in this chapter.

Similar to the implementation of the Dir class, the Dbm class throws an error (EPERM) when the

database is not open and an operation is attempted on it. Unlike the Dir class, the error

thrown after a failed ndbm(3) call is always EIO. This was done because there are no docu¬

mented errors given for ndbm(3) routines. Literature indicates that only dbm_error(3) can be

288 ADVANCED UNIX PROGRAMMING

trusted, and it is only an indication of error. The values of errno are not consistently returned

for different UNIX platforms. The method Dbm:: fetch () shows an example of this in lines

79-82.

The remainder of the implementation provides a wrapper around the ndbm(3) routines.

The InoDb Class
The Dbm class is a foundation class. The Snapshot database uses a device number and an i-

node number as a key for each record. Furthermore, each record is simply the struct stat

data type. A new class, inheriting from the Dbm class, could then provide convenient interfaces

for the application involved. That is what was done with the InoDb class, which is presented in

Listing 14.5.

LISTING 14.5 InoDb.h—The InoDb Class Declaration

// InoDb.h 1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11

12

13
14

23
24
25
26
27
28
29
30
31
32
33

#ifndef _InoDb_h_
#define _InoDb_h_

#include <sys/types.h>
#include <sys/stat.h>
#include "Dbm.h"

//
// Specialized Database Class for an Inode Database :
//

class InoDb : public Dbm {
15 public:
16 struct Key {
17 dev_t st_dev; II Device number
18 ino t st_ino; II Inode number
19 };
20 protected:
21 Key ikey; II Internal key
22 public:

};

InoDb &fetchKey(Key &key,struct stat &sbuf);
InoDb &insertKey(Key &key,struct stat &sbuf);
InoDb &replaceKey(Key &key,struct stat &sbuf);
InoDb &deleteKey(Key &key);
Key *firstKey();
Key *nextKey();

#endif _InoDb_h_

// End InoDb.h

Chapter 14 • DATABASE LIBRARY ROUTINES 289

Line 14 of Listing 14.5 shows how the class InoDb inherits from the class Dbm. The type defini¬

tion InoDb:: Key is made publicly available in lines 15-19. A protected internal key member

ikey is declared in line 21.

Lines 23-28 implement new methods that feature an API that is convenient for the applica¬

tion. In each case, the key is using the InoDb: : Key type. Where data content is involved, a

struct stat is referred to.

The implementation of the InoDb class is shown in Listing 14.6.

LISTING 14.6 InoDb . cc—The Implementation of the InoDb Class

1: // InoDb.cc
2:
3: #include <errno.h>
4: #include "InoDb.h"
5:
6: //
7: // Fetch stat info by inode number :
8: //
9:
10: InoDb &
11: InoDb::fetchKey(Key &key,struct stat &sbuf) {
12: datum d, f;
13:
14: d.dptr = (char *)&key;
15: d.dsize = sizeof key;
16: f = fetch;
17:
18: if (f.dsize != sizeof (struct stat))
19: throw error = EINVAL; // Corrupt database
20: memcpy(&sbuf,f.dptr,sizeof sbuf);
21:
22: return *this;
23: }
24:
25: //
26: // Add new stat info by inode number :
27: //
28:
29: InoDb &
30: InoDb::insertKey(Key &key,struct stat &sbuf) {
31: datum k, c;
32:
33: k.dptr = (char *)&key;
34: k.dsize = sizeof key;
35: c.dptr = (char *)&sbuf;
36: c.dsize = sizeof sbuf;
37: store(k,c,DBM_INSERT);
38: return ‘this;
39: }

290 ADVANCED UNIX PROGRAMMING

continued from previous page

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

//
// Replace stat info by inode number :

//

InoDb &
InoDb::replaceKey(Key &key,struct stat &sbuf) {

datum k, c;

k.dptr = (char *)&key;
k.dsize = sizeof key;
c.dptr = (char *)&sbuf;
c.dsize = sizeof sbuf;
Store(k,c,DBM_REPLACE);
return *this;

}

//
// Delete stat info by inode number :

//

InoDb &
InoDb::delete«ey(Key &key) {

datum k;

k.dptr = (char *)&key;
k.dsize = sizeof key;
Dbm::deleteKey(k);
return ‘this;

//
// Retrieve the first key entry :

//

InoDb::Key *
InoDb::firstKey() {

datum k;

k = Dbm::firstKey();
if (!k.dptr)

return 0; // Return NULL for EOF

if (k.dsize != sizeof ikey)
throw error = EINVAL; // Corrupt?

memcpy(&ikey,k.dptr,sizeof ikey);
return &ikey; // Return pointer to key

Chapter 14 • DATABASE LIBRARY ROUTINES

88:

89: 111 / /11111/111//1/11
90: // Retrieve the last key entry :
91: //
92:
93: InoDb::Key *
94: InoDb::nextKey() {
95: datum k;
96:
97: k = Dbm::nextKey();
98: if (Ik.dptr)
99: return 0; // Return NULL for EOF
100:
101:
102:
103:
104:
105: }
106:
107: // End InoDb.cc

if (k.dsize != sizeof ikey)
throw error = EINVAL; // Corrupt?

memcpy(&ikey,k.dptr,sizeof ikey);
return &ikey; // Return pointer to key

Much of the code presented in Listing 14.6 simply makes the application interface conform to

the Dbm class interface. For example, examine the code for InoDb: :fetchKey() (lines 10-23).

The datum value d is prepared to point to the key (line 14) and establish the key size (line 15).

Then the datum value f is set by the call to fetch () (which is actually a call to Dbm::fetch ()).

Upon return from Dbm: :fetch (), the size of the returned data is checked (line 18), and EIN¬

VAL is thrown if is not correct (line 19). Otherwise, the data pointed to by f. dptr is copied to

the receiving struct stat buffer (line 20) that the application has provided as argument

sbuf. The argument sbuf is provided by reference, so the value is passed back to the caller in

this way.

The method InoDb:: insertKey () is similar (lines 29-39), with the exception that the datum c

is setup to provide the calling argument sbuf as input to the Dbm:: store () call (line 37).

Notice that the value DBM_INSERT is used in line 37, causing duplicate keys to be ignored.

The method InoDb: : replaceKey() is identical to InoDb:: insertKey (), with the exception

that Dbm: : store () is called using the value DBM_REPLACE in line 53.

The methods InoDb: :f irstKey() and InoDb:: nextKey() return a null (Key *) value if they

reach the end of the keys (lines 98 and 99). The returned key is copied to the protected inter¬

nal key ikey in line 103. The address of ikey is returned in line 104.

The Snapshot Application
Listing 14.7 shows the Snapshot. cc application source listing. This listing shows how the Dir

and InoDb objects are put to use.

291

292 ADVANCED UNIX PROGRAMMING

LISTING 14.7 Snapshot. cc—The Snapshot Application Program

1:
2:
3:
4:
5:
6:
7:
8:
9:
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// Snapshot.cc

#include <stdio.h>
^include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <pwd.h>
#include <grp.h>

#include "Dir.h"
#include "InoDb.h"

static int rc = 0; II return code
static int cmdopt_i = 0; II -i
static int cmdopt_c = 0; II -c
static int cmdopt_v = 0; II -V

static int cmdopt_h = 0; II -h

//
// RETURN BASENAME OF A PATHNAME :
//

char *
Basename(char *path) {

char *bname = strrchr(path,'/');

return Ibname ? path : bname + 1;
}

//
// COMPARE CURRENT VS PRIOR STAT(2) INFO :
//

char *
Compare(struct stat is,struct

static char cmpmsg[512];
static char dtbuf[64];
struct passwd *pw;
struct group *gr;

stat was) {
// Compare!) message buffer
// Date time format buffer
// /etc/password lookup
// /etc/group lookup

// DID THE FILE SIZE CHANGE?
if (is.st_size != was.st_size) {

sprintf(cmpmsg,"Size has changed (was %ld bytes)",
(long)was.st_size);

return cmpmsg;
}

// DID THE FILE MODIFICATION TIME CHANGE?
if (is.st_mtime != was.stjntime) {

Chapter 14 • DATABASE LIBRARY ROUTINES 293

53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:

strftime(dtbuf,sizeof dtbuf,"%x %X",localtime(&was.st_mtime));
dtbuf[sizeof dtbuf-1] = 0;
sprintf(cmpmsg,"Modification time has changed (was %s)",dtbuf);
return cmpmsg;

}

// DID THE FILE MODE CHANGE?
if (is.st_mode != was.stjnode) {

sprintf(cmpmsg,"File mode changed (was 0%03o)",was.st_mode);
return cmpmsg;

}

// DID THE OWNERSHIP OF THE FILE CHANGE?
if (is.st_uid != was.st_uid) {

if (!(pw = getpwuid(was.st_uid)))
sprintf(cmpmsg,"File ownership has changed (was uid %d)",

was.st_uid);
else

sprintf(cmpmsg,"File ownership has changed (was %s)",
pw->pw_name);

return cmpmsg;
}

// DID THE GROUP CHANGE?
if (is.st_gid != was.st_gid) {

if (!(gr = getgrgid(was.st_gid)))
sprintf(cmpmsg,"Group ownership changed (was gid %d)",

was.st_gid);
else

sprintf(cmpmsg,"Group ownership changed (was %s)",
gr->gr_name);

return cmpmsg;

}

// DID THE NUMBER OF LINKS TO THIS FILE CHANGE?
if (is.st_nlink != was.st_nlink) {

sprintf (cmpmsg,''Number of links changed (was %ld)",
(long)was.st_nlink);

return cmpmsg;

}

return NULL;

}

//
// UPDATE DATABASE OR CHECK AGAINST DATABASE :
//

void
Process(InoDb &inodb,const char *fullpath,struct stat &sbuf) {

struct stat pbuf;
InoDb::Key key;
char *msg;

294 ADVANCED UNIX PROGRAMMING

continued from previous page

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

if (Istrcmp(fullpath,"/proc"))
return; // Ignore pseudo directories

if (lstat(fullpath,&sbuf) == -1) {
fprintf(stderr,"%s: stat(%s)\n",

strerror(errno).fullpath);
re |= 4; // Error, but non-fatal
return;

}

// READY THE DATABASE KEY:
key.st_dev = sbuf.st_dev;
key.st_ino = sbuf.st_ino;

if (!cmdopt_c) {
// CREATE or UPDATE DB RECORD:
inodb.replaceKey(key,sbuf);

} else {
// LOOKUP LAST SNAPSHOT :
try {

inodb.fetchKey(key,pbuf);
} catch (int e) {

if (e == ENOENT) {
fprintf(stderr,"New %s: %s\n",

S_ISDIR(sbuf.stjnode)
? "directory"
: "object",

fullpath);
return;

} else {
fprintf(stderr,"%s: fetchKey(%s)\n",

strerror(e),fullpath);
abort(); // Fatal DB error

}
}

// COMPARE CURRENT STAT VS STORED STAT INFO :
msg = Compare(sbuf,pbuf);
if (msg) {

printf("%s: %s\n",msg,fullpath);
rc |=8;

}
}

}

//
// WALK A DIRECTORY :
//

void
walk(InoDb &inodb,const char *dirname,int inclDir=0) {

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Chapter 14 • DATABASE LIBRARY ROUTINES 295

Dir dir;
char *ent;
long pathmax;
struct stat sbuf;

// AVOID CERTAIN PSEUDO FILE SYSTEMS :
if (!strcmp(dirname,"/proc"))

return;

if (cmdopt_v)
fprintf(stderr,"Examining: %s\n",dirname);

// OPEN DIRECTORY :
try {

dir.open(dirname);
} catch (int e) {

fprintf(stderr,"%s: opening directory %s\n",
strerror(e),dirname);

re |= 2;
return; // Non-fatal

}

// INCLUDE TOP LEVEL DIRECTORIES :
if (inclDir)

Process(inodb,dirname,sbuf);

// DETERMINE MAXIMUM PATHNAME LENGTH :
if ((pathmax = pathconf(dirname,_PC_PATH_MAX)) == -1L) {

fprintf(stderr,"%s: pathconf('%s',_PC_PATH_MAX)\n",
strerror(errno),dirname);

abort();
}

char fullpath[pathmax+1]; // Full pathname
int bx; // Index to basename

strcpy(fullpath,dirname);
bx = strlen(fullpath);
if (bx > 0 && fullpath[bx-1] != 1/') {

streat(fullpath,; // Append slash
++bx; // Adjust basename index

}

// PROCESS ALL DIRECTORY ENTRIES:
while ((ent = dir.read())) {

if (!strcmp(ent,".") || !strcmp(ent,".."))
continue; // Ignore these

strcpy(fullpath+bx,ent);

Process(inodb,fullpath,sbuf);

// IF OBJECT IS A DIRECTORY, DESCEND INTO IT:
if (S_ISDIR(sbuf.st_mode))

296 ADVANCED UNIX PROGRAMMING

continued from previous page

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

walk(inodb,fullpath);

}

// CLOSE DIRECTORY:
dir.close() ;

//
// PROVIDE USAGE INSTRUCTIONS :
//

static void
usage(char *cmd) {

char *bname = Basename(cmd);

}

printf("Usage:
puts("where:");
puts(" -c
puts(" -i
puts(" -v
puts(" -h

%s [-c] [-i] [-v] [-h] [dir...]\n",bname);

Check snapshot against file system");
(Re)Initialize the database");
Verbose");
Help (this info)");

//
// MAIN PROGRAM :
//

int
main(int argc,char **argv) {

InoDb inodb;
int optch;
const char cmdopts[] = "hicv";

// PROCESS COMMAND LINE OPTIONS:
while ((optch = getopt(argc,argv,cmdopts)) != -1)

switch (optch) {
case 'i' :

cmdopt_i =1; // -i (initialize database)
break;

case 1c1 :
cmdopt_c = 1;
break;

case 1v' :
cmdopt_v = 1;
break;

case 1h’ :
cmdopt_h = 1;
break;

default :
rc = 1 ;

// -c (check snapshot)

// -v (verbose)

// -h (give help)

}

Chapter 14 • DATABASE LIBRARY ROUTINES 297

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

if (cmdopt_i && cmdopt_c) {
fputs("You cannot use -i and -c together\n'',stderr);
exit(1);

if (cmdopt_h || rc) {
usage(argv[0]);
exit(rc);

// IF -i THEN DELETE DATABASE, TO RECREATE
if (cmdopt_i && unlink("snapshot.db") == -1)

if (errno != ENOENT) {
fprintf(stderr,"%s: unlink(snapshot.db)\n",

strerror(errno));
exit(13);

}

// OPEN EXISTING DATABASE (snapshot.db) :
try {

inodb.open("snapshot");
} catch (int e) {

// IF -c OPTION, DO NOT CREATE DB :
if (!cmdopt_c && e == EIO) {

// FILE NOT FOUND: CREATE DATABASE
try {

inodb.open("snapshot",0_RDWR|0_CREAT);
} catch (int e) {

fprintf(stderr,"%s: creating snapshot db\n",
strerror(e));

exit(1);
}

} else {
// REPORT DB OPEN ERROR :
fprintf(stderr,"%s: creating snapshot db\n",strerror(e));
exit(1);

}
}

// WALK ALL DIRECTORIES GIVEN ON COMMAND LINE :
for (int x=optind; x<argc; ++x)

walk(inodb,argv[x],1);

inodb.close();

return rc;

// End Snapshot.cc

The main() program begins in line 239 of Listing 14.7. Command-line options are processed

in lines 245-271. Line 274 checks to see if the option - i was present on the command line. If

so, it deletes the database snapshot.db by calling unlink(2).

298 ADVANCED UNIX PROGRAMMING

The database is opened in line 283. However, if the database does not exist, the error EIO will

be thrown, and execution continues at line 286. If the -c option is not present on the com¬

mand line, the database is created in line 289.

Once the database is open, the remaining command-line arguments are processed in lines 303

and 304. After the for loop exits, the database is closed in line 306.

The Tree Walk
The function walk() is implemented in lines 156-216. The argument inclDir in line 157

defaults to zero (false). However, when called from the main() program, the inclDir argu¬

ment is true. This causes the directory dirname to be processed in addition to the directory

members that it contains (lines 181 and 182).

Certain directories should not be included, and /proc is one of them. Consequently, a test is

included in lines 164 and 165 to bypass / proc if it should be encountered.

The -v command-line option causes the directory being processed to be displayed on stderr

(lines 167 and 168). This is useful when you want to see the progress of a lengthy operation.

The directory dirname is opened in line 172. Lines 185-191 determine the maximum path¬

name length and allocate a buffer named f ullpath []. Variable bx (lines 192 and 195) indi¬

cates where the basename of the pathname is in the buffer f ullpath [].

Lines 202-212 form the directory-processing loop. For each entry encountered, the function

Process () is invoked. Furthermore, if the object is a directory, walk () is called recursively on

this new directory (lines 210 and 211).

Processing for walk () ends in line 215, where the directory is closed.

The Process () Function
The interesting database functionality exists in lines 101-150. Line 107 tests to see if the path¬

name in argument fullpath matches the directory /proc. If it matches, the return statement

(line 108) is executed, which causes the /proc directory to be ignored.

Line 110 performs a lstat(2) call on the object fullpath. The function lstat(2) is used

because you want to know if symbolic links have changed, not just the files to which they
point.

The key is prepared in lines 118 and 119 to indicate the device and i-node entry. If option -c

is not supplied, then the application is taking a snapshot of the file system, and the lstat (2)

information is saved (line 123). The method used is InoDb:: replaceKey (), since if this is run
on an existing database, the record should be updated.

If the option -c is provided, then a lookup is attempted by device and i-node number in line

127 instead. If the exception is EN0ENT, then the entry does not exist, and the object is

reported as being a new object (lines 130-135). If the entry is found, then the present

lstat (2) information in sbuf is compared to the prior lstat (2) information in pbuf. This is

Chapter 14 • DATABASE LIBRARY ROUTINES 299

accomplished by calling upon the function Compare () in line 144. If Compare () returns a

message pointer, then the difference is reported in lines 146 and 147. Otherwise, the function
Process () exits quietly.

The Application Function Compare ()

The function Compared is implemented in lines 37-95. The lstat (2) information in vari¬

ables is and was is compared in lines 45-92. The following comparison tests are made:

• The sizes of the object (line 45)

• The modification times (line 52)

• The permissions of the object (line 60)

• The ownership of the object (line 66)

• The group ownership of the object (line 77)

• The number of links to the object (line 88)

If no differences are found in these tests, a null pointer is returned in line 94.

Running the Snapshot Application
To compile the program, Snapshot and its companion executable EmptyDb perform the follow¬

ing:

$ make
cc -c
cc
cc
cc
cc
cc
cc
$

-c
-c
-c

-Wall -fhandle-exceptions Dir.cc
-Wall -fhandle-exceptions Dbm.cc
-Wall -fhandle-exceptions InoDb.cc
-Wall -fhandle-exceptions Snapshot.cc

-o Snapshot Snapshot.o Dir.o Dbm.o InoDb.o -lstdc++
-c -Wall -fhandle-exceptions EmptyDb.cc
-o EmptyDb EmptyDb.o Dir.o Dbm.o InoDb.o -lstdc++

This should create the executables Snapshot and EmptyDb.

Note

On many UNIX systems, the NDBM routines are included in a separate library. For this reason, you

may need to add the linking option -lndbm to link with the NDBM library.

Under FreeBSD, the NDBM functions are included in the standard C library /usr/lib/libc. so.

Consequently, under FreeBSD you have no special linking requirements, since libc.so is searched by

default.

You should now be able to provoke usage information from the executable Snapshot:

$./Snapshot -h
Usage: Snapshot [-c] [-i] [-v] [-h] [dir...]

300 ADVANCED UNIX PROGRAMMING

where:
-c Check snapshot against file system
-i (Re)Initialize the database
■V Verbose
-h Help (this info)

$

To create a Snapshot database (snapshot. db in the current directory), do not include the -c

option. The -i option is used when you want to re-initialize an existing database. Perform this

simple experiment:

$./Snapshot /tmp
$

If all went well, the program should quickly run through your /tmp directory, making notes in

the database. To compare the /tmp directory against your database, enter the command

$./Snapshot -c /tmp
$

If you have a relatively quiet system, you’ll not likely see any changes. Now make a change or

two—perhaps this:

$ Is -ltr >/tmp/dummy.file
$./Snapshot -c /tmp
Modification time has changed (was 05/14/00 20:37:35): /tmp
New object: /tmp/dummy.file
$

Because you created a new file /tmp/dummy.file, it was not in the database. Hence, it is

reported as a new file. However, note that the /tmp directory’s modification time changed, and

so it was reported. This tells you that a file was added, renamed, or deleted in that directory.

Now try something more adventuresome:

$./Snapshot -i /etc /var /tmp
Permission denied: opening directory /etc/isdn
Permission denied: opening directory /etc/uucp
Permission denied: opening directory /var/cron/tabs
Permission denied: opening directory /var/spool/opielocks
Permission denied: opening directory /var/games/hackdir
$

Since this was not run from a root account, there were some permission problems. These can
be ignored for our purposes, as follows:

$./Snapshot -i /etc /var /tmp 2>/dev/null
$

Now keep that database for a while and test it later. After an hour of using a FreeBSD system
with one user on it, the following changes were observed:

$./Snapshot -c /etc /var /tmp 2>/dev/null
Modification time has changed (was 05/14/00 16:15:38): /etc/ntp
Modification time has changed (was 05/14/00 16:15:38): /etc/ntp/drift
Size has changed (was 94415 bytes): /var/cron/log

Chapter 14 • DATABASE LIBRARY ROUTINES 301

Modification time has changed (was 05/14/00 02:02:03): /var/log
Modification time has changed (was 05/14/00 15:28:26): /var/log/lastlog
Size has changed (was 3784 bytes): /var/log/wtmp
Size has changed (was 359 bytes): /var/log/maillog.0.gz
Modification time has changed (was 05/14/00 15:28:35): /var/run/utmp
Modification time has changed (was 05/14/00 16:32:48): /var/tmp
$

This output shows what files had changed on the system (for the directories tested). The sys¬

tem that this ran on had the daemon xntpd(8) running to keep the clock synchronized.

Consequently, directory /etc/ntp and file /etc/ntp/drift were updated.

Visiting All Keys and Deletion
To test the key visitation feature and the delete capability, the program EmptyDb. cc is provided

in Listing 14.8.

LISTING 14.8 EmptyDb. cc—Emptying the Database with InoDb:: deleteKey ()

1: // EmptyDb.cc
2:
3: //include <stdio.h>
4: //include <stdlib.h>
5: //include <unistd.h>
6: //include <errno.h>
7: //include <string.h>
8: //include <sys/types.h>
9: //include <sys/stat.h>
10:
11: //include "InoDb.h"
12:
13: //
14: //MAIN PROGRAM :
15: //
16: // If the first command line argument is the word "LIST"
17: // the keys will be listed only. Otherwise the records
18: // are deleted.
19: //
20: // This test program deletes all entries from the database
21: // to demonstrate key traversal and delete operations.
22: //
23:
24: int
25: main(int argc,char **argv) {
26: InoDb inodb;
27: InoDb::Key *key;
28:
29: (void)argc;
30: (void)argv;
31:
32: // OPEN EXISTING DATABASE (snapshot.db) :

302 ADVANCED UNIX PROGRAMMING

continued from previous page

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

try {
inodb.open("snapshot");

} catch (int e) {
fprintf(stderr,"%s: creating snapshot db",strerror(e));
exit(l);

// LIST THE KEYS ONLY :
if (argc == 2 && !strcasecmp(argv[1],"LIST")) {

for (key=inodb.firstKey(); key != NULL;
key=inodb.nextKey()) {
printf("Key %d:%d from db.\n",

key->st_dev,key->st_ino);

}
return 0;

// DELETE ALL ENTRIES IN DB :
while ((key = inodb.firstKey()) != NULL) {

printf(“Delete: Inode %d:%d from db.\n",
key->st_dev,key->st_ino);

inodb.deleteKey(*key); // DELETE ENTRY

}

// CLOSE DB :
inodb.close();

return 0;

// End Snapshot.cc

Listing 14.8 simply opens the database in line 34 of the main () program (it must already

exist). If the first argument on the command line is LIST, then the for loop in lines 42-46

exercise the database using InoDb: :firstKey() and InoDb: :nextKey(). The key values are

reported in lines 44 and 45.

If no argument LIST is given, the delete loop in lines 51-55 is exercised instead. The

InoDb: :deleteKey() method is invoked in line 54.

Running the EmptyDb command in list mode is done as follows (with some output omitted):

$./EmptyDb LIST

Key 196608:142861 from db.
Key 196608:166656 from db.
Key 196608:198403 from db.
Key 196608:206340 from db.
Key 196608:63493 from db.
Key 196608:63509 from db.
Key 196608:63525 from db.

Chapter 14 • DATABASE LIBRARY ROUTINES 303

Running EmptyDb again to delete records is done as follows (with some output omitted):

$./EmptyDb

Delete: Inode 196608:142861 from db.
Delete: Inode 196608:166656 from db.
Delete: Inode 196608:198403 from db.
Delete: Inode 196608:206340 from db.
Delete: Inode 196608:63493 from db.
Delete: Inode 196608:63509 from db.
Delete: Inode 196608:63525 from db.

$

Using LIST on it now should yield no results:

$./EmptyDb LIST

$

Summary
In this chapter, you learned about the ndbm(3) set of routines. With the working Snapshot

program and the Dbm and InoDb classes, you saw how the NDBM database routines were applied

to a real-world application. The NDBM routines are ideal for small applications where multiuser

contention is not an issue.

The next chapter covers the topic of UNIX signals. Signals permit you to process asynchronous

events in your program.

'

15

16

17

18

19

20

21

22

23

24

25

26

27

PART III

ADVANCED CONCEPTS

Signals

Efficient I/O Scheduling

Timers

Pipes and Processes

Forked Processes

Pattern Matching

Regular Expressions

Interprocess Communications

Message Queues

Semaphores

Shared Memory

Memory-Mapped Files

X Window Programming

CHAPTER 15

SIGNALS

The execution of a program normally proceeds synchronously, with each step following

the previous one. Sometimes actions must be executed immediately by interrupting

this flow of execution. This may be a request to terminate the program or to process

some new action. UNIX provides for this capability with signals.

In this chapter you will learn how to

• Create and manage signal sets

• Catch signals

• Suspend signals

• Raise signals

Understanding UNIX Signals
A signal is an asynchronous software interrupt. The asynchronous nature of the signal prevents

your program from anticipating when it will arrive. Consequently, a signal action must be reg¬

istered before the signal’s arrival.

A signal will suspend the execution of the program. The signal handling procedure then

invokes the registered function or action. The function that is called to handle a signal is

known as a signal handler.

When you want to interrupt a program that is executing, you interrupt it with the signal

SIGINT. Another way of expressing this is to say that the signal SIGINT is raised. For many

people, this is accomplished by entering Ctrl+C, but the character you use may be configured

differently. To determine what your interrupt character is, the following command gets the

result shown:

$ stty -a
speed 9600 baud; 0 rows; 0 columns;
Iflags: icanon isig iexten echo echoe -echok echoke -echonl echoctl

-echoprt -altwerase -noflsh -tostop -flusho pendin -nokerninfo
-extproc

iflags: -istrip icrnl -inlcr -igncr ixon -ixoff ixany imaxbel -ignbrk
brkint -inpck -ignpar -parmrk

oflags: opost onlcr -oxtabs

308 ADVANCED UNIX PROGRAMMING

cflags: cread cs8 -parenb -parodd hupcl -clocal -cstopb -crtscts -dsrflow
-dtrflow -mdmbuf

cchars: discard = "0; dsusp = AY; eof = AD; eol = <undef>;
eol2 = <undef>; erase = AH; intr = AC; kill = AU; lnext = AV;
min = 1; quit = A\; reprint = AR; start = AQ; status = AT;
stop = AS; susp = AZ; time = 0; werase = AW;

$

The example shown is the output from the FreeBSD stty (1) command. The output of the

stty (1) command may vary on your UNIX platform. Look for the clause intr = AC in the

output. The example shows that the Ctrl+C (AC) character sends the signal SIGINT (intr).

The interrupt character raises the signal SIGINT in the executing program. Every defined UNIX

signal has a default action associated with it. By default, the SIGINT signal causes the executing

process to terminate. This signal is used for demonstration purposes in this chapter.

Reliable and Unreliable Signals
The original UNIX signal handling design using signal (3) contained a race condition. When

a signal was caught by a program, the signal’s registered action reverted to its default. To main¬

tain the same registered action, the signal handler was forced to immediately re-register its

required action. This left a small window of opportunity for the default action to be exercised

by bad timing. This is why the signal(3) API is considered unreliable.

A new set of functions, including the function sigaction (2), has been added to the list of sys¬

tem calls. These form the reliable signals API. All new program development should use this

API set. However, when the signal(3) API is discussed next, you will see that there are still a

few cases where the older API can be used for its simplicity.

Note

BSD release 4.3 and later do not implement the System V behavior of changing the registered action
to SIGJDFL. Consequently, the FreeBSD 3.4 release does not exhibit a race condition.

Registering the actions SIG_DFL and SIG_IGN can be done safely with the function signal(3).

However, you should avoid the signal(3) function otherwise.

The Unreliable signal(3) API
The signal (3) function forms the basis for the unreliable signals interface. Its function synop¬
sis is as follows:

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int)

Chapter 15 • SIGNALS 309

/* Alternatively */

typedef void (*sig_t)(int);

sig_t signal(int sig, sig_t func);

The first synopsis is rather difficult to decipher. The FreeBSD man(1) page offers a second

interpretation of the first. The signal (3) function’s first argument sig identifies the signal for

which the caller wants to register an action. The second argument func identifies the action or
the function pointer.

The return value from signal (3) is the previous action that was established at the time of the

call. Alternatively, the value SIG_ERR indicates that an error has occurred and the variable

errno should be examined for the cause.

The argument sig identifies the signal to be prepared. Table 15.1 shows some of the more

commonly used signals available under UNIX.

TABLE 15.1 Commonly Used Signals

Signal Description

SIGHUP The terminal line has hung up. This refers to when a modem line experiences a hangup

due to a loss of carrier. However, it also applies to any terminal device when it is closed for

logout(1).

SIGINT The terminal line has received the interrupt character.

SIGQUIT The terminal line has received the quit character. The default action produces a core file.

SIGUSR1 User-defined signal 1.

SIGUSR2 User-defined signal 2.

SIGTERM The process is being terminated (often the result of the kill (1) command).

SIGCHLD A child process has terminated.

SIGPIPE A write to a half-closed pipe has occurred.

SIGALRM The timer for function alarm(3) has expired.

The argument func allows the caller to register the action that is required for the given signal.

There are three possible values for the argument func. They are

SIG_DFL Default signal action

SIG_IGN Ignore the signal

function pointer The signal handler

310 ADVANCED UNIX PROGRAMMING

The SIG_DFL macro causes the system default action for the named signal to be registered. The

default action is not the same for all signals. For SIGINT, the default action causes the program

to terminate. Alternatively, the default action for SIGCHLD is to ignore the signal.

The SIG_IGN macro allows the programmer to indicate that the signal is to be ignored. Once

this action is registered, it remains in effect for the indicated signal sig until it is changed.

Note

Calling signal(3) with SIG_DFL or SIG_IGN is considered reliable. These actions can be registered

reliably by signal(3) because they do not change after a signal is raised.

The programmer may also choose to register a signal handler to be called when a signal is

received. This is accomplished by providing the functions pointer in the f unc argument. This

practice is now discouraged, because this part of the signal(3) API is unreliable on non-BSD

platforms.

The program shown in Listing 15.1 shows a simple demonstration program using the unreli¬

able signal API.

LISTING 15.1 ursigl. c—A Simple signal(3) Example Program

1: /* ursigl.c */
2:
3: #include <stdio.h>
4: #include <signal.h>
5: #include <unistd.h>
6:
7: static int count = 0;
8:
9: void
10: handler(int signo) {
11:
12: signal(SIGINT,handler); /*
13: ++count; /*
14: write(1,"Got SIGINT\n",11); /*
15: }
16:
17: int
18: main(int argc,char **argv) {
19:
20: signal(SIGINT,handler); /*
21:
22: while (count < 2) {
23: puts("Waiting for SIGINT..");
24: sleep(4); /* Snooze */
25: }
26: puts("End.");
27: return 0;
28: }

Re-instate handler */
Increment count */
Write message */

Register function */

Chapter 15 • SIGNALS 311

Line 12 of Listing 15.1 is necessary for non-BSD systems. Otherwise, only the first SIGINT sig¬

nal will be caught by the function handler!), because the signal reverts to its default action.

Compiling and running this program under FreeBSD yields the following result:

$ make ursigl
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall ursigl.c
cc -o ursigl ursigl.o
$./ursigl
Waiting for SIGINT..
ACGot SIGINT
Waiting for SIGINT..
ACGot SIGINT
End.
$

In the example session shown, the loop in lines 22-24 causes the message Waiting for

SIGINT.. to appear. Then the user presses Ctrl+C, which is shown as AC in the session output.

Immediately after Ctrl+C is pressed, the message Got SIGINT is displayed. Later, another

Ctrl+C is pressed to demonstrate that the signal can be caught more than once. The program

terminates normally after it notices that SIGINT has been received twice (see line 22). The mes¬

sage Got SIGINT comes from line 14 of Listing 15.1, demonstrating that the signal handler

was executed.

The Reliable
To use the reliable signal API, you must work with signal sets. These allow you to work with

signal collections. Alternatively, signal sets can be used as masks that enable or disable collec¬

tions of signals.

The data type that is used for constructing signal sets is sigset_t. This type is manipulated by

the following functions:

#include <signal.h>

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set,int signum);
int sigdelset(sigset_t *set,int signum);

int sigismember(const sigset_t *set,int signum);

The functions sigemptyset (3), sigf illset (3), sigaddset (3), and sigdelset(3) all manip¬

ulate the sigset_t data type. The last function, sigismember(3), allows you to test the

sigset_t data type.

The first four functions return a value of 0 if the operation was successful. If the call failed, -1

is returned, and errno will contain the error code. The function sigismember (3) will be

examined later in this chapter.

312 ADVANCED UNIX PROGRAMMING

the set. Any signal set function can be applied after initialization has been performed.

Emptying a Signal Set
The function sigemptyset (3) is used to initialize a signal set to the state of “no signal mem¬

bers.” Initialization is necessary because a declared variable of type sigset_t has undefined

content. Consequently sigemptyset (3) is often called before the programmer adds one or

more signals to the set with sigaddset (3).

The function sigemptyset (3) accepts a pointer to the set to initialize. The following shows

how it is used to initialize a new set:

sigset_t my_sigs; /* Signal set declaration */

sigemptyset(&my_signals); /* Clear set */

This example initializes the signal set my_sigs to contain no signals.

Filling a Signal Set
The function sigf illset (3) is similar to sigemptyset (3), except that it fills a signal set with

all possible signals. This is often required when a signal mask is being created. After filling the

set with all possible signals, the programmer will delete one or more signals to be excluded

from the mask.

This function is used in the same manner as the sigemptyset (3) function. The following

example shows how to create a set with all possible signals in it:

sigset_t all_sigs;

sigfillset(&all_sigs);

The signal set all_sigs is initialized to contain every possible signal.

Adding Signals to a Signal Set
The function sigaddset (3) is used to add a new signal to a signal set. This function is often

used to add a new signal after the set has been emptied. The function prototype is as follows:

#include <signal.h>

int sigaddset(sigset_t *set,int signum);

The following example shows how to declare and initialize a signal set to contain two signals:

sigset_t two_sigs;

sigemptyset(&two_sigs); /* Initialize as empty */

Chapter 15 • SIGNALS 313

sigaddset(&two_sigs,SIGINT); /* Add SIGINT to set */
sigaddset(&two_sigs,SIGPIPE); /* Add SIGPIPE to set */

The function sigemptyset(3) initializes the set two_sigs. The signals SIGINT and SIGPIPE

are then added by calling the function sigaddset (3).

Removing Signals from a Signal Set
Signals are removed from a signal set with the function sigdelset (3). This function is often

used after using sigf illset (3) to remove one or more signals from the set. Its function pro¬
totype is as follows:

#include <signal.h>

int sigdelset(sigset_t *set,int signum);

In the example that follows, the sig_msk set is filled with all possible signals by calling

sigf illset (3). Function sigdelset (3) is then used to remove SIGINT from this set:

sigset_t sigjnsk;

sigfillset(&sig_msk); /* Initialize with all sigs */
sigdelset(&sig_msk,SIGINT); /* Del SIGINT from set */

The resulting signal set sig_msk includes all signals except SIGINT.

Testing for Signals in a Set
The function sigismember (3) is used to test if the signal is a member of the given signal set.

The function prototype is as follows:

#include <signal.h>

int sigismember(const sigset_t *set,int signum);

The function sigismember(3) returns the value 1 if the signal given in argument signum is a

member of the given signal set in argument set. Otherwise, 0 is returned to indicate that the

signal is not a member of the set. The following code illustrates its use:

sigset_t myset;

sigemptyset(&myset); /* Clear the set */
sigaddset(&myset,SIGINT); /* Add SIGINT to set */

if (sigismember(&myset,SIGINT)) /* Test for SIGINT */
puts ("HAS SIGINT11);

if (sigismember(&myset,SIGPIPE)) /* Test for SIGPIPE */
puts("HAS SIGPIPE");

In the code shown, the message HAS SIGINT will be displayed, but since the SIGPIPE signal is

not a member of the set, the message HAS SIGPIPE will not be shown.

314 ADVANCED UNIX PROGRAMMING

Setting Signal Actions
Function sigaction (2) is used to query and set signal actions when using reliable signals.

This function replaces the older signal (3) function that you have seen before. The function

synopsis for sigaction(2) is as follows:

#include <signal.h>

struct sigaction {
void (*sa_handler)();
sigset_t sajnask;
int sa_flags;

};

int sigaction(int signum, /* Signal number */
const struct sigaction *act, /* New actions */
struct sigaction *oldact); /* Old actions */

The function sigaction (2) returns 0 when successful and -1 if an error occurs (check

errno). Function argument signum is the signal number that is to be queried or modified.

The argument oldact allows the programmer to obtain the original handler state. This is ideal

for when the new handler is temporary, such as within a library function. Before the library

function returns, the original signal action can be restored precisely as it was.

The argument act establishes the action that is to be taken by the UNIX kernel when the spec¬

ified signal signum is received by the current process. A detailed description of each member

of the sigaction structure is given in Table 15.2.

/* signal handler */
/* signal mask to apply */
/* see signal options below */

TABLE 15.2 The Members of the sigaction Structure

Structure Member Data Type Description

sa_handler void (*) (int) The address of the signal handler. This may also be the

value SIG_DFL to indicate the default action or SIG_IGN

to indicate that the signal should be ignored.

sajnask sigsetjt This represents the set of other signals that should be

blocked while the current signal is being processed. In

addition, the signal being processed will be blocked

unless the SA_NODEFER or SA_N0MASK flag is used.

sajflags int This integer value specifies a set of flags that modify the

signal handling process.

The value of sa_handler can also be specified as the value SIG_DFL to specify the system

default signal handling instead of a user-supplied function address. Another value that can be

used is SIG_IGN, which indicates that the signal is to be ignored.

Chapter 15 • SIGNALS 315

The sigaction (2) function allows you to query the current signal action without modifying

the current action for the indicated signal. Simply specify the second argument act as a null
pointer, as shown:

struct sigaction sa_old;

sigaction(SIGINT,0,&sa_old);

The following code segment shows how you could report what the current setting for
SIGINT is:

struct sigaction sa_old; /* Queried signal set */

sigaction(SIGINT,0,&sa_old); /* Query SIGINT */

if (sa_old.sa_handler == SIG_DFL)
puts("SIG_DFL"); /* System Default */

else if (sa_old.sa_handler == SIG_IGN)
puts("SIG_IGN"); /* Ignore signal */

else /* Function Pointer */
printf("sa_handler = 0x%081X;\n",(long)sa_old.sa_handler);

The code presented will print the message SIG_DFL, indicating the current state of the signal
SIGINT.

Signal Action Flags
Within the structure sigaction, the sa_flags member allows a number of options to be spec¬

ified. Table 15.3 outlines the signal-processing flags that UNIX supports.

TABLE 15.3 sigaction sa_ flags

Flag Description

SA_0NESH0T or SA_RESETHAND These flags cause the signal action to revert to the default (SIG_DFL)

when a signal is caught. Note that this is equivalent to using unreli¬

able signals. The AT&T SVID document uses the macro SA_RESETHAND

for this flag.

SA_N0MASK or SA_NODEFER These flags prevent the signal being processed from being blocked

automatically when it is processed. This allows recursive signals of

the same type to occur.

SA_RESTART This flag permits the automatic retry BSD semantic for interrupted

system calls. The error EINTR is suppressed when this flag is in effect.

SA_N0CLDST0P This flag is applicable only for the signal SIGCHLD. When used with

SIGCHLD, no notification occurs when the child process is stopped.

316 ADVANCED UNIX PROGRAMMING

continued from previous page

Flag Description

SA_NOCLDWAIT This flag is applicable only for the signal SIGCHLD. The UNIX kernel

will not leave zombie processes when child processes of the calling

process terminate. If the calling process issues a wait (2) or equiva¬

lent call, it sleeps until all child processes have terminated (wait (2)

will return -1 with an errno value of ECHILD).

SA_ONSTACK With this flag set, the signal will be delivered to the process using an

alternate signal stack (see sigaltstack(2)).

Flags SA_N0MASK or SA_NODEFER are noteworthy because they allow a signal handler to be

called recursively. When a signal is caught, further signals of the same signal number normally

are blocked until the present signal finishes processing.

Flag SA_N0CLDST0P prevents the parent process from being notified every time a child process

is stopped. SA_NOCLDWAIT prevents zombie processes, if the parent process does not call

wait (2) or its equivalent (see Chapter 19, “Forked Processes,” for more information about
zombie processes).

The flag SA_RESTART permits system calls to not return the error code EINTR when the speci¬

fied signal is received. Those system calls are automatically retried, instead. This flag may be
useful for signal handlers that never post results for the application to test.

Applying Reliable Signals
The program shown in Listing 15.2 is a modified version of Listing 15.1, using the
sigaction(2) function.

LISTING 15.2 rsigl. c—An Example Using sigaction(2)

1: /* rsigl.c */
2:

3: #include <stdio.h>
4: #include <signal.h>
5: #include <unistd.h>
6:

7: static int count = 0;
8:
9: void
10: handler(int signo) {
11:
12: signal(SIGII\IT, handler)
13: ++count;
14: write(1,"Got SIGINT\n"
15: }
16:
17: int

; /* Re-instate handler */
/* Increment count */

,11); /* Write message */

Chapter 15 • SIGNALS 317

continued from previous page

18: main(int argc,char **argv) {
19: struct sigaction sa_old; /* Old signal actions */
20: struct sigaction sa_new; /* New signal actions */
21 :

22: sa_new.sa_handler = handler; /* Point to our function */
23: sigemptyset(&sa_new.sajnask); /* Clear mask */
24: sa_new.sa_flags = 0; /* No special flags */
25: sigaction(SIGINT,&sa_new,&sa_old);
26:
27: while (count < 2) {
28: puts("Waiting for SIGINT..");
29: sleep(4); /* Snooze */
30: }
31:
32: sigaction(SIGINT,&sa_old,0); /* Restore signal actions */
33:
34: puts("End.");
35: return 0;
36: }

The signal(3) call is replaced by lines 19-25 of Listing 15.2. Line 22 defines the address of

the function to be invoked when SIGINT is raised. Line 23 clears the signal mask, and line 24
indicates no special flag bits will be used.

Compiling and running the program gives the following result:

$ make rsigl
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall rsigl.c
cc -o rsigl rsigl.o
$./rsigl
Waiting for SIGINT..
ACGot SIGINT
Waiting for SIGINT..
ACGot SIGINT
End.
$

The program works just as the program in Listing 15.1 did.

Notice that a call to sigaction (2) was added in line 32. This was not necessary for this pro¬

gram, but it demonstrates how a program can restore signal-handling actions. The actions for

SIGINT were saved when line 25 was executed, by saving the settings in variable sa_old. Line

32 restores the actions for SIGINT by using variable sa_old.

Controlling Signals
The previous sections demonstrate how you can define actions for signals and process them

within your programs. Sometimes it is necessary to control more closely when a signal is

allowed to be raised. The following sections will show you how this is accomplished under

UNIX.

318 ADVANCED UNIX PROGRAMMING

Blocking Signals
When the sigaction (2) function was discussed, it was noted that certain signals could be

blocked during the call to the signal handler. For example, when SIGINT is handled by the sig¬

nal handler, further SIGINT signals are prevented from taking place until the present handler

returns (unless flag SA_N0MASK or SA_NODEFER is used).

In a similar fashion, your application can enter a critical piece of code where signals could

cause it problems. An example of this might be keeping track of child process termination sta¬

tus information in a linked list. However, if the program is updating the linked list, you do not

want the signal handler to be called until the linked list has been completely updated.

Otherwise, corruption of the list would result.

Critical sections of code can block certain signals from taking place. Once the critical section is

completed, then the selected signals can be enabled. This functionality is supported by the

function sigprocmask(2), which manipulates the current signal mask. Its function synopsis is

as follows:

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

The function sigprocmask(2) returns 0 when called successfully. Otherwise, -1 is returned,

and the error code is left in external variable err no.

The sigprocmask(2) argument how determines how the signal action is to be modified. It can

be one of the following values:

SIG_BL0CK The specified set indicates additional signals to be blocked (disabled).

SIGJJNBLOCK The specified set indicates signals that are to become unblocked

(enabled).

SIG_SETMASK The specified set replaces the current mask representing blocked signals.

The macros SIG_BL0CK and SIGJJNBLOCK modify the current signal mask. Macro SIGJ3ETMASK

allows the caller to completely replace the current signal mask.

The argument set is the new set that is to be used in modifying the current process signal

mask. Argument oldset can be provided so that the caller can receive a copy of the current
process mask settings.

The following example shows how to block signals SIGINT and SIGPIPE from being received:

sigset_t blk; /* Signals to block */
sigsetjt sigsv; /* Saved signal mask */

sigemptyset(&blk);
sigaddset(&blk,SIGINT);
sigaddset(&blk,SIGPIPE);

/* clear set */
/* add SIGINT */
/* add SIGPIPE */

Chapter 15 • SIGNALS 319

sigprocmask(SIG_BLOCK,&blk,&sigsv); /* Block sigs */

/* CRITICAL CODE HERE */

sigprocmask(SIG_SETMASK,&sigsv,0); /* Restore mask */

The first call to sigprocmask (2) adds signals SIGINT and SIGPIPE to the list of signals to be

blocked (note how the how argument is given as SIG_BLOCK). Once the critical code has fin¬

ished, the next call to sigprocmask(2) restores the mask value that was saved in the variable
sigsv.

Obtaining Pending Signals
When signals are blocked by sigprocmask(2), they become pending signals, rather than being

lost. A program can inquire if a signal is pending by using the function sigpending(2). Its

function synopsis is as follows:

#include <signal.h>

int sigpending(sigset_t *set);

The function sigpending (2) returns 0 if the call is successful. Otherwise, the value -1 is

returned, and the error code is found in the variable errno.

The set of pending signals is copied to the set provided in argument set. The following exam¬

ple assumes that signal SIGPIPE is blocked and illustrates how to test if the same signal is

pending:

sigset_t pendg; /* Pending signal set */

sigpending(&pendg); /* Inquire of pending signals */

if (sigismember(&pendg,SIGPIPE)) {
puts("SIGPIPE is pending.")!

The sigpending (2) function is useful when a program is in a critical code loop and needs to

test for a pending signal.

The sigsuspend(2) Function
After noting that a signal is pending with a call to sigpending (2), you need a reliable way to

unblock that signal and allow the signal to be raised. The function for this job is

sigsuspend(2):

#include <signal.h>

int sigsuspend(const sigset_t *mask);

The sigsuspend(2) function temporarily applies the signal mask supplied in argument mask

and then waits for the signal to be raised. If the mask permits the signal you know to be pend¬

ing, the signal action will take place immediately. Otherwise, the program will pause indefi¬

nitely until an unblocked signal is received.

320 ADVANCED UNIX PROGRAMMING

Once the signal action is carried out, the original signal mask is re-established. This provides a

safe and reliable method to control when a signal is raised.

Using the example presented with sigpending(2), you can extend that to raise and handle the

signal when you know it is pending. This example assumes that SIGPIPE is currently blocked:

sigset_t pendg; /* Pending signal set */
sigset_t notpipe; /* All but SIGPIPE */

sigfillset(¬pipe); /* Set to all signals */
sigdelset(¬pipe,SIGPIPE); /* Remove SIGPIPE */

sigpending(&pendg); /* Query which signals are pending */

if (sigismember(&pendg,SIGPIPE)) { /* Is SIGPIPE pending? */
sigsuspend(¬pipe); /* Yes, allow SIGPIPE to be raised */

In the example shown, signal set notpipe is initialized so that all signals are set except for

SIGPIPE. This is done so that the mask presented to sigsuspend (2) is the set of signals to

block. In this manner, when the function sigsuspend(¬pipe) is called, the signal SIGPIPE

is temporarily unblocked and allows the signal to be processed. However, when the signal

handler returns, the original signal mask is restored.

The returned value from sigsuspend (2) is always -1, and the errno value is set to the value

EINTR. This reflects the fact that a signal was handled.

When sigsuspend (2) is called, your program is suspended indefinitely until a signal is raised.

Sometimes this is the desired behavior, when the program has no work to perform, and it is
waiting for a signal to arrive.

Applying the alarm(3) Function
The alarm(3) function is related to signals. It is useful as a simple timer and is used for signal

demonstrations in this chapter. The function synopsis is as follows:

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

The alarm(3) function returns the previous alarm setting in seconds and establishes a new

timer if the argument seconds is greater than zero. After the call is made and the specified

time elapses, the signal SIGALRM is raised. This signal indicates the expiration of the timer. If

alarm(3) is called before SIGALRM is raised, the current timer is canceled and a new timer is

started. Specifying a value of zero to alarm(3) cancels the timer in progress without starting a
new one.

Note

There is only one alarm(3) timer per process.

Chapter 15 • SIGNALS 321

The program in Listing 15.3 shows how a signal handler processes signals SIGINT and
SIGALRM.

LISTING 15.3 intalrm.c—An Example Using alarm(3) and sigsuspend(2)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>

/*

* Signal Catcher :
*/

static void
catch_sig(int signo) {

if (signo == SIGINT) {
alarm(0); /* Cancel the timer */
write!1,"CAUGHT SIGINT.\n“,15);

} else if (signo == SIGALRM)
write(1,"CAUGHT SIGALRM.\n",16);

int
main(int argc,char *argv[]) {

sigset_t sigs;
struct sigaction sa_old;
struct sigaction sa_new;

/* SIGINT + SIGALRM */
/* Saved signals */
/* New signals */

sa_new.sa_handler = catch_sig;
sigemptyset(&sa_new.sa_mask);
sigaddset(&sa_new.sa_mask,SIGALRM);
sigaddset(&sa_new.sajnask,SIGINT);
sa_new.sa_flags = 0;

/* Signal handler */
/* Empty mask */
/* Add SIGALRM */
/* Add SIGINT */
/* No flags */

sigaction(SIGINT,&sa new.&sa old); /* Catch SIGINT */
sigaction(SIGALRM,&sa_new,0)

sigfillset(&sigs);
sigdelset(&sigs,SIGINT);
sigdelset(&sigs,SIGALRM);

puts("You have 3 seconds to

alarm(3);
sigsuspend(&sigs);

; /* Catch SIGALRM */

/* All signals */
/* Exclude SIGINT */
/* Exclude SIGALRM */

SIGINT:");

/* Timeout in 3 seconds */
/* Wait for SIGINT or SIGALRM */

puts("Done.");
return 0;

The main () program is shown in lines 19-45 of Listing 15.3. The signal handler is established

as catch_sig () (line 25), the signal mask (lines 26-28) and the signal action flags (line 29).

322 ADVANCED UNIX PROGRAMMING

The actions for SIGINT and SIGALRM are registered in lines 31-32. At this point, the signal

handler is ready.

Lines 34-36 establish a signal mask consisting of the signals SIGINT and SIGALRM. This is used

in line 41 in the call to sigsuspend(2). Line 40 starts a three-second timer, which will cause

SIGALRM to be raised if the timer is allowed to expire. The call to sigsuspend (2) puts the

process to sleep until one of the signals SIGINT or SIGALRM arrives.

The signal mask sa_new is carefully established in lines 26-28 to block SIGINT and SIGALRM

when a signal is being handled. Consequently, if SIGINT is being handled by the function

catch_sig(), SIGALRM is blocked until the signal handler returns. Alternatively, when SIGALRM

is being processed by catch_sig (), the signal SIGINT cannot be raised. Furthermore, neither

signal can interrupt itself.

Note how, when SIGINT is processed by catch_sig (), it cancels the timer by calling on

alarm(3) in line 13. However, there is a small possibility of the SIGALRM being raised once the

signal handler returns. This is because the timer may expire before it is canceled in line 13.

Compile and run the example program as follows, allowing the timer to expire:

$ make intalrm
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall intalrm.c
cc -o intalrm intalrm.o
$./intalrm
You have 3 seconds to SIGINT:
CAUGHT SIGALRM.
Done.
$

The program successfully catches the SIGALRM signal when the timer expires. Now run the
program and interrupt it (Ctrl+C) before three seconds is up:

$./intalrm
You have 3 seconds to SIGINT:
"CCAUGHT SIGINT.
Done.
$

In this example, when Ctrl+C is pressed, the signal is caught and the alarm(3) timer is can¬
celed.

Warning

Note that the function sleep(3) calls on the function alarm(3) internally. Do not mix calls to
alarm(3) and sleep(3), since there is only one SIGALRM timer.

Calling Functions from a Signal Handler
The signal is an asynchronous event. Consequently, a signal such as SIGINT can arrive while

your program is in the middle of executing a call to malloc (3), sprintf (3), or your own

code. This creates some program integrity issues that you will need to plan for.

Chapter 15 • SIGNALS 323

If malloc (3) is being executed, linked lists of free memory areas may be only partially

updated when the signal arrives. Thus, when the signal handler is executing, the memory heap

is in an unstable state. If the signal handler were itself to call upon malloc (3), it is likely that

data corruption or a program fault would follow. The function malloc (3) cannot tolerate this

sequence of events, because it is not designed to be re-entrant code.

One characteristic of re-entrant code is that it does not save any state information within itself

in static or global areas. Instead, the caller in an argument list provides all data items. Contrast

this to the function malloc (3), which relies on a global heap, with global state data.

The asynchronous nature of signals is such that you must call only re-entrant functions from

within your signal handler. Otherwise, you may end up spending many hours removing the

occasional bug that shows up.

The following are the POSIX. 1 standard re-entrant functions. The entries marked with an

asterisk are not listed in the POSIX. 1 standard, but were listed as re-entrant by the AT&T SVID

standard. Check these with your local documentation before they are used in a signal handler.

_exit fork read tcdrain

abort* fstat rename tcflow

access getegid rmdir tcflush

alarm geteuid setgid tcgetattr

cfgetispeed getgid setpgid tcgetpgrp

cfgetospeed getgroups setsid tcsendbreak

cfsetispeed getpgrp setuid tcsetattr

cfsetospeed getpid sigaction tcsetpgrp

chdir getppid segaddset time

chmod getuid segdelset times

chown kill sigemptyset umask

chroot* link sigfillset uname

close longjmp sigismember unlink

creat lseek signal* ustat*

dup mkdir sigpending utime

dup2 mkfifo sigprocmask wait

execle open sigsuspend waitpid

execve pathconf sleep write

exit* pause stat

fcntl pipe sysconf

324 ADVANCED UNIX PROGRAMMING

Avoiding Re-entrant Code Issues
The reliable signal interface permits you to control when certain signals are raised. This can be

used to your advantage when a signal handler must call functions that are not re-entrant. This

method is applied in the following steps:

1. Block the signal of interest using sigprocmask(2).

2. At certain points within your application, test if the signal is pending using

sigpending(2).

3. Call sigsuspend(2) at a safe point to allow the signal to be raised.

By calling sigsuspend(2) at a controlled point in your application, you eliminate the fact that

functions such as malloc(3) were executing at the time of the signal. This procedure ensures

that it is safe to call upon functions that are not re-entrant.

Re-entrancy Issues with errno in a Signal Handler
Technically, many of the functions listed previously are not purely re-entrant. Many have the

capability to modify the value of the global external variable errno. Consequently, you must be

careful to preserve errno within a signal handler.

Warning

Many re-entrant functions are capable of modifying the external variable errno. To maintain pure

re-entrancy, be sure to save and restore errno in the signal handler.

A failure to observe this rule can lead to some obscure and difficult-to-diagnose bugs.

The signal-catching function code found in Listing 15.2 is repeated here, as follows:

void
handlerfint signo) {

++count; /* Increment count */
write(1,"Got SIGINT\n",11); /* Write message */

}

This function is not purely re-entrant, because the errno value could be disturbed by the call

to write (2). This is easily corrected by inserting a save and restore statement:

void
handlerfint signo) {

int e = errno; /* Save errno */

++count; /* Increment count */
write(1,"Got SIGINT\n",11); /* Write message */
errno = e; /* Restore errno */

Chapter 15 • SIGNALS 325

Saving and restoring errno prevents the application from seeing a changed errno value when

the signal handler returns. This type of problem can be extremely difficult to debug, because it
will often depend upon timing.

Applying the EINTR Error Code
Except when the sigsuspend (2) technique is used, a signal can be caught by a signal handler

at any time. This restricts the choice of available functions to those that are re-entrant.

Consequently, when non-re-entrant functions must be called, a different technique must
be used.

A signal handler can post a result to a global flag variable, which is later polled by the applica¬

tion. Using this technique, no re-entrancy issues arise because the event is synchronous

(polled) instead of being asynchronous. The following example shows a signal handler that

posts a true result to the flag variable gotSIGINT:

static int gotSIGINT = 0; /* True when SIGINT arrives */

static void
catch_SIGINT(int signo) {

gotSIGINT =1; /* Post the flag */
}

This part of the application is simple, and no re-entrancy issues arise. The difficulty is that,

when the program is blocked waiting for a system call to complete, it never gets a chance to

poll for the posted SIGINT event. The following statement illustrates another part of the pro¬

gram that will wait indefinitely until data arrives on standard input:

int z;
char but[256];

z = read(0,buf,sizeof buf); /* Obtain terminal input */

When the program is waiting for input, the signal handler can still post its event by assigning 1

to variable gotSIGINT. However, the application cannot break out of the read (2) function to

test if the event occurred. Instead, the application will wait indefinitely until all of the data

arrives or an end-of-file is received.

To avoid this difficulty, the designers of UNIX offered the following solution: When a signal

handler returns, certain system calls immediately return the error code EINTR. This allows the

calling application to regain control from its blocked state and have a chance to poll for any

events that may have been posted by a signal handler.

The value of the variable gotSIGINT can be tested in the example given earlier. If no event was

detected by the calling application, it can simply ignore the error and retry the system call. The

following illustrates this procedure in code:

int z;
char buf[256];

326 ADVANCED UNIX PROGRAMMING

do {
z = read(0,buf,sizeof buf); /* Obtain terminal input */
if (gotSIGINT) /* Was SIGINT posted? */

process_SIGINT(); /* Yes, Process the SIGINT event */
} while (z == -1 && errno == EINTR); /* Repeat while EINTR */

This loop is typical of many that process the EINTR error code. The system call read(2) is

attempted, which may block indefinitely (for terminal input). If an error occurs, the code tests

to see if SIGINT was posted by looking at global variable gotSIGINT. If gotSIGINT is true, then

function process_SIGINT() will perform the actions that the signal handler was unable to

perform. The loop repeats at the while clause as long as an error is reported by z and the error

code in errno is equal to EINTR.

Note

eintr —interrupted system call This error is returned by a number of system calls to indicate

that a signal handler was executed as a result of receiving a signal. This is done to permit the calling

application to become unblocked by a blocking system call, so that action may be executed for a

received signal.

Many people in various UNIX Usenet newsgroups have complained about this behavior over

the years. However, this behavior is a feature of the operating system and is not a defect. You

should get into the habit of thinking about blocking system calls when you write applications.

If a function might block the execution of your program for a long time, then you may have to

be concerned with EINTR processing loops. The general rule is if the system call may block for

long or indefinite periods, then EINTR is possible. Note for example that read(2) will not

return EINTR for file reads, since this type of call is not considered long. However, when

read(2) is used to read terminal input or a socket, the error EINTR can be returned.

Always check the man (1) pages of system calls to see if EINTR is possible. If your code must be

portable, be sure to check the man (1) pages of the other platforms as well. Some platforms,

particularly SGI’s IRIX 6.5, will return EINTR when the others do not.

Raising Signals
A UNIX signal can be raised from your application by the use of the kill(2) system call. Its
synopsis is as follows:

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

This function raises the signal sig in the process pid (by process ID). You must have permis¬

sion to raise the signal in the indicated process to succeed. To raise the signal SIGUSR1 in your
own application, you can code:

kill(getpid(),SIGUSR1); /* Raise SIGUSR1 in current process */

Chapter 15 • SIGNALS 327

The value 0 is returned for success and -1 if it fails (check errno).

The value of sig is permitted to be 0. When it is, kill(2) allows your process to detect if the
process pid exists. For example

pid_t PID = 1234; /* Process ID 1234 */

if (kill(PlD,0) == -1) {
if (errno == ESRCH)

puts("Process 1234 is not executing.");
else

perror("kill(2)");
} else

puts("Process 1234 is executing.");

When kill(2) returns success in the example, then the program has determined that process

ID 1234 existed at the time of the test. The errno code ESRCH indicates that no process match¬
ing argument pid exists.

ESRCH —No such process This error is returned by kill(2) when the process indicated does not
exist.

The argument pid can be given as 0. When it is, all processes within your process group are

signaled with the signal sig.

When kill(2) argument pid is -1, the signal is sent to all but system processes if the caller

has super user privileges. When the caller does not have super user privileges, the signal is

delivered to all processes with a real user ID that matches the caller’s effective user ID. The

calling process is not signaled, however.

Note

There is also a raise(3) function, which can be used to send a signal to the current process.

#include <signal.h>

int raise(int sig);

This function is implemented in terms of calls to getpid(2) and kill(2):

kill(getpid(),sig);

Since this is easily written, raise (3) is perhaps unnecessary.

328 ADVANCED UNIX PROGRAMMING

Summary
This chapter has shown the signal handling functions and some of their pitfalls.

The next chapter will show you how to write code that can efficiently handle input

and output for many open file descriptors. This is an essential skill for writing

server programs.

CHAPTER 16

EFFICIENT I/O SCHEDULING

Many applications are written to be interactive with one user. For these, it is a simple

matter to be responsive to the whims of that one user. However, when you design

server programs, each user of that server must receive immediate responses, as if

there were only one user. This becomes impossible if your server is waiting for input from

another user, within a system call. Consequently, a different design strategy is required when

performing I/O with multiple clients.

In this chapter, you will examine how to perform

• Non-blocking I/O

• I/O using select (2)

• I/O using poll(2)

Non-Blocking I/O
A process is put to sleep when performing I/O for one or more of the following reasons:

• A read request must wait for input data to arrive.

• A write request must wait until previously written data has been written to the media.

• A device must be opened, such as a modem terminal line waiting for a carrier or a FIFO

waiting for a reader.

• Mandatory locking is enabled on files, causing a wait for locking on a read or a write

system call.

Conceptually, the simplest solution to this problem is to not put the process to sleep. When

the I/O cannot be completed, the system call returns an error indicating that it cannot succeed

at this time. This is non-blocking I/O.

330 ADVANCED UNIX PROGRAMMING

Opening Files in Non-Blocking Mode
One method of specifying to the UNIX kernel that you want to use non-blocking I/O is to

open with the 0_I\I0NBL0CK flag:

#include <fcntl.h>
int open(const char *path, int flags, ...);

where the flags argument is set to include 0_N0NBL0CK, to open in non-blocking mode.

The 0_N0NBL0CK flag prevents the open (2) call from suspending the execution of the calling

process if it must wait for some reason. This can happen, for example, when opening a termi¬

nal line that must have a modem carrier. With the 0_N0NBL0CK flag provided, the open call

returns success immediately.

Subsequently, after an open(2) has been accomplished with the 0_N0NBL0CK flag, other I/O

operations are also subject to the non-blocking rule. This is explained further in upcoming

sections.

The following shows how a process can open its terminal line in non-blocking I/O mode:

int fd; // Terminal file descriptor

fd = open("/dev/tty",0_RDWR|0_N0NBL0CK);

if (fd == -1) {
perror("open(2)"); // Report error
abort(); // Abort run.

}
// fd is open in non-blocking I/O mode

Once the file descriptor is open in this manner, a call to read (2) will no longer suspend the

program’s execution while waiting for input.

Setting Non-Blocking Mode
Another method of choosing non-blocking I/O mode is to call upon the services of fcntl(2)

after the file or device is already open:

#include <fcntl.h>
int fcntl(int fd, int cmd, ...);

where cmd is one of the following:

F_GETFL Get flags

F_SETFL Set flags

The command F_SETFL allows you to enable the flag 0_N0NBL0CK after the file has been

opened. However, to do this, you will usually want to use the command F_GETFL to obtain the

current flags in effect.

Chapter 16 • EFFICIENT I/O SCHEDULING 331

The following example shows how to enable 0_N0NBL0CK on an open file descriptor fd:

int fd; /* Open file descriptor */
int fl; /* Flags for fd */

fl = fcntl(fd,F_GETFL,0);
if (fl == -1) {

perror("fcntl(F_GETFL)"); /* Report failure */
exit(13);

}

if (fcntl(fd,F_SETFL,f1|0_N0NBL0CK) == -1) {
perror("fcntl(F_SETFL)"); /* Report failure */
exit(13);

}

Notice how the flag 0_N0NBL0CK was ORed with the flags received in variable f 1 in the call to

fcntl(2) using the F_SETFL command.

Performing Non-Blocking I/O
Once the file descriptor is in non-blocking I/O mode, you can use it with regular calls to

read (2) and write (2). When no input is ready to be returned by read (2) or no output can

be written by write (2), the returned error code in errno will be EAGAIN.

EAGAIN—Resource temporarily unavailable This error is returned when using non-blocking
I/O to indicate that no input was available for reading or that the output could not be written at this
time.

Listing 16.1 presents a program that uses non-blocking I/O on a FIFO.

LISTING 16.1 nblockio.c—A Program That Reads a FIFO in Non-Blocking I/O Mode

1: /* nblockio.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <fcntl.h>
6: #include <errno.h>
7:

8: int
9: main(int argc,char **argv) {
10: int z; /* # of bytes returned */
11: int fd; /* File descriptor */
12: char buf[256]; /* I/O buffer */

13:
14: fd = open("./fifo",0_RDWR|0_N0NBL0CK);

15: if (fd == -1) {

332 ADVANCED UNIX PROGRAMMING

continued from previous page

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

perror("open(2)");
exit(13);

}

while ((z = read(fd,but,sizeof buf)) == -1 && errno == EAGAIN)

if (z >= 0) {
buf[z] = 0;

printf("GOT INPUT1 '%s1\n",buf);
} else

perror("read(2)11);

return 0;
31: }

Compiling the program with the make (1) file provided also creates this FIFO:

$ make nblockio
mkfifo ./fifo
cc -c -Wall nblockio.c
cc -o nblockio nblockio.o

$

The program in Listing 16.1 opens the FIFO in line 14 in non-blocking mode (note the flag

0_N0NBL0CK). Once the FIFO is open, the program loops in line 20 as long as the error EAGAIN

is returned from the read (2) call. The error EAGAIN tells the caller that no input is available for

reading.

Once input is returned, the loop is exited, and the error or the data is reported in lines 23-28.

The loop in lines 20-21 is very unfriendly to the system, and it will consume all available CPU

trying to obtain input. However, in a real product, there would be other program events being

performed in this loop instead.

Warning

The loop in lines 20-21 of Listing 16.1 consumes all available CPU. Do not run this demonstration
program for long if you are sharing a host with other users!

Additionally, make certain that you do not accidentally leave it running.

Run the program in the background, so that you can use another command to put input into
the FIFO. The following shows a sample session:

$./nblockio &
$ echo BOO >./fifo
$ GOT INPUT! 'BOO

[1] 19449 Exit 0

$
./nblockio

Chapter 16 • EFFICIENT I/O SCHEDULING 333

The first command starts the program nblockio and places it in the background. At this point,

it is chewing up CPU because of its non-blocking I/O loop.

The echo command is entered to feed the letters BOO and a linefeed character into the FIFO

. /f ifo, which the program is trying to read. Once that is done, the nblockio program reports

that it got input, and it exits. You will need to press Return again to cause the job termination

status to appear. The session output demonstrates that the nblockio program did read the
input that was written to the FIFO.

The Problem with Non-Blocking I/O
The preceding demonstration shows how non-blocking I/O could be applied. However, if you

were to run the program again and watch the system CPU usage with a resource-monitoring

tool such as top (1), you would immediately recognize that the nblockio program was not a

good UNIX citizen. It was using as much CPU as it could obtain from the kernel (this may not

be as extreme, if you have other program functions to perform within the loop).

You would be forced to avoid using CPU time by calling a function such as sleep(3). Even if

you use a more fine-grained timer such as nanosleep(2), you as the server designer will

always be forced to compromise between latency and CPU overhead. As the sleep time is

increased, the latency increases. As the sleep time is reduced, the CPU overhead increases.

An ideal solution for both your server and the rest of the host is to have your process awak¬

ened at the right time by the UNIX kernel. The kernel knows when it has data for your process

to read on one of its open file descriptors. The kernel also knows when it can accommodate a

write to one of the file descriptors belonging to your process.

In this fashion, the kernel suspends your server process from executing until there is some¬

thing for it to perform. This allows precious CPU time to be used by other processes while

your server process waits for something to happen. The kernel will awaken your process the

moment it has pending I/O to perform. This is how efficiency is maintained within the host

system while keeping server latency to a minimum.

I/O Scheduling Functions
In order for the UNIX kernel to know when your process should be awakened for I/O, your

process must first register the I/O events that it is interested in. This is accomplished with the

system call select(2) or poll(2). Because these calls are so similar, some UNIX systems

implement one of the calls in terms of the other.

The select (2) system call will be presented first in this chapter. However, before you can use

the select (2) function, you must first get to know file descriptor sets and the timeval struc¬

ture that it uses.

334 ADVANCED UNIX PROGRAMMING

File Descriptor Sets and Their Macros
In order to work with the select (2) system call, you must work with file descriptor sets.

These are collections of file descriptors that make it easier to specify a number of file descrip¬

tors at once. The following synopsis shows the macros that are available for working with file

descriptor sets:

#include <sys/types.h>

FD_ZERO(fd_set *set) /* Macro */
FD_SET(int fd, fd_set *set) /* Macro */
FD_CLR(int fd, fd_set *set) /* Macro */
int FD_ISSET(int fd, fd_set *set) /* Macro returning int */
FD_SETSIZE /* Defines the maximum value for argument fd */

You must initialize a file descriptor set before using it. This is accomplished with the

FD_ZER0() macro:

fd_set fdsetl; /* File descriptor set 1 */

FD_ZERO(&fdsetl); /* Initialize fdsetl */

Initialization of a file descriptor set by FD_ZER0() causes it to contain the “empty set.” That is,

no file descriptors are contained in the set.

The highest number file descriptor in the set is the value FD_SETSIZE. The behavior of the

FD_SET (), FD_CLR (), and FD_ISSET () macros is undefined if the file descriptor number

exceeds this value or is negative.

To add a file descriptor to the set, you use the FD_SET () macro. To add file descriptor f d to set

fdsetl, you would write

int fd = 1; /* File descriptor: Standard output */

FD_ZER0(&fdset1); /* Initialize fdsetl */
FD_SET(fd,&fdset1); /* Add file descriptor to fdsetl */

A file descriptor can be removed from the set using the FD_CLR () macro. To remove fd from
the set, you would write

FD_CLR(fd,&fdset); /* Remove fd from fdsetl */

Sometimes it is necessary to test if a particular file descriptor is a member of the set. This is

performed using the FD_ISSET () macro. The following tests to see if file unit 2 (standard
error) is a member of fdsetl:

if (FD_ISSET(2,&fdset1)) {
puts("Standard error (unit 2) is part of fdsetl");

} else {
puts("Standard error (unit 2) is not in fdsetl");

}

The macro call FD_ISSET(2,&fdsetl) will return a non-zero value if the file unit 2 is a mem¬
ber of the set fdsetl.

Chapter 16 • EFFICIENT I/O SCHEDULING 335

The timeval Structure
Another important element of using the select (2) function is the capability to specify a

timeout parameter. This is specified with the use of the structure timeval:

#include <sys/time.h>

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

The following example shows how you would define a timeout value of 1.25 seconds:

struct timeval timeout; /* 1.25 second timeout */

timeout.tv_sec =1; /* 1 second */
timeout.tv_usec = 250000; /* 250000 microseconds = 0.25 seconds */

While the timer values suggest a very precise value for a timeout, the UNIX system that you

are using might not be quite so accurate. The actual precision used may be as low as .01 sec¬

ond. However, as CPU technology gets faster, precision often improves with it.

The select (2) Function
The select (2) function is what you have been working up to. Here is its function synopsis:

#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>

int select(int nfds, /* # of file descriptors */
fd_set *readfds, /* Read descriptor set */
fd_set *writefds, /* Write descriptor set */
fd_set *exceptfds, /* Exception descriptor set */
struct timeval *timeout); /* Timeout value */

The argument timeout indicates when the select (2) call should give up and return 0. Zero

indicates that no interesting events have occurred. If you do not require a timeout, the argu¬

ment timeout should be a null pointer. This will cause select (2) to wait forever unless a sig¬

nal is caught, in which case the error EINTR is returned.

If a timeout argument is supplied but the members indicate a total time of zero seconds, then

select (2) will return immediately without suspending the execution of the program. This

allows the caller to poll several file descriptors for interesting events without actually suspend¬

ing the program.

The file descriptor set readf ds specifies all the file descriptors that the calling process wants to

read data from. For example, if your program were expecting input on standard input (file

descriptor 0) and a FIFO to be open on file unit 3, then readf ds would include the descrip¬

tors 0 and 3 in the set. This orders the select (2) function to block the execution of your call¬

ing process until input arrives on one or both of these file descriptors.

336 ADVANCED UNIX PROGRAMMING

When control returns to your process, you then test the set readf ds to see which file descrip

tors have input available. For example, the following code tests for file units 0 or 3 for input

pending:

if (FD_ISSET(0,&readfds)) {
// Read input data from unit 0

}
if (FD_ISSET(3,&readfds)) {

// Read input data from unit 3

}

The value returned by select (2) is one of the following:

• -1 if the call failed (check errno)

• 0 if a timeout occurred

• Less than zero, indicating the number of file descriptors that have events registered

When an error is returned, including the error EINTR, the file descriptor sets will be left

unmodified. Documentation does not spell out clearly what happens for the timeout argu¬

ment when this happens. Consequently, you should assume that it has been modified and that

it requires re-initialization.

Note

The file descriptor sets readfds, writefds, and exceptf ds are modified by the function

select (2). Be certain to re-establish the file descriptor sets prior to the next call to select (2).

Note also that the time values in the timeout argument are updated on some UNIX platforms to

reflect the time remaining. Be sure to reset the time values in this argument prior to the next call to

select(2).

When zero is returned, no events are registered in the file descriptor sets. The file descriptor

sets will be empty. Consequently, you will need to re-establish the file descriptor sets and the

timeout argument prior to calling select (2) again.

When a value greater than zero is returned, this indicates the total number of events that have

been returned in the file descriptor sets. For example, the return value 6 may indicate that you

have three read events, two write events, and one exception event, registered in the sets

readfds, writefds, and exceptf ds, respectively. To find the specific file unit numbers, you

will need to iterate through each of the sets using the FD_ISSET () macro.

The only input argument to select (2), which is not modified, is the value nf ds. This argu¬

ment is copied by value. It specifies the highest number of file descriptors to process in the

specified sets. For example, if file descriptor 3 is the highest file descriptor present in any of

the given sets, then nf ds must be specified as 4. The value 1 must be added because file

descriptors start at zero. The descriptor range of 0 to 3 represents a total of four file
descriptors.

Chapter 16 • EFFICIENT I/O SCHEDULING 337

Keep the value of nfds as small as possible in a call to select (2). This helps the UNIX kernel

process your request more efficiently.

The arguments readfds, writefds, and exceptf ds represent sets of file descriptors to process

for read events, write events, and exception events, respectively. If you have no interest in a

particular set of events, you can supply a null pointer in that argument position. For example,

if you do not care about write or exception events, the writef ds and exceptf ds arguments

can be supplied by a null pointer.

Read Events
A read event is when a file descriptor in the set readfds has input data available for reading.

This may include only one byte of data, or it may include a block of bytes. Timing plays a big

role in arrival of input data.

A read event can also include a client program connecting to your server on a socket. For

example, if you have a socket open on file unit 4 and listen (2) has been called on it, then a

read event will occur when a connection has been established by the client program using

connect (2). Upon receiving such an event, your server program then should call accept (2) if

the client connection is to be accepted.

Finally, a read event can also occur when end-of-file is reached. For example, this occurs when

connected sockets have been closed at the remote end.

Warning

Not all devices are "pollable." Some devices may immediately return a ready status. A subsequent

read(2) call may return 0 bytes or block the execution of the program. This often happens due to a

third-party driver for a particular device.

Write Events
The execution of a process can be suspended if a write (2) call is made when the data being

supplied cannot be accepted at the current time. For example, a process writing to a pipe will

block on many UNIX hosts if more than 5120 (5K) bytes is written before the reading process

has read the data from the pipe. A write event is an indication that it is safe to write some data

to the file descriptor without blocking.

Note

When select (2) indicates that writing may begin to a file descriptor, there is no implied size guar¬

antee. The execution of the process will be suspended if it writes an excessively large block.

To avoid blocked execution, use non-blocking I/O for writing. The return value from write (2) will

indicate the number of bytes that were successfully accepted by the UNIX kernel.

338 ADVANCED UNIX PROGRAMMING

Exception Events
Exception events are chosen by a separate file descriptor set. Exception events include

• Reception of out-of-band data on a socket

• Certain conditions occurring on a pseudo-terminal

• Reception of auxiliary error data on a socket

All of these conditions are outside the scope of this chapter. These special events are not classi¬

fied as read or write data events.

Using the select (2) Function
The program in Listing 16.2 creates a pipe to two shell processes that will list a directory. The

output of one process is converted to uppercase and the other is converted to lowercase to

make them easier to distinguish. Since one or both processes may have output ready for the

current process, the select (2) function can help.

LISTING 16.2 select, c—A Program Using select (2)

1: /* select.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <stdarg.h>
6: #include <unistd.h>
7: #include <fcntl.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/time.h>
12: #include <sys/stat.h>
13:
14: static void
15: quit(int rc,const char *fmt,...) {
16: va_list ap;
17:
18: if (errno != 0) /* Report errno */
19: fprintf(stderr,"%s: ",strerror(errno));
20:

21: va_start(ap,fmt); /* Format error message */
22: vfprintf(stderr,fmt.ap);
23: va_end(ap);
24: fputc(1\n‘.stderr);
25:
26: exit(rc); /* Exit with return code */
27: }
28:
29: int
30: main(int argc.char **argv) {
31: ini z; /* General status code */

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Chapter 16 • EFFICIENT I/O SCHEDULING 339

int f1;
int f2;
fd_set rxset;
int nfds;
struct timeval tv;
char but[200+1];
FILE *p1, *p2;

/* Open fifo 1 */
/* Open fifo 2 */
/* Read fd set */
/* Number of file descriptors */
/* Timeout */
/* I/O Buffer */
/* Pipes from popen(3) */

/*

* Pipes :
*/

if (! (pi = popen("ls -111 r 1 [a - z]1 ' [A-Z]'11," r")))
quit(1,"popen(3) failed for pi");

if (!(p2 = popen("ls -l|tr '[A-Z]1 1[a-z]1 && sleep 8","r")))
quit(1,"popen(3) failed for p2");

/*

* Obtain the underlying file descriptors :
*/

f1 = fileno(p1);
f2 = fileno(p2);
printf("BEGUN: f1=%d, f2=%d\n",f1,f2);

/*

* Enter a select loop :
*/

do {
FD_ZERO(&rxset); /* Clear set */
if (fl >= 0)

FD_SET(f1,&rxset); /* Check fl */
if (f2 >= 0)

FD_SET(f2,&rxset); /* Check f2 */

nfds = (fl > f2 ? fl : f2) + 1;
tv.tv_sec =3; /* 3 seconds */
tv.tv_usec = 500000; /* + 0.5 seconds */

do {
z = select(nfds,&rxset,0,0)&tv);

} while (z == -1 && errno == EINTR);

if (z == -1) /* Error? */
quit(13,"select(2)");

if (z == 0) {
printf("TIMEOUT: f1=%d, f2=%d\n",f1,f2);
continue;

/*
* Control is here if fl or f2 has data
* available to be read.
*/

340 ADVANCED UNIX PROGRAMMING

continued from previous page

86:
87:
88:
89:
90:
91 :
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

if (fl >= 0 && FD_ISSET(f1,&rxset)) {
z = read(f1,buf,sizeof buf-1);
if (z == -1)

quit(6,"read(2) of fl.");
if (z > 0) {

buf[z] = 0;
printf ("*** read %d bytes «<%s»> from f 1; \n",z,buf);

} else {
puts("read EOF from fl;");
pclose(p1);
fl = -1;

}
}

if (f2 >= 0 && FD_ISSET(f2,&rxset)) {
z = read(f2,buf,sizeof buf-1);
if (z == -1)

quit(6,11 read(2) of f2.");
if (z > 0) {

buf[z] = 0;
printf ("*** read %d bytes <«%s>» from f2;\n",z,buf);

} else {
puts("read EOF from f2;");
pclose(p2);
f2 = -1;

}
}

} while (f1 >= 0 || f2 >= 0);

puts("End select.");

return 0;

Lines 43-47 open pipes to processes that will list the current directory. Note how the tr(1)

command is used to translate the output into uppercase or lowercase for each process. This

will make separating the process output in the example easier.

The select (2) function requires the use of file descriptors, and these are extracted from the

FILE pointers pi and p2 using the fileno(3) macro in lines 52 and 53.

Lines 59-114 form the select (2) loop. Lines 60-64 initialize the read file descriptor set

rxset. The if statements in lines 61 and 63 are necessary because f 1 and f 2 are closed once

the end-of-file is detected (see lines 95, 96, 109, and 110). Once the file descriptor is closed, it

is not included in the read file descriptor set.

The value of nf ds is computed at line 66. It must be 1 higher than the highest file descriptor

considered in the file descriptor sets. Lines 67 and 68 set the timeout to 3.5 seconds.

The loop in lines 70-72 demonstrates how to code the select (2) call while considering the

error EINTR. In this program there is no special processing required when EINTR is detected, so
the select (2) system call is simply retried.

Chapter 16 • EFFICIENT I/O SCHEDULING 341

Line 74 tests for an error return from select (2). The error is reported by the static function

quit (), which appears earlier in the listing.

A timeout is tested for in line 77. When z equals 0, this indicates that the select (2) call

timed out without anything interesting happening. Notice that in line 46 the sleep (1) com¬

mand has been invoked in the piped command to demonstrate the timeout capability of
select(2).

Lines 86-98 performs a test for file descriptor f 1 (on behalf of pipe pi). If the file descriptor

has not been closed (it is not -1) and it appears in the file descriptor set rxset, then a read (2)

call is performed in line 87. This will not block because the select (2) function promises that

there will be some data waiting to be read. The returned value z will indicate the number of

bytes read, or it will be 0, indicating that the end of the file has been reached. If z is greater

than zero, the buffer buf is dumped to standard output in line 92.

When end-of-file is reported in line 94, the pipe pi is closed in line 95 (you must close a

popen (3) pipe with pclose(3)). This closes the underlying file descriptor f 1. Variable f 1 is

then set to -1 in line 96 to mark it as closed, so that it will not be included in the next call to

select(2).

Lines 100-112 repeat the same operations for file descriptor f2. The do { } while loop is

continued until both f 1 and f2 are marked as closed (line 114).

Now compile the program:

$ make select
cc -c -Wall -g select.c
cc -o select select.o
$

Your results will vary, depending on the contents of your current directory. To run the example

program, simply invoke it:

$./select

An example session output is as follows (line numbers were added at left for ease of reference):

1: BEGUN: fl =3, f 2=4
2: *** read 200 bytes «<T0TAL 28
3: -RW-R- - 1 EAG GRP 481 JUN 6 21 :52 MAKEFILE

4: -RW-R- - 1 EAG GRP 589 JUN 4 22:09 NBL0CKI0.C

5: -RWXR-X-- - 1 EAG GRP 12756 JUN 6 22:03 SELECT

6: -RW-R- - 1 EAG GRP 3063 JUN »> froir l fl;

7: *** read 116 bytes «<6 22:01 SELECT, ,C

8: -RW-R- - 1 EAG GRP 10172 JUN 6 22:03 SELECT.0

9: -RW-R- - 1 EAG GRP 0 JUN 6 22:03 T.T

10: »> from fi;
11: read EOF from f1;
12: *** read 200 bytes «<total 28

13: -rw-r- - 1 eag grp 481 j un 6 21 :52 makefile

14: -rw-r- - 1 eag grp 589 j un 4 22:09 nblockio.c

15: -rwxr-x- - - 1 eag grp 12756 jun 6 22:03 select

16: -rw-r- - 1 eag grp 3063 jun »> frorr i f 2;

342 ADVANCED UNIX PROGRAMMING

continued from previous page

17: *** read 116 bytes «<6 22:01 select.c
18: -rw-r— -- 1 eag grp 10172 jun 6 22
19: - rw - r — -- 1 eag grp 0 jun 6 22
20: »> from f 2;
21: TIMEOUT: f1=-1, f2=4
22: TIMEOUT: f1=-1, f2=4
23: read EOF from f2;
24: End select.

select.0

t.t

Line 1 of the session output shows that the file descriptors that are open to the piped com¬

mands are units 3 and 4. Figure 16.1 shows the values present in fd_set rxset for the first

call to select(2). It also illustrates why nfds is the value 5.

FIGURE 16.1

The fd_set rxset for

Listing 16.2.

file unit 3 file unit 4

/
0 0 0 1 1 0 0 0

0
V

1 2 3 4
J

5

nfds = 5

Lines 2-6 of Listing 16.2 show that 200 bytes was read from the first pipe (note the uppercase

output). Lines 7-10 show that another 116 bytes was read from the first pipe. This shows that

the output from the second pipe was not ready at the time that the do {} while loop started.

Line 11 shows that the end of the file was detected in pipe pi.

Lines 12-16 show that 200 bytes was read from pipe p2 (note the lowercase). Lines 17-20
show another 116 bytes that was read from pipe p2.

Lines 21 and 22 show that two timeouts occurred. The values show that pipe pi is closed,

because file descriptor f 1 is marked as closed by its value of -1. Pipe p2 is still open on unit 4
when the timeouts occur.

The timeouts occur because of the sleep (1) command in line 46. The sleep (1) command

stalls from closing the pipe. The timeout value used in lines 67 and 68 is 3.5 seconds, and this

permits two timeouts to occur before the pipe p2 is finally closed. Once both pipes are closed,

as reflected in f 1 and f2, the while clause ends the loop in line 114.

I/O Polling
The function poll(2) represents another way to perform efficient I/O scheduling. It was origi¬

nally developed by AT&T to be used for STREAMS file descriptors. However, poll (2) now

accepts all file descriptors. The function synopsis for poll(2) is as follows:

Chapter 16 EFFICIENT I/O SCHEDULING 343

/*

* UnixWare 7, SGI IRIX 6.5 :
*/

#include <stropts.h>
#include <poll,h>

/*

* HP-UX 11.x, Solaris 8 :
*/

#include <poll.h>

/*

* IBM AIX 4.3 :
*/

#include <sys/poll.h>
#include <sys/select.h>
#include <sys/types.h>

/*

* FreeBSD :
*/

#include <sys/types.h>
#include <poll.h>

int poll(struct pollfd *fds, unsigned int nfds, int timeout);
struct pollfd {

int fd; /* file descriptor */
short events; /* events to look for */
short revents; /* returned events */

};
As you can see, the necessary include files vary considerably depending on the platform on

which you are compiling. The poll (2) function uses an array of structure pollfd to drive the

I/O polling operation (argument f ds). Each element of this array specifies a file descriptor (f d)

and the events (events) that are to be reported. When poll(2) returns with a value greater

than zero, the member revents will contain bits that represent events that have occurred for

the file descriptor. The argument nfds indicates how many array elements are participating in

the call.

■I;

.

Note

When the fd member of the structure pollfd is negative, the member events is ignored and the

revents member is set to zero.

Setting fd to -1 is an effective way to indicate to poll(2) to ignore that entry.

The value returned by poll (2) is in one of three value categories:

• Negative (-1), to indicate an error has occurred (check errno).

• Zero, to indicate that a timeout has occurred with no events being reported.

• Greater than zero, to indicate how many file descriptors have reported events.

344 ADVANCED UNIX PROGRAMMING

The timeout argument specifies in milliseconds the minimum period to wait for an event to

occur. If the timeout value is specified as the macro INFTIM (or -1), then an infinite timeout is

assumed. If the timeout argument is 0, then poll (2) will return immediately, even if there are

no events to report.

The function poll(2) can return the error eintr after a signal has been processed.

Poll Events
The events member of the pollfd array must be initialized to describe the events that are to

be reported. There are three categories of these event bit macros:

• Macros that describe event and re vent flags concerning input (see Table 16.1)

• Macros that describe event and revent flags concerning output (see Table 16.2)

• Macros that describe only re vent flags for information that is returned (see Table 16.3)

Table 16.1 describes the input bit masks that can be ORed together to indicate read events to

be polled.

TABLE 16.1 Read Event Bit Masks for poll(2)

Macro Event

POLLIN Data other than high priority data may be read without blocking.

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Data with a non-zero priority may be read without blocking.

POLLPRI High priority data may be read without blocking.

Table 16.2 is additional bit masks that describe write events.

TABLE 16.2 Write Event Bit Masks for poll(2)

Macro Event

POLLOUT Normal data can be written without blocking.

POLLWRNORM Same as POLLOUT.

POLLWRBAND Data with a non-zero priority may be written without blocking.

Chapter 16 • EFFICIENT I/O SCHEDULING 345

Table 16.3 lists macros, which represents bits that are only returned in the revents member of

the pollf d array member.

TABLE 16.3 Returned re vent Bit Masks for poll (2)

Macro Event

POLLERR An exceptional condition has occurred on the device or socket.

POLLHUP The device or socket has been disconnected. Note that the POLLHUP and POLLOUT flags

are mutually exclusive (they will not appear at the same time in revent).

POLLNVAL The file descriptor is not open. Note that when the file descriptor is negative, this bit is

not returned.

Poll Priorities
The poll(2) documentation presented so far mentions priorities and priority bands. The man¬

ual page for poll (2) will also make mention of this. Priority bands are part of the System V

implementation of STREAMS, which was a generalization for communicating with device

drivers.

Unless you are performing STREAMS programming, you can simply ignore the priority bands

and use the normal macros for input and output. This means that you can use POLL IN or

POLLRDNORM for input and POLLOUT or POLLWRNORM for output.

A poll(2) Example
Listing 16.3 shows the source listing for poll, c, which is a poll(2) adaptation of the

select. c program in Listing 16.2.

LISTING 16.3 poll . c—An Exampli

1:
o ■

/* poll.c : */
c. .

3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <stdarg.h>
6: #include <unistd.h>
7: #include <fcntl.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11 : #include <sys/time.h>
12: #include <sys/stat.h>
13: #include <poll.h>
14:

346 ADVANCED UNIX PROGRAMMING

continued from previous page

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

static void
quit(int rc,const char *fmt,...) {

va_list ap;

if (errno != 0) /* Report errno */
fprintf(stderr,"%s: ",strerror(errno));

va_start(ap,fmt); /* Format error message */
vfprintf(stderr,fmt,ap);
va_end(ap);
fputc('\n',stderr);

exit(rc); /* Exit with return code */

}

int
main(int argc,char **argv) {

int z; /* General status code */
int f1; /* Open fifo 1 */
int f2; /* Open fifo 2 */
struct pollfd fds[2]; /* Poll events */
int nfds; /* Number of file descriptors */
char buf[200+1]; /* I/O Buffer */
FILE *p1, *p2; /* Pipes from popen(3) */

/*

* Pipes :
*/

if (!(pi = popen("ls -l|tr 1[a - z]1 1[A-Z]'","r")))
quit(1,"popen(3) failed for pi");

if (!(p2 = popen("Is -l|tr '[A-Z]' ’[a-z]1 && sleep 8","r")))
quit(1,"popen(3) failed for p2");

/*

* Obtain the underlying file descriptors :
*/

f1 = fileno(p1);
fds[0].fd = f1; /
fds[0].events = POLLIN; /

f2 = fileno(p2);
fds[1].fd = f2; /
fds[1].events = POLLIN; /

nfds =2; /

File descriptor to poll.. */
for input events */

File descriptor to poll.. */
for input events */

nfds is fds[2] array size */

printf("BEGUN: f1=%d, f2=%d\n",f1,f2);

/*

* Enter a poll loop :
*/

Chapter 16 • EFFICIENT I/O SCHEDULING 347

67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81 :
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

do {
do {

z = poll(fds,nfds,3500); /* Timeout is 3.5 seconds */
} while (z == -1 && errno == EINTR);

if (z == -1) /* Error? */
quit(13,"poll(2)");

if (z == 0) {
printf ("TIMEOUT: f1=%d, f2=%d\n\f 1 ,f2);
continue;

/*

* Control is here if fl or f2 has data
* available to be read.
*/

if (fds[0].revents & POLLIN) {
z = read(f1,buf,sizeof buf-1);
if (z == -1)

quit(6,"read(2) of fl.");
if (z > 0) {

buf[z] = 0;
printf ("*** read %d bytes «<%s»> from fl ;\n" ,z,buf);

} else {
puts("read EOF from fl;");
pclose(p1);
fds[0].fd = fl = -1;

}
}

if (fds[1].revents & POLLIN) {
z = read(f2,buf,sizeof buf-1);
if (z == -1)

quit(6,"read(2) of f2.");
if (z > 0) {

buf[z] = 0;
printf ("*** read %d bytes «<%s»> from f2;\n" ,z,buf);

} else {
puts("read EOF from f2;");
pclose(p2);
fds[1].fd = f2 = -1;

}
}

} while (fl >= 0 || f2 >= 0);

puts("End poll.");

return 0;

348 ADVANCED UNIX PROGRAMMING

Examination of Listing 16.3 reveals that the code is almost the same as Listing 16.2. However,

the following differences are worth noting:

• Lor LreeBSD, the include file <poll. h> was added in line 13.

• An array of structure pollfd replaced the fd_set definitions in line 35.

• The array elements of f ds [0] and f ds [1] were initialized once in lines 53-54 and again

in 57-58.

• The variable nfds is set to the size of the array pollfd [] in line 60.

• The function poll(2) is called in place of select (2) in line 69.

• The events are tested differently in lines 84 and 98. In this program, the flag bit POLLIN

is tested in array member revents.

• The pollfd member fd is set to -1 to cause that array member to be ignored when the

file descriptor is closed (lines 94 and 108).

One additional difference between Listing 16.3 and 16.2 is that you establish the events that

you are interested in only once (see lines 52-58). In Listing 16.2 it was necessary to re-estab¬

lish the file descriptors in variable rxset prior to each call to select (2). Only the revents

member of the pollfd structure is updated by the function poll (2).

Compiling the program gives the following session results:

$ make poll
cc -c -Wall -g poll.c
cc -o poll poll.o
$

Running the program provides these results:

$./poll
BEGUN: f1=3, f2=4
*** read 200 bytes «<T0TAL 32
-RW-R- - - - - 1 EAG GRP 524 JUN 7 21 :47 MAKEFILE
-R. - - 1 EAG GRP 589 JUN 4 22:09 NBLOCKIO.C
-RWXR-X- - - 1 EAG GRP 12570 JUN 7 21 :51 POLL
-RW-R--- - - 1 EAG GRP 3117 JUN 7 »> from fi;
*** read 115 bytes «<21 :50 POLL.C
-RW-R--- - - 1 EAG GRP 10028 JUN 7 21:51 POLL.O
-R. - - 1 EAG GRP 3063 JUN 6 22:01 SELECT.C
»> from fi;
read EOF from f 1;
*** read 200 bytes «<total 32
-rw-r— -- 1 eag grp 524 jun 7 21 :47 makefile
-r. -- 1 eag grp 589 jun 4 22:09 nblockio.c
-rwxr-x- -- 1 eag grp 12570 jun 7 21:51 poll
. rw - r — - - 1 eag grp 3117 jun 7 »> from f2;
*** read 115 bytes <<<21 :50 poll.c
-rw-r— -- 1 eag grp 10028 jun 7 21:51 poll.o
-r. -- 1 eag grp 3063 jun 6 22:01 select. c
»> from f2;

Chapter 16 • EFFICIENT I/O SCHEDULING 349

TIMEOUT: f1 = -1, f2=4
TIMEOUT: f1 = -1, f2=4
read EOF from f2;
End poll.

The session output is almost identical to the previous example. The differences are due to the

presence of different filenames. Notice that the poll (2) function also demonstrated its timeout

capability near the end.

Summary
This chapter has provided you with the background necessary to use the UNIX system calls

select (2) and poll(2). Additionally you will now be able to use non-blocking I/O, particu¬

larly for writing to a file descriptor in concert with select (2) or poll(2).

The next chapter will explore the wonderful world of UNIX timers.

CHAPTER 17

TIMERS

Jn Chapter 15, “Signals,” you were introduced to the alarm(3) function, which

enables you to create and cancel a timer. This function provides a timer service that

has its time resolution measured in seconds.

This chapter will begin with a hypothetical implementation of the sleep (2) function call. This

will provide additional insight into why there is a conflict between the use of alarm (3) and

sleep(2). Later you’ll learn that the conflict may extend to other UNIX functions.

This chapter also will introduce you to

• Fine-grained timers such as usleep(3) and nanosleep(2)

• The interval timer functions

The Sleep Functions
Chapter 15 stated that the sleep(3) function is often implemented in terms of the alarm(3)

function. You will look at one such hypothetical implementation of sleep(3) in this section.

The function synopsis for sleep(3) is as follows:

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

The function accepts a time value in seconds to pause the execution of the calling process. If

the sleep (3) call is interrupted because a signal was received, the remaining time in seconds

is returned to the caller. The return value 0 indicates that the full sleep time has elapsed.

Listing 17.1 shows a simple program that calls on sleep(3). The program simply reports the

starting time, sleeps for five seconds, and then reports the ending time of the program run.

LISTING 17.1 sleep.c—A Simple Demonstration of sleep(3)

1:
2:
3:
4:
5:
6:
7:
8:

/* sleep.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <time.h>

352 ADVANCED UNIX PROGRAMMING

continued from previous page

9: int
10: main(int argc,char **argv) {
11: time_t dt;
12:
13: time(&dt);
14: printf("%s begun at:\t%s",_FILE_,ctime(&dt));
15:
16: puts("Zzz...(5 seconds)...");
17: sleep(5);
18:
19: time(&dt);
20: printf("%s completed at:\t%s",_FILE_,ctime(&dt));
21: return 0;
22: }

A compile and ran session is as follows:

$ make sleep
cc -c -Wall sleep.c
cc -o sleep sleep.o
$./sleep
sleep.c begun at: Sat Jun 10 11:22:23 2000
Zzz...(5 seconds)...
sleep.c completed at: Sat Jun 10 11:22:28 2000
$

This is very simple indeed. However, the implementation ofsleep(3) is a little more involved.

The design of the sleep (3) function requires the following basic steps:

1. Arrange to catch the signal SIGALRM.

2. Start a timer using alarm(3).

3. Wait for any signal to occur.

4. Restore signal handling for SIGALRM.

5. Return the time remaining, if any.

The UNIX Implementation of sleep(3)
Using the basic steps listed previously, you can write your own version of the library sleep (3)

function. Listing 17.2 shows one possible implementation.

LISTING 17.2 impsleep.c—An Example of an Implementation of sleep(3)

1: /* impsleep.c */
2:
3: //include <stdio.h>
4: //include <stdlib.h>
5: //include <unistd.h>
6: //include <signal.h>
7: //include <time.h>
8:
9: /*
10: * Signal handler for SIGALRM :

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Chapter 17 • TIMERS 353

*/

static void
h_sigalrm(int signo) {

return;
}

/* Just return */

/*

* An emulated sleep(2) function :
*/

static unsigned
Sleep(unsigned seconds) {

time_t dt0, dt 1 ;
unsigned e;
struct sigaction old_sigalrm;
struct sigaction new_sigalrm;
sigset_t nosigs;

/* Start and end times */
/* Elapsed seconds */
/* Old signal action */
/* New signal action */
/* The empty set */

sigemptyset(&nosigs); /* The empty set */

/*

* Establish the signal action required for SIGALRM :
*/

new_sigalrm.sa_handler = h_sigalrm;
sigemptyset(&new_sigalrm.sa_mask);
new_sigalrm.sa_flags = 0;

sigaction(SIGALRM,&new_sigalrm,&old_sigalrm);

/*

* Get start time, start timer, pause, and get end time :
*/

time(&dt0); /* Get start time in seconds */
alarm(seconds); /* (re)start timer */
sigsuspend(&nosigs); /* Wait for any signal */
alarm(0); /* Cancel timer */
time(&dt1); /* Get end time in seconds */
e = (unsigned)(dtl - dtl); /* Elapsed time in seconds */

/*

* Restore SIGALRM action, and return time remaining :
*/

sigaction(SIGALRM,&old_sigalrm,NULL);
if (e >= seconds) /* Did we use up the time? */

return 0; /* No time remaining.. */
return seconds - e; /* Return time remaining */

int
main(int argc,char **argv) {

time_t dt;

time(&dt);
printf("%s begun at:\t%s",_FILE_,ctime(&dt));

puts("Zzz... (5 seconds)...1');

354 ADVANCED UNIX PROGRAMMING

continued from previous page

67: Sleep(5);
68:
69: time(&dt);
70: printf("%s completed at\t%s",_FILE_,ctime(&dt));
71: return 0;
72: }

In Listing 17.2, the sleep(3) function is given the name Sleep(). The following basic steps

are traced back to the code:

1. Arrange to catch the signal SIGALRM (lines 31-38).

2. Start a timer using alarm(3) (line 44).

3. Wait for any signal to occur (lines 29 and 45).

4. Restore the signal handling for SIGALRM (line 53).

5. Return the time remaining, if any (lines 43, 47, 48, and 54-56).

Compiling and running the program is as follows:

$ make impsleep
cc -c -Wall impsleep.c
cc -o impsleep impsleep.o
$./impsleep
impsleep.c begun at: Sat Jun 10 11:34:09 2000
Zzz...(5 seconds)...
impsleep.c completed at Sat Jun 10 11:34:14 2000
$

The session output confirms that your Sleep() function substituted well for the sleep(3)

function. Knowing the nature of the implementation for sleep (3) makes it easy to appreciate

why alarm (3) should not be used in concert with sleep(3). If a program had called on

alarm(3) prior to calling on sleep(3), it is obvious that the alarm(3) call within sleep(3)

would cancel the application’s timer.

However, it must be stressed that this is only one possible implementation for sleep(3). As

newer releases of UNIX become available, the implementation may vary. Later in this chapter,

you will read about interval timers. Solaris 8 and UnixWare 7, for example, state that you

should not mix calls to setitimer (2) (an interval timer) with calls to sleep(3). This suggests

that the implementation of sleep(3) may use an interval timer instead (especially since they

also state that setitimer(2) is independent of the alarm(3) system call).

When you design a UNIX application, it is wise to choose in advance one of the following groups of
functions:

• sleep(3), usleep(3), or nanosleep(2)

• alarm(3), getitimer(2), or setitimer(2)

If you must use conflicting groups of timing routines, you must take care to invoke them at
times when they will not conflict with each other.

Chapter 17 • TIMERS 355

Sleeping in Microsecond Units
The sleep (3) call permits the process to sleep in terms of seconds. However, as hardware

speed increases and processes become more sophisticated, this is often inadequate. The

usleep(3) function helps to overcome the low resolution problem:

#include <unistd.h>

int usleep(unsigned int microseconds);

The input argument to usleep(3) is in microseconds. The return value of usleep(3) differs

from sleep (3) in that 0 is returned if the call is successful. Otherwise, -1 is returned and an

error code is found in errno. The errno value of EINTR indicates that a signal was raised.

There is no indication of whether the entire sleep time elapsed.

Listing 17.3 shows a program that calls on the usleep(3) function.

LISTING 17.3 usleep.c—A Demonstration of the usleep(3) Function

1: /* usleep.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <time.h>
7:
8: extern int usleep(unsigned int microseconds);
9:
10: static unsigned
11: test(unsigned usee) {
12: unsigned Zzz = 5;
13: long count = 0L;
14: unsigned avg;
15: long sb_count = (Zzz *
16: time_t t0, t1;
17:
18: time(&t0);
19: printf("%s started at:\t%s",_FILE_,ctime(&t0));
20:
21: for (; time(&t1) - t0 < Zzz; ++count) {
22: usleep(usec);
23: }
24:
25: printf("%s ended at:\t%s",_FILE_,ctime(&t1));
26:
27: printf("Elapsed time is %u seconds\n",(unsigned)(tl-t0));
28: printf("Counter reached %ld, should be %ld\n",count,sb_count);
29: avg = (unsigned) (((long)(tl-t0))*1000000 / (long)count);
30: printf("The average time was %u usee.\n",avg);
31:
32: return avg;
33: }
34
35

/* Microseconds to sleep */
/* Sleep time in seconds */
/* Interation Counter */
/* Average time interval */

1000000) / usee;

int

356 ADVANCED UNIX PROGRAMMING

continued from previous page

36: main(int argc,char **argv) {
37: short x;
38: unsigned a;
39: unsigned usee = ~0U;
40: unsigned usleep_times[] = {
41: 1000000, 100000, 10000, 1000, 100
42: };
43:
44: for (x=0; x<5; ++x) {
45: printf("TESTING USLEEP(%u) :\n",usleep_times[x]);
46: a = test(usleep_times[x]);
47: putchar('\n‘);
48:
49: if (a < usee)
50: usee = a; /* Save shortest avg time */
51: }
52:
53: printf("Shortest usleep(3) time is %u usee.\n",usee);
54:
55: return 0;
56: }

Some explanation is required for this program: Five sleep times are tried, and then the

usleep(3) call is performed as many times as possible within the allotted time (5 seconds).

Then an average sleep time is computed to see how well the function delivered.

The test function is composed of lines 10-33. The start time and end time are recorded in

lines 18 and 25, respectively. The counter count is initially 0 in line 13. The loop in lines

21-23 continues until Zzz seconds have elapsed (Zzz is initialized to 5 seconds in line 12).

The results are then computed and returned in lines 25-32.

Compiling and running the program provides the following session output on a FreeBSD

machine, using an AMD-K6 CPU (450MHz):

$ make usleep
cc -c -Wall usleep.c
cc -o usleep usleep.o
$./usleep
TESTING USLEEP(1000000) :
usleep.c started at: Sat Jun 10 12:13:47 2000
usleep.c ended at: Sat Jun 10 12:13:52 2000
Elapsed time is 5 seconds
Counter reached 5, should be 5
The average time was 1000000 usee.

TESTING USLEEP(100000) :
usleep.c started at: Sat Jun 10 12:13:52 2000
usleep.c ended at: Sat Jun 10 12:13:57 2000
Elapsed time is 5 seconds
Counter reached 43, should be 50
The average time was 116279 usee.

TESTING USLEEP(10000) :
usleep.c started at: Sat Jun 10 12:13:57 2000

Chapter 17 • TIMERS 357

usleep.c ended at: Sat Jun 10 12:14:02 2000
Elapsed time is 5 seconds
Counter reached 250, should be 500
The average time was 20000 usee.

TESTING USLEEP(1000) :
usleep.c started at: Sat Jun 10 12:14:02 2000
usleep.c ended at: Sat Jun 10 12:14:07 2000
Elapsed time is 5 seconds
Counter reached 250, should be 5000
The average time was 20000 usee.

TESTING USLEEP(100) :
usleep.c started at: Sat Jun 10 12:14:07 2000
usleep.c ended at: Sat Jun 10 12:14:12 2000
Elapsed time is 5 seconds
Counter reached 250, should be 50000
The average time was 20000 usee.

Shortest usleep(3) time is 20000 usee.

The first results for 1,000,000 microseconds (1 second) show that the usleep(3) call returned

five times during the 5-second period. This is as expected.

The next section shows the results for a test that was performed using the value of 100,000

microseconds in calls to usleep(3). While the elapsed time was still 5 seconds, note that the

counter reported that only 43 iterations of the loop in lines 21-23 were executed. Ideally, there

should have been 50 iterations.

The third test shows the results for 10,000 microsecond sleeps. The counter reached only 250

instead of the theoretical 500. The average time was computed as being 20,000 microseconds.

The increasingly shorter usleep(3) times do not yield corresponding higher loop counts. This

suggests that the combination of timer resolution and CPU overhead prevents the application

from getting resolution any finer than 20,000 microseconds (20 milliseconds).

Although the function usleep(3) accepts sleep time in units of microseconds, the resolution pro¬
vided may be much coarser and is specific to the implementation.

Sleeping in Nanosecond Units
It was demonstrated in the preceding section that the usleep(3) function delivered a resolu¬

tion of approximately 20 milliseconds on the system used. The UNIX operating system can

exist on nimble hardware. Consequently, resolution greater than one microsecond is often

required on faster hardware. The nanosleep(2) function, which is currently defined by the

IEEE POSIX P1003.4 standard, draft 14, makes this possible:

358 ADVANCED UNIX PROGRAMMING

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* and nanoseconds */

};

The function accepts two arguments, both of which point to the structure type timespec:

• rqtp is a pointer to a timespec structure that defines how long the calling process is to

sleep. The content of this structure must be defined and is used for input to

nanosleep(2).

• rmtp is an optional pointer to a timespec structure. When this pointer argument is not

null, the structure will receive results from the call to nanosleep(2).

The result returned via the rmtp argument is the amount of time remaining, if any.

The nanosleep (2) call returns the value 0 if the time requested has elapsed. The actual time

elapsed may be longer than requested, but it is never shorter. This is due to the implementa¬

tion’s resolution of the timer used.

The nanosleep (2) function will return -1 when an error occurs or the call is interrupted by a

signal. The value of errno is EINTR when a signal has been received with the time via the rmtp

argument, reflecting the amount of time that was remaining. The error code ENOSYS is returned

when the system does not support the nanosleep(2) call. Note that the error code EINVAL is

returned when the rqtp member tv_nsec exceeds 1 billion nanoseconds.

Note

ENOSYS —Function Not Implemented For the nanosleep(2) call, this indicates that this system

call is not implemented. The calling program should resort to usleep(3) instead.

nanosleep(2) is not supported by UnixWare 7 or Linux, but it is supported by SGI IRIX 6.5, HPUX

11, and Solaris 8. Documentation for IBM's AIX 4.3 mentions nanosleep(2) but does not provide a

manual page for it.

Warning

Processing EINTR for nanosleep(2) requires careful consideration. If it is important to maintain the

same total elapsed time for the original call with or without interruptions, you must copy the remain¬

ing time values to the input of the retried system call. If the total elapsed time is unimportant, you

may want simply to retry the system call with the original sleep time instead.

Listing 17.4 shows a demonstration program using nanosleep(2) instead of usleep(3). Note
the similarity between this program and Listing 17.3.

Chapter 17 • TIMERS 359

LISTING 17.4 nanosleep.c—A Demonstration of the nanosleep(2) Function

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/* nanosleep.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>

int nanosleep(const struct timespec *rqtp,struct timespec *rmtp);

static unsigned
test(unsigned usee) {

unsigned Zzz = 5;
long count = 0L;
unsigned avg;
long sb_count = (Zzz * 1000000)
time_t t0, t1;
struct timespec rqt;

rqt.tv_sec = usee / 1000000;
rqt.tv_nsec = (usee % 1000000)

/* Microseconds to sleep */
/* Sleep time in seconds */
/* Interation Counter */
/* Average time interval */

/ usee;

/* Requested time */

/* Seconds */
* 1000;/* Nanoseconds */

ctime(&t0));
time(&t0);
printf("%s started at:\t%s",_FILE

for (; time(&t1) - t0 < Zzz; ++count) {
nanosleep(&rqt,NULL);

}

printf("%s ended at:\t%s",_FILE_,ctime(&t1));

printf("Elapsed time is %u seconds\n",(unsigned)(tl-t0));
printf("Counter reached %ld, should be %ld\n“,count,sb_count);
avg = (unsigned) (((long)(tl-t0))*1000000 / (long)count);
printf("The average time was %u usee.\n",avg);

return avg;

}

main(int argc.char **argv) {
short x;
unsigned a;
unsigned usee = ~0U;
unsigned nanosleep_times[] = {

1000000, 100000, 10000, 1000, 100

};

for (x=0; x<5; ++x) {
printf("TESTING NANOSLEEP(%u) :\n",nanosleep_times[x]);
a = test(nanosleep_times[x]);
putchar('\n1);

360 ADVANCED UNIX PROGRAMMING

continued from previous page

53: if (a < usee)
54: usee = a; /* Save shortest avg time */
55: }
56:
57: printf("Shortest nanosleep(3) time is %u usee.\n",usee);
58:
59: return 0;
60: }

The program is essentially the same as the preceding one, except that the requested time is set

up on a structure in lines 19 and 20. Then nanosleep(2) is substituted for usleep(3) in line

26. Notice how this program uses a null pointer in argument two of the nanosleep (2) call.

Compiling and running this program under FreeBSD using an AMD-K6 CPU (450MHz)
yielded the following:

$ make nanosleep
cc -c -Wall nanosleep.c
cc -o nanosleep nanosleep.o
$./nanosleep
TESTING NANOSLEEP(1000000) :
nanosleep.c started at: Sat Jun 10 13:14:33 2000
nanosleep.c ended at: Sat Jun 10 13:14:38 2000
Elapsed time is 5 seconds
Counter reached 5, should be 5
The average time was 1000000 usee.

TESTING NANOSLEEP(100000) :
nanosleep.c started at: Sat Jun 10 13:14:38 2000
nanosleep.c ended at: Sat Jun 10 13:14:43 2000
Elapsed time is 5 seconds
Counter reached 39, should be 50
The average time was 128205 usee.

TESTING NANOSLEEP(10000) :
nanosleep.c started at: Sat Jun 10 13:14:43 2000
nanosleep.c ended at: Sat Jun 10 13:14:48 2000
Elapsed time is 5 seconds
Counter reached 248, should be 500
The average time was 20161 usee.

TESTING NANOSLEEP(1000) :
nanosleep.c started at: Sat Jun 10 13:14:48 2000
nanosleep.c ended at: Sat Jun 10 13:14:53 2000
Elapsed time is 5 seconds
Counter reached 250, should be 5000
The average time was 20000 usee.

TESTING NANOSLEEP(100) :

nanosleep.c started at: Sat Jun 10 13:14:53 2000
nanosleep.c ended at: Sat Jun 10 13:14:58 2000
Elapsed time is 5 seconds

Chapter 17 • TIMERS 361

Counter reached 250, should be 50000
The average time was 20000 usee.

Shortest nanosleep(3) time is 20000 usee.

Notice how the results agreed with the usleep(3) results for this platform, with a resolution of

approximately 20 milliseconds.

Interval Timer Functions
The release of BSD4.2 UNIX introduced interval timers. This new facility provided the pro¬

grammer the capability to create

• A realtime timer

• A virtual timer

• A system virtual (profile) timer

These timers provided three different ways to measure time. The realtime timer measures

elapsed time in the same way as the alarm(3) function. The virtual timer measures CPU time

used while the process executes in user mode.

The system virtual timer, however, measures the time of execution for the current process in

system and user modes. The system mode time measured is the execution time spent within

the kernel on behalf of the current process. This timer is intended to assist interpreters in mea¬

suring the CPU profile of an interpreted program.

The new realtime timer provides additional advantages over the older alarm(3) function:

• It allows microsecond resolution if the platform supports it.

• It is capable of repeating.

The Interval Timer API
The new timer functionality came in the form of two functions: getitimer(2) and

setitimer (2). These allow the caller to query and configure the timers, respectively.

#include <sys/time.h>
#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER PROF 2

I* Realtime timer (SIGALRM) */
/* User time timer (SIGVTALRM) */
/* System + user time (SIGPROF) */

int getitimer(int which, struct itimerval *ovalue);

int setitimer(int which,
const struct itimerval *value,
struct itimerval *ovalue);

/* timer selection */
/* new timer settings */
/* old timer settings */

/*

struct timeval {
long tv_sec; seconds */

362 ADVANCED UNIX PROGRAMMING

long tv_usec; /* and microseconds */

};

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

The getitimer(2) and setitimer(2) functions require the programmer to choose one of the

values ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF for the argument which. The ovalue

argument receives a copy of the settings in the selected timer. In setitimer (2), where the

timer settings are changed, the ovalue argument receives the former timer values. The new

timer values are supplied by the value argument. Both functions return 0 when they succeed

and -1 with an errno code if they fail.

Each timer generates a signal, as follows:

ITIMER_REAL SIGALRM

ITIMER_VIRTUAL SIGVTALRM

ITIMER PROF SIGPROF

Note

Interval timers are not inherited by the child process after a fork (2) call. Interval timers do continue

after an exec(2) call is made, however.

The itimerval structure has two members. The member it_value represents the time

remaining until the next timer expiry. If this value is specified as 0, the timer is canceled. The

member it_interval specifies the value to be loaded into the timer with the next timer

expiry. If this value specifies zero time, then the timer is not reactivated.

The following specifies a timer that will expire once, 5.25 seconds after activation:

struct itimerval tmr;

tmr.it_value.tv_sec = 5;
tmr.it_value.tv_usec = 250000;
tmr.it_interval.tv_sec = 0;
tmr.it_interval.tv_usec = 0;

The next example shows how to define a timer that will expire after 3.75 seconds and repeat
every 4.25 seconds thereafter:

struct itimerval tmr;

tmr.it_value.tv_sec = 3;
tmr.it_value.tv_usec = 750000;
tmr.it_interval.tv_sec = 4;
tmr.it_interval.tv_usec = 250000;

Chapter 17 • TIMERS 363

Interval Timer Macros
The manual page for setitimer (2) usually mentions three helpful macros.

• timerclear(tvp) clears the timer value.

• timerisset(tvp) indicates if the timer value is non-zero.

• timercmp(tvp,uvp,cmp) comparestwo timer values.

The following example shows how timerclear () can be used to clear a time value:

struct itimerval tmr;

timerclear(&tmr); /* clear time value tmr */

The following tests to see if timer value tmr is zero:

if (timerisset(&tmr))
/* tmr is non-zero */

The last example tests to see if variables tml and tm2 represent the same timer values:

struct itimerval tml;
struct itimerval tm2;

if (timercmp(&tm1,&tm2,=))
/* Values are equal */

The following tests to see if the variable tml represents less time than tm2:

struct itimerval tml;
struct itimerval tm2;

if (timercmp(&tm1,&tm2,<))
/* tml < tm2 */

Interval Timer Restrictions
Most UNIX platforms insist that the microsecond component of the interval time specification

(tv_usec) not exceed one second (1,000,000 microseconds). Otherwise, an error will be

reported.

A programmer that is striving for maximum UNIX platform portability should keep a few

other things in mind when designing programs around interval timers. While setitimer (2)

may be independent of the alarm(3) function call (UnixWare 7), you may not always be able

to depend on this. Additionally, the sleep(3) function may be implemented in terms of

alarm (3), or it may be implemented in terms of the ITIMER_REAL interval timer. HPUX 11

documents that “interaction between setitimer() and any of alarm(), sleep() or usleep()

[functions] is unspecified.”

The granularity of the timer will be very platform specific. While the specification permits the

programmer to specify units of microseconds, your platform may round the time specifications

to a less precise value. If your application is time critical, you may need to test your interval

timer before relying on a particular level of precision.

364 ADVANCED UNIX PROGRAMMING

Linux documents that generation and delivery of the timer signal are separate. This means that

under severe conditions it is possible for realtime timer signals to be lost if they occur too soon

to be handled. They are not stacked or counted.

Jfl? Note

Some UNIX platforms document additional interval timers. For example, Solaris 8 documents the

timer itimer_realprof, which delivers the same signal sigprof but has different semantics.

Note also that the ITIMER_PROF is capable of causing interrupted system calls, because the sig¬

nal can be raised while executing in system mode. This means that your application must

properly plan for the EINTR error code from system calls.

Creating One-Shot Timers
Listing 17.5 illustrates the use of the interval timer. This program establishes a simple one-shot

realtime timer that raises the signal SIGALRM and then exits.

LISTING 17.5 rl shot. c—A Simple One-Shot Realtime Timer Demonstration

1: /* rlshot.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <signal.h>
7: #include <errno.h>
8: #include <sys/time.h>
9:
10: static int count = 0; /* Counter */
11:
12: /*

13: * Signal handler :
14: */
15: static void
16: handler(int signo) {
17: int e = errno; /* Save errno */
18:
19: ++count; /* Increment count */
20: write(1, "<«SIGALRM>»\n'', 14);
21: errno = e; /* Restore errno */
22: }
23:
24: /*
25: * Main program :
26: */
27: int
28: main(int argc,char **argv) {
29: int z; /* Status return code */

Chapter 17 • TIMERS 365

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

struct sigaction new_sigalrm;
struct itimerval old_timer;
struct itimerval new_timer;

/* New signal action */
/* Old timer values */
/* New timer values */

/*

* Establish the signal action required for SIGALRM :
*/

new_sigalrm.sa_handler = handler;
sigemptyset(&new_sigalrm.sa_mask);
new_sigalrm.sa_flags = 0;
sigaction(SIGALRM,&new_sigalrm,NULL);

/*

* Establish a one-shot realtime timer :
*/

new_timer.it_interval.tv_sec = 0;
new_timer.it_interval.tv_usec = 0;
new_timer.it_value.tv_sec = 5;
new_timer.it_value.tv_usec = 250000; /* 5.25 seconds */

puts("Starting ITIMER_REAI_");

z = setitimer(ITIMER_REAL,&new_timer,&old_timer);
if (z) {

perror("setitimer(ITIMER_REAL)");
return 1;

/*

* A loop :
*/

do {
/* Do Work...*/ ;

} while (count < 1);

printf("ITIMER_REAL count is %d.\n",count);
return 0;

The program in Listing 17.5 establishes a signal handler for the signal SIGALRM in lines 34-40.

The function handler() is called when the signal is raised, and it simply increments variable

count in line 19 and reports a message in line 20.

The one-shot timer is configured in lines 45-52. Notice that the it_interval member values

are 0, causing the timer to not restart when the initial value expires.

Warning

The program in Listing 17.5 uses a CPU-intensive loop in lines 61-63. Out of courtesy to others, do

not invoke this program often in a multiuser environment.

366 ADVANCED UNIX PROGRAMMING

Compiling and running the program should yield the following:

$ make rlshot
cc -c -Wall rlshot.c
cc -o rlshot rlshot.o
$./rlshot
Starting ITIMER_REAL...
<«SIGALRM»>
ITIMER_REAL count is 1.
$

You will see the message «<SIGALRM»> raised 5.25 seconds after the program starts. Then

the program reports the final value of count and exits normally.

Establishing Repeating Timers
The program shown in Listing 17.6 is more interesting. It starts realtime, virtual, and profile

timers all at once.

LISTING 17.6 timers. c—A Program That Uses Realtime, Virtual, and Profile Timers

1:
2:
3:

4:

5:

6:
7:

8:
9:

10

11
12
13

14

15

16

17

18

19

20
21
22
23

24

25

26

27

28

29

30

31

32

/* timers.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <sys/time.h>

static int count = 0; /* Counter */

* Signal handler :
*/

static void
handler(int signo) {

int e = errno;
char *signame = "?";

/* Save errno */
/* Signal name */

/* Realtime timer expired */
/* Increment counter */

switch/ signo) {
case SIGALRM :

++count;
signame = "«<SIGALRM»>\n";
break;

case SIGVTALRM : /* Virtual timer expired */
signame = "«<SIGVTALRM»>\n";
break;

case SIGPROF : /* System virtual timer expired */
signame = "<«SIGPROF>»\n";
break;

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Chapter 17 • TIMERS 367

write(1,signame,strlen(signame));
errno = e; /* Restore errno */

* Main program :
*/

int
main(int argc,char **argv) {

int z;
struct sigaction new_sigalrm;
struct itimerval real_timer;
struct itimerval virt_timer;
struct itimerval prof_timer;
struct itimerval timer_values;

/*

/* Status return code */
/* New signal action */
/* Real timer values */
/* User mode timer */
/* System+User mode timer */
/* Timer values */

* Establish the signal action required for SIGALRM
*/

new_sigalrm.sa_handler = handler;
sigemptyset(&new_sigalrm.sa_mask);
new_sigalrm.sa_flags = 0;

sigaction(SIGALRM,&new_sigalrm,NULL);
sigaction(SIGVTALRM,&new_sigalrm,NULL);
sigaction(SIGPROF,&new_sigalrm,NULL);

/*

* Establish a realtime timer :
*/

real_timer.it_interval.tv_sec = 3;
real_timer.it_interval.tv_usec = 500000; /* 3.5 seconds */
real_timer.it_value.tv_sec = 3;
real_timer.it_value.tv_usec = 500000;

virt_timer.it_interval.tv_sec = 0;
virt_timer.it_interval.tv_usec = 500000; /* 0.5 seconds */
virt_timer.it_value.tv_sec = 0;
virt_timer.it_value.tv_usec = 500000;

prof_timer.it_interval.tv_sec = 0;
prof_timer.it_interval.tv_usec = 500000; /* 0.5 seconds */
prof_timer.it_value.tv_sec = 0;
prof_timer.it_value.tv_usec = 500000;

puts("Starting ITIMER_REAL...");
z = setitimer(ITIMER_REAL,&real_timer,NULL);

if (z) {
perror("setitimer(ITIMER_REAL)");
return 1;

}

puts("Starting ITIMER_VIRTUAL...");
z = setitimer(ITIMER_VIRTUAL,&virt_timer,NULL);

368 ADVANCED UNIX PROGRAMMING

continued from previous page

87: if (z) {
88: perror("setitimer(ITIMER_VIRTUAL)");
89: return 1;
90: }
91 :
92: puts("Starting ITIMER_PROF...");
93: z = setitimer(ITIMER_PROF,&prof_timer,NULL);
94: if (z) {
95: perror("setitimer(ITIMER_PROF)");
96: return 1;
97: }
98:
99: /*
100: * A loop :
101: */

102: do {
103: /* Perform work which involves system time */
104: getitimer(ITIMER_PROF,&timer_values);
105: (void) timer_values;
106: } while (count < 2);
107:
108: printf("ITIMER_REAL count is %d.\n".count);
109: return 0;
110: }

Lines 52-58 establish a single handler function handler () to process signals SIGALRM,

SIGVTALRM, and SIGPROF. The counter variable count is incremented only when handler ()

receives the signal SIGALRM (see line 22).

The three timers are configured in lines 63-76. The timers themselves are started in lines

78-97.

After the program begins executing, the do { } while loop in lines 102-106 repeatedly calls

on getitimer(2) to read the current timer values for ITIMER_PR0F. This is performed so that

much of the CPU time expended in this demonstration will be in system mode.

The program in Listing 17.6 is very CPU intensive. To be courteous to other users of the same system,

do not run this program frequently.

Compiling and running this program on a FreeBSD system yielded the following:

$ make timers
cc -c -Wall timers.c
cc -o timers timers.o
$./timers
Starting ITIMER_REAL...
starting ITIMER_VIRTUAL...
Starting ITIMER_PROF...
«<SIGPR0F»>
«<SIGPR0F»>

Chapter 17 • TIMERS 369

«<SIGPROF»>
«<SIGVTALRM»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGALRM>»
«<SIGVTALRM>»
<«SIGPROF»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGVTALRM»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGPROF»>
«<SIGALRM»>
ITIMER_REAL count is 2.
$

You can see the names of the different signals that were raised when the timers expired. Note

how the timers kept working in this example.

Note also that the signal SIGPROF occurs more frequently than the signal SIGVTALRM. This

should tell you that more CPU time was being spent in system mode in the do { } while
loop than in user mode.

The SIGALRM signal occurred twice because the while clause exits after the counter count

reaches 2. Since the realtime timer was configured to expire at 3.5 seconds, the entire output

represents approximately 7 seconds of time.

Summary
This chapter has explored the use of using sleep functions and interval timers. The realtime

timer provides your application with the capability to act with elapsed time. The virtual and

profile interval timers allow your application to act when a certain amount of CPU time has

been consumed by the current process. Frequently these are useful for interpreted languages.

The next chapter will look at how you can create new processes using pipes and the

system(3) call.

.

' <

CHAPTER 18

PIPES AND PROCESSES

ne of the strengths of UNIX is its ability to reuse different process components. The

shell demonstrates this by connecting the output of one process to the input of

another, using pipes in an almost effortless manner. This chapter will focus on how

programs create pipes to other processes using popen(3) and how to use the system(3) func¬

tion to invoke external processes.

UNIX Pipes
A pipe between two processes is similar to a tubular piece of plumbing. When a UNIX pipe is

created, a data pipeline is formed between a writing process and a reading process. The UNIX

pipe can become plugged if the reading process does not continue to receive the piped data.

Unlike a physical pipe, however, some versions of UNIX insist that the data must flow in one

direction: from its source to its destination.

In Chapter 2, “UNIX File System Objects,” you read about FIFOs, which are also known as

named pipes. This chapter, however, will be concerned with nameless pipes. Unlike FIFOs,

nameless pipes are created in the open state and only exist between processes.

Creating UNIX Pipes
The system call that is responsible for creating nameless pipes is the function pipe (2). Its

function synopsis is as follows:

#include <unistd.h>

int pipe(int fildes[2]);

The pipe (2) call returns one pair of file descriptors that represent both ends of the pipe.

When the function is successful, the array f ildes [] is populated with two open file descrip¬

tors, and the value 0 is returned. Otherwise -1 is returned, and an error code is left in the

external variable errno.

Note

The close-on-exec flag is not set on the two file descriptors that are returned by pipe(2).

372 ADVANCED UNIX PROGRAMMING

Systems that only support unidirectional pipes will provide f ildes[0] as a file descriptor

capable of reading only. The descriptor tildes [1] will be capable of writing only. Data written

to f ildes[1] can be read at the opposite end of the pipe with file descriptor tildes[0].

Systems that support STREAMS-based pipes allow reading and writing to both ends. Data writ¬

ten to fildes[0] is read via descriptor tildes[1]. Data written to tildes[1] is read via

descriptor tildes[0]. In this respect, the STREAMS-based pipe is similar to a connected

socket (the curious may read about socketpair (2)).

The following example shows how a pipe is created:

int z; /* General status code */
int fildes[2]; /* Pair ot tile descriptors */

if ((z = pipe(&fildes[0]))
perror("pipe(2)");
exit(13);

-1) {

/* Report the error */

)
printf("fildes[0] = %d, for reading\n",fildes[0]);
printf("fildestl] = %d, for writing\n",fildes[1]);

This example shows how a pipe is created and how its file descriptors are reported (a unidirec¬

tional pipe is assumed in this example).

The value st_size returned by f stat (2) is the number of bytes available for reading. For systems

that support only unidirectional pipes, the same value st_size is returned for either file descriptor

fildes[0] orfildes[1].

For STREAMS-based pipes, the st_size value returned by f stat (2) is the number of bytes available

for reading at the specified end of the pipe. Descriptor tildes [0] or tildes [1] specifies which end

of the pipe to query.

The creation of a pipe within one process may not appear to be useful. However, when you

couple this functionality with the fork(2) system call, which is covered in Chapter 19,

“Forked Processes,” this becomes a powerful tool.

Because fork (2) is covered in the next chapter, this discussion will now turn to the popen (3)

call. The pipe(2) function was introduced here because the popen(3) function calls upon it

internally.

Note

FreeBSD release 3.4, UnixWare 7, and Solaris 8 support STREAMS-based pipes (bi-directional).

SGI IRIX 6.5 and HPUX 10.0 and later can be configured to use STREAMS-based (bi-directional) or

unidirectional pipes. SGI also permits STREAMS-based pipe support to be chosen at program link

time.

Only the unidirectional pipe is supported by Linux and IBM's AIX 4.3.

Chapter 18 • PIPES AND PROCESSES 373

Opening Pipes to Other Processes
The C standard I/O library popen (3) makes it easy for the application programmer to open a

pipe to an external process. It makes the necessary call to pipe(2) and then calls upon

fork (2) to start a new process, which is attached to a pipe. The function synopsis for

popen (3) is as follows:

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

int pclose(FILE *stream);

The popen (3) function arguments are similar to the fopen(3) function except that the first

argument is a command rather than a pathname. The argument command must be a command

that is acceptable to the UNIX shell.

The second argument mode must be the C string " r" for reading or "w" for writing. No other

combination, such as "w+", is acceptable. A popen (3) pipe must be opened for reading from a

process or writing to a process, but never for both. When popen (3) is successful, a valid FILE

pointer is returned. Otherwise, a null pointer is returned and the error is posted to errno.

Successfully opened pipes must be later closed by a call to pclose(3). The return value for

pclose (3) is the termination status of the shell process.

Warning

Calling popen (3) from a set-user-ID program is dangerous. The popen(3) function uses fork(2)

and exec(2) to invoke the new shell, and consequently it is possible for a security leak to occur (the

current effective user and group ID values are saved by exec(2)). The shell and the commands

invoked are subject to environment variable settings such as path and SHELL.

The C string given as argument command to popen (3) must be acceptable to the shell. This is

because the popen(3) function invokes a shell process first. The entire pipe creation process

can be described as follows:

1. The popen (3) function creates a nameless pipe with a call to pipe(2).

2. The popen(3) function calls functions fork(2) and execve(2) to start the shell.

3. The shell interprets your command string that was provided in the call to popen (3).

4. The shell starts your command if it is able to. If not, the shell returns an error to the

popen(3) call.

The command process started by popen (3) is referred to as the child process of your current

process. The current process that has called popen (3) is known as the parent process. This ter¬

minology helps to identify the process relationships involved.

Because the command string is passed to the shell, you have considerable flexibility in the fea¬

tures at your disposal. This includes the ability to use command lines that use wildcard file¬

names and shell input and output redirection operators. Additionally, you may use the pipe

symbol to create additional pipes to other processes.

374 ADVANCED UNIX PROGRAMMING

Warning

If you write programs that use the popen(3) function and that must be portable to other UNIX oper¬

ating systems, keep in mind the limitations of the shell. Different shell programs are used on some

UNIX platforms, with varying capabilities.

The current process environment is important to the shell that is invoked by the popen (3) call

to start your command. This means that any commands that you expect it to invoke are subject

to the usual PATH directory searches.

Reading from Pipes
The short program in Listing 18.1 shows a simple program that opens a pipe to the ps (1)

command. After the pipe is opened, the program reads from the pipe until end-of-file is

reached. All read data is displayed on standard output.

LISTING 18.1 popen.c—Demonstration of popen(3) and Reading ps(1) Output

1: /* popen.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5:
6: int
7: main(int argc,char **argv) {
8: char buf[256]; /* Input buffer */
9: FILE *p; /* Input pipe */
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/*

* Read the output of the pipe:
*/

while (fgets(buf,sizeof buf,p) != 0)

if (pclose(p)) {
perrorf"pclose(3)");
return 13;

}

/*

* Open pipe to ps(1) command for reading :
*/

p = popen("ps -1","r");

if (!P) {
perrorf"popen(3)") ;
return 13;

}

fputs(buf,stdout);

33: }
return 0;

Chapter 18 • PIPES AND PROCESSES 375

The program begins by opening a read pipe to the command ps -1 in line 14. Once the pipe

has been opened successfully, the program reads each text line in the loop in lines 24 and 25,

until end-of-file is reached. Then the pclose (3) function is called to properly close the pipe p
(line 27).

The following FreeBSD compile and run session is provided as follows:

$ make popen
cc -c -Wall popen.c
cc -0 popen popen.0

$./popen
UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND

1001 7590 1 0 10 0 596 344 wait IS p0 0:00.05 -sh (sh)
1001 7593 7592 1 10 0 596 344 wait Ss Pi 0:00.22 -sh (sh)
1001 7813 7593 1 -6 0 780 408 piperd S+ Pi 0:00.01 ./popen
1001 7814 7813 1 10 0 496 332 wait s+ Pi 0:00.00 sh -c ps -1
1001 7815 7814 1 28 0 376 244 - R+ Pi 0:00.00 ps -1

$

The last three lines of output show the processes involved (the preceding ones are for the

xterm (1) session that was being used). Process 7813 is the process used to execute the pro¬

gram . / popen. However, note how the popen (3) call has created two new processes:

• Process 7814 is the shell that has been started to execute the command.

• Process 7815 is the command process itself (the ps (1) command).

Although you cannot see the single quotes that were used, you can see how the popen (3)

process created the command process using the shell process 7814. If you could see the single

quotes, you would see:

sh -c 'ps -1'

This demonstrates the work that the popen (3) function has performed for you by calling upon

pipe(2), fork(2), and execve(2). The functions fork(2) and execve(2) are discussed in

Chapter 19.

Note

The command-line options for the ps (1) command differ for different UNIX platforms. The exam¬

ples presented in this chapter assume FreeBSD release 3.4.

Writing to Pipes
When a pipe is being written to by the current process, another process at the other end of the

pipe is reading that data from its standard input. To illustrate that procedure, look at the exam¬

ple program provided in Listing 18.2.

376 ADVANCED UNIX PROGRAMMING

LISTING 18.2 pmail. c—A Program That Writes to a popen (3) Pipe

1: /* pmail.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <pwd.h>
7: #include <sys/types.h>
8:
9: int
10: main(int argc,char **argv) {
11: struct passwd *pw = 0;
12: char cmd[256];
13: FILE *p = 0;
14:
15: /*
16: * Lookup our userid:
17: */
18: if (!(pw= getpwuid(geteuid()))) {
19: perror("getpwuid()");
20: return 13;
21: }
22:
23: /*
24: * Format command :

25: */
26: sprintf (cmd,''mail -s
27: (long)getpid(),
28: pw->pw_name);
29:
30: /*
31: * Open a pipe to mailx:
32: */
33: if (!(p = popen(cmd,"w"))) {
34: perror("popen(3)");
35: return 13;
36: }
37:
38: /*
39: * Now write our message:
40: */
41: fprintf(p,"This is command %s speaking.\n",argv[0]);
42: fprintf(p,"I am operating in the account for %s\n",pw->pw_gecos);
43:
44: if (getuid() != 0) {
45: fprintf(p,"I'd like to operate in root instead.\n");
46: fprintf(p,"I could do more damage there. :)\n\n“);
47: } else {
48: fprintf(p,"I'd like to operate in a non-root ID instead.\n");
49: fprintf(p,"I would be safer there.\n");
50: }
51:

'A message from process ID %ld' %s",
/* Process ID */
/* User name */

/* Password info */
/* Command buffer */
/* mailx pipe */

Chapter 18 • PIPES AND PROCESSES 377

52: fprintf(p,"Sincerely,\n Process ID %ld\n",(long)getpid());
53:
54: if (pclose(p) == -1) {
55: perror("pclose(3)");
56: return 13;
57: }
58:
59: printf("Message sent to %s\n",pw->pw_name);
60: return 0;
61: }

This program looks up your user ID in lines 18-21. Then it forms a command to start an

email to your current account in lines 26-28. A write pipe is created by calling popen (3) in

line 33. The message text lines are written to lines 41-52. The message text is completed by

sending end-of-file to the mail(1) command by calling pclose(3) in line 54.

Compiling and running this command under FreeBSD yields the following result:

$ make pmail
cc -c -Wall pmail.c
cc -o pmail pmail.o
$./pmail
Message sent to ehg

$

Checking the mailbox yields results similar to this:

$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/ehg": 1 message 1 new
>N 1 ehg Mon Jun 19 23:20 20/588 "A message from process ID 7943"

& 1
Message 1:
From ehg Mon Jun 19 23:20:24 2000
Date: Mon, 19 Jun 2000 23:20:24 -0400 (EDT)
From: "Earl Grey" <ehg>
To: ehg
Subject: A message from process ID 7943

This is command ./pmail speaking.
I am operating in the account for Earl Grey
I'd like to operate in root instead.
I could do more damage there. :)

Sincerely,
Process ID 7943

& d 1
& q

$

This demonstrated how your C program could write data to another external process through

a pipe.

378 ADVANCED UNIX PROGRAMMING

Closing a Pipe
After a pipe is opened for reading or writing, the pipe must be closed by a call to pclose(3).

This allows a number of important concluding operations to take place:

• The wait (2) function (or equivalent) must be called to pause the execution of the cur¬

rent process until the child process terminates.

• Obtain success or failure information from wait (2) about the child process that has ter¬

minated.

• Destroy the FILE control block.

The wait (2) call is necessary to obtain termination status about the child process. This is fully

discussed in the next chapter.

Because popen(3) returns a pointer to FILE, there is a strong urge by programmers to close the

open pipe with a call to f close (3). However, close popen(3) pipes with pclose(3) only. On

some platforms, using f close (3) on a popen (3) FILE stream will cause the program to abort.

Warning

Always use function pclose(3) to close a pipe opened with popen (3). Failure to obey this rule will

result in undetected process errors, possible memory leaks and, on some UNIX platforms, aborts.

Furthermore, this practice can result in zombie processes while your program continues to run. For

more about zombie processes, see Chapter 19.

Handling a Broken Pipe
When a program has opened a pipe to another process for writing, and that other process has

aborted, the read end of the pipe becomes closed. At that point, the pipe is half closed and

there is no hope for it to be emptied of data—there is no process reading from it. This causes

the UNIX kernel to raise the signal SIGPIPE in the process that is attempting to write to the

pipe. This indicates to the writer that the pipe is broken.

The signal SIGPIPE is not always desirable for this purpose. You can elect to ignore the signal

SIGPIPE and simply allow the write (2) function to return an error when this condition arises
(error code EPIPE).

For example, you could alter Listing 18.2 as follows:

1: /* pmail.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <pwd.h>

Chapter 18 • PIPES AND PROCESSES 379

7:
8:

#include <sys/types.h>

9: int
10: main(int argc,char **argv) {
11 : struct passwd *pw = 0; /* Password info
12: char cmd[256]; /* Command buffer
13: FILE *p = 0; /* mailx pipe */
14:
15: signal(SIGPIPE,SIG_IGN); /* Ignore SIGPIPE

Line 15 adds a call to signal(3) that requests the action SIG_IGN for signal SIGPIPE. The

default action for signal SIGPIPE is to terminate the process. Consequently, you must be pre¬

pared for this signal in programs that work with pipes.

EPIPE—Broken pipe This error indicates that the calling process is not able to perform a

write(2) (or equivalent) operation on a file descriptor because it is writing to a pipe with no reading

processes.

External Processes Without Pipes
The previous section demonstrated an easy method to create a pipe to an external process and

either read its output or feed it input. It often happens, however, that C programs need only to

invoke another process, without using a pipe. The standard C library provides the system(3)

function for this purpose.

#include <stdlib.h>

int system(const char *command);

In general, there are two ways to use the system(3) function: with a null argument or with a

non-null command string argument.

Almost all systems document the fact that when system(3) is called with a null command

pointer, the function call checks on the availability of the shell that would normally be used to

carry out the command (system(3) for HPUX-11 does not mention this feature). The shell is

considered available if it exists and is executable. If the shell is available, system (3) returns

non-zero to indicate true. Otherwise, 0 indicates that no shell is available.

When the argument command is not a null pointer, it is expected to point to a null terminated

C string containing a shell command to be executed as a child process. The function

system(3) does not return until the indicated command has completed. The return status for

this type ofsystem(3) call is somewhat complicated, and is explained in full in Table 18.1

later in the chapter.

380 ADVANCED UNIX PROGRAMMING

The shell program that is checked or invoked by the system(3) call varies somewhat with the

UNIX platform. The following gives a partial list:

FreeBSD release 3.4 /bin/sh

SGI IRIX 6.5 /sbin/sh

HPUX-11 /usr/bin/sh

UnixWare 7 $SHELL or /bin/sh

Solaris 8 (native) /usr/bin/sh

Solaris 8 (standard) /usr/bin/ksh

IBM AIX 4.3 /usr/bin/sh

IBM AIX 4.3 (trusted) /usr/bin/tsh

Linux /bin/sh

The actual shell used on some platforms depends upon certain conditions. UnixWare 7 looks

for the existence of the environment variable SHELL and uses that pathname for the shell.

Otherwise it falls back to the default of /bin/sh. The choice for Solaris 8 depends upon

whether it was compiled and linked to a particular standard. IBM’s AIX 4.3 has a Trusted

Computing Base for certain file system objects. If this feature is installed and enabled, the

trusted shell /usr/bin/tsh can be invoked under some circumstances. Linux normally has
/bin/sh linked to the GNU bash(1) shell.

Note

On some platforms, the signals SIGINT and SIGQUIT are ignored for the duration of the system(3)

call. Furthermore, the signal SIGCHLD may be blocked until system(3) returns. IBM AIX 4.3 and

HPUX-11 document this behavior.

Warning

Calling system(3) from a set-user-ID program is dangerous. The system(3) function uses fork(2)

and exec(2) to invoke the new shell, and consequently it is possible for a security leak to occur (the

current effective user and group ID values are saved by exec(2)). The shell and the commands

invoked are subject to environment variable settings such as path and SHELL.

Review Table 12.2 in Chapter 12, “User ID, Password, and Group Management,” if you are

unclear how the current effective user and group ID values are affected by the exec (2) family
of functions.

Chapter 18 • PIPES AND PROCESSES 381

Interpreting system(3) Return Values
The return value for system(3) is complex when the command string is not null. It requires

care to arrive at the correct conclusion. Table 18.1 contains a summary of the return values

from system(3) when the command argument is not null. The errno value must be cleared to

zero before calling system(3) to use this table. This permits the distinction between a failure

to start the command and a command returning an exit code of 127.

TABLE 18.1 The system(3) Function Return Values

Return Value Check errno Description

0 No The function call was successful launching the command

and command exited with a 0 exit status.

-1 Yes An error has occurred. Check the value of errno to deter¬

mine the reason for failure.

127 Maybe If errno was cleared to 0 prior to calling system(3) and it

is not 0 after the call, then an error has occurred while

starting the new process. Check errno for the reason that

the process could not be started. Otherwise, if errno has

remained 0, then command executed and has returned exit

code 127.

1 -126 No These are return codes from command that has executed.

128-255 No These are return codes from command that has executed.

Invoking Commands
To illustrate the system(3) function and its complex return values, a program has been pro¬

vided in Listing 18.3.

LISTING 18.3 smail. c—Example '

1: /* smail, ,c */
d. .
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <errno.h>
7: #include <string.h>
8: #include <pwd.h>
9:
10:

#include <sys/types.h>

11: int

382 ADVANCED UNIX PROGRAMMING

continued from previous page

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

main(int argc,char **argv)
struct passwd *pw = 0;
char cmd[256];
int rc;

/*

/*

/*

Password info */
Command buffer */
Command return code

/’

7
if

Lookup our userid:

(!(pw = getpwuid(geteuid()))) {
fprintf(stderr,"%s: unknown userid\n",strerror(errno));
return 13;

/*

* Format command
*/

sprintf(cmd, ps -l|mail
(long) getpid(),
pw->pw_name);

-s
/*

/*

* PID %ld' %s",
Process ID */
User name */

/*
★ Run the command
*/

errno 0;
rc = system(cmd);

Clear errno
Execute the

*/
command 7

if (rc == 127 && errno != 0) {
/* Command failed to start */
fprintf(stderr,"%s: starting system(%s)\n",

strerror(errno),cmd);
else if (rc == -1) {

/* Other errors occurred */
fprintf(stderr,"%s: system(%s)\n",

strerror(errno),cmd);
else {

printf("Command '%s1\n returned code %d\n",cmd,rc);
puts("Check your mail.");

return 0;

The smail. c program looks up your effective user ID in lines 20-23. Then a command is for¬

matted into character array cmd [] to list your current processes and email it to you (lines

28-30). The actual process list and mailing occurs in lines 35 and 36, where cmd is carried

out. Lines 38-49 show how to make sense of the return code from system(3).

When the program in Listing 18.3 is compiled and executed under FreeBSD, the following

results are obtained:

$ make smail
cc -c -Wall smail.c
cc -o smail smail.o
$./smail

Chapter 18 • PIPES AND PROCESSES 383

Command 'ps -l|mail -s 'PID 10424' ehg'
returned code 0

Check your mail.
$

At this point, the program is telling you that mail has been sent. Now check your mail with the

mail (1) command (the output lines from ps (1) have been shortened for readability):

$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/ehg": 1 message 1 new
>N 1 ehg Wed Jun 21 21:56 20/931 ''PID 10424"
& 1
Message 1:
From ehg Wed Jun 21 21:56:26 2000
Date: Wed, 21 Jun 2000 21:56:26 -0400 (EDT)
From: "Earl H. Grey" <ehg>
To: ehg
Subject: PID 10424

UID PID PPID CPU PRI NI TIME COMMAND
1001 10200 1 0 10 0 0:00.05 -sh (sh)
1001 10203 10202 0 10 0 0:00.20 -sh (sh)
1001 10424 10203 1 10 0 0:00.01 ./smail
1001 10425 10424 2 10 0 0:00.01 sh -c ps -1 |mail -s 'PID 10424
1001 10426 10425 1 28 0 0:00.00 ps -1
1001 10427 10425 2 28 0 0:00.00 sh -c ps -1 |mail -s 'PID 10424

& d 1
& q

$

Your message content may vary somewhat from the message shown here. The timing is always

such that it appears that two processes are executing the command sh -c ps -l|mail -s

' PID 10424'. In fact, what you see here is a snapshot of how things appear after fork (2) has

created a new process, but before it has been able to perform an exec(2) call. The following

explains what you see in the message:

• Process 10424 is the initial . /smail program that was started.

• Process 10425 is the shell process that has been started because of the system (3) call.

This shell process must execute the command ps -11 mail - s ehg.

• Process 10426 is the ps (1) command that has been started by the shell (note its parent

process ID is 10425).

• Process 10427 was to be the mail (1) command. However, it shows the command line of

the shell because the shell had not yet carried out the call to exec (2) before the ps (1)

command took a snapshot. Had the exec(2) call taken place, you would have seen the

command mail -s 'PID 10424' ehg instead.

If you are unfamiliar with f o r k (2) and e x e c (2) this may be difficult to understand. Chapter

19 will cover fork(2) andexec(2) in detail.

384 ADVANCED UNIX PROGRAMMING

Scrutinizing the system(3) Function
Although the system (3) function is quite easy to use, it has drawbacks. One of them is the

complex set of return values when the command string is not a null pointer (review Table 18.1).

The system(3) call is also considered a security risk, especially for programs that are

setuid(2) or setgid(2). If this applies to your application, you would be wise to shun the

system(3) call, and carefully craft fork(2) and exec(2) calls directly.

Summary
This chapter focused on the creation of other processes with and without pipes. Pipes allow

your current process to read or write data to another process. The system(3) function also

permits your process to start other processes without using a pipe.

The next chapter discusses the system calls that make other processes available. There you will

learn what you need to master the use of the fork (2) and exec (2) family of functions.

CHAPTER 19

FORKED PROCESSES

Jn the previous chapter, you learned how to create new processes with the help of the

popen(3) and system(3) function calls. These functions end up calling upon the sys¬

tem calls fork(2) and exec (2), however. This chapter will enable you to call

f ork (2) and exec (2) directly from your programs, giving you complete and total control over

process creation.

Overview of the UNIX Fork Process
Every process under UNIX is created using the fork(2) system call. UNIX pioneered this con¬

cept of creating two nearly identical processes from one original process. The original process

is known as the parent process and the new process is the child process. Figure 19.1 shows

how three processes are related in this manner.

FIGURE 19.1

The parent-child relation¬

ship between processes.

In Figure 19.1, the shell process ID 1294 lost its parent process, because it terminated. All

orphaned processes are inherited by the in it (8) process, and its process ID is always 1.

Consequently, the shell’s parent becomes process ID 1. When the ps (1) command is typed in

at the shell prompt, a fork(2) and aexecve(2) are performed, resulting in the process ID

1295 being created as a child process of the shell.

Conceptually, the fork (2) call is like meeting a fork in the road. Initially there is one process

executing. Upon successful return from the fork(2) function are two nearly identical

386 ADVANCED UNIX PROGRAMMING

processes. The difference is that one has the child process ID returned from fork(2), whereas

the child process has the value 0 returned instead.

The two processes share the following characteristics:

• Process group ID

• Current working directory

• Root directory

• umask(2) bits

• Real and effective user ID values

• Real and effective group ID values

• Set-user-ID flag and set-group-ID flag

• Session ID

• Controlling terminal, if any

• Signal mask and registered actions

• Close-on-exec flag for open file descriptors

• Environment variables

• Attached shared memory

• Resource limits

The parent and child processes have the following differences, however:

• The return value from fork(2) is different. The parent has the child process ID returned.

The child process has zero returned.

• The process ID values are different.

• The parent process ID values are different.

• The execution time charged for system and user CPU time starts at zero for the child

process (see getrusage(2)).

• File locks held by the parent are not inherited by the child process.

• Child processes do not inherit alarms and timers from the parent process (alarm(2) and

setitimer(2)). Pending alarms are cleared.

• Pending signals for the child process are set to the empty set.

The open file descriptors for the child process are duplicated. This is similar to calling dup(2)

for each open file descriptor and giving the duplicated units to the child process. If the child

process performs an lseek(2) on an open file unit, it changes the file offset for both the parent

and child processes for the same file unit. The same interaction occurs from the parent process

on the child’s file units.

Chapter 19 • FORKED PROCESSES 387

The operation of the fork (2) system call can be summarized as follows:

1. The kernel makes the current process memory space available virtually in the new

process. Memory pages that are not read-only are marked for “copy-on-write.” Both

processes initially share the same physical memory, marked as read-only by the kernel.

When one or the other process attempts to alter that page of memory, the kernel copies

the page and gives each process its own writable page.

2. Open file descriptors are duplicated and made available as the same file units in the

child process.

3. Other shareable resources such as attached shared memory segments are made available

to the child process.

4. Other values for the child process are reset (execution time, pending signal set is cleared,

and so on).

5. The fork(2) function establishes the value it is going to return to each process. The par¬

ent process will have the child process ID returned. The child process will have zero

returned.

At this point, before fork (2) returns, the process that will execute first is not defined. This

may be determined by the design of the UNIX scheduler or may be influenced by the number

of processors and load on the system.

The fork(2) Function
The synopsis for the fork(2) system call is as follows:

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

There are no arguments to the fork(2) system call. When the call is successful, the parent

process receives the process ID of the child process that was created. The child process, how¬

ever, receives the return value 0 instead. The child process is always able to obtain the parent

process ID by calling upon getppid(2).

The caller should always anticipate errors, however. The fork(2) call returns the value

(pid_t) (-1) if the function fails. The value of errno will hold the reason for the error.

Possible reasons for failure include EAGAIN when the system-imposed limit for the number of

processes has been exceeded. ENOMEM is returned if the system cannot supply its memory

needs.

Note

ENOMEM—Insufficient memory When this error is returned by fork (2), it means that the system

is lacking the virtual memory resources (or swap space) required for starting a new process.

388 ADVANCED UNIX PROGRAMMING

Applying fork(2)
The program in Listing 19.1 illustrates a simple example program that creates one child

process using the fork(2) system call.

LISTING 19.1 fork.c—An Example Using fork(2) to Create a New Process

1: /* fork.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <string.h>
6: #include <errno.h>
7: #include <sys/types.h>
8:
9: int
10: main(int argc,char **argv) {
11: pid_t pid; /* Process ID of the child process */
12:
13: pid = fork(); /* Create a new child process */
14:
15: if (pid == (pid_t)(-1)) {
16: fprintf(stderr,"%s: Failed to fork()\n",strerror(errno));
17: exit(13);
18:
19: } else if (pid == 0) {
20: printf("PID %ld: Child started, parent is %ld.\n",
21: (long)getpid(), /* Current child PID */
22: (long)getppid()); /* Parent PID */
23:
24: } else {
25: printf("PID %ld: Started child PID %ld.\n",
26: (long)getpid(), /* Current parent PID */
27: (long)pid); /* Child's PID */
28: }
29:
30: sleep(1); /* Wait one second */
31: return 0;
32: }

The program in Listing 19.1 shows fork(2) being invoked at line 13. Upon return from this

function, if successful, two processes are executing. The if statement in line 15 tests to see if

the function call failed.

Line 19 tests to see if the return value from fork (2) was zero. If so, then lines 20-22 are exe¬

cuted by the child process. The else statement in line 24 indicates that the returned process

ID value pid is non-zero, and not -1 (because of line 15). Lines 25-28 are executed by the

parent process only.

The remaining lines of code (lines 30 and 31) are executed by both the parent and child

processes. The sleep(3) call is included here to allow both the parent and child processes to

Chapter 19 • FORKED PROCESSES 389

exist long enough that the other can see them. Otherwise, it is possible for the parent or the

child process to execute and terminate before the other process gets to execute, following the
fork(2) call.

Compiling and running the example program under FreeBSD looks like this:

$ make fork
cc -c -Wall fork.c
cc -o fork fork.o
$./fork
PID 1294: Started child PID 1295.
PID 1295: Child started, parent is 1294.
$

Based upon the output shown, it would seem that the parent process returned from fork(2)

first. While the parent process was in the sleep(3) call, the child process executed and then

reported the message PID 1295: Child started, parent is 1294.

Waiting for Process Completion
The example program of Listing 19.1 simply called upon sleep (3) to pause its execution until

the other process had time to execute. A better method would be to have the parent process

wait until the child process completes.

Other parent programs may continue to execute after starting several different child processes

over time. Consequently, these processes need to be able to inquire about the child process’s

termination at some point.

The UNIX kernel provides the wait (2) family of system calls to allow a process to wait for the

completion of a child process. Furthermore, these wait (2) system calls permit the parent

process to answer the following questions:

• What was the process exit code?

• Did the process exit normally?

• Was the process killed (signaled)?

• Did the process abort?

• Was a core file written?

The UNIX kernel also needs the parent process to inquire about its child processes. Until the

parent process inquires about its child process’s termination status, it must keep the status in

the process table. Once the parent process obtains this information, the kernel can free the

process table entry.

Zombie Processes
Parent processes are responsible for their children. When a child process terminates for any

reason, the parent process is expected to inquire about its termination status using one of the

390 ADVANCED UNIX PROGRAMMING

wait (2) system calls. If this fails to happen, the child process continues to show in the process

table as a zombie process.

The UNIX kernel releases memory and closes all files of a terminated process. The one

resource that remains is the process table entry for the terminated child process. This table

entry is identified by process ID and keeps the termination status until the parent process

fetches it. Once the parent process has obtained this status, the UNIX kernel can make both

the process ID and the process table entry available for a new process.

The program in Listing 19.2 shows a parent process that creates a zombie process and reports

it to standard output with the help of the ps (1) command and the function system(3).

LISTING 19.2 zombie. c—A Program That Creates a Zombie

1: /* zombie.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <stdlib.h>
6: #include <string.h>
7: #include <errno.h>
8: #include <sys/types.h>
9:
10: int
11: main(int argc.char **argv) {
12: pid_t pid; /* Process ID of the child process */
13:
14: pid = fork(); /* Create a new child process */
15:
16: if (pid == (pid_t)(-1)) {
17: fprintf(stderr,"%s: Failed to fork()\n",strerror(errno));
18: exit(13);
19:

20: } else if (pid == 0) {
21: printf("PID %ld: Child
22: (long)getpid(),
23: (long)getppid(j);
24: return 0;
25:
26: }
27:
28: /*
29: * Parent process :
30: */
31: printf("PID %ld: Started child PID %ld.\n",
32: (long)getpid(), /* Current parent PID */
33: (long)pid); /* Child's PID */
34: sleep(l); /* Wait one second */
35:
36: /*

started, parent is %ld.\n",
/* Current child PID */
/* Parent PID */
/* Child process just exits */

Chapter 19 • FORKED PROCESSES 391

37: * By this time, our child process should have terminated
38: */
39: system("ps -1"); /* List the zombie */
40:
41: return 0;
42: }

The program in Listing 19.2 differs slightly from the former listing in that the child process

exits immediately with the return statement in line 24. Only the parent process executes lines
28-42.

The parent process waits for one second in line 34 by calling sleep(3). This gives ample time

for the child process to start and terminate. Because the parent process never calls on wait (2),

the call to system(3) in line 39 causes the ps (1) command to list the zombie process.

The following shows a compile and run session under FreeBSD:

$ make zombie
cc -c -D_-Wall zombie.c
cc -o zombie zombie.o
$./zombie
PID 1367: Started child PID 1368.
PID 1368: Child started, | oarent is 1367.

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND
1001 1231 1 0 10 0 596 344 wait Is p0 0:00.07 -sh (sh)
1001 1234 1233 0 10 0 596 344 wait Ss Pi 0:00.17 -sh (sh)
1001 1367 1234 0 10 0 824 404 wait S+ Pi 0:00.01 ./zombie
1001 1368 1367 1 28 0 0 0 - Z+ Pi 0:00.00 (zombie)
1001 1369 1367 1 10 0 496 332 wait s+ Pi 0:00.00 sh -c ps
1001 1370 1369 1 28 0 380 244 - R+ pi 0:00.00 ps -1

$

The output shows the program . / zombie as process ID 1367. The process 1368 is the child

process that was created from the call to fork(2) in line 14. The output provided by the

ps(1) command (processes 1369 and 1370) shows that the child process 1368 is a zombie

(note the “(zombie)” shown at the right).

The wait (2) Function
The wait (2) function suspends the calling process until a child process has terminated or a

signal has been received. The function synopsis is as follows:

#include <sys/types.h>
//include <sys/wait.h>

pid_t wait(int ‘status);

The argument status must be a pointer to an int status variable, which will receive the child

termination status. The return value from wait (2) is the process ID that matches the returned

termination status. Otherwise, the value (pid_t) (-1) is returned and the error is posted to

the variable errno. Errors include the error code EINTR when a signal has been received.

392 ADVANCED UNIX PROGRAMMING

The program in Listing 19.3 shows a modified version of the previous example. In this exam¬

ple, the sleep(3) call is replaced by the wait (2) system call.

LISTING 19.3 wait. c—Example Program Calling wait (2) Without Zombie Processes

1: /* wait.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <stdlib.h>
6: #include <string,h>
7: #include <errno.h>
8: #include <sys/types.h>
9: #include <sys/wait.h>
10:
11: int
12: main(int argc,char **argv)
13: pid_t pid;
14: pid_t wpid;
15: int status;
16:
17: pid = fork(); /* Create a new child process *7
18:
19: if (pid == (pid_t)(-1)) {
20: fprintf(stderr,"%s: Failed to fork()\n",strerror(errno));
21: exit(13);
22:
23: } else if (pid == 0) {
24: printf("PID %ld: Child
25: (long)getpid(),
26: (long)getppid());
27: return 0;
28:
29: }
30:
31: /*
32: * Parent process :
33: */
34: printf("PID %ld: Started child PID %ld.\n",
35: (long)getpid(), /* Current parent PID */
36: (long)pid); /* Child's PID */
37:
38: /*
39: * Wait for the child process to exit, and obtain
40: * its termination status :
41: */
42: wpid = wait(&status); /* Wait for child process to exit */
43: if (wpid == (pid_t)(-1))

started, parent is %ld.\n",
/* Current child PID */
/* Parent PID */
/* Child process just exits */

{
/* Process ID of the child process */
/* Process ID from wait(2) */
/* Status code from-wait(2) */

Chapter 19 • FORKED PROCESSES 393

44: perror(“wait(2)"); /* Report wait(2) error */
45:
46: /*
47: * There should be no trace of the child process in
48: * this particular display !
49: */
50: system("ps -1"); /* List the processes */
51 :
52: return 0;
53: }

The variables wpid and status are declared in lines 14 and 15. These are used in the call to

wait (2) in lines 42-44. The wait (2) call causes the parent process to suspend its execution

until the child process terminates. By the time that the ps (1) command is executed in line 50,

there should be no trace of the terminated child process.

The compile and run session under FreeBSD provides the following results:

$ make wait
cc -c -Wall wait.c
cc -o wait wait.o
$./wait
PID 1463: Started child PID 1464.
PID 1464: Child started, parent is 1463.

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND
1001 1231 1 0 10 0 596 344 wait Is p0 0:00.07 -sh (sh)
1001 1234 1233 3 10 0 600 348 wait Ss Pi 0:00.24 -sh (sh)
1001 1463 1234 8 10 0 824 404 wait S+ Pi 0:00.01 ./wait
1001 1465 1463 8 10 0 496 332 wait s+ Pi 0:00.00 sh -c ps -1
1001 1466 1465 9 29 0 376 244 - R+ Pi 0:00.00 ps -1

$

In this session, notice that the child process is reported to be 1464 by the parent process

(l 463). However, looking at the ps (1) output, you will not see any child process 1464 listed.

This happens because the parent process has received the termination status of its child

process by calling wait (2). The system call wait (2) causes the process table entry to be freed

by the UNIX kernel, and so no zombie process remains.

Interpreting the Exit Status
The status returned by wait (2) has more in it than a program exit code. It records whether

the program exited normally, was aborted, was killed (signaled), or stopped. The programmer

is expected to use macros to test for these differences in status, since this is the only portable

way to write code using this status information. Table 19.1 identifies macros that can be used

by the programmer.

394 ADVANCED UNIX PROGRAMMING

TABLE 19.1 Table of Status Test Macros

Macro Description

WIFEXITED(status) This macro returns true if the status indicates that the process exited nor¬

mally. An exit code for this process is available using macro

WEXITSTATUS(status), which returns an 8-bit exit code.

WIFSIGNALED(status) This macro returns true if the status indicates that the process received a

signal that it did not catch, and caused its termination. The macro

WTERMSIG(status) is available to extract the signal number from status

that caused the termination. The macro WCOREDUMP(status) is available,

which indicates true if a core file was created.

WIFSTOPPED(status) This macro returns true if the status indicates that the process is currently

stopped. The macro WST0PSIG(status) is available to extract the signal

number of the signal that caused the child process to stop.

The following example shows how to test for a normal program exit and display its exit code:

int status; /* Status from wait(2) */

if (WIFEXITED(status)) {
printf("Exited with return code %d;\n",

(int)WEXITSTATUS(status));

}

The example tests for a normal exit with the WIFEXITED() macro. When this returns true, the

value returned by WEXITSTATUS() provides the exit code from that process. This is the exit
code that the shell reports with its built-in variable $?.

To test if the process aborted, or was signaled, you could use the following tests:

int status; /* Status from wait(2) */

if (WIFSIGNALED(status)) {
printf("Terminated with signal %d;\n",

(int)WTERMSIG(status));
if (WCOREDUMP(status))

printf("A core file was written.\n“);

}

This example tests if the process was signaled with the macro WIFSIGNALED(). If this tests true,

then the macros WTERMSIG() and WCOREDUMP() have meaning, and WTERMSIG () is used to

extract the signal number. The WCOREDUMP() indicates that a core file was written when it tests
true.

Chapter 19 • FORKED PROCESSES 395

Other Wait System Calls
Other members of the wait (2) family provide additional features. These additional members
are shown in the following synopsis:

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t wpid, int ‘status, int options);

#include <sys/time.h>
#include <sys/resource.h>

pid_t wait3(int ‘status, int options, struct rusage ‘rusage);

pid_t wait4(pid_t wpid, int ‘status, int options, struct rusage ‘rusage);

The function waitpid (2) is the POSIX extension of wait (2) that has the capability to return

with no data, if there is no data to report. Contrast this to the wait (2) system call that always

blocks execution of the calling process until there is information to report. The waitpid (2)

system call can also wait on a specific child process ID. This is sometimes useful when the par¬

ent process has more than one child process outstanding.

Note

The functions wait (2) and waitpid (2) are supported by all modern UNIX platforms. However,

Solaris 8 does not support the BSD functions wait3(2) and wait4(2).

The wait3(2) system call is supported by IBM AIX 4.3, SGI IRIX 6.5, HPUX 11, and UnixWare 7.

Linux and BSD support the functions wait(2), waitpid(2), wait3(2), and wait4(2).

The wait3(2) and wait4(2) system calls permit the resource utilization of the child process to

be returned in addition to the status. The wait3(2) call permits options to be specified like

the waitpid(2) call. The wait4(2) system call is the most flexible within the family, because it

includes the ability to wait for a specific child process in addition to the features supported by

the other calls.

The options argument supports the following bitwise macros:

WNOHANG Return immediately if nothing to report

WUNTRACED Report child processes signaled with SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP

The WNOHANG option is used with waitpid (2), wait3 (2), or wait4 (2) when execution must

not be suspended. This permits the parent process to query the status of a child process with¬

out giving up control. The option WUNTRACED is used for shell job control, and is beyond the

scope of this text.

396 ADVANCED UNIX PROGRAMMING

The calls waitpid(2) and wait4(2) allow the caller to indicate a specific child process ID in

the argument wpid. Specifying a value of -1 for wpid causes these system calls to wait for any

child process, as the wait (2) and wait3(2) calls would have done.

All system calls in the wait (2) family return the process ID of the return information when

the call is successful. The value (pid_t) (-1) is returned when an error is reported, with the

error code posted to errno. When the option argument includes the WNOHANG bit, a return

value of (pid_t) (0) indicates that no information is available.

An error return is possible with the error code ECHILD if a wait (2) family system call is made

and there are no outstanding child processes to be reported upon. This happens, for example,

if the current process has not started any child processes. This differs from the (pid_t) (0)

return value (used with the WNOHANG option), which indicates at least one child process is exe¬

cuting.

Hr Note

ECHILD—No child processes This value is returned from wait(2), waitpid(2), wait3(2), or
wait4(2) when there are no child processes running for the calling parent process.

echild is also reported when the argument wpid does not represent a child process of the calling

process.

The resource utilization structure varies according to UNIX platform. FreeBSD defines it as
illustrated in the following synopsis:

struct rusage { /* FreeBSD 3.4 release */
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
long rujnaxrss; /* max resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data " */
long ru_isrss; /* integral unshared stack " */
long rujninflt; /* page reclaims */
long rujnajflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long rujnsgsnd; /* messages sent */
long rujnsgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary " */

};

The common resource values supported on UNIX platforms that support wait3(2) or

wait4(2) are members ru_utime and ru_stime. These represent the user and system CPU

time, respectively. Other members of this structure are likely to be platform specific.

Chapter 19 • FORKED PROCESSES 397

Executing New Programs
While the fork (2) system call starts a clone of the current process, the programmer is still left

needing a way to start a new executable program. The exec (2) family of functions fills this
need.

When a new program is executed, the following general steps are performed:

1. The kernel opens the new executable file for reading (and checks that the executable bit

is set). An error is immediately returned to the caller if this fails.

2. The same process ID and addressable memory is retained, while the current execution

becomes suspended.

3. The new program instructions are loaded from the executable file that has been opened

by the kernel.

4. Certain process flags and registers are reset (for example the stack pointer is reset).

5. The execution of the new process begins.

The overall effect of an exec (2) call is to replace the currently executing process with a new

program, within the same process memory. When the exec (2) system call is successful, it

never returns control to the calling process.

There are a number of functions that provide the ability to start a new program within the

exec (2) family, but the execve(2) function will be described first:

#include <unistd.h>

int execve(const char ‘pathname, char ‘const argv[], char ‘const envp[]);

This function takes three arguments:

• The pathname of the executable program or interpreter script.

• The argv[] array to be passed to the main() program.

• The envp[] array of environment variables to export.

When the function execve(2) is successful, it does not return (your current program is

replaced). If the call fails, the returned value is -1 and the value of errno will contain the error

code.

The pathname argument must represent an ordinary file that has execute permission bits for

the current effective user or group. The pathname argument may be an executable file image or

it may be a file that is read by an interpreter (that is, a script file). Interpreted files may start

with the following initial content:

#! interpreter [arg]

The space between the ! character and the interpreter pathname is optional. The pathname

interpreter, however, must be the pathname of an existing regular file that can be loaded as

the interpreter for the script file. The script file must have read permissions for the current

effective user or group ID.

398 ADVANCED UNIX PROGRAMMING

The [arg] represents an optional argument. This argument becomes the command name

(argv [0] value) of the interpreter when it runs. When this argument is absent, the argv [0]

value is derived from the interpreter pathname instead.

On some UNIX systems, this initial script line is limited in length. Under Linux, for example,

the initial line is only inspected for a maximum of 32 characters. Anything beyond this limit is

ignored.

The arguments argv[] and envpf] are arrays containing character string pointers. The end of

each array is marked by an array element containing a null pointer. The argv[] array specifies

the command name in argv[0] and any command-line arguments starting with argv[1]. Note

that for scripts (for interpreted files), argv[0] will be ignored since this information comes

from the initial text line of the executable file.

The array envp[] lists all of the environment variables that you want to export to the new pro¬

gram. The strings must all be in the form

VARIABLE=VALUE

For example, you might use the following:

PATH=/bin:/usr/bin

Programmers often simply pass the current environment to the new process. This can easily be
done by using the pointer environ:

extern char **environ;

When the external variable environ is declared as shown, you can simply pass environ in
place of the envp[] array.

To illustrate the use of the execve (2) call, Listing 19.4 shows a program that starts the ps (1)

command without any assistance from the shell. In a limited sense, this program performs the
same steps that a shell would use.

LISTING 19.4 exec.c—Example Using exec(2) to Start the ps(1) Command

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11 :
12:
13:
14:
15:

/* exec.c */

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
//include <sys/types.h>
#include <sys/wait.h>

/*

* If the ps(1) command is not located at /bin/ps on your system,
* then change the pathname defined for PS_PATH below.
*/

#define PS_PATH "/bin/ps" /* PS(1) */

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Chapter 19 • FORKED PROCESSES 399

extern char **environ; /* Our environment */

/*

* EXEC(2) the PS(1) Command :
*/

static void
exec_ps_cmd(void) {

static char *argv[] = { "ps", "-1", NULL };

/*

* Exec the ps command: ps f
*/

execve(PS_PATH,argv,environ);

/*

* If control reaches here, then the execve(2)
* call has failed!

*/

fprintf(stderr,"%s: execve(2)\n",strerror(errno));

/*

* Main program :
*/

int
main(int argc,char

pid_t pid;
pid_t wpid;
int status;

/*

* First create a new child process :
*/

pid = fork();

if (pid == -1) {
/*

* Fork failed to create a process :
*/

fprintf(stderr,"%s: Failed to fork()\n",strerror(errno));
exit(13);

} else if (pid == 0) {
/*

* This is the child process running :
*/

exec_ps_cmd(); /* Start the ps command */

**argv) {
/* Process ID of the child process */
I* Process ID from wait() */
/* Exit status from wait() */

/*
* This is the parent process running :
*/

400 ADVANCED UNIX PROGRAMMING

continued from previous page

69: printf("PID %ld: Started child PID %ld.\n",
70: (long)getpid(), /* Our PID */
71: (long)pid); /* Child's PID */

72:
73: /*
74: * Wait for the child process to terminate :

75: */
76: wpid = wait(&status); /* Child's exit status */
77: if (wpid == -1) {
78: /*
79: * The wait() call failed :
80: */
81: fprintf(stderr,"%s: wait(2)\n",strerror(errno));

82: return 1;
83:
84: } else if (wpid != pid) {
85: /* Should never happen in this program: */
86: abort();
87: }
88:
89: /*
90: * The child process has terminated:

91: */
92: if (WIFEXITED(status)) {
93: /*
94: * Normal exit -- print status

95: */
96: printf("Exited: $? = %d\n",WEXITSTATUS(status));

97:
98: } else if (WIFSIGNALED(status)) {
99: /*
100: * Process abort, kill or signal:
101: */

102: printf("Signal: %d%s\n",
103: WTERMSIG(Status),
104: WCOREDUMP(status) ? " with core file." : "");

105:
106: } else {
107: /*
108: * Stopped child process :
109: */
110: puts("Stopped child process.");
Ill: }
112:
113: return 0;
114: }

Listing 19.4 starts by calling upon fork (2) to create a child process. The parent process

reports the process ID values in lines 69-71 and then calls wait (2) to suspend its execution

until the child process terminates in line 76.

Chapter 19 • FORKED PROCESSES 401

While the parent process is waiting for the child process to terminate, the child process exe¬

cutes line 62, which causes the function exec_ps_cmd () to be called. This is declared in lines

21-35. The argv[] array is declared in line 23, where it supplies one command-line argu¬

ment, -1. This will cause the command ps -1 to be executed. The function execve(2) is

called in line 28. If the function call is successful, line 34 is never executed.

The following shows a compile and run session under FreeBSD for this program:

$ make exec
cc -c -Wall exec.c
cc -o exec exec.o
$./exec
PID 1744: Started child PID 1745.

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND
1001 1231 1 0 10 0 596 344 wait Is p0 0:00.07 -sh (sh)
1001 1234 1233 0 10 0 600 348 wait Ss Pi 0:00.43 -sh (sh)
1001 1744 1234 1 10 0 824 396 wait S+ Pi 0:00.01 ./exec
1001

Exited
1745

: $? =
1744
0

2 28 0 376 244 - R+ Pi 0:00.00 ps -1

$

The parent process starts by reporting its process ID as 1744 and its child process as 1745.

Then the remaining lines displayed are the result of the ps (1) command being executed suc¬

cessfully. This display shows the parent process as . / exec and the ps (1) command as ps -1.

The last line reported shows that the ps (1) command exited normally with a return code of 0

Other exec(2) Family Members
There are a number of other exec (2) family member functions that act as front-end functions

to the execve(2) function. Their synopsis follows:

#include <unistd.h>

int execl(const char *path, const char * arg, .

int execlp(const char *file. , const char *arg,

int execle(const char *path. , const char *arg,

int exect(const char *path, char *const argv[]

int execv(const char *path, char *const argv[]

int execvp(const char *file: , char *const argv[

);

•);

The functions that accept an argument named path indicate the specific regular file to be exe¬

cuted by this argument as a pathname. The functions that define an argument named file

(execlp(3) and execvp(3)) will search the PATH variable for the file in the same way that the

shell searches for a command. If there is no environment variable PATH defined, the value

/bin: /usr/bin is used by default.

402 ADVANCED UNIX PROGRAMMING

The functions execl(2), execlp(2), and execle(2) allow the programmer to specify argv[]

values as individual arguments instead of using an array. The last argument in the argument

list must be a null pointer, however. For example, Listing 19.4 could have used

execlp("ps","ps"," -1",NULL);

in place of calling execve(2). Note, however, the argv[0] is specified first, and in this exam¬

ple repeats the filename "ps".

The execle (3) function needs special attention because it requires an array of environment

variables as the last argument. The following is an example execle (3) function call:

extern char **environ;

execle("/bin/ps","ps","-1",NULL,environ);

Notice that the array of environment variables follows the NULL argument, which marks the

end of the command line.

Note also that execle (3) requires an array of environment variables as the very last argument.

if by',, ,

Warning

Forgetting to specify the null pointer after the last command argument to execl(3), execlp(3), or

execle(3) is a common cause of program aborts during program development.

The exect (2) system call executes a program with program tracing facilities enabled. See

ptrace(2) for more information about this facility. The functions execv(2) and execvp(2)

use the current environment settings when starting the new program.

Figure 19.2 provides a feature grid of the various function calls.

FIGURE 19.2

A feature grid for the var¬

ious exec() function

calls.

P
ath

n
am

e

S
earch

 file in $PA
T

H

A
rg

u
m

en
ts...

A
rg

u
m

en
t array

E
nvironm

ent array

E
nvironm

ent from

ex
tern

 ch
ar "en

v
iro

n

T
race F

acilities

execve(2) X X X

execl(3) X X X

execlp(3) X X X

execle(3) X X X

exect(3) X X X X

execv(3) X X X

execvp(3) X X X

Chapter 19 • FORKED PROCESSES 403

Summary
This chapter discussed how the fork (2) function is able to create new UNIX processes. The

wait (2) family of functions permits you to find out how your child processes terminate.

Finally, the exec (2) family of functions provides you with the ability to start a new executable

program or interpreted script.

In addition to starting new commands, a shell process must usually perform wildcard expan¬

sion for filenames on the command line. The next chapter will look at the pattern matching

facilities that are used by the shell for this purpose.

CHAPTER 20

PATTERN MATCHING

The UNIX shell must usually expand wildcard filenames for user or shell script com¬

mands. Under UNIX, this wildcard expansion is always performed before the com¬

mand is executed. This simplifies the command, because it sees only the finalized

arguments. It also helps to make all commands work consistently, because wildcard expansion
is performed in one place only—the shell process.

However, the UNIX environment is a rich environment. If you don’t like one shell, you usually

can choose from other shell programs. Going a step further, you might choose to write your

own. To assist in making these different shell programs behave in the same way for wildcard

filenames, two groups of function calls are provided:

• Functions that match string patterns

• Functions that search directories with pattern matching applied

The function f nmatch (3) is provided under UNIX for matching strings in a shell-like manner.

Shell Patterns
While most users learn shell pattern matching behavior early in their exposure to UNIX, it is

useful to review it here before introducing the functions that implement it.

A shell pattern can consist of normal characters and meta-characters. Normal characters repre¬

sent themselves, and meta-characters have a special meaning for pattern matching. The set of

meta-characters for shell patterns is relatively small. They are

* Star (asterisk)

? Question mark

[and] Square brackets

! Bang (in [])

- Hypen (in [])

\ Backslash

Each meta-character is described in the subsections that follow.

406 ADVANCED UNIX PROGRAMMING

The * Meta-Character
The * character can match zero or more characters. The following shell experiment on a

FreeBSD system illustrates this meta-character at work:

$ cd /etc
$ Is -1 hosts.*
-rw-r- -r- - 1 root wheel 2278 Dec 20 1999 hosts.allow

-rw-r- -r- - 1 root wheel 115 Dec 20 1999 hosts.equiv
- rw - r - -r- - 1 root wheel 103 Dec 20 1999 hosts.lpd

$

The shell matches all files that begin with hosts. and are followed by zero or more characters.

Consequently, the filenames hosts. allow, hosts. equiv, and hosts. lpd match on this partic¬

ular system. The meta-character may be used in any position of the pattern, as the following

example illustrates:

$ cd /etc
$ Is -1 *lpd
-rw-r--r-- 1 root wheel 103 Dec 20 1999 hosts.lpd

$

This example matches any filename that is prefixed by zero or more characters and ends in the

string lpd.

The ? Meta-Character
Unlike the *, the ? meta-character matches only one character. If there is no character in that

position, there is no match. The following example shows how the ? meta-character can be

used multiple times to effect a particular pattern match:

$ Is -1 /etc/hosts.?????
-rw-r--r-- 1 root wheel 2278 Dec 20 1999 /etc/hosts.allow
-rw-r--r-- 1 root wheel 115 Dec 20 1999 /etc/hosts.equiv

$

In this example, only the filenames host.allow and hosts.equiv match. The filename

hosts. lpd does not match because the last two ?? in the pattern did not have characters to
match with.

The [and] Meta-Characters
The [and] meta-characters work together to specify a class of characters. The following

example lists any file that has the letter x, y, or z within it:

$ Is -d *[xyz]*
exports newsyslog.conf skeykeys ttys
gettytab security syslog.conf

$

The * meta-characters to the left and right of [xyz] permit zero or more characters to exist to

the left and right of the middle pattern. However, the middle pattern [xyz] insists that a letter

x, y, or z exist. In this case, there weren’t any filenames with the letter z in them.

Chapter 20 • PATTERN MATCHING 407

You can specify ranges of characters, as is shown in the following example:

$ Is -d *[x-z]*

exports newsyslog.conf skeykeys ttys
gettytab security syslog.conf
$

The pattern [x - z] is equivalent to specifying the letters individually as [xyz]. Multiple ranges

can also be specified: [x-za-c] allows any of the characters a, b, c, x, y, and z.

If you specify an unmatched pair of [and] characters, the character is taken literally, as the

following example demonstrates:

$ >']'

$ Is -1]
-rw-r. 1 ehg wheel 0 Jun 26 14:59]
$

The first command creates a file named] by using quotes. Then the file is listed using Is (1).

This same behavior also exists for the closing square bracket:

$ >' ['

$ Is -1 [
-rw-r. 1 ehg wheel 0 Jun 26 14:59 [
$

The next example shows how [and] can be used in reverse order to cause them to be inter¬

preted as they appear.

$ Is -1] [
-rw-r. 1 ehg wheel 0 Jun 26 14:59 [
-rw-r. 1 ehg wheel 0 Jun 26 14:59]
$

The ! Meta-Character
The ! meta-character has special meaning only within the [and] meta-character pair, and

only if it occurs as the first character within a range. It is known as the “not” character in this

context. For example, compare the difference between the first Is (1) command and the

second:

$ cd /tmp
$ Is *[0-9]
psql.edit.1001.13867 tmp-153052
tmp-D52798 tmp-M53211
tmp-G52945 tmp-d52925
$ Is *[!0-9]
c.t dummy.file
$

The first Is (1) command lists only files and directories that end in a numeric digit (range

[0-9]). The second Is(1) command, however, lists only those that do not end in a numeric

digit (range [! 0 -9]).

tmp-d53036 tmp-s52935
tmp-f53114 win98
tmp-053048

408 ADVANCED UNIX PROGRAMMING

In any other position within the range or outside of it, the ! character represents itself and is

not special. The following example confirms this:

$ >'!'

$ Is -1 !
-rw-r. 1 ehg wheel 0 Jun 26 15:10 !
$

Escaping Characters with \
There are times where meta-characters get in the way. To disable special treatment of meta¬

characters, you can escape them with the backslash character:

$ >1“‘FILE***'

$ Is

FILE tmp-D52798
c.t tmp-G52945
dummy.file tmp-153052
psql.edit.1001.13867 tmp-M53211
$ Is -1 ***FILE***
-rw-r. 1 ehg wheel 0 Jun 26 15:14
$

tmp-d52925
tmp-d53036
tmp-f53114
tmp-o53048

FILE

tmp-s52935
win98

The above example shows how a file with the unusual name of ***file*** was created. Then

the Is (1) command is invoked to confirm its existence. Then another Is (1) command shows

how the backslashes can be used to remove the special meaning from the * meta-character.

String Pattern Functions
To simplify program development of shells and other related functions that require this pattern

matching capability, the function fnmatch(3) was developed. The function synopsis for it is as

follows:

#include <fnmatch.h>

int fnmatch(const char ‘pattern, const char ‘string, int flags);

The argument pattern is the input pattern string, which is compared with the input argument

string. The argument pattern contains the meta-characters, if any. The argument string is

the string that you want to test for a match. The argument flags enables and disables certain

features of the fnmatch(3) function.

The return value from fnmatch(3) is zero if a match is made. Otherwise, the value

FNM NOMATCH is returned instead.

Note

When the argument pattern is the C string "*11 and the argument string is the null string “11
function fnmatch(3) considers this to be a match.

Chapter 20 • PATTERN MATCHING 409

The flags argument of the f nmatch (3) function accepts the following macros for various bit

definitions, which may be ORed together:

FNM_NOESCAPE Treat \ as a normal character (no quoting is performed).

FNM_PATHNAME Slashes (/) in string must match slashes in pattern.

FNM_PERIOD Leading periods (.) in string must only be matched by leading periods

in pattern. This is affected by FNM_PATHNAME.

FNM_LEADING_DIR Match the leading directory pattern, but ignore all text that follows the

trailing slash (/) in pattern.

FNM_CASEFOLD Ignore case distinctions in the pattern and string arguments.

Each of these option flags will be discussed in detail in the sections that follow. To aid in dis¬

cussing and experimenting with these flags, the program in Listing 20.1 will be used.

LISTING 20.1 fnmatch.c—A Program to Exercise the fnmatch(3) Function

1: /* fnmatch.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <fnmatch.h>
6:
7: /*
8: * Provide command usage instructions :
9: */
10: static void
11: usage(void) {
12:
13: puts("Usage: fnmatch [options] <pattern> <strings>...");
14: puts("\n0ptions:");
15: puts("\t-n\tShow non-matches");
16: puts("\t-e\tFNM_NOESCAPE");
17: puts("\t-p\t FNM_PATHNAME");
18: puts("\t-P\tFNM_PERIOD");
19: puts("\t-d\tFNM_LEADING_DIR");
20: puts("\t-c\tFNM_CASEFOLD");
21: }
22:
23: /*
24: * Report the flag bits in use as confirmation :
25: */
26: static void
27: report_flags(int flags) {
28:
29: fputs("Flags:",stdout);
30: if (flags & FNMJJOESCAPE)
31: fputs(" FNM_NOESCAPE",stdout);

410 ADVANCED UNIX PROGRAMMING

continued from previous page

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

if (flags & FNM_PATHNAME)
fputs(" FNM_PATHNAME",Stdout);

if (flags & FNM_PERIOD)
fputs(" FNM_PERIOD",Stdout);

if (flags & FNM_L EADING_DIR)
fputs(" FNM_LEADING_DIR",stdout);

if (flags & FNM_CASEFOLD)
fputs(" FNM_CASEFOLD11, stdout);

if (! flags)
puts(" NONE");

else
putchar('\n');

/*

* Main program :
*/

int
main(int argc,char **argv)

int x;
int z;
int flags = 0;
int cmdopt_n = 0;
char ‘pattern;
const char cmdopts[] =

{
/* Interator variable */
/* General status variable */
/* fnmatch(3) flags argument */
/* When true, report non-matches */
/* Pattern string for fnmatch(3) */

"epPdchn"; /* Supported command options */

/*

* Process any command options :
*/

while ((z = getopt(argc,argv,cmdopts))
switch (z) {
case 'e' :

flags |= FNM_NOESCAPE; /*
break;

case 'p' :
flags |= FNM_PATHNAME; /*
break;

case 1P1 :
flags |= FNM_PERIOD; /*
break;

case 'd' :
flags |= FNM_LEADING_DIR; /*
break;

case 'c' :
flags |= FNM_CASEFOLD; /*
break;

case 'n' :
cmdopt_n =1; /*
break;

case ‘h1 :
default :

usage();
return 1;

-e */

-p */

-P */

-d */

-c */

-n ; Show non-matches */

Chapter 20 • PATTERN MATCHING 411

85: }
86:
87: /*
88: * We must have a pattern and at least one trial string :
89: */
90: if (optind + 1 >= argc) {
91: usage();
92: return 1;
93: }
94:
95: /*
96: * Pick the pattern string and report the flags that
97: * are in effect for this run :
98: */
99: pattern = argv[optind++];
100: report_flags(flags);
101:
102: /*

103: * Now try pattern against all remaining command
104: * line arguments :
105: */
106: for (x=optind; x<argc; ++x) {
107: z = fnmatch(pattern,argv[x],flags);
108: /*
109: * Report matches, or report all, if -n
110: * option was used :
111: */

112: if (!z || cmdopt_n)
113: printf("%s: fnmatch('%s','%s1,flags)\n",
114: !z ? "Matched" : "No match",
115: pattern,
116: argv[x]);
117: }
118:
119: return 0;
120: }

The first portion of the main program parses the command line for options (lines 58-93) and

prepares for the test run (lines 99 and 100). The report_flags() function simply reports the

flag option bits in effect as a confirmation.

The interesting code is in lines 106-117 where the function fnmatch(3) is called to test each

command-line argument. By default, only the matches are reported unless the -n option has

been supplied.

The following shows how to compile the program and provoke a usage display with the -h

option:

$ make fnmatch
cc -c -Wall fnmatch.c
cc -o fnmatch fnmatch.o

412 ADVANCED UNIX PROGRAMMING

$./fnmatch -h
Usage: fnmatch [options] <pattern> <stnings>...

Options:
-n Show non-matches
-e FNM_NOESCAPE
-p FNM_PATHNAME
-P FNM_PERIOD
-d FNM_LEADING_DIR
-C FNM CASEFOLD

From the output you can see that all options except - n apply additional fnmatch (3) flag bits.

Initially no flags are in effect.

To make it simpler to perform some of the tests in this chapter, alter your PATH variable as fol¬

lows:

$ PATH=$PWD:$PATH

Repeating one of the earlier tests, we can use our fnmatch command in place of Is (1):

$ cd /etc
$ fnmatch '*[xyz]*' *
Flags: NONE
Matched: fnmatch('*[xyz]*'
Matched: fnmatch(1*[xyz]*'
Matched: fnmatch]'*[xyz]*'
Matched: fnmatch]1*[xyz]*1
Matched: fnmatch]'*[xyz]*'
Matched: fnmatch]'*[xyz]*'
Matched: fnmatch]'*[xyz]*'

,'exports'.flags)
,1gettytab'.flags)
,'newsyslog.conf1.flags)
,'security'.flags)
,'skeykeys'.flags)
,'syslog.conf'.flags)
,'ttys'.flags)

$

Please notice two important things here:

• The pattern is in single quotes.

• The remaining arguments are expanded by the shell before our fnmatch command is

executed.

If you add the option - n to the command line, you will list all of the entries that did not match

the output. Only the command is shown here:

$ fnmatch -n '*[xyz]*' *

Any command-line options must appear before the pattern. After the options, the pattern must

be the first command-line argument. All remaining arguments are tested against the pattern.

The FNM_NOESCAPE Flag
The FNM_NOESCAPE flag bit disables the fnmatch (3) capability to escape meta-characters. To

test this, first change to the /tmp directory and create an empty test file named [f ile]:

$ cd /tmp
$ >'[file]1

Chapter 20 • PATTERN MATCHING 413

Now test the f nmatch command using the escape characters:

$ fnmatch '\[file\]' *
Flags: NONE
Matched: fnmatch('\[file\]','[file]',flags)
$

From all of the files in the /tmp directory, it matched the pattern literally with filename

[file]. The pattern \ [file\] matches because the escape characters indicate that the follow¬

ing meta-characters should be treated as normal characters. Adding the flag FNM_NOESCAPE

(option -e) changes things:

$ fnmatch -e 1\[file\]1 *
Flags: FNM_NOESCAPE
$

In this case, no match is attained. This happens because the leading backslash must now

match part of the string. The remainder of the pattern is now a range, since the backslashes are

not acting as escape characters when FNM_NOESCAPE is used.

The FNM_CASEFOLD Flag

The FNM_CASEFOLD allows the programmer to specify that fnmatch (3) ignore the case of the

letters when performing the pattern match. This is confirmed with the help of the test program

(option -c used):

$ cd /etc
$ fnmatch -c 'HOSTS*' *
Flags: FNM_CASEFOLD
Matched: fnmatch]'HOSTS*','hosts',flags)
Matched: fnmatch('HOSTS*','hosts.allow',flags)
Matched: fnmatch]'HOSTS*','hosts.equiv',flags)
Matched: fnmatch]'HOSTS*1,1 hosts.lpd',flags)
$

In this example, the pattern HOSTS* matches the file hosts, although the case differs.

The FNM_CASEFOLD flag appears to be a GNU C library feature and is not available on other UNIX
platforms. This feature is supported by FreeBSD and Linux, however.

The FNM_PATHNAME Flag
The FNM_PATHNAME flag adds some pathname semantics to the fnmatch (3) function. This

option requires that slashes (/) occurring in patterns must match slashes in the supplied input

string. This makes it possible to perform directory and file pattern matches more intelligently.

To perform this test, first create a temporary directory in / tmp as follows:

$ make one
mkdir /tmp/one
mkdir /tmp/one/log

414 ADVANCED UNIX PROGRAMMING

mkdir /tmp/one/two
mkdir /tmp/one/two/log
date >/tmp/one/log/date1.log
date >/tmp/one/log/.date3
date >/tmp/one/two/log/date2.log
$

From this, you can see that a number of subdirectories are created, and two log files were cre¬

ated with the date (1) command. Now perform the following:

$ fnmatch 1/tmp/*/log/*.log' 'find /tmp/one'
Flags: NONE
Matched: fnmatch(1/tmp/*/log/*.log1,1/tmp/one/log/datel.log1,flags)
Matched: fnmatch(1/tmp/*/log/*.log1,1/tmp/one/two/log/date2.1og',flags)
$

If you look at this output carefully, you will see that one match is not intended. The first match

makes sense because the subdirectory one matches the first *, and the filename datel matches

the second*.

In the second case, however, the first * actually matches the string one /two, and the second *

matches the date2 in date2. log. The spirit of this match suggests that there should have only

been one directory level between /tmp/ and /log/*.log.

To accomplish this, the FNM_PATHNAME flag (option -p) must be enabled:

$ fnmatch -p '/tmp/*/log/*.log' 'find /tmp/one'
Flags: FNM_PATHNAME
Matched: fnmatch(’/tmp/*/log/*.log 1,'/tmp/one/log/datel.log',flags)
$

The results now agree with what was expected.

fnm_file_name is provided on some UNIX platforms as a synonym for fnm_pathname.

The FNM_PERIOD Flag
This flag causes strings that have leading periods to match only when the pattern has leading

periods. Another way to say this is that * and ?, for example, will not match a leading period

in the string with the flag FNM_PERIOD enabled. This also applies to ranges.

Usually the FNM_PERIOD flag is used in combination with the FNM_PATHNAME flag. The

FNM_PATHNAME flag causes a period to be considered a leading period, if it follows a slash (/)

character. Assuming that you still have the directory /tmp/one from the last experiment, per¬

form the following pattern test using only the FNM_PATHNAME (- p) option:

$ fnmatch -p '/tmp/*/log/*' 'find /tmp/one'
Flags: FNM_PATHNAME
Matched: fnmatch(7tmp/*/log/*1,’/tmp/one/log/datel.log'.flags)

Chapter 20 • PATTERN MATCHING 415

Matched: fnmatch('/tmp/*/log/* 1,'/tmp/one/log/.date31,flags)
$

Notice that in this experiment the pattern specifies * for the last filename component. Using

this pattern, two files matched: datel .log and .date3. Adding the FNM_PERIOD flag (option

-P), causes the following results to be displayed instead:

$ fnmatch -pP '/tmp/*/log/*' 'find /tmp/one'
Flags: FNM_PATHNAME FNM_PERIOD
Matched: fnmatch(1/tmp/*/log/* 1,1/tmp/one/log/datel.log 1,flags)
$

In this output, fnmatch(3) does not permit the leading period in .date3 to match with the *

pattern character. If your object was the files prefixed with periods, then you would alter the

match string:

$ fnmatch -pP 1/tmp/*/log/.*1 'find /tmp/one'
Flags: FNM_PATHNAME FNM_PERIOD
Matched: fnmatch(1/tmp/*/log/.* 1,1/tmp/one/log/.date31,flags)
$

In this example, the period (.) was added to the pattern string in order to effect a match to

. date3.

The FNM_LEADING_DIR Flag

This option causes the pattern match to occur on a directory component level. After the pat¬

tern match, anything that follows starting with a slash (/) is ignored for pattern matching pur¬

poses.

$ cd /tmp
$ fnmatch -d 'on*1 'find one'
Flags: FNM_LEADING_DIR
Matched: fnmatch('on*1,'one',flags)
Matched: fnmatch(1 on*1,'one/log 1,flags)
Matched: fnmatch('on*','one/log/datel.log 1,flags)
Matched: fnmatch(1 on*','one/log/.date31,flags)
Matched: fnmatch('on*','one/two'.flags)
Matched: fnmatch('on*1,'one/two/log',flags)
Matched: fnmatch(1 on*1,1one/two/log/date2.log 1.flags)
$

The documentation does not suggest that FNM_PATHNAME is required. Experiments suggest that

FNM_LEADING_DIR works with or without the FNM_PATHNAME flag.

Warning

The fnm_leading_dir flag appears to be a GNU C library feature and is not available on other UNIX

platforms. This feature is supported by FreeBSD and Linux, however.

416 ADVANCED UNIX PROGRAMMING

The glob(3) Function
The glob (3) function represents another way that a process can gather a list of file and direc¬

tory name objects. Unlike the f nmatch (3) function, the glob (3) function actually performs

directory searches. The function synopsis for glob(3) and globf ree(3) is as follows:

#include <glob.h>

int glob(
const char ‘pattern,
int flags,
int (*errfunc)(const char *, int),
glob_t *pglob);

void globfree(glob_t *pglob);

typedef struct {
int gl_pathc; /*
int gljnatchc; /*
int gl_offs; /*
int gljflags; /*
char **gl_pathv; /*

} glob_t;

count of total paths so far */
count of paths matching pattern */
reserved at beginning of gl_pathv */
returned flags */
list of paths matching pattern */

The first argument pattern for glob(3) is a shell pattern, like the patterns used by

f nmatch (3). However, the argument flags uses a different set of flags that will be described

shortly. Argument errf unc is an optional function pointer and must be a null pointer when it

is not used. The final argument pglob is a pointer to a glob_t structure.

The function globf ree(3) should be called after a successful call to glob(3) has been made,

and the information contained in the structure glob_t is no longer required. This function

releases memory occupied by the array member gl_pathv and perhaps other implementation-

defined storage.

The glob_t structure member gl_pathv is a returned array of matching filenames. The mem¬

ber gl_pathc is a count of how many string pointers are contained in gl_pathv. When

gl_pathc is zero, there is no gl_pathv array allocated, and it should not be referenced. When

the gl_pathv array is allocated, the last member of the array is followed by a null pointer.

The member gl_flags is used by glob (3) to return flag bits. Flag bit GLOB_MAGCHAR is one

flag that may be returned in this member to indicate that the pattern argument contained at

least one meta-character.

The member gljnatchc contains the current number of matched pathnames for the current

glob(3) call. Since glob(3) can be called to append to the gl_pathv array, gljnatchc is use¬

ful for determining how many paths were appending with the current function call.

The member gl_offs must be initialized prior to the first call to glob(3) for the given glob_t

structure used, when the flag GL0B_D00FFS is set. This member indicates how many initial

gl_pathv array entries to reserve as null pointers. If you do not need to reserve any array

entries, then initialize this value to zero (not using flag GL0B_D00FFS also will work).

Chapter 20 • PATTERN MATCHING 417

The flag GLOBJERR causes glob (3) to stop the directory scan at the first sign of trouble. By

default, glob(3) ignores directory scan errors and attempts to match as much as possible.

Using flag GL0B_ERR changes this behavior so that glob (3) will exit with the first error

encountered.

Multiple calls to glob(3) are permitted, to gather additional member entries. The GL0B_ERR

flag applied in an earlier call will influence later calls when the same pglob argument is used.

This is the result of the GL0B_ERR flag being saved in the gl_f lags member of the glob_t

structure.

Return Values for glob(3)
When glob(3) returns normally, the value zero is returned. However, when an error occurs,

the value GL0B_N0SPACE or GL0B_ABEND is returned instead.

When GL0B_N0SPACE is returned, this indicates that glob(3) was unable to allocate or reallo¬

cate memory. This might be a sign that you are failing to call globfree(3).

The return value GL0B_ABEND indicates that the directory scan was stopped. An error may have

occurred while scanning the directory and flag bit GL0B_ERR was set. Alternatively, the

errf unc function may have returned non-zero to cause the scan to be stopped.

Before the individual glob(3) flags are discussed, an example program is presented in Listing

20.2. This program will permit you to experiment with the various glob(3) flags and patterns.

LISTING 20.2 glob.c—Exerciser for the glob(3) and globfree(3) Functions

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23

/* glob.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <glob.h>

/*

* Provide command usage instructions :
*/

static void
usage(void) {

puts("Usage: glob [options] pattern...");
puts(''0ptions:");
puts("\t-a\tGL0B_APPEND");
puts("\t-c\tGL0B_N0CHECK");
puts("\t-o n\tGL0B_D00FFS");
puts("\t-e\tGL0B_ERR");
puts("\t-m\tGL0B_MARK");
puts("\t-n\tGL0B_N0S0RT");

418 ADVANCED UNIX PROGRAMMING

continued from previous page

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

puts("\t-B\tGLOB_BRACE");
p u t s("\t-N\tGL0B_N0MAGIC");
puts("\t-Q\tGL0B_QU0TE");
puts("\t-T\tGLOB_TILDE");

}

/*

* Report the flag bits in use as confirmation
*/

static void
report_flags(int flags) {

fputs("Flags:",stdout);
if (flags & GLOB_APPEND)

fputs(" GLOB_APPEND",stdout);
if (flags & GL0B_D00FFS)

fputs(" GL0B_D00FFS",stdout);
if (flags & GL0B_ERR)

fputs(" GL0B_ERR",stdout);
if (flags & GLOBJVIARK)

fputs(" GL0B_MARK11,stdout);
if (flags & GL0B_N0S0RT)

fputs(" GLOBJJOSORT".stdout);
if (flags & GL0B_N0CHECK)

fputs(" GL0B_N0CHECK“.stdout);
if (flags & GLOB_BRACE)

fputs(" GLOB_BRACE".Stdout);
if (flags & GLOB_MAGCHAR)

fputs(11 GLOB_MAGCHAR11 .stdout);
if (flags & GLOBJJOMAGIC)

fputs(" GLOB_NOMAGIC".stdout);
if (flags & GL0B_QU0TE)

fputs(" GL0B_QU0TE",stdout);
if (flags & GLOB_TILDE)

fputs(" GLOB_TILDE".stdout);
if (Iflags)

puts (11 NONE'1);
else

putchar('\n');

/*

* Error callback function :
*/

static int
errfunc(const char *path,int e) {

printf("%s: %s\n".strerror(e).path);
return 0;

/*

* Report the glob_t results :
*/

77:
78:
79:
80:
81 :
82:
83:
84:
85:
86:
87:
88:
89:
90:
91 :
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

Chapter 20 • PATTERN MATCHING 419

static void
report_glob(glob_t *gp) {

int x;
int g_offs = 0; /* glob offset */

if (gp->gl_pathc < 1) {
puts("There are no glob results.");
return;

}
printf("There were %d matches returned:\n",gp->gl_pathc);

if (gp->gl_flags & glob_dooffs)
g_offs = gp->gl_offs; /* Allow for offset */

for (x=0; x < gp->gl_pathc + g_offs; ++x)
printf("%3d: %s\n",

x,
gp->gl_pathv[x] ? gp->gl_pathv[x] : "<NULL>");

report_flags(gp->gl_flags);
putchar('\n');

/*

* Main program :
*/

int
main(int argc,char **argv)

int z;
glob_t g;
int flags = 0;
int a = 0;
int offs = 0;
const char cmdopts[] =

/*

* Process any command options :
*/

while ((z = getopt(argc,argv,cmdopts)) != -1)
switch (z) {
case 'a' :

a = GLOB_APPEND;
break;

case 'o' :
flags |= GL0B_D00FFS;
offs = atoi(optarg);
break;

case 'e' :
flags |= GL0B_ERR;
break;

case 'm' :
flags |= GLOBJilARK;
break;

/* General status */
/* The glob area */
/* All other flags */
/* GLOB_APPEND flag */
/* Offset */

aco:emnBNQTh";

420 ADVANCED UNIX PROGRAMMING

continued from previous page

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

case 'n' :
flags |= GL0B_N0S0RT;
break;

case 'c' :
flags |= GLOBJJOCHECK;
break;

case 1B' :
flags |= GLOB_BRACE;
break;

case 1N1 :
flags |= GLOBNOMAGIC;
break;

case 'Q' :
flags |= GLOB_QUOTE;
break;

case 'T1 :
flags |= GLOB_TILDE;
break;

case 1 h' :
default :

usage();
return 1;

* We must have at least one pattern :
*/

if (optind >= argc) {
usage();
return 1;

/*

* Pick the pattern string and report the flags that
* are in effect for this run :
*/

report_flags(flags|a);

/*

* Now try pattern against all remaining command
* line arguments :
*/

for (; optind < argc; ++optind, flags |= a) {
/*

* Invoke glob(3) to scan directories :
*/

g.gl_offs = offs; /* Offset, if any */
z = glob(argv[optind],flags,errfunc,&g);
if (z) {

if (z == GLOB_NOSPACE)
fputs("glob(3) ran out of memory\n",stderr);

else if- (z == GLOB_ABEND)
fputs("glob(3): GLOB_ERR/errfunc\n",stderr);

Chapter 20 • PATTERN MATCHING 421

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

return 1;
}

/*

* Report glob(3) findings, unless GLOB_APPEND :
*/

if (!a) { /* If not GLOB_APPEND */
report_glob(&g); /* Report matches */
globfree(&g); /* Free gl_pathv[] etc. */

} else {
/*

* GLOB_APPEND requested. Just accumulate
* glob(3) results, but here we report the
* number of matches made with each pattern:
*/

printf("Pattern 1%s' got %d matches\n",
argv[optind],
g.gl_matchc);

}
}

/*

* If GLOB_APPEND used, then report everything at
* the end :
*/

if (a) { /* If GLOB_APPEND */
report_glob(&g); /* Report appended matches */
globfree(&g); /* Free gl_pathv[] etc. */

return 0;

The program in Listing 20.2 is similar in many respects to Listing 20.1. Lines 115-160 have to

do with parsing the command-line options, which enable various glob(3) flags. Note that

option -a causes flag bit GLOBAPPEND to be stored into variable a, which is initialized as zero

in line 108. This flag is kept separate from the other flags, which are stored as variable flags

because GL0B_APPEND cannot be used the first time that glob(3) is called (line 177). However,

the for loop causes a to be ORed to flags at the end of each loop, ensuring that GL0B_APPEND

is used in successive iterations.

After all options are parsed from the command line, the flags in effect are reported in line 166

(note the input argument is flags | a so that GL0B_APPEND is included.

The int variable optind will point to the first non-option command-line argument after the

getopt(3) loop has completed. These remaining command-line arguments are used as input

patterns to glob(3) in the for loop of lines 172-202.

If the offset option -o is used, the variable offs contains this offset. Line 176 assigns this offset

value to g. gl_off s. This assignment is significant only if the GL0B_D00FFS flag is set in vari¬

able flags, when the -o option is processed from the command line.

422 ADVANCED UNIX PROGRAMMING

The function glob(3) is called in line 177. The return value z is tested and reported in lines

178-184. Line 189 tests to see if variable a is zero. When a is zero, this indicates that no

GLOB_APPEND is being used, and the report of each glob (3) pattern is reported immediately

after each call (lines 190 and 191). Otherwise, when GLOB_APPEND has been requested, only

the number of matches made for the current glob (3) call are reported in lines 198-200. The

GL0B_APPEND results are reported at the end of the for loop in lines 209 and 210 instead.

Now examine the report_glob() function in lines 77-98. The if statement in line 82 is

important, because if the glob_t member gl_pathc is zero, then gl_pathv is not allocated

and should not be referenced. The program executes the return statement in line 84, when

there are no results to report.

Note also in line 88 that the if statement tests for flag GL0B_D00FFS. If it is present, you must

allow for the offset when iterating through the gl_pathv array of pointers. Notice how the for

loop allows for the offset g_of f s in its test. This allowance is necessary because the loop starts
at x=0.

To compile and provoke usage information from the program in Listing 20.2, perform the fol¬
lowing:

$ make glob
cc -c -Wall glob.c
cc -o glob glob.o
$./glob -h
Usage: glob [options] pattern...
Options:

-a GL0B_APPEND
-0 n GL0B_D00FFS
-e GL0B_ERR
-m GL0B_MARK
-n GL0B_N0S0RT
-B GL0B_BRACE
-N GL0B_N0MAGIC
-Q GL0B_QU0TE
-T GL0BJTLDE

$

Lowercase option letters represent standard flags that are available for glob(3). Uppercase

options represent extension flags or non-universal ones. Option -o is the only option that

takes an argument. It represents a numeric offset to be used with GL0B_D00FFS. The -e option

adds the GL0B_ERR flag, but this is not explored in the examples that follow. It is there for your
own experimentation.

Flag GL0B_D00FFS

This flag indicates that glob_t member gl_off s is being used to reserve a number of null

pointers at the start of the gl_pathv array (allocated by glob (3)). When flag GL0B_D00FFS is
used, you must initialize gl_offs prior to calling glob(3).

Chapter 20 • PATTERN MATCHING 423

This sounds like a strange thing to do, but it makes a lot of sense when you are about to

invoke execvp(2) to start a new command. The following prepares to execute the command
cc -c -g *.c:

glob_t g;

g.gl_offs = 3;
glob(“*.c",GL0B_D00FFS,NULL,&g);

g.gl_pathv[0] = "cc";
g.gl_pathv[1] = "-c";
g.gl_pathv[2] = "-g";

execvp("cc",g.gl_pathv);

The variable g is the glob_t structure being used. Three entries are reserved in the

g. gl_pathv array by assigning the value 3 to g. gl_of f s (flag GL0B_D00FFS is present in the

flags argument). The call to glob(3) searches the directory for the pattern *.c.

The focus here is that g. gl_pathv[0] to g .gl_pathv[2] has been reserved for your own use.

In this example, these reserved elements are used for the C compiler’s first three arguments.

This makes the result convenient to use with the system call execvp (2).

Try one experiment without using GL0B_D00FFS so that you can then compare results with the

next experiment. Make sure to enclose your patterns in single quotes to keep the shell from

expanding them:

$./glob '*.c'
Flags: NONE
There were 2 matches returned:

0: fnmatch.c
1: glob.c

Flags: GL0B_MAGCHAR

$

This example uses no command-line options and provides one pattern 1 *. c'. In this result,

you see two filenames were returned with the glob_t member gl_f lags containing the flag

GLOBMAGCHAR. The GLOBJVIAGCHAR flag, when returned, indicates that at least one

meta-character was found in the pattern.

Now try the same experiment, but add an offset using the -o option. This experiment uses an

offset of 3:

$./glob -o3 1 *.c'
Flags: GL0B_D00FFS
There were 2 matches returned:

0: <NULL>
1: <NULL>
2: <NULL>

424 ADVANCED UNIX PROGRAMMING

3: fnmatch.c
4: glob.c

Flags: GL0B_D00FFS GLOB_MAGCHAR

$

Notice how three null pointers were reserved at the start of the gl_pathv array for your own

use. The gl_f lags member also reports the additional flag GL0B_D00FFS that was supplied as

input to glob(3).

The GLOB_APPEND Flag

The flag GLOB_APPEND indicates that the glob_t structure is to have new matched pathnames

appended to it instead of initializing it. The following example shows how this is done:

globjt g;

g.gl_offs = 3;
glob("*.C",GL0B_D00FFS,NULL,&g);
glob(11 * .C",GL0B_D00FFS jGLOB_APPEND, NULL, &g);

The first call to glob(3) initializes the glob_t variable g and adds pathnames that match the

pattern *.c. The second call with the flag GLOB_APPEND causes glob(3) to assume that g has

already been initialized. Matches to * .C are then appended to the existing collection in

g.gl_pathv.

Now test this feature as follows:

$./glob -a '*.c' '*.o'
Flags: GLOB_APPEND
Pattern 1 *. c' got 2 matches
Pattern 1 *. o' got 1 matches
There were 3 matches returned:

0: fnmatch.c
1: glob.c
2: glob.o

Flags: GLOB_APPEND GLOB_MAGCHAR

$

The output shows how the first pattern 1 * . c' collected two matches, and the pattern ' * . o'

appended one more match. The result of all matches is reported at the end, and you can see
that three final pathnames are reported.

The giob_mark Flag

The GL0B_MARK flag marks directory entries by appending a slash (/) to them. Files are left as

they are. The following example illustrates (note the -m option):

$./glob -am '/b*‘ '/etc/hosts1
Flags: GLOB_APPEND GL0B_MARK
Pattern '/b*1 got 2 matches
Pattern '/etc/hosts' got 1 matches
There were 3 matches returned:

Chapter 20 • PATTERN MATCHING 425

0: /bin/
1: /boot/
2: /etc/hosts

Flags: GLOB_APPEND GL0B_MARK

$

Directories /bin and /boot were marked with a trailing slash. The filename /etc/hosts was

not.

The glob_nosort Flag
The GL0B_N0S0RT flag disables the sort feature of glob (3). The following example shows the

default sorted result:

$./glob '/etc/h*'
Flags: NONE
There were 5 matches returned:

0: /etc/host.conf
1: /etc/hosts
2: /etc/hosts.allow
3: /etc/hosts.equiv
4: /etc/hosts.lpd

Flags: GLOB_MAGCHAR

$

Adding the GL0B_N0S0RT flag by using the -n option yields unsorted results:

$./glob -n '/etc/h*'
Flags: GL0B_N0S0RT
There were 5 matches returned:

0: /etc/hosts
1: /etc/hosts.allow
2: /etc/host.conf
3: /etc/hosts.equiv
4: /etc/hosts.lpd

Flags: GL0B_N0S0RT GLOBJ/IAGCHAR

$

However, note that sorting and not sorting affect only the current glob(3) call when

GLOB_APPEND is used. Consequently, while the default is to sort, appended results are not

sorted ahead of earlier results. You can test this for yourself:

$./glob -a '/etc/h*' '/b*'
Flags: GLOB_APPEND
Pattern '/etc/h*' got 5 matches
Pattern '/b*' got 2 matches
There were 7 matches returned:

0: /etc/host.conf
1: /etc/hosts
2: /etc/hosts.allow
3: /etc/hosts.equiv

426 ADVANCED UNIX PROGRAMMING

4: /etc/hosts.lpd
5: /bin
6: /boot

Flags: GLOB_APPEND GLOB_MAGCHAR

$

Although the default suggests that the gl_pathv array should be sorted, it is sorted only within

pattern groups. The first pattern matches for ' /etc/h* ' are sorted, but the later matches for

pattern ' / b* ' are not sorted ahead of the earlier match set.

The GL0B_QU0TE Flag

By default, there is no quoting capability in glob(3). Applying the flag GL0B_QU0TE allows

glob to interpret a backslash (\) as a quote meta-character. The quote character causes the

character following to be treated literally, even if it is a meta-character. The example illustrates

this:

$ date >'*.c'
$./glob 1 *.c1
Flags: NONE
There were 3 matches returned:

0: *.c
1: fnmatch.c
2: glob.c

Flags: GLOBMAGCHAR

$

The example has carefully created a file named *. c that contains the current date and time.

Without any special options, the . / glob program picks up all files ending in the suffix . c. If

you need quoting capability, to select only the file * . c you need GL0B_QU0TE (option -Q):

$./glob -Q ' *.c'
Flags: GL0B_QU0TE
There were 1 matches returned:

0: *.c
Flags: GL0B_QU0TE

$

Here, glob(3) interprets the asterisk (*) literally, because it is preceded by the quote character
backslash (\) while the option GL0B_QU0TE is active.

The GL0B_N0CHECK Flag

Normally, when a pattern does not match, no results are returned. If you want to have the pat¬

tern returned as a result when no matches are found, add the GL0B_N0CHECK flag (option -c
below):

$./glob '*.xyz'
Flags: NONE
There are no glob results.

Chapter 20 • PATTERN MATCHING 427

$./glob -c '*.xyz'
Flags: GL0B_N0CHECK
There were 1 matches returned:

0: *.xyz
Flags: GL0B_N0CHECK GLOBMAGCHAR

$

In the first example, notice how no matches were found. Adding option -c causes the pattern

itself (*. xyz) to be returned instead of no results.

The GLOB_ALTDIRFUNC Flag

This flag is documented by FreeBSD as an extension to glob(3) to enable programs such as

restore (8) to provide globbing from directories stored on other media. The following addi¬

tional glob_t members can be initialized with function pointers. When the flag

GLOB_ALTDIRFUNC is used, these function pointers will be used in place of the glob (3) default

functions for searching directories:

void *(*gl_opendir)(const char * name);
struct dirent *(*gl_readdir)(void *);
void (*gl_closedir)(void *);
int (*gl_lstat)(const char *name, struct stat *st);
int (*gl_stat)(const char *name, struct stat *st);

The program in Listing 20.2 does not support the GL0B_ALTDIRFUNC flag.

The GL0B_BRACE Flag

The GLOB_BRACE flag enables glob(3) to support csh(1) pattern groups that are specified

between braces. The following example illustrates GL0B_BRACE (option -B):

$./glob -B '{*.c,*.o}'
Flags: GL0B_BRACE
There were 4 matches returned:

0: fnmatch.c
1: glob.c
2: fnmatch.o
3: glob.o

Flags: GL0B_BRACE GL0B_MAGCHAR

$

By using the GLOB_BRACE flag and the pattern 1 {* . c, * . o} ', the glob (3) function was able to

combine two patterns into one result. Notice that only the individual pattern results are

sorted.

The GLOB_MAGCHAR Flag

The GL0B_MAGCHAR flag is never used as input to glob(3). However, it is returned in the

glob_t member gl_f lags when at least one meta-character exists in the pattern.

428 ADVANCED UNIX PROGRAMMING

The GLOB_NOMAGIC Flag
The GLOB_NOMAGIC flag causes no results to be returned if the pattern did not make any

matches and the pattern had meta-characters present. However, if no meta-characters exist in

the pattern, then the pattern is returned in the same manner as GL0B_N0CHECK when no results

are found. The following session shows the difference between GL0B_N0MAGIC (option -N) and

GLOB_NOCHECK (option -c):

$./glob -N 1 *.z'
Flags: GL0B_N0MAGIC
There are no glob results.
$./glob -c '*.z'
Flags: GL0B_N0CHECK
There were 1 matches returned:

0: *.z
Flags: GL0B_N0CHECK GLOB_MAGCHAR

$

The first command shows GL0B_N0MAGIC and a pattern with meta-characters present. The run

with GLOB_NOMAGIC did not return any results, while the run with GL0B_N0CHECK returned the
pattern * . z as a result. Now examine another experiment:

$./glob -N 'z.z'
Flags: GL0B_N0MAGIC
There were 1 matches returned:

0: z.z
Flags: GLOBJJOMAGIC

$

In this experiment, flag GL0B_N0MAGIC causes pattern z. z to be returned, although this was

not a match. The flag GLOB_NOCHECK would return the same result in this case.

The GLOB_TILDE Flag
This flag is used to enable glob(3) to interpret the Korn shell tilde (~) feature. The following
illustrates (using option -T):

$./glob -T '-postgres/*‘
Flags: GLOBJTLDE
There were 9 matches returned:

0: /home/postgres/bin
1: /home/postgres/data
2: /home/postgres/errlog
3: /home/postgres/include
4: /home/postgres/lib
5: /home/postgres/odbcinst.ini
6: /home/postgres/pgsql-support.tar.gz
7: /home/postgres/postgresql-7.0beta1.tar.gz
8: /home/postgres/psqlodbc-025.tar.gz

Flags: GLOB_MAGCHAR GLOB_TILDE

$

Chapter 20 • PATTERN MATCHING 429

In this example, the glob(3) function looked up the home directory for the postgres account

and searched that home directory /home/postgres.

Summary
The pattern matching functions that were covered in this chapter are shell pattern matching

functions. They provide the capability to expand wildcard filenames and perform case state¬

ment selection. When these are combined with the fork (2) and exec (2) functions of the last

chapter, you have a good foundation for building a new shell.

The next chapter will delve into regular expressions. This is a more powerful pattern-matching

tool that is well equipped to search for text within a file or a text editor’s buffer.

'

.

■

CHAPTER 21

REGULAR EXPRESSIONS

The patterns supported by the fnmatch(3) and glob(3) functions are useful for file¬

name matches because they are simple and easily understood. Text searches, how¬

ever, often require something more powerful. This chapter examines regular

expressions and the support that exists for them.

Understanding Regular Expressions
While it is assumed that the reader is familiar with regular expressions, it is useful to review.

This will ensure that the terminology is understood, and it may encourage you to use features

that you’ve not been using.

Like shell patterns, regular expressions match on a character-by-character basis unless a meta¬

character is encountered in the pattern. Regular expressions have more meta-characters than

shell patterns, which makes them more powerful. It also makes them more difficult to master.

Anchors
When searching for text within a file, it is often necessary to use anchors. An anchor is a meta¬

character that can cause a pattern to be attached to another entity. Regular expressions define

two anchors:

The beginning A

The end $

The anchors may be attached to the beginning and end of a line or to the beginning and end

of a string. The context of the anchor depends on the application.

The egrep (1) command uses regular expressions and can be used to illustrate. In the follow¬

ing example, only those lines that start with the letters ftp are displayed from the file

/etc/services:

$ egrep 'tp' /etc/services
ftp-data 20/tCp #File Transfer [Default Data]
ftp-data 20/udp #File Transfer [Default Data]
ftp 21/tcp #File Transfer [Control]
ftp 21/udp #File Transfer [Control]

432 ADVANCED UNIX PROGRAMMING

ftp-agent 574/tcp #FTP Software Agent System
ftp-agent 574/udp #FTP Software Agent System
$

The egrep (1) pattern 1 Af tp' causes lines starting with ftp to be selected. The regular expres¬

sion used here is Aftp. The A anchor indicates that the pattern match can only succeed if ftp

starts the text line. Without the anchor, other lines would have matched, including, for exam¬

ple, lines starting with tf tp.

The next example matches lines ending with the text system:

$ egrep 1system$‘ /etc/services
24/tcp any private mail system
24/udp any private mail system
remotefs 556/tcp rfs rfs_server # Brunhoff remote filesystem
remotefs 556/udp rfs rfs_server # Brunhoff remote filesystem
mshnet 1989/tcp #MHSnet system
mshnet 1989/udp #MHSnet system
$

The $ anchor causes the pattern systems to succeed only when the pattern ends at the end of

the line. The anchors can also be used together:

$ egrep /etc/services

$

In this example, the anchors in the pattern A#$ were used to select only those lines in which #

is the only character on the line. The A and $ anchors lose their special meaning when used in

places other than the beginning and end of a pattern. For example, the pattern $#A has no

meta-characters in it.

Sets
A set is a collection of characters between the meta-characters [and]. Sets work the same as

they do in shell patterns. The following egrep (1) command shows a set of two characters:

$ egrep ,A™ftp' /etc/services
tf tp 69/tcp #Trivial File Transfer
tftp 69/udp #Trivial File Transfer
mftp 349/tcp
mf tp 349/udp
$

The first character on the line matches a t or m from the specified set [tm] in the regular

expression.

When the character A occurs as the first character of the set, it becomes a meta-character. It

reverses the sense of the set. For example the pattern [Atm] matches any character except t or

m. If the A character occurs in any other place within the set, it is not special. For example, the

pattern [tnT] matches the characters t, m, or A.

Chapter 21 • REGULAR EXPRESSIONS 433

To include the] character within the set, make it the first character of the set (or immediately

following the " character). The following example searches for a line that starts with <abc> or
[abc].

$ egrep 'A[[<]abc[]>]' file

Range
A range is an extension of the set idea. A range is specified within the meta-characters [and]

and has the hyphen character used between the extremes. For example, the range pattern

[A-Z] specifies the set of all uppercase letters.

Ranges can be grouped together. For example, the range [A-Za-z] allows you to select any let¬

ter, without regard to case. They may also be combined with sets. The range pattern [A-Z01]

will match any uppercase character or the digits 0 or 1.

Like sets, the " character reverses the sense of the set if it occurs as the first character. For

example, the pattern ["A-Z] matches any character except uppercase alphabetic characters.

Character Classes
Regular expressions also include character classes. These use the meta-character pair [: and

:]. An example of a character class is [: digit:], which represents any numeric digit. Valid

class names are as follows and are listed in ctype (3):

alnum digit punct

alpha graph space

blank lower upper

cntrl print xdigit

These class names correspond to the ctype (3) macros isalnum(3), isdigit (3), ispunct (3),

and so on.

The . Meta-Character
The . meta-character matches any single character. The following example shows a pattern in

which any first character is accepted as a match:

$ egrep ,A.ftp' /etc/services

tf tp 69/tcp #Trivial File Transfer
tftp 69/udp #Trivial File Transfer
sftp 115/tcp #Simple File Transfer Protocol
sftp 115/udp #Simple File Transfer Protocol
bftp 152/tcp #Background File Transfer Program
bftp 152/udp #Background File Transfer Program
mftp 349/tcp
mftp 349/udp
$

434 ADVANCED UNIX PROGRAMMING

Parenthesized Match Subexpression
A regular expression can be included within the parenthesis characters (and), which perform

a grouping function. The following egrep(1) command illustrates a simple example:

$ egrep IA™(ftp)' /etc/services
tftp 69/tcp #Trivial File Transfer
tftp 69/udp #Trivial File Transfer
mftp 349/tcp
mftp 349/udp
$

Parenthesized matches cause substrings to be extracted from a matching operation. This and

other uses of the parenthesis will become clearer as the chapter progresses.

Atoms
An atom is a unit that participates in pattern matching. The following are atoms within regular

expressions:

• Any single non-meta-character

• A single anchor (A or $)

• A set (such as [abc])

• A range (such as [A - Z])

• A character class (such as [: digit:])

• A parenthesized match (such as (abc [de]))

Atoms are important to understanding how a piece works in regular expressions.

Piece
A piece is an atom followed by the meta-character *, +, or ?. These meta-characters influence

the matching process in the following ways:

* Matches zero or more atoms

+ Matches one or more atoms

? Matches zero or one atom

The pattern A* will match any of the following:

ii ii Null string

A One A

AA Two As

AAA Three As

Chapter 21 • REGULAR EXPRESSIONS 435

The pattern A+ insists that at least one A be matched. Alternatively, the pattern A? matches the

null string or a single A character.

The pattern (abc)+ shows a parenthesized expression. This pattern matches any of the

following:

abc The + matches one () expression.

abcabc The + matches two () expressions.

abcabcabc The + matches any number of () expressions.

The possibilities are nearly endless when you include sets and ranges within the parentheses.

Branch
A branch of a regular expression is a pattern component that is separated by the pipe symbol

It is used to specify alternative patterns to be matched. The following example shows two

branches in the pattern:

$ egrep 'Aftp|Atelnet' /etc/services
ftp-data 20/tcp #File Transfer [Default Data]
ftp-data 20/udp #File Transfer [Default Data]
ftp 21/tcp #File Transfer [Control]
ftp 21/udp #File Transfer [Control]
telnet 23/tcp
telnet 23/udp
ftp-agent 574/tcp #FTP Software Agent System
ftp-agent 574/udp #FTP Software Agent System
telnets 992/tcp
$

The example selects those lines that begin with the text ftp or telnet. Branches can be used

within parenthesized subexpressions:

$ egrep '*ftp(-agent)?1 /etc/services
ftp-data
ftp-data
ftp
ftp
ftp-agent
ftp-agent
$

20/tCp
20/udp
21/tcp
21/udp

574/tcp
574/udp

#File Transfer
#File Transfer
#File Transfer
#File Transfer

[Default Data]
[Default Data]
[Control]
[Control]

#FTP Software Agent System
#FTP Software Agent System

In this example, the line must start with the letters ftp. The subexpression (- agent) indicates

what the subexpression should match. This is modified, however, by the following ? operator,

which says that zero or one of these subexpressions must match. Consequently, lines are

selected that start with ftp, ftp-data, or ftp-agent.

436 ADVANCED UNIX PROGRAMMING

Expression Bounds
You have already seen how the *, +, and the ? meta-characters affect the preceding atom. It is

also possible to specify a bound instead. A bound consists of an opening brace character ({), an

unsigned integer, a comma (,), another unsigned integer, and a closing brace (}). The fully

specified bound {2,5} indicates that at least 2 atoms must match but no more than 5.

The second component of the bound is optional. For example, a bound of the form {3} indi¬

cates that exactly 3 matches must be made.

A bound may also be specified with a missing second count. For example, the bound {2, }

specifies that 2 or more matches can be made.

The valid range for unsigned integers is between 0 and the value RE_DUP_MAX (which is 255 on

most platforms). The following example demonstrates how to select those lines with a 6

followed by at least three zeros (the egrep(1) option -E is required to enable the bounds

feature):

$ egrep -E
netviewdml
netviewdml
netviewdm2
netviewdm2
netviewdm3
netviewdm3
#x 11
#x 11
$

160{3,}1 /etc/services
729/tcp #IBM NetView
729/udp
730/tcp
730/udp
731/tcp
731/udp
6000-6063/tcp
6000-6063/udp

#IBM NetView
#IBM NetView
#IBM NetView
#IBM NetView
#IBM NetView

X Window
X Window

DM/6000
DM/6000
DM/6000
DM/6000
DM/6000
DM/6000
System
System

Server/Client
Server/Client
send/tcp
send/tcp
receive/tcp
receive/tcp

Quoted Characters
Given the number of meta-characters used in regular expressions, it is often necessary to quote

meta-characters to remove their special meaning. The quote character used in regular expres¬

sions is the backslash (\) character. Any character that follows this backslash is interpreted lit¬
erally; it is not treated as a meta character.

For example, if you want to match a pattern that includes parentheses, you need to quote the
parenthesis characters. The expression \ (abc\) matches the string (abc).

The Regular Expression Library
From the preceding discussion, you can appreciate that implementing regular expression

searches on your own is less than trivial. Flowever, regular expressions can be part of your pro¬
grams with the help of the C library.

Chapter 21 • REGULAR EXPRESSIONS 437

Compiling Regular Expressions
For efficiency, a regular expression is first compiled into an opaque data type regex_t. The

function synopsis for compiling a regular expression is as follows:

#include <sys/types.h>
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);

typedef struct {
int rejnagic;
size_t re_nsub;
const char *re_endp;
struct re_guts *re_g;

} regex_t;

/* number of parenthesized subexpressions */
/* end pointer for REG_PEND */
/* opaque */

pattern is the string representing the regular expression that is to be compiled. The argument

preg points to a data type declared as regex_t. This is where the compiled result is placed by

the call. The argument cflags may have one or more of the following bitmasks ORed

together:

REG_EXTENDED Compile an extended regular expression, rather than the obsolete reg¬

ular expression that is the default.

REG_NOSPEC Disable all meta-characters. None of the pattern characters will be

considered special when performing a match.

REG_ICASE Ignore case when performing matching operations.

REG_N0SUB Compile the pattern such that the matched expressions are not

tracked. When matching is performed, only a success or failure will be

reported.

REG_NEWLINE Compile the pattern for newline sensitivity. Normally, when a newline

appears in the string to be matched, it is not given special treatment.

REG_PEND Compile the pattern such that the regular expression does not end

with the first null byte encountered. The regular expression ends

before the byte pointed to by preg->re_endp. This allows null bytes to

be included in the regular expression.

An additional macro is defined as REG_BASIC (FreeBSD), which is declared as the value zero.

You can use this macro when you have no other flags to specify.

Note

FreeBSD 3.4 release and Linux support all of the flag options reg_extended, reg_nospec,

REG_ICASE, REG_N0SUB, REG_NEWLINE, and REG_PEND.

SGI IRIX 6.5, IBM AIX 4.3, UnixWare 7, and Solaris 8 do not support REG_NOSPEC and REG_PEND.

HPUX-11 does not support reg_nospec, reg_nosub, and reg_pend.

438 ADVANCED UNIX PROGRAMMING

When successful, the regcomp(3) function returns zero, after filling the preg argument with

the compiled result. Other return values represent error codes. These can be passed to the

function regerror(3) to produce an error message.

When the flag bit REG_N0SUB is not used, you can query the re_nsub member of the regex_t argu¬

ment preg to find out how many subexpressions were present in the pattern argument.

The following demonstrates how to compile a regular expression:

int z;
regex_t reg;

z = regcomp(®,pattern,REG_EXTENDED);
if (z != 0)

/* Report regcomp(3) error */

Once the regcomp(3) routine has returned successfully, the compiled expression in reg is

ready for regexec(3) to use.

Reporting Errors
The function regcomp (3) and regexec(3) return different error codes from the rest of the

UNIX library and system calls. FreeBSD documents these error codes, but you may find others

on other UNIX platforms:

REG_NOMATCH regexec(3) failed to match

REG_BADPAT invalid regular expression

REG_ECOLLATE invalid collating element

REG_ECTYPE invalid character class

REG_EESCAPE \ applied to unescapable character

REG_ESUBREG invalid back-reference number

REG_EBRACK brackets [] not balanced

REG_EPAREN parentheses () not balanced

REG_EBRACE braces { } not balanced

REG_BADBR invalid repetition count(s) in { }

REG_ERANGE invalid character range in []

REG_ESPACE ran out of memory

REG_BADRPT ?, *, or + operand invalid

Chapter 21 • REGULAR EXPRESSIONS 439

REG_EMPTY empty (sub)expression

REG_ASSERT you found a bug

REG_INVARG invalid argument

To turn these error codes into a meaningful error message, call on the regerror(3) function:

#include <sys/types.h>
#include <regex.h>

size_t regerror(
int errcode,
const regex_t *preg,
char *errbuf,
size_t errbuf_size);

The regerror(3) function accepts the error code from regcomp(3) or regexec(3) in the

argument errcode. The message is created in buffer errbuf for a maximum length of

errbuf_size bytes. The length of the formatted message in bytes is returned. The function

regerror(3) will return zero if the function is not implemented on some platforms.

The argument preg of type pointer to regex_t must be supplied. This will be the compiled

result from a prior regcomp(3) call to provide the regerror (3) function with the necessary

context it needs to format the message.

The following example shows how a regcomp(3) error can be reported using regerror(3):

int z; /* Error code */
regexjt reg; /* Compiled regexpr */
char ebuf[128]; /* Error message buffer */

z = regcomp(®,pattern,REG_NOSUB|REG_EXTENDED);
if (z != 0) {

/* Report regcomp(3) error */
regerror(z,®,ebuf,sizeof ebuf);
printf("%s: regcomp(3)\n",ebuf);
exit(1);

}

Freeing Regular Expressions
When you no longer require your compiled regular expression, you should use regf ree(3) to

free the storage it uses. The following shows the synopsis for regf ree (3):

#include <sys/types.h>
#include <regex.h>

void regfree(regex_t *preg);

440 ADVANCED UNIX PROGRAMMING

regf ree (3) does not return a result. It accepts the argument preg, which must point to a

compiled result in a data type regex_t. This will be a result previously established by

regcomp(3). The last statement in the following example shows how regf ree (3) is invoked:

int z;
regex_t reg;

z = regcomp(®,pattern,REG_EXTENDED);
if (z != 0)

/* Report regcoinp(3) error */

/* do stuff with regexec(3) here... */
regfree(®); /* Free compiled regexpr */

Matching Regular Expressions
Once you have successfully compiled your regular expression with the function regcomp(3),

you are ready to perform some pattern matching with regexec (3):

#include <sys/types.h>
#include <regex.h>

int regexec(
const regex_t *preg,
const char *string,
size_t nmatch,
regmatchjt pmatch[],
int eflags);

typedef struct {
regoff_t rm_so; /* start of match offset */
regoffjt rm_eo; /* end of match offset */

} regmatch_t;

The first argument preg is a pointer to the previously compiled regular expression, initialized

by regcomp(3). The function returns 0 when successful, but it may return error codes such as

REG_NOMATCH when unsuccessful. On platforms where regexec (3) is not implemented, the

value REG_ENOSYS is returned (this macro is not always defined, however, for those systems

that do support regexec(3)).

The argument string is the string that you want to match. The arguments nmatch and pmatch

are used to return matched patterns to your calling program. This will be expanded upon later.

Finally, the eflags argument may contain zero or an ORed combination of the following

option flags:

REG_N0TB0L The first character in string is not to be considered the start of the line.

This prevents the anchorA from matching before the first string charac¬

ter. (This does not affect flag REG_NEWLINE; see regcomp(3).)

REG_N0TE0L The null character that terminates the argument string is not to be con¬

sidered the end of the line. This prevents anchor $ from matching at the

end of string. (This does not affect flag REG_NEWLINE; see regcomp(3).)

Chapter 21 • REGULAR EXPRESSIONS 441

REG_STARTEND Process the argument string starting at byte offset pmatch[0]. rm_so

and consider the string ended before offset pmatch[0]. rm_eo. The value

of argument nmatch is ignored. FreeBSD documents that "this is an

extension, compatible with but not specified POSIX 1003.2, and should

be used with caution in software intended to be portable to other

systems."

When the flag REG NOSUB is not used in the call to regcomp(3), the arguments nmatch and

pmatch allow the caller to receive information about where the pattern matches occurred.

There is a performance penalty associated with this, however and, if the pattern strings are not

required, the REG_N0SUB flag is recommended for efficiency.

The pmatch argument points to an array of type regmatch_t. This defines an array of starting

and ending offsets into the original string argument for each matched pattern. The argument

nmatch specifies to regexec(2) how many array elements to fill in array pmatch.

Array element pmatch [0] identifies the starting and ending offsets of the pattern that was

found in string. Offsets in pmatch [1] identify the starting and ending offsets for the first

parenthesized subexpression found in the argument string. Element pmatch[2] contains the

offsets for the second subexpression, and so on.

The following example shows how to define nmatch and a pmatch array to hold a maximum of

10 match strings.

const size_t nmatch = 10; /* The size of array pm[] */
regmatch_t pm[10]; /* Pattern matches 0-9 */

Upon successful return from the regexec (3) function, the first character of the match is found

at byte string+pmatch[0]. rm_so. The last character of the match is found before the byte

string+pmatch[0]. rm_eo. The first byte of the first subexpression is found at

string+pmatch[1]. rm_so and ends before the byte string+pmatch[1]. rm_eo.

Applying Regular Expressions
To give you some experience with the regular expression routines, the program in Listing 21.1

is provided:

LISTING 21.1 regexpr.c—A Progr

1: /* regexpr.c */
2:
3: #include <stdio.h>
4: #include <stdlib.h>
5: #include <unistd.h>
6: #include <string.h>
7: ^include <sys/types.h>
8: #include <regex.h>
9:

442 ADVANCED UNIX PROGRAMMING

continued from previous page

10 /*
11 ★ Provide usage instructions :
12 */
13 static void
14 usage(void) {
15
16 puts(“Usage:\tregexpr [options] pattern <file”);
17 puts(“Options:");
18 puts("\t-e\tREG_EXTENDED");
19 puts("\t-b\tREG BASIC");
20 puts("\t-n\tREG NOSPEC");
21 puts(“\t-i\tREG_ICASE");
22 puts("\t-S\tREG_NOSUB“);
23 }
24
25 /*
26 ★ Perform a substring operation :
27 */
28 static char *
29 substr(const char *str,unsigned start,unsigned end) {
30 unsigned n = end - start;
31 static char stbuf[256]; /* Local static buffer */
32
33 strncpy(stbuf,str+start,n); /* Copy substring */
34 stbuf[n] = 0; /* Null terminate */
35 return stbuf; /* Return static buffer */
36 }
37
38 /*
39 ★ Main program :
40 */
41 int
42 main(int argc,char **argv) {
43 int z; /* General status code */
44 int x; /* Loop iterator */
45 int lno = 0; /* Line number */
46 int cmdopt_h = 0; /* -h ; usage option */
47 int cflags = 0; /* Compile flags */
48 regex_t reg; /* Compiled regular expression
49 char ‘pattern; /* Regular expression */
50 const size_t nmatch = 10; /* The size of array pm[] */
51 regmatch_t pm[10]; /* Pattern matches 0-9 */
52 char ebuf[128]; /* Error message buffer */
53 char lbuf[256]; /* Line buffer */
54 const char cmdopts[] = "hebnis .

3

55
56 while ((z = getopt(argc,argv,cmdopts)) != -1)
57 switch (z) {
58 case 'b1 :
59 cflags |= REG_BASIC
60 break;
61 case 'e' :
62 Cflags |= REG_EXTENDED

Chapter 21 • REGULAR EXPRESSIONS 443

63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:

break;
case 'n' :

cflags
break;

case 1i' :

|= REGJJOSPEC

cflags
break;

case 's' :

|= REG_ICASE;

cflags
break;

case 'h' :
default :

|= REG_N0SUB;

cmdopt_h = 1;
}

if (optind + 1 != argc || cmdopt_h) {
usage() ;
return 1;

}

/*

* Compile the regular expression :
*/

pattern = argv[optind];

z = regcomp(®,pattern,cflags);

if (z != 0) {
regerror(z,®,ebuf,sizeof ebuf);
fprintf(stderr,"%s: pattern '%s'\n",ebuf,pattern);
return 1;

}

/*
* Report the number of subexpressions :
*/

if (!(oflags & REGJJOSUB))
printf("There were %d subexpressions.\n",reg.re_nsub);

/*
* Now process each line for matches :
*/

while (fgets(lbuf,sizeof lbuf,stdin)) {
++lno; /* Increment the line number */
if ((z = strlen(lbuf)) > 0 && lbuf[z-1] == '\n')

lbuf[z-1] = 0; /* Eliminate newline character */

/*
* Now apply regular expression matching to this line :
*/

z = regexec(®,lbuf,nmatch,pm,0);

if (z == REGJJOMATCH)

444 ADVANCED UNIX PROGRAMMING

continued from previous page

116: continue;
117: else if (z != 0) {
118: negerror(z,®,ebuf,sizeof ebuf);
119: fprintf(stderr,"%s: regcomp('%s')\n",ebuf,lbuf);
120: return 2;
121: }
122:
123: for (x=0; x<nmatch && pm[x].rm_so != -1; ++x) {
124: if (!x) /* Print the matching line number */
125: printf("%04d: %s\n",lno,lbuf);
126: printf(" $%d='%s'\n\
127: x, /* Report substring $x */
128: substr(lbuf,pm[x].rm_so,pm[x].rm_eo));
129: }
130: }
131:
132: regfree(®); /* Free compiled regexpr */
133: return 0;
134: }

This program is designed to accept command-line arguments to establish certain regcomp(3)

option flags. After options, if any, the regular expression pattern string is taken from the com¬

mand line. The pattern is then applied to data that is supplied to the program on

standard input.

Compiling and invoking the usage information from the program are performed as follows:

$ make
cc -c -Wall regexpr.c
cc -o regexpr regexpr.o
$./regexpr -h
Usage: regexpr [options] pattern <file
Options:

-e REG_EXTENDED
-b REG_BASIC
-n REGJJOSPEC
-i REG_ICASE
-S REGJJOSUB

$

In lines 56-76 the program applies the various flags as the command-line options are parsed.

The pattern string is established in line 86.

The pattern is compiled in line 88. If an error occurs, it is reported in lines 90-94. If the flag

REG_N0SUB was not used, the value of reg. re_nsub is reported in line 100.

Standard input is read in the while loop at line 105. The newline character is removed in line

108 for convenience. The recexec(3) function is called in line 113. If no match is reported,

the continue statement skips the remaining processing of the loop (line 116). Errors are
reported in lines 117-121.

Chapter 21 • REGULAR EXPRESSIONS 445

The for loop in lines 123-129 reports the matches returned from regexec(3). Line 125

reports the text line that brought about the match (when x=0 only). The match results are

displayed as values $0 through $9 in lines 126-128. The $0 value is the match string, and $1

to $9 represent matched subexpressions, if any. However, if the starting offset is the value -1,

the for loop exits (see line 123).

The following example uses the -e option for REG_EXTENDED and the -i option for REG_ICASE

flags. Applying this to the source file regexpr.c, the following result was obtained:

$./regexpr -ei '([a-z]+)(*)\I= *REG_([a-z]+);1
There were 3 subexpressions.
0059:

$0=

$1 =

$2=

$3=
0062:

$0=

$1 =

$2=

$3=
0065:

$0=

$1 =

$2=

$3=
0068:

$0=

$1 =

$2=

$3=
0071 :

$0=

$1 =

$2=

$3=
$

cflags 1= REG_BASIC;
cflags |= REG_BASIC;'
cflags 1

l

BASIC'
Cflags |= REG_EXTENDED;

cflags |= REG_EXTENDED;1
cflags1

EXTENDED'

cflags
cflags'

NOSPEC'

cflags
cflags1

i

ICASE'

cflags
cflags1

i

NOSUB'

cflags |= REG_NOSPEC;
REG_NOSPEC;'

cflags |= REG_ICASE;
REG ICASE:'

cflags |= REGJJOSUB;
REG_N0SUB;'

<regexpr.c

The subexpression was designed to capture the C variable and the flag name without the REG_

prefix, for the | = assignments. The $0 display for each line shows the extent of the entire

match. The $1 match string shows the extracted C variable name cflags. The $2 subexpres¬

sion was thrown in for good measure, to demonstrate the space characters that were matched

by the subexpression (*). The $3 match string shows the extractions without the REG_ prefix.

The next example shows how a bound expression extracted a string constant with two or more

leading spaces in it:

$./regexpr -e '" {2,}' cregexpr.c
There were 0 subexpressions.
0126: printf(" $%d='%s'\n",

$0=1" '

$

446 ADVANCED UNIX PROGRAMMING

You are encouraged to apply other options and regular expressions to the ,/regexpr test pro¬

gram. Using this program as a testing tool, you can use regular expression routines in your

application confidently.

Summary
This chapter has looked at regular expressions in depth. The regexp (3) set of routines truly

enhances programs that need the flexible pattern matching that regular expressions provide.

The next chapter introduces interprocess communications. This will lead you into the topics of

message queues, semaphores, and shared memory.

CHAPTER 22

INTERPROCESS COMMUNICATIONS

Large programming efforts often use separate processes to manage complexity and

risks. Sometimes, separate processes provide enhanced performance on multiproces¬

sor systems. Client/server processes are separate by their very nature. However, once

applications become separate processes, there exists a gulf between them when they need to

share data. This chapter discusses interprocess communications (1PC) concepts as they exist

on UNIX platforms.

Types ofIPC
You have already seen some forms of interprocess communication used in this book, including

• Regular files with locking

• FIFOs (named pipes)

• Anonymous pipes

• Sockets

• Signals

Regular files, when used with the appropriate lock techniques, can be used to communicate

between processes. FIFOs and anonymous pipes can also be used to form pipelines between

separate processes. Sockets allow communication with local or remote processes. Finally,

processes can notify each other by using signals.

This chapter discusses three other forms of IPC, which is expanded upon in the following

three chapters. These additional forms are the following:

• Message queues

• Shared memory

• Semaphores

These forms of IPC establish a new group of facilities because you create and control them in a

different manner than the preceding forms. Except for signals, all preceding forms used file

descriptors to access and to control them. Message queues, shared memory, and semaphores

use different handles.

448 ADVANCED UNIX PROGRAMMING

The Message Queue
The UNIX message queue implements a priority-based queue of messages. The message is sim¬

ply a short block of memory holding an application-defined message. When a message is

queued, it is stored within kernel memory so that it can be later retrieved by another process.

Figure 22.1 illustrates how messages are queued, stored, and retrieved.

FIGURE 22.1

The Message Queue Store

within the kernel.

Process Process Process Process

1 ^ IMf
k.

Message Queue Store

UNIX Kernel

The figure shows three processes queuing messages and one process receiving messages.

Message queues in general, however, can by queued by many processes and received by many

processes.

Every queued message has a message priority. UNIX documentation calls this a message type

(see msgsnd(3)). This message type, however, determines the priority of the message when it

is queued. Figure 22.2 shows a series of messages from A to J being queued. The number pre¬

ceding each message letter indicates the priority of the message. For example, 3C indicates

message C was queued at priority 3.

FIGURE 22.2

Priority messages placed

in a message queue.

r

0.

Input
Messages

Chapter 22 • INTERPROCESS COMMUNICATIONS 449

The UNIX kernel queues each message into a sub-queue that corresponds to the message pri¬

ority. If no process is removing messages from the queue, Figure 22.2 shows how the nine

messages would be sorted according to their message priority. The lowest numbers indicate the
highest priority in message queues.

When the receiving process retrieves a message, it has several choices. These are

• Receive a message of priority x, or receive no messages if no messages exist with
priority x.

• Receive the lowest numbered (highest priority) message that is less than or equal to
priority x.

• Receive the first message on the queue in a first-in, first-out manner, without regard to

priority.

While Figure 22.2 shows that all messages are queued by priority, the UNIX kernel also main¬

tains another linked list that allows it to fetch messages on a FIFO basis. In this manner, a

process may choose to ignore the priority of messages and simply fetch the earliest message

that was queued.

Since messages can be retrieved for a specific message priority, it is possible to use the message

priority (message type) to address a message to one of several receiving processes. The message

priority is a 31-bit value (the sign-bit cannot be used). Consequently, some applications have

used the message type for the process ID. Each receiving process simply fetches messages that

correspond to its process ID. Figure 22.3 shows an illustration of this.

FIGURE 22.3

Processes reading mes¬

sages by process ID.

Input
Messages

_
f

1J 7H 7G 3F 7E ID 3C IB 7 A

Queue

Process ID 1 <- 1 - IB ID 1J K
Process ID 3 <- 3 - 3C 3F K
Process ID 7 <- 7 — 7 A 7E 7G 7H

Each process selects its own messages in Figure 22.3 by using its process ID as the message

priority. Readers should be cautioned, however, that as UNIX moves toward 64-bit platforms,

process ID values might expand in size. This will allow the kernel to accommodate higher

numbers of processes.

450 ADVANCED UNIX PROGRAMMING

Shared Memory
When multiple processes cooperate, they often need to share tables of data. UNIX provides for

this in the form of the shared memory facility. Figure 22.4 shows how one shared memory

region can be shared by three processes.

FIGURE 22.4

A memory region shared

with three processes.

Although the concept of sharing memory is a simple one, a number of complications can

occur. For example, in Figure 22.4, the shared region may be attached to each process’ mem¬

ory space at a different memory address. This means that if memory addresses are used within

the shared table, they will not be usable in all processes. Memory offsets must be used instead.

This is the reason that shared libraries must be compiled to use position-independent code.

Another complication is the problem of synchronization between the three processes. If multi¬

ple processes are changing areas of the shared memory region, how can a given process know

that a particular component of data is complete? Even the process of replacing an integer value

is not atomic on many CPU platforms.

Although message queues could be used for synchronization, most application designers turn

to the semaphore for this purpose.

Semaphores
A UNIX semaphore keeps track of a count and notifies the interested processes when the

count changes. The simplest semaphore is the binary semaphore, which can only hold the

count of 0 or 1. A mutex is a simple form of a binary semaphore, which is used when pro¬
gramming with threads.

Chapter 22 • INTERPROCESS COMMUNICATIONS 451

Other semaphores allow you to track n instances of a particular resource. For example, if you

have three transaction servers available to serve client processes, you would initialize the sema¬

phore to the count of 3. As clients attach to and reserve a transaction server, you would decre¬

ment this count. When the count reaches zero, the semaphore indicates that no remaining

resources exist at this time. Later, when a client finishes with a transaction server, it increments

the semaphore count. When all clients complete, the count increments to the initial count of

3. In this manner, the semaphore tracks the number of available resources.

The act of decrementing a semaphore count is known as waiting on the semaphore. This makes

sense when you consider that when the count reaches zero, the requestor must wait for the

resource to become available.

The act of incrementing a semaphore count is known as notifying the semaphore. The increment

of the count causes processes that are waiting for a free resource to be notified that it is now

available.

Individual semaphores work well for controlling individual resources. However, obtaining sev¬

eral resources at once is often required. Imagine a small bowling alley that has 50 pairs of

bowling shoes, 30 bowling balls, and 6 bowling alleys available. To bowl, a patron needs one

pair of shoes, a bowling ball, and an alley. However, a patron cannot bowl if any of the

resources—shoes, balls, or alley—are unavailable. A semaphore set permits the caller to

request all of the resources at once. In this way, there is no potential for deadlocks, since the

request either completely succeeds or it fails (waits).

Figure 22.5 illustrates a semaphore set, which tracks 30 bowling balls, 50 pairs of bowling

shoes, and 12 bowling alleys.

FIGURE 22.5

A semaphore set.

Semaphore Count

The figure illustrates one semaphore set. Within the set, semaphore 0 controls the resource

“bowling balls,” semaphore 1 controls the resource “bowling shoes,” and semaphore 2 controls

“bowling alleys.” It is not necessary to request all of the resources in a semaphore set. A patron

may choose to bring his own shoes or bowling ball. A group of patrons usually shares a bowl¬

ing alley, and so the total number shoes, bowling balls, and one bowling alley would be

requested.

452 ADVANCED UNIX PROGRAMMING

The benefit of grouping these resources into one set is that the caller can obtain all resources

needed in one system call, without worrying about deadlock situations. If any of

the requested resources are not available, the caller simply waits until all resources become

available.

Referencing IPC Resources
The UNIX kernel provides IPC ID values for processes to refer to specific instances of message

queues, shared memory, and semaphore sets. The IPC ID is an integer value that is determined

by the kernel, and is not known by the calling process until it has been returned in a create

call. The IPC ID can be zero or positive, but it is never negative. The IPC ID is similar to a file

descriptor for a specific IPC resource.

Although the IPC ID value is a convenient handle for resources once they are created, they are

not well suited for a prearranged rendezvous. If three different processes must attach to a

shared memory region, how do the two processes that did not create the shared region find

out what the IPC ID of that resource is? To solve this difficulty, the UNIX kernel also provides

facilities for working with IPC key values.

The IPC Key Value
The IPC key value is defined by the C data type key_t. This permits a system-wide 32-bit key

value to be specified. Although files use a hierarchical file system, IPC key values are not hier¬

archical. The 32-bit key applies to the host system on a system-wide basis. The IPC key is like

a filename, whereas the IPC ID is like an open file descriptor.

If your software and another software package choose the same IPC key value, they will be in

conflict. To choose a key that is not in use, you can use the ipcs (1) command to list the keys

that are in use (older versions of Linux do not show the key values).

Once you have chosen an IPC key value, it is possible for a process to gain access to a message

queue, shared memory region, or semaphore set by specifying it. As long as all of your

processes agree on this key in advance, they will locate the common IPC resource. Once the

access is granted, the kernel returns the IPC ID value that is used for that resource. The IPC

key is only required for the initial rendezvous.

Creating an IPC Resource
You create IPC resources with system calls named after the type of the resource. The function

msgget(3) creates a message queue, while shmget(2) and semget(2) create shared memory

regions and semaphores, respectively. The msgget (3) function is the simplest of these, and so
its synopsis is shown as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int flags);

Chapter 22 • INTERPROCESS COMMUNICATIONS 453

The msgget (3) function accepts an IPC key value key and some flags in flags. All IPC create

functions have a key argument and a flags argument.

To create an IPC resource, the flags argument must have the bit IPC_CREAT provided, in addi¬

tion to the permission bits required. Otherwise, the function will attempt to gain access to the

existing resource, if any. The key argument can have one of two possible values:

• IPC_PRIVATE

• A non-zero IPC key value

The IPC key must be non-zero because most UNIX systems implement IPC_PRIVATE as the

value (key_t) (0). Olten, the IPC key value is specified in hexadecimal. The following exam¬

ple shows how a message queue with IPC key 0XFEEDBEEF is created:

int mqid; /* Message Queue IPC ID */

mqid = msgget(0XFEEDBEEF,IPC_CREAT|0600);

From this point forward, the IPC ID mqid is used to reference the created message queue.

Private message IPC resources can also be created by using the IPC key IPC_PRIVATE. The fol¬

lowing shows how a private message queue is created:

int mqid; /* Message Queue IPC ID */

mqid = msgget(IPC_PRIVATE,IPC_CREAT|0600);

The IPC_PRIVATE key does not imply privacy, however. What it does imply is that there is no

IPC key associated with this created resource. This is similar to a file that is open on a file unit,

but has no name because unlink(2) has been called on it. As long as the process knows the

IPC ID (mqid in the example) of the resource, there is no need for an IPC key.

IPC_PRIVATE is useful when you want to avoid key clashes with other software on your sys¬

tem. A large software package, such as a relational database, could arrange to use one IPC key

to allow access to a shared memory table. Within that table, the IPC ID values for all other IPC

resources created using key IPC_PRIVATE could be stored there. Using this method, all exter¬

nal processes need only to gain access to the initial shared memory table with the one IPC key.

All other resources can be referenced directly by the IPC ID values found within the table.

Accessing by IPC Key
Processes that do not create the shared resource must look it up to discover the IPC ID. This

can be performed using the same system call that is used for creation. The following looks up

the message queue that was created earlier:

int mqid; /* Message Queue IPC ID */

mqid = msgget(0xFEEDBEEF,0);

Observe that the IPC_CREAT flag bit is absent from the flags argument. The permission bits

are also absent, since they are not required when the resource has already been created.

454 ADVANCED UNIX PROGRAMMING

Once the IPC ID value in mqid is known, the IPC key is no longer required for access to the

resource.

Accessing by IPC ID
When the IPC ID for a resource is known, the resource can be accessed directly. Unlike files,

which must be opened, IPC resources can be accessed immediately when the IPC ID is known.

The one exception to this rule is that shared memory must be attached to your process mem¬

ory space before it can be referenced (see shmat (2)).

Destroying IPC Resources
IPC resources can outlive your process. When a process terminates for any reason, all files are

closed and its shared memory is detached, but its IPC resources will continue to exist. If IPC

resources are no longer required, they must be explicitly destroyed.

There are system calls to perform this function:

• msgctl(3) for message queues

• semctl(2) for semaphores

• shmctl(2) for shared memory

The following chapters cover the specifics of these operations. There are, however, some sys¬

tem-wide implications of destroying IPC resources that should be noted here.

When a message queue or a semaphore set is destroyed, they are destroyed immediately Since

IPC resources are not opened like files, they do not stay open until closed. When a message

queue or semaphore set is destroyed, the UNIX kernel immediately discards them. If a mes¬

sage queue or semaphore operation is subsequently attempted on the destroyed IPC ID, the

error EIDRM is returned.

ll? Note

EIDRM—Identifier removed This error is returned when an IPC ID is used in an IPC operation

after the resource has been destroyed.

Shared memory is handled differently. When shared memory is used, it must be attached to

the current process at a specific address. When the shared region is no longer required, or

when the process terminates, the shared region is detached from the current process. Due to

this behavior, when a process destroys shared memory, the shared memory7 region exists until
the last process detaches it.

Chapter 22 • INTERPROCESS COMMUNICATIONS 455

The following general points can now be summarized:

• IPC resources exist until destroyed.

• Message queues and semaphores are immediately destroyed.

• When shared memory is destroyed, its destruction occurs when the last process detaches
from it.

Note

Under many operating systems, the IPC resources discussed in this chapter are optional. They are

available only if they are configured or compiled into the kernel.

Additionally, note that IPC resources normally have system-configured limits for the number of mes¬

sages queued, the maximum size of a message, the maximum number of semaphores in a set, the

maximum amount of shared memory available, and so on.

Check your system documentation to find out how to configure these values to suit your application

needs.

When you are debugging programs that fail to destroy IPC resources when they should, use the

ipcs (1) command to display the resources and the ipcrm (1) command to remove them.

Summary
This chapter has been an overview of the IPC facilities as they exist under UNIX. The next

three chapters will explore these IPC resources in detail.

.

CHAPTER 23

MESSAGE QUEUES

Message queues provide the IPC facility that permits unrelated processes to pass mes¬

sages between them. This chapter will look at the message facility in detail. A C++

object is developed around the message queue facility and used in a demonstration.

Controlling a Message Queue
The initial examination of the message queue will concern control functions such as message

queue creation, modification, and destruction. Message sending and receiving is covered later.

Creating Message Queues
The last chapter provided a sneak peek at the message queue creation process. The function

synopsis is repeated here for your convenience:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int flags);

The argument key must have the value IPC_PRIVATE or a valid IPC key value.

The flags argument must contain the permission bits for the new queue and IPC_CREAT if the

queue is being created. The flag IPC_EXCL can be added to cause msgget (3) to return an error

if the message queue already exists. Otherwise, IPC_CREAT attempts to create the queue but

will use the existing one that matches key, if it already exists.

The function returns the IPC ID of the message queue when it is successful, which is a zero or

positive value. The value -1 is returned when an error occurs, and the variable errno contains

the error code.

Accessing a Message Queue
To locate an existing message queue, do not specify the IPC_CREAT flag. An error is returned in

this case if the queue does not already exist. You may specify zero for the flags argument

when a queue is not being created, since the permission bits are ignored.

458 ADVANCED UNIX PROGRAMMING

Destroying a Message Queue
To perform control operations on a message queue, including its destruction, you must invoke

the msgctl(3) function:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

The first argument, msqid, is the message queue 1PC ID. The argument cmd is a command con¬

stant, and the last argument, buf, is a pointer to a structure.

The function msgctl(3) returns 0 when it is successful. When -1 is returned, errno holds the

error code.

The operation commands accepted by this function include

IPC_RMID Destroy the message queue.

IPC_STAT Query the message queue for information.

IPC_SET Change certain message queue attributes.

The command IPC_RMID is the one that you are interested in for queue destruction. The argu¬

ment buf is not used for this command, and is permitted to be a null pointer. The following

example shows how a queue can be destroyed:

int z;

z = msgctl(msqid,IPC_RMID,0);
if (z == -1)

perror("msgctl(3)11)

Obtaining Message Queue Information
The stat (2) call is available to obtain information about files. The msgctl(3) command

IPC_STAT performs a similar function for message queues. In this case, the third argument

must point to a struct msqid_ds to receive the results. The structure definition is shown in
the synopsis:

struct msqid_ds {
struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
u_long msg_cbytes;
u_long msg_qnum;
u_long msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;

/* msg queue permission bits */
/* first message in the queue */
/* last message in the queue */
/* number of bytes in use on the queue */
/* number of msgs in the queue */
/* max # of bytes on the queue */
/* pid of last msgsnd() */
/* pid of last msgrcv() */
/* time of last msgsndi) */

Chapter 23 • MESSAGE QUEUES 459

time_t msg_rtime; /* time of last msgrcv() */
time_t msg_ctime; /* time of last msgctl() */

};

There are a number of informational members in this structure, including the number of mes¬

sages in the queue (msg_qnum) and time stamps.

Structure member msg_perm is important for controlling access to your message queue. Its

structure is described in the following synopsis:

struct ipc_perm {
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */
ushort seq; /* sequence # (to generate unique msg/sem/shm id
key_t key; /* user specified msg/sem/shm key */

};

The members cuid and cgid are the user and group IDs of the creator of the queue. The mem¬

bers uid and gid are the current owner user and group ID values for the message queue. The

member mode specifies the permission bits for this queue.

The only members that can be altered after a queue has been created are the members uid,

gid, mode, and the msqid_ds member msg_qbytes. You must be the creator of the message

queue, have an effective user ID that matches the current uid value, or be superuser to be per¬

mitted to make changes.

The following example shows how the IPC_STAT command is used:

int z;
struct msqid_ds stbuf;

z = msgctl(msqid,IPC_STAT,&stbuf);
if (z == -1)

perror("msgct1(3)");

Altering a Message Queue
You may occasionally need to change the ownership of your message queue, or otherwise

modify the permission on it. The msgctl(3) command IPC_SET enables you to do this.

The following example queries the current message queue to fill in the structure stbuf. Then

it looks up the uid_t value for the login postgres. Finally, the owner user ID is changed in

stbuf, and msgctl(3) is called with IPC_SET to establish the new owner of this message

queue:

int z;
struct msqid_ds stbuf;
struct passwd *pw;

460 ADVANCED UNIX PROGRAMMING

// Obtain status info :
z = msgctl(msqid,IPC_STAT,&stbuf);
if (z == -1)

abort();

// lookup postgres uid_t value :
pw = getpwnam(“postgres");
if (!pw)

abort();

// Change owner to postgres
stbuf.msg_perm.uid = (ushort)pw->pw_uid;

z = msgctl(msqid,IPC_SET,&stbuf);
if (z == -1)

perror(“msgctl(IPC_SET)");

Note that although the owner of the message queue is changed here, the creator user and

group ID values do not change.

Sending and Receiving Messages
Once you have a message queue to operate with, and the permissions are properly established,

you can read and write messages to them. This section describes the msgsnd(3) and

msgrcv(3) functions.

Sending Messages
Messages are sent using the msgsnd (3) function. Its function synopsis is given as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, void *msgp, size_t msgsz, int msgflg);

The first argument msqid is the IPC ID of the message queue to send the message on. The

argument msgp points to a message structure to be sent. The size of the message msgsz is the

message size, not including the message type value. The msgflg argument is specified as 0

unless the flag IPC_N0WAIT is used.

The IPC_NOWAIT allows the msgsnd (3) function to return immediately with the error EAGAIN if

the operation would block. Sending a message can block if the message queue has reached its

maximum limit for messages or memory use. Sending can also block when the kernel’s mes¬

sage resources are limited.

The msgsnd (3) function returns 0 when successful. When -1 is returned, the error is found in
the variable errno.

Chapter 23 • MESSAGE QUEUES 461

The format of the message structure is shown in the next synopsis:

struct msgbuf { /* Message Structure */
long mtype; /* message type */
char mtext[1]; /* body of message */

};

The first member of the message structure must be a long member to hold the message type

(message priority). The actual message itself is shown starting with member mtext [0].

Computing the msgsz argument requires some care. This size argument does not include the

mtype member of the structure passed in argument msgp.

The following example shows a message being sent, which contains a simple pathname mem¬

ber path[256]:

int z;
struct {

long mtype;
char path[256];

} msg;
int msz;

msz = sizeof msg - sizeof msg.mtype;
z = msgsnd(msqid,&msg,msz,0);
if (z == -1)

perror("msgsnd(3)");

Notice that the variable msz receives the size of the message without counting the size of the

message type mtype.

Warning

The function msgsnd(3) returns the error EINTR when signals are received.

Receiving Messages
Messages are received with the function msgrcv(3). The synopsis for it is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

The argument msqid is the IPC ID of the message queue to receive the message from. The

pointer argument msgp must point to a receiving buffer large enough to hold the received mes¬

sage. The argument msgsz indicates the maximum size of the received message, not including

the size of the mtype member. The msgtyp and msgflg members hold the message type (prior¬

ity) and option flags for this call, respectively.

462 ADVANCED UNIX PROGRAMMING

The msgf lg argument can be composed of the following flags:

• The flag IPC_NOWAIT indicates that the function msgrcv(3) will return the error code

ENOMSG if there are no messages to receive. Normally, the program is suspended until a

message arrives.

• The flag MSG_EXCEPT, when used with the msgtyp argument greater than zero, causes the

first message that differs from msgtyp to be received.

• The flag MSG_NOERROR indicates that the message should be truncated if necessary to fit

the receiving buffer. The error E2BIG is returned when this option is used and the mes¬

sage cannot fit into the buffer.

Warning

The function msgrcv(3) returns the error EINTR when signals are received.

Table 23.1 lists the variations that are possible for the msgtyp argument.

TABLE 23.1 The msgrcv(3) Message Type Variations

msgtyp msgflg Explanation

>0 0 The msgrcv(3) function will return a message only where the

msgtyp argument matches the message type value of the message.

>0 MSG_EXCEPT The msgrcv{3) function will return a message only where the

msgtyp argument does not match the message type of the message.

0 ignored The msgrcv(3) function will return the first message that has been

queued.

<0 ignored The msgrcv(3) function will return the message with the lowest

message type that is <= abs(msgtyp).

When msgrcv (3) is successful, it returns the number of bytes received (excluding the size of

the message type member). Otherwise, -1 is returned and the error code is found in

variable err no.

The following example shows how to receive a message.

int z;
struct {

long mtype;
char path[256];

} msg;
int msz;

Chapter 23 • MESSAGE QUEUES 463

msz = sizeof msg - sizeof msg.mtype;

z = msgrcv(msqid,&msg,msz,0,0);
if (z == -1)

perror("msgrcv(3)");

This example chooses to receive the first available message without regard to priority (argu¬

ment msgtyp is equal to 0). The value of msz is computed to include the maximum size of the

receiving structure, but not to include the size for msg.mtype.

Applying Message Queues
A client and server program that uses message queues is presented here. The client issues the

request, and the server receives the message and responds. The server simply performs a

stat (2) or lstat (2) call, and returns the results to the client by a message.

The client and server programs both use a C++ object that has been created to make using

message queues a little friendlier. The C++ object and its implementation will be

presented first.

Listing 23.1 shows the file msq. h, which defines the C++ class Msq.

LISTING 23.1

1: II
2: II
3: II

msq. h—The Msq Class Definition File

4:
5:
6:
7:
8:

24
25
26

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

9: struct Msg {
10 long msgtyp; // Message tyf
11 };
12
13 class Msq {
14 enum state { ready notReady };
15 key_t key; // IPC Key
16 int msqid; // IPC ID
17 int error; II Last errno
18
19 protected:
20 void verify(state s);
21
22 public:
23 Msq();

Msq &create(key_t key,int flags);
Msq &access(key_t key);
Msq &dispose();

464 ADVANCED UNIX PROGRAMMING

continued from previous page

27: Msq &destroy();
28: msqid_ds &stat(msqid_ds &stbuf);
29: Msq &change(msqid_ds &stbuf);
30: int send(Msg &msg,size_t size,int flags=0);
31: int recv(Msg &msg,size_t &size,size_t maxsz,long msgtyp.int flags=0);
32: inline int getError() { return error; }
33: inline key_t getKey() { return key; }
34: };
35:
36: // End msq.h

Lines 9-11 define the basic message structure that can be used with C++ inheritance for build¬

ing application messages from. The Msq class is declared starting in line 13. The Msq object

maintains copies of the IPC key, the IPC ID, and the last error code encountered. The IPC key

and the last error are accessed through the inline methods Msq: :getError() and

Msq:: getKey () if required.

The private Msq: :_verif y () member checks the state of the Msq object. It raises the error

EINVAL if the object is in the wrong state for the operation being attempted. The methods

Msq:: create () and Msq:: access () require the object to be in a “not ready” state. Other

methods such as Msq:: send () and Msq:: recv () expect the object to be in the “ready” state.

With the exception of the Msq:: send () and Msq:: recv () methods when the flag IPC_NOWAIT

is used, all methods throw errno values when an error condition is encountered. As noted ear¬

lier, if the object is in the wrong state for a method call, the error EINVAL is raised.

The default constructor creates the Msq object in the “not ready” state. The Msq object is

designed so that it can be re-used for a different message queue by calling its Msq:: dispose ()

or Msq::destroy () methods, and then calling Msq::create() or Msq::access().

Object method Msq:: create () creates a new message queue. Method Msq:: access (), on the

other hand, tries to access an existing message queue.

The method Msq:: dispose () reinitializes the object to its initial “not ready” state. In other

words, it disposes of its current context. The Msq:: destroy () method destroys the underlying

message queue and then calls Msq:: dispose () to initialize the object to its initial
“not ready” state.

The method Msq:: stat () allows the caller to receive information about the message queue.

The Msq:: change () method allows message queue parameters to be changed using the
IPC_SET command.

The methods Msq: :send() and Msq:: recv() are wrapper functions around the msgsnd(3)

and msgrcv(3) functions. They provide the extra functionality of handling the EINTR error
when signals are received.

Now look at Listing 23.2.

Chapter 23 • MESSAGE QUEUES 465

LISTING 23.2 msqveri . cc—The Implementation of Msq: :_verif y (), Msq:: dispose (), and the
Constructor Msq:: Msq ()

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

// msqveri.cc :

#include <stdlib.h>
#include <errno.h>
#include "msq.h"

//
// (private) Msq::_verify :
//
// Checks to see that the object is in a ready or
// not ready state. If the state is not correct
// the error EINVAL is thrown.
//

void
Msq::_verify(state s) {

if (s == ready && msqid < 0)
throw error = EINVAL; // Object is not open

if (s != ready && msqid >= 0)
throw error = EINVAL; // Object is open!

}

//
// Msq::dispose :
II
II Disposes of the current message queue reference, if
// any. The object is re-initialized to the not-ready
// state.
//

Msq &
Msq::dispose() {

key = IPC_PRIVATE;
msqid = -1;
return *this;

}

//
// Msq::Msq :
II
II Constructor. This constructor calls upon the
// method Msq::dispose() to initialize the object.
//

Msq::Msq() {
Msq::dispose(); // Initialize this object

}

// End msqveri.cc

466 ADVANCED UNIX PROGRAMMING

The method Msq: :_verify () uses the enumerated data type state for its argument s. When

s is equal to ready, the private member msqid must be less than zero to indicate that the

object is in a not ready state. If this test fails, the error EINVAL is thrown in line 18. All thrown

errors are preserved in the private member error for later retrieval.

When s is not equal to ready, then EINVAL is thrown if the test shows that the object currently

holds a valid IPC ID in the member msqid (lines 19 and 20).

The Msq:: dispose () function simply initializes the object into a not ready state (lines 34 and

35). The default constructor Msq:: Msq () simply calls upon Msq:: dispose () to initialize the
object.

Listing 23.3 shows the implementation of the Msq:: create () method.

LISTING 23.3 msqcr. cc—The Implementation of the Msq:: create (Method

1: II msqcr.cc :
A •
3: #include <stdlib.h>
4: #include <errno.h>
5:
a •

#include "msq.h"

7: //
8: II Msq::create :
9: II
10 II ARGUMENTS:
11 1/ key IPC Key of the message queue or IPC PRIVATE
12 II flags The permission bits, and possibly IPC EXCL
13 II
14 II This method creates a message queue. Object must be
15 II in a not-ready state.
16 //
17
18 Msq &
19 Msc ::create(key_t key,int flags) {
20
21 _verify(notReady); // Object must not be open
22
23 flags |= IPC_CREAT; // Force a create symantic
24
25 /*
26 * Attempt to create the message queue :
27 */
28 msqid = msgget(this->key = key,flags);
29 if (msqid == -1)
30 throw error = errno;
31
32 return *this;
33 }
34
35 II End msqcr.cc

Chapter 23 • MESSAGE QUEUES 467

Like many methods within the Msq class, the state of the object is tested first (line 21). Since

this method call implies creation of the message queue, the flag IPC_CREAT is or-ed in with the

flags argument in line 23. Line 28 invokes the msgget (3) call to create the queue. Unless the

flags argument included IPC_EXCL, the Msq:: create () method will return an existing mes¬

sage queue if it already exists. If an error is encountered, it is thrown in line 30.

Listing 23.4 shows the implementation of the Msq:: access () method.

LISTING 23.4 msqac . cc—The Implementation of the Msq:: access () Method

1: // msqac.cc :
2:
3: #include <stdlib.h>
4: #include <errno.h>
5: #include “msq.h"
6:
7: //
8: // Msq: .-access :
9: //
10: // ARGUMENTS:
11: // key IPC Key of the message queue or IPC_PRIVATE
12: //
13: // This method accesses a message queue. Object must be
14: // in a not-ready state.
15: //
16:
17: Msq &
18: Msq::access(key_t key) {
19:
20: _verify(notReady); // Object must not be open

21 :
22: /*

23: * Attempt to create the message queue :

24: */
25: msqid = msgget(this->key = key,0);
26: if (msqid == -1)
27: throw error = errno;

28:
29: return *this;

30: }
31:
32: // End msqac.cc

The Msq: : access () is very similar to the Msq:: create () method. Note, however, that the

flags argument in the msgget (3) function call (line 25) is the value zero, indicating that the

message queue must already exist.

Listing 23.5 shows the implementation of the Msq:: destroy () method.

468 ADVANCED UNIX PROGRAMMING

LISTING 23.5 msqdest. cc—The Implementation of the Msq: : destroy () Method

1: // msqdest.cc
2:
3: #include <stdlib.h>
4: ^include <errno.h>
5: #include "msq.h"
6:
7: //
8: // Msq::destroy :

9: //
10: // Destroys the message queue. The object must be in a
11: // ready state. The object is placed into a not-ready
12: // state upon successful completion.
13: //
14:
15: Msq &
16: Msq::destroy() {
17:
18: _verify(ready); // Object must be open
19:
20: if (msgctl(msqid,IPC_RMID,0) == -1)
21: throw error = errno;
22:
23: Msq::dispose(); // Re-initialize this object
24: return *this; // Return in not-ready state
25: }
26:
27: // End msqdest.cc

The Msq: :destroy() method calls upon msgctl(3) with the command IPC_RMIDin line 20. If

this call succeeds, the Msq:: dispose () method is called to initialize the object back to its not

ready state in line 23.

Listing 23.6 illustrates the Msq:: stat () method, which obtains the message queue status

information from the kernel.

LISTING 23.6 msqstat . cc—The Implementation of the Msq:: stat () Method

1: // msqstat.cc
2:
3: #include <stdlib.h>
4: #include <errno.h>
5: #include ''msq.h1'
6:

7: //
8: // Msq::stat :
9: //
10: // ARGUMENTS :

11: // stbuff The struct msqid_ds structure to populate
12: // with message queue information.
13: //

14: // This method fills the supplied buffer with status

Chapter 23 • MESSAGE QUEUES 469

15: // information about the current queue. The object must
16: // be in the ready state.
17: //
18:
19: msqid_ds &
20: Msq::stat(msqid_ds &stbuf) {
21:
22: _verify(ready); // Object must be open
23:
24: if (msgctl(msqid,IPC_STAT,&stbuf) == -1)
25: throw error = errno;
26:
27: return stbuf;
28: }
29:
30: // End msqstat.cc

In the Msq: :stat() method, the function msgctl(3) is called with the command IPC_STAT in

line 24. The argument stbuf is passed by reference in this method, so the results are passed

back by this argument as well. If no error is encountered, the reference to the argument stbuf

is the returned result.

Listing 23.7 shows the implementation of the Msq:: change () method. Using this method, it is

possible to change the owner, group, and permission bits.

LISTING 23.7 msqchg. c—The Implementation of the Msq:: change () Method

1: // msqchg.cc
2:
3: #include <stdlib.h>
4: #include <errno.h>
5: #include "msq.h"
6:
7: //
8: // Msq::change :

9: //
10: // ARGUMENTS :
11: // stbuff The struct msqid_ds structure containing
12: // the changes to be made.

13: //
14: // Only the values msg_perm.uid, msg_perm.gid, msg_perm.mode
15: // and msg_qbytes values can be changed. The value
16: // msg_qybytes can only be increased by the superuser.
17: // Object must be in the ready state.

18: //
19:
20: Msq &
21: Msq::change(msqid_ds &stbuf) {

22:
23: verify(ready); // Object must be open

24:
25: if (msgctl(msqid,IPC_SET,&stbuf) == -1)

470 ADVANCED UNIX PROGRAMMING

continued from previous page

26: throw error = errno;
27:
28: return *this;
29: }
30:
31: // End msqchg.cc

The function msgctl(3) is called from line 25 with the command IPC_SET. Again, the argu¬

ment stbuf is passed by reference in Msq:: change ().

The Msq:: send () implementation is shown in Listing 23.8.

LISTING 23.8 msgsend. cc—The Implementation of the Msq:: send () Method

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// msqsend.cc :

#include <stdlib.h>
#include <errno.h>
#include "msq.h"

//
// Msq::send :
II
II ARGUMENTS :
// msg
// size
// flags
II
II RETURNS:

// 0
// 1
II
II Sends a message of size bytes to the message queue.
// The size must include the total size of the message,
// including the message type. The object must be in a
// ready state.

//

The message to be sent
The total size of the message
zero or IPC_NOWAIT (optional)

No message sent (with IPC_NOWAIT)
Message was sent

int

Msq::send(Msg &msg,size_t size,int flags) {
int z;

size_t msgsz = size - sizeof msg.msgtyp;

_verify(ready);

do {

z = msgsnd(msqid,&msg,msgsz,flags);
} while (z == -1 && errno == EINTR);

if (z) {

if (flags & IPC_NOWAIT && errno == EAGAIN)
return 0; // Not sent

// Other fatal error:

Chapter 23 • MESSAGE QUEUES 471

41: throw error = errno;
42: }
43:
44: return 1; // Succeeded
45: }
46:
47: // End msqsend.cc

The Msq:: send () method has the message msg passed by reference (line 26). The size of the

entire message is passed into argument size. The real size is computed internally on line 28

and placed in the variable msgsz.

The loop in lines 32-34 takes care of handling the error EINTR. This would be unsatisfactory,

however, if you needed to do something after a signal within this loop (some code modifica¬

tion would be required).

If flags include IPC_NOWAIT and the error EAGAIN is returned, then the value 0 is returned

instead of raising an exception (lines 37 and 38). When IPC_NOWAIT is used, this exit condi¬

tion is likely to occur frequently and so the costly exception mechanism is avoided. The value

1 is returned when the send operation is successful (line 44).

Msq:: recv () is illustrated in Listing 23.9.

LISTING 23.9 msqrecv. cc—The Implementation of the Msq:: recv () Method

1: // msqrecv.c :
2:
3: #include <stdlib.h>
4: #include <errno.h>
5: #include "msq.h"
6:
7: //
8: // Msq::recv :
9: //
10: // ARGUMENTS :

11: // msg
12: // size
13: // maxsz
14: // msgtyp
15: // flags
16: //
17: //
18: // RETURNS :
19: // 0
20: // 1
21: //
22: // This method receives a message from the message queue.
23: // Object must be in a ready state.

24: //

25:
26: int
27: Msq::recv(Msg &msg,size_t &size,size_t maxsz,long msgtyp,int flags) {

28: int z;

The receiving buffer for the message
The returned size of the message
The maximum size of the returned message
The message type to use (priority)
Flags IPC_NOWAIT, IPC_EXCEPT and
IPC_N0ERR0R (optional)

No message returned (with IPC_N0WAIT)
Message was returned

472 ADVANCED UNIX PROGRAMMING

continued from previous page

29 size t msgsz = maxsz - sizeof msg. msgtyp;

30
31 _verify(ready);
32
33 do {
34 z = msgrcv(msqid,&msg,msgsz,msgtyp,flags);

35 } while (z == -1 && errno == EINTR);

36
37 if (z == -1) {
38 if (flags & IPC_N0WAIT && errno == EAGAIN)

39 return 0; // No message read

40 throw error = errno; II Error occurred

41 }
42
43 size = z + sizeof msg.msgtyp; II Return size

44 return 1; II Successful

45 }
46
47 II End msqrecv.cc

Like Msq:: send (), the Msq:: recv () method computes the correct message size internally, at

line 29. The msgrcv(3) function is called in the loop to handle EINTR (lines 33-35). The mes¬

sage is returned via the argument msg, which is passed by reference. The size argument,

which is also passed by reference, is updated in line 43 and adjusted to include the size of the

message type. The argument msgtyp is used in the call to msgrcv(3) to select the type of mes¬

sage to be received.

Again, when flag bit IPC_NOWAIT is used, the value 0 is returned when there is no message

instead of throwing an exception. Any unusual error is thrown, however. The value 1 is

returned if a message was received.

Now you can turn your attention to the client and server programs. First, examine Listing

23.10, which shows the declaration of the message structure StatMsg.

LISTING 23.10 statmsg.h—The Declaration of the StatMsg Message Structure

1:
? •

II statmsg.h
c. %

3: struct StatMsg : Msg {
4: enum {
5: stat, II stat a pathname
6: lstat, II lstat a pathname
7: stop II stop the server
8: } request; II Request type
9: int error; II zero if successful
10: pid_t PID; II Requesting Process ID
11: union {
12: char path[256]; II Pathname to stat
13: struct stat stbuf; II stat(2) or lstat(2) info
14: } u; II union
15: };
16:
17: // End statmsg. ,h

Chapter 23 • MESSAGE QUEUES 473

The structure StatMsg uses C++ inheritance to inherit from the structure Msg that was shown

in Listing 23.1. The Msg structure adds the message type member msgtyp.

The enumerated member request allows the client to request a stat (2), lstat (2), or server

stop operation. The error member is used by the server to return an error code, or zero if the

request succeeded.

Member PID is filled with the client’s process ID. This allows the server to direct the reply back

to the client process. All server requests go to message type 1. The replies go back to the

client’s by using the process ID as the message type. This allows many clients to use the server

concurrently.

The remainder of the message is declared by a union in lines 11-14. The request passes a

pathname in member u. path [], while responses return information in u. stbuf.

Listing 23.11 shows the source listing for the statsrv server.

LISTING 23.11 statsrv.cc—The statsrv Server Listing

1: // statsrv.cc :

3: #include <stdio.h>
4: #include <unistd.h>
5: #include <stdlib.h>
6: #include <errno.h>
7: #include <string.h>
8: #include <sys/types.h>
9: #include <sys/stat.h>
10
11 #include "msq.h11
12 #include "statmsg.h"
13
14 int
15 main(int argc,char **argv) {
16 int quit = 0; II True when stop received

17 Msq q; II Message queue object

18 StatMsg m; II Message buffer

19 size_t msz; II Message size

20 char pathname[256+1]; II Local copy of pathname

21 msqid_ds mstat; II Message queue info

22
23 (void) argc;
24 (void) argv;
25
26
27
28
29
30
31
32

/*
* Create the server message queue

*/
try {

q.create(0xFEEDF00D,0600);
} catch (int e) {

errno = e;

474 ADVANCED UNIX PROGRAMMING

continued from previous page

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78

79
80
81
82
83
84

perror("Creating a queue");

}

/*

* Obtain queue information :
*/

try {
q.stat(mstat);

} catch (int e) {
errno = e;
perror(“q.stat()");

printf("Queue permissions were: %04o\n",mstat.msg_perm.mode);

/*
* For demonstration purposes,
* make the queue read & writable to all :
*/

mstat.msg_perm.mode = 0666;

try {
q.change(mstat);

} catch (int e) {
errno = e;
perror("q.change()");

printf(“Queue permissions now : %04o\n",mstat.msg_perm.mode);

/*
* Server message loop :
*/

do {
/*

* Receive a message of type 1 :
*/

try {
q.recv(m,msz,sizeof m,1,0);

} catch (int e) {
errno = e;
perror("Receiving from queue");
return 1;

}

/*

* Process message :
*/

switch ((int) m.request) {
case StatMsg::stat : // stat(2) request :

strncpy(pathname,m.u.path,sizeof pathname);
pathname[sizeof pathname-1] = 0;

Chapter 23 • MESSAGE QUEUES 475

85:
86:
87:
88:
89:
90:
91 :
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

m.error = stat(pathname,&m.u.stbuf) ? errno : 0;
break;

case StatMsg::lstat : // lstat(2) request :
strncpy(pathname,m.u.path,sizeof pathname);
pathname[sizeof pathname-1] = 0;
m.error = lstat(pathname,&m.u.stbuf) ? errno : 0;
break;

case StatMsg::stop :
quit = 1;
m.error = 0;
break;

default :
m.error = EINVAL;

}

/*

* Reply to client :
*/

m.msgtyp = m.PID;

try {

q.send(m,sizeof m);
} catch (int e) {

errno = e;
perror("q.send()");
return 1;

}
} while (!quit);

// stop server :
// Stop the server
// Ack request

// Unknown request :

// Reply to this process

/*

* Destroy the message queue :
*/

q.destroy();
return 0;

// End statsrv.cc

The message queue object q is declared in line 17. The message queue is created in lines

29-34. To demonstrate the Msq:: stat () and Msq:: change () methods, the code in lines

36-59 changes the message queue to allow every user to read or write from this queue (per¬

mission 0666 in line 52).

The server loop itself occurs in lines 66-115, until the integer variable quit is set true.

Messages are received in lines 70-76. The message is interpreted and processed in lines

81-101. Line 85 calls stat (2), while line 91 calls lstat (2) instead. If a stop request is

received, the quit variable is made true in line 95. Bogus messages simply get the m. error
value returned as EINVAL in line 100.

476 ADVANCED UNIX PROGRAMMING

The message is returned to the client by setting the message type to the client’s process ID in

line 106. The message is sent to the message queue in lines 108-114.

When the server is told to stop by a client, the execution falls out of the do { } while loop

and q. destroy () before the server program exits. This destroys the message queue.

Listing 23.12 lists the source code for the client program statcln.

LISTING 23.12 statcln . cc—The Source Listing for the statcln Client Program

1: // statcln.cc :
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <stdlib.h>
6: #include <errno.h>
7: #include <string.h>
8: #include <sys/types.h>
9: #include <sys/stat.h>
10:
11: #include "msq.h"
12: #include "statmsg.h"
13:
14: int
15: main(int argc,char **argv) {
16: int x;
17: Msq q;
18: StatMsg m;
19: size_t msz;
20: char ‘pathname;
21:
22: (void) argc;
23: (void) argv;
24:
25: /*
26: * Access the queue :
27: */
28: try {
29: q.access(0xFEEDF00D);
30: } catch (int e) {
31: errno = e;
32: perror("Accessing statsrv queue");
33: }
34:
35: /*
36: * Issue server requests for each command line
37: * argument. If the argument starts with then
38: * request a lstat(2) instead of stat(2) :
39: */
40: for (x=1; x<argc; ++x) {
41: /*
42: * Form the server request :
43: */

// Message queue object
// Message buffer
// Message size
// Pathname to query

Chapter 23 • MESSAGE QUEUES 477

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96:

if (!strcasecmp(argv[x],"STOP"))
// STOP SERVER REQUEST :
m.request = StatMsg::stop;

else {
// STAT(2) or LSTAT(2) REQUEST :
if (argv[x][0] == '$') {

m.request = StatMsg::lstat;
pathname = argv[x] +1; // Skip 1 $1

} else {
m.request = StatMsg::stat;
pathname = argv[x]; // Pathname

}
strncpy(m.u.path,pathname,sizeof m.u.path);

/*

* Initialize other message components :

*/
m.error = 0; // Clear
m.PID = getpid(); // Our process ID
m.msgtyp =1; // Send to the server

/*
* Send the request to the server :

*/

try {
q.send(m,sizeof m); // Send the message

} catch (int e) {
errno = e;
perror("s.send()");
return 1; // Bail out

/*

* If the request is to stop, then exit loop :
*/

if (m.request == StatMsg::stop)
break; // There will be no reply

/*

* Wait for the response :
*/

try {
q.recv(m,msz,sizeof m,getpid(),0);

} catch (int e) {
errno = e;
perror("Receiving from queue");
return 1;

}

/*

* Report response :
*/

478 ADVANCED UNIX PROGRAMMING

continued from previous page

97: printf("RESPONSE %14s : 11,pathname);
C

D

0
0

C

D

C
D

if (m.error != 0)
100: printf(" ERROR: %s\n ",strerror(m.error));
101 : else
102: printf(" SIZE: %ld bytes\n",(long)m.u.stbuf.st_size)

103: }
104:
105: /*
106: * Exit client program :
107: */
108: q.dispose(); // Reset object
109: return 0;
110: }
111:
112: // End statdn.ee

The st ate In program accesses the existing message queue that the server created in the

Msq:: access () call in lines 28-33. Then the client program iterates through all of its

command-line arguments in lines 40-103.

The command-line argument is tested for the caseless string STOP in line 44. If the string

matches STOP, then a simple request to stop the server is created in line 46. Otherwise, the

first character of the command-line argument is tested for a $ character. If the argument starts

with $, a lstat(2) server request is made (lines 50 and 51) instead of the usual stat(2)

request (lines 53 and 54). The pathname of the request is copied in line 56.

The process ID of the client must be passed to the server so that it can reply. This is done in

line 63. The message type is set to 1 to send this message to the server. Lines 69-75 send the

message.

If the request is to stop the server, the loop is exited in line 81 at the break statement. This is
done because the server will not reply.

Lines 86—92 wait for a server reply on the message queue. The response is reported in lines

97-102. If the request succeeded, the stat (2) or lstat (2) information reported is the mem¬

ber st_size. This displays the file size and confirms that the operation succeeded.

Prior to the client program’s exit, it calls q. dispose () to forget its knowledge of the message

queue it used. However, this does not remove the queue—that is left for the server to do when
it shuts down.

The following shows how to make the server and client programs:

$ i
cc

make
-c -Wall

cc -c -Wall
cc -c -Wall
cc -c -Wall
cc -c -Wall
cc -c -Wall
cc -c -Wall
cc -c -Wall

-fhandle-exceptions
-fhandle-exceptions
-fhandle-exceptions
-fhandle-exceptions
-fhandle-exceptions
-fhandle-exceptions
-fhandle-exceptions
-fhandle-exceptions

msqveri.ee
msqcr.cc
msqac.cc
msqdest.ee
msqstat.ee
msqchg.cc
msqsend.cc
msqrecv.cc

Chapter 23 • MESSAGE QUEUES 479

ar r libmsq.a msqveri.o msqcr.o msqac.o msqdest.o msqstat.o msqchg.o
msqsend.o msqrecv.o

cc -c -Wall -fhandle-exceptions statsrv.cc
cc -o statsrv statsrv.o -L. -lmsq -lstdc++
cc -c -Wall -fhandle-exceptions statcln.cc
cc -o statcln statcln.o -L. -lmsq -lstdc++
$

Once the executables are prepared, you can start up the server program as follows:

$./statsrv &
$ Queue permissions were: 0600
Queue permissions now : 0666

The misplaced $ character is due to the shell issuing a prompt to the user before the server

program wrote its output to the terminal. The server displays before (0600) and after (0666)

sets of permission bits.

With the server ready for requests, you can now issue requests on the . / statcln

command line:

$./statcln /etc/hosts STOP
RESPONSE /etc/hosts : SIZE: 118 bytes
[1] 12935 Exit 0 ./statsrv
$ Is -1 /etc/hosts
-rw-r--r-- 1 root wheel 118 May 23 21:10 /etc/hosts
$

In this example, the first argument /etc/hosts requested a stat(2) of the hosts file from the

server. The response from the server shows that the file’s size was 118 bytes. This was verified

by the Is (1) command. The STOP argument caused the program . / statcln to request the

server to shut down, which it did.

Summary
You have examined the message queue operations in this chapter. Message queue creation,

destruction, modification, queries, and sending and receiving of messages was tested. The next

chapter explores the semaphore IPC resource.

CHAPTER 24

SEMAPHORES

When you have multiple processes running concurrently, there is a frequent need for

synchronization. This is particularly true for using shared memory when it is being

updated. Whereas Chapter 22, “Interprocess Communication,” covered the concepts

behind semaphores, this chapter will focus on the system calls available under UNIX for using

semaphores.

Semaphore Utility Program
A semaphore utility program is presented in this chapter to facilitate the discussion of sema¬

phore operations. The source code will be presented in modules as each subject area is intro¬

duced. This utility will allow you to manipulate all aspects of a semaphore set, including its

creation and destruction.

The program will be compiled and tested before the source modules are introduced to allow

you to experiment with the topics as the chapter progresses. The remaining additional source

for the program will be illustrated at the end of the chapter.

The program is compiled as follows:

$ make
cc -c -Wall -DHAVE_ _SEMUN ctlget.c
cc -c -Wall -DHAVE_ "SEMUN semop.c
cc -c -Wall -dhave] "SEMUN semchmod.c
cc -c -Wall -dhave] SEMUN semget.c
cc -c -Wall -DHAVE]SEMUN semgetall.c
cc -c -Wall -DHAVE_ SEMUN semgetval.c
cc -c -Wall -DHAVE_]SEMUN semrmid.c
cc -c -Wall - DHAVE_ SEMUN semsetall.c
cc -c -Wall -dhave’ SEMUN semsetval.c
cc -c -Wall -DHAVE_ SEMUN semstat .c
cc -c -Wall -DHAVE_ SEMUN usage.c
cc ■c -Wall -dhave"]SEMUN convrt.c
cc ■c -Wall -DHAVE_ SEMUN report .c
cc -c -Wall -dhave] SEMUN semchown.c
cc -c -Wall -DHAVE SEMUN main.c
cc -o semop ctlget.o semop.o semchmod.o semget.o semgetall.o semgetval.o
* semrmid.o semsetall.o semsetval.o semstat.o usage.o convrt.o
** report.o semchown.o main.o
$

482 ADVANCED UNIX PROGRAMMING

If you have trouble compiling this utility on your platform because the union semun is not

defined, then modify the Makefile to remove the option -DHAVE_SEMUN from the compile

command line. This will be explained when the include file semop.h is presented.

Now invoke the usage display of the program for help:

$./semop -h
Usage: semop [options]
Options:

-k
-a
-c
-i
-o

-s
-m
-x
-y
-d
-9
-G
-v
-V
-P
-P
-n
-z
-u
-U
-R

key IPC Key for -a or -c option.
Access existing set based on -k key

n Create set of n semaphores using -k key
ID Access existing set by IPC ID
<sops> semop(n) for wait/zero/notify

semctl(IPC_STAT)
mode semctl(IPC_SET) with new permissions
userid semctl(IPC_SET) with new userid
group semctl(IPC_SET) with new group

semctl(IPC_RMID)
n semctl(GETVAL) for semaphore n

semctl(GETALL)
n=x semctl(SETVAL) set semaphore n to x
m,n,o semctl(SETALL)
n semctl(GETPID) for semaphore n

Report semctl(GETPID) for all semaphores
x semctl(GETNCNT) for semaphore x
x semctl(GETZCNT) for semaphore x

No SEMJJNDO (default)
Use SEMJJNDO
Report SEMJJNDO flags

<sops>

where:

$

<semaphore#>=<semop>[{u|U}],...

<semaphore#> Is the semaphore # (starting from zero)
<semop> Semaphore operation: -n, 0 or +n

Negative waits, Postive notifies
while zero waits for zero,

u Do not use SEMJJNDO
U Apply SEMJJNDO
Example: -o 0=-4U,2=+1u,1=2

This utility program has several command-line options. Each option will be explained as you
progress through the chapter.

Note

All semop utility numeric values provided on the command line can be specified in any radix. Octal
values are preceded by zero, hexadecimal by 0x, and all other values are interpreted as decimal.

Chapter 24 • SEMAPHORES 483

Creating and Accessing Semaphore Sets
A semaphore set is created or accessed by using the semget (2) system call. Its function synop¬
sis is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int flags);

The semget (2) function requires an IPC key value in the argument key, and permissions and

flags in the argument flag. The argument nsems indicates how many semaphores you want to

create in this set.

Like msgget (3), the key argument may be an IPC key or the value IPC_PRIVATE for a set of

semaphores without a key value.

The flags argument should contain the permission bits to assign to the created set and the

flag bit IPC_CREAT. The flag IPC_EXCL will force an error to be returned if the set

already exists.

When accessing an existing set, you can specify zero for the flag argument. The permission

bits are ignored when you are not creating semaphore sets.

The function semget (2) returns an IPC ID if the call is successful. Otherwise, -1 is returned

with an error code left in errno.

Note

Note that semget (2) does not apply the process umask(2) value when creating a new set. The per¬

mission value specified in the flag argument is the final mode for the set.

Warning

Applications should always initialize the semaphore values immediately after creating the semaphore

sets for maximum portability. The default values for semaphores vary according to UNIX platform.

Listing 24.1 shows the source code used by the utility program to create or access a

semaphore set.

LISTING 24.1 semget.c —Source Module That Creates and Accesses a Semaphore Set

1: /* semget.c */
2:
3:
4:

#include "semop.h

484 ADVANCED UNIX PROGRAMMING

continued from previous page

5:
6:
7:
8:
9:
10

11

12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

void
get_set(int optch,key_t key,int createflg) {

int z;
mode_t um;
mode_t mode; /* Create permissions */
int flags; /* semget(2) flags */

if (createflg)
flags = IPC_CREAT|IPC

else
flags = 0;

um = umask(077);
umask(um);
mode = 0666 & -um;

EXCL; /* Create set */

/* Access existing set */

/* Query umask */
/* Restore umask */
/* Create permissions */

/*

* Create a set of n_sem semaphores :
*/

z = semget(key,n_sem,flags|mode);
if (z == -1) {

fprintf(stderr,"%s: -%c\n",strerror(errno),optch);
exit(1);

}

semid = z; /* Semaphore IPC ID */

printf(" -%c 0x%X => IPC ID %d\n",optch,(int)key,semid);
if (key == IPC_PRIVATE)

printf(" WARNING: IPC_PRIVATE used.\n");
fflush(stdout);

The function get_set () sets the variable flags to IPC_CREAT | IPC_EXCL when the set is to be

created (line 13). Otherwise, flags is set to zero (line 15).

Since the function semget(2) does not use the umask (2) value, the current mask is looked up

and applied to the default permissions 0666 line in lines 17-19.

Line 24 calls semget (2) to access or create the set, depending upon the value of its flags vari¬

able. The number of semaphores to create (when flags contains IPC_CREAT) is determined by

a global variable n_sem. If the function call succeeds, the global variable semid is assigned the

IPC ID in line 30.

Warning

Note that the key value used for some of the examples in this chapter uses hexadecimal values. The

key value FEEDF00D uses zeros. Do not type the letter o when typing this key value.

Chapter 24 • SEMAPHORES 485

The following example shows how to create a simple semaphore set of three, using the utility
program ./semop:

$./semop -k0xFEEDF00D -c3
-C 0XFEEDF00D => IPC ID 131072
-c 3 : Created semaphore set -k 0xFEEDF00D

$

The - k0xFEEDF00D option specifies the key, which is followed by the create option -c3. The

value 3 indicates that three semaphores are to be created in the set. To confirm that the set was

created, invoke the ipcs(1) command. Under FreeBSD, the display appears as follows:

$ ipcs
Message Queues:
T ID KEY MODE OWNER GROUP

Shared Memory:
T ID KEY MODE OWNER GROUP

Semaphores:
T ID KEY MODE OWNER GROUP
S 131072 -17960947 --rw-r. ehg ehg

$

The FreeBSD ipcs (1) command displays the key value as a signed decimal value. Hence,

0xFEEDF00D becomes the decimal value -17960947 in the display. Notice that the IPC ID value

is shown as 131072 in this display (your IPC ID may differ).

The created set can be accessed by the utility by IPC key or IPC ID. The following shows how

the set is accessed by the key value:

$./semop -k0xFEEDF00D -a
-a 0XFEEDF00D => IPC ID 131072
There are 3 semaphores in this set.

$

The - a option directs the utility program to access the semaphore set by the last - k key value

provided. The same set can also be accessed more directly by use of the IPC ID:

$./semop -i131072 -R
-i 131072 : There are 3 semaphores in this set.
-R : key 0XFEEDF00D
-R : IPC ID 131072
-R : 0 has no SEMJJNDO
-R : 1 has no SEMJJNDO
-R : 2 has no SEMJJNDO

$

The option -i131072 identifies the IPC ID of the set, and is enough on its own. The -R option

was added so that the IPC key value would be reported along with some other information.

486 ADVANCED UNIX PROGRAMMING

Destroying Semaphore Sets
When a semaphore set is no longer required, it must be explicitly destroyed. This is necessary

because semaphores are not destroyed when a process exits. This is accomplished with the

semctl(2) function:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, . ..)>

The argument semid contains the IPC ID of the semaphore set that was created or accessed by

semget (2). The argument semnum identifies which semaphore in the set to operate upon when

only one semaphore is being accessed. The argument cmd must contain a valid command

macro constant that specifies the operation to be performed on the semaphore or semaphore

set. The fourth argument is required for some semctl(2) command operations. In the man(1)

pages, it is often referred to as the argument arg.

For commands that operate upon the entire set of semaphores, the argument semnum is

ignored. For these occasions, semnum can be specified as 0.

The following is a list of valid semctl(2) commands:

IPC_STAT Obtains status information about the semaphore set.

IPC_SET Changes certain attributes of the semaphore set. The semjserm.uid,

sem_perm.gid, and sem_perm.mode values are the only values that may be

altered.

IPC_RMID Removes the semaphore set.

GETVAL Returns the value of one semaphore in the set.

SETVAL Changes one semaphore's value in the set. The value is supplied by the
semun member val.

GETPID Returns the process ID of the last process to perform an operation on a

specific semaphore within the set. If no operations have been performed,
zero is returned.

GETNCNT Returns the number of processes waiting for a notify on a specific sema¬
phore within the set.

GETZCNT Returns the number of processes waiting for a zero condition on a spe¬
cific semaphore within the set.

Chapter 24 • SEMAPHORES 487

GETALL Fetches all semaphore values from the set. The values are returned to an

array pointed to by the semun member array. The receiving array must be

greater than or equal to the number of semaphores in the set.

SETALL Sets all semaphore values in the set to new values given by the semun

member array. The array is expected to contain enough values to initial¬

ize all semaphores contained within the set.

When the command is GETVAL, GETNCNT, or GETZCNT, the function semctl(2) returns the cor¬

responding value when it is successful. Otherwise, -1 is returned with errno holding the

error code.

For all other command values, semctl(2) returns 0 for success. Otherwise, -1 is returned

with errno holding the error code.

Listing 24.2 shows a source module that uses the semctl(2) system call to destroy a sema¬

phore set.

LISTING 24.2 semrmid. c—Source Module That Removes a Semaphore Set

/* semrmid.c */

#include "semop.h"

void
ctl_rmid(int optch) {

int z;

z = semctl(semid,0,IPC_RMID);
10: if (z == -1) {
11: fprintf(stde
12: strerror
13: exit(1);
14: }
15:
16: semid = -1;
17:
18: printf (" -%c\n"
19: fflush(stdout);
20: }

/* This resource is gone now */

In Listing 24.2 the IPC_RMID command is executed in line 9. Notice no fourth argument is

required, and the semnum argument is specified as zero since it is ignored.

The semaphore set from the preceding section can be removed by IPC key or by IPC ID. The

following shows how it can be done for IPC ID:

$./semop -i131072 -d
-i 131072 : There are 3 semaphores in this set.
-d

$

488 ADVANCED UNIX PROGRAMMING

The -d option causes the code in Listing 24.2 to be invoked to remove the previously identi¬

fied set. Use the ipcs (1) command to verify that the set is gone:

$ ipcs
Message Queues:
T ID KEY MODE OWNER GROUP

Shared Memory:
T ID KEY MODE OWNER GROUP

Semaphores:
T ID KEY MODE OWNER GROUP

$

Controlling Semaphores
The previous sections showed how semaphore sets could be created and accessed. This section

will show you how you can query the set that you have and make changes to it.

Querying Semaphore Sets
The semctl(2) function provides the IPC_STAT command to allow you to retrieve information

about the semaphore set. Of particular interest is the value that indicates how many sema¬

phores are in the set and the permission information. Information for IPC_STAT is returned in

the structure semid_ds, which is shown in the following synopsis:

struct semid_ds {
struct ipc_perm sem_perm;
struct sem *sem_base;
u_short sem_nsems;
time_t sem_otime;
time_t sem_ctime;

};

/* operation permission struct */
/* pointer to first semaphore in set */
/* number of sems in set */
/* last operation time */
/* last change time */

The structure definition for ipc_perm is repeated for your convenience, as follows:

struct ipc_perm {
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */
ushort seq; /* sequence # (to generate unique msg/sem/shm id)
key_t key; /* user specified msg/sem/shm key */

*/

In order to receive this information, you must make use of the fourth argument, of type semun.

The POSIX standard states that you must define the union semun in your own code. Many

releases of UNIX define it for you in the include files. The union is defined in the include file
semop. h for the utility, which is shown in Listing 24.3.

Chapter 24 • SEMAPHORES 489

LISTING 24.3 semop. h—The Include File That Is Used by the semop Utility Program

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/* semop.h */

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<unistd.h>
<string. h>
<errno.h>
<sys/types.h>
<pwd.h>
<grp.h>
<sys/stat.h>
<sys/ipc.h>
<sys/sem.h>

#ifndef HAVE_SEMUN

union semun {
int val;
struct semid_ds *buf;
u_short *array;

};

#endif

#define MAX_NSET 16

extern int semid;
extern int n_sem;
extern struct semid_ds sembuf;

/* Does sys/sem.h define this? */

/* Value */
/* IPC_STAT info */
/* Array of values */

/* Max value for n_sem */

/* Semaphore IPC ID */
/* # of semaphores to a set */
/* The last IPC_STAT info */

extern void get_set(int optch,key_t key,int createflg);
extern void ctl_semop(int optch,const char *optarg,

int sems[],int array[],int flags[],int n);
extern void ctl_stat(int optch,int rptflag);
extern void ctl_chmod(int optch,mode_t mode);
extern void ctl_chown(int optch,const char *user_id);
extern void ctl_chgrp(int optch,const char *group);
extern void ctl_rmid(int optch);
extern void ctl_getval(int optch,int semx);
extern void ctl_getall(int optch);
extern void ctl_setval(int optch,int semx,int value);
extern void ctl_setall(int optch,int array!]);
extern void ctl_get(int optch,int cmd,int semx);

extern void usage(void);
extern int cvt2ulong(const char *str,unsigned long *ulp);
extern int cvt2array(const char *str,int array!],const char *delim);
extern int cvt2semops(const char *str,int sems[],int array!],int flags!]);
extern void report(int optch,key_t key,int flags!]);

/* End semop.h */

490 ADVANCED UNIX PROGRAMMING

The union is only compiled if the C macro HAVE_SEMUN is not defined. This is defined in the

Makefile as the compiler command-line argument -DHAVE_SEMUN. Remove this option if you

need the union defined.

Listing 24.4 shows the how the semctl(2) function is called for the IPC_STAT command.

LISTING 24.4 semstat .c—-Source Module That Uses the IPC_STAT Command of semctl(2)

1: /* semstat.c */
2:
3: #include "semop.h"
4:
5: struct semid_ds sembuf; /* Used for IPC_STAT/IPC_SET */
6:
7: /*
8: * Return user ID string :
9: * /

10: static char *
11: user_id(uid_t uid) {
12: struct passwd *pw = getpwuid(uid);
13:
14: return !pw ? "?" : pw->pw_name;
15: }
16:
17: /*
18: * Return group ID string :
19: */
20: static char *
21: group_id(gid_t gid) {
22: struct group *gr = getgrgid(gid);
23:
24: return !gr ? "?" : gr->gr_name;
25: }
26:
27: /*
28: * Get status on semaphore set :
29: */
30: void
31: ctl_stat(int optch,int reportflg) {
32: int z;
33: union semun un;
34:
35: un.buf = &sembuf;
36:
37: z = semctl(semid,0,IPC_STAT,un);
38: if (z == -1) {

39: fprintf(stderr,"%s: semctl(semid=%d,IPC_STAT)\n",
40: strerror(errno),semid);
41: exit(1);
42: }
43:
44: if (reportflg == 1) {

Chapter 24 • SEMAPHORES 491

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

printf(" -%c {\n"
11 sem_nsems = %d\n"
11 sem_perm {\ n"
" cuid = %d (%s)\n"
" cgid = %d (%s)\n",
optch,
(int)sembuf.sem_nsems,
(int)sembuf.sem_perm.cuid,
user_id(sembuf.sem_perm.cuid),
(int)sembuf.sem_perm.cgid,
group_id(sembuf.sem_perm.cgid));

printf(
" uid = %d (%s)\n"
" gid = %d (%s)\n"
" mode = 0%03o\n"
" key = 0x%081X\n"

} 5 \ n"
" } 5 \ n",
(int)sembuf.sem_perm.uid,
user_id(sembuf.sem_perm.uid),
(int)sembuf.sem_perm.gid,
group_id(sembuf.sem_penm.gid),
(int)sembuf.sem_perm.mode & 0777,
(long)sembuf.sem_perm.key);

fflush(stdout);
}

/*

* Check that our idea of set size agrees with actual :
*/

if (reportflg == -1) /* -a option call? */
n_sem = sembuf.sem_nsems; /* Yes, adjust for actual count */

else if (n_sem != sembuf.sem_nsems) {
fflush(stdout);
fprintf(stderr," WARNING: # semaphores in set is %d\n",

sembuf.sem_nsems);
fflush(stderr);
n_sem = sembuf.sem_nsems; /* Adjust for actual count */

The section of code that is important to the discussion is found in lines 31-42. The union

named un is declared in line 33. The address of the external buffer of type struct semid_ds is

pointed to in the union in line 35. The union un is passed as the fourth argument to the

semctl(2) function in line 37.

The struct semid_ds sembuf is declared externally in this module in line 5. The values placed

here are also used by other modules that perform the IPC_SET operation.

The following example uses the utility program . /semop to create a new semaphore set, and

invokes I PC STAT on it.

492 ADVANCED UNIX PROGRAMMING

$./semop -k0xFEEDF00D -c3 -s
-C 0XFEEDF00D => IPC ID 196608
-c 3 : Created semaphore set -k 0XFEEDF00D
•s {

sem_nsems = 3
sem_perm {

cuid = 1001 (ehg)
cgid = 1001 (ehg)
uid = 1001 (ehg)
gid = 1001 (ehg)
mode = 0640
key = 0XFEEDF00D

};
};

$

The options -k and -c create the set. Option -s requests the IPC_STAT command, and the

most important values are reported to standard output. The mode value was affected by the

current umask(2) in effect, due to the umask(2) calls that were made in lines 17-19 of Listing

24.1. The mask that was in effect was

$ umask
0027
$

Keep this semaphore set around for the subsequent sections.

Changing Semaphore Access
After the semaphore set is created, it may be necessary to modify the ownership of the sema¬

phore or change its permission bits. The IPC_SET command of the semctl(2) function allows

you to make these changes. Listing 24.5 shows how IPC_SET is used.

LISTING 24.5 semchmod.c—Source Module That Uses the IPC_SET Command of semctl(2)

1: /* semchmod.c */
2:
3: #include "semop.h"
4:
5: void
6: ctl_chmod(int optch,mode_t mode) {
7: int z;
8: union semun un;
9:
10: un.buf = &sembuf; /* Pointer to buffer */
11: sembuf.sem_perm.mode = mode; /* Change the mode */
12:

13: z = semctl(semid,0,IPC_SET,un); /* Change mode value */
14: if (z == -1) {
15: fprintf(stderr,"%s: semctl(semid=%d,IPC_SET)\n",
16: strerror(errno),semid);
17: exit(1);

Chapter 24 • SEMAPHORES 493

18: }
19:
20: printf(" -%c 0%03o\n",optch,mode);
21: fflush(stdout);
22: }

The function ctl_chmod () is called upon to change the permission bits (mode) of the sema¬

phore set within the utility. Again, the union is declared in line 8, and the buffer pointer is

established in line 10. The permission bits in the external variable sembuf are altered in line

11. Line 13 invokes the semctl(2) function to cause the permission bit changes to occur.

The following example accesses the previous semaphore set and changes the permissions using

the -m option. Note the careful use of the leading zero in 0600 to specify the value in octal

notation. The - s option follows to display the new values for this set:

$./semop -k0xFEEDF00D -a -m 0600 -s
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-m 0600
-s {

sem_nsems = 3
sem_perm {

cuid = 1001 (ehg)
cgid = 1001 (ehg)
uid = 1001 (ehg)
gid = 1001 (ehg)
mode = 0600
key = 0XFEEDF00D

};
};

$

Indeed the output shows that the new mode value is 0600. Additional source code for the util¬

ity that allows the owner and group to be altered is shown in Listing 24.6.

LISTING 24.6 semchown. c—Source Code That Changes Owner and Group of a Semaphore Set

1: /* semchown.c */
2:
3: #include "semop.h"
4:
5: static uid_t
6: srch_uid(const char *user_id) {
7: struct passwd *pw = getpwnam(user_id);
8:
9: if (!pw)
10: return (uid_t)(-1);
11: return pw->pw_uid;
12: }
13:
14: void
15: ctl_chown(int optch,const char *user_id) {

494 ADVANCED UNIX PROGRAMMING

continued from previous page

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

uid_t uid = srch_uid(user_id);

if (uid == (uid_t)(-1)) {
fprintf(stderr,"Unknown userid: -%c %s\n",optch,user_id);
exit(1);

}

sembuf.sem_perm.uid = uid; /* Change userid */

/* Cheat: change uid by using ctl_chmod() */
ctl_chmod(optch,sembuf.sem_perm.mode);

static gid_t
srch_gid(const char *group_id) {

struct group *gr = getgrnam(group_id);

if (!gr)
return (gid_t)(-1);

return gr->gr_gid;

void
ctl_chgrp(int optch,const char *group) {

gid_t gid = srch_gid(group);

if (gid == (gid_t)(-1)) {
fprintf(stderr,"Unknown group: -%c %s\n",optch,group);
exit(1);

}

sembuf.sem_perm.gid = gid; /* Change group */

/* Cheat: change gid by using ctl_chmod() */
ctl_chmod(optch,sembuf.sem_perm.mode);

The functions ctl_chown () and ctl_chgrp () are called for the utility options -x and -y,

respectively. The actual changes are made in lines 23 and 47. The function calls in lines 26 and

50 cheat by pretending to change the mode value, but pass the existing mode value instead.

This causes the changes in variable sembuf to be written to the semaphore set using IPC_SET.

Querying the Value of a Semaphore
The semctl(2) command GETVAL allows a program to query the current value of a specific

semaphore within a set. Listing 24.7 shows a source module that performs this function for

the semop utility program.

Chapter 24 • SEMAPHORES 495

LISTING 24.7 semgetval.c—Source Module That Uses GETVAL with semctl(2)

1: /* semgetval.c */
2:
3: #include "semop.h"
4:
5: void
6: ctl_getval(int optch,int semx) {
7: int z;
8: union semun un;
9:
10: z = semctl(semid,semx,GETVAL,un);
11: if (z == -1) {
12: fprintf(stderr,"%s: -%c %d\n",strerror(errno),optch,semx);
13: exit(1);
14: }
15:
16: printf(" -%c %d => %d\n",optch,semx,z);
17: fflush(stdout);
18: }

The ctl_getval() function is called by the -g n option of the utility. The value n represents

the zero-based semaphore number within the set, which is passed to ctl_getval() in the

argument semx in Listing 24.7. The semctl(2) call is made in line 10. Since the semaphore

value cannot be negative, the value -1 represents an error return value, which is tested for in

line 11. Otherwise, the semaphore number and its value are reported in line 16.

The following example reports the values of semaphore 0 and semaphore 2:

$./semop -k0xFEEDF00D -a -g0 -g2
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-g 0 => 0
-g 2 => 0

$

Query the Entire Semaphore Set of Values
Querying any semaphore is a snapshot view of the values, since these values could be chang¬

ing. If you need a snapshot of all of the semaphores, the GETALL control function provides a

consistent result. Listing 24.8 shows how the GETALL command is used.

LISTING 24.8 semgetall.c—Source Module That Uses the GETALL Command with semctl(2)

1: /* semgetall.c */
2:
3: #include "semop.h”
4:
5: void
6: ctl_getall(int optch) {
7: int z;
8: int x;

496 ADVANCED UNIX PROGRAMMING

continued from previous page

9: u_short array[MAX_NSET];
10: union semun un;
11:
12: un.array = &array[0];
13: z = semctl(semid,0,GETALL,un);
14: if (z == -1) {
15: fprintf(stderr,"%s: -%c\n",strerror(errno),optch);
16: exit(1);
17: }
18:
19: for (x=0; x<n_sem; ++x)
20: printf(" -%c : semaphore # %d = %u\n",optch,x,array[x]);
21:
22: fflush(stdout);
23: }

The function ctl_getall() is called when the . /semop option -G is encountered. An array is

declared in line 9 to receive all of the semaphore values. The semun union is pointed to this

array in line 12. The GETALL command is invoked in line 13. If the call succeeds, the results

are reported in lines 19 and 20.

The following shows GETALL in action:

$./semop -k0xFEEDF00D -a -G
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-G : semaphore #0=0
-G : semaphore #1=0
-G : semaphore #2=0

$

Since you have not yet initialized this set of semaphores with values, you know that these are

the default values for new semaphores under FreeBSD. Some UNIX platforms use different

defaults, however.

Change the Value of a Semaphore
Sometimes it is necessary to adjust a specific semaphore to a specific value. This can be accom¬

plished with the semctl(2) SETVAL command, as you can see in Listing 24.9.

LISTING 24.9 semsetval.c—Source Module That Invokes the semctl(2) SETVAL Command

1: /* semsetval.c */
2:
3: #include "semop.h"
4:
5: void
6: ctl_setval(int optch,int semx,int value) {
7: int z;
8: union semun un;
9:

Chapter 24 • SEMAPHORES 497

10: un.val = value;
11: z = semctl(semid,semx,SETVAL,un);
12: if (z == -1) {
13: fprintf(stderr,"%s: -%c%d=%d\n",
14: strerror(errno),optch,semx,value);
15: exit(1);
16: }
17:
18: printf(" -%c %d=%d\n" ,optch,senix, value);
19: ftlush(stdout);
20: }

The ctl_setval() function is invoked when the -v n=x option is encountered. The sema¬

phore number n is passed as the argument semx, while the value x is passed as the argument

value. The union has the value assigned to its val member, which is then passed in the call in

line 11. An example of the SETVAL being used is shown as follows:

$./semop -k0xFEEDF00D -a -v2=13 -G
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-v 2=13
-G : semaphore #0=0
-G : semaphore #1=0
-G : semaphore # 2 = 13

$

Using the -v option, semaphore 2 in the set was assigned the new value of 13. This was

reported by the -G option, which followed on the command line.

Change the Entire Semaphore Set of Values
The semctl(2) function allows the application writer to establish the values of all semaphores

in one atomic operation, using the SETALL command. This command is used in Listing 24.10.

LISTING 24.10 semsetall.c—Source Module That Uses the semctl(2) SETALL Command

1: /* semsetall.c */
2:
3: #include "semop.h"
4:
5: void
6: ctl_setall(int optch.int array!]) {
7: int z;
8: int x;
9: u_short ua[MAX_NSET];
10: union semun un;
11:
12: for (x=0; x<n_sem; ++x)
13: ua[x] = (u_short)array[x];
14:
15: un.array = &ua[0];
16: z = semctl(semid,0,SETALL,un);

498 ADVANCED UNIX PROGRAMMING

continued from previous page

17: if (z == -1) {
18: fprintf(stderr,"%s: -%c %d,%d,%d\n",
19: strerror(errno),optch,array[0],array[1],array[2]);
20: exit(1);
21: }
22:
23: printf(" -%c %d,%d,%d\n",optch,array[0],array[1],array[2]);
24: fflush(stdout);
25: }

The . /semop utility calls ctl_setall() when the option -V is encountered. This option is fol¬

lowed by a comma-separated list of initial values for the entire semaphore set. The number of

values must exactly match the set. The array of values is passed in the argument array in

line 6. A conversion from int type to u_short type is made in lines 12 and 13 for the purpose

of the semctl(2) call in line 16. The address of the array is established in the union member

array (line 15).

The following example changes all three semaphores in the existing set that you have
been using:

$./semop -k0xFEEDF00D -a -V9,8,7 -G
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-V 9,8,7
-G : semaphore #0=9
-G : semaphore #1=8
-G : semaphore #2=7

$

The option -V9,8,7 sets the values for semaphores 0, 1, and 2 in the set of three.

Querying the Process ID for a Semaphore
When you are debugging a complex set of applications that modify a set of semaphores, it is

sometimes useful to be able to determine which process was the last one to modify a sema¬

phore. The GETPID command of the semctl(2) system call performs this function. The source

code in Listing 24.11 combines code that uses GETPID and some other information return
commands.

LISTING 24.11 ctlget.c—Source That Uses the GETPID Command of semctl(2)

1: /* ctlget.c */
2:
3: #include "semop.h"
4:
5: void
6: ctl_get(int optch,int cmd,int semx) {
7: int z;
8: union semun un;
9:
10: z = semctl(semid,semx,cmd,un);

Chapter 24 SEMAPHORES 499

11: if
12:
13:
14:
15:
16:
17: }
18:
19: printfC -%c %d => %d\n",optch,semx,z);
20: fflush(stdout);
21: }

The command GETPID is passed in the argument cmd of function ctl_get () in line 6 when the

-p or -P options are used on the command line. The specific semaphore number is specified in

the argument semx, which is later used in the call to semctl(2) in line 10. Since the value

being returned for all acceptable commands cannot be negative, the value -1 still identifies an

error return in line 11. The returned value is reported in line 19, when the semctl(2) call is

successful.

The following example shows how to report the process ID for semaphore number 2 and 0

using the - p option:

$./semop -k0xFEEDF00D -a -p2 -p0
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-p 2 => 2347
-p 0 => 2346

$

If you are following along and doing these commands on your system, you may see zeros

reported instead. Zero values indicate that no process has done a wait, zero, or notify opera¬

tion on your semaphore (you will do this later in the chapter). This example was preceded by

a few semaphore operations to provide non-zero process ID results.

The following example uses the -P convenience option to invoke GETPID on each semaphore

in the set:

$./semop -k0xFEEDF00D -a -P
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-p 0 => 2346
-p 1 => 2348
-p 2 => 2347

$

Query the Number of Processes Waiting for Notifies
The GETNCNT command allows your process to query how many processes are waiting on a

particular semaphore. Some applications may be able to make use of this information in order

to gauge the workload being processed.

(z == -1) {
fprintf(stderr,"%s: -%c%d\n",

strerror(errno),
optch,
semx);

exit(1);

500 ADVANCED UNIX PROGRAMMING

The GETNCNT requests are invoked with the -n option. The module shown in Listing 24.11

handles this information request. The following command lists how many processes are wait¬

ing on the third semaphore (semaphore number 2):

$./semop -k0xFEEDF00D -a -n2

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-n => 0

$

The returned value of zero indicates that no processes are currently waiting on this semaphore.

Query the Number of Processes Waiting for Zero
In addition to waiting and notifying semaphores, a process can also perform a wait for zero

operation. This might be used to report that a particular resource is exhausted, for example.

The GETZCNT command allows the caller to determine how many processes are waiting for zero

on a particular semaphore. The GETZCNT operation is also handled by the code shown in

Listing 24.11. The following example shows how the -z option is used to report the number

of processes waiting for zero on semaphore 0:

$./semop -k0xFEEDF00D -a -z0

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-z => 0

$

In this example, there are no processes waiting for a zero on semaphore 0 of this set.

Using Semaphores
The previous section focused on affecting changes in the semaphore and set attributes, and on

obtaining information. This section will cover the aspects of using semaphores to perform the
following:

• Wait operations

• Notify operations

• Wait for zero operations

These operations work on the entire set of semaphores or on a subset. You can also operate on

individual semaphores in the set according to your application needs.

Semaphore operations are performed by the semop(2) system call. Its function synopsis is as
follows:

//include <sys/types.h>
//include <sys/ipc.h>
//include <sys/sem.h>

int semop(int semid, struct sembuf array[], unsigned nops);

Chapter 24 • SEMAPHORES 501

The argument semid contains the IPC ID of the semaphore set, which is returned by the

semget (2) function. The array [] argument contains the set of semaphore operations that are

to be performed, while nops indicates how many elements exist in the array [].

The semop(2) function returns 0 when successful. The value -1 is returned when an error
code is returned in errno.

Semaphore operations are described in the structure sembuf, which is shown in the following
synopsis:

struct sembuf {
u_short sem_num;
short sem_op;
short sem_flg;

};

The member sem_num selects the semaphore number within the set. There is no requirement

that semaphores be accessed in any particular order. The member sem_op determines the sem¬

aphore operation to be performed. This signed number affects the semaphore as follows:

sem_op < 0 Wait on the semaphore

sem_op = 0 Wait for zero to occur

sem_op > 0 Notify the semaphore

/* semaphore number */
/* semaphore operation */
/* operation flags */

For example, if one semaphore represents bowling balls, you would use the value -1 to obtain

one. If you want to obtain four at one time, then you would use -4 as the sem_op value. In this

manner, if there were only three available, you would wait until at least four bowling balls

became available.

Conversely, to return four bowling balls, your sem_op value would be the value +4. If you were

returning only one ball, then +1 would be the sem_op value. This operation may notify other

processes that their wait request has now been satisfied.

A process may choose to wait for the zero count to be reached. If you have written an applica¬

tion that monitors the number of free bowling balls available, then a sem_op value of zero

would cause the semop (2) call to return only when the count has reached zero. This would

then allow your application to warn you that there are now no free bowling balls available.

The sem_f lg member allows you to specify additional option flags for each semaphore opera¬

tion. These include

0 No flags.

IPCJJOWAIT Does not suspend execution of the calling program if this semaphore

operation cannot be satisfied. Error EAGAIN is returned if the operation

was unsuccessful.

SEMJJNDO Adjusts the undo structure for this semaphore when the operation suc¬

ceeds.

502 ADVANCED UNIX PROGRAMMING

The IPC_NOWAIT flag allows your application to attempt the operation, but not have its execu¬

tion suspended if it must wait. While the flag applies to individual semaphores, the returned

error EAGAIN indicates that no semaphore operations succeeded, although only one semaphore

may have used the IPC_NOWAIT flag.

The SEM_UND0 flag allows you to plan for semaphore recovery, and will be discussed later in

the chapter.

Waiting on Semaphores
A wait operation decrements the count of the semaphore counter. If the count reaches zero,

then the request suspends the execution of the process (unless the flag SEM_NOWAIT is used for

the semaphore(s) in question).

The source module in Listing 24.12 performs all semaphore operations for the . /semop utility

program for the - o option.

LISTING 24.12 semop. c—Source Module That Performs semop(2) Operations

1: /* ctlsem.c */
2:
3: #include "semop.h"
4:
5: void
6: ctl_semop(
7: int optch,
8: const char *optarg,
9: int sems[],
10: int array!],
11: int flagsf1,
12: int n) {
13: int z;
14: int x;
15: int semx;
16: struct sembuf ops[MAX_NSET];
17:
18: for (x=0; x<n; ++x) {
19: ops[x].sem_num = semx = sems[x];
20: ops[x].sem_op = array[x];
21: if (semx >= 0 && semx < n_sem)
22: ops[x].sem_flg = semx < n_sem
23: ? flagsfsemx]
24: : 0;
25: }
26:
27: z = semop(semid,ops,n);
28: if (z == -1) {

29: fprintf(stderr,"%s: -%c %s\n",strerror(errno),optch,optarg);
30: exit(1);
31: }
32:

/* Semaphore # */
/* Semaphore operation */

/* In range ? */
/* Semaphore flags */
/* else use zero */

/* Iterator */
/* Semaphore number */

Chapter 24 • SEMAPHORES 503

33:
34:
35:
36:
37:
38:
39:
40:
41 :
42: fflush(stdout);

for (x=0; x<n; ++x)

printf(" -%c %s =>",optch,optarg);

putchar('\n1);

printf(" {%d,%+d,%s}",
ops[x].sem_num,
ops[x].sem_op,
ops[x].sem_flg ? "SEMJJNDO" : "0");

43: }

The ctl_semop() function receives the list of semaphores to act upon in the argument sems[]

(line 9). The array [] argument contains the list of semaphore operations to perform. The

argument flags [] (line 11) contains a list of flags in semaphore set order, while the last argu¬

ment n indicates how many operations there are to perform.

The semaphore operations array is declared in line 16, named ops[]. The loop in lines 18-25

populates this structured array. Line 19 assigns the semaphore number within the set. Line 20

assigns the semaphore operation. Line 21 makes certain that the semaphore number is in

range, and then retrieves the flags value and assigns it to the serrjf lg member.

Once the ops[] array is ready, it is passed to the semop(2) function in line 27, along with the

count value n. Lines 33-42 display the operation performed for the benefit of the utility

program.

The . /semop utility program uses the following format for specifying semaphore operations,

after the initial - o option:

<semaphore_number>=<semaphore_op>[{u|U}]

To wait for 4 bowling balls, using semaphore 0, with no SEMJJNDO, the following option would

be given:

-o 0=-4u

Or you can rely on the current “flags” value, and specify

-o 0=-4

To combine operations, separate them by commas:

-0 0=-4,2=-1U,1 = -1

This option specifies to wait with count 4 on semaphore 0 using its current flags value, wait

with count 1 on semaphore 2 using SEMJJNDO and wait with count 1 on semaphore 1 with its

current flags value.

Flags for each semaphore are maintained by the utility and default to 0 (no SEMJJNDO). This

can be checked using the -R option:

$./semop -k0xFEEDF00D -a -R

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-R : key 0XFEEDF00D

504 ADVANCED UNIX PROGRAMMING

-R : IPC ID 196608
-R : 0 has no SEMJJNDO
-R : 1 has no SEMJJNDO
-R : 2 has no SEMJJNDO

$

Once SEMJJNDO has been applied to a semaphore, the utility program remembers this until you

disable it again by a following - u option or semaphore - o operation using the trailing u.

For the following examples, initialize your semaphores as shown here:

$./semop -k0xFEEDF00D -a -V10,5,11 -G
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-V 10,5,11
-G semaphore # 0 = 10
-G semaphore # 1 = 5
-G semaphore # 2 = 11

$

The semaphore values should be 10, 5, and 11 for semaphores 0, 1, and 2, respectively. The -G

option permits you to check the current value of the semaphores.

The following wait operations will request 3 from semaphore 0, and 2 from semaphore 1, and

leave semaphore 2 as it is (do not use SEMJJNDO here):

$./semop -k0xFEEDF00D -a -o 0=-3,1=-2 -G

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-o 0=-3,1=-2 => {0,-3,0} {1,-2,0}
-G : semaphore #0=7
-G : semaphore #1=3
-G : semaphore #2=11

$

The -o option requests a semop(2) call, while the final -G option shows us the final results.

Notice how semaphore 0 was decremented by 3, and semaphore 1 was decremented by 2 as

requested. The display shows in { } the semaphore operations that were submitted to

semop(2).

Open a second terminal session, and try the following semaphore wait:

$ x/semop -k0xFEEDF00D -a -o 0=-6,1=-4 -G
-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.

If your semaphore values match what was shown in the previous example, your utility pro¬

gram should appear to hang here. This happens because you have requested 4 from sema¬

phore 1, but its current count is 3. While that application waits, in another terminal session,

execute the following:

$./semop -k0xFEEDF00D -a -0 1=+2

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-o 1=+2 => {1,+2,0}

$

Chapter 24 • SEMAPHORES 505

When this command executes, semaphore 1 is notified with a count of +2 putting the sema¬

phore count up to 5 from the current value of 3. The value 5 will satisfy the other request, so

your waiting process is able to return from semop(2) successfully, as shown below:

$./semop -k0xFEEDF00D -a -0 0=-6,1=-4 -G

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-o 0=-6,1=-4 => {0,-6,0} {1,-4,0}
-G : semaphore #0=1
-G : semaphore #1=1
-G : semaphore #2=11

$

Notifying Semaphores
Adding a count to the semaphore notifies the semaphore list. The UNIX kernel maintains a list

of all processes that are waiting for notification. Recall that the semctl(2) operation GETNCNT

returns the number of processes on this list. When a notify occurs, the entire list of processes

is re-tested to see if the semaphore operation for that process can succeed.

Warning

Applications that have a large number of processes waiting on a given semaphore may suffer system
performance problems. Each notify operation on a semaphore awakens each process to re-test the
semaphore. With a high number of processes and swapping, this can create poor system perfor¬
mance.

When possible, design your application so that only a few processes will wait on a given semaphore.

The preceding section showed a simple notify. You can also notify multiple semaphores at

once, as shown here:

$./semop -k0xFEEDF00D -a -o 2=1,0=3 -G

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-0 2=1,0=3 => {2,+1,0} {0,+3,0}
-G semaphore # 0 = 4
-G semaphore # 1 = 1
-G semaphore # 2 = 12

$

This example adds +1 to semaphore 2 (the + sign does not have to be entered), and +3 to sem¬

aphore 0. The -G option reports the final results.

Waiting for Zero
Processes that want to be notified when the semaphore count reaches zero can specify 0 for the

semaphore operation. Note, however, that this operation is different from other operations

because it is just a snapshot notification. By the time the execution returns from a zero notifi¬

cation, another process may have notified the semaphore again.

506 ADVANCED UNIX PROGRAMMING

The . /semop command can wait for a zero count by specifying the 0 for the semaphore opera¬

tion:

$./semop -k0xFEEDF00D -a -0 1=0

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.

This process will appear to hang until you perform enough waits to bring the semaphore count

to 0 for semaphore 1 of this set.

Semaphore Undo Processing
Semaphore counts manage a count of a particular resource. To keep this count accurate, each

wait on a semaphore must eventually be matched by a corresponding notify. For example, if

you have 30 bowling balls managed by one semaphore, eventually when no bowling balls are

in use, the count must increase back to 30. Otherwise, your application will lose track of its

resources.

When a process runs, however, an unexpected abort or exit can occur. If your bowling ball

reservation program performed a semaphore wait for 4 balls and then aborted, your sema¬

phore count will be left short by 4 balls. You would need to manually tweak the semaphore

using the . / semop utility to recover from this problem.

The UNIX kernel maintains SEIVMJNDO structures for each process. This permits a process to

clean up its semaphore faux pas. The use of SEIVMJNDO must, however, be explicitly requested

as a flag in sem_f lg of the semaphore operation. When SEM_UND0 is enabled, each semaphore

wait causes a corresponding SEIVMJNDO count to be incremented. Each notify is tracked by a

negative SEIVMJNDO count. If the program should exit before restoring the semaphores used

with SEIVMJNDO, these recovery values are applied to the semaphores upon process termination.

For example, assume the following initial semaphore states

$./semop -k0xFEEDF00D -a -V30,20,6 -G

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-V 30,20,6
-G : semaphore # 0 = 30
-G : semaphore # 1 = 20
-G : semaphore #2=6

$

There are 30 bowling balls, 20 pairs of bowling shoes, and 6 bowling alleys. Now run a sema¬

phore wait operation, requesting 4 bowling balls, 4 pairs of shoes, and 1 bowling alley, with

the SEIVMJNDO flag enabled (using -U):

$./semop -k0xFEEDF00D -a -U -0 0=-4,1=-4,2=-1 -G

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-U : 0 uses SEMJJNDO
-U : 1 uses SEIVMJNDO
-U : 2 uses SEIVMJNDO

-0 0= -4,1 = -4,2= -1 => {0, -4,SEM_UND0} {1 ,-4,SEIVMJNDO} {2,-1 .SEIVMJNDO}

Chapter 24 • SEMAPHORES 507

-G : semaphore # 0 = 26
-G : semaphore # 1 = 16
-G : semaphore #2=5

$

The -U option sets SEMJJNDO as the default for all semaphore operations. Notice how the wait

operation successfully returned, and the -G option reported the final counts of 26, 16, and 5

for the semaphores. However, now check the semaphores again with the -G option:

$./semop -k0xFEEDF00D -a -G

-a 0XFEEDF00D => IPC ID 196608
There are 3 semaphores in this set.
-G : semaphore # 0 = 30
-G : semaphore # 1 = 20
-G : semaphore #2=6

$

The counts have been restored after the prior . / semop process terminated. This was done by

the UNIX kernel because the SEM_UND0 counts were being maintained. Think of SEMJJNDO

keeping opposite counts for each semaphore operation.

If a wait operation of -4 is performed, +4 is added to the SEMJJNDO value. If a notify of +3 is

performed, the value -3 is added to the SEM_UND0 value (subtracting 3). If these were the last

operations performed, the final SEMJJNDO value at process termination would be +1, requiring

the kernel to perform a notify of +1 to restore the semaphore.

As convenient as the SEM_UND0 feature may be, it is not always wise to use it. When a binary

semaphore is being used to lock a shared memory table, for example, is it wise to have the

table unlocked when the lock holding process aborts? The aborting process may have left the

shared memory table in an unusable state. It may be preferable to have other processes hang

rather than proceed. In this manner, the administrator can take corrective action and restart

the application from a known and trusted state.

The semop Utility Program
The next few listings complete the source listings for the utility program semop. Listing 24.13

lists the main program.

LISTING 24.13 main. c—The Main Program Source Listing for the semop Utility

1: /* main.c */
2:
3: #include "semop.h"
4:
5: int semid = -1; /* No default IPC ID */
6: int n_sem = 3; /* Default # semaphores in a set */
7:
8: /*
9: * semop utility main program :
10: *

11: * Use './semop -h' for help.
12: */

508 ADVANCED UNIX PROGRAMMING

continued, from previous page

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

int
main(int argc,char **argv) {

int z;
int x;
int rc = 0;
int n;
key_t key = 0XFEEDF00D;
int sems[MAX_NSET];
int array[MAX_NSET];
int flags[MAX_NSET];
unsigned long ul;
const char cmdopts[] = "hk:

/* Option character/status */
/* Iterator */
/* Return code */
/* # of values in array */
/* Default IPC key */
/* Array of semaphore numbers */
/* Array of integer values */
/* Flags for each semaphore */
/* unsigned value */
c: i: Q: sm: dg: Gv: V: p: Pn: z: uURx: y:11;

for (x=0; x<MAX_NSET; ++x)
flags[x] = 0; /* Initialize with no SEMJJNDO */

while (Ire && (z = getopt(argc,argv,cmdopts)) != -1)
switch (z) {
case 'h' : /* -h ; usage info */

usage();
return 0;

case ‘k' : /* -k IPCkey[,n] ; IPC Key, n_sem */
if (cvt2ulong(optarg,&ul))

goto badevt;
key = (key_t) ul;
break;

case 'a' : /*
get_set(z,key,0); /*
ctl_stat(z,-1); /*
printf(" There are %d

n_sem);
break;

-a ; access set */
Locate IPC ID */
Just fill sembuf & fix n_sem */
semaphores in this set.\n",

case 'c' : /* -c n ; create set */
if (cvt2ulong(optarg,&ul))

goto badevt;
n_sem = (int)ul;
get_set(z,key,1); /* Create set */
ctl_stat(z,0); /* Just fill sembuf */
printf(" -c %d : Created semaphore set -k 0x%081X\n",

n_sem,(long)key);
break;

case 'i' : /* -i IPCID ; IPC ID */
if (cvt2ulong(optarg,&ul))

goto badevt;
semid = (int) ul;
ctl_stat(z,-1); /* Just report failure */
printf(" -i %d : There are %d semaphores in this set.\n"

semid,n_sem);
break;

Chapter 24 • SEMAPHORES 509

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81 :
82:
83:
84:
85:
86:
87:
88:
89:
90:
91 :
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

case 'o' : /* -o m[,n[,o]] ; semop(2) */
if ((n = cvt2semops(optarg,sems,array,flags)) < 1)

goto badcvt;
ctl_semop(z,optarg,sems,array,flags,n);
break;

case 's' : /* -s ; IPC_STAT */
ctl_stat(z,1);
break;

case 1m' : /* -m mode ; IPC_SET */
if (cvt2ulong(optarg,&ul))

goto badcvt;
ctl_chmod(z,(mode_t)ul);
break;

case 'x' : /* -x userid ; IPC_SET */
ctl_chown(z,optarg);
break;

case 'y' : /* -g group ; IPC_SET */
ctl_chgrp(z,optarg);
break;

case 'd' : /* -d ; IPC_RMID */
ctl_rmid(z) ;
break;

case 'g' : /* -g n ; IPC_GETVAL */
if (cvt2ulong(optarg,&ul))

goto badcvt;
ctl_getval(z,(int)ul);
break;

case 'G' : /* -G ; IPC_GETALL */
ctl_getall(z);
break;

case 'V : /* -v n=x ; IPC_SETVAL */
if ((n = cvt2array(optarg,array,"=")) != 2)

goto badcvt;
ctl_setval(z,array[0],array[1]);
break;

case 'V' : /* -V m,n,o ; IPC_SETALL */
if ((n = cvt2array(optarg,&array[0],",")) != n_sem)

goto badcvt;
ctl_setall(z,array);
break;

case 'p' : /* -p n
if (cvt2ulong(optarg,&ul))

; GETPID */

510 ADVANCED UNIX PROGRAMMING

continued from previous page

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

goto badcvt;
ctl_get(z,GETPID,(int)ul);
break;

case 1P' :
for (x=0; x<n_sem; ++x)

ctl_get(1p',GETPID,x);
break;

case 'n' : /* -n
if (cvt2ulong(optarg,&ul))

goto badcvt;
ctl_get(z,GETNCNT,(int)ul);
break;

case 'z' : /* -z
if (cvt2ulong(optarg,&ul))

goto badcvt;
ctl_get(ZjGETZCIMT, (int)ul);
break;

case 'u' : /* -u
for (x=0; x<n_sem; ++x)

flags[x] &= ~SEM_UND0;
report(z,key,flags);
break;

case 'Ll' : /* -U
for (x=0; x<n_sem; ++x)

flags[x] |= SEMJJNDO;
report(z,key,flags);
break;

; GETNCNT */

; GETZCNT */

; No SEMJJNDO */

; SEMJJNDO */

case 'R' :
report(z,key,flags);
break;

default : /* Unknown option */
rc = 1;

}

/*

* Command line arguments are ignored :
*/

for (; optind < argc; ++optind, rc=2)
printf(“Ignored argument '%s'\n",argv[optind]);

return rc;

/*

* Bad numeric conversion :
*/

badcvt:

Chapter 24 • SEMAPHORES 511

172: fprintf(stderr,"Bad numeric: -%c %s\n",z,optarg);
173: return 1;
174: }

The loop in lines 26 and 27 initializes the flags for the semaphore set to 0. The -U option ORs

in the flag SEMJJNDO to all members of the flags [] array, whereas the -u option removes this

flag. The -o option individually enables and disables the SEM_UND0 flag, as you find convenient

to do. With no trailing u or U specified in a semaphore operation, the default is taken from the

current value in the f lags[] array.

The remainder of the main program is the getopt (3) loop starting in line 29. Each option

invokes the semaphore operation as it is encountered. Command-line arguments are ignored,

and warnings of this are issued in lines 163 and 164. It is easy to forget a hyphen.

Listing 24.14 shows the programming used to perform the various string-to-numeric conver¬

sions. These functions support the semaphore option argument parsing operations.

LISTING 24.14 convrt. c—The Source Listing for Conversions for the semop Utility

1: /* convrt.c */
2:
3: #include "semop.h"
4:
5: /*
6: * Convert string to unsigned long (any radix) :

7: */
8: int
9: cvt2ulong(const char *str,unsigned long *ulp) {
10: char *ep;
11: unsigned long ul;
12:
13: ul = strtoul(str,&ep,0);
14: if (*ep != 0)
15: return -1; /* Failed */

16:
17: if (ulp)
18: *ulp = ul;
19: return 0; /* Success */

20: }
21 :
22: /*
23: * Parse and convert up to n_sem values to array :

24: */
25: int
26: cvt2array(const char *str,int array!],const char *delim) {
27: char *cp; /* Token pointer */
28: int n = 0; /* # of values extracted */
29; int m = *delim == '=' ? 2 : n_sem; /* only 2 if using '=' */
30: unsigned long ul; /* converted ulong value */

31:
32: for (cp=(char *)str; n<m && *cp; ++n) {
33: ul = strtoul(cp,&cp,0); /* Convert to ulong */

512 ADVANCED UNIX PROGRAMMING

continued from previous page

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

}

if (*cp && !strchr(delim,*cp)
return -1; /*

array[n] = (int)ul; /*
if (*cp)

++cp; I*

)
Failed conversion */
Save ulong value in array

Skip delimiter */

return n;
}

/* Return # of values */

/*

* -o 0=-1u,2=-3U,1=1
★

* Translates to:
*

* Semaphore 0 does a wait of 1, with no SEMJJNDO
* Semaphore 2 does a wait of 3, with SEMJJNDO
* Semaphore 1 does a notify of 1, with current SEMJJNDO flag
*/

int
cvt2semops(const char *str,int sems[],int array[],int flags[]) {

int x = 0;
int semx; /* Semaphore index */
char *ep = (char *)str;
unsigned long ul;
long lg;

for (x=0; *ep && x<n_sem; ++x) {
/*

* Extract the semaphore # :
*/

ul = strtoul(ep,&ep,0);
if (*ep != '=')

return -1; /* Bad format */
semx = semsfx] = (int) ul; /* Semaphore # */
++ep; /* Skip '=' */

/*

* Extract the Semaphore operation :
*/

lg = strtol(ep,&ep,0);
if (*ep != 0 && *ep != && *ep != 'u* && *ep != 'U'

return -1; /* Bad format */
array[x] = (int) lg; /* Semaphore operation */

/*

* Process optional trailing 'u'|'U' for flags[] :
*/

if (*ep == 1u1) {

flags[semx] &= -SEMJJNDO;/* Remove SEMJJNDO */
++ep; /* Skip 'u' */

} else if (*ep == 'U') {

*/

Chapter 24 • SEMAPHORES 513

86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:

flags[semx] |= SEMJJNDO;/* Add SEMJJNDO */
++ep; /* Skip 'U' */

/*

* Check current delimiter :
*/

if (*ep != 0) {
if (*ep !=)

return -1; /*
++ep; /*

}
}

Bad format */
Skip delimiter */

return x;

Listing 24.15 shows the module that performs the reporting when the -R option is used.

LISTING 24.15 report. c—The -R Reporting Function of the semop Utility

1: /* report.c */
2:
3: #include 11 semop. h"
4:
5: /*
6: * Report SEM_UND0 status :
7: */
8: void
9: report(int optch,key_t key,int flags!]) {
10 int x;
11
12 if (optch == ‘R‘) {
13 /*
14 * This report only performed for -R option :
15 */
16 printfC -%c : key 0x%081X\n",optch,(long)key)
17 printfC -%c : IPC ID %d\n",optch semid);
18 }
19
20 for (x=0; x<n_sem; ++x)
21 printfC -%c : %d %s SEM_UND0\n",
22 optch,
23 x,
24 flags!x] & SEMJJNDO ? "uses'1 : "has no");

25 fflush(stdout);
26 fflush(stdout);
27 }

Finally, Listing 24.16 shows the usage () function for completeness.

514 ADVANCED UNIX PROGRAMMING

LISTING 24.16 usage.c—The usage() Function for the semop Utility Program

1:
2:
3:
4:
5:
6:
7:
8:
9:
10

11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

/* usage.c */

#include "semop.h11

/*

* Display usage instructions :
*/

void
usage(void) {

puts("Usage: semop [options]");
puts("Options:");
puts("\t-k key\tIPC Key for -a or -c option.");
puts("\t-a\t\tAccess existing set based on -k key");
puts("\t-c n\t\tCreate set of n semaphores using -k key");
puts(*'\t-i ID\t\tAccess existing set by IPC ID11);
puts("\t-o <sops>\tsemop(n) for wait/zero/notify");
puts("\t-s\t\tsemctl(IPC_STAT)");
puts("\t-m mode\t\tsemctl(IPC_SET) with new permissions");
puts("\t-x userid\tsemctl(IPC_SET) with new userid");
puts("\t-y group\tsemctl(lPC_SET) with new group");
puts("\t-d\t\tsemctl(IPC_RMID)");
puts("\t-g n\t\tsemctl(GETVAL) for semaphore n");
puts("\t-G\t\tsemctl(GETALL)");
puts("\t-v n=x\t\tsemctl(SETVAL) set semaphore n to x");
puts("\t-V m,n,o\tsemctl(SETALL)");
puts("\t-p n\t\tsemctl(GETPID) for semaphore n");
puts(“\t-P\t\tReport semctl(GETPID) for all semaphores");
puts("\t-n x\t\tsemctl(GETNCNT) for semaphore x");
puts("\t-z x\t\tsemctl(GETZCNT) for semaphore x");
puts("\t-u\t\tNo SEM_UND0 (default)");
puts("\t-U\t\tUse SEMJJNDO");
puts("\t-R\t\tReport SEMJJNDO flags");
puts("\n<sops> :");
puts("\t<semaphore#>=<semop>[{u | U}],...");
puts("where:");
puts("\t<semaphore#>\tIs the semaphore # (starting from zero)");
puts("\t<semop>\t\tSemaphore operation: -n, 0 or +n");
puts("\t\t\tNegative waits, Postive notifies");
puts("\t\t\twhile zero waits for zero.");
puts("\tu\t\tDo not use SEMJJNDO");
puts("\tU\t\tApply SEM_UND0");
puts("\tExample: -o 0=-4U,2=+1u,1=2");

That completes the source code listings for the semop utility program.

Summary
This chapter examined every aspect of semaphore operation under UNIX. You will be able to

apply this knowledge to the next chapter, which explores shared memory.

CHAPTER 25

SHARED MEMORY

Whether the data exists in the form of a table or some other format, separate processes

can share data using the shared memory resource. This chapter will look at the

mechanics of how processes share memory—how it is created, established, and

destroyed.

A utility program dubbed globvar is presented in module form to illustrate the use of shared

memory in an actual application. This utility is designed to permit shell programs to share

global variables using shared memory. This differs from the exported shell environment vari¬

ables, which cannot be altered by child processes of the shell. Any process using globvar may

inquire or alter the value of a global variable.

The globvar Utility Program
To permit the use of the utility while you progress through this chapter, compile the globvar

utility now. The following shows a FreeBSD make (1) session:

$ make

CC -c -Wall -DHAVE_SEMUN -g globat.c
cc -c -Wall -DHAVE_SEMUN -g globcr.c
cc -c -Wall -DHAVE_SEMUN -g globget.c
cc -c -Wall -DHAVE_SEMUN -g globlk.c
cc -c -Wall -DHAVE_SEMUN -g globset.c
cc -c -Wall -DHAVE_SEMUN -g globvar.c
cc -c -Wall -DHAVE_SEMUN -g globdest.c
cc -c -Wall -DHAVE_SEMUN -g globun.c
cc -o globvar globat.o globcr.o globget.o globlk.o globset.o globvar.o

globdest.o globun.o
$

The usage information display is available with the -h option:

$./globvar -h
globvar [-i] [-s size] [-e] [-u] [-r] [-c] var... var=value...
Options:

-i initialize new globvar pool
-s size Size of this pool, in bytes
-e Dump all values (after changes)
-u Unset all named variables
-r Remove this pool of values

516 ADVANCED UNIX PROGRAMMING

-c Clear all variables
-h This info.

You must use -i or define environment variable GLOBVAR.
$

The remaining subsections will briefly explain how to use the utility and its options.

Creating Global Variable Pools
To use the globvar utility program, you must initially create a global memory pool. This is

done using the - i option (the option - s can be added to change the default memory segment

size of 4KB):

$./globvar -i
393216
$ ipcs
Message Queues:
T ID KEY MODE OWNER GROUP

Shared Memory:
T ID KEY MODE OWNER GROUP
m 393216 0 --rw. wwg wwg

Semaphores:
T ID KEY MODE OWNER GROUP
s 393216 0 - -rw. wwg wwg

$

The use of the - i option causes a private shared memory region to be created and displays the

IPC ID on standard output. The ipcs (1) command confirms that a shared memory region and

a semaphore set were created (they both have the same IPC ID by coincidence).

Private shared memory regions eliminate any possibility of IPC key clashes. It will require,

however, that you pass the IPC ID of your global variable pool to those other shell programs

that need access to it. Notice also in the ipcs (1) output that the permission is established so

that only the owner of the shared memory has access to it. This keeps the values of your global

pool safe from other users.

Destroying Global Variable Pools
A global variable pool can be destroyed using the - r option. The GLOBVAR environment vari¬

able names the IPC ID of the global memory pool that you are working with:

$ GL0BVAR=393216 ./globvar -r

This session destroys the global memory pool for IPC ID 393216. You can check this for your¬
self using the ipcs (1) command.

Chapter 25 • SHARED MEMORY 517

The GLOB VAR Environment Variable
Normally, the initialization of a global memory pool is performed so that the IPC ID is

recorded in the exported shell environment variable GLOBVAR as follows:

$ GL0BVAR='./globvar -i'
$ export GLOBVAR

$

Establishing the IPC ID in the exported shell variable GLOBVAR allows all future globvar com¬

mand accesses to contact the correct instance of the global memory pool, which was just cre¬

ated. Changes to the GLOBVAR environment variable will permit you to work with different

collections of global variables if you need to.

Creating Global Variables
Once the shell variable GLOBVAR is initialized, global variables can be added to the global mem¬

ory pool as follows:

$./globvar VARIABLE=XYZ VAR2=ABC

$

This shows the variables VARIABLE and VAR2 being created.

Accessing Global Variables
The values contained in the global memory pool can be individually fetched or dumped in

bulk with the - e option:

$./globvar VARIABLE
XYZ
$./globvar VAR2
ABC
$./globvar -e
VARIABLE=XYZ
VAR2=ABC
$

To copy a global variable to a shell variable, you can use the usual shell syntax for this (two

methods are shown):

$ COPY_VARIABLE='./globvar VARIABLE'
$ C0PY_VAR2=$(./globvar VAR2)

$ echo $COPY_VARIABLE

XYZ
$ echo $C0PY_VAR2

ABC
$

Global variables can naturally be altered by the utility:

$./globvar VAR2="A different value."

$./globvar -e

ADVANCED UNIX PROGRAMMING

VARIABLE=XYZ
VAR2=A different value.
$

The new value of VAR2 is displayed by the -e option here.

Removing Global Variables
The -u option “unsets” each global variable named, similar to the shell built-in command

unset. The following command removes the variable named VARIABLE:

$./globvar -u VARIABLE
$./globvar -e
VAR2=A different value.
$

Notice that global variable VARIABLE is absent from the -e display.

Clearing Global Variable Pools
The -c option clears the global memory pool, so that no variables remain (the -e option

always displays the contents of the global pool after all changes are made):

$./globvar -c -e

$

Shared Memory System Calls
The sections that follow will explore the shared memory system calls and discuss how they

were applied to this utility program. The discussion covers the following areas:

• Creating and Accessing Shared Memory

• Obtaining Information about Shared Memory

• Changing Shared Memory Attributes

• Attaching Shared Memory

• Detaching Shared Memory

• Destroying Shared Memory

Shared memory must be created, or it must be located if another process has already created it.

The program is given an IPC ID to refer to when it has been created or located. Once you have

this IPC ID, it is possible to inquire about the shared memory region attributes and change

some of them, such as the ownership and permissions.

Before shared memory can be read from or written to, it must be attached to the memory

space of your current process. This involves the selection of a starting address for your shared

memory region.

Chapter 25 • SHARED MEMORY 519

When a process is finished with a shared memory region, it is able to detach it from its mem¬

ory space. Once all processes have finished with the shared memory region and detached it,

the region can be destroyed to give the memory back to the kernel.

Creating and Accessing Shared Memory
Shared memory is created and accessed if it already exists using the shmget (2) function. Its
function synopsis is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size, int flag);

The argument key is the value of the IPC key to use, or the value IPC_PRIVATE. The size

argument specifies the minimum size of the shared memory region required. The actual size

created will be rounded up to a platform-specific multiple of a virtual memory page size. The

flag option must contain the permission bits if shared memory is being created. Additional

flags that may be used include IPC_CREAT and IPC_EXCL, when shared memory is being

created.

The return value is the IPC ID of the shared memory region when the call is successful (this

includes the value zero). The value -1 is returned if the call fails, with errno set.

Listing 25.1 shows the source module that calls upon shmget (2) to create or access shared

memory. This code is executed when the - i option is used to create shared memory.

LISTING 25.1 globcr.c—The globvar Source Module That Calls shmget(2) to Create Shared

Memory

1:
o ■

/* globcr.c */
Zl .
3: #include "globvar.h"
4:
5: /*
6: * Create a new shared memory variable pool :
7: */
8: void
9: create_vars(int shm_size) {
10: int z; /* Status code */

11: int semid; /* Semaphore IPC ID *

12: int offset; /* Byte offset */

13: union semun un; /* Union of semctl()

14: struct shmid_ds shminfo; /* Shared memory info

15:
16: /*
17: * Create shared memory region
18: */
19: z = shmget(IPC_PRIVATE,shm _size,IPC_CREAT|0600);

20:
21: if (z == -1) {

*/

520 ADVANCED UNIX PROGRAMMING

continued from previous page

22: fprintf(stderr,"%s: shmmget(,%d,IPC_CREAT)\n",
23: strerror(errno),shm_size);
24: exit(1);
25: }
26:
27: shmid = z; /* IPC ID */
28:
29: /*
30: * Create semaphore for this region :
31: */
32: z = semget(IPC_PRIVATE,1,IPC_CREAT|0600);
33:
34: if (z == -1) {
35: fprintf(stderr,"%s: semget(,IPC_CREAT)\n“,strerror(errno));
36: exit(1);
37: }
38:
39: semid = z; /* IPC ID */
40:
41 : /*
42: * Discover the actual size of the region :
43: */
44: z = shmctl(shmid,IPC_STAT,&shminfo);
45:
46: if (z == -1) {
47: fprintf(stderr,"%s: shmctl(%d,IPC_STAT)\n",
48: strerror(errno),shmid);
49: exit(1);
50: }
51 :
52: shm_size = shminfo.shm_segsz; /* Actual size of the memory region */
53:
54: /*
55: * Initialize binary semaphore to value of 1 :
56: */
57: un.val = 1;
58:
59: z = semctl(semid,0,SETVAL,un.val);
60:
61: if (z == -1) {
62: fprintf(stderr,"%s: semctl(%d,0,SETVAL)\n",
63: strerror(errno),semid);
64: exit(1);
65: }
66:
67: /*
68: * Attach shared memory, and initialize it :
69: */
70: attach_vars(); /* Attach shared memory */
71: globvars->semid = semid; /* Place semaphore ID into shared memory */
72:
73: offset = (int) (&globvars->vars[0] - (char *)globvars);
74: globvars->size = shm_size - offset;
75: globvars->vars[0] = globvars->vars[1] = 0;
76: }

Chapter 25 • SHARED MEMORY 521

The shmget (2) call in line 19 creates a private shared memory region by using the

IPC_PRIVATE. The flag IPC_CREAT causes the shared memory region to be created, while the

bits 0600 causes the region to be created so that the owner alone can read and write to it.

Lines 32-39 create a semaphore set (of one), which will be used to lock the shared memory

region for safe concurrent access to it. Lines 59-65 initialize the semaphore to the value of 1
(unlocked).

After the shared memory is attached by the function attach_vars () (to be shown later), the

semaphore’s IPC ID and the actual size of the shared memory region is stored in it, using the

shared memory pointer globvars (lines 73 and 74). The variable pool is initialized as empty
in line 75.

Obtaining Information About Shared Memory
Attributes of the shared memory, including its permissions and actual size, are obtained using

the shmctl(2) system call. Its function synopsis is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The argument shmid specifies the shared memory IPC ID, which is obtained from shmget (2).

The cmd is a shmctl(2) command value, while but is an argument used with certain com¬

mands. The valid commands for shmctl(2) are

IPC_STAT Obtains information about the shared memory region. The information is

copied to the structure pointed by argument buf.

IPC_SET Changes the values of members shm_perm.uid, shm_perni.gid, and

shm_perm.niode. The calling process must have an effective user ID that

matches the shm_perm. cuid (creator) or the current shm_perm. uid value.

The values are supplied by pointer argument buf.

IPC_RMID Destroys the shared memory referenced by shmid. The memory will

undergo destruction when the last process using it detaches it with

shmdt(2). Argument buf is ignored.

Note

Some platforms also support the SHM_LOCK and SHMJJNLOCK commands, which lock and unlock

shared memory, respectively. This operation can only be performed by the superuser and prevents

the shared memory from swapping.

SGI IRIX 6.5, HPUX-11, UnixWare 7, Solaris 8, and Linux support this feature. FreeBSD 3.4 release

and IBM AIX 4.3 do not support this feature.

522 ADVANCED UNIX PROGRAMMING

The function shmctl(2) returns 0 when successful. The value -1 is returned with errno set

when the call fails.

The following shows a segment from Listing 25.1, which illustrates how shmctl(2) was used:

14: struct shmid_ds shminfo; /* Shared memory info */

41: /*
42: * Discover the actual size of the region :
43: */
44: z = shmctl(shmid,IPC_STAT,&shminfo);
45:
46: if (z == -1) {
47: fprintf(stderr,"%s: shmctl(%d,IPC_STAT)\n",
48: strerror(errno),shmid);
49: exit(1);
50: }

This call to shmctl(2) was made in Listing 25.1 to determine the actual amount of memory

allocated since the requested size is rounded up to a multiple of the memory page size when

the region is created.

The structure declaration for shmid_ds is shown in the following synopsis:

struct shmid_ds {
struct ipc_perm
int
pid_t
pid_t
short
time_t
time_t
time_t

};

The structure definition for ipc_perm is repeated for your convenience, as follows:

struct ipc_
ushort

perm {
cuid; /* creator user id */

ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */
ushort seq; /* sequence # (to generate unique msg/sem/shm id)
key_t key; /* user specified msg/sem/shm key */

};

Changing Shared Memory Attributes
Permission aspects of the shared memory region can be changed after it is created. This is

accomplished using the IPC_SET command in the shmctl(2) call. The following example

shows how to modify access to allow everyone to read and write your shared memory region:

shm_perm; /* operation permission structure */
shm_segsz; /* size of segment in bytes */
shm_lpid; /* process ID of last shared memory op
shm_cpid; /* process ID of creator */
shm_nattch; /* number of current attaches */
shm_atime; /* time of last shmat() */
shm_dtime; /* time of last shmdt() */
shm_ctime; /* time of last change by shmctl() */

Chapter 25 • SHARED MEMORY 523

int z'
struct shmid_ds shminfo; /* Shared memory info */

shminfo.shm_perm.mode = 0666; /* Make Read/Writable by all */

z = shmctl(shmid,IPC_STAT,&shminfo);

if (z == -1) {
fprintf(stderr,"%s: shmctl(%d,IPC_SET)\n",strerror(errno),shmid);
exit(1);

}

To make this change, however, your effective user ID must match the user that created the
memory region, or match the current user ID value in shm_perm. uid.

Attaching Shared Memory
Shared memory must be attached to your process memory space before you can use it as
memory. This is performed by calling upon shmat (2):

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void * shmat(int shmid, void *addr, int flag);

The argument shmid specifies the IPC ID of the shared memory that you want to attach to

your process. The argument addr indicates the address that you want to use for this. A null

pointer for addr specifies that the UNIX kernel should pick the address instead. The flag

argument permits the option flag SHM_RND to be specified. Specify 0 for flag if no options

apply.

When shmat (2) succeeds, a (void *) address is returned that represents the starting address

of the shared memory region. If the function fails, the value (void *) (-1) is returned instead.

The combination of the addr and the flag option SHM_RND allow three possible ways for the

memory region to be attached:

addr=0 The kernel decides upon an unused area of memory at

which to attach the segment.

addr != 0 flag=0 The shared memory is attached at the specified addr
value, if it is suitable.

addr != 0 f lag=SHM_RND The final addr used is rounded down by the nearest

multiple of SHMLBA.

The first choice is the most portable way to attach shared memory. However, if you use point¬

ers within your shared memory region, then you will likely need to specify a memory address

using one of the last two methods shown.

524 ADVANCED UNIX PROGRAMMING

Tip

Specifying a null addr value is a good way for your program to arrive at a trial value for attaching

shared memory at a fixed location for a given platform.

Listing 25.2 shows the source module used by globvar that attaches shared memory to its

process memory.

LISTING 25.2 globat. c—The Source Module That Calls shmat (2) to Attach Shared Memory

1: /* globat.c */
2:
3: #include "globvar.h"
4:
5: /*
6: * Attach the shared variable pool :
7: */
8: void
9: attach_vars(void) {
10:
11: /*

12: * Attach shared memory region :
13: */
14: globvars = (GlobVars *)shmat(shmid,0,0);
15:
16: if ((void *)(globvars) == (void *) (-1)) {
17: fprintf (stderr, ''%s: shmat(%d,0,0) \ n", strerror(errno) ,shmid);
18: exit(1);
19: }
20: }

No option flags or attach address is specified in line 14. By specifying a null address, the ker¬

nel is permitted to choose a suitable place to attach it for you. Notice how the error is tested

for in line 16. The returned pointer must be compared with (void *) (-1) and not the null

pointer.

Test for failure from shmat(2) by comparing the returned pointer to (void *)(-1). A common

blunder is to assume that the null pointer is returned for this purpose.

Warning

Detaching Shared Memory
Detaching shared memory is automatically performed when your process terminates.

However, if you need to detach it before it terminates, you accomplish that with the shmdt (2)

function:

Chapter 25 • SHARED MEMORY 525

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmdt(void *addr);

The shmdt (2) function simply accepts the address of the shared memory, as it was attached by

shmat(2), in argument addr. The return value is 0 when successful. Otherwise, -1 is returned

and errno holds the error code. The code in Listing 25.3 demonstrates this function call.

LISTING 25.3 globdest. c—The Source Module That Calls shmdt (2) and Destroys the Shared

Memory

1: /* globdest.c */
2:
3: #include "globvar.h"
4:
5: /*
6: * Destroy the shared
7: */
8: void
9: destroy_vars(void) {
10: int z;
11: int semid;
12: union semun un;
13:
14: /*
15: * Lock the shared memory region :
16: */
17: glob_lock();
18: semid = globvars->semid; /* Semaphore IPC ID */
19:
20: /*
21: * Destroy locking semaphore :
22: */
23: z = semctl(semid,0,IPC_RMID,un);
24:
25: if (z == -1) {
26: fprintf(stderr,"%s: semctl(%d,0,IPC_RMID)\n“,
27: strerror(errno),semid);
28: exit(1);
29: }
30:
31: /*
32: * Detach shared memory :
33: */
34: z = shmdt(globvars);
35:
36: if (z == -1) {
37: fprintf(stderr,"%s: shmdt(2)\n",strerror(errno));

38: exit(1);
39: }
40:

memory variable pool :

/* Status code */
/* Semaphore IPC ID */
/* Union of semctl() args */

526 ADVANCED UNIX PROGRAMMING

continued from previous page

41 : /*
42: * Destroy shared memory :
43: */
44: z = shmctl(shmid,IPC_RMID,NULL);
45:
46: if (z == -1) {
47: fprintf(stderr,"%s: shmctl(%d,IPC_RMID)\n",
48: strerror(errno),shmid);
49: exit(1);
50: }
51: }

The shmdt (2) call is shown in line 34.

This module is called when the globvar option - r is used. The semaphore is locked by calling

glob_lock() in line 17. The semaphore set is then destroyed by lines 20-29. The shared

memory is detached in line 34, although it was not mandatory to do so. The IPC_RMID com¬

mand in lines 44-50 would still succeed, and the actual destruction would occur when the

process terminated (when the last process detached it).

Destroying Shared Memory
Listing 25.3 shows the IPC_RMID command of shmctl(2) being used. The critical lines of code
are repeated here for your convenience:

41 : /*
42: * Destroy shared memory :
43: */
44: z = shmct1(shmid,IPC_RMID,NULL);
45:

C
D

 if (z == -1) {
47: fprintf(stderr,"%s: shmctl(%d,IPC_RMID)\n"

C
O

 strerror(errno),shmid);
49: exit(1);
50: }

Notice that argument three (but) is not required by the IPC_RMID command for shmctl(2).
This code is exercised by the - r option of the globvar utility.

Using Shared Memory
Once the shared memory is attached, your process can use it like any other region of memory.

However, since multiple processes can see this same region of memory, care must be exercised
when changing its content.

In the globvar utility, one semaphore is used as the locking semaphore. Whenever the shared

memory is searched or modified, the globvar utility waits on the semaphore first (recall that it

was initialized to the value of l). This ensures that no more than one process at a time will be

working with the shared memory. When the task has been completed, the semaphore is noti¬
fied to release the lock.

Chapter 25 • SHARED MEMORY 527

It should be noted that some values were accessed in the shared memory without the locking

semaphore. Examine lines 15-19 in Listing 25.4. These lines declare the structure used for the
global memory.

LISTING 25.4 globvar.h—The Global globvar Utility Definitions

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

/* globvar.h */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>

#define GLOBVARENV "GLOBVAR" /

typedef struct {
int semid; /
int size; /
char vars[1]; /

} GlobVars;

extern int shmid; /
extern int shm_size; /
extern GlobVars *globvars; /
extern int semid; /

Environment variable */

Semaphore's IPC ID */
Size of the vars[] array */
Start of variable storage */

IPC ID of shared memory region */
Size of shared memory region */
Shared memory region */
IPC ID of the locking semaphore set */

extern void create_vars(int shm_size);
extern void attach_vars(void);
extern char *get_var(const char *varname);
extern void set_var(const char *varname,const char *value);
extern void destroy_vars(void);
extern void glob_lock(void);
extern void glob_unlock(void);
extern void unset_var(const char *varname);

#ifndef HAVE_SEMUN /* Does sys/sem.h define this? */

union semun {
int val; /* Value */
struct semid_ds *buf; /* IPC_STAT info */
u_short *array; /* Array of values */

};

#endif

/* End globvar.h */

528 ADVANCED UNIX PROGRAMMING

The members semid and size are established when the global pool is initially created. After

this, these values never change. Because these values never change, they are safe to reference

without a locking semaphore. Dynamic content begins at the member vars [] within the

GlobVars structure. To access its content safely, you must use the locking semaphore in the

utility program.

The source module globlk. c is shown in Listing 25.5, which implements the shared memory

locking routines.

LISTING 25.5 globlk. c—The Semaphore Locking Routines

1: /* globlk.c */
2:
3: #include "globvar.h"
4:
5: static struct sembuf wait = { 0, -1, SEMJJNDO };
6: static struct sembuf notify = { 0, +1, SEMJJNDO };
7:
8: /*

9: * Perform a semaphore operation :
10: */

11: static void
12: do_semop(struct sembuf *op) {
13: int z; /* status code */
14:
15: do {
16: z = semop(globvars->semid,op,1);
17: } while (z == -1 && errno == EINTR);
18:
19:
20:
21 :
22:
23: }
24:
25: /*
26: * Wait on semaphore to lock shared memory :
27: */
28: void
29: glob_lock(void) {
30:
31: do_semop(&wait);
32: }
33:
34: /*
35: * Notify semaphore to unlock shared memory :
36: */
37: void
38: globjjnlock(void) {
39:
40: do_semop(¬ify);
41: }

if (z) {
fprintf(stderr,"%s: semop(2)\n",strerror(errno));
exit(1);

}

Chapter 25 • SHARED MEMORY 529

Lines 5 and 6 define the semaphore lock (wait) and unlock (notify) operations. The function

do_semop() performs the actual semaphore operation by calling upon semop(2) in line 16.

The functions glob_lock() and glob_unlock() are simply wrapper routines for the
do_semop() function.

Listing 25.6 shows the module globget. c that fetches the value of a global variable.

LISTING 25.6 globget. c—The Source Module That Looks Up a Global Variable in Shared
Memory

1: /* globget.c */
2:
3: #include "globvar.h"
4:
5: /*
6: * Return the string pointer for a variable's value :
7: */
8: char *
9: get_var(const char *varname) {
10: char *cp; /* Scanning pointer */
11: int nlen = strlen(varname); /* Length of variable name */
12:
13: for (cp = &globvars->vars[0]; *cp; cp += strlen(cp) + 1)
14: if (!strncmp(varname,cp,nlen) && cp[nlen] == '=')
15: return cp + nlen + 1; /* Pointer to it's value */
16:
17: return NULL; /* Variable not found */
18: }

The main() program calls the glob_lock() routine before calling get_var() shown in Listing

25.6. The function get_var () then searches the shared memory for the variable requested in

varname. The global variables are stored in shared memory as a list of null terminated strings,

in the form VARIABLE=VALUE. The end of the variable list is marked by an additional null byte.

Listing 25.7 shows the main () program that calls get_var ().

LISTING 25.7 globvar. c—The Main Program for the globvar Utility

1: /* globvar.c */
2:
3: #include "globvar.h"
4:
5: int shmid = -1; /* IPC ID of shared memory */
6: GlobVars *globvars = NULL; /* Shared memory region */
7:
8: /*

9: * Usage instructions :
10: */

11: static void
12: usage(void) {
13:

530 ADVANCED UNIX PROGRAMMING

continued from previous page

14
15
16 p u t s (" Options:11);
17 puts(" -i Initialize new globvar pool");
18 puts(" -s size Size of this pool, in bytes");
19 puts(" -e Dump all values (after changes)"
20 puts(" -u Unset all named variables");
21 puts(" -r Remove this pool of values");
22 puts (11 -c Clear all variables");
23 puts(" -h This info.");
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

puts("globvar [-i] [-s size]
" var... var=value.

[-e] [-u] [-r] [- c] "

/*

* Main program :
*/

int
main(int argc,char **argv) {

int re = 0;
int optch;
int cmdopt_i = 0;
int cmdopt_c = 0;
int cmdopt_r = 0;
int cmdopt_e = 0;
int cmdopt_u = 0;
int cmdopt_h = 0;
int cmdopt_s = 4096;
char *cp, *ep;
unsigned long ul;
const char cmdopts]] = "

/’ Return code */
/* Option character */
/* -i to create var pool */

-c to clear variables */
-r to remove pool */
-D to dump the variables */
-u to unset named variables */
-h usage option */
Default for -s */
Character pointers */
Converted ulong */

hirs:ecu";

/*

* Parse command line options
*/

while ((optch = getopt(argc,argv,cmdopts)
switch (optch) {

!= -1)

case 1c' :
cmdopt_c = 1
break;

case 1i‘ :
cmdopt_i = 1
break;

case 1 e' :
cmdopt_e = 1
break;

case 1r1 :
cmdopt_r = 1
break;

case
ul = strtoul(optarg,&ep,0);

/* -c to clear variables */

/* -i initialize a new pool */

/* -e to dump all variables like env */

/* -r to remove the pool */

/* -s size; affects -i */

Chapter 25 • SHARED MEMORY 531

67 if (*ep) {
68 fprintf(stderr,“Bad size: -s %s\n",optarg);
69 rc = 1;
70 } else
71 cmdopt_s = (int) ul;
72 break;
73
74 case 'u' : /* -u to unset all listed variables
75 cmdopt_u = 1;
76 break;
77
78 case 'h1 : /* -h to request help */
79 cmdopt_h = 1;
80 break;
81
82 default :
83 rc = 1;
84 }
85
86 /*
87 * Give usage display if errors or -h :
88 •k /
89 if (cmdopt_h || rc) {
90 usage();
91 if (rc)
92 return rc;
93 }
94
95 /*
96 * Create/Access global variable pool :
97 * /
98 if (cmdopt i) {
99 /*
100: * Create a new shared memory variable pool :
101 : */
102: create_vars(cmdopt_s);
103: printf("%d\n“,shmid);
104:
105: } else if ((cp = getenv(GLOBVARENV)) != NULL) {
106: /*
107: * Extract IPC key from GLOBVAR environment variable :
108: */
109: ul = strtoul(cp,&ep,0);
110: if (*ep) {
111 ■ fprintf(stderr,"%s has bad IPC key\n",cp);
112 : return 1;
113 ; }
114 :
115 : shmid = (int)ul;
116 : attach_vars();
117 ! }
118 :

119 : /*

532 ADVANCED UNIX PROGRAMMING

continued from previous page

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

* Do we have enough information to find the pool?
*/

if (Iglobvars) {
fprintf(stderr,"You must use -i or define"

" environment variable %s.\n",GLOBVARENV);
return 1;

}

/*

* -c clears all variables :
*/

if (cmdopt_c) {
glob_lock();
globvars->vars[0] = globvars->vars[1] = 0;
glob_unlock();

}

/*

* Now process variable requests :
*/

for (; optind < argc; ++optind) {
cp = strchr(argv[optind],;

glob_lock();

if (!cp) {
/*

* Just have a variable name, so return value or unset :
*/

if (!cmdopt_u) {
if ((cp = get_var(argv[optind])) != NULL) {

puts(cp); /* Just emit value of variable */
} else {

fprintf(stderr,"Variable %s not found\n",argv[optind]);
re = 1;

}
} else

unset_var(argv[optind]);

} else {
/*

* Change the variable's value :
*/

*cp = 0;
set_var(argv[optind],++cp);

}

glob_unlock();

Dump all variables (for debugging)
7

Chapter 25 • SHARED MEMORY 533

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

if (cmdopt_e) {
glob_lock();

for (cp=&globvars->vars[0]; *cp; cp+=strlen(cp)+1)
puts(cp);

glob_unlock();

}

/*

* If -r option, destroy the global variable pool :
*/

if (cmdopt_r)
destroy_vars();

return rc;

The get_var () function is called when a variable name is listed on the command line by itself

(lines 150 and 151). Note that the shared memory is locked in line 143 and unlocked in line

167. Using the locking semaphore permits several processes to update the same global variable

pool without corruption.

Listing 25.8 shows the module globset. c that implements the variable assignment functions.

LISTING 25.8 globset. c—The Implementation of the globvar Variable Assignment Functions

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/* globset.c */

#include "globvar.h"

/*

* Change the value of a global variable :

*/

void
set var(const char *varname,const char *value) {

int z;
char *var = get_var(varname);
char *cp;
int nlen = strlen(varname);
int vlen = strlen(value);
int in_use = 0;
int avail = globvars->size;

/* status code */
/* Locate variable if it exists */
/* utility char pointer */
/* Length of variable name */
/* Length of variable's value */
/* Bytes in use */
/* Bytes available */

if (var) { /* Does variable exist? */

in_use = (int)(var - &globvars->vars[0]) + 1;
avail -= in_use; /* Bytes available for new value */

z = strlen(var + nlen +1); /* Length of current string */

if (vlen > avail + z)
goto nospc; /* Insufficient space */

/*

534 ADVANCED UNIX PROGRAMMING

continued from previous page

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

* Now delete the variable
*/

var = var - nlen - 1;

for (cp=var+strlen(var)+1;
z = strlen(cp) + 1;
memmove(var,cp,z);

/* Point to start of entry */

*cp; var += z, cp += z) {
/* Length of next value */
/* Move it up */

} else {
/*

* Find end of global storage :
*/

for (var = &globvars->vars[0]; *var; var += strlen(var) + 1

J

in_use = (int)(var - &globvars->vars[0]) + 1;
avail -= in_use; /* Bytes available for new value

}

if (nlen + 1 + vlen > avail)
goto nospc;

/*

* Append VARIABLE=VALUE\0
*/

strcpy(var,varname); /*
var += nlen; /*
var++ = ; /
strcpy(var,value); /*
var[vlen+1] = 0; /*

to end of shared region :

Variable name */
Point past variable name */
The equal sign */
The variable's value */
2 null bytes mark the end */

return; /* Successful */

/*

* Insufficient space to store this variable :
*/

nospc:
fprintf(stderr,"%s: %s='%s' \n",strerror(ENOSPC),varname,value);
exit(1);

}

)

*/

The set_var() routine first looks up the variable in line 11. If the variable exists in the pool,

the space for the new value is computed in lines 20 and 21. If the new value fits into the space

remaining, the current variable is deleted by a memory move loop in lines 32-35. After this

point, the remaining code treats the variable as if it were a new value.

If the variable does not exist yet, the space calculations are performed in lines 44-48. The new

variable and value is appended to the shared memory region in lines 54-57. Line 58 puts a

second null byte at the end to mark the end of the variables list.

Listing 25.9 shows the module that is responsible for removing a variable by name, invoked by

the globvar -u option.

Chapter 25 • SHARED MEMORY 535

LISTING

1:
2:
3:
4:
5:
6:
7:
8:
9:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

25.9 globun. c—The Unset Feature of globvar Is Implemented by globun. c

/* globun.c */

#include "globvar.h"

/*

* Unset a variable :
*/

void
unset_var(const char *varname) {

int z;
char *var = get_var(varname);
char *cp;
int nlen = strlen(varname);

/* status code */
/* Locate variable if it exists */
/* utility char pointer */
/* Length of variable name */

if (!var)
return;

/*

* Now delete the variable
*/

var = var - nlen - 1;

/* Variable is already unset */

/* Point to start of entry */

for (cp=var+strlen(var)+1; *cp; var += z, cp += z) {
z = strlen(cp) +1; /* Length of next value */
memmove(var,cp,z); /* Move it up */

}

*var = 0;

return;

/* two nulls mark the end of vars */

/* Successful */

The variable name is searched in line 11. If it is not found, the function returns in line 16.

Otherwise, the for loop of lines 23-26 moves the strings to replace the area formerly occupied

by the deleted variable. Line 28 adds the second null byte to mark the new end of the

variable list.

Summary
The globvar utility provides a simple means for shell programs running under your account

to share dynamic information with each other, using shared memory. You saw how a sema¬

phore was used to provide concurrency protection. Yet you also observed that certain static

items like the semaphore IPC ID in the shared memory could be safely accessed without locks.

As an exercise, you may want to enhance the utility further by adding a - k IPC key option.

This would eliminate the need to communicate the IPC ID values between unrelated

processes.

You have completed the tour of the IPC communication set, which included message queues,

semaphores, and shared memory. The next chapter examines the ability of the UNIX kernel to

map memory to files.

1

■

f

CHAPTER 26

MEMORY-MAPPED FILES

Chapter 25, “Shared Memory,” showed how shared memory could be used to share

information between processes. A more modern feature of the UNIX kernel permits

memory to be mapped to a regular file or a character device. This technique allows

unrelated processes to share information as well, but adds a number of new features

to the programmer’s repertoire.

All executable files under modern UNIX kernels are mapped to virtual memory pages. These

pages of memory are marked as being executable only within the process memory (on many

platforms, this often implies that they are readable as well). In this manner, only those mem¬

ory pages needed are actually paged into memory upon demand. For large programs, this is

more efficient than loading the entire program into memory at startup.

Memory mapping simply extends this idea to application data files. Figure 26.1 shows how a

memory-mapped file might be accessed from within a process’s memory space.

The figure shows that the mapping may be larger than the actual file itself. This is often true

because the virtual memory management performed by the UNIX kernel must use a fixed page

size. Thus, Figure 26.1 shows that there is an extra region above the file’s mapping. These

extra bytes will be zeroed when the mapping is established.

When your application examines memory within the mapped region, pages of data are

retrieved from the file as necessary to make the memory cells available. Likewise, if memory

cells are modified, the changes are written back out to the file (depending upon options

selected) at a time determined by the kernel. There are methods to control this behavior and

its timing.

538 ADVANCED UNIX PROGRAMMING

FIGURE 26.1

A file is mapped to

process memory.

Process
Memory

Memory
Mapped ■<

File
> File

Determining the Page Size
Memory functions performed by the UNIX kernel are restricted to operating in multiples of the

virtual memory (VM) page size. You have already seen this behavior when attaching shared

memory. A portable program needs a way to determine what the system’s VM page size is,

because it varies on different UNIX platforms. The getpagesize(3) function returns this infor¬

mation. The function synopsis for it is as follows:

#include <unistd.h>

int getpagesize(void);

The function getpagesize (3) returns the size in bytes of the system page size used.

Note

The page size returned by getpagesize(3) is the size of the system's page size. The page size used

by the hardware for virtual memory paging may be different in size.

Listing 26.1 shows a simple program that calls upon getpagesize (3) and reports the value

returned.

Chapter 26 • MEMORY-MAPPED FILES 539

LISTING 26.1 pagesize. c—A Program That Determines the System Page Size by Calling
getpagesize(3)

1: /* pagesize.c */
2:

3: #include <stdio.h>
4: #include <unistd.h>
5:
6: int
7: main(int argc,char **argv) {
8:

9: printf("Page size is %d bytes\n",getpagesize());
10: return 0;
11: }

The following shows the program being compiled and run:

$ make pagesize
cc -c -Wall -DHAVE_SEMUN pagesize.c
cc -o pagesize pagesize.o
$./pagesize
Page size is 4096 bytes
$

From this FreeBSD example, you can see that the kernel is using a page size of 4096 bytes.

Creating Memory Mappings
A memory mapping is established with the help of the mmap(2) function call. The function

synopsis for it is as follows:

#include <sys/types.h>
#include <sys/mman.h>

void *mmap(void *addr,size_t len.int prot,int flags,int fd,off_t offset);

The argument addr is normally specified as a null pointer unless a specific mapping address

must be used. When addr is null, the mmap(2) call returns the system-selected memory

address.

When addr is not null, the argument flags influences the final result: The MAP_FIXED flag

indicates that the specified address must be used, or an error indication is to be returned

instead. When the flag MAP_FIXED is not present and addr is not null, the mmap(2) function

will attempt to accommodate the requested address. Otherwise, it will substitute another

address if the requested address cannot be successful.

Argument len is the size of the mapping in bytes. This usually corresponds to the length of the

mapped file when files are involved. This length may be larger than the mapped file, but

accesses beyond the last allocated page will cause a SIGBUS (bus error) signal to occur.

540 ADVANCED UNIX PROGRAMMING

The prot argument indicates the type of memory protection required for this memory region.

With the exception of PR0T_N0NE, which must be specified alone, the prot argument is speci¬

fied with the following macros ORed together:

PR0T_N0NE Region grants no access (this flag is used exclusively of the other flags.)

PR0T_READ Region grants read access.

PROTJVRITE Region grants write access.

PR0T_EXEC Program instructions may be executed in the memory-mapped region.

Argument flags specifies a number of optional features for the mmap(2) function call. The

portable flag bits are

MAP_FIXED Map to the address specified in argument addr or return an error if this

cannot be satisfied. Normally when addr is not null, a different map¬

ping address is substituted if the requested one is not acceptable.

MAP_PRIVATE Modifications to the mapped file are kept private. Unmodified pages

are shared by all processes mapping the same file. When one of these

memory pages is modified, a private page is created as a copy of the

original, which is referenced only by the current process.

MAP_SHARED Modifications to the mapped file are eventually written back to the
file. All processes share the changes.

Normally, the f d argument must be an open file descriptor (except with flag MAP_AN0N). This

represents the regular file or character special file to be mapped to memory. Once the mmap (2)

call has returned, however, you may close the file descriptor, since the kernel maintains its
own reference to that open file.

The argument offset is normally specified as 0. When other offsets are used, it must be a

multiple of the page size returned by the function getpagesize(3). Otherwise, the error
EINVAL is returned.

When mmap (2) is successful, the starting address for the mapping of at least len bytes is

returned. Otherwise, the value MAP_FAILED is returned instead, with the error code deposited
into errno.

FreeBSD mmap(2) supports additional features, which are selected by the following flag bits:

MAP_AN0N Creates mapped memory that is not associated with any file. The

file descriptor parameter must contain the value -1, and the offset
argument is ignored.

MAP_INHERIT Allows a process to retain the memory mapping after an execve(2)
system call.

Chapter 26 • MEMORY-MAPPED FILES 541

MAP_HASSEMAPHORE Notifies the UNIX kernel that the memory-mapped region may have

semaphores present. This allows the kernel to take special precau¬
tion for mutexes.

MAP_STACK Requests a stack region that grows downward to be created that is

at most len bytes in size. The top of the stack is the returned

pointer plus len bytes. This flag implies MAP_AN0N and insists that

the fd argument is -1, and offset must be 0. The prot argument

must include at least PROT READ and PROT WRITE.

The flag value MAP_AN0N is not supported directly by all UNIX platforms. Linux and IBM AIX

4.3 use the macro name MAP ANONYMOUS instead.

To perform the equivalent of MAP_AN0N for platforms without this mmap (2) feature, memory-map
device /dev/zero using the MAP_PRIVATE flag.

The MAP_INHERIT flag allows you to retain a memory mapping after the execve(2) system call

has successfully completed. This is a slick way to pass data from one executable program to

another within the same process but suffers from the fact that other UNIX platforms do not

support this feature.

The MAP_HASSEMAPHORE flag allows the programmer to hint to the kernel that mutex flags are

present in the memory mapping. This allows the kernel to change its handling of the mapping,

affecting the way changes are synchronized and perhaps the swapping status of the pages. This

is a BSD UNIX feature.

The MAP_STACK flag bit allows you to create stack regions that have memory pages allocated as

the stack grows downward. Many platforms, including HPUX 11 and UnixWare 7 do not sup¬

port this option.

Note

On some hardware platforms, specifying a protection of prot_exec also grants PROT_READ. This is

due to platform hardware restrictions.

Table 26.1 shows a cross-referenced list of flag values that are supported by the various UNIX

platforms.

542 ADVANCED UNIX PROGRAMMING

TABLE 26.1 A Cross-Referenced Table of Supported mmap(2) Features

nmap(2) Flag Platform

FreeBSD SGI IRIX 6.5 HPUX 11 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux

MAP_SHARED X X X X X X X

MAP_PRIVATE X X X X X X X

MAP_FIXED X X X X X X X

MAP_AN0N X X

MAP_At\IONYMOUS X X

MAP_HASSEMAPHORE X

MAP_INHERIT X

MAP_STACK X

MAP_GR0WSD0WN X

MAP_AUT0GR0W X

MAP_NORESERVE X

MAP_AUTORESRV X

MAP_LOCKED X

MAP_ADDR32 X

MAP_L0CAL X

MAP_FILE X

MAP_VARIABLE X

Listing 26.2 shows a program that uses memory-mapped files to select the language of system
error messages.

LISTING 26.2 messages .c—A Program That Uses mmap(2) to Select Messages by Language

1: /* messages.c */
2:
3: #include <stdio.h>
4: #include <unistd.h>
5: #include <stdlib.h>
6: #include <fcntl.h>
7: #include <errno.h>
8: #include <string.h>
9: #include <sys/types.h>
10: ^include <sys/stat.h>

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Chapter 26 • MEMORY-MAPPED FILES 543

#include <sys/mman.h>

#define MAX_MSGS 12

const char *univ_errlist[MAX_MSGS];
const char *univ_maclist[MAX_MSGS];

static void *msgs = 0;
static size_t msgs_len = 0;

/* Limit of univ_errlist[] */

/* Universal sys_errlist[] */
/* A list of errno macro names */

/* Pointer to the mapping */
/* Size of the mapping */

/*

* Parse error messages from the memory mapped file, that
* begins at address msgs for msgs_len bytes :
*/

static void
parse_messages() {

char *mp = (char *)msgs;
char *macro, *error, *msg;
int e;

mp[msgs_len] = 0;

for (;; mp = NULL) {

macro = strtok(mp," ");
if (!macro)

break;

error = strtok(NULL," ");
if ([error)

break;
if ((e = atoi(error)) < 0

break;

msg = strtok(NULL,"\n");
if (!msg)

break;

univ_errlist[e] = msg;
univ_maclist[e] = macro;

}
}

/* Mapped messages address */

/* Store a null byte at the end */

/* Extract macro name */

/* Extract error # */

| e >= MAX_MSGS)
/* Bad errno value */

/* Extract message */

/* Store message */
/* Macro name */

/*
* Map the messages file to memory, and establish
* pointers to them by calling parse_messages() :

*/

static void
load_messages() {

int x. /* Iterator */
char *lang = getenv("MSG_LANG"); /* Get language */
char path[256]; /* name */
struct stat sbuf; /* stat(2) info */

544 ADVANCED UNIX PROGRAMMING

continued from previous page

64: int fd = -1; /* Open file descriptor */
65:
66: /*

67: * Load default messages :
68: */

69: for (x=0; x<MAX_MSGS; ++x) {
70: univ_errlist[x] = sys_errlist[x];
71: univ_maclist[x] =
72: }
73:
74: /*
75: * Get message file's size :
76: */
77: sprintf(path,/errors.%s",lang ? lang : "english");
78:
79: if (stat(path,&sbuf) != 0)
80: return; /* Cannot stat(2) file, so use default msgs */
81: msgs_len = sbuf.st_size;
82:
83: /*
84: * Open the message file for reading :
85: */
86: if ((fd = open(path,0_RDONLY)) == -1)
87: return; /* Cannot open(2) file, so use default msgs */
88:
89: /*
90: * Map the language file to memory :
91: */
92: msgs = mmap(NULL,msgs_len+1,PROT_READ|PROT_WRITE,MAP_PRIVATE,fd,0);
93:
94: if (msgs == (void *) MAP_FAILED) {
95: fprintf(stderr,"%s: mmap('%s')\n",strerror(errno),path);
96: close(fd);
97: return; /* Failed, use default */
98: }
99:
100: close(fd); /* no longer require file to be open */
101:
102: /*

103: * Now parse the messages :
104: */
105: parse_messages();
106: }
107:
108: /*
109: * Main program :
110: */

111: int
112: main(int argc,char **argv) {
113: int x;
114:
115: /*

Chapter 26 • MEMORY-MAPPED FILES 545

116
117
118
119
120
121
122
123
124
125
126
127

/*

* Report messages :
*/

for (x=1; x<MAX_MSGS; ++x)

* Memory map the language file :
*/

load_messages();

return 0;

printf(''errno=%d (%s) : %s\n",
x,univ_maclist[x],univ_errlist[x]);

128: }

The main () program starts by calling upon load_messages () to select and load the error mes¬

sages file in line 118. The load_messages () function initially attempts to find environment

variable MSG_LANG by calling getenv(3) in line 61. This variable influences the language being

used by the error messages and defaults to English (see line 77).

Only the first 12 system error messages are used in this demonstration program, and the limit

is established by the macro value MAX_MSGS in line 13. This macro also defines the pointer

array length of univ_errlist [] and macro name array univ_maclist []. Lines 69-72 initial¬

ize defaults for the arrays univ_errlist [] and univ_maclist []. These defaults are used if no

memory mapping succeeds.

The pathname of the message file to be mapped is formed in line 77. The size of the file is

determined by a call to stat (2) in lines 79-81. If the file cannot be stat (2), then the func¬

tion simply returns, causing the defaults for the error messages to be used (line 80).

The message file is opened for reading in line 86. The file is mapped by calling mmap(2) in line

92. Since no address was given, the kernel will select a suitable address, which will be

assigned to variable msgs. The mapped region was specified to be at least msgs_len+1 bytes in

length. The extra byte was requested so that the program can plug in a terminating null byte to

simplify the code.

The access to the region will allow both reading and writing. The flag MAP_PRIVATE was used

so that any changes made by the program would be kept separate from both the file and other

processes mapping this file. The reason for allowing write access will be clear when the func¬

tion parse_messages () is explained.

Line 100 closes the message file, since it no longer needs to be open. The UNIX kernel main¬

tains its own reference to the file after a successful mmap(2) call, so your application is free to

close the file.

Now examine the function parse_messages () in lines 25-52. Line 27 casts the (void *)

pointer msgs into the character pointer mp in line 27. This points to the beginning of our

mapped file. Line 31 places a null byte at the end of the file to simplify the work in this rou¬

tine. Note that this extra byte was allowed for in the original mmap (2) call.

546 ADVANCED UNIX PROGRAMMING

Before looking at how the code is parsed, look at a sample message file in English first:

$ cat errors.english
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 Input/output error
ENXIO 6 Device not configured
E2BIG 7 Argument list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file descriptor
ECHILD 10 No child processes
EDEADLK 11 Resource deadlock avoided
$

Each line of the message file is divided into a macro name field, an errno value, and the text of

the message itself. Only the first 12 codes are covered in this demonstration.

The first time strtok (3) is called, in line 35, the argument mp is not null. This starts the entire

parsing process, but note that successive iterations provide a null pointer here (see the for

loop in line 33). Lines 35-47 parse the three fields of the input line. Lines 49-50 store pointer

references to these messages.

The protection PROTJVRITE was necessary for this application because strtok(3) modifies the

memory it is parsing. Recall that it places a null byte at the end of the token found. However,

to prevent these changes from being written back to the messages file, the flag MAP_PRIVATE

keeps the changes local to the process memory.

An improvement would be to use one application to create a message image file that does not

require parsing. Then the second application could simply map the resulting generated mem¬

ory image into its memory with read-only access. This will be left for you as an exercise.

Compiling the program in Listing 26.2 and invoking it without any language setting causes it
to display its defaults:

$ make messages
cc -c -Wall messages.c
cc -o messages messages.o
$./messages
errno=1 (EPERM)
errno=2 (ENOENT)
errno=3 (ESRCH)
errno=4 (EINTR)
errno=5 (EIO) :
errno=6 (ENXIO) :
errno=7 (E2BIG) :
errno=8 (ENOEXEC)
errno=9 (EBADF) :
errno=10 (ECHILD)
errno=11 (EDEADLK)

: Operation not permitted
: No such file or directory

: No such process
: Interrupted system call
Input/output error
: Device not configured
: Argument list too long

: Exec format error
Bad file descriptor
: No child processes

: Resource deadlock avoided
$

Chapter 26 • MEMORY-MAPPED FILES 547

The default is to assume the English language, so the message file errors. english is used in

this example run. If you change the environment variable MSG_LANG to the German language,
you get different results:

$ NISG_LANG=german ./messages
errno=1 (EPERM) : Operation nicht die Erlaubnis gehabt
errno=2 (ENOENT) : Keine solche Datei Oder Verzeichnis
errno=3 (ESRCH) : Kein solches ProzeB
errno=4 (EINTR) : Unterbrochener Systemaufruf
errno=5 (EIO) : Input/Output Fehler
errno=6 (ENXIO) : Einheit nicht konfiguriert
errno=7 (E2BIG) : Argumentliste zu lang
errno=8 (ENOEXEC) : Formatfehler Exec
errno=9 (EBADF) : Falscher Dateibeschreiber
errno=10 (ECHILD) : Keine Kindprozesse
errno=11 (EDEADLK) : Hilfsmittelsystemblockade vermieden
$

In this example, the input file errors .german was mapped to memory instead. This file has

the following content:

$ cat errors.german
EPERM 1 Operation nicht die Erlaubnis gehabt
ENOENT 2 Keine solche Datei Oder Verzeichnis
ESRCH 3 Kein solches ProzeB
EINTR 4 Unterbrochener Systemaufruf
EIO 5 Input/Output Fehler
ENXIO 6 Einheit nicht konfiguriert
E2BIG 7 Argumentliste zu lang
ENOEXEC 8 Formatfehler Exec
EBADF 9 Falscher Dateibeschreiber
ECHILD 10 Keine Kindprozesse
EDEADLK 11 Hilfsmittelsystemblockade vermieden
$

With the help of the following, you could create yet another message file, such as for French:

http://babelfish.altavista.com/raging/translate.dyn

Another use for memory-mapped files might be to save your application’s workspace. For

example, with memory-mapped files, the shared global variables in the globvar utility dis¬

cussed in Chapter 25 could be saved to a file for future use after a system reboot. Regions for

just-in-time executable code can be placed into executable memory regions. This would be

performed without actually using a file (recall that the flag MAP_ANON or the mapping of

/dev/zero effectively provides this capability).

If memory-mapped regions are used for interprocess communication, keep in mind that syn¬

chronization is still required. You may need the assistance of a semaphore set, for example.

548 ADVANCED UNIX PROGRAMMING

Controlling Memory-Mapped Regions
A memory-mapped region often requires its attributes to be queried or changed in some fash¬

ion. This section looks at four system calls designed for this purpose:

mprotect(2) Change the access of the indicated memory pages.

madvise(2) Advise the UNIX kernel how you intend to use your memory region.

mincore(2) Determine if pages of mapped memory are currently in memory.

msync(2) Where modifications exist, indicate what regions of memory should be

updated to the mapped files.

Changing the Access Protection
A memory-mapped region, entirely or in part, may have its access protections changed by the
mprotect (2) system call. Its function synopsis is as follows:

#include <sys/types.h>
^include <sys/mman.h>

int mprotectfconst void *addr, size_t len, int prot);

The function mprotect (2) allows the application to change the region starting at address addr

for a length of len bytes, so as to use the protection specified by the argument prot. The prot
flags permitted are

PR0T_N0NE Region grants no access (this flag excludes use of the other flags).

PR0T_READ Region grants read access.

PROT_WRITE Region grants write access.

PR0T_EXEC Program instructions may be executed in the memory-mapped region.

The function mprotect(2) returns the value 0 when successful. Otherwise, -1 is returned, and
the error code is found in errno.

Warning

Not all UNIX implementations permit the caller to change memory region protection on a page-by-
page basis. For maximum portability, the entire memory region should be specified.

The messages.c program was modified to call mprotect (2) in the file mprotect .c. The

changes made to the program are shown in the context dif f (1) form in Listing 26.3.

Chapter 26 • MEMORY-MAPPED FILES 549

LISTING 26.3 mprotect.c—Changes to messages.c to Make Message Text Read-Only

$ diff -c messages.c mprotect.c
*** messages.c Sun Jul 9 18:11:00 2000
--- mprotect.c Sun Jul 9 18:59:19 2000

*** 1^4 ****
! /* messages.c */

#include <stdio.h>
#include <unistd.h>

... i,4 ----
! /* mprotect.c */

#include <stdio.h>
#include <unistd.h>

*** 103,108 ****
--- 103,114 -

* Now parse the messages :
*/

parse_messages();
+

+ /*

+ * Make the message text read only now :
+ */

+ if (mprotect(msgs,msgs_len+l,PR0T_READ))
+ fprintf(stderr,"%s: mprotect(PR0T_READ)\n",strerror(errno));

}

/*

$

The mprotect (2) call follows the parse_messages () function call in Listing 26.3. At this

point, it is desirable to use a read-only status, since this will prevent buggy code from altering

the message text. If an attempt is made to change the error message text, a SIGBUS signal will

be raised instead.

Advising the Kernel About Memory Use
To achieve maximum performance, you may find it desirable for your application to inform

the UNIX kernel about the status of a memory region or about its usage patterns. The system

call mad vise (2) permits this to be accomplished:

#include <sys/types.h>
#include <sys/mman.h>

int madvise(void *addr, size_t len, int behavior);

The madvise (2) function returns 0 when successful. The value -1 is returned when the call

fails, leaving the error code in the variable errno.

The madvise (2) system call allows you to hint to the kernel about the memory region starting

at addr for a length of len bytes. The behavior is specified by one of the following values:

550 ADVANCED UNIX PROGRAMMING

MADVJJORMAL Normal behavior; no special treatment is required.

MADV_RAND0M Expect memory pages to be referenced at random. Sequential

prefetching is to be discouraged.

MADV_SEQUENTIAL Expect memory pages to be referenced sequentially. This encour¬

ages prefetching and decreases the priority of previously fetched

pages.

MADVJVILLNEED Indicates a range of memory pages that should temporarily have a

higher priority, since they will be needed.

MADV_DONTNEED Indicates a range of memory pages that are no longer required

(their priority is reduced). It is likely that future references to these

pages will incur a page fault.

MADV_FREE Indicates that the modifications in the memory pages indicated do

not need to be saved. Furthermore, this permits the kernel to

release the physical memory pages used. The next time the page is

referenced, it may be zeroed, or it may still contain the original

data.

In addition to these, some platforms support the following behavior:

MADV_SPACEAVAIL Ensures that the necessary resources are reserved.

Linux and UnixWare 7 do not support the madvise(2) function at all. Table 26.2 provides a

cross-reference grid of supported behaviors.

TABLE 26.2 A Cross-Reference Guide to madvise(2) Behavior Support on Different Platforms

madvise(2)

Behavior Platform

FreeBSD SGI IRIX 6.5 HPUX 17 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux

MADV_NORMAL X X X X

MADV_RANDOM X X X X

MADV_SEQUENTIAL X X X X

MADV_WILLNEED X X X X

MADV_D0NTNEED X X X X

MADV_FREE X X

MADV_SPACEAVAIL X X

Chapter 26 • MEMORY-MAPPED FILES 551

Listing 26.4 shows a context dif f (1) listing, illustrating the changes between mprotect. c and

madvise.c. In madvise. c, calls to madvise(2) have been added.

LISTING 26.4 madvise. c—Changes Made to mprotect. c to Indicate Access Behavior Patterns to

the Kernel

*** mprotect.c Sun Jul 9 18:59:19 2000
--- madvise.c Sun Jul 9 19:40:33 2000

*** 1,4 ****
! /* mprotect.c */

#include <stdio.h>
#include <unistd.h>

... 1>4

! /* madvise.c */

#include <stdio.h>
#include <unistd.h>

*** 100,105 ****
--- 100,111 -

close(fd); /* no longer require file to be open */

/*

+ * Advise kernel of sequential behavior :

+ */

+ if (madvise(msgs,msgs_len+l,MADV_SEQUENTIAL))
+ fprintf(stderr,"%s: madvise(MADV_SEQUENTIAL)\n",strerror(errno));
+

+ /*

* Now parse the messages :

*/

parse_messages();

*** 109,114 ****
--- 115,126 -

*/
if (mprotect(msgs,msgs_len+1,PR0T_READ))

fprintf(stderr,"%s: mprotect(PR0T_READ)\n",strerror(errno));
+

+ /*
+ * Advise kernel of random behavior :

+ */
+ if (madvise(msgs,msgs_len+1,MADV_RANDOM))
+ fprintf(stderr,"%s: madvise(MADV_SEQUENTIAL)\n",strerror(errno));

}

/

552 ADVANCED UNIX PROGRAMMING

The first madvise (2) call occurs before the error message file is parsed, to indicate sequential

access with MADV_SEQUENTIAL. Recall that the parsing of the messages is sequential from the

start to the end of the mapped message file.

Once the messages have been parsed, however, the access pattern changes to that of a random

nature, since any error message may be called upon demand. Hence, the second call to

madvise(2) selects behavior MADV_RANDOM.

Querying Pages in Memory
It is possible to query the kernel to determine which memory pages are currently in memory.

This is accomplished by the mincore(2) system call, and its synopsis is as follows:

#include <sys/types.h>
#include <sys/mman.h>

int mincore(const void *addr, size_t len, char *vec);

The mincore (2) function accepts a starting address addr and a length of len bytes. All pages

within this range are then reported by setting values in the vec character array. The array vec

is expected to be large enough to contain all the values that must be reported. Each byte

receives 1 if the page is in memory or 0 if the page is not in memory. The number of bytes

required depends on the length of the region and the page size returned by the function

getpagesize(3).

When successful, the value 0 is returned by mincore (2). Otherwise, -1 is returned, and the

error is found in the variable errno.

The following shows a call to mincore(2):

char vec[32]; /* Reports for up to 32 pages */

if (mincore(addr,len,&vec[0]) == -1)
perror("mincore(2)"); /* Report error */

Table 26.3 shows that support for mincore(2) is not available on many platforms. Also, note

that the argument addr is type caddr_t on non-BSD platforms.

TABLE 26.3 A Cross-Reference Chart for mincore(2) Support on Different Platforms

mincore(2)

Support Platform

FreeBSD SGI IRIX 6.5 HPUX 11 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux

mincore(2) X X X X

const void *addr X

caddr_t addr X X X

Chapter 26 • MEMORY-MAPPED FILES 553

Synchronizing Changes
When changes are made to writable mapped regions of memory, there are various timing

choices for recording changes into the file. The msync(2) system call provides a degree of con¬

trol over this choice. Its function synopsis is as follows:

#include <sys/types.h>
#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

The msync(2) call affects the region starting at addr for a length of len bytes. When len is 0,

all of the pages of the region are affected. Argument flags determines what synchronization

choice is to take effect:

MS_ASYNC Request all changes to be written out, but return immediately. (Not imple¬

mented for FreeBSD release 3.4.)

MS_SYNC Perform synchronous writes of all outstanding changes.

MS_INVALIDATE Immediately invalidate all cached modifications to pages. Future refer¬

ences to these pages require the pages to be fetched from the file.

The MS_SYNC flag is similar to calling fsync(2) on an open file descriptor. It forces all changes

out to the disk media and returns once this has been accomplished. The MS_INVALIDATE flag

allows the application to discard all changes that have been made. This saves the kernel from

synchronizing the memory region with the file.

The function msync(2) returns 0 when successful. Otherwise, -1 is returned with the error

code deposited in errno. The following shows an example of a msync(2) call to cause all

changes to be immediately written to the file:

if (msync(addr,0,MS_SYNC) == -1)
perror(‘'msync(2)");

Table 26.4 shows the support available for msync(2) on the different platforms.

TABLE 26.4 A Cross-Reference Chart of msync(2) Support on Different Platforms

msync(2) Support Platform

FreeBSD SGI IRIX 6.5 HPUX 11 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux

MS ASYNC X X X X X X

MS_SYNC X X X X X X X

MS INVALIDATE X X X X X X X

void *addr X X X X X

554 ADVANCED UNIX PROGRAMMING

continued from previous page

msync(2) Support Platform

FreeBSD SGI IRIX 6.5 HPUX 17 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux

const void *addr X

caddr_t addr X

Destroying Memory Mappings
With the exception of the MAP_INHERIT flag for FreeBSD, the memory-mapped regions are

unmapped automatically by the kernel when execve(2) is called or when the process termi¬

nates. It may occur in an application, however, that the memory-mapped file is needed only

temporarily. The munmap(2) system call is used to unmap it:

#include <sys/types.h>
#include <sys/mman.h>

int munmapfvoid *addr, size_t len);

The memory region to be unmapped is specified as the region starting at addr for a length of

len bytes. The function munmap(2) returns 0 when successful. Otherwise, -1 is returned, with

an error code left in errno. It should be noted that this system call does not cause pending

changes to be written out to the file. If this is important, you must make appropriate use of the
msync(2) system call prior to calling on munmap(2).

Referencing memory after it has been unmapped will cause the signal SIGSEGV or SIGBUS to

occur. Some UNIX platforms can return either, depending on the nature of the memory access.

Unfortunately, no platform documents that len can be specified as zero. This forces the application
programmer to keep track of the memory region size, so that it can be unmapped successfully at a
later time.

This restriction is especially painful when MAP_INHERIT is used with execve(2) to execute a new
program. Unless the size of the region has been stored in the memory region itself (or communi¬
cated some other way), the new program will not know the correct length to use in a munmap(2)
call.

To unmap a region of memory in the Listing 26.2 program (messages. c), the following func¬
tion call could be added prior to the return statement on line 127:

if (munmap(msgs,msgs_len+1) == -1)
perror ("munmap(2)11) ;

In this example, recall that one byte was added to the file’s size when it was mapped.
Consequently, msgs_len+1 is necessary in the munmap(2) call.

Chapter 26 • MEMORY-MAPPED FILES 555

Warning

The munmap(2) system call does not cause pending changes to be written out to the file. If this is
important, you must make appropriate use of the msync(2) system call prior to calling munmap(2).

Summary
This chapter looked at the UNIX facility that is available for memory-mapped files. This facil¬

ity provides some interesting new choices to the application programmer.

However, be aware that memory mapping is often restricted to files and memory regions of

less than 2GB (FreeBSD release 3.4 restriction). On any given platform, you are restricted to

the process memory image size.

If you use memory-mapped files to share information between separate processes, remember

that semaphores and calls to msync (2) may be required for synchronization. If you use some

of the more exotic mmap(2) features, your application may not be portable to other UNIX plat¬

forms.

Despite these challenges, memory-mapped files can be an extremely efficient way to work with

data in memory and keep copies of it in a disk file.

The next chapter takes a departure into the world of X Window programming. This will pro¬

vide an introduction to graphical programming under UNIX and an example of event-driven

processing.

CHAPTER 27

X WINDOW PROGRAMMING

Non-graphical programs tend to follow the programmer’s choice of events, accepting

user input only when it is convenient for the program. An update process will chug

through a database and wait for the user’s input only when it has called fgets(3), for

example. Once control has returned from fgets (3) with the input, however, any additional

user input is ignored as the update proceeds.

Another program that puts up a text-based screen is also program directed. The user must pro¬

vide input that is suitable for the field where the cursor is. As the cursor moves to other input

fields, the input data provided must obey content rules for those fields. These are examples of

a program telling the user what input to provide and when it must be provided.

Graphical user interfaces use a different processing paradigm. Event-driven programming has

a program constantly waiting for user input events. Processing occurs briefly only after these

user-input events have been received by the program. The user is able to choose where to

input text with a mouse click or a tab key. Alternatively, the user may use the mouse to draw,

causing numerous input events to occur.

This chapter will examine event-driven programming as it applies to X Window graphics. The

intention of this chapter is to

• Illustrate event-driven programming

• Introduce X Window graphics programming

Event-Driven Programming
Figure 27.1 shows a program that progresses from time TO to T6 in two states: a processing

state in which program instructions are executed and an input state in which program execu¬

tion is suspended until user input arrives.

After some program initialization starting at time TO, the program ignores user input until it

reaches time Tl. At Tl, the execution of the program is suspended until fgets (3) receives

input (using an underlying read(2) system call). At time Tl the program is attentive to the

user.

At time T2, however, the program is busy executing instructions that pertain to database

queries and other non-input activities. The user cannot direct the flow of the program at this

point.

558 ADVANCED UNIX PROGRAMMING

FIGURE 27.1

Non-event-driven states

from time TO to T6.

User User User

Interaction Interaction Interaction

V V V
Await input Await input Await input

Processing Processing Processing

i i i r
TO T1 T2 T3 T4 T5 T6

At time T3, the program is willing to listen to the user again, providing the user some measure

of control. However, after this input is received, at time T4 the program completely ignores the

user as it chugs away.

Time T5 allows the user one more opportunity for input before ignoring the user again at time

T6. Throughout the entire execution of the program, it has only allowed user control over it at
a few defined points.

An Event-Driven Model
Figure 27.2 shows how an event-driven model behaves.

FIGURE 27.2

Event-driven states from

time TO to T6.

User
Interaction

User
Interaction

User
Interaction

Initialization
Processing

Await input Await input Await input Await input

User
Interaction

V V V V

Cleanup
Processing

Process Event Process Event Process Event

TO T1 T2 T3 T4 T5 T6

In this program, there is some initialization starting at time TO. However, from time T1 to T5

the program is preoccupied with obtaining input events from the user. Only after an input

event occurs does the program ignore input briefly to process the action required by the event.

The fact that event-driven models also ignore input briefly highlights one important aspect of

graphical programming: Event processing must be brief. Otherwise, the user will cease to have

control. Note that, like character mode programs, graphical events are queued for the event-

driven program. This allows event programs to process events without losing them as it per¬
forms processing for the preceding events.

Chapter 27 • X WINDOW PROGRAMMING 559

Client/Server Processing
The X Window graphic software is flexible enough to allow programs to draw graphics on the

local screen or to a remote computer’s screen instead. The X Window server is the process that

manages the input devices and the one or more display screens. The client is the program that

wants to draw on the screen and receive input from the input devices, such as the mouse and

keyboard. Figure 27.3 shows an X Window server running on host alpha and clients running
on all three hosts.

FIGURE 27.3

Four X Window client

programs using one X

Window server.

The X Window server running on host alpha controls the graphics display screen, the key¬

board, and the mouse. On the same host, a client program is making use of these facilities

through a local socket connection to the server.

On host beta, one client is accessing the alpha X Window server through the network. Host

gamma has two client programs accessing the alpha X Window server through the network.

The user sitting at the display has four different windows open. Each window sends input

events to the specific client program that created the window.

560 ADVANCED UNIX PROGRAMMING

Software Layers
Graphical programming tends to be complex. To make the software easier to design and man¬

age, the X Window software has been designed in layers. Figure 27.4 shows a conceptual view

of this.

FIGURE 27.4

X Window software

layers.

Figure 27.4 shows three client program perspectives. These are common configurations

for X Window clients but not the only ones available. Application program A uses the basic X

Window library Xlib. This library eliminates the need for the client program to know the X

Window protocol. The Xlib library allows the programmer to concentrate on the input and the
drawing events instead.

Application program B uses an X Toolkit library, which then calls upon the Xlib library. The

Toolkit library provides a basic framework for X Window widget support and uses Xlib to pro¬

vide lower-level support. This simplifies the application’s handling of menus, buttons, and
other widgets.

Chapter 27 • X WINDOW PROGRAMMING 561

Application program C uses the MOTIF library, which calls upon the X Toolkit and the Xlib

libraries. The MOTIF library provides a fully functional set of widgets with a 3D look and

includes support for other languages.

Application program C is the simplest program to write if the application involves pushbut¬

tons, list boxes, text entry fields, and so on. However, if your application requires only draw¬

ing facilities, the Xlib support may be all you need.

The example program presented in this chapter will be of the application A variety. Using the

Xlib library is sufficient for demonstrating event-driven programming and requires the least

amount of explanation. The serious X Window programmer is encouraged to read more about

the X Toolkit and MOTIF libraries, however.

An Xlib Client Program
Listing 27.1 shows the listing of the include file that is used by the source modules xeg. c and

events.c.

LISTING 27.1 xeg. h—Common Include File for xeg. c and events. c

1: /* xeg.h */
2:
3: #include <stdio.h>
4: #include <strings.h>

5: #include <X11/Xlib.h>

6:
*7 .

#include <X11/Xutil.h>

7.
8: typedef unsigned long Ulong

y.
10 #define B1 1 /* Left button */

11 #define B2 2 /* Middle button */

12 #define B3 4 /* Right button */

13
14 extern Display *disp; /* Display */

15 extern int scr; /* Screen */

16
17 extern Ulong bg; /* Background color

18 extern Ulong fg; /* Foreground color

19
20 extern Ulong wht; /* White */

21 extern Ulong blk; /* Black */

22
23 extern Ulong red; /* red */

24 extern Ulong green; /* green */

25 extern Ulong blue; /* blue */

26
27 extern Window xwin; /* Drawing window *

28
29 extern void event_loop(void);

30
31 /* End xeg.h */

562 ADVANCED UNIX PROGRAMMING

The file includes the usual <stdio. h> and <strings. h> definitions to define the macro NULL

and strerror(3), respectively. It should be noted that one of the great features of UNIX

graphics programming is that you can send output to standard output, in addition to graphics

on the X Window server. This often assists greatly in debugging efforts.

The include file <X11 /Xlib. h> (line 5) is required to define a number of Xlib functions and

macros. Include file <X11 /Xutil. h> (line 6) is needed to define the type XSizeHints, which is

used in this example program.

The typedef Ulong is declared in line 8 for programming convenience, since the type

unsigned long is used frequently. Macros B1, B2, and B3 are mouse button bits that define bits

0, 1, and 2, respectively, where 0 is the least significant bit. These macros are used in the event
processing loop.

The remainder of the include file (lines 14-27) defines global values that
main () program.

Listing 27.2 shows the source listing for the main () program.

LISTING 27.2 xeg.c—The main () Function of the Xlib Client Program

1: /* xeg.c */

c. •
3:
A •

#include "xeg.h"

5: Display *disp; /* Display */
6:
7 ■

int scr; /* Screen */

8: Ulong bg; /* Background color */
9: Ulong fg; /* Foreground color */
10:
11: Ulong wht; /* White */
12: Ulong blk; /* Black */

13:
14: Ulong red; /* red */

15: Ulong green; /* green */

16: Ulong blue; /* blue */

17:
18: Window xwin; /* Drawing window */

19:
20: int
21 : main(int argc,char **argv) {

22: Colormap cmap; /* Color map */

23: XColor approx; /* Approximate color */

24: XColor exact; /* Precise color */

25: XSizeHints hint; /* Initial size hints */

26:
27: /*

28: * Open display (connection to X Server) :

29: */

30: if (!(disp = XOpenDisplay(NULL))) {

31: fprintf(stderr,"Cannot open display: check DISPLAY

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Chapter 27 • X WINDOW PROGRAMMING 563

exit(1);
}

scr - DefaultScreen(disp); /* Obtain default screen */
cmap = DefaultColormap(disp,scr);

/*

* Obtain color information :
*/

XAllocNamedColor(disp,cmap,"red",&exact,&approx);
red = approx.pixel;

XAllocNamedColor(disp,cmap,"green",&exact,&approx);
green = approx.pixel;

XAllocNamedColor(disp,cmap,"blue",&exact,&approx);
blue = approx.pixel;

/*

* Get black and white pixel values :
*/

wht = WhitePixel(disp,scr); /* White pixel */
blk = BlackPixel(disp,scr); /* Black pixel */

/*

* Choose colors for foreground and background :
*/

fg = wht; /* use white foreground */
bg = blk; /* use black background */

* Set Hint Information for Window placement
*/

hint.x = 100;
hint.y = 150;
hint.width = 550;
hint.height = 400;
hint.flags = PPosition

/*

/*

Start x position */
Start y position */

/* Suggested width */
/* Suggested height */

PSize; /* pgm specified position, size */

/*

* Create a window to draw in :
*/

xwin = XCreateSimpleWindow(
disp, /* Display to use */
DefaultRootWindow(disp),/* Parent window */
hint.x, hint.y, /* Start position */
hint.width, hint.height,/* Window Size */
7; /* Border width */
fg} /* Foreground color */
bg); /* Background color */

/*

* Specify the window and icon names :

*/

564 ADVANCED UNIX PROGRAMMING

continued from previous page

CD
CO XSetStandardProperties(

Is-

o
o

 disp, /* X Server connection

CO
co

 xwin, /* Window */

89: ''xegwin'1, /* Window name */

90: "xeg.c1', /* icon name */

91 : None, /* pixmap for icon */

92: argv.argc, /* argument values */

93: &hint); /* sizing hints */

CD

CD

cn

/*

96: * Map the window, and ensure it is the topmost
97: * window :

CO
CT> */

99: XMapRaised(disp,xwin);
100:
101: /*
102: * Process the event loop :
103: */
104: event_loop();
105:
106: /*
107: * Cleanup :
108: */
109: XDestroyWindow(disp,xwin); /* Release and
110: XCloseDisplay(disp); /* Close conne
111:
112: return 0;
113: }

window */
X Server */

The main() program takes care of the initialization and cleanup for the X Window demonstra¬

tion. Much of this initialization is common to most X Window programs. The overall steps

used by the main program are as follows:

1. Open the display on the X Window server (lines 30-33). This call creates a socket and

connects to the X Window server, which may be a local or remote hosted server.

2. Select the default screen (line 35). X Window servers are capable of supporting more

than one display screen. Here the application simply chooses the default screen.

3. A color map is obtained (line 36). X Window graphics operations used in this program

require the use of a color map. A color map is associated with a specific screen and

server connection (scr and disp, respectively).

4. The color red is allocated in the color map cmap (line 41). The approximate value for red

is used in line 42, since the actual color is not critical for this application.

5. The colors green and blue are allocated in lines 44-48. Again, approximate colors are
acceptable to this application.

6. Pixel values for white and black are determined and assigned to the variables wht and

blk, respectively (lines 53 and 54). These colors will be used to establish default fore¬
ground and background colors.

7. Pixel values for foreground and background are established in variables f g and bg (lines

59 and 60).

Chapter 27 • X WINDOW PROGRAMMING 565

8. This program establishes “hint” information about where the window should be created

(lines 65-69). Line 69 indicates that the program wants to select the position and size of
the window.

9. A simple drawing window is created in lines 74-81. Argument disp specifies the con¬

nection to the server. Note that it is possible for a program to establish connections to
multiple X Window servers.

10. A call to XSetStandardProperties (3X11) (lines 86-93) is made to specify the window’s

name, its icon name, a pixmap for the icon if any, resource setting arguments (from the

command line), and sizing hints.

11. Function XMapRaised (3X11) is called in line 99 to cause the created window to be

mapped (displayed). Until this point, the X Window server has just kept notes about the

window specified by xwin.

Once those steps have been accomplished, it is possible to invoke the function event_loop()

that is in source module events. c. When the function event_loop() returns, however, this

indicates that it is time for this client program to terminate. Termination consists of destroying

the window that was created (xwin) and closing the connection to the X Window server

(disp). The main() program then terminates at the return statement in line 112.

A number of important X Window concepts have been glossed over here to get you to the

most important aspect of this chapter, which is the event-processing loop. However, even with

a rudimentary understanding, you could clone other X Window graphics program clients from

this main program. As your understanding grows, you can expand upon the code presented

here.

The feature piece of this chapter is the event-processing loop contained within the source

module events. c. Before examining the code for it, compile and try the program to see what

it is supposed to do. The following shows a compile session under FreeBSD:

$ make
cc -c -Wall -1/usr/XI1R6/include xeg.c
cc -c -Wall -I/usr/X11R6/include events.c
cc -o xeg xeg.o events.o -L/usr/X11R6/lib -1X11
$

It is often necessary to indicate where the include files and the X Window libraries are. If you

compile this program on a different UNIX platform, you may need to adjust the options

-I/usr/XI1R6/include and -L/usr/X11 R6/lib to point to where your include and library

files are.

Normally, you start the program and place it into the background when you are using an

xterm(1) session. This allows you to continue using the xterm(1) window for other things

while your client program runs:

$./xeg &
$

Soon after the program starts, you should see a window like that shown in Figure 27.5.

566 ADVANCED UNIX PROGRAMMING

A black background window should be created with the white-lettered message xeg. c. Using

the mouse now, it is possible to draw in different colors. To exit the window, press the lower¬

case q key to quit (the window must have the focus for the q key to work).

Using the left, middle, or right mouse button, you can draw in the window with the colors

red, green, and blue, respectively. If you have a two-button mouse and middle button emula¬

tion enabled, press the right and left buttons simultaneously to get the color green. Figure 27.6

shows the author’s attempt to write xeg. c on the window using the mouse.

Chapter 27 • X WINDOW PROGRAMMING 567

One other feature of this program is activated with the Shift+click of the mouse. When the

Shift key is held down, a different drawing technique causes a starburst effect, as shown in
Figure 27.7.

FIGURE 27.7

A starburst drawn in the

X Window with

Shift+click.

Figure 27.7 shows the mouse starting at the 2 o’clock position and circling around to 8

o’clock, while holding down the Shift key and mouse button at the same time. The way this is

accomplished is explained when the code in Listing 27.3 is discussed.

LISTING 27.3 events. c—The Event-Processing Loop

1:
O •

/* events.c */

3:
A •

#include "xeg.h"

5: /*
6: * The X Window Event Loop
7: */
8: void
9: event_loop(void) {
10: int x0, y0; /* Prior position */
11: GC gc; /* Graphics context */
12: XEvent evt; /* X Event */
13: char kbuf[8]; /* Key conv buffer */
14: KeySym key; /* Key symbol */

15: int kcount; /* Key count */
16: int b = 0; /* Buttons Pressed */
17: int star = False; /* Draw stars when True */

18: Bool quit = False; /* Quit event loop when True

19: <s>
C

M
 /*

568 ADVANCED UNIX PROGRAMMING

continued from previous page

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

* Choose the XEvents that we want to process :
*/

XSelectInput(disp,xwin,
KeyPressMask | ExposureMask |
ButtonPressMask | ButtonReleaseMask |
ButtonIMotionMask | Button2MotionMask | Button3MotionMask)

/*

* Create a Graphics Context :
*/

gc = XCreateGC(disp,xwin,0,0);
XSetBackground(disp,gc,bg); /* Set background color of gc */
XSetForeground(disp,gc,fg); /* Set foreground color of gc */

/*

* Process X Events :
*/

while (quit != True) {
/*

* Fetch an X Event :
*/

XNextEvent(disp,&evt);

/*

* Process the X Event :
*/

switch (evt.type) {

case Expose :
/*

* Window has been exposed :
*/

if (evt.xexpose.count == 0)
XDrawlmageString(evt.xexpose.display,

evt.xexpose.window,
gc,
105, 65,
"xeg.c", 5);

break;

case ButtonPress :
/*

* A button has been pressed:
*

* Set the bit corresponding to the mouse button that
* is pressed :
*/

switch (evt.xbutton.button) {
case Buttonl :

b |= Bl;
break;

case Button2 :
b |= B2;
break;

75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

Chapter 27 • X WINDOW PROGRAMMING 569

default :
b |= B3;

}

if (evt.xbutton.state & ShiftMask)
star = True;

else
star = False;

/*

* Save the current position :
*/

x0 = evt.xbutton.x;
y0 = evt.xbutton.y;

/*

* Establish the drawing color based upon the leftmost
* mouse button that is pressed :
*/

if (b & B1)
fg = red;

else if (b & B2)
fg = green;

else
fg = blue;

XSetForeground(disp,gc,fg); /* Set foreground color of gc */
break;

case ButtonRelease :
/*

* A button has been released :
•k

* Unset the bit corresponding to the released color :
*/

switch (evt.xbutton.button) {
case Buttonl :

b &= -B1;
break;

case Button2 :
b &= -B2;
break;

default :
b &= —B3;

}

/*

* Set the color based upon the leftmost mouse button :
*/

if (b & B1)
fg = red;

else if (b & B2)
fg = green;

else
fg = blue;

570 ADVANCED UNIX PROGRAMMING

continued from previous page
130: xSetForeground(disp,gc,fg); /* Set foreground color of gc */

131: break;
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:

case MotionNotify :
/*

* Motion with a button down :
*

* Draw a line from the last know position, to the current :

*/ .
XDrawLine(disp,xwin,gc,x0,y0,evt.xmotion.x,evt.xmotion.y);

/*
* When drawing lines, we must save the last position that
* we have drawn a line segment to :

*/

if (star == False) {
x0 = evt.xmotion.x; /* Save x for next line segment */
y0 = evt.xmotion.y; /* Save y for next line segment */

}
break;

case MappingNotify :
XRefreshKeyboardMapping(&evt.xmapping);
break;

case KeyPress :
/*

* A key was pressed; check for 'q' to quit :
*/

kcount = XLookupString(&evt.xkey,kbuf,sizeof kbuf,&key,0);
if (kcount == 1 && kbuf[0] == 'q')

quit = True;

}
}

XFreeGC(disp,gc); /* Release graphics context */

Before X Window events are processed in the event loop, a call to XSelectlnput (3X11) is per¬

formed to select the events that are of interest (lines 23-26). disp and xwin specify the con¬

nection and the window to modify. The events selected are the following:

KeyPressMask Key press events

ExposureMask Window expose events

ButtonPressMask Mouse button press events

ButtonReleaseMask Mouse button release events

ButtonIMotionMask Pointer motion events when button 1 is down

Button2MotionMask Pointer motion events when button 2 is down

Button3MotionMask Pointer motion events when button 3 is down

Chapter 27 • X WINDOW PROGRAMMING

Since drawing is required, a graphics context is needed to draw with. This specifies the attrib¬

utes of the drawing pen, such as the foreground and background colors. Line 31 creates a

graphics context with a call to XCreateGC (3X11). Line 32 selects the background color of the

context by calling XSetBackground (3X11). A similar call to XSetForeground (3X11) is made

in line 33 to set the foreground color of the graphics context. You will recall that the main ()

program established pixel values of white in variable f g and black in bg.

The event loop itself begins with the while statement in line 38 and ends at line 163. Bool

variable quit is initialized as False in line 18. Consequently, the while loop continues until
quit changes to True.

The function call that drives this event loop is the function XNextEvent (3X11) in line 42. The
function synopsis for the function is as follows:

#include <X11/Xlib.h>

XNextEvent(display, event_return)
Display ‘display;
XEvent *event_return;

Notice that the X Window function is defined in the older C function syntax. This is due to

the early start that X Window development had. For compatibility with older software, it has

not made the change to the ANSI C function prototypes.

The argument display provides the information about the connection to the X Window server

(specifically the socket). Argument event_return is used to return the event information that

has been received.

If there are no events to process, XNextEvent (3X11) forces any buffered server requests to be

written to the server. Execution is suspended within the function until an interesting event

arrives (those events that are not masked out). Once an interesting event is received, the event

information is copied to the area pointed to by the event_return argument, and the function

returns to the caller.

The definition of the XEvent data type is a large union of event structures. The following syn¬

opsis is a subset of the full XEvent definition:

typedef union _XEvent {
int type; /* Event type */
XAnyEvent xany; /* Common event members */
XKeyEvent xkey ; /* Key events */
XButtonEvent xbutton; /* Mouse button events */
XMotionEvent xmotion; /* Mouse motion events */
XExposeEvent xexpose; /* Window expose events */
XMappingEvent xmapping; /* Key/Button mapping change events

/* etc. */
} XEvent;

The XEvent type definition is a union of the many member types within it. The most basic

member of all is the member type, which identifies the type of the event that is being

described.

572 ADVANCED UNIX PROGRAMMING

The member xany defines a number of additional members that are common to almost any

event:

typedef struct {
int
unsigned long
Bool
Display
Window

} XAnyEvent;

In the XAnyEvent structure definition, you see that the type of the event is included first in the

structure. Each X Window request has a serial number assigned to it, and the event indicates

the event number in the serial member. The member send_event is True when an event is

artificially sent to a window with a function such as XSendEvent (3X11). When this value is

False, the event came from the X Window server. The display and window members identify

the X Window server connection and the participating window.

The other XEvent union members will be discussed as the code is examined. When an event is

received, the switch statement on line 47 dispatches the execution of the program to the cor¬

rect case statement to process it.

The X Window server makes no guarantee that it will preserve a window when it is obscured.

Consequently, when a window is uncovered or made viewable for the first time, one or more

Expose event is generated. This permits the client program to restore the image in the newly

exposed areas of the window.

Expose events often occur as regions of the full window. Clients that can take advantage of the

efficiency achieved by restoring only small portions of an exposed window can do so with

these events. For simpler client programs, the entire window must be refreshed instead.

The illustrated demo program simply draws a string of text xeg. c on the new window (lines

54-58). This is done in response to the Expose event, starting with the case statement on line

49. No attempt to restore the current drawing is performed. Consequently, you will find that

when you obscure the xeg window and re-expose it, you will only find the text xeg. c
redrawn. All other drawn information will be lost.

type;
serial;
send_event;
‘display;
window;

/* Event type */
/* # of last request processed by server */
/* true if from a SendEvent request */
/* Display the event was read from */
/* window event was requested in event mask */

The synopsis of the XExposeEvent structure is as follows:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ‘display;
Window window;
int x; /* Upper left x of region */
int y; /* Upper left y of region */
int width /* Width of region */
int height; /* Height of region */
int count; /* # of subsequent Expose events */

} XExposeEvent;

Chapter 27 • X WINDOW PROGRAMMING 573

In addition to the members described by the union member XAnyEvent, the XExposeEvent

type defines members x, y, width, and height. The x and y members describe the upper-left

corner of the region of the window. The width and height members describe the width and

height of the region that has been exposed and needs redrawing. The last member count

describes how many subsequent Expose events follow.

If your client program is unable to redraw the exposed areas of the window region by region,

then all Expose events where count is greater than zero should be ignored. Eventually, the

count value will be decremented to zero in a subsequent event, indicating that no more

Expose events remain for this window. Simple programs should therefore redraw the entire

window only when this count reaches zero. Otherwise, needless repetition of the redraw oper¬

ations will be performed. Since the demonstration program has been kept simple, it draws

xeg. c only when this count reaches zero (line 53).

The case statement on line 61 handles the ButtonPress events. The type definition for

XButtonEvent is as follows:

typedef struct {
int type;
unsigned long serial;
Bool send_event)

Display ‘display;
Window window;
Window root; I* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */

int x_root, y_ root: ; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button ; /* detail *1

Bool same_screen;/* same screen flag */
} XButtonEvent;

Member button is consulted in the switch statement on line 68. Depending upon whether

Buttonl, Button2, or any other button has been pressed, bits are set in variable b (lines 70,

73, or 76). Depending on the bits set in b, a color is chosen in lines 94-99 for the foreground.

The graphics context is modified to use this color in line 101 with XSetForeground (3X11).

However, member state of this event indicates other important things such as whether the

Shift key was pressed at the time of the mouse button press. If the Shift key is pressed at the

time of the button down event (line 79), the variable star is set to True. Otherwise, normal

drawing is performed when star is set to False in line 82 (more about this later).

Lines 87 and 88 save the coordinates of the mouse when the button was pressed. These coor¬

dinates will be required later to draw a line when the mouse moves with the button held

down.

When the mouse button is released, event ButtonRelease is processed by the case statement

in line 104. The switch statement in lines 110-119 removes the bit that corresponds to the

mouse button in variable b. Again, the color is modified by changing the f g variable in lines

124-129. The graphics context gc is then modified in line 130 to reflect this new choice in

foreground color.

574 ADVANCED UNIX PROGRAMMING

As the mouse moves with a button held down, MotionNotify events are delivered (line 133).

The XMotionEvent type definition is given in the following synopsis:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ♦display;
Window window;
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x root, y_root: ; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen: ;/* same screen flag */

} XMotionEvent;

The xeg program simply draws a line from the last saved x0 and y0 positions to the new loca¬

tion specified in the XMotionEvent structure members x and y (line 139). This is performed

using the XDrawLine (3X11) function, using the color attributes assigned to the graphics con¬

text gc.

For normal drawing (no Shift key), the current mouse coordinates are then saved at lines 146

and 147. The next MotionNotify then causes the next line to be drawn from the previous

mouse position to the current, effectively drawing a line as a pen would.

When the Shift key is pressed, the coordinates in lines 146 and 147 are not saved. This causes

lines to always be drawn from the original button press coordinate to the present mouse coor¬

dinate. This gives the starburst effect as the mouse is moved around.

As a bit of housekeeping, MappingNotif y events are processed by a call to

XRef reshKeyboardMapping(3X11). The X Window system allows keyboard keys and mouse

buttons to be remapped differently according to the user’s preference. To support this flexibil¬

ity, a client program can pass the XMappingEvent structure directly to

XRef reshKeyboardMapping (3X11). It will then handle any necessary mapping changes

for you.

The case statement in line 155 intercepts the KeyPress event. The XKeyEvent member xkey

holds an untranslated key symbol reference. The call to XLookupString(3X11) causes this key

to be translated into ASCII form in the supplied buffer kbuf []. The length of the translated
key is returned.

When the key translates to an ASCII q in line 160, the variable quit is set to True to allow the

program to exit the event-processing loop. Upon exiting the loop, the graphics context that
was created earlier is freed in line 165 by calling XFreeGC(3X11).

That concludes the code walk-through for this demonstration program. This simple drawing

program has demonstrated event-driven programming and has also provided you with a taste
of how X Window programming is performed.

Chapter 27 • X WINDOW PROGRAMMING 575

As an exercise, you are encouraged to improve upon this program. Complete the program by

adding code to keep track of all drawing commands performed within the window. Then,

when the Expose events occur, it should be possible to re-create the lost artwork. Another

method is to learn about the XCreatePixmap(3X11) function. The drawn image can be main¬

tained in a pixmap, and then the window regions can be refreshed from it when Expose events
occur.

Summary
Software development today remains a costly process. While UNIX has been around for a

time, it continues to be a popular place to invest those software development resources. It con¬

tinues to be a mature platform that is also fun and well understood. Your investment continues

to be well protected when it runs under UNIX.

INDEX

Symbols

! meta-character (shell patterns), 407-408
$ anchor, 431-432

& feature (/etc/passwd file Comment field), 234
A anchor, 431-432

I (pipe symbol), 435

* meta-character, 406, 434

+ meta-character, 434

. meta-character, 433

() (parenthesis characters), 434

[] meta-characters (shell patterns), 406-407, 433

[] (square brackets), command-line, 173

0 (zero) gid number, 228

0 (zero) uid number, 228

64-bit C data types, 201-202

64-bit integers, 201

? meta-character, 406, 434

A

access

files, testing, 119-120

semaphores, 492-494

access protections (memory-mapped regions), changing,

548-549

access time (files), 118

access(2) function, 119-120

adding signals to signal sets, 312-313

address argument, shl_load(3X) function, 270

advisory locking, 88, 94

lockf(2) function, 98

AIX 4.3 feature tests, 28-29

alarm(3) function, 320-322
alphasort(3)function, scanning directories, 139-141

ampersand feature (/etc/passwd file Comment field), 234

anchors, 431-432

ANSI C compile options, 18

APIs (application program interfaces)

interval timer API, 361-362

reliable signal API, 308, 311-317

applying reliable signals, 316-317
setting signal actions, 314-315

sigaction(2) function, 314-317

sigaddset(3) function, 312-313

sigdelset(3) function, 313

sigemptyset(3) function, 312

sigfillset(3) function, 312

sigismember(3) function, 313

signal action flags, 315-316

signal sets, 311-313

signal(3) API, 308-311

applications. See programs

applying

I/O, 72-73

lseek(2) function, 74-75

old ermo variable, 55-56

strerror(3) function, 61

apropos(l) command, 10

ar(l) command, 253-254

archives (static libraries), 253-254

arguments

base (radix conversions), 196-197

buf (current directory null buffers), 130

bufsiz (readlink(2) function), 121

command-line, 174
compar, 140

dbm_fetch(3) function, 277-278

dbm_open(3) function, 275

dbm_store(3) function, 276

depth (ftw(3C)/nftw(3C) functions), 144

dir (tempnam(3) function), 159

dirname (scandir(3) function), 140

execve(2) function, 397-398

flags (nftw(3C) function), 144

fn function, 145

fnmatch(3) function, 408-409

glob(3) function, 416

group (chown(2) function), 123

identifying, 174

578 ADVANCED UNIX PROGRAMMING

iov (readv(2)/writev(2) functions), 82
iovcnt (readv(2)/writev(2) functions), 82
kill(2) function, 327
lck (fcntl(2) function), 99
look like options, 174
mmap(2) function, 539-540
mode

access(2) function, 119
mkdir(2) function, 132

msgget(3) function, 453
namelist (scandir(3) function), 140
nanosleep(2) function, 358
nbytes, 71
null (tmpnam(3) function), 152-153
offset (lseek(2) function), 74
optstring (getopt(3) function), 177
owner (chown(2) function), 123
path

mkdir(2) function, 132
readlink(2) function, 121

pathname (opendir(3) function), 134
prefix (tempnam(3) function), 159
select (scandir(3) function), 140
select(2) function, 335-336
semget(2) function, 486
shl_findsym(3X) function, 270
shl_load(3X) function, 270
sigaction(2) function, 314
signal(3) function, 309-310
sigprocmask(2) function, 318-319
size (null buffers), 130
subopts_str (getsubopt(3) function), 179
template

mkstemps(3) function, 157
mktemp(3) function, 154

tokens (getsubopt(3) function), 179
unused arguments (compiler warning messages), 21
valuep (getsubopt(3) function), 179
wait(2) function, 391
whence (lseek(2) function), 74

argv[] argument (execve(2) function), 398
arrays

namelist, 140
sys_errlist[]

ermo values, reporting, 58-60
evaluating, 60
sys_nerr integer value, 59

asctime(3) function, 217-218
assignments, compiler warning messages, 19-21
asterisk (*) meta-character, 406
asynchronous software interrupts. See signals
atexit(3) function

registering functions, 162, 165
temporary files cleanup tasks, 162-165

atof(3) function, 191
atoi(3) function, 189-191
atol(3) function, 189

atoms, 434
attaching shared memory, 523-524
attributes (shared memory), changing, 522-523

B

backslash (meta-character, 408
backups (forcing data to media)

fsync(2) function, 81
sync(2) function, 80

bang (!) meta-character, 407-408
base argument (radix conversions), 196-197
binary conversions, testing, 198
bit masks (poll® function), 344-345
bitwise macros, 395
block devices, 35-36
blocking signals, 318-319
bounds, 436
branches, 435
broken pipes, handling, 378-379
BSD, determining time zone, 219
buf argument (current directory null buffers), 130
buf buffer pointer, 121
buffers

current directory null buffers, 130
tmpnam(3) function, 153-154

bufsiz argument (readlink(2) function), 121

c
C, 64-bit data types, 201-202
-c compile option, 14
C compilers, 13-18

compile command, 13-14
ANSI C compile options, 18
-c compile option, 14
-D compile option, 15
-E compile option, 16
-g compile option, 15
-I compile option, 15-16
-o compile option, 14-17
warning options, 17

standards, 25-30
AIX 4.3 feature tests, 28-29
FreeBSD 3.4-release feature tests, 27
HPUX 10.2 feature tests, 28
SunOS 5.6 feature tests, 29-30

C libraries
shared libraries, 256-261

benefits, 263-264
closing, 266
comparing to static libraries, 256-257, 261-264
controlling what is shared, 261
creating, 257

INDEX 579

dynamic library loading. See dynamic library
loading

dynamic loader, 258-260
linking process, 257

listing shared library references, 258

opening, 264-265

position-independent code, 260
search path variables, 258

static libraries, 247-256

benefits, 262-263

comparing to shared libraries, 256-257,
261-264

creating archives with ar(l) command, 253-254

implementing, 248-253

linking process, 255-256

listing contents of archives, 254

Passwd class example, 248-253

process memory image, 247-248

verbose listings of archives, obtaining, 254

C programs, compiling, 15

C++ destructors, temporary file cleanup tasks, 165-169

cache files, 258

cc command name (compilers), 13

character classes, 433

character devices, 36-37

chdir(2) function, 130-131

child processes, 373, 385-386

creating with fork(2) function, 388-389

waiting for completion, 389

chmod(2) function, 122-123

chown(2) function

file ownership, changing, 123-124

restrictions, testing, 124

chroot(2) function

example program, 147-148

root directories, changing, 146-149

classes
Dbm (Snapshot program), 283-288

Dir (Snapshot program), 280-283

DTime, 210-212

testing, 224-226

InoDb (Snapshot program), 288-291

Passwd (static libraries), 248-253

Stat, 111-116

cleanup (temporary files), 162

atexit(3) function, 162-165

avoiding, 169

destructors, 165-169

clearing global variable pools, 518
client program (applying message queues), 463-479

Msq class definition file, 463-464

Msq::access() method, 467

Msq::change() method, 469-470

Msq::create() method, 466-467

Msq::destroy() method, 467-468

Msq::dispose() method, 464-466

Msq::Msq() constructor, 464-466

Msq::recv() method, 471-472

Msq::send() method, 470-471

Msq::stat() method, 468-469

Msq::_verify() method, 464-466

source code, 476-478

StatMsg message structure, 472-473

statsrv server, 473-475
client/server processing (event-driven programming), 559

close(2) function, 44

closed file descriptors, 97

closedir(3) function, 135

closing

directories, 135

files, 44-45

automatically, 46

NDBM database, 276

shared libraries, 266

closing pipes, 378

code listings, 12

alarm(3) and sigsuspend(2) functions, 321

assignment warnings, 20

quieting unused argument warnings, 21

class DTime, declaration of, 210

constructor and getTime() methods of DTime, 211

conversion program using strtol(3), 195

Dbm class, 283-284

Dir class, 280-281

DTime::asctime(), 217

DTime::ctime() Method, 213

DTime::localtime() and DTime::gmtime(), 215

DTime: :mktime() Method, 221

dynamically loaded shared library, 266

dynamically loading and calling a function, 267

event-processing loop, 567

exec(2) to start the ps(l) command, 398

fnmatch(3) function, 409

fork(2) function, 388

getgroups(2) function, 243

getpagesize(3) function, 539

glob(3) and globfree(3) functions, 417

global variable, looking up in shared memory, 529

globvar utility, 529

global definitions, 527

source module that calls shmget(2) to create

shared memory, 519

unset feature, 535

variable assignment functions, 533

I/O program, 72

if Statement, warnings about value assignment, 19

include file for xeg.c and events.c, 561

InoDb class, 288-289

InoDb::deleteKey(), 301

messages.c, making message text read-only, 549

mmap(2) function, 542

mprotect.c, indicating access behavior patterns to the

kernel, 551

Msq class definition file, 463

Msq::_verify(), Msq::dispose(), and the constructor

Msq::Msq(), 465

580 ADVANCED UNIX PROGRAMMING

Msq::access() method, 467

Msq::change() method, 469

Msq::create() method, 466

Msq::destroy() method, 468

Msq::recv() method, 471

Msq::send() method, 470
Msq::stat() method, 468

nanosleep(2) function, 359

one-shot realtime timer demonstration, 364

Passwd class, 252

include file, 249

Passwd:getuid() and Passwd::getnam() methods, 249
perror(3) function test program, 57

poll(2) function, 345

popen(3) and reading ps(l) Output, 374

posix.c - feature macro test program, 26

querying umask value, 69

reading a FIFO in non-blocking I/O mode, 331

realtime, virtual, and profile timers, 366

regexpr(3) routines, 441

select(2) function, 338

semaphore locking routines, 528

semaphore set

changing owner and group of, 493

creating and accessing, 483

removing, 487

semctl(2) function

GETALL command, 495

GETPID command, 498

GETVAL command, 495

IPC_SET command, 492

IPC_STAT command, 490

SETALL command, 497

SETVAL command, 496

semop utility, 507

conversions for, 511

-R reporting function, 513

semop(2) operations, performing, 502

shmat(2) function, calling to attach shared memory,

524

shmdt(2) function, calling to destroy the shared

memory, 525

sigaction(2) function, 316

signal(3) example program, 310

sleep(3) function, 351-352

Snapshot application program, 292

sparse files, creating, 77

sscanf(3) function, 192

statcln client program, 476

StatMsg message structure, declaration of, 472

statsrv server listing, 473

strerror(3) function test program, 60

strtol(3) function, testing base argument, 196

sync command, creating, 80

ttyname(3)/isatty(3) functions program, 84

unreferenced CVS strings, 24

unused string constant warning, eliminating, 25

unused variable declarations, 22

usleep(3) function, 355

wait(2) funciton, calling without zombie processes,

392

writev(2) function example, 82

writing to popen(3) pipe, 376

zombies, creating, 390

coding overflow/underflow tests, 200

command-line, 173-174

commands

apropos(l), 10

ar(l), 253-254

C compile commands, 13-14

ANSI C compile options, 18

-c compile option, 14

-D compile option, 15

-E compile option, 16

-g compile option, 15

-I compile option, 15-16

-o compile option, 14, 16-17

warning options, 17
EmptyDb, 302

F_SETFL, 330

gcc(l), 257

GETALL (semctl(2) function), 495-496

GETNCNT (semctl(2) function), 499

GETPID (semctl(2) function), 498-499

GETVAL (semctl(2) function), 494-495

GETZCNT (semctl(2) function), 500

id(l), 227-229
ident, 24

ipcrm(l), 455

ipcs(l), 455

IPC_RMID, 521, 526

IPC_SET, 459-460, 492-494, 521-523

IPC_STAT, 458-459, 488-492, 521

make(l), errors, 53

make_cleanfiles, lock files, 92
man(l), 10

ps(l), starting with execve(2) function, 398-401

SETALL (semctl(2) function), 497-498

SETVAL (semctl(2) function), 496-497

SHM_LOCK (shmctl(2) function), 521

SHM_UNLOCK (shmctl(2) function), 521
sync(8), 80

Comment field (/etc/passwd file), 234
compar argument, 140

compareO function, 299

compilers

C compile command, 13-14

ANSI C compile options, 18

-c compile option, 14

-D compile option, 15

-E compile option, 16

-g compile option, 15

-I compile option, 15-16

INDEX 581

-o compile option, 14-17
warning options, 17

warning messages, 18-25

assignment warnings, 19-21

unreferenced string warnings, 23-25

unused argument warnings, 21

unused variable warnings, 22-23
compiling

C programs, 13-18

standards, 25-30

warning messages, 18-25

regular expressions, 437-438

configuring options structure, 184

const keyword (C programming language), 23-25

constructors, Msq::Msq(), 464-466

conventions (command-line), 173-174

conversion functions, 189-191

atof(3), 191

atoi(3), 189-191

atol(3), 189

sscanf(3), 192-194

strtol(3), 194-195

base argument, 196-197

strtoul(3), 194

conversions

binary conversions, testing, 198

large integer conversions, 201

multiple conversions, 196

overflows, 199-201

radix conversions, 196-199

string-to-floating point conversions, 202-204

strtod(3) function, 202-204

testing for errors, 195-196

time to string form, 212

time/date to string form, 213, 217-218

underflows, testing for, 199-200

copying sparse files, 79

CPU overhead (non-blocking I/O), 333

creat(2) function, 70

creation time (files), 118

ctime r(3) function, 213-214

ctime(3) function, 212-213

current directory

changing, 130-131

information, obtaining, 129

null buffers, 130

saving, 131-132

customizing

current directory, 130-131
file ownership (chown(2) function), 123-124

file permissions (chmod(2) function), 122-123

root directory, 146-149

complications, 147

example program, 147-148

D

-D compile option, 15

data, forcing to media

fsync(2) function, 81

sync(2) function, 80

Data Base Management (DBM) library, 273

data types

64-bit C data types, 201-202

sigset_t, 311

time_t, 209-210

XEvent (Xlib client program), 571

databases. See NDBM database

date and time

converting to string form, 212-213, 217-218

customizing formats with strftime(3) function,

221-226

DTime class, testing, 224-226

DTime::strftime() method, 223-224

format specifiers, 222-223

locale, 226

Epoch Time, 207
epoch time values, creating, 220-221

time conversion functions. See time conversion

functions

time zones, 207

local time zones, 208-209

tzset(3) function, 208-209

world time standards, 208

time_t data type, 209-210

daylight external variable (tzset(3) function), 219

DBM (Data Base Management) library, 273

Dbm class (Snapshot program), 283-288

dbm_clearerr(3) function, 274

dbm_close(3) function, 274-276

dbm_error(3) function, 274

dbm_fetch(3) function, 277-278

dbm_firstkey(3) function, 278-279

dbm_nextkey(3) function, 278-279

dbm_open(3) function, 275

dbm_store(3) function, 276-277

deadlocks, avoiding, 98

debug (-g) compile option, 15

declaring new errno variable, 56

define (-D) compile option, 15

delete capability (Snapshot program), testing, 301-303

deleting

directories, 106, 133-134

files, 105-106

global variables (globvar utility program), 518

information from NDBM database, 278

keys (NDBM database), 279

signals from signal sets, 313

sparse.dat file, 79

depth argument (ftw(3C)/nftw(3C) functions), 144

582 ADVANCED UNIX PROGRAMMING

destroying

global variable pools (globvar utility program), 516

IPC resources, 454-455

memory mappings, 554

message queues, 458

semaphore sets, 486-488

shared memory, 526

destructors, temporary files cleanup tasks, 165-169

detaching shared memory, 524-526

devices

block devices, 35-36

character devices, 36-37

dir argument (tempnam(3) function), 159

Dir class (Snapshot program), 280-283

directories, 34-35
closing, 135

creating, 132-133

current

changing, 130-131

information, obtaining, 129

null buffers, 130

saving, 131-132

deleting, 106, 133-134
opening, 134-135

permissions, 42-43

positions

restoring, 139

saving, 138

rewinding to start, 138

root, changing, 146-149

scanning, 139-140

scandir(3) function example, 141-143

selecting only entries starting with h example,

140

System V variations, 141

void pointers, 140

searching, 136-138

structure, walking, 144-146

dirent structure, 136

dirfd(3) function, 134

dirname argument (scandir(3) function), 140

dlclose(3) function, 266

dlerror(3) function, 265

dlopen(3) function, 264-265

dlsym(3) function, 265

docs.sun.com Web site, 11

documents, HPUX, 133

DTime class, 210-212

testing, 224-226

DTime::mktime() method, 221

DTime::strftime() method, 223-224

dup(2) function, 47-48

dup2(2) function, 47

duplicating file descriptors, 47-48

dynamic library loading, 264-271

applying dynamic loading, 266-268

closing shared libraries, 266

HPUX 10.2 API, 269-271

initialization, 266

opening shared libraries, 264-265

reference pointers, obtaining, 265

reporting errors, 265

dynamic loader, 258-260

LD_L1BRARY_PATH variable, 259-260

searching for shared libraries, 258-259

E

-E compile option, 16

EACCES error (locked regions), 97

EAGA1N (Resource temporarily unavailable) error, 331-332

EBUSY error, 134

ECHILD (No child processes) error, 396

EDEADLK error, 98

EDQUOT error, 132

effective user ID, 229

EIDRM (Identifier removed) error, 454

EINTR error, 48

lstat(2) function, 121

truncate(2) function, 76

EINTR error, 48, 325-326

lstat(2) function, 121

truncate(2) function, 76
EINTR signal, 95

EINVAL error, 134

EmptyDb command, 302

emptying signal sets, 312

endgrent(3) function, 239

ENOENT (No Such File or Director)?) error, 54

ENOMEM (Insufficient memory) error, 387

ENOSPC (No Space Left On Device) error, 63

ENOSYS (Function Not Implemented) error, 358
ENOTEMPTY error, 133

environment variables

GLOBVAR, 517

TMPDIR (tempnam(3) function), 160
TZ, 208-209

envp[] argument (execve(2) function), 398

EPERM (Operation Not Permitted) error, 231
EPIPE (Broken pipe) error, 379

Epoch Time, 207

epoch time values, creating, 220-221
ERANGE error, 130

ERANGE return value, 199-200
EROFS error, 132

errfunc argument (glob(3) function), 416
errno variable, 324-325

failures, 53

new version, 56-57

old version, 53-54

applying, 55

integer return value failure, testing, 55

INDEX 583

pointer return value failure, testing, 56

referencing error codes by name, 54-55
reporting values, 57

perror(3) function, 57-58

strerror(3) function, 60-62

sys_errlist[] array, 58-60
ermo.h file, 56

error handling

getpwent(3) function, 235-236

NDBM database, 274-275
errors

compiler error messages, 18

conversion errors

atoi(3) function, 190

testing for, 195-196

delaying reporting, 63-64

EACCES (locked regions), 97

EAGAIN (Resource temporarily unavailable), 331-332

EBUSY, 134

ECHILD (No child processes), 396

EDEADLK, 98

EDQUOT, 132
EIDRM (Identifier removed), 454

EINTR, 48, 325-326

lstat(2) function, 121

truncate(2) function, 76

EINVAL, 134

ENOENT (No Such File or Directory), 54

ENOMEM (Insufficient memory), 387

ENOSPC (No Space Left On Device), 63

ENOSYS (Function Not Implemented), 358

ENOTEMPTY, 133

EPERM (Operation Not Permitted), 231

EPIPE (Broken pipe), 379

ERANGE, 130

EROFS, 132

EXDEY 107

indications
exceptions, 51-52

general rules, 51

math errors
math error test flowchart, 204

testing for (conversions), 203

mktime(3) errors, 220

range checking, 59

referencing by name, 54-55

regular expressions, 438-439

reporting (dynamic library loading), 265

stdio(3) set, 62-64
delaying reporting, 63-64

fclose(3) function, 63

ferror(3) function, 62

/etc/group file, 238-239

/etc/passwd file, 233-234
event bit macros (poll(2) function), 344-345

event-driven programming, 557-561

client/server processing, 559

event-driven models, 558

software layers, 560-561

Xlib client program, 561-575

event-processing loop, 567-570

include file, 561-562

main() program, 562-565

XAnyEvent structure, 572

XButtonEvent data type, 573

XEvent data type, 571

XExposeEvent structure, 572

XMotionEvent data type, 574
XNextEvent(3Xl 1) function, 571

event-processing loop (Xlib client program), 567-570

XAnyEvent structure, 572

XButtonEvent data type, 573

XEvent data type, 571

XExposeEvent structure, 572

XMotionEvent data type, 574

XNextEvent(3X 11), 571

exceptfds file descriptor set, 336-337

exception events, 338

exclusive locks, 94
EXDEV error, 107

exec(2) functions, 397, 401-402

execl(2) function, 402

execl(3) function, 402

execle(2) function, 402

execle(3) function, 402

execlp(2) function, 402

execlp(3) function, 402

exect(2) function, 402

executable files, 119

execv(2) function, 402

execve(2) function, 46, 231, 397-401

arguments, 397-398

starting the ps(l) command, 398-401

execvp(2) function, 402

exit(2) function, 169

expand (-E) compile option, 16

exponent underflow (conversions), 204

external arrays, 219

external processes, invoking, 379-384

external values (getopt(3) function), 175-176

external variables

errno, 324-325

tzset(3) function, 218-219

F

fallback plans (tempnam(3) function), 161

fchdir(2) function, 131-132

fchmod(2) function, 122

fchwon(2) function, 123

584 ADVANCED UNIX PROGRAMMING

fclose(3) function, 48, 63
fcntl(2) function, 99-102

FD_CLR() macro, 334

FDJSSETO macro, 334

FD_SET() macro, 334

FD_ZERO() macro, 334

feature macros, 25-30

AIX 4.3 feature tests, 28-29

FreeBSD 3.4-release feature tests, 27

HPUX 10.2 feature tests, 28

SunOS 5.6 feature tests, 29-30

ferror(3) function, 62

fetching information (NDBM database), 277-278

fgetgrent(3) function, 240

fgetpwent(3) function, 236

fields

/etc/group file, 239

/etc/passwd file, 233-234

FIFOs (First-In, First-Out), 124-125

named pipes, 37-38

file descriptor sets, 334

exceptfds, 336-337
exception events, 338

read events, 337

readfds, 335-336

write events, 337

writefds, 336-337

file descriptors, 43-44

closed, 97

closing, 46
duplicating, 47-48

lockf(2) function, 97

file locking, 87

advisory locking, 88, 94

lockf(2) function, 98

closed file descriptors, 97

flock(2) function, 94-96

lock files, 87-93

creating, 89

example listing, 89-91

latency time, 93

limitations, 93

local file system reliability, 93

testing, 92

unlocking, 91-92

locked regions, 87-88, 96

advisory locking, 98

deadlock avoidance, 98

EACCES error, 97

EDEADLK error, 98

merging, 97

POSIX fcntl(2) function, 99-102

System V lockf(2) function, 96-98

unlocking, 98

mandatory locking, 88, 102-103

read locks, 94-95

remote file systems, 95

write locks, 94

file system objects, 33-41

block devices, 35-36

character devices, 36-37

directories, 34-35
permissions, 42-43

named pipes (FIFOs), 37-38

opening, 45

regular files, 33-34

permissions, 41-42

sockets, 38, 47

special files, 39-41

opening, 46

symbolic links, 39

file systems

information

obtaining, 108-109

obtaining with fstat(2) function, 111

obtaining with stat(2) function, 109-111

.test program, 111-116

remote file systems, file locking, 95

file unit numbers, 43

files, 43-48

/etc/group file, 238-239

/etc/passwd file, 233-234

access files, testing, 119-120

access time, 118

closing, 44-46

automatically, 46

close(2) function, 44

execve(2) function, 46

creation time, 118

deleting, 105-106
errno.h, 56

executable, 119

file descriptors, 43-44

closing, 46

duplicating, 47-48
1/0,49

include files

time conversion functions, 210

Xlib client program, 561-562
linking, 106-107

links, testing, 116-117
lock, 87-93

creating, 89

example listing, 89-91

latency time, 93

limitations, 93

local file system reliability, 93
testing, 92

unlocking, 91-92

memory mappings. See memory mappings
modification time, 118

moving, 107-108

open(2) function flag bits, 45-46
opening, 44-45

in non-blocking mode, 330

open(2) flag bits, 45-46

INDEX 585

open(2) function, 43-46

special files, 46
ownership, 122

changing, 123-124

permissions, 122

changing, 122-123

script, 119

searching within (lseek(2) function), 74-75

shadow password files, 234
sparse, 77

copying, 79

creating, 77-79

sparse.dat, deleting, 79

special files, 39-41

opening, 46

standard input, changing, 48

string.h, 60

temporary

avoiding, 169

cleanup tasks, 162

cleanup with atexit(3) function, 162-165

cleanup with destructors, 165-169

creating, 151

creating with mkstemp(3) function, 155-157

creating with tmpfile(3) function, 157-158

names, creating, 154-155

pathnames, creating, 151-154

prefixes, 159-161

realeasing, 161-162

suffix, appending, 157

truncating
ftruncate(2) function, 76-77

truncate(2) function, 76

types, testing, 117-118

filling signal sets, 312

finding. See searching

First-In, First-Out (FIFO), 124-125

named pipes, 37-38

flag argument (fnmatch(3) function), 409

flag bits
dbm_open(3) function, 275

mmap(2) function, 540-542

open(2) function, 45-46

flags

fnmatch(3) function
FNM_CASEFOLD flag, 413

FNM_LEADING_DIR flag, 415

FNM_NOESCAPE flag, 412-413

FNM_PATHNAME flag, 413-414

FNM_PERIOD flag, 414-415

ftw(3C) function, 145

glob(3) function
GLOB_ALTDIRFUNC flag, 427

GLOB_APPEND flag, 424

GLOB_BRACE flag, 427

GLOB_DOOFFS flag, 422-424

GLOB_MAGCHAR flag, 427

GLOB_MARK flag, 424-425

GLOB_NOCHECK flag, 426-427

GLOB_NOMAGIC flag, 428

GLOB_NOSORT flag, 425-426

GLOB_QUOTE flag, 426

GLOB_TILDE flag, 428-429

nftw(3C) function, 144-145

open(2) function, 0_N0NBL0CK flag, 330-331

flags argument

glob(3) function, 416

nftw(3C) function, 144

shl_load(3X) function, 270
flock(2) function, 94-96

flock(3UCB) function, 95

fn function, 145

fnmatch(3) function, 408-415

flag argument, 409

FNM_CASEFOLD flag, 413

FNM_LEADING_DIR flag, 415

FNM_NOESCAPE flag, 412-413

FNM_PATHNAME flag, 413-414

FNM_PERIOD flag, 414-415

pattern argument, 408

string argument, 408

forcing data to media

fsync(2) function, 81

sync(2) function, 80

fork process, 385-387
fork(2) function, 385-387

child processes, creating, 388-389

format specifiers (strftime(3) function), 222-223

fpathconf(2) function

chown(2) function restrictions, testing, 124

pathnames size, 125-128

FreeBSD

64-bit C data types, 202

cache files, 258
issetugid(2) function, 232

mmap(2) function, 540

resource utilization structure, 396

strtoq(3) function, 202

strtouq(3) function, 202

FreeBSD 3.4-release feature tests, 27

FreeBSD Hypertext Man Pages Web site, 11

freeing regular expressions, 439-440

fstat(2) function, 372

file system information, obtaining, 108-111

testing, 111-116

fsync(2) function, 81

ftruncate(2) function, 76-77

ftw(3C) function

directory structures, walking, 144-146

obj_flags, 145

functions

access(2), 119-120

alarm(3), 320-322

alphasort(3), 139-141

586 ADVANCED UNIX PROGRAMMING

asctime(3), 217-218

atexit(3), 162-165

atof(3), 191

atoi(3), 189-191

atol(3), 189
chdir(2), 130-131

chmod(2), 122-123

chown(2), 123-124

chroot(2), 146-149

close(2), 44

closedir(3), 135

compareO, 299

conversion functions. See conversion functions

creat(2), 70

ctime r(3), 213-214

ctime(3), 212-213

dbm_clearerr(3), 274

dbm_close(3), 274-276

dbm_error(3), 274

dbm_fetch(3), 277-278

dbm_firstkey(3), 278-279

dbm_nextkey(3), 278-279

dbm_open(3), 275

dbm_store(3), 276-277

dirfd(3), 134

dlclose(3), 266

dlerror(3), 265

dlopen(3), 264-265

dlsym(3), 265

dup(2), 47-48

dup2(2), 47

endgrent(3), 239

exec(2), 397, 401-402

execl(2), 402

execl(3), 402

execle(2), 402

execle(3), 402

execlp(2), 402

execlp(3), 402

exect(2), 402

execv(2), 402

execve(2), 46, 231,397-401

arguments, 397-398

starting the ps(l) command, 398-401

execvp(2), 402

exit(2), 169

failure of, 52-53

fchdir(2), 131-132

fchmod(2), 122

fchown(2), 123

fclose(3), 48, 63

fcntl(2), 99-102

ferror(3), 62

fgetgrent(3), 240

fgetpwent(3), 236

flock(2), 94-96

flock(3UCB), 95

fn, 145

fnmatch(3), 408-415
flag argument, 409

FNM_CASEFOLD flag, 413

FNM_LEADING_DIR flag, 415

FNM_NOESCAPE flag, 412-413

FNM_PATHNAME flag, 413-414

FNMJPERIOD flag, 414-415

pattern argument, 408

string argument, 408

fork(2), 385-387

child processes, creating, 388-389

fpathconf(2)

chown(2) function restrictions, testing, 124

pathnames size, 125-128

pathnames size test program, 126-128

pathnames size tests, 125-126

fstat(2), 372

file system information, obtaining, 108-111

testing, 111-116

fsync(2), 81

ftruncate(2), 76-77

ftw(3C)

directory structures, walking, 144-146

obj_flags, 145

getcwd(3), 129-130

getegid(2), 229

geteuid(2), 228-229

getgid(2), 229

getgrent(3), 239

getgrgid(3), 241

getgrnam(3), 241

getgroups(2), 242-244

getopt(3), 175

call, 176-177

example, 181-183

external values, 175-176

option-processing loops, 177-178

optstring argument, 177

getopt_long(3), 183

getpagesize(3), 538

getpwent(3), 235-236

getpwnam(3), 237-238
getpwuid(3), 237

getsubopt(3), 179

example, 180-183

subop toin parsing, 180
getuid(2) function, 228-229

getwd(3), 129-130

glob(3), 416-429

arguments, 416

return values, 417-422

GLOB_ALTDlRFUNC flag, 427

GLOB_APPEND flag, 424

GLOB_BRACE flag, 427

GLOB_DOOFFS flag, 422-424

GLOB_MAGCHAR flag, 427

INDEX 587

GLOB_MARK flag, 424-425

GLOB_NOCHECK flag, 426-427

GLOB_NOMAGIC flag, 428

GLOB_NOSORT flag, 425-426

GLOB_QUOTE flag, 426

GLOB_TILDE flag, 428-429

globfree(3), 416-417

gmtime(3), 214-215

HPUX 10.2 API, 269-271

initgroups(3), 245

interval timer functions, 361

getitimer(2), 361-362

one-shot realtime timers, creating, 364-366

repeating timers, establishing, 366-369

restrictions, 363-364

setitimer(2), 361-363

isatty(3), 83-85

issetugid(2) (FreeBSD), 232

kill(2), 326-327

lchmod(2), 122

lchown(2), 123

link(2), 106-107

localtime(3), 214-215

Lock(), 91

lockf(2), 96-98

lseek(2), 74-75

lstat(2), 120-121

madvise(2), 549-552

malloc(3), 322
mandatory locking affected, 102

mincore(2), 552

mkdir(2), 132-133

mkfifo(2), 124-125

mkstemp(3), 155-157

mkstemps(3), 157

mktemp(3), 154-155

mktime(3), 220-221

mmap(2), 539-541

arguments, 539-540

flag bits, 540-542

macros, 540

portable flag bits, 540
program to select language of system error

messages, 542-547

mprotect(2), 548-549

msgctl(3), 458

msgget(3), 457
key argument, 453

msgrcv(3), 461-463

msgsnd(3), 460-461

msync(2), 553

munmap(2), 554

mv(l), 107-108

nftw(3C), 144-146

open(2), 43-46
flag bits, 45-46

lock files, creating, 89
CLNONBLOCK flag, 330-331

opendir(3), 134-135

pathconf(2), 124-128

chown(2) function restrictions, testing, 124

pathnames size, 125-128

pclose(3), 378

perror(3), 57-58

pipe(2), 371-372

poll(2), 342-349

event bit macros, 344-345

example program, 345-349

priority bands, 345

popen(3), 373-374

reading from pipes, 374-375

writing to pipes, 375-377

processO, 298

putpwent(3), 236-237

-R reporting function (semop utility), 513

raise(3), 327

re-entrant functions, 241-242, 322-325

read(2), 71

readdir(3), 136-138

readlink(2), 121

readv(2), 82-83

regcomp(3), 438

regerror(3), 439

regexec(3), 440-441

regfree(3), 439-440

registering, 162, 165

remove(3), 106
rename(2), 108

returns, 52

rewinddir(3), 138

rmdir(2), 133-134

scandir(3), 139-140
directory scanning example, 141-143

scatter read and write, 82-83

seekdir(3), 139

select(2), 333-342
directory program, 338-342

exception events, 338

file descriptor sets, 334-337

read events, 337

timeout argument, 335-336

timeval structure, 335

write events, 337

semctl(2), 486-488
GETALL command, 495-496

GETNCNT command, 499

GETPID command, 498-499

GETVAL command, 494-495

GETZCNT command, 500

IPC_SET command, 492-494

IPC_STAT command, 488, 490-492

SETALL command, 497-498

SETVAL command, 496-497

semget(2), 483-486

588 ADVANCED UNIX PROGRAMMING

semop(2), 500-502

IPC_NOWAIT flag, 501

notify operations, 505

SEMJJNDO flag, 501-507

wait for zero operations, 505-506

wait operations, 502-505
setegid(2), 232

seteuid(2), 230-231

setgid(2), 232

setgrent(3), 239
setgroups(2), 244-245

setuid(2), 230-231

shl_findsym(3X), 270-271

shl_load(3X), 270

shl_unload(3X), 271

shmat(2), 523-524

shmctl(2), 521-522

IPC_RM1D command, 521, 526

IPC_SET command, 521-523

IPC_STAT command, 521

SHM_LOCK command, 521

SHM_UNLOCK command, 521
shmdt(2), 524-526

shmget(2), 519-521

sigaction(2), 314-317

sigaddset(3), 312-313

sigdelset(3), 313

sigemptyset(3), 312

sigfillset(3), 312

sigismember(3), 313

signal(3), 308-311

sigpending(2), 319

sigprocmask(2), 318-319

sigsuspend(2), 319-322

sleep functions

nanosleep(2), 357-361

sleep(3), 322, 351-354

usleep(3), 355-357

sscanf(3), 192-194

stat(2), 458

file system information, obtaining, 108-111

testing, 111-116

stdio(3), 49

strerror(3), 60-62

strftime(3), 10, 221-226

DTime class, testing, 224-226

DTime::strftime(3) method, 223-224

format specifiers, 222-223

locale, 226

strtod(3), 202-204

strtol(3), 194-197

strtoll(3), 201

strtoq(3), 202

strtoul(3), 194

strtoull(3), 201

strtouq(3), 202

symlink(2), 120

sync(2), 80-81

system(3), 379-384

limitations, 384

return values, 381-383

telldir(3), 138

tempnam(3), 159-161
time conversion functions, 210-212

asctime(3) function, 217-218

ctime r(3), 213-214

ctime(3), 212-213

DTime class example, 210-212

gmtime(3), 214-215

include files, 210

localtime(3), 214-215

mktime(3), 220-221

struct tm structure, 216-217, 220

tznamef] external array, 219

tzset(3), 218-219

tmpfile(3), 157-158

tmpnam(3), 151-154

truncate(2), 76

truncate(3C), 76

ttyname(3), 83-85

tzset(3), 208-209, 218-219
umask(2), 68-70

unlink(2)

deleting files, 105-106

temporary files, releasing, 161-162

usage() (semop utility), 513-514

variable assignment functions (globvar utility
program), 533-534

wait(2), 389-396

calling without zombie processes, 392-393
status argument, 391

status test macros, 393-394

zombie processes, 389-391
wait3(2), 395-396

wait4(2), 395-396

waitpid(2), 395-396
walk(), 298

write(2), 71-72

writev(2), 82-83

XNextEvent(3Xll) (Xlib client program), 571
F_SETFL command, 330

G

-g compile option, 15

garbled data, converting with atoi(3) function, 190
gcc command name (compilers), 13
gcc(l) command, 257

GECOS field (/etc/passwd file), 234

GETALL command (semctl(2) function), 495-496
getcwd(3) function, 129-130

INDEX 589

getegid(2) function, 229

geteuid(2) function, 228-229

getgid(2) function, 229

getgrent(3) function, 239

getgrgid(3) function, 241

getgmam(3) function, 241

getgroups(2) function, 242-244

getitimer(2) function, 361-362

GETNCNT command (semctl(2) function), 499

getopt(3) function, 175

call, 176-177

example, 181-183

external values, 175-176

option-processing loops, 177-178

optstring argument, 177

getopt_long(3) function, 183

getpagesize(3) function, 538

GETPID command (semctl(2) function), 498-499

getpwent(3) function, 235-236

getpwnam(3) function, 237-238

getpwuid(3) function, 237

getsubopt(3) function, 179

example, 180-183

suboption parsing, 180

getuid(2) function, 228-229

GETVAL command (semctl(2) function), 494-495

getwd(3) function, 129-130

GETZCNT command (semctl(2) function), 500

gid numbers (group ID numbers), 228

glob(3) function, 416-429

arguments, 416

return values, 417-422

GLOB_ALTDlRFUNC flag, 427

GLOB_APPEND flag, 424

GLOB_BRACE flag, 427

GLOB_DOOFFS flag, 422-424

GLOB_MAGCHAR flag, 427

GLOB_MARK flag, 424-425

GLOB_NOCHECK flag, 426-427

GLOB_NOMAGIC flag, 428

GLOB_NOSORT dag, 425-426

GLOB_QUOTE flag, 426

GLOB_TILDE flag, 428-429

global external variables, errno, 324-325
global variable pools (globvar utility program)

clearing, 518

creating, 516

destroying, 516
global variables (globvar utility program)

accessing, 517-518

creating, 517

removing, 518
GLOBE_TILDE flag (glob(3) function), 428-429

globfree(3) function, 416-417
globget.c source module (globvar utility program), 529

globlk.c source module (globvar utility program), 528-529

globset.c source module (globvar utility program), 533-534

globun.c source module (globvar utility program), 534-535
GLOBVAR environment variable, 517

globvar utility program, 515-518, 526-535

global definitions, 527-528

global variable pools, 516-518

global variables, 517-518

globget.c source module, 529

globlk.c source module, 528-529

globset.c source module, 533-534

globun.c source module, 534-535

GLOBVAR environment variable, 517

main() program, 529-533

semaphore locking routines, 528-529

shared memory system calls, 518-526

accessing shared memory, 519-521

attaching shared memory, 523-524

attributes, changing, 522-523

creating shared memory, 519-521

destroying shared memory, 526

detaching shared memory, 524-526

information about shared memory, obtaining,

521-522

Unset feature, 534-535

variable assignment functions, 533-534

GLOB_ALTDIRFUNC flag (glob(3) function), 427

GLOB_APPEND flag (glob(3) function), 424

GLOB_BRACE flag (glob(3) function), 427

GLOB_DOOFFS flag (glob(3) function), 422-424

GLOB_MAGCHAR flag (glob(3) function), 427

GLOB_MARK flag (glob(3) function), 424-425

GLOB_NOCHECK flag (glob(3) function), 426-427

GLOB_NOMAGIC flag (glob(3) function), 428

GLOB_NOSORT flag (glob(3) function), 425-426

GLOB_QUOTE flag (glob(3) function), 426

GMT (Greenwich Mean Time), 208

gmtime(3) function, 214-215

GNU compiler, 13
maximum warning level, 18

warning messages, 17

group argument (chown(2) function), 123

group database routines
endgrent(3) function, 239

fgetgrent(3) function, 240

getgrent(3) function, 239

getgrgid(3) function, 241

getgrnam(3) function, 241

group structure, 239-240

setgrent(3) function, 239

group ID, setting, 232

group ID numbers (gid numbers), 228

group structure, 239-240

groups
permission bits, 65

supplementary groups, 242-245

getgroups(2) function, 242-244

initgroups(3) function, 245

setgroups(2) function, 244-245

590 ADVANCED UNIX PROGRAMMING

H

handle argument (shl_findsym(3X) function), 270

hexadecimal tests (radix conversions), 198

HP Technical Documentation Web site, 11

HPUX 10.2 API (dynamic library loading), 269-271

HPUX 10.2 feature tests, 28

HPUX documents, 133

l-J

-I compile option, 15-16

I/O
applying, 72-73

file I/O, 49
non-blocking I/O, 329-333

opening files, 330

performing, 331-333

problems with latency and CPU overhead, 333
setting non-blocking mode, 330-331

poll(2) function, 342-349

event bit macros, 344-345

example program, 345-349

priority bands, 345

reading, 71

scattered, reading/writing, 82-83

select(2) function, 333-342

directory program, 338-342

exception events, 338

file descriptor sets, 334-337

read events, 337

timeout argument, 335-336

timeval structure, 335

write events, 337

writing, 71-72

IBM AIX Web site, 11

ID values (IPC), 452

id(l) command, 227-229

ident command, 24

identification role summary, 230

implementing

DTime::strftime() method, 223

Passwd::_dispose() method, 251

Passwd::_importO method, 251

sleep(3) function, 352-354

static libraries, 248-253

include (-1) compile option, 15-16

include files

semop utility program, 489

time conversion functions, 210

Xlib client program, 561-562

initgroups(3) function, 245

initialization (dynamic library loading), 266

InoDb class (Snapshot program), 288-291

input, standard input (files), 48

input members, setting for struct tm structure, 220

integer conversions, 201

integer return values

failure, testing, 55

successful, 52
Internet resources, man(l) pages, 11-12

interprocess communications (IPC). See IPC

interrupting programs. See signals

interval timers, 361
getitimer(2) function, 361-362

ITIMER_PROF, 364

one-shot realtime timers, creating, 364-366

repeating timers, establishing, 366-369

restrictions, 363-364
setitimer(2) function, 361-362

macros, 363

invoking external processes, 379-384

iov argument (readv(2)/writev(2) functions), 82

iovcnt argument (readv(2)/writev(2) functions), 82

IPC (interprocess communications), 447

IPC ID values, 452-454

IPC key values, 452-453

message queues, 448-449, 463

accessing, 457

creating, 457

destroying, 458

Msq class definition file, 463-464

Msq::access() method, 467

Msq::change() method, 469-470

Msq::create() method, 466-467

Msq::destroy() method, 467-468

Msq::dispose() method, 464-466

Msq::Msq() constructor, 464-466

Msq::recv() method, 471-472

Msq::send() method, 470-471

Msq::stat() method, 468-469

Msq::_verify() method, 464, 466

obtaining information, 458-459

ownership, changing, 459-460

receiving messages, 461-463

sending messages, 460-461

statcln client program source code, 476-478

StatMsg message structure, 472-473
statsrv server, 473-475

resources

creating, 453

destroying, 454-455

referencing, 452-454

semaphores, 450-451

access, changing, 492-494

accessing, 483-485

creating, 483-485

destroying, 486-488
notifying, 451

operations, 500-506

process ID, querying, 498-499

processes waiting for notifies, querying, 499

INDEX 591

processes waiting for zero, querying, 500

querying, 488, 490-492

semop utility program, 481-482, 507-511,

513-514

undo processing, 506-507

values, changing, 496-498

values, querying, 494-496

waiting on, 451

shared memory, 450

ipcrm(l) command, 455

ipcs(l) command, 455

IPC_NOWAIT flag (semop(2) function), 501

IPC_PR1VATE value (key argument), 453

IPC_RMID command, 521, 526

IPC_SET command, 459-460, 492-494, 521-523

IPC_STAT command, 458-459, 488-492, 521

isatty(3) function, 83-85

issetugid(2) function (FreeBSD), 232

ITIMER_PROF interval timer, 364

K

key argument (msgget(3) function), 453

key values (IPC), 452-453

key visitation feature (Snapshot program), testing, 301-303

keys (NDBM database)

deleting, 279

visiting all keys, 278-279
keywords, const (C programming language), 23-25

kill(2) function, 326-327

L

-L option (gcc(l) command), 257

large integer conversions, 201

latency (non-blocking I/O), 333

latency time, lock files, 93

lchmod(2) function, 122

lchwon(2) function, 123

lck argument, 99
LD_LIBRARY_PATH variable (shared libraries), 259-260

libraries
shared libraries, 256-261

benefits, 263-264

closing, 266
comparing to static libraries, 256-257, 261-264

controlling what is shared, 261

creating, 257
dynamic library loading. See dynamic library

loading
dynamic loader, 258-260

linking process, 257
listing shared library references, 258

opening, 264-265

position-independent code, 260

search path variables, 258

static libraries, 247-256

benefits, 262-263

comparing to shared libraries, 256-257,

261-264

creating archives with ar(l) command, 253-254

implementing, 248-253

linking process, 255-256

listing contents of archives, 254

Passwd class example, 248-253

process memory image, 247-248

verbose listings of archives, obtaining, 254

link(2) function, 106-107

linking

files, 106-107

testing, 116-117

shared libraries, 257

static libraries, 255-256

symbolic links. See symbolic links

links, symbolic links, 39

Linux, cache files, 258
listing contents of archives (static libraries), 254

listing shared library references, 258

listings
atexit(3) function program, 163

chroot(2) function program, 147

directory list program, 136
getsubopt(3)/getopt(3) program, 181

lock files, 89
msktemp(3) program, 155

non-null flag pointer, 185
option-processing loop with getopt(3) function, 177

pathconf(2)/fpathconf(2) test program, 126

scandir(3) function example, 141

Stat class/test program, 111

tempnam(3) function program, 159

temporary file cleanup with destructors program, 165

tmpfile(3) function program, 158

tmpnam(3) function program, 152-153

loading libraries (dynamic library loading), 264-271

applying dynamic loading, 266-268

closing shared libraries, 266
HPUX 10.2 API, 269-271

initialization, 266

opening shared libraries, 264-265

reference pointers, obtaining, 265

reporting errors, 265

local file system, lock file reliability, 93

local time zones, 208-209

locale (strftime(3) function), 226

localtime(3) function, 214-215

lock files, 87-93

creating, 89

example listing, 89-91

latency time, 93

limitations, 93

592 ADVANCED UNIX PROGRAMMING

local file system reliability, 93

testing, 92

unlocking, 91-92

Lock() function, 91

locked regions, 87-88, 96

EACCES error, 97

merging, 97
POSIX fcntl(2) function, 99-102

System V lockf(2) function, 96-98

unlocking, 98

lockf(2) function, 96-98

locking files, 87
advisory locking, 88, 94

lockf(2) function, 98

closed file descriptors, 97

flock(2) function, 94-96

lock files, 87-93
creating, 89

example listing, 89-91

latency time, 93

limitations, 93

local file system reliability, 93

testing, 92

unlocking, 91-92

locked regions, 87-88, 96

advisory locking, 98

deadlock avoidance, 98

EACCES error, 97

EDEADLK error, 98

merging, 97

POSIX fcntl(2) function, 99-102

System V lockf(2) function, 96-98

unlocking, 98

mandatory locking, 88, 102-103

read locks, 94-95

remote file systems, 95

write locks, 94

long options, 183

getopt_long(3) function, 183

look shorter, 184

options structure, 184
configuring, 184

non-null flag pointer, 185-186

null flag pointer, 184-185

processing, 185

LONG_MAX return value, 199-200

loops (getopt(3) function), 177-178

lseek(2) function, 74-75

-lshared option (gcc(l) command), 257

lstat(2) function, 120-121

M

macros

bitwise macros, 395

event bit macros (poll(2) function), 344-345

feature macro test program, 26-30
A1X 4.3 feature tests, 28-29

FreeBSD 3.4-release feature tests, 27

HPUX 10.2 feature tests, 28

SunOS 5.6 feature tests, 29-30

file descriptor sets, 334

file type testing, 117

interval timer macros, 363

MAXSYMLINKS, 39
mmap(2) function, 540

nftw(3C) flags, 144-145

permission bits, 66-67

REG_BASIC, 437

SIG_DFL, 310
SIGJGN, 310

status test macros, 393-394

AIX 4.3 feature tests, 29

FreeBSD 3.4-release feature tests, 27

HPUX 10.2 feature tests, 28

_POSIX_C_SOURCE feature macro, 26

_POSlX_SOURCE feature macro, 25

SunOS 5.6 feature tests, 29-30

madvise(2) function, 549-552

main() program

globvar utility program, 529-533

Xlib client program, 562-565

make(l) command, 53

make_cleanfiles command, 92

malloc(3) function, 322

man(l) command, 10

mandatory locking, 88, 102-103

manual pages, 9-12

man(l) Internet resources, 11-12

references, 10-11

searching, 10

sections, 9-10

mappings (memory), 537

creating, 539-547

program to select language of system error

messages, 542-547
destroying, 554

regions

access protections, changing, 548-549

memory use, informing the kernel about,
549-552

querying pages in memory, 552

synchronizing changes, 553

virtual memory (VM) page size, 538-539

MAP_ANON flag (mmap(2) function), 540

MAP_HASSEMAPHORE flag (mmap(2) function), 541

MAP_INHERIT flag (mmap(2) function), 540-541

MAP_STACK flag (mmap(2) function), 541
matching patterns

anchors, 431-432

atoms, 434

character classes, 433

INDEX 593

fnmatch(3) function, 408-415

flag argument, 409

FNM_CASEFOLD flag, 413

FNM_LEADING_DIR flag, 415

FNM_NOESCAPE flag, 412-413

FNM_PATHNAME flag, 413-414

FNM_PERIOD flag, 414-415

pattern argument, 408

string argument, 408

glob(3) function, 416-429

arguments, 416

GL0B_ALTD1RFUNC flag, 427

GLOB_APPEND flag, 424

GLOB_BRACE flag, 427

GLOB_DOOFFS flag, 422-424

GLOB_MAGCHAR flag, 427

GLOB_MARK flag, 424-425

GLOB_NOCHECK flag, 426-427

GLOB_NOMAGIC flag, 428

GLOB_NOSORT flag, 425-426

GLOB_QUOTE flag, 426

GLOB_TILDE flag, 428-429

return values, 417-422

meta-characters, 405-408, 433

parenthesized match subexpressions, 434

pieces, 434-435

ranges, 433

regexec(3) function, 440-441

regular expressions, 440-441

sets, 432-433

shell patterns, 405-408

math errors

math error test flowchart, 204

testing for (conversions), 203

maximum warning level (GNU compiler), 18

MAXSYMLINKS macro, 39

media, forcing data to, 80-81

members (struct tm structure), 216-217

input members, setting, 220

members altered by mktime(3), 220

memory. See shared memory

memory mappings, 537

creating, 539-547

mmap(2) function, 539-547
program to select language of system error

messages, 542-547

destroying, 554

regions
access protections, changing, 548-549

memory use, informing the kernel about,

549-552
querying pages in memory, 552

synchronizing changes, 553

virtual memory (VM) page size, 538-539

message queues, 448-449
accessing, 457

client and server programs, 463-479

Msq class definition file, 463-464

Msq::access() method, 467

Msq::change() method, 469-470

Msq::create() method, 466-467

Msq::destroy() method, 467-468

Msq::dispose() method, 464-466

Msq::Msq() constructor, 464-466

Msq::recv() method, 471-472

Msq::send() method, 470-471

Msq::stat() method, 468-469

Msq::_verify() method, 464-466

statcln source code, 476-478

StatMsg message structure, 472-473
statsrv server, 473-475

creating, 457

destroying, 458

obtaining information, 458-459

ownership, changing, 459-460

receiving messages, 461-463

sending messages, 460-461

message types, 448

messages structures, StatMsg, 472-473

messages.c program, 542-545, 549

meta-characters, 433-434

anchors, 431-432

quoted characters, 436

shell patterns, 405-408

methods

DTime::mktime(), 221

DTime::strftime(), 223-224

Msq::access(), 467

Msq::change!), 469-470

Msq::create(), 466-467

Msq::destroy!), 467-468
Msq::dispose(), 464-466

Msq::recv(), 471-472

Msq::send(), 470-471

Msq::stat(), 468-469

Msq::_verifyO, 464-466

microseconds (sleep time), 355-357

mincore(2) function, 552

mkdir(2) function, 132-133

mkfifo(2) function, 124-125

mkstemp(3) function, 155-157

mkstemps(3) function, 157

mktemp(3) function, 154-155

mktime(3) function, 220-221

mmap(2) function, 539-541

arguments, 539-540

flag bits, 540-542

portable flag bits, 540

macros, 540

program to select language of system error messages,

542-547

594 ADVANCED UNIX PROGRAMMING

mode argument

access(2) function, 119
mkdir(2) function, 132

modification time (files), 118

moving files, 107-108
mprotect(2) function, 548-549

msgctl(3) function, 458

msgget(3) function, 457

key argument, 453

msgrcv(3) function, 461-463

msgsnd(3) function, 460-461
Msq class definition file (applying message queues),

463-464

Msq::access() method, 467
Msq::change() method, 469-470

Msq::create() method, 466-467

Msq::destroy() method, 467-468

Msq::dispose() method, 464-466

Msq::Msq() constructor, 464-466

Msq::recv() method, 471-472

Msq::send() method, 470-471

Msq::stat() method, 468-469

Msq::_verify() method, 464-466

msync(2) function, 553

multiple conversions, 196

multiple options, 173-174

munmap(2) function, 554

mv(l) function, 107-108

N

delete capability, testing, 301-303

Dir class, 280-283

InoDb class, 288-291
key visitation feature, testing, 301-303

processO function, 298

running, 299-301

source code listing, 291-298

walk() function, 298

storing information, 276-277

new ermo variable, 56-57

nftw(3C) function, 144-146

No Space Left On Device (ENOSPC) error, 63

No Such File or Directory (ENOENT) error, 54

non-blocking I/O, 329-333

opening files, 330

performing, 331-333
problems with latency and CPU overhead, 333

setting non-blocking mode, 330-331

non-null flag pointer (options structure), 185-186

notify operations (semaphores), 505

notifying the semaphore, 451

null arguments (tmpnam(3) function), 152-153

null buffers (current directory), 130

null flag pointer (options structure), 184-185

number system (radix values), 196

numeric conversion

sscanf(3) function, 192-193

testing, 193

o
named pipes (FIFOs), 37-38

nameless pipes, 371
namelist argument (scandir(3) function), 140

namelist array, 140

names
temporary files

creating, 154-155

prefixes, 159-161

suffix, 157

tty, determining, 83-85

nanoseconds (sleep time), 357-361

nanosleep(2) function, 357-361

nbytes argument (read(2)/write(2) functions), 71

NDBM database, 273-303

closing, 276
deleting information, 278

error handling, 274-275

keys
deleting, 279

visiting all keys, 278-279

opening, 275
retrieving information, 277-278

Snapshot program example, 280

compareO function, 299

Dbm class, 283-288

o compile option (add - to front), 14-17

objects. See file system objects

obj_flags (ftw(3C)/nftw(3C) functions), 145

obj_FTW argument (fn function), 145

obj_path argument (fn function), 145

obj_stat argument (fn function), 145

offset argument (lseek(2) function), 74

old ermo variable, 53-56

applying, 55

integer return value failure, testing, 55

pointer return value failure, testing, 56

referencing error codes by name, 54-55

one-shot realtime timers, creating, 364-366

online manual pages, 9-12

man(l) Internet resources, 11-12

references, 10-11

searching, 10

sections, 9-10

open file descriptors (flock(2) function), 95
open(2) function, 43-46

flag bits, 45-46

lock files, creating, 89

CLNONBLOCK flag, 330-331
opendir(3) function, 134-135

INDEX 595

opening

directories, 134-135
files, 44-45

in non-blocking mode, 330

open(2) flag bits, 45-46

special files, 46

NDBM database, 275

pipes to other processes, 373-374

shared libraries, 264-265

operations (semaphores), 500-502

notify operations, 505

wait for zero operations, 505-506

wait operations, 502-505

optarg external variable, 175

opterr external variable, 176

optimize (-0) compile option, 16-17

optind external variable, 175

option-processing loops (getopt(3) function), 177-178
options

arguments, 174

identifying, 174

long, 183

getopt_long(3) function, 183

look shorter, 184

options structure, 184-186

processing, 185

multiple, 173-174

options structure, 184-186

optreset external variable, 176

optstring argument (getopt(3) function), 177

overflows (conversions), testing for, 199-203

owner argument (chown(2) function), 123

ownership

files, 122-124

message queues, 459-460

semaphores, 492-494

0_NONBLOCK flag (open(2) function), 330-331

P

parent processes, 373, 385-386

waiting for child process completion, 389

zombie processes, creating, 389-391

parenthesized match subexpressions, 434

Passwd class (static libraries), 248-253

passwd structure, 235

password database routines

fgetpwent(3) function, 236

getpwent(3) function, 235-236

getpwnam(3) function, 237-238

getpwuid(3) function, 237

passwd structure, 235

putpwent(3) function, 236-237

passwords, shadow password files, 234

path argument

mkdir(2) function, 132

readlink(2) function, 121

path argument (exec(2) functions), 401
pathconf(2) function

chown(2) function restrictions, testing, 124
pathnames size, 125-128

pathname argument

execve(2) function, 397-398

opendir(3) function, 134
pathnames

size, 125-128

temporary files

buffers, 153-154

creating, 151

null arguments, 152-153

pattern argument

fnmatch(3) function, 408

glob(3) function, 416

pattern matching, 405-408

anchors, 431-432

atoms, 434

character classes, 433

fnmatch(3) function, 408-415

flag argument, 409

FNM_CASEFOLD flag, 413

FNM_LEADING_DIR flag, 415

FNM_NOESCAPE flag, 412-413

FNM_PATHNAME flag, 413-414

FNM_PERIOD flag, 414-415

pattern argument, 408

string argument, 408

glob(3) function, 416-429

arguments, 416

GLOB_ALTDIRFUNC flag, 427
GLOB_APPEND flag, 424

GLOB_BRACE flag, 427

GLOB_DOOFFS flag, 422-424

GLOB_MAGCHAR flag, 427

GLOB_MARK flag, 424-425

GLOB_NOCHECK flag, 426-427

GLOB_NOMAGIC flag, 428

GLOB_NOSORT flag, 425-426

GLOB_QUOTE flag, 426

GLOB_TILDE flag, 428-429

return values, 417-422

meta-characters, 405-408, 433

parenthesized match subexpressions, 434

pieces, 434-435

ranges, 433

regexec(3) function, 440-441

sets, 432-433

pclose(3) function, 373, 378

pending signals, 319

performance, mandatory locking, 102

596 ADVANCED UNIX PROGRAMMING

permission bits, 65-67

groups, 65

macros, 66-67

semaphores, 492-494

permissions, 41-43

directory access, 42-43

files, 122-123

message queues, 459-460
regular file access, 41-42

S_1SVTX, 67

perror(3) function, 57-58

pglob argument (glob(3) function), 416
pieces, 434-435

pipe symbol (|), 435
pipe(2) function, 371-372

pipes, 371-379

broken pipes, handling, 378-379

closing, 378

creating, 371-372

named pipes (FIFOs), 37-38

nameless pipes, 371

opening to other processes, 373-374
reading from, 374-375

STREAMS-based pipes, 372

unidirectional pipes, 372

writing to, 375-377

pointer return values

failure, testing, 56

successful, 52

pointers

buf, 121

conversion pointers, 195-196

non-null flag (options structure), 185-186

null flag, 184-185

void, scanning directories, 140

poll(2) function, 342-349

event bit macros, 344-345

example program, 345-349

priority bands, 345

popen(3) function, 373-374

reading from pipes, 374-375

writing to pipes, 375-377

portable flag bits (mmap(2) function), 540

position-independent code (shared libraries), 260

positions

restoring directories, 139

saving directories, 138

POSIX

file locking, 99

flock structure, 99

lock information, 101-102

locking regions, 100

unlocking regions, 101

stat structure, 109

POSIX. 1 standard re-entrant functions, 323

_POSIX_C_SOURCE feature macro, 26

A1X 4.3 feature tests, 29

FreeBSD 3.4-release feature tests, 27

SunOS 5.6 feature tests, 29-30

_POSIX_SOURCE feature macro, 25

AIX 4.3 feature tests, 29

FreeBSD 3.4-release feature tests, 27

HPUX 10.2 feature tests, 28

SunOS 5.6 feature tests, 29-30

_POSIX_VERS!ON feature macro

AIX 4.3 feature tests, 29

FreeBSD 3.4-release feature tests, 27

HPUX 10.2 feature tests, 28

SunOS 5.6 feature tests, 29-30

prefix argument (tempnam(3) function), 159

priority bands (poll® function), 345

process IDs, 449

querying, 498-499

process memory image (static libraries), 247-248

processO function, 298

processes

child process, 373

child processes, 385-386

creating with fork® function, 388-389

exec® functions, 397, 401-402

execl® function, 402

execl(3) function, 402

execle® function, 402

execle(3) function, 402

execlp® function, 402

execlp(3) function, 402
exect® function, 402

execv® function, 402

execve® function, 397-401

arguments, 397-398

starting the ps(l) command, 398-401
execvp® function, 402

external processes, invoking, 379-384
fork process, 385-387

fork® function, 385-387

child processes, creating, 388-389

interprocess communications. See IPC
parent processes, 373, 385-386

waiting for child process completion, 389

zombie processes, creating, 389-391
pipes, 371-379

broken pipes, handling, 378-379
closing, 378

creating, 371-372

nameless pipes, 371

opening to other processes, 373-374

reading from, 374-375

writing to, 375-377

wait® function, 389-396

calling without zombie processes, 392-393
status argument, 391

status test macros, 393-394

INDEX 597

wait3(2) function, 395-396

wait4(2) function, 395-396

waitpid(2) function, 395-396

zombie processes, 389-391

programming. See event-driven programming
programs

globvar utility program. See globvar utility program

interrupting. See signals

messages.c, 542-545, 549

,/regexpr test program, 441-446

semop utility program, 481-482

accessing semaphore sets, 485

creating semaphore sets, 485

main program source, 507-511

-R reporting function, 513

string-to-numeric conversions, 511-513
usage() function, 513-514

Snapshot program. See Snapshot program

Xlib client program, 561-575

event-processing loop, 567-570

include file, 561-562

main() program, 562-565

XAnyEvent structure, 572

XButtonEvent data type, 573

XEvent data type, 571

XExposeEvent structure, 572

XMotionEvent data type, 574

XNextEvent(3Xll), 571

ps(l) command, starting with execve(2) function, 398-401

putpwent(3) function, 236-237

Q
querying

pages in memory (memory-mapped regions), 552

process IDs (semaphores), 498-499

processes
waiting for notifies (semaphores), 499

waiting for zero (semaphores), 500

umask value, 69-70

value of semaphores, 494-496

semaphore sets, 488-492

question mark (?) meta-character, 406

queuing messages (processes), 448-449

quoted characters (regular expressions), 436

R

-R reporting function (semop utility), 513

radix conversions, 196-199

radix of zero, testing, 198

radix values, 196

radixes above 16, testing, 199

raise(3) function, 327

raised signals, 307, 326-327

range checking errors, 59

ranges, 433

re-entrant functions, 241-242, 322-325

avoiding re-entrant code issues, 324

ermo external variable, 324-325

read event bit masks (poll® function), 344
read events, 337

read locks, 94-95

read® function, 71

readdir® function, 136-138

readfds file descriptor set, 335-336

read events, 337
reading

I/O, 71

from pipes, 374-375

scatter function, 82-83

symbolic link contents, 121

readlink® function, 121

readv® function, 82-83

real user ID, 229

realtime timer, 361

one-shot realtime timers, creating, 364-366

receiving messages (message queues), 461-463

reference pointers, obtaining (dynamic library loading), 265

referencing

error codes by name, 54-55

IPC resources, 452-454

regcomp® function, 438

regerror® function, 439

regexec® function, 440-441

./regexpr test program, 441-446

regexpr(3) routines, 441-446

regfree® function, 439-440

regions

locked regions, 87-88, 96

advisory locking, 98

deadlock avoidance, 98

EACCES error, 97

EDEADLK error, 98

merging, 97

POSIX fcntl® function, 99-102

System V lockf® function, 96-98

unlocking, 98

memory mappings

access protections, changing, 548-549

memory use, informing the kernel about,

549-552

querying pages in memory, 552

synchronizing changes, 553

registering functions (atexit® function), 162, 165

regular expressions, 431-436

. meta-character, 433

anchors, 431-432

atoms, 434

bounds, 436

598 ADVANCED UNIX PROGRAMMING

branches, 435

character classes, 433
compiling, 437-438

freeing, 439-440

matching, 440-441

parenthesized match subexpressions, 434

pieces, 434-435
program example (applying regular expressions),

441-446

quoted characters, 436

ranges, 433

reporting errors, 438-439

sets, 432-433

regular files, 33-34

permissions, 41-42

REG_BASIC macro, 437

reliable signals, 308, 311-317

applying, 316-317

setting signal actions, 314-315
sigaction(2) function, 314-317

sigaddset(3) function, 312-313

sigdelset(3) function, 313

sigemptyset(3) function, 312

sigfillset(3) function, 312

sigismember(3) function, 313
signal action flags, 315-316

signal sets, 311-313

remote file systems, file locking, 95

remove(3) function, 106

removing

global variables (globvar utility program), 518

signals from signal sets, 313

rename(2) function, 108

repeating timers, establishing, 366-369

reporting

ermo values, 57

perror(3) function, 57-58
strerror(3) function, 60-62

sys_errlist[] array, 58-60

errors (dynamic library loading), 265

resource utilization structure, 396

restoring directory positions, 139

retrieving information (NDBM database), 277-278

return pointers (conversions), 195

testing, 196

return values

ERANGE, 199-200

glob(3) function, 417-422

GLOB_ALTDIRFUNC flag, 427

GLOB_APPEND flag, 424

GLOB_BRACE flag, 427

GLOB_DOOFFS flag, 422-424

GLOB_MAGCHAR flag, 427

GLOB_MARK flag, 424-425

GLOB_NOCHECK flag, 426-427

GLOB_NOMAGIC flag, 428

GLOB_NOSORT flag, 425-426

GLOB_QUOTE flag, 426

GLOB_TILDE flag, 428-429

integer
failure, testing, 55

successful, 52

LONG_MAX, 199-200

pointer
failure, testing, 56

successful, 52

system(3) function, 381-383

returns, 52
revent bit masks (poll(2) function), 345

rewinddir(3) function, 138

rewinding directories to start, 138

rmdir(2) function, 133-134
rmtp argument (nansleep(2) function), 358

root directory, changing, 146-149

root user ID, 228

routines, regexpr(3) routines, 441-446

rqtp argument (nanosleep(2) function), 358

RTLD_LAZY argument mode (dlopen(3) function), 264

RTLD_NOW argument mode (dlopen(3) function), 265

running Snapshot program (NDBM database example),

299-301

s
S_ISVTX permission, 67
saved user ID, 230

saving

current directory, 131-132

directory positions, 138

scandir(3)function, 139-143

compar argument, declaring, 140

example, 141-143

select argument, declaring, 140

scanning directories, 139-140

scandir(3) function example, 141-143

selecting only entries starting with h example, 140

System V variations, 141

void pointers, 140

scatter read and write functions, 82-83
scattered I/O, 82-83

SCO Product Documentation Library Web site, 11
scope (umask value), 67-68
script files, 119

search path variables (shared libraries), 258
searching

directories, 136-138
files, 74-75

manual pages, 10

shared libraries (dynamic loader), 258-259
seekdir(3) function, 139

SEEK_CUR value (lseek(2) whence argument), 74

SEEK_END value (lseek(2) whence argument), 74

INDEX 599

SEEK_SET value (lseek(2) whence argument), 74

select argument (scandir(3) function), 140

select(2) function, 333-342

directory program, 338-342

exception events, 338

file descriptor sets, 334

exceptfds, 336-337

readfds, 335-336

writefds, 336-337

read events, 337

timeout argument, 335-336

timeval structure, 335

write events, 337

semaphore locking routines (globvar utility program),

528-529

semaphores, 450-451

access, changing, 492-494

accessing, 483-485

creating, 483-485

destroying, 486-488

notifying, 451

operations, 500-502

notify operations, 505

wait for zero operations, 505-506

wait operations, 502-505

process ID, querying, 498-499

processes

waiting for notifies, querying, 499

waiting for zero, querying, 500

querying, 488-492

semop utility program, 481-482

accessing semaphore sets, 485

creating semaphore sets, 485

main program source, 507-511

-R reporting function, 513

string-to-numeric conversions, 511-513

usage() function, 513-514

undo processing, 506-507

values

changing, 496-498

querying, 494-496

waiting on, 451

sembuf structure, 501

semctl(2) function, 486-488

GETALL command, 495-496

GETNCNT command, 499

GETPID command, 498-499

GETVAL command, 494-495

GETZCNT command, 500

IPC_SET command, 492-494

IPC_STAT command, 488-492

SETALL command, 497-498

SETVAL command, 496-497

semget(2) function, 483-485

semid argument, 486

semop utility program, 481-482

accessing semaphore sets, 485

creating semaphore sets, 485

main program source, 507-511

-R reporting function, 513

string-to-numeric conversions, 511-513
usage() function, 513-514

semop(2) function, 500-502

IPC_NOWAIT flag, 501

notify operations, 505

SEMJJNDO flag, 501-507

wait for zero operations, 505-506

wait operations, 502-505

SEM_UNDO flag (semop(2) function), 501-507

sending messages (message queues), 460-461

server program (applying message queues), 463-479

Msq class definition file, 463-464

Msq::access() method, 467

Msq::change() method, 469-470

Msq::create() method, 466-467

Msq::destroy() method, 467-468

Msq::dispose() method, 464-466
Msq::Msq() constructor, 464-466

Msq::recv() method, 471-472

Msq::send() method, 470-471

Msq::stat() method, 468-469

Msq::_verify() method, 464-466

StatMsg structure, 472-473

statsrv server, 473-475

SETALL command (semctl(2) function), 497-498
setegid(2) function, 232

seteuid(2) function, 230-231

setgid(2) function, 232

setgrent(3) function, 239

setgroups(2) function, 244-245

setitimer(2) function, 361-362

macros, 363

sets, 432-433

setuid(2) function, 230-231

SETVAL command (semctl(2) function), 496-497

SGI IRIX/Linux Web site, 11

shadow password files, 234

shared libraries, 256-261

benefits, 263-264

closing, 266

comparing to static libraries, 256-257, 261-264

controlling what is shared, 261

creating, 257

dynamic library loading, 264-271

applying dynamic loading, 266-268

closing shared libraries, 266

HPUX 10.2 API, 269-271

initialization, 266

opening shared libraries, 264-265

reference pointers, obtaining, 265

reporting errors, 265

dynamic loader, 258-260

600 ADVANCED UNIX PROGRAMMING

linking process, 257

listing shared library references, 258

opening, 264-265

position-independent code, 260

search path variables, 258

shared locks, 94-95

shared memory, 518-526

accessing, 519-521

attaching, 523-524

attributes, changing, 522-523

creating, 519-521

destroying, 526

detaching, 524-526

globvar utility program, 515-518, 526-535

accessing global variables, 517-518

creating global variables, 517

global definitions, 527-528

global variable pools, 516-518

globget.c source module, 529

globlk.c source module, 528-529

globset.c source module, 533-534

globun.c source module, 534-535

GLOBVAR environment variable, 517

main() program, 529-533

removing global variables, 518

semaphore locking routines, 528-529

Unset feature, 534-535

variable assignment functions, 533-534

information, obtaining, 521-522

shared memory (processes), 450

-shared option (gcc(l) command), 257

shell pattern matching, 405-408

shl_findsym(3X) function, 270-271

shl_load(3X) function, 270

shl_unload(3X) function, 271

shmat(2) function, 523-524

shmctl(2) function, 521-523, 526

shmdt(2) function, 524-526

shmget(2) function, 519-521
SHM_LOCK command (shmctl(2) function), 521

SHM_UNLOCK command (shmctl(2) function), 521

sigaction(2) function, 314-317

sigaddset(3) function, 312-313

SIGALRM signal, 364-366

sigdelset(3) function, 313

sigemptyset(3) function, 312

sigfillset(3) function, 312

S1GINT signal, 307-308

sigismember(3) function, 313

signal handlers

EINTR error code, 325-326

re-entrant functions, 322-325

signal(3) function, 308-311

signals, 307-308

adding to signal sets, 312-313

alarm(3) function, 320-322

blocking, 318-319

commonly used signals, 309

EINTR (flock(2) function), 95

kill(2) function, 326-327

pending signals, 319

raise(3) function, 327

raised signals, 307, 326-327

reliable signals, 308-317

applying, 316-317

setting signal actions, 314-315
sigaction(2) function, 314-317

sigaddset(3) function, 312-313

sigdelset(3) function, 313
sigemptyset(3) function, 312

sigfillset(3) function, 312

sigismember(3) function, 313

signal action flags, 315-316

signal sets, 311-313

removing from signal sets, 313

SIGALRM, 364-366

SIGINT, 307-308

signal handlers, 307

signal sets, 311-313

sigpending(2) function, 319

SIGPIPE, 378-379

sigprocmask(2) function, 318-319

sigsuspend(2) function, 319-322

testing for (in signal sets), 313

unblocking, 319-320

unreliable signals, 308-311

sigpending(2) function, 319

SIGPIPE signal, 378-379

sigprocmask(2) function, 318-319

sigset_t data type, 311

sigsuspend(2) function, 319-322

SIG_DFL macro, 310

SIG_1GN macro, 310

size, pathnames, 125-128

size argument (null buffers), 130
sleep functions

nanosleep(2), 357-361

nansleep(2), 358

sleep(3), 351-352

UNIX implementation of, 352-354
usleep(3), 355-357

Snapshot program (NDBM database example), 280

compareO function, 299

Dbm class, 283-288

delete capability, testing, 301-303

Dir class, 280-283

InoDb class, 288-291

key visitation feature, testing, 301-303

processO function, 298

running, 299-301

source code listing, 291-298

walk() function, 298
sockets, 38, 47

INDEX 601

software layers (X Window), 560-561
sparse files, 77

copying, 79

creating, 77-79

sparse matrix, 77

sparse.dat file, deleting, 79

special files, 39-41

opening, 46

square brackets([])

command-line, 173

meta-characters, 406-407

sscanf(3) function, 192-194

standard input (files), changing, 48

standards (compiling C programs), 25-30

AIX 4.3 feature tests, 28-29

FreeBSD 3.4-release feature tests, 27

HPUX 10.2 feature tests, 28

SunOS 5.6 feature tests, 29-30

Stat class, 111-116

stat structure, 108-111

stat(2) function, 458

file system information, obtaining, 108-111

testing, 111-116

statcln client program source code, 476-478

static libraries, 247-256

archives, 253-254

benefits, 262-263

comparing to shared libraries, 256-257, 261-264

implementing, 248-253

linking process, 255-256

Passwd class example, 248-253

process memory image, 247-248

static library code, 248

-static option (gcc(l) command), 257

StatMsg message structure, 472-473

statsrv server, 473-475

status argument (wait(2) function), 391

status test macros, 393-394

stdio(3) functions, 49

stdio(3) set, 62-64

sticky bit permission, 67

storing information (NDBM database), 276-277

STREAMS-based pipes, 372

strerror(3) function, 60-62

strftime(3) function, 10, 221-226

DTime class, testing, 224-226

DTime::strftime(3) method, 223-224

format specifiers, 222-223

locale, 226
string argument (fnmatch(3) function), 408

string pattern matching

fnmatch(3) function, 408-415

flag argument, 409
FNM_CASEFOLD flag, 413

FNM_LEADING_DIR flag, 415

FNM_NOESCAPE flag, 412-413

FNM_PATHNAME flag, 413-414

FNM_PERIOD flag, 414-415

pattern argument, 408

string argument, 408

meta-characters, 405

string-to-floating point conversions, 202-204

string.h filestrerror(3)function, 60
strings

converting time/date to string form, 212-213, 217-218

unreferenced strings (compiler warning messages),
23-25

strtod(3) function, 202-204

strtol(3) function, 194-195

base argument, 196-197

strtoll(3) function, 201

strtoq(3) function, 202

strtoul(3) function, 194

strtoul(3) overflows, testing for, 201

strtoull(3) function, 201

strtouq(3) function, 202

struct tm structure, 216-217, 220

st_atime value, 118

st_ctime value, 118

st_mtime value, 118

suboptions (getsubopt(3) function), 179

example, 180-183

suboption parsing, 180

subopts_str argument (getsubopt(3) function), 179

successful return values, 52

SunOS 5.6 feature tests, 29-30

super user, 228

supplementary groups, 242-245

sym argument (shl_findsym(3X) function), 270

symbolic links, 39, 120-121

symbolic macro references, error codes, 54

symlink(2) function, 120

sync(2) function, 80-81

sync(8) command, 80

synchronizing changes (memory-mapped regions), 553

System V directories, scanning, 141

system virtual timer, 361

system(3) function, 379-384

limitations, 384

return values, 381-383

sys_errlist[] array
errno values, reporting, 58-60

evaluating, 60

sys_nerr integer value, 59

T

telldir(3) function, 138

template argument

mkstemps(3) function, 157

mktemp(3) function, 154

tempnam(3) function, 159-161

602 ADVANCED UNIX PROGRAMMING

temporary files

cleanup, 162
atexit(3) function, 162-165

avoiding, 169

destructors, 165-169

creating, 151

mkstemp(3) function, 155-157

tmpfile(3) function, 157-158

names, creating, 154-155

pathnames

buffers, 153-154

creating, 151

null argument, 152-153

prefixes, 159-161

releasing, 161-162

suffix, appending, 157

testing

binary conversions, 198

chown(2) function restrictions, 124

conversion pointers, 196

conversions
exponent underflow, 204

math errors, 203-204

overflows, 199-203

underflows, 199-200, 204

delete capability (Snapshot program), 301-303

DTime class, 224-226

errors (stdio(3) set), 62-64

file access, 119-120

file links, 116-117

file types, 117-118
for conversion errors, 195-196

fstat(2) function, 111-116

integer return values failure, 55

key visitation feature (Snapshot program), 301-303

LD_LIBRARY_PATH variable, 260

lock files, 92
numeric conversions with sscanf(3), 193

pathname size, 125-128

pointer return values failure, 56

radix conversions, 198-199

range check, 61

signals in signal sets, 313

stat(2) function, 111-116

time and date
converting to string form, 212-213, 217-218

customizing formats with strftime(3) function,

221-226
DTime class, testing, 224-226

DTime::strftime() method, 223-224

format specifiers, 222-223

locale, 226

Epoch Time, 207

epoch time values, creating, 220-221

time zones, 207-209

time_t data type, 209-210

time conversion functions, 210-212

asctime(3) function, 217-218

ctime r(3), 213-214

ctime(3), 212-213
DTime class example, 210-212

gmtime(3), 214-215

include files, 210

localtime(3), 214-215

mktime(3), 220-221

struct tm structure, 216-217

input members, setting, 220

members altered by mktime(3), 220

tzname[] external array, 219

tzset(3), 218-219

time zones, 207
determining under BSD, 219

local time zones, 208-209

tzset(3) function, 208-209

world time standards, 208

timeout argument (select(2) function), 335-336

timerclearO macro, 363

timercmpO macro, 363

timerissetO macro, 363

timers (interval timers), 361

getitimer(2) function, 361-362

one-shot realtime timers, creating, 364-366

repeating timers, establishing, 366-369

restrictions, 363-364

setitimer(2) function, 361-363

timeval structure (select(2) function), 335

timezone external variable (tzset(3) function), 218

time_t data type, 209-210

TMPD1R environment variable (tempnam(3) function), 160

tmpfile(3) function, 157-158

tmpnam(3) function

disadvantages, 152

temporary file pathnames, creating, 151

buffers, 153-154

null argument, 152-153

tokens argument (getsubopt(3) function), 179

truncate(2) function, 76

truncate(3C) function, 76

truncating files, 76-77

tty name, determining, 83-85

ttyname(3) function, 83-85

type argument (shl_findsym(3X) function), 270

TZ environment variable, 208-209

tzname[] external array, 219

tzset(3) function, 208-209, 218-219

external variables, 218-219

TZ variable, 209

tzname[] external array, 219

INDEX 603

u
uid numbers (user ID numbers),, 227-228
umask value, 68-70
umask(2) function, 68-70
unblocking signals, 319-320
underflows

exponent underflow, 204
testing for, 199-200

string-to-floating point conversions, 204
unidirectional pipes, 372
Universelle Tempes Coordinate (UTC), 208
UNIX platform differences

compiling C programs, 13-18
ANSI C compile options, 18
-c compile option, 14
compile command, 13-14
-D compile option, 15
-E compile option, 16
-g compile option, 15
-I compile option, 15-16
-o compile option, 14, 16-17
warning options, 17

example code, 12
UNIX Seventh Edition Manual Web site, 273
unlink(2) function

deleting files, 105-106
temporary files, releasing, 161-162

unlocking
lock files, 91-92
locked regions, 98, 101

unreferenced strings (compiler warning messages), 23-25
unreliable signals, 308-311
Unset feature (globvar utility program), 534-535
unused arguments (compiler warning messages), 21
unused variables (compiler warning messages), 22-23
usageO function (semop utility), 513-514
user ID, 229-231
user ID numbers (uid numbers), 227-228
user management

/etc/group file, 238-239
/etc/passwd file, 233-234
getegid(2) function, 229
geteuid(2) function, 228-229
getgid(2) function, 229
getuid(2) function, 228-229
group database routines, 239-241
group ID, setting, 232
group ID number (gid number), 228
issetugid(2) function (FreeBSD), 232
password database routines

fgetpwent(3) function, 236
getpwent(3) function, 235-236
getpwnam(3) function, 237-238
getpwuid(3) function, 237
passwd structure, 235
putpwent(3) function, 236-237

re-entrant functions, 241-242
supplementary groups, 242-245

getgroups(2) function, 242-244
initgroups(3) function, 245
setgroups(2) function, 244-245

user ID, 229-231
user ID numbers (uid numbers), 227-228

usernames, 228
groups, setting, 245

usleep(3) function, 355-357
UTC (Universelle Tempes Coordinate), 208

V

valuep argument (getsubopt(3) function), 179
values

errno variable, reporting values, 57-62
return values. See return values
SEEK_CUR (lseek(2) whence argument), 74
SEEK_END (lseek(2) whence argument), 74
SEEK_SET (lseek(2) whence argument), 74
st_atime, 118
st_ctime, 118
st_mtime, 118
umask, 67-70

variable assignment functions (globvar utility program),
533-534

variables
environment variables

TMPDIR, 160
TZ,208-209

errno
failures, 53
new version, 56-57
old version, 53-56
reporting values, 57-62

external variables (tzset(3) function), 218-219
LD_LIBRARY_PATH variable (shared libraries),

259-260
optarg, 175
opterr, 176
optind, 175
optreset, 176
search path variables (shared libraries), 258
unused variables (compiler warning messages), 22-23

verbose listings of archives, obtaining (static libraries), 254
virtual memory (VM) page size, 538-539
virtual timer, 361
visiting all keys (NDBM database), 278-279

testing key visitation feature (Snapshot program),
301-303

VM (virtual memory) page size, 538-539
void pointers, scanning directories, 140

604 ADVANCED UNIX PROGRAMMING

w X-Y-Z

wait for zero operations (semaphores), 505-506

wait operations (semaphores), 502-505

wait(2) function, 389-396

calling without zombie processes, 392-393

status argument, 391

status test macros, 393-394

zombie processes, 389-391

wait3(2) function, 395-396

wait4(2) function, 395-396

waiting on the semaphore, 451

waitpid(2) function, 395-396

walk() function, 298

walking directory structures, 144-146

-Wall option, 18

warning messages (compilers), 18-25

assignment warnings, 19-21

unreferenced string warnings, 23-25

unused argument warnings, 21

unused variable warnings, 22-23

warning options (compilers), 17

WCOREDUMP0 macro, 394

Web sites

docs.sun.com, 11

FreeBSD Hypertext Man Pages, 11

HP Technical Documentation (HPUX 10 & 11), 11

IBM AIX, 11
SCO Product Documentation Library, 11

SGI IRIX/Linux, 11

UNIX Seventh Edition Manual, 273

WEXITSTATUSO macro, 394
whence argument (lseek(2) function), 74

WIFEXITEDO macro, 394
W1FSIGNALED0 macro, 394

WIFSTOPPEDO macro, 394

WNOHANG bitwise macro, 395-396

world time standards, 208

write event bit masks (poll(2) function), 344

write events, 337

write locks, 94

write(2) function, 71-72

writefds file descriptor set, 336-337

writev(2) function, 82-83

writing

data to media, 80-81

I/O, 71-72

to pipes, 375-377
scatter function, 82-83

WSTOPSIG0 macro, 394

WTERMSIGO macro, 394

WUNTRACED bitwise macro, 395

X Window
event-driven programming, 557-561

client/server processing, 559

event-driven models, 558

software layers, 560-561

Xlib client program, 561-575

event-processing loop, 567-570

include file, 561-562

mainO program, 562-565

XAnyEvent structure, 572

XButtonEvent data type, 573

XEvent data type, 571

XExposeEvent structure,.572

XMotionEvent data type, 574

XNextEvent(3Xl 1), 571

XAnyEvent structure (Xlib client program), 572

XButtonEvent data type (Xlib client program), 573

XEvent data type (Xlib client program), 571

XExposeEvent structure (Xlib client program), 572

Xlib client program, 561-575

event-processing loop, 567-570

include file, 561-562

main() program, 562-565

XAnyEvent structure, 572

XButtonEvent data type, 573

XEvent data type, 571

XExposeEvent structure, 572

XMotionEvent data type, 574
XNextEvent(3Xl 1), 571

XMotionEvent data type (Xlib client program), 574

XNextEvent(3Xl 1) function (Xlib client program), 571

zero gid number, 228

zero uid number, 228

zombie processes, 389-391

Advanced

UNIX*
Programming

Advanced UNIX Programming moves beyond the fundamentals of UNIX programming and

presents the information and techniques you need to expand your repertoire. Designed for

professional UNIX programmers, this book builds on the skills and knowledge you already possess.

In the opening chapters, you’ll learn how to exploit the standard UNIX development tools. As the

book progresses, you’ll learn the inner workings of the UNIX operating system from a programmer’s

perspective, including internal manipulations of the file system and the proper use of some of the

more esoteric UNIX functions. Code examples illustrate simultaneous file access by multiple users
and changes to directory structure.

Expert author Warren W. Gay walks you through the internals of UNIX control structures and casts

light on different time and process models. You’ll see example code that shows how to dynamically
change user and group parameters.

Advanced UNIX Programming also includes coverage of internal processing techniques,

interprocess control, and synchronization through signals, forked processes, and shared memory.

Warren W. Gay has been programming professionally for 20 years. His experience includes UNIX

system programming, UNIX socket programming, UNIX hardware and software troubleshooting, POSEX

UNIX threads, UNIX RPC and XDR, library programming, and many other areas involved with UNIX systems.

Warren is the author of the very successful Sams Teach Yourself Linux Programming in 24 Hours and
Que’s Linux Socket Programming By Example.

Category: Programming

Covers: UNIX

User Level: Intermediate—Advanced

sAms
www.samspublishing.com

H0-V9V-629

$49.99 USA / $74.95 CAN / £36.50 Net UK

9780672319907
10/24/2019 9:45-3

