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INTRODUCTION 

This is a book about UNIX programming. It starts with basic concepts and ends with coverage 

of advanced topics. It is a self-teaching guide, and yet it functions as a UNIX reference book. 

The examples provided are written in the C and C++ languages. The examples are short pro¬ 

grams, each intended to demonstrate use of a particular programming facility. The C++ pro¬ 

grams are written as simple programs and should be well understood by those that do not 

program in C++. 

This book attempts to be UNIX platform neutral. Throughout the book, differences in func¬ 

tionality are noted for your convenience. This will save you time when you must write projects 

that must be UNIX portable. 

FreeBSD 3.4 release is used throughout this book for demonstration purposes. This guarantees 

that the example programs will compile and run without any additional effort on that plat¬ 

form. This also grants a specific level of functionality, since some functions are lacking or vary 

on other platforms. You can obtain FreeBSD from the Internet or purchase it on a CD-ROM at 

a nominal cost. This allows you to work through the book on a platform that is on a par with 

other professional UNIX platforms. 

Who Should Use This Book 
This book is written for C and C++ UNIX programmers, but it is not limited to that audience. 

Even a Java or Perl programmer might have an occasional need to write a small C function to 

invoke a UNIX system call. 

Programmers at both the application and system levels will benefit from this book. There is 

coverage ranging from basic to advanced functionality that will aid any UNIX application 

developer. And difficult topics such as semaphores and memory-mapped files are covered for 

system level programmers. 

What You Should Know 
To gain the most from this book, the reader should be comfortable with the C programming 

language. A rudimentary understanding of C++ is helpful but not mandatory. Most C language 

texts cover the use of the standard I/O stream functions such as fopen (3) and fgets (3). 

Consequently, these file stream functions are not repeated in this book. 
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It is assumed that the reader has mastered the basics of working with the UNIX shell and has a 

basic familiarity with the standard commands. Some examples used in this book run the pro¬ 

grams in the background using the shell & character. Consequently, the reader should be famil¬ 

iar with basic job control within the shell. 

What You Will Learn 
This book should appeal to both the beginning and the advanced programmer. The first part 

of the book covers the basics of UNIX file system concepts, file input and output, and direc¬ 

tory management. For the advanced reader, this functions as a review and a reference. 

The second part of the book covers intermediate basics, such as numeric conversion and 

date/time facilities. Other application concepts such as command-line processing and embed¬ 

ded database routines are also covered. Consequently, this part tends to be focused somewhat 

toward UNIX applications. 

The third and final part of the book covers advanced topics. It begins with coverage of signals, 

input and output scheduling, and interval timers. Process control and the use of pipes and 

forked processes are also covered. Combined with complete coverage of interprocess commu¬ 

nication, this part tends to benefit primarily the system programmer. Chapters on pattern 

matching and regular expressions and an introduction to X Window programming are helpful 

to the application programmer. 

The Structure of This Book 
This section outlines the general structure of the book and describes what each chapter 

explores. 

Chapter 1: Compiler Notes and Options 
Chapter 1 begins with basic coverage of the man (1) command and provides references to 

Internet resources for manual pages of other UNIX platforms. An introduction to compiling 

under FreeBSD is included, with a review of standard compile options for all UNIX platforms. 

The remainder of the chapter provides helpful hints on how to manage compiler warnings 
effectively. 

Chapter 2: UNIX File System Objects 
This chapter reviews the various UNIX file system object types. Some discussion of the unique 

characteristics of each is provided, primarily for the beginner’s benefit. The chapter continues 

with a review of the role that access permissions play with each file object type. The remainder 

of the chapter introduces file descriptors and illustrates how UNIX files are opened, dupli¬ 
cated, and closed. 
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Chapter 3: Error Handling and Reporting 
This is a foundation builder, primarily for the benefit of the novice, and demonstrates how sys¬ 

tem and library calls interact with the global variable errno. The reader is shown the various 

ways that system error codes are translated into text error messages. 

Chapter 4: UNIX Input and Output 
This chapter provides an overview of the basics of UNIX input and output. It begins with a 

review of permission bits and discusses the effect of the umask (2) system call. The chapter 

continues with coverage of the read (2) and write (2) system calls, with examples. The seek¬ 

ing and truncation file operations are also covered. Other topics include sparse files, the 

sync (2) and f sync(2) system calls, and scatter read and scatter write calls. 

Chapter 5: File Locking 
Here we cover all aspects of locking files and file regions under UNIX. This includes the use of 

lock files and the use of advisory and mandatory locks on regions and entire files. 

Chapter 6: Managing Files and Their Properties 
Chapter 6 concerns itself with the management of files and their UNIX properties. The system 

calls covered allow a program to remove, link, rename, and inquire of file properties. 

Functions that manage symbolic links are also covered. The chapter concludes with coverage 

of the system calls that permit changing permissions and ownership of file system objects. 

Chapter 7: Directory Management 
This chapter is focused on the UNIX handling of directories. Functions that change, save, and 

restore the current directory are covered. Additional coverage includes creating, removing, 

opening, searching, and closing directories. Finally, changing the root directory is explored. 

Chapter 8: Temporary Files and Process Cleanup 
In Chapter 8, we cover the various library functions that are available for creating and manag¬ 

ing temporary files. The chapter also explores ways that applications can clean up temporary 

files, even when they terminate unexpectedly. 

Chapter 9: UNIX Command-Line Processing 
Even X Window graphical programs accept command-line arguments. This chapter explores 

the UNIX standard method of parsing command-line arguments, with a minimum of written 

user code. Coverage includes the GNU long option support for the GNU-based function 

getopt_long(3). Suboption processing is also explored using the getsubopt (3) function. 
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Chapter 10: Conversion Functions 
This chapter looks at the challenges that programmers must face when they convert ASCII 

strings into numeric values. The simplest methods are contrasted with the more effective func¬ 

tions such as strtol(3). Detailed instruction for dealing with conversion errors is included. 

Chapter 11: UNIX Date and Time Facilities 
Date and time facilities are the focus of this chapter. Functions that obtain date and time com¬ 

ponents are described in detail. Conversion to and from various date and time formats is cov¬ 

ered. 

Chapter 12: User ID, Password, and Group 
Management 

Complete descriptions of the UNIX user and group ID functions are provided in this chapter. 

The effects of real, saved, and effective IDs are documented. Supplementary user and group 

IDs are discussed, complete with their management functions. 

Chapter 13: Static and Shared Libraries 
This chapter explores the differences between static and shared libraries, covering the creation 

and management of each type of library. It concludes with the functions that permit a program 

to dynamically load shared libraries upon demand. 

Chapter 14: Database Library Routines 
Chapter 14 explores the embedded database routines known as the NDBM functions. It covers 

the functions necessary to create, open, and close these databases. Additionally, the text 

explains and demonstrates how to create, retrieve, and delete records from the database. 

Chapter 15: Signals 
This chapter explores the UNIX concept of signals. The reliable signal interface is described, 
complete with all functions that manage aspects of signal handling. 

Chapter 16: Efficient I/O Scheduling 
The select (2) and poll(2) system calls are explained with examples in this chapter. These 

system calls permit applications to perform input and output effectively on several different file 
descriptors. 

Chapter 17: Timers 
This chapter focuses its discussion on sleep function calls and interval timers. A possible 

implementation of the sleep (3) system call is demonstrated in an example program. 
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Chapter 18: Pipes and Processes 
In this chapter we introduce the concept of process management by looking at the functions 

popen (3) and system(3). These are described and explored with example programs. 

Chapter 19: Forked Processes 
This chapter examines the more advanced methods of process management by describing the 

fork(2) and exec(2) sets of system calls. The chapter also includes a discussion of zombie 

processes and the wait (2) family of system calls. 

Chapter 20: Pattern Matching 
Library functions that perform simple file pattern matching, as used by the shell, are exam¬ 

ined. The chapter includes a description of the fnmatch(3) and glob (3) functions, with test 

programs that permit you to put them through their paces. 

Chapter 21: Regular Expressions 
Building upon the previous chapter, the more advanced regular expression matching functions 

are explored. A review of regular expression syntax is provided before presenting the support 

functions. A demonstration program puts the various optional features to the test. 

Chapter 22: Interprocess Communications 
This chapter provides an introduction to interprocess communications. The reader is intro¬ 

duced to IPC keys, IPC IDs, and how various IPC resources are created and accessed. 

Chapter 23: Message Queues 
The message queue is a member of the interprocess communication set of resources. The sys¬ 

tem calls that manage its creation, use, and destruction are covered with a demonstration pro¬ 

gram. 

Chapter 24: Semaphores 
This chapter continues the interprocess communications theme by exploring what a sema¬ 

phore is, how it helps, and how it is used. An example program allows you to experiment. 

Chapter 25: Shared Memory 
The last on the topic of interprocess communication, this chapter focuses on the creation, use, 

and destruction of shared memory. An example program that makes use of the semaphore and 

shared memory demonstrates its use. 
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Chapter 26: Memory-Mapped Files 
Memory-mapped files are explored, with a description of the different ways they can be 

applied. A demonstration program shows how a memory-mapped file can be used to select the 

language of text messages within an application. 

Chapter 27: X Window Programming 
The emphasis of this chapter is on event-driven programming. The reader is introduced to 

some of the basic concepts of X Window programming, focusing on the event loop and X 

Window event processing, which the example program demonstrates. 
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CHAPTER 1 

COMPILER NOTES AND OPTIONS 

You are reading this book because you want to write software for UNIX. Perhaps you 

are interested in developing software to run on several UNIX platforms. Whether you 

must write for several platforms or a few, writing your software to compile success¬ 

fully for each UNIX platform is a challenge. This chapter is aimed at reducing that challenge 

and improving your success rate. Additionally you will find some valuable Internet resources 

in this chapter, along with some cross-platform examples and advice. 

Online Manual Pages 
Throughout this text, you will see references to online documents that exist on most UNIX 

systems. These online documents save the programmer a great deal of time when he is writing 

programs. Rather than fetch a book and look in the index for the correct page, you can pull up 

the information within seconds, instead. This electronic documentation can be brought into 

an editor, or segments of it can be cut and pasted using the normal X Window facilities. For 

this reason, this text places some emphasis on online manual page references for your conve¬ 

nience. 

A document reference will appear in this text in the form open (2), for example. To view the 

online document for that reference, you would normally enter 

$ man 2 open 

This causes the manual page for the open entry in section 2 to be displayed (the section is 

specified first). The section number is not always necessary, but it often is (otherwise, a man¬ 

ual entry from an earlier section will be presented instead). 

A manual page section is a grouping of related documents. The following sections will be the 

sections of primary importance throughout this book: 

User commands 1 

System calls 2 

Library calls 3 
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Most of this book will be focused on facilities documented in sections 2 and 3. Functions that 

interface to the UNIX kernel are grouped into section 2. Other function calls, which are docu¬ 

mented in section 3, are those functions that perform commonly required services. These may 

or may not involve additional calls to the UNIX kernel. Commands such as the man (1) com¬ 

mand are grouped in section 1. 

If you don’t know the name of the man (1) page you want, you can perform a keyword search. 

The following shows how you could search for information about changing owners of a file: 

$ man -k owner 
chown(2), fchown(2), lchown(2) - change owner and group of a file 
chown(8) - change file owner and group 

$ 

This produces a number of references that have the keyword owner in them. Another way this 

can be done on most systems is to use the apropos (1) command: 

$ apropos owner 
chown(2), fchown(2), lchown(2) - change owner and group of a file 
chown(8) - change file owner and group 

$ 

Both of these commands result in the same action being taken. If you have an unusual UNIX 

system and these don’t work, then you might look up man (1) for additional insight. 

Most sections are documented on most UNIX systems. For example, to find out what section 8 

is all about under FreeBSD, you would enter 

$ man 8 intro 

A lookup of the man page int ro (x), where x is the section, will usually yield additional docu¬ 
mentation about the section specified. 

Note 

On some systems, you may have to specify the section number differently. For example, Solaris 8 sup¬ 
ports the following syntax: 

$ man -s 2 open 

In this example, the section number follows the -s option. Some implementations of the man(1) 
command will work with or without the - s option for section numbers. 

Manual References Used in This Book 
References to man (1) pages will be used throughout this book when referring to functions and 

other programming entities. However, as you might expect, different UNIX platforms place the 

same information in different sections and sometimes under completely different headings. 

An example of this problem is the function strf time (3). For many UNIX implementations, 

including FreeBSD, the reference strf time (3) will provide the correct location of the online 
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document for the strftime() function. However, UnixWare 7 uses the manual reference 

strftime(3C) instead. UnixWare has chosen to split some of its functions into a separate sec¬ 
tion 3C. 

Consequently, a choice in convention had to be made for this book. The manual page refer¬ 

ences used throughout this text are based on the FreeBSD (3.4 release) platform. This should 

provide a good reference for users of most UNIX systems. In places where it is important, the 
differences will be noted. 

man (1) Resources on the Internet 
If you must write code that is portable to many UNIX platforms, one valuable resource is the 

Internet. Table 1.1 lists a few Internet resources that can be used when you want to review 

manual pages for different UNIX platforms. 

TABLE 1.1 Table of Internet man (1) Resources 

URL Description 

http://www.FreeBSD.org/egi/man.cgi BSD 

http://docs.hp.com/index.html HPUX 10 & 11 

http://docs.sun.com/ SunOS, Solaris 

http://www.ibm.com/servers/aix/ IBM's AIX 

http://support.sgi.com/search/ SGI IRIX/Linux 

http://doc.sco.com/ UnixWare & SCO 

There are probably many more resources available, in addition to those listed in Table 1.1. The 

www. FreeBSD. org reference is worth special mention because its Web site appears to have 

man (1) pages for a wealth of other releases listed next. 

• 2.8 BSD, 2.9.1 BSD, 2.10 BSD, and 2.11 BSD 

• 386BSD 0.0 and 386BSD 0.1 

• 4.3BSD NET/2, 4.3BSD Reno, 4.4BSD Lite2 

• FreeBSD 1.0-RELEASE to FreeBSD 4.0-RELEASE 

• FreeBSD 5.0-current 

• FreeBSD Ports 

• Linux Slackware 3.1 

• Minix 2.0 

• NetBSD 1.2 to NetBSD 1.4 
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• OpenBSD 2.1 to OpenBSD 2.6 

• Plan 9 

• RedHat Linux/i386 4.2, 5.0, and 5.2 

• SunOS 4.1.3, 5.5.1, 5.6, and 5.7 

• ULTRIX 4.2 

• UNIX Seventh Edition 

There will likely be additions to this list by the time you read this. 

Example Code in This Book 
Even more challenging than having uniform man page references is the creation of example 

programs that would compile for all UNIX platforms. While this could be attempted, it has the 

danger that it would not be universally successful unless the code was tested on every plat¬ 

form. Even then, pitfalls abound, because there exist many different choices in compilers, 

libraries, and other customizable aspects of the UNIX platform. 

The examples in this book have tried to be UNIX platform neutral. Practical considerations, 

however, made it necessary to pick one development platform for the examples. The major 

differences are addressed in the text as they come up. Look for additional tips, warnings, and 

notes for other UNIX differences that may be worth noting. 

The challenges of supporting multiple UNIX platform differences include the following: 

• Subtle differences in the different make (1) commands 

• Differences in the feature set macros required to compile the programs 

• Differences in location of the include files 

• Differences in function prototype definitions 

• Differences in C data types (int vs. size_t) 

To deal with all of these problems would end up leaving the reader with a rat’s nest of ugly 

source code to look at. Rather than give you difficult-to-read source code and complicated 

make (1) procedures, this book will simply use the FreeBSD Release 3.4 platform as the foun¬ 

dation for all program examples. Important differences in compilers and other areas will be 
noted along the way 

This approach provides the professional the advantage that learning can take place at home. 

FreeBSD is a stable and secure platform that can be loaded onto just about any reasonable Intel 

PC. Yet it remains very similar to many commercial UNIX platforms in the workplace. 
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While FreeBSD can be installed with many useful Linux enhancements, the FreeBSD 3.4 Release used 

for the examples in this book did not have any Linux support installed. This was intentionally done to 

present a more traditional UNIX experience. 

Compiling C Programs 
This is an area in which there is considerable variation among the different UNIX platforms. 

The FreeBSD 3.4 Release of UNIX uses the very capable GNU compiler: 

$ gcc --version 
2.7.2.3 

$ 

This is linked to the same command as the more commonly recognized UNIX command name 

cc, as demonstrated in the next FreeBSD session: 

$ type cc 
cc is a tracked alias for /usr/bin/cc 
$ Is -li /usr/bin/cc 
7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/cc 
$ type gcc 
gcc is a tracked alias for /usr/bin/gcc 
$ Is -li /usr/bin/gcc 
7951 -r-xr-xr-x 2 root wheel 49680 Dec 20 00:46 /usr/bin/gcc 
$ 

Since both /usr/bin/cc and /usr/bin/gcc link to the same i-node 7951 in the example, you 

know that these two files are linked to the same executable file. 

Other UNIX platforms that provide their own proprietary forms of C and C++ compilers differ 

substantially from the GNU compiler in the options they support, the warning messages they 

produce, and their optimizing capability. This chapter will look at some of the commonality 

between them and some of the differences. 

The C Compile Command 
Most UNIX platforms invoke their C compilers by the name cc. Linux and FreeBSD platforms 

support the gcc command name in addition to the standard cc name. Sometimes the GNU 

compiler will be installed as gcc on commercial platforms to distinguish it from the standard 

offering or in addition to the crippled (non-ANSI) one. For example, HP includes a non-ANSI 

compiler with the HPUX operating system, which is called the “bundled” compiler (this com¬ 

piler is sufficient to rebuild a new HPUX kernel). The ANSI-capable compiler must be pur¬ 

chased separately and, when installed, replaces the bundled cc command. 
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However, within the same platform, there can also be choices. HPUX 10.2 supports 

HP-UX C compiler cc 

HP-UX POSIX-conforming C C89 

The IBM AIX 4.3 platform supports: 

C language "extended" cc 

ANSI C compiler xlc or c89 

The difference between the xlc and c89 compilers under AIX is the configured defaults. In the 

following sections, the relatively standardized options will be examined. 

The - c Compile Option 
This option is probably the most universally standardized. The - c option indicates that the 

compiler should produce a translated object file (*. o file) but not attempt to link the transla¬ 

tion into an executable. This option is used when compiling several separate source modules 

that will be linked together at a later stage by the linker. The following demonstrates a compile 
and link in one step: 

$ cc hello.c 

This all-in-one step command translates the C source file hello. c into the final output exe¬ 

cutable file a. out. The filename a. out is the default executable name for linker output. This 

practice dates back to at least 1970 when UNIX was written in assembler language on the 

PDP-11. Digital Equipment’s (DEC) default linker output file name was a.out. 

Alternatively, the object file can be produced separately and then linked as a separate step, as 
follows: 

$ cc -c hello.c 
$ cc hello.o 

In this example, the first cc command with the -c option, produces the file hello. o as the 

result of the compile. Then the second cc command accepts the object file hello. o as input 
and produces the final executable file name a. out, which can then be run. 

The - o Compile Option 
This option is fairly standard also. The -o option allows the user to specify the name of the 
output file. For example, it could be explicit, as follows: 

$ cc -c hello.c -o hello.o 

The -c option indicates that an object file is being produced, and the -o option names the out¬ 

put object file as hello. o. The -o option can also be used to name the executable file, if that is 
the type of output requested: 

$ cc hello.o -o my_hello_prog 
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The example shown indicates that the output executable file name will be named 
my_hello_prog. 

The -g Option (Debug) 
This standard option indicates to the compiler that debugging information should be gener¬ 

ated in the output of the compile. This debugging information makes source code and variable 

name references possible in the debugger or when analyzing the core file after a program 

abort. Include this option whenever you need to debug the program interactively or perform a 

post-mortem on the core file. Be sure to use this option on all object modules that will be 
inspected by the debugger. 

Warning 

Most C compilers will not accept both the -g (debug) and -0 (optimize) options at the same time. 

The GNU compiler will tolerate -g and first-level optimization (-0), but this may lead to a few sur¬ 

prises in the debugger. 

The - D Option (Define) 
This standard compiler option permits you to define a macro symbol from the compiler com¬ 

mand line. It is most frequently done from a Makefile but is not limited to this practice. For 

example 

$ cc -c -D_POSIX_C_SOURCE=199309L hello.c 

defines the C macro constant _P0SIX_C_S0URCE with a value of 199309L. This macro definition 

has the effect of choosing a particular POSIX standard from the files included in the compile. 

Additional macros can be defined on the same command line: 

$ cc -C -D_P0SIX_C_S0URCE=199309L -DNDEBUG hello.c 

In this example, the additional C macro NDEBUG was defined (with no value), in order to dis¬ 

able the code generation in the assert (3) macro invocations used within the program. 

The -1 Option (Include) 
The standard - I compile option permits you to specify additional places to look for include 

files. For example, if you have additional include files located in an unusual place such as 

/usr/local/include for example, you could add the - I option as follows: 

$ cc -c -I/usr/local/include -I/opt/include hello.c 

Additional -1 options can be added as shown, and the directories will be searched in the order 

given. Many UNIX compilers (non-GNU) will process the C statement 

#include "file.h" 

by looking in the current directory first, and then all of the directories given by the -1 options, 

and then finally in the directory /usr/include. 
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The same (non-GNU) UNIX compilers will process the C language statement 

#include <file.h> 

by the same means, except that the current directory is not searched. However, the GNU com¬ 

piler extends the -1 option somewhat, as follows: 

• -1 directories preceding a -1 - option are searched only for statements of the form 

#include "file.h" only. 

• Directories provided with -1 options following a -1 - option are searched for both forms 

#include "file.h" and #include <file.h>. 

• If no -1 - option appears on the command line, then the behavior is the same as the non- 

GNU C compiler. 

An example of this is provided in the following compile command: 

$ gcc -c -I/usr/informix/include -I- -I/opt/oracle/include convutil.c 

The example shown would allow the C language statement 

#include "sqlca.h" 

to include the file /usr/informix/include/sqlca. h. Another C language statement 

#include <sqlca.h> 

would include the file /opt/oracle/include/sqlca.h instead. This happens because the 

<f ile. h> form is not searched in the directories preceding the -1 - separating option. 

The - E Option (Expand) 
This option is relatively standard among UNIX C compilers. It permits you to modify the com¬ 

mand line to cause the compiler to emit the preprocessed C text to standard output without 

actually compiling the code. 

This is useful when attempting to wade through C preprocessing directives and C macros. The 

output of a would-be compile can be directed to a file and then examined with an editor: 

$ cc -c -E hello.c >cpp.out 

In the example shown, the -E option causes the include files and the program to be pre- 

processed and redirected to the file cpp. out. You can then examine the file cpp. out with an 

editor or paging command and determine what the final C language code looks like. This is 

especially helpful when trying to debug new C macros that are causing compile errors that are 
difficult to diagnose. 

The -0 Option (Optimize) 
This option is not standard among compilers. Some compilers require an argument to follow 

the -0, some don’t, and some will optionally take an argument. FreeBSD accepts the following: 

• -0 and -01 specify level 1 optimization. 

• -02 specifies level 2 optimization (increased optimization). 
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• -03 specifies level 3 optimization (more than -02). 

• -00 specifies no optimization. 

For the GNU compiler, these options can be repeated, with the last appearing option establish¬ 
ing the final optimization level. For example 

$ gcc -c -03 -00 hello.c 

would compile with no optimization, because -00 appears last. 

Recall that the debug option (- g) is incompatible with optimization with most C compilers. 

As a contrast to the GNU compiler, HP’s compiler supports the following optimizing options in 

increasing levels of optimization: 

Default optimization +00 

Level 1 optimization +01 

Level 2 optimization +02 (-0) 

Level 3 optimization +03 

Level 4 optimization +04 

The -0 (with no argument) option is equivalent to the HP option +02 (note the plus sign). 

The IBM AIX 4.3 compiler supports the options -0, -02, and -03 in increasing levels of opti¬ 

mization. 

All of this emphasizes a need to review the compiler options in the cc (1) man page for the 

compiler you are using. 

Warning Options 
Warning messages is one area in which the GNU compiler excels. This compiler is so good at 

this that there is no need for a lint (1) command under FreeBSD or Linux. However, the 

warnings options for compilers vary considerably by platform and vendor. 

The GNU compiler uses the -W option with an argument to indicate what is to be reported as 

warnings. In this book, the option -Wall will be used to cause the GNU compiler to report 

anything that looks suspicious. 

It is also possible to specify individual warnings of interest. For example, -Wreturn -type can 

be specified to cause the compiler to report any return values that are missing or mismatched 

or a function that is defaulting to returning an int because no return type was declared for the 

function. 

While the -Wreturn - type warning appears to be included with the specification of the -Wall 

option under FreeBSD, there were versions of the GNU compiler in which -Wreturn -type was 

not included under Linux. Since this is an important warning that can save you a lot of time, 

you may want to include it in addition to the -Wall option, just to be certain it is enabled. 
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ANSI C Compile Options 
On some UNIX platforms you must indicate to your compiler that you are compiling ANSI C 

source code. HPUX UNIX compilers, for example, will assume the older K&R C code is being 

compiled instead, usually leading to a lot of compile errors. Therefore, for HPUX you will need 

to supply the option -Aa to compile any modern C source code. A few other commercial UNIX 

compilers have similar requirements. 

Managing Compiler Warnings 
The C compiler will often report messages. These messages can be divided into error messages 

and warning messages. Error messages indicate things that must be corrected in order for the 

compile to succeed. Warnings alert the programmer to bad practices and problems that might 

occur later when the program is run. 

With the maximum compile warning level set, the compiler reports on the smallest of infrac¬ 

tions, but it usually does so intelligently and diligently. Sometimes warnings are issued for 

valid C programming practices, and some developers disable these warnings with certain com¬ 

piler options. By doing this, they prevent the C compiler from providing useful advice. 

The best advice that can be provided here is to always use the maximum warning level avail¬ 

able. This forces the developer to address all source code issues until the warnings disappear 

from the compilation. The only justifiable reason for going to a lower warning level is when 

you’ve inherited someone else’s source code and you do not have the luxury of time to fix all 

the causes of warnings. 

Always compile with the maximum warning level turned on. Time spent eliminating causes of 

warning messages, can save a lot of time later while debugging your program. 

With the GNU compiler under FreeBSD and Linux, this is done by adding the -Wall option. 

The following shows how to use the GNU compiler under FreeBSD with the maximum warn¬ 
ing level enabled: 

bash$ gcc -Wall hello.c 

The compile examples in this book will all use the -Wall option unless the example involves a 
non-GNU compiler. 

Most UNIX command-line options do not require a space to appear between the option letter and 

the option's argument. For example, the option may be specified as -Wall or -w all, since these are 
equivalent. 
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Working with Compiler Warning Messages 
When a high warning level is used by the compiler, every possible warning message is 

reported. A low warning level will report only the most important messages and suppress the 

rest. 

As noted earlier, there is one drawback to using a high warning level with your C compiler: 

Sometimes you’ll receive warning messages for valid C language constructs. Well-designed 

compilers will help you cope with these problems, however, since they allow you to use tricks 

to convey your real intention. 

Warnings About Assignments 
A programmer often loves the economy of expression available in the C language. This means 

that the programmer will employ the smallest number of statements or operators to accom¬ 

plish a task. Sometimes this involves doing an assignment and a test for non-zero all in one 

step. Consider the if statement in Listing 1.1. 

LISTING 1.1 asgnl. c—Warnings About Value Assignment in the if Statement 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 

#include <string.h> 

char * 
Basename(char ‘pathname) { 

char *cp; /* Work Pointer */ 

if ( cp = strrchr(pathname,'/') ) 
return cp + 1; /* Return basename pointer */ 

return pathname; /* No directory component */ 

} 

Note 

The program listings in this book include line numbers at the extreme left. Do not type these if you 

are entering the example programs manually. They are included only for ease of reference. 

Here is the compile session for Listing 1.1: 

$ cc -c -Wall asgnl.c 
asgnl.c: In function 'Basename': 
asgnl.c:7: warning: suggest parentheses around assignment used as truth value 

$ 

Notice the statement in line 7. The reason the compiler flags this statement as a possible error 

is that often the C programmer really intends to use the comparison operator == to compare 

values instead of assigning a value in an if statement. The compiler has no way of confirming 

whether the actual assignment is correct or whether a comparison was intended instead. The 

developer is left to decide the issue after the compiler has issued the warning. 
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Note that the statement is not incorrect, but neither is it certain that it reflects the program¬ 

mer’s true intention. Some might be tempted to argue that comparison is normal in an if 

statement and that the assignment in an if statement is unusual. The fact remains, however, 

that the C language is defined such that both are equally valid expressions. 

Compiler writers have developed clever tricks for dealing with these thorny issues. This partic¬ 

ular case can be resolved this way: If an assignment is coded as shown in Listing 1.1, it is 

flagged with a warning because it represents a possible error on the programmer’s part. If this 

does represent an error, the programmer replaces the single equals symbol with a double 

equals symbol and recompiles. If the assignment is the intent, the programmer encloses the 

assignment with a set of brackets. When this is done, the compiler will assume that the pro¬ 

grammer knows what he is doing. 

Listings 1.2 and 1.3 show two different ways to resolve the warning issue in favor of the 
assignment. 

LISTING 1.2 asgn2. c—Additional Parentheses Quiet an Assignment Warning 

1: 
o • 

#include <string.h> 
C- . 
3: char * 
4: Basenamefchar ‘pathname) { 
5: char *cp; /* Work Pointer */ 

7: if ( (cp = strrchr(pathname, '/')) ) 
8: return cp + 1; /* Return basename pointer */ 
9: return pathname; /* No directory component */ 
10: } 

LISTING 

1: 
2: 
3: 
4: 

1.3 asgn3. c—Parentheses and Comparison Quiet an Assignment Warning 

#include <string.h> 

char * 
Basename(char ‘pathname) { 

5: 
R • 

char *cp; /* Work Pointer */ 

7: if ( (cp = strrchr(pathname, '/')) != 0 ) 
8: return cp + 1; /* Return basename pointer */ 
9: 
10: 

return pathname; 

} 
/* No directory component */ 

Note the extra pair of parentheses around the assignment in line 7 of both Listings 1.2 and 

1.3. The C syntax here did not require the parentheses, but the compiler took this as a cue 

from the developer that he knows what he is doing. While Listing 1.2 shows a solution accept¬ 

able to the GNU compiler, some other UNIX compilers will insist on the construct shown in 

Listing 1.3. For this reason, the solution in Listing 1.3 is preferred. It is clearer to the reader of 
the source code. 
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Tip 

There is normally no longer a need to economize in C language expressions for the sake of optimiza¬ 

tion. Today's optimizing compilers are very effective at producing optimal code without any help 

from the programmer. For this reason it is better to make an expression easier to read than to reduce 

it to the fewest number of C operators. 

This discussion has been presented using the C language if statement, but this issue applies to 

other statements as well. Warnings about assignments in the switch and while statements can 

be quieted in the same manner. 

Warnings About Unused Arguments 
Some compilers will complain about unused arguments. The thinking appears to be that if the 

argument is defined, then it was meant to be used. The truth of the matter is that the function 

arguments define an interface. There is no real requirement to fully use the interface that is 

defined, since an interface may also be intended for future use. 

An example of the unused argument problem is the ubiquitous main () program. The main 

program interface is often defined as follows: 

int mainfint argc,char *argv[]); 

If the program being written does not use the arguments that are present, it doesn’t seem 

proper to remove the arguments simply because they are unused. This is what often is done by 

programmers to eliminate the compiler warnings. 

Instead, it seems preferable to leave the arguments declared to indicate that the interface sup¬ 

ports passing those values in that way. Listing 1.4 shows a simple way to avoid this problem. 

LISTING 1.4 uargs.c—Quieting Unused Argument Warnings 

1: #include <stdio.h> 
2: 
3: int 
4: mainfint argc,char **argv) { 

5: 
6: (void) argc; 
7: (void) argv; 

8: 
9: puts("Hello World!"); 
10: return 0; 
11: } 

The C language permits a reference of a value in isolation, within a statement. Normally, this is 

not a useful construct, since there is no useful side effect in this case. However, it can be used 

as a useful compiler side effect, and this is exactly what is done with the (void) cast in lines 6 

and 7 of Listing 1.4. 

It should be noted that the GNU compiler in the FreeBSD 3.4 Release does not warn about 

unused arguments (gcc version 2.7.2.3). However, the compiler that you are using might. 
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Resolving Unused Variable Warnings 
Sometimes the compiler will warn you about unused variables that you have declared in your 

code. These warnings create a strong temptation to remove the variables from your code 

immediately. You should exercise great care before doing so. 

Warning 

Be extremely careful about removing unused variables and buffers. Make sure that you fully evaluate 

the C preprocessing directives of the source code before you assume that these values are never 

used. Sometimes compiling a program with different macro settings can cause these variable decla¬ 

rations to be needed. This is especially true when source code is compiled on different UNIX plat¬ 

forms. 

The problem of unused variables often occurs in code that is designed to be portable to many 

different UNIX platforms. The specific problem is normally that the original developer never 

properly allowed for the unused declarations at the right time with the help of the correct C 

preprocessing directives. What often happens is that the source code is patched and modified 

by several people, and those changes never get fully retested on the other platforms on which 

it was meant to compile. 

Listing 1.5 illustrates a program that, when compiled a certain way, will have unused variables 

But are these variables truly unnecessary? 

LISTING 1.5 uvars. c—An Example of Unused Variable Declarations 

/* uvars.c */ 1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 

int 
main(int argc,char **argv) { 

9: pid_t PID; /* Process ID */ 
10: 
11: (void) argc; 
12: (void) argv; 
13: 
14: #ifdef SH0W_PID 
15: PID = getpid(); /* Get Process ID */ 
16: printf("Hello World! Process ID is %d\n",(int)PID) 
17: #else 
18: puts( "Hello World!11) J 

19: #endif 
20: 
21 : return 0; 
22: } 
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When Listing 1.5 is compiled without defining the C macro SHOW_PID, the result looks like 
this: 

$ cc -Wall uvars.c 
uvars.c: In function 'main': 
uvars.c:9: warning: unused variable 'PID1 
$ 

The compiler in this example has complained that the declared variable PID in line 9 is not 

used. This happens because the macro SH0W_PID is not defined, causing line 18 to be com¬ 

piled in the place of lines 15 and 16. In this compile, the variable PID is unreferenced. 

However, if you take this warning message at face value and remove the declaration of variable 

PID in line 9, then you will solve the immediate problem but create another, longer-term prob¬ 

lem. If you define the macro SHOW_PID in the next compile, you find that it is necessary under 

different compile conditions: 

$ cc -Wall -DSH0W_PID uvars.c 
$ ./a.out 
Hello World! Process ID is 73337 

$ 

Adding the option -DSH0W_PID to the cc command line defined the SH0W_PID macro for this 

particular compile. As shown, you can see that the compile was successful and without any 

warning messages. 

While this concept is obvious in this small example program, this same scenario often occurs 

in many real-life examples of UNIX code that are much more complex. The message here is to 

be careful about what you assume should be deleted from the source code when you get 

unused variable warnings. 

Resolving Unreferenced String Warnings 
Unreferenced string constants will also cause warnings to be generated. Sometimes program¬ 

mers leave a string constant in a program so that it will become part of the final executable. A 

common practice is to define version strings in a program so that the executable file can be 

dumped and matched up with a particular version of a source module. 

Tip 

To eliminate compiler warnings about unreferenced string constants, simply declare the string con¬ 

stant as a constant using the C language const keyword. 

The solution to these warnings is simply to define the string constant as a constant using the 

const keyword. The compiler does not complain about unreferenced constants. Listing 1.6 

shows an example of an embedded CVS string that causes an unreferenced string warning to 

be issued by the compiler. 
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LISTING 1.6 ustring. c—Example of an Unreferenced CVS String 

1: /* ustring.c */ 
2: 
3: #include <stdio.h> 
4: 
5: static char cvsid[] = 
6: "$Header: /home/cvs/prj/ustring.c,v 1.6 2010/03/30 01:59:34 uid Exp $"; 

7: 

8: int 
9: main(int argc,char **argv) { 
10: 
11: (void) argc; 
12: (void) argv; 
13: 
14: puts("Hello World!"); 
15: return 0; 
16: } 

The compile session for Listing 1.6 is as follows: 

$ cc -Wall ustring.c 
ustring.c:5: warning: 'cvsid' defined but not used 

$ 

Note lines 5 and 6 of Listing 1.6, where the string array cvsid [ ] is declared. The purpose of 

this declaration is simply to have the string constant appear in the final executable file. This 

allows you to identify the version of the source code that went into the executable program. It 

can be displayed with the ident command: 

$ ident a.out 
a.out: 

SHeader: /home/cvs/prj/ustring.c,v 1.6 2010/03/30 01:59:34 uid Exp $ 

$ 

The ident (1) command locates the string constants that start with $Header: and end with the 

$ character. The problem is that the compiler complains about this string constant because the 
string itself is not used within the code. 

Some prefer to use the CVS/RCS identification string $id$ instead of $Header$, since the string is 

shorter (the directory path is not included). However, note that some versions of the ident (1) com¬ 

mand will not report the $ld$ string (for example, HPUX 10.2 and 11.0 will not report $ld$, but 

Linux and FreeBSD will). 

Other UNIX platforms may not have the ident (1) command at all (AIX 4.3 and SunOS 5.6, for 

example). In that case you can use the strings (1) command and grepfl) for the string 
'$Header: ' instead: 

$ strings a.out | grep 'SHeader:' 

The compiler is easily quieted about the unreferenced string by simply defining the string as a 

constant. The compiler does not require constants to be referenced. See Listing 1.7 for the cor¬ 
rected source code. 
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LISTING 1.7 ustring2. c—Eliminating the Unused String Constant Warning 

1: /* ustring.c */ 
2: 

3: #include <stdio.h> 
4: 

5: static const chan cvsid[] = 

6: "$Header: /home/cvs/prj/ustring.c,v 1.6 2010/03/30 01:59:34 uid Exp $"; 
7: 
8: int 
9: main(int argc.char **argv) { 
10: 

11: (void) argc; 
12: (void) argv; 
13: 

14: puts("Hello World!")! 
15: return 0; 
16: } 

Line 5 of Listing 1.7 shows the added const keyword that is necessary to soothe the compiler. 
The compile session that follows confirms this: 

$ cc -Wall ustring2.c 
$ 

Unlike the other compile, there are no warning messages. 

Compiling to Standards 
Many UNIX platforms strive to adhere to various C and C++ standards where possible. 

Additionally, they all tend to support various enhancements that are not included in these 

standards. Most UNIX development environments will also support multiple C standards. So 

how does the programmer choose the standard to which he is compiling his source code? 

Under UNIX, the choice of compile standard is established by a feature test macro that is 

defined. Generally, for any given platform, a standard is chosen by default. However, it is wiser 

to choose one explicitly to avoid difficulties compiling your project on the various UNIX plat¬ 

forms that you might be supporting. This may avoid other compile error surprises that might 

come about with newer releases of a vendor’s UNIX platform. 

FreeBSD 3.4-Release describes its standards support in posix4(9). There you will find the fol¬ 

lowing two feature test macros that will be used in this book: 

• _P0SIX_S0URCE 

• _P0SIX_C_S0URCE 

The _P0SIX_S0URCE feature macro is an older C macro that indicates that only POSIX and 

ANSI functionality should occur in the name space. 
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The one that will be used in this book is the _P0SIX_C_S0URCE macro, because it allows you to 

choose a specific POSIX standard for compiling. The two FreeBSD documented values are 

_P0SIX_C_S0URCE=199009L POSIX. 1 

_P0SIX_C_S0URCE=199309L POSIX. IB 

Since the second selection allows the newer standard features to be compiled, it is preferred 
for new programs. 

Listing 1.8 shows a simple feature macro test program. You can compile it in different ways 

and have it report information about standards to you. 

LISTING 1.8 posix. c—Feature Macro Test Program 

1: /* posix.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: 
6: int 
7: main(int argc,char **argv) { 
8: 
9: (void) argc; 
10: (void) argv; 
11: 
12: #ifdef _P0SIX_S0URCE 

13: printf("_P0SIX_S0URCE = %ld\n",(long)_POSIX_SOURCE); 
14: #endif 
15: 
16: #ifdef _P0SIX_C_S0URCE 

17: printf("_P0SIX_C_S0URCE = %ld\n",(long)_POSIX_C_SOURCE); 
18: #endif 
19: 
20: #ifdef _P0SIX_VERSI0N 

21: printf("_P0SIX_VERSI0N = %ld\n",(long)_POSIX_VERSION); 
22: #endif 
23: 
24: return 0; 
25: } 

Note that the include file <unistd. h> is necessary for this program to evaluate the various 

POSIX C feature macros. You will find that there is a considerable variety of responses to this 
test on different UNIX platforms. 
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FreeBSD 3.4-Release Feature Tests 
When Listing 1.8 is compiled with various combinations of the _P0SIX_S0URCE and 

_P0SIX_C_S0URCE feature macros, you will see the following program responses: 

$ cc posix.c && ./a.out 
_P0SIX_VERSI0N = 199009 

$ 

In these examples, the a. out file is both compiled and invoked on the same command line for 

convenience (the shell && operator will invoke the next command if the previous command 

was successful). In the above test, it is evident that FreeBSD defines the macro _P0SIX_ 

VERSION to indicate the version of the system for which the system is built. Here, it is reported 

that the default is the POSIX.l standard (199009). It will be seen later, however, that not all 

UNIX environments will provide a _P0SIX_VERSI0N value by default. 

$ cc posix.c -D_P0SIX_S0URCE && ./a.out 
_P0SIX_S0URCE = 1 
_P0SIX_VERSI0N = 199009 

$ 

In this example, the compile explicitly defines the feature test macro _POSIX_SOURCE. It can be 

seen that the same macro is reassigned the value of 1 and that the _P0SIX_VERSI0N macro is 

set to the value of 199009. 

$ cc posix.c -D_P0SIX_C_S0URCE=199009L && ./a.out 
_P0SIX_C_S0URCE = 199009 
_P0SIX_VERSI0N = 199009 

$ 

Here the standard is chosen by setting the feature macro _POSIX_C_SOURCE and specifically 

choosing POSIX.l (199009). The _P0SIX_VERSI0N macro is set to match in this example. 

$ cc posix.c -D_POSIX_C_SOURCE=199309L && ./a.out 
_P0SIX_C_S0URCE = 199309 
_P0SIX_VERSI0N = 199009 

$ 

This example chooses the POSIX.1B standard, but the feature test macro remains at the 

POSIX.l value of 199009. The FreeBSD posix4(9) documentation indicates that this tells your 

program that the operating system features are based on the POSIX. 1 standard (even thought 

POSIX.1B was requested). 

$ cc posix.c -D_P0SIX_C_S0URCE=199506L && ./a.out 
_P0SIX_C_S0URCE = 199506 
_P0SIX_VERSI0N = 199009 

$ 

This example is similar to the preceding one. A more recent standard is requested, but the 

_P0SIX_VERSI0N macro suggests that only POSIX.l (199009) is being supported. 
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HPUX 10.2 Feature Tests 
For comparison, the posix.c module was tested under HPUX 10.2. With only the option -Aa 

specified to request a compile of ANSI C code, the following output was obtained from run¬ 

ning posix.c: 

$ cc -Aa posix.c && ./a.out 
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (posix.o) 
*-was detected. The linked output may not run on a PA 1.x system. 
$ 

Even though a. out was invoked, there was no output. This indicates that none of the feature 

test macros were defined by default (unlike FreeBSD). The next example defines the macro 

_P0SIX_S0URCE: 

$ cc -Aa -D_P0SIX_S0URCE posix.c && ./a.out 
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (posix.o) 
‘♦was detected. The linked output may not run on a PA 1.x system. 
_P0SIX_S0URCE = 1 
_P0SIX_VERSI0N = 199009 

$ 

This is now identical to the FreeBSD output (with the exception of the pesky HP loader warn¬ 

ing, which can be eliminated with several other options). Choosing the POSIX. IB standard 
yields the following results: 

$ cc -Aa -D_POSIX_C_SOURCE=199309L posix.c && ./a.out 
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (posix.o) 
**was detected. The linked output may not run on a PA 1.x system. 
_P0SIX_C_S0URCE = 199309 
_P0SIX_VERSI0N = 199309 
$ 

This differs from the FreeBSD example in that the _P0SIX_VERSI0N value shows support for 
POSIX.IB here (the value is 199309). 

AIX 4.3 Feature Tests 
The AIX tests are presented here because of a few other wrinkles that were encountered. The 
next example shows the results of the default compile case: 

$ cc posix.c && ./a.out 
"posix.c", line 13.55: 1506-046 (S) Syntax error. 
"posix.c", line 21.58: 1506-276 (S) Syntax error: possible missing ')'? 
$ 

The error messages indicate that no defaults are established here. Defining the macro 
_P0SIX_S0URCE helps and yields the following results: 

$ cc -D_P0SIX_S0URCE posix.c && ./a.out 
_P0SIX_S0URCE = 1 
_P0SIX_VERSI0N = 199506 

$ 
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Notice that _POSIX_SOURCE is redefined with the value 1, and the macro _P0SIX_VERSI0N is 

given the value 199506, indicating the most recent POSIX standard value of all of the tests that 

are reported in this chapter. Specifically choosing an older standard is attempted next: 

$ cc -D_POSIX_C_SOURCE=199309L posix.c && ./a.out 
"posix.c", line 13.55: 1506-046 (S) Syntax error. 
"posix.c", line 17.60: 1506-276 (S) Syntax error: possible missing ')'? 

$ 

This just seems to buy trouble. Another attempt is made to specify the version that is appar¬ 

ently supported using the _POSIX_C_SOURCE feature test macro: 

$ cc -D_P0SIX_C_S0URCE=199506L posix.c && ./a.out 
"posix.c", line 13.55: 1506-046 (S) Syntax error. 
"posix.c", line 17.60: 1506-276 (S) Syntax error: possible missing ')'? 
$ 

This seems to yield more compile errors. For AIX compiles, it would appear that you should 

only specify the _P0SIX_S0URCE macro and avoid defining the _POSIX_C_SOURCE macro for a 

specific standard release. 

SunOS 5.6 Feature Tests 
The last example presented involves the reaction of the SunOS 5.6 release to various standards 

settings. The default case is attempted first: 

$ cc posix.c && ./a.out 
_P0SIX_VERSI0N = 199506 
$ 

Isn’t this fun? In this case, the _P0SIX_VERSI0N macro is set to the value of 199506, but no 

_P0SIX_S0URCE macro is defined. In the next test, _POSIX_SOURCE is defined: 

$ cc -D_P0SIX_S0URCE posix.c && ./a.out 
_P0SIX_S0URCE = 1 
_P0SIX_C_S0URCE = 1 
_P0SIX_VERSI0N = 199506 
$ 

This gets even more interesting. Now the _P0SIX_S0URCE macro is redefined with the value of 

1, which is what was expected. Here, the _POSIX_C_SOURCE macro now gets the value 1, which 

is interesting. Finally, the _POSIX_VERSION macro gives us the value of 199506, which indicates 

the level of support the C program can expect. The next test explicitly asks for this version of 

the standard: 

$ cc -D_P0SIX_C_S0URCE=199506 posix.c && ./a.out 
_P0SIX_C_S0URCE = 199506 
_P0SIX_VERSI0N = 199506 
$ 
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In this output, we lose the _P0SIX_S0URCE macro, and the _P0SIX_VERSI0N macro matches 

what was requested. One more test was conducted, this time requesting an older standard of 

POSIX.1B (199309): 

$ cc -D_P0SIX_C_S0URCE=199309L posix.c && ./a.out 
_P0SIX_C_S0URCE = 199309 
_P0SIX_VERSI0N = 199506 
$ 

The _P0SIX_C_S0URCE macro remains at the level that was requested, but the _P0SIX_VERSI0N 

macro remains at the value 199506. What does this tell you? It would seem that _P0SIX_ 

VERSION indicates what you have at your disposal, while _P0SIX_C_S0URCE tells you what was 

requested. 

Feature Test Summary 
A writer of portable UNIX code must face a number of challenges to support multiple UNIX 

platforms. From the foregoing sections, it is plain that even just choosing the POSIX standard 

that you want to compile to is somewhat platform specific. 

It would appear that the safest route with the platforms tested here is to specify the compile 

option. -D_P0SIX_S0URCE is the most platform-neutral course to take, from a feature macro 

point of view. However, this is not a perfect solution, because it is evident that different POSIX 

standards were chosen on different UNIX platforms. This may cause other compile problems. 

It seems that until UNIX vendors reach more agreement on the way that the feature test 

macros work, each UNIX platform will require its own special tweaking of feature test macros. 

You must first determine the lowest common denominator of the standard that your code is 

written for. Then determine how to select that standard on the UNIX platform chosen. 

To simplify matters for this book, FreeBSD will be used for the program examples. The 

POSIX. IB standard will be requested in the example compiles (_P0SIX_C_S0URCE=199309L), 

even though the FreeBSD 3.4-Release’s _P0SIX_VERSI0N macro indicates that only the POSIX. 1 

standard is supported. 

Summary 
This chapter has been a primer of sorts, to prepare you for all of those nasty compile issues 

that jump out at you when you begin a new project or port an old project on a new UNIX 

platform. The relatively standard compile options were covered to give you a quick start. You 

may find, however, that you still need to visit the vendor-specific options that were not dis¬ 

cussed here. For example, HP has options that permit you to choose different instruction sets 

for the different PA-RISC platforms that are supported by the compiler. 

You also learned (or reviewed) some tips on how to eliminate warning messages. This should 

enable you to keep the highest level of warnings enabled on your compiler and still accom¬ 
plish tasks that the compiler might otherwise question. 
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Finally, you had an introduction to compiler feature test macros, which let you choose a stan¬ 

dard to compile to. This treatment was by no means complete, since the other possibilities 

such as _GNU_SOURCE for Linux or _HPUX_SOURCE for HP were not tested. While these are not 

standards, they are often chosen to get the best combination of features for the specific plat¬ 

forms in question. 

The next chapter will cover the subject of UNIX file system objects. For non-UNIX veterans, 

this is an essential foundation to build upon. Consequently, you are encouraged to absorb that 

chapter carefully. After an introduction to the various types of UNIX file system objects, the 

chapter will cover basic UNIX permissions as they affect the different objects. Then the core 

set of UNIX system calls as they affect the file system objects will be covered, giving you the 

core knowledge necessary for the remainder of this book. 



■ 



CHAPTER 2 

UNIX FILE SYSTEM OBJECTS 

The early aspects of the UNIX file system design were conceived in the summer of 

1969, largely by Ken Thompson at Bell Telephone Labs (BTL). An early version of the 

UNIX file system was loaded onto disk by paper tape. This allowed Ken Thompson 

and Dennis Ritchie to “drive the file system into the contortions that we wanted to measure,” 

as Ken has been quoted. 

Since this humble beginning, the basic ideas of the UNIX file system design have been copied 

in all other modern operating systems. This chapter will focus mostly on the objects that the 

UNIX file system presents to the users of the system. You will also examine some of the most 

basic operating system calls for working with file system objects from within your C program. 

File System Objects 
Modern UNIX file systems support the following types of file system objects: 

• Regular Files (S_IFREG) 

• Directories (S_IFDIR) 

• Character Devices (S_IFCHR) 

• Block Devices (S_IFBLK) \ 

• Named Pipes (S_IFIF0) 

• Sockets (S_IFS0CK) 

• Symbolic Links (S_IFLNK) 

The C macro names given within parentheses are provided by the include file <sys/stat. h> 

(see stat (2)). You’ll see more of these in Chapter 6, “Managing Files and Their Properties.” 

Regular Files 
A regular file is generally what is most important to users of a system. It stores the data that 

the user wants to retrieve and work with at a later time. The UNIX file system presents this 

data as a continuous stream of bytes. 
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A regular file consists of any number of data bytes, from zero to some maximum number. This 

is an important distinction to note, since many file systems, including CP/M and DOS, will 

present only multiples of a particular block size. This forces the DOS operating system to 

adopt the AZ character as a marker for the end of a text file. Without this marker byte, it is oth¬ 

erwise impossible to have a file logically contain 3 bytes or 300 bytes, for example. However, 

UNIX has no such restriction, since it is logically able to present a file of any byte length. 

Note 

Although the UNIX file system is able to logically present a file of any size, it will still physically 
occupy a multiple of some block size. The precise nature of file allocation is hidden from the user and 
is determined by the type of file system in use. 

Another feature of the UNIX file system is that the programmer can work with the file logically. 

There is no longer any need for the program to care about the block size in use by the underly¬ 

ing file. This permits the program to seek to any offset within the file and read any number of 

bytes, which may or may not span multiple disk blocks. For operating systems in 1969, this 

was a radical concept. 

A regular file is identified by Is (1) as follows: 

$ Is -1 /etc/hosts 
-rw-r--r-- 1 root wheel 112 Feb 19 11:07 /etc/hosts 
$ 

The first character of the Is (1) output is a - (hyphen) to indicate that /etc/hosts is a regular 
file. 

Directories 
You cannot have more than one file in a file system without a directory. The first version of 

DOS created files only under the root directory. However, when a file was opened, this direc¬ 

tory was searched to see if the file existed and where it was physically allocated. 

The second step is important to the operating system in question. 

UNIX supports a hierarchical file system, which allows directories to contain subdirectories. 

This allows the file system to be subdivided into logical groups of files and other file system 

objects. Can you imagine how difficult UNIX would be to use if the FreeBSD 3.4-Release con¬ 
tained all of its 60,014 (or more) files under the root directory? 

Early releases of UNIX permitted directories to be read and written like regular files. Over 
time, several problems with this open concept emerged: 

• Program errors or accidental writes to a directory could cause the loss of several files. 

• New file systems supported different directory structure entries. 

• Tong filename support made it inconvenient to work directly with directory entries. 
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The first point illustrates one of the big weaknesses of early directory management. It was pos¬ 

sible to lose the contents of an entire directory by accidentally overwriting the directory. The 
following command used to create havoc: 

$ echo OOPS >directory 

If directory was the name of a directory, this command would overwrite its contents, causing 

UNIX to lose track of all the files that it managed. Even worse, it usually meant that the space 

occupied by the files in that directory was lost, since the file system was not notified of any 

deletion. The following shows a modern response to this problem: 

$ mkdir testdir 
$ echo STUFF >testdir/file 
$ Is -1 testdir 
total 1 
-rw-r--r-- 1 myid megrp 5 Apr 15 15:16 file 
$ echo OOPS >testdir 
testdir: Is a directory. 
$ Is -1 testdir 
total 1 
-rw-r--r-- 1 myid megrp 5 Apr 15 15:16 file 
$ 

The example creates a test directory and file and then attempts to overwrite the directory. The 

response from the UNIX kernel is that testdir: Is a directory. 

When all file object names were limited to 14 characters, as they were in the earlier days, it 

was simple to work with the directories using direct file reads and writes. However, as different 

directory formats emerged and long filename support was introduced, this method proved to 

be unsafe and inconvenient. 

For all of the reasons listed here, modern UNIX provides a set of library routines to search and 

manage directories. These will be covered in Chapter 7, “Directory Management.” 

A directory is identified by Is (1), as the following example illustrates: 

$ Is -dl /etc 
drwxr-xr-x 14 root wheel 2048 Apr 5 01:47 /etc 
$ 

The first character shown by Is (1) is the letter d, indicating that /etc is a directory. Note 

especially the use of the -d option in the Is (1) command line. Without this option, Is (1) will 

attempt to list the contents of the directory, rather than the directory itself. 

Block Devices 
A block device is within a class of devices that work with fixed block sizes. A disk drive is a 

good example of this type of device. While the operating system permits you to logically read 

and write to your regular files using any transfer size, the operating system must read and 

write the disk device in terms of disk blocks of a fixed size. 

Although disk devices get faster and larger each year, they are still slow when compared to the 

speed of the CPU. In addition to slow data transfer, disk rotation and head seek latencies add 
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to the overall wait time involved in a disk I/O operation. Consequently, block devices are 

buffered with a disk cache by the UNIX kernel. 

The disk cache will usually retain the most recently used disk blocks, but cache algorithms 

vary in order to achieve different performance goals. Because disk cache dramatically improves 

the performance of the file system, all file systems tend to be mounted using the block device. 

Block devices can be readily identified by the Is (1) command as follows: 

$ mount 
/dev/wd0s2a on / (ufs, local, writes: sync 4505 async 92908) 
/dev/wd0s2e on /usr (ufs, local, writes: sync 6924 async 118551) 
procfs on /proc (proofs, local) 
$ Is -1 /dev/wd0s2a 
brw-r. 1 root operator 0, 0x00030000 Feb 19 11:05 /dev/wd0s2a 
$ 

The mount (8) (on many systems mount (1M)) command is used to find out what block devices 

have been used. Then the device /dev/wd0s2a was chosen in this example. The first character, 

shown by Is (1) in this example, is the letter b, indicating that /dev/wd0s2aisa block device. 

Block devices are not necessarily representative of the entire disk. In most cases, these repre¬ 

sent a disk partition so that an error in file system software cannot corrupt another partition. 

Additionally, each block device within the system usually has a corresponding character device 

as well. Block and character devices are also referred to as block raw devices and character raw 

devices, respectively. 

When applied to a device, the word “raw” indicates that the disk space and structure are not 

managed. The raw device does not maintain a structure of files and directories within it. This 

is the job of file system software. Similarly, a database manages tables and rows within a raw 

device. 

The cache feature of block devices may seem to suggest that a block device should be a good 

candidate for a database. This is usually not the case, however, since the database engine has 

its own custom cache algorithms that are tuned to the way that the database accesses the disk 

device. For this reason, database engines like Oracle, Sybase, and Informix usually perform 

better with the corresponding character device. This is one of the reasons that raw (character) 

device access to disks and partitions is being added to the Linux 2.4 kernel. 

Character Devices 
Character devices are a class of devices that work with various byte-sized inputs and outputs. 

These generally work with variable lengths of data, but not necessarily so (disks will insist on 

fixed block sizes). Your terminal (or pseudo-tty) is a special form of character device. As you 

type characters at your keyboard on the console, the operating system must read the characters 

and make them available to the program that is currently reading input from the terminal. This 

differs from the way that block devices work, in that the amount of data input is often small or 
variable in length. 
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QIC (Quarter-Inch Cartridge) tapes are another example of character devices. Tape devices will 

accept a program’s idea of a record (within limits) and write a physical record to tape matching 
that size. 

A character device is easily identified by the Is (1) command as shown below: 

$ Is -1 /dev/tty 
crw-rw-rw- 1 root wheel 1, 0 Apr 15 14:56 /dev/tty 
$ 

The device /dev/tty is always known to the current session as your terminal device (the 

actual device name is different). The first character shown in the Is (1) output is c, telling you 

that this is a character device. 

The mouse attached to the console is another example (FreeBSD): 

$ Is -1 /dev/sysmouse 
crw. 1 root wheel 12, 128 Feb 19 11:05 /dev/sysmouse 
$ 

Flere again, you can see that the mouse is considered a character device. 

Disks are also accessible using UNIX character devices. The same disks can be accessed using 

the corresponding block device that you read about earlier. However, character raw devices 

(for disks) are often provided to the database engines. Database engines manage the perfor¬ 

mance of disk I/O better than the block device cache because of their intimate knowledge of 

the data structures being used by the database. 

By convention, the character raw device name of a block device usually has the letter r in front 

of it. See the following FreeBSD example: 

$ mount 
/dev/wd0s2a on / (ufs, local, writes: sync 4505 async 92982) 
/dev/wd0s2e on /usr (ufs, local, writes: sync 6926 async 118585) 
procfs on /proc (proofs, local) 
$ Is -1 /dev/rwd0s2a 
crw-r. 1 root operator 3, 0x00030000 Feb 19 11:05 /dev/rwd0s2a 
$ 

The mount (8) command was used to discover the block device names. Note that the Is (1) 

command adds the letter r to the device name to arrive at the character raw device name of 

/dev/rwd0s2a for the root mount. The first character of the Is (1) output shows the letter c, 

confirming that this is a character device. 

Named Pipes (FIFOs) 
In the period between 1970 and 1972, Doug Mcllroy at BTL would sketch out how he would 

like to connect processes by saying “who into cat into grep.” In 1972, Ken Thompson finally 

said, “I’m going to do it!” Overnight Ken worked to implement the pipe concept. Ken also had 

to rework many of the tools because, at the time, the tools did not support the idea of standard 

input—they read from files named on the command line instead. UNIX, starting with Third 
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Edition, was forever changed that night. The pipe feature was so well accepted that anyone 

who had seen it would not give it up. 

Pipes are now routinely used on the command line under UNIX for all sorts of purposes, using 

the | pipe (vertical bar) symbol. These are anonymous pipes, since they exist only between the 

processes that are communicating with each other. They disappear from the system when both 

ends of the pipe become closed. 

It is also possible to create a named pipe that exists in the file system. These are also known as 

FIFOs, since data that is written first in is first out of the pipe. The following shows a simple 

example: 

$ mkfifo myFIFO 
$ Is -1 
total 0 
prwxr-xr-x 1 myid mygrp 0 
$ Is -1 >myFIF0 & 
$ tr '[a-z]' '[A-Z]' cmyFIFO 
TOTAL 0 
PRWXR-XR-X 1 MYID MYGRP 0 
[1] 77637 Exit 0 
$ 

Apr 15 16:55 myFIFO 

APR 15 16:55 MYFIFO 
Is -1 >myFIF0 

The example illustrates how the Is (1) command was able to redirect its output into the FIFO 

myFIFO (is was placed into the background so that another command could be started in the 

same session). Then the tr(1) command was started to accept input from myFIFO, translating 

all lowercase letters into uppercase. 

Notice also that the first letter of the Is (1) output is the letter p. This is how FIFO file system 

objects can be identified. 

Sockets 
The socket was a Berkeley University concept that found its way into 4.1BSD and 4.2BSD 

implementations of UNIX circa 1982. Sockets permit processes on one UNIX host to commu¬ 

nicate over a network with processes on a remote host. Sockets can also be used to communi¬ 

cate with other processes within the same host. (The BSD lpr (1) command does this to accept 
output for spooling to a printer.) 

Local sockets can also exist within the file system. This is the type of socket that can be used 

only between processes within the same host. If you have the PostgreSQL database installed on 
your FreeBSD system, you might have a socket like this one: 

$ Is -1 /tmp/.s.PGSQL.5432 
srwxrwxrwx 1 postgres wheel 0 Mar 7 04:43 /tmp/.s.PGSQL.5432 
$ 

The example shows that the Is (1) command identifies the socket with the starting letter s. 

Sockets that connect to remote systems, however, do not appear anywhere in the file system. 
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Symbolic Links 
UNIX has supported linked files for quite some time. However, the symbolic link is a relatively 

new concept by UNIX standards. It was added to address the limitations of the normal link, 
sometimes now referred to as the “hard link.” 

Normally, files can be linked only when both links are contained on the same file system. On 

some systems, the /usr file system is different from other parts of the root file system. An 

attempt to create a link on a file system that is different from the file being linked will fail: 

$ In /etc/hosts /usr/me/work/my_link 
In: /home/me/work/my_link: Cross-device link 
$ 

The UNIX kernel tells us that these two ends of a would-be link are on different devices. The 

symbolic link makes it possible to overcome this limitation: 

$ In -s /etc/hosts /usr/me/work/my_link 
$ Is -dl my_link 
lrwxr-xr-x 1 me mygrp 10 Apr 15 17:22 my_link -> /etc/hosts 
$ 

Note that the In (1) command shown here uses the - s option to request a symbolic link, as if 

to say, “If you list the contents of my_link you will see the contents of your /etc/hosts file.” 

The Is (1) command output for the symbolic link shows a starting letter 1. 

Symbolic links work around the original problem with hard links because they are actually a 

special kind of file that contains a pathname. When the UNIX kernel sees that it is a symbolic 

link, the kernel reads this special file to find out what the real pathname is. However, it is pos¬ 

sible that the pathname listed is yet another symbolic link. The UNIX kernel will return the 

error ELOOP if the symbolic link is a circular reference or simply has too many indirect refer¬ 

ences. Chapter 6 will examine symbolic links further. 

The maximum symlink recursion in FreeBSD is defined by the macro maxsymlinks. The macro is 

defined in the include file <sys/param. h>. For FreeBSD 3.4 Release, its value is 32. Other UNIX plat¬ 

forms may differ. 

Special Files 
While you may not have realized it, you already know about special files. These are file system 

objects that allow access to devices. Here are some of the examples that you have seen already: 

/dev/tty Terminal device 

/dev/sysmouse Mouse 

/dev/wd0s2a Block disk device 

/dev/rwd0s2a Character disk device 
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These are special files because they represent only the actual device in question (FreeBSD see 

intro (4)). It is only by convention that you tend to find these devices in the /dev directory. 

They could be placed in other directories. 

Another important quality about special files is that their existence does not imply that the 

device or its driver support exists. For example, on a FreeBSD 3.4 Release system you might 

list a device: 

$ Is -1 /dev/da0 
brw-r. 1 root operator 4, 0x00010002 Feb 19 11:05 /dev/da0 
$ Is -1 /dev/rda0 
crw-r. 1 root operator 13, 0x00010002 Feb 19 11:05 /dev/rda0 
$ 

The example shows a SCSI disk block and character device. Yet, if you were to switch to root 

to access this device, you would see the following: 

# dd if=/dev/da0 of=/dev/null 
dd: /dev/da0: Device not configured 
# 

The dd (1) command is told that the device is not configured (on the particular system on 

which it was tried). The file system object /dev/da0 is just a placeholder that informs the ker¬ 

nel what device you want access to, if this special file is accessed. 

Harking back to an earlier example 

$ mount 
/dev/wd0s2a on / (ufs, local, writes: sync 4505 async 92982) 
/dev/wd0s2e on /usr (ufs, local, writes: sync 6926 async 118585) 
procfs on /proc (proofs, local) 
$ Is -1 /dev/rwd0s2a 
crw-r. 1 root operator 3, 0x00030000 Feb 19 11:05 /dev/rwd0s2a 
$ 

The /dev/rwd0s2a device is listed as the disk device (partition) for use by the root file system. 

You can also access this same device with another special file, if you create one of your own: 

$ mknod /usr/me/work/root c 3 0x30000 
mknod: /usr/me/work/root: Operation not permitted 
$ su • 
Password: 
# cd /usr/me/work 
# mknod root c 3 0x30000 
# Is -1 root 
crw-r--r-- 1 root mygrp 3, 0x00030000 Apr 15 18:03 root 
# rm root 
# exit 
$ 

The mknod (1) command requires root access (note the failed first attempt). As root, the 

mknod(1) command was used to create an entirely new special file /usr/me/work/root, which 

even used a different filename. Once that is created, you will find that you could access the 

same device by using either /dev/rwd0s2a or /usr/me/work/root (but I wouldn’t advise that 
you do anything with your root file system!). 
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The special file root in the example was deleted also. Did that make the device disappear? No. 

Not only is the special file /dev/rwd0s2a still available, even if that entry was deleted, you 
could always re-create it with the mknod (1). 

The special file entry specifies three pieces of information: 

• Block or character device (b or c) 

• The major number for the device 

• The minor number for the device 

The major number (3 in the example above) indicates what type of device it is (based upon the 

kernel configuration). The minor number can be as simple as the value zero, or it can refer¬ 

ence a particular unit within a set. For example, a minor number of 2 might choose a second 

partition of the disk drive, and a minor number of 0 might reference the entire disk drive. 

Minor numbers can also include bit flags. Some character devices such as tape drives have a 

bit set to indicate that the tape drive should be rewound upon close. In all cases, special file 

major and minor numbers are very kernel specific. You cannot use the same special files saved 

on an HPUX UNIX platform and restore them to an AIX 4.3 platform. This would be a recipe 

for disaster! 

Special files are given attention here because they are important for those system programmers 

who want to take up daunting challenges such as writing database engines. The writer of any 

new device support must also be keenly interested in the special device entry for the hardware 

device. 

Some device entries are pseudo devices. They don’t actually represent hardware, but special¬ 

ized kernel services. One pair of such devices under FreeBSD is the /dev/kmem and /dev/mem 

devices (see mem (4)). With the correct permissions, it is possible to inspect kernel memory 

through these special files. For example, a writer of a ps (1) command could choose to work 

through kernel structures this way (there are better ways). 

Permissions 
It is generally assumed in this book that the reader is already familiar with the UNIX access 

conventions that are applied. At the risk of stating the obvious, it is often useful at this stage to 

restate the precise way that permissions affect certain categories of file system objects. This is 

important because there are some minor semantic differences that depend on the file system 

object type. 

Access of Regular Files 
This is perhaps the simplest case to consider. Files can be controlled by 

• Read access 

• Write access 

• Execute access 
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These are relatively simple concepts. However, a couple of interesting combinations exist: 

• A file that has read and execute access 

• A file that has execute-only access 

The first case is necessary for shell scripts. In order for the shell interpreter to be started by the 

kernel with the ! /bin/ksh hack, the UNIX kernel insists that the execute permission be given 

on the shell script. Additionally, the shell itself must interpret the file, so it must access enough 

to read the script. A shell script is unsuccessful if it has only one access permission or the 

other. 

The execute permission is necessary to load and execute a binary executable as a process. This 

should be nothing new. However, an executable file, for instance /usr/local/bin/gzip, can¬ 

not be copied to your home directory with only execute permission. In this case, you are able 

only to execute gzip, but you are unable to ftp (1) it to your friends. 

On older UNIX systems, there used to be a sticky bit available, which had meaning for exe¬ 

cutable files. When set on an executable file, this would cause the kernel to attempt to keep 

the program text (instructions) in its memory and swap other memory out instead. This opti¬ 

mization was often used on frequently accessed commands. 

Access of Directories 
Since directories are different from files, the semantics of directory access is a bit different also: 

• Read grants permission to list the directory’s contents. 

• Write grants permission to modify the directory’s contents. 

• Execute grants permission to search the directory’s contents and open a file or change to 
a subdirectory within it. 

The read and execute permissions are similar, but distinct. You cannot list what files or subdi¬ 

rectories exist in a directory without read permission on that directory. However, if you already 

know the name of a file under that directory and you have execute access on the directory, 

then you can open that file (assuming the file grants read access). 

You can also change to a subdirectory of a directory with execute-only access, if you already 

know the subdirectory’s name (if the named subdirectory itself permits it with execute permis¬ 

sion). A subdirectory without execute permission will not permit you to change to that direc¬ 
tory, nor will it permit you to open files within it. 

Many new UNIX users have difficulty understanding write access to directories. Write access 

permits users to create, rename, or delete files and other file system objects in that directory. 

Imagine a directory that contains a read-only file granting write access. That read-only file can 

be deleted because of the write permission available at the directory level. To disallow deleting 

of files, you must withdraw write permission on the directory containing the file. This also 

prevents the user from creating new files or renaming the existing ones in that directory. 
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Many UNIX systems allow a sticky bit to be set for directories. FreeBSD 3.4 Release describes 

this in its man page sticky (8). This feature is necessary for dealing with shared directories 

such as the /tmp directory. Without the sticky bit, all users would have write access to the 
/tmp directory and be able to 

• Rename another user’s temp file 

• Delete another user’s temp file 

• Move another user’s temp file to another writable directory on the system 

In short, there is room for a lot of mischief without any special treatment of the / tmp directory. 

Rather than customize the operating system to make special allowances for fixed directories, 

the sticky bit was permitted for directories. Look at your /tmp directory now. Under FreeBSD 
you would see: 

$ Is -dl /tmp 
drwxrwxrwt 2 root wheel 512 Apr 15 03:33 /tmp 
$ 

Notice the t where the x should go (last position in drwxrwxrwt). This indicates that both the 

execute bit (for others) and the sticky bit are present. The sticky bit (S_ISVTX) for directories 

imposes the rules that the file system object can be removed or renamed only when 

• The user has write permission for the directory containing the object. 

• The user is the owner of the file system object itself. 

The only exception is for the root user, who is permitted to do anything. The sticky bit in this 

way permits only the user’s own files in a given directory to be tampered with. 

The sticky bit enables you to create a directory in which other users can create files of their 

own, but they cannot remove other users’ files. Additionally, you can create read-only files for 

those users without worrying about those read-only files being renamed or deleted. 

Working with Files Under UNIX 
A file or device under UNIX is opened with the open(2) system call. Before open (2) is consid¬ 

ered in detail, let’s first examine the way UNIX references open files in general. 

When you want to read from a file, such as /etc/hosts, you must indicate which file you 

want to read. However, if you had to name the path as a C string " / etc /hosts" each time you 

wanted to read part of the file, this would not only be tedious and inefficient, it would also be 

inflexible. How would you read from different parts of the same file? Obviously, a method by 

which the file can be opened more than once is much more flexible. 

When you open a file under UNIX, you are given a reference to that file. You already know 

(since this is review) that it is a number. This is also known as a file unit number or a file 

descriptor. Conceptually, this number is a handle that refers back to the file that you named in 

the open(2) call. 
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File descriptors returned from an open (2) call allow you to name the path of the file system 

object once. After you have a file descriptor, you can read the /etc/hosts file one line at a 

time by providing the file descriptor to the read(2) function. The UNIX kernel then knows 

which file you mean, because it remembers it from the earlier open (2) call. 

This provides flexibility also, since open(2) can be called a second (or nth) time for the same 

file. In this way, one part of your application can be reading one part of the file while another 

part is reading another. Neither read disturbs the other. The read (2) call can manage this 

because file state information is associated with each different file descriptor. 

Finally, it should be apparent that an open file descriptor eventually needs to be closed. The 

close (2) function fills that need. When a process terminates because of a signal or for any 

other reason, including a normal exit, any file descriptors that are still open are closed by the 

UNIX kernel. If this were not done, the UNIX kernel would suffer from a serious memory 

leak, among other problems. 

Less obvious is that, when anexecve(2) is called to start a new program within a process, 

some file descriptors can be closed automatically, while others are left open. See fcntl (2) and 

the F_SETFD flag if this is of interest. The execve(2) call is covered in Chapter 19, “Forked 
Processes.” 

Opening and Closing Files 
Files under UNIX are opened and closed with the following functions: 

#include <sys/types.h> /* for mode_t */ 
#include <sys/stat.h> /* for mode_t */ 
#include <fcntl.h> /* For open */ 

int open(const char *path, int flags, ... /* mode_t mode */); 

#include <unistd.h> 

int close(int d); 

The open (2) call accepts a C string that represents the pathname of the file system object to be 

opened, some flags, and optionally some permission bits in the mode argument. The return 

value is either -1 (with errno) if the call fails or a file descriptor value that starts at the value 
zero. 

Note 

The handling of errno is covered in Chapter 3, "Error Handling and Reporting," if you need to know 
more about this variable. 

The returned file descriptor is always the lowest unused file descriptor number. If you have 

standard input already open (file unit 0), standard output (file unit 1), and standard error (file 
unit 2), then the next successful open (2) call will return file unit 3. 
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When you are finished with a file descriptor (an open file system object), you must close it 
with a call to close (2). 

Flags for open(2) 

The second argument to open (2) can consist of several flag bits. These are given in Table 2.1. 

TABLE 2.1 FreeBSD open(2) Flag Bits 

Flag Description 

0_RD0NLY Open for read only 

0_WR0NLY Open for write only 

0_RDWR Open for read and write 

0_N0NBL0CK Do not block on open 

o_append Append with each write 

0_CREAT Create file if necessary 

0_TRUNC Truncate file to 0 bytes 

0_EXCL Error if creating and the file already exists 

0_SHL0CK Atomically obtain a shared lock 

0_EXL0CK Atomically obtain an exclusive lock 

The flag 0_N0NBL0CK causes the open(2) call not to block while waiting for the device to be 

ready. For example, opening a modem device can cause it to wait until a carrier is detected. On 

some UNIX platforms such as SGTs IRIX 6.5, there is also the 0_NDELAY flag, which has special 

semantics when combined with the 0_N0NBL0CK flag. 

The 0_APPEND flag will cause each write to the file to be appended to the end of the file. This 

applies to all write (2) calls, not just the first one (intervening appends can be done by other 

processes). 

The 0_CREATE flag can be used to cause the file to be created, if necessary. However, when 

combined with the 0_EXCL flag, if the file already exists, the open (2) call returns an error. A 

special case of this is when flags 0_CREATE and 0_EXCL are used and the pathname given is a 

symbolic link. The call will fail even if the pathname resolved by the symbolic link does not 

exist. Another way to state this is that if the symbolic link exists, the open call treats this as if 

the file already exists and returns an error. 

When opening a file in order to overwrite it, you can specify the 0_TRUNC flag. This causes the 

file to be emptied prior to open (2) returning successfully. Any prior content of the file is lost. 
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Flags O SHLOCK and 0_EXL0CK are permitted on FreeBSD 3.4 Release and cause certain 

flock (2) semantics to be applied. Chapter 5, “File Locking,” will cover the topic of locking 

files under UNIX. 

Closing Files Automatically 
All files are closed when the current process terminates. Flowever, by default they remain open 

across calls to the execve (2) function. If you need the open file descriptor to close prior to 

executing a new program (with execve(2)), then you should apply a call to fcntl(2) using 

the F_SETFD operation. 

#include <fcntl.h> 

int fcntl(int fd, int cmd, ...)i 

To change a file descriptor given by variable f d to close automatically before another exe¬ 

cutable is started byexecve(2), perform the following: 

int fd; /* Open file descriptor 
int b0; /* Original setting */ 

if ( (b0 = fcntl(fd,F_GETFD)) == -1 ) /* Get original setting 
/* Error handling... */ 

if ( fcntl(fd,F_SETFD,1)) == -1 ) /* Set the flag TRUE */ 
/* Error handling... */ 

Flere both the fetching of the current setting and the setting of the close-on-exec flag are 

shown. Some platforms use a C macro to identify this bit. For example, SGI’s IRIX 6.5 uses the 

FD_CLOEXEC macro instead of assuming it is the least significant bit. 

Opening Special Files 
There is actually nothing unusual about opening a special file. You open it as you would any 

other file. For example, if you have permission to open a disk partition, your program can use 

the open (2) call to open it for reading and writing. For example 

int fd; 

fd = open("/dev/wd0s2f",0_RDWR); 
if ( fd == -1 ) 

/* Error handling... */ 

From this point on, this sample program would have access to the entire disk or disk partition, 

assuming that the open call succeeded. File systems have their special files protected so that 

normal users cannot open them this way. If they could, they could seriously corrupt the file 
system. 
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The open (2) and close (2) functions can return the error eintr. It is easy to overlook this fact for 

the close(2) function. See Chapter 15, "Signals," for a discussion of this error code. 

Working with Sockets 
Sockets require special treatment. They are not opened with the normal open (2) call. Instead, 

sockets are created with the socket (2) or socketpair(2) call. Other socket function calls are 

used to establish socket addresses and other operating modes. Socket programming is outside 

the scope of this book. 

It should be noted, however, that once a socket is created and a connection is established (at 

least for connection-oriented protocols), reading and writing to a socket can occur like any 

open file, with calls to read (2) and write (2). Sockets are like bi-directional pipes, and seek¬ 

ing is not permitted. 

Duplicating File Descriptors 
UNIX provides this unique capability to have one open file descriptor available as two (or 

more) separate file descriptors. Additionally, it is possible to take an open file descriptor and 

cause it to be available on a specific file unit number, provided the number is not already 

in use. 

The function synopses for dup(2) and dup2(2) are as follows: 

#include <unistd.h> 

int dup(int oldfd); 

int dup2(int oldfd, int newfd); 

In the case of dup (2), the returned file descriptor when successful is the lowest unused file 

unit number available in the current process. For dup2 (2), however, the new file descriptor 

value is specified in the argument newfd. When dup2(2) returns successfully, the return value 

should match newfd. 

On some UNIX platforms, the dup(2) and dup2(2) calls can return the error eintr (known to be 

documented for SGI's IRIX 6.5). See Chapter 15 for a discussion of this error code. 

One situation in which dup(2) is helpful is in opening FILE streams to work with an existing 

socket. The following example takes the socket s and creates one input stream rx and another 

tx stream for writing: 
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int s; 
FILE *rx; 
FILE *tx; 

/* Open socket */ 
/* Read stream */ 
/* Write stream */ 

rx = fdopen(s,"r"); 
tx = fdopen(dup(s),“w"); 

/* Open stream for reading on s */ 
/* Open stream for writing on s */ 

Did you spot the dup(2) call? Why is it necessary? The dup(2) call is necessary because when 

the fclose(3) call is later made to close the rx stream, it will also close the file descriptor 

(socket) s. The dup(2) call ensures that the tx stream will have its own file descriptor to use, 

regardless of if stream rx is still open. 

If the dup (2) were omitted from the example, the final data held in the buffers for tx would 

fail to be written to the socket when fclose (3) was called for tx (assuming rx has been 

closed first). The reason is that the underlying file descriptor will already have been closed. 

The dup(2) call solves an otherwise thorny problem. 

Changing Standard Input 
If you need to change your standard input, how is this accomplished? This may be necessary 

for the sort (1) command for example, since it processes the data presented on its standard 

input. 

Assume that the input file to be sorted has been opened on unit 3 and held in variable f d. You 

can place this open file on standard input as follows: 

int fd; /* Open input file for sort(1) */ 

close(0); /* Close my standard input */ 
if ( dup2(fd,0) == -1 ) /* Make fd available on 0 */ 

/* Error handling... */ 
close(fd); /* This fd is no longer required */ 

The basic principle here is that once you close unit 0 (standard input), you can make the file 

that is open on unit 3 available as unit 0 by calling dup2(2). Once you have accomplished 

that, you can close unit 3, since it is not needed any longer. 

You can apply this principle for standard output, standard error, or any other file unit you 
would like to control. 

Warning 

Note that the example avoided testing for errors for close (2), which should be done. Test for the 

error eintr, and retry the close(2) call if the eintr error occurs. 
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UNIX File I/O 
Many C programming texts teach the reader how to do I/O using the stdio (3) functions 

f open (3), fgets(3), f read (3), fwrite(3), and the rest. Because UNIX supports the 

stdio (3) interface, many new UNIX programmers think of this as UNIX file I/O. However, 

this interface is simply the stdio (3) set of routines, which is layered on top of the UNIX sys¬ 

tem calls. The underlying system calls perform the real UNIX file I/O. 

There will be times where you’ll need to use the “bare metal calls” such as read (2) and 

write(2) under UNIX. These and other UNIX I/O functions will be covered in Chapter 4, 

“UNIX Input and Output.” These ultimately give you the most control and, in some cases, 

relief from bugs in stdio (3). 

Figure 2.1 illustrates how the stdio(3) functions call upon the section 2 functions. The 

read (2) and write (2) calls are serviced by the UNIX kernel, shown at the bottom of the 

figure. 

FIGURE 2.1 

The I/O software layers. 

Systen 
read(2)/ 

n Calls 
write(2) 

> f 

UNIX kernel 

Library Calls 
stdio(3) routines 

An example of a shortcoming of the stdio (3) routines is that they behave differently on differ¬ 

ent platforms. On some UNIX platforms, the error EINTR is returned when a signal handler 

returns, while on others this error is not returned at all. On still other UNIX platforms, the 

stdio (3) routines get confused dealing with EINTR and do not work correctly. 

Sometimes you can live with the stdio(3) interface, but you’ll want to perform a special con¬ 

trol function on the open FILE. For example, you might need to issue an I/O control operation 

with ioctl(2) or set the close-on-exec flag using fcntl(2). In these cases, you can gain access 

to the underlying file descriptor by using the stdio (3) macro f ileno (3). To set the close-on- 

exec flag on FILE stream tx, do the following: 

FILE *tx; /* Opened by fopen(3) */ 

if ( fcntlffileno(tx),F_SETFD,1)) == -1 ) /* Set the flag TRUE */ 
/* Error handling... */ 

The example shows how the macro call f ileno(tx) exposes the underlying UNIX file descrip¬ 

tor to the f cntl(2) function. This technique can sometimes be used with other functions such 
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as ioctl(2). However, be careful that what you are doing in this scenario does not upset what 

is being managed by the stdio(3) routines. For example, it might seem harmless to duplicate 

a file descriptor being used by stdio (3) and then call lseek (2) on the duplicated file descrip¬ 

tor. However, this will also change the file position for the original file descriptor. For some 

implementations of the stdio(3) library, this may cause you grief. 

Summary 
For many readers, this chapter has been a review. For those ramping up their knowledge to 

program in C under UNIX, this chapter will have exposed you to some important UNIX con¬ 

cepts. Perhaps you learned a few historical tidbits along the way. 

Chapter 3 is another foundation-building chapter. Veterans can skip that chapter if they are in 

a hurry If you are still building up your knowledge about UNIX programming, you will want 

to pay special attention to this chapter. It will help you master the material in the remainder of 

this book. 



CHAPTER 3 

ERROR HANDLING AND REPORTING 

The UNIX operating system and its associated C libraries offer a rich set of system and 

function library calls, respectively. Within this set of calls there are very few functions, 

which cannot return an error. Reasons for errors include the incorrect use of parame¬ 

ters, inadequate buffer sizes, missing or misnamed file system objects, or simply a lack of 

access to a resource. A mechanism must exist to return an error indication to the caller of the 

function. 

This chapter examines the error reporting mechanism used by the UNIX system and library 

function calls. This includes a discussion of the original error reporting mechanism that was 

used in the past and the implementation now in use. Additionally, it will be shown how UNIX 

error codes can be translated into meaningful text messages that can be reported to a user. 

Determining Success or Failure 
When a C function is called, the programmer is interested in two things upon its return: 

• Did the function call succeed? 

• If not, why did the call fail? 

General Rules for Error Indication 
The UNIX convention used by most system calls and library functions is that the return value 

indicates a general success or failure. Return values fall into two major categories: 

• The return value is an integer value (int or long). Normally failure is indicated by a 

value of negative one (-1). 

• The return value is a pointer type, such as pointers (char *), (void *) or a pointer to a 

structure. Failure is indicated by a null return pointer and success by a non-null pointer. 

Exceptions to the General Rule 
There are exceptions to the general rule just listed, but these are rare. When the functions 

wait (2), waitpid(2), wait3(2), and wait4(2) return an error indication, they return the 

integer value (pid_t) (-1). This is similar to the integer return case, except that the value -1 is 

returned in a process ID data type. 
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An exception to the pointer rule is the shmat (2) function call. When it returns an error indica¬ 

tion, it returns the pointer value (void *) (-1). 

Unusual exceptions to the general rule can be found in the functions strtol(3), strtoul(3), 

and strtod (3), which return special values like L0NG_MIN, LONGJVIAX, UL0NG_MAX, +HUGE_VAL, 

and -HUGE_VAL. These will be covered in detail in Chapter 10, “Conversion Functions.” 

Classifying Successful Return Values 
For integer return values, a successful return value is normally anything other than -1. Often 

this is a value that is greater than or equal to zero. For example, the UNIX open (2) call returns 

a file descriptor number that can be zero or greater. 

For pointer return values, a successful return value is normally a non-null pointer. An example 

is the fopen(3) function, which returns a pointer to a FILE object. 

As noted previously, under unusual circumstances the null pointer can indicate a successful 

return from certain exceptional functions (recall shmat (2)). For this reason, the best program¬ 

ming practice is for the programmer to test for failure indication upon return from a function. 

Anything that does not classify as a failure should be considered a successful indication. 

Other Return Indications 
Before leaving the topic of function return indications, it is worth pointing out that some func¬ 

tions offer a third indication, in addition to the normal success or failure. These generally fall 

into two categories: 
# 

• No more information exists (examples include waitpid(2), wait3(2), wait (4)). 

• A timeout has occurred without returning any “interesting” event (examples include 

select(2),poll(2)). 

In these examples, the designers of these functions have decided not to treat the “no informa¬ 

tion” or “timeout” case as an error. At the same time, these cases cannot be considered success¬ 

ful returns, since either no information is returned or a timeout has occurred. 

This type of indication can be treated as an error by the programmer, with the exception that 

there will be no value provided in the global variable err no. 

Determining the Reason for Failure 
The foregoing discussion identifies most function calls as returning an indication of 

• success 

• failure 

• in rare cases, no information 
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Once you have discovered that the function call has failed, you need to know why. For exam¬ 

ple, the UNIX make(1) command needs to know from open(2) when it fails that 

• It was unable to open makefile because it did not exist. 

• It lacked the permissions necessary to open makefile for reading. 

The reason for the failure might have a bearing on the action taken by the command. For 

example, if it finds that file makefile does not exist, make (1) tries to open the file Makefile 

instead. However, when it discovers that it lacks permissions to open file makefile, some 

implementations of the make(1) command report this as an error to the user. See the following 

Note for variations on this theme by the different UNIX platforms tested. 

The make(l) command's behavior varies on the different UNIX platforms tested. The following plat¬ 
forms report an error if they lack permission to read the file makefile: 

Linux (GNU make 3.77) 

SunOS 5.6 (reports a warning and tries to open Makefile) 

The make(1) command on the following platforms ignores the file access error and proceeds to 
open Makefile instead: 

FreeBSD 3.4 Release 

HPUX 10.2 and HPUX 11.0 

AIX4.3 

The nature of a failure is clearly important to the programmer of any software or utility pro¬ 

gram. The error-reporting mechanism that early developers of UNIX chose was the special 

external integer variable named errno. Whenever a function call returned a failure indication, 

it would first assign a reason code for the failure to the external errno variable. The calling 

program could then examine this external variable if it cared to know the reason for the fail¬ 

ure. When the function returned a successful indication (or “no information” indication), the 

value of errno was left unchanged. 

This mechanism was suitable for early versions of UNIX. However, this older method has limi¬ 

tations. To remove the inherent limitations of the errno variable, its definition has changed 

somewhat in modern versions of UNIX. If it is applied correctly, this change is transparent to 

you as a programmer. 

The Old errno Value 
The original method that the programmer used to gain access to the error code was to declare 

an external reference to the int value errno: 

extern int errno; 
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When an attempt to open a file fails, a program can simply query the external variable errno 

to determine the reason for the failure. The following example shows how the make (1) com¬ 

mand could be written using the old errno method: 

#include <errno.h> /* 
extern int errno; /* 
int fd; /* 

/* Attempt to open makefile */ 
if ( (fd = open("makefile",0_RD0NLY)) == -1 ) 

if ( errno == ENOENT ) /* 
fd = open("Makefile",0_RD0NLY); /* 

} 

if ( fd == -1 ) { /* 
/* Yes, report the open failure... */ 

} else { 
/* makefile or Makefile is open on file unit fd */ 

} 

The example shows that if makefile fails to open, with the error ENOENT, Makefile is opened. 

The example also illustrates that the reason for the error is never returned directly by the func¬ 

tion, nor is it returned by an argument reference. Instead, using this older external variable 

methodology, the programmer queries this value when a function returns a failure indication. 

Defines ENOENT */ 
Error code */ 
File descriptor */ 

{ /* Fail to open? */ 
File does not exist? */ 
No, so try Makefile instead */ 

Did either open(2) fail? */ 

yffr'T) 
Note 

ENOENT means No Such File or Directory. This error code indicates that the requested file system 

object was not found (does not exist). 

Referencing Error Codes by Name 
Using the errno external variable convention for errors required that a series of error codes be 

agreed on in advance. Since numeric error codes might vary on different UNIX platforms, a set 

of C macros is defined to refer to these error codes (for example, error code ENOMSG is 83 for 

FreeBSD 3.4, 35 for HPUX, and 42 for Linux). The symbolic macro names can be used to refer 

to the same error codes on different UNIX platforms. These C macros are defined in the 
include file errno.h. 

#include <errno.h> 

Using symbolic macro references for error codes is important, since it allows your C programs 

to be portable to other UNIX platforms. Only a compile is required to reference the correct 
numeric value for these codes on a given platform. 
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UNIX errno codes are non-zero values and usually start at 1 and work up. Zero is sometimes 

used to indicate “no error” (this convention is used in rare cases with the functions strtol(3), 

strtoul(3), and strtod(3), for example). 

Applying errno Correctly 
There is a temptation for novice programmers to use the errno value to test for success. 

However, it is incorrect to do so because the purpose of the errno value is to be a central place 

to which to post error codes. As a general policy, never expect the errno value to be cleared to 

zero for success. Only errors (failures) are posted to this variable. 

There are special situations that require you to clear the errno value to zero before making a 

function call (some examples are strtol(3), strtoul(3), strtod(3), and getpwent (3)). 

This is necessary because the function will not clear the errno value to zero when success is 

returned. Under these special circumstances, if the errno value remains as the value 0 (pre¬ 

suming it was cleared prior to the call), then this indicates a successful return. This technique 

must only be applied to specially indicated functions. This technique cannot be extended for 

use on other functions. The special cases will be carefully indicated within this book. 

Warning 
■ 

The errno value is updated by system and library functions only after an error indication is returned. 

This value is never cleared to zero for a successful operation. Always test the function's return value 

to determine if an error has been indicated. If so, then the value of errno has meaning. 

Testing for Failure with Integer Return Values 
Earlier it was shown how functions, which return integer results, use the value of -1 to indi¬ 

cate that a call has failed. The following open(2) example indicates when the value of errno is 

valid: 

extern int errno; /* Old way of gaining access to errno */ 
int fd; /* File descriptor */ 

if ( (fd = open("makefile",0_RD0NLY)) == -1 ) { 
/* Failed: errno holds a valid error code */ 

} else { 
/* Success: fd holds file descriptor, and errno is meaningless here */ 

} 

If the open (2) call returns a failed indication by a return value of -1, then we know that the 

error code will have been posted to the integer errno. 
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Testing for Failure with Pointer Results 
Other functions that report their failure by returning a null pointer can identify when to use 

errno as follows: 

FILE *fp = fopen("makefile","r"); /* Attempt to open makefile */ 

if ( fp == NULL ) { /* Failed? */ 
/* Open Failed: the value of errno holds an error code */ 

} else { 
/* Open succeeded: the value of errno has no meaningful value */ 

} 

Here the fopen(3) call indicates failure by returning a null pointer (which matches the C 

macro value NULL). Again, only when it is determined that the function has returned a failure 

indication is the value errno valid and does it contain an error code. 

The New errno Value 
If you’ve been a veteran of UNIX C/C++ code for some time, then you’ve probably noticed 

some changes in the declaration of the variable errno over the years. Modern UNIX platforms 

have undergone some changes in order to support threads. 

While threads are a welcome addition to the UNIX platform, they have required a number of 

internal changes to the underlying C libraries and the way in which the errno variable is 

defined. A thread is a separate flow of instructions within one memory environment (all 

threads share one memory address space). Consequently, the traditional single global integer 

value of errno no longer suffices, since function calls in one thread would alter the errno val¬ 

ues being referenced in another thread. 

In order to support threads without requiring all existing software to be redesigned, a new 

declaration has been crafted for the errno value (usually a C macro). This new definition 

defines a separate copy of errno for each thread. Rather than have the programmer declare 

this variable, it is now done by the provided include file <errno. h> instead. This change in 

definition should be transparent to most UNIX source code. Note that there were older 

releases of the GNU libraries under Linux, where the extern int errno declaration was in 

conflict and required removal to compile successfully. The modern GNU libraries no longer 
suffer from this problem. 

Declaring the New errno Variable 
The new errno value is now defined in a platform-dependent manner. This means that you 

should let the system define it for you by including the file <errno. h>. You should no longer 
declare it as an external integer variable. 

The <errno.h> include file will define errno in a manner that is appropriate for your specific 

UNIX platform. This also defines the errno macro constants for the error codes. 



Chapter 3 • ERROR HANDLING AND REPORTING 57 

Using the New errno Variable 
Once variable errno is appropriately declared for your platform, you can still use it as you did 
before. For example 

int saved_errno; 

saved_errno = errno; 
printf("errno = %d\n",errno); 
errno = ENOENT; 
errno = 0; 

/* Saving errno */ 
/* Inspecting errno */ 
/* Changing errno */ 
/* Clearing errno to zero */ 

You can obtain value of errno and change its value, just as before its definition changed. The 

change in the way errno is defined is meant to be transparent to you. 

Reporting on errno Values 
When an error occurs, it is simple for the program to test for a specific case and act upon it. 

The problem becomes more complex when all you want to do is report the error to the user. 

Users do not like to memorize error codes, so a method must exist to translate an errno code 

into a readable message. 

Meaningful error messages can be reported by a UNIX program to the user, in the following 

ways: 

• Use the perror(3) function to generate a message from the errno value and report it to 

stderr. 

• Use the provided sys_errlist[ ] array of messages (on FreeBSD this is described by the 

man page strerror(3)). 

• Use the strerror(3) function to return a message for the error code provided in the 

function argument. 

Using the perror(3) Function 
One function provided for reporting errors is the library function perror (3). This function 

takes one string argument and writes that string to stderr, followed by a colon and then a 

message for the current errno value. The function synopsis is as follows: 

#include <stdio.h> 

void perror(const char *s); 

This function is easily tested by simply assigning an error of our choice to errno and calling 

perror(3). An example is provided in Listing 3.1. 
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LISTING 3.1 perror.c—A Test Program for perror (3) 

1: #include <stdio.h> 
2: #include <errno.h> 
3: 
4: int 
5: main(int argc,char **argv) { 
6: 
7: errno = EIO; 
8: perror("Test EIO Message"); 
9: return 0; 
10: } 

Line 7 shows how an I/O error was assigned to the errno variable (the error code was arbitrar¬ 

ily chosen to simulate an error). Line 8 calls upon the perror(3) function to report the error. 

The test session is shown below: 

$ make perror 
cc -c -D_POSIX_C_SOURCE=199309L -Wall perror.c 
cc perror.o -o perror 
$ ./perror 
Test EIO Message: Input/output error 
$ 

The session output shows the program-supplied message, which is followed by a colon and 

then by an interpretation of the error code that was assigned to variable errno. The value, EIO 

in this example, was translated to the message Input/output error. 

Evaluating the perror(3) Function 
At first sight, the perror(3) function might appear to be a good solution. In practice, how¬ 

ever, this function is not very useful. The first problem is that the message must go to standard 

error. If the message must be 

• Written to a log file 

• Reported to an X Window pop-up 

• Reported in a different format 

• Stored as a string 

then the function perror (3) is not able to help. Another problem that often occurs is this: 

What if the error code is not coming from errno but some other variable? The perror (3) 

function seems best left to academic examples because of its simplicity. 

Using the sys_errlist[ ] Array 
If you lookup the perror(3) function in the FreeBSD man(1) pages (and on most UNIX plat¬ 

forms), you will also see that it describes the sys_errlist [ ] array. The synopsis of this array 
is this: 
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#include <stdio.h> /* Defines sys_errlist[] and sys_nerr */ 

extern const char *sys_errlist[]; 
extern const int sys_nerr; 

Variations: 

#include <errno.h> 
/* None */ 
/* None */ 
/* None */ 
#include <errno.h> 

/* HPUX 10.2 & 11.0 */ 
/* AIX 4.3 */ 
/* SunOS 5.6, Solaris 8 */ 
/* UnixWare 7 */ 
/* SGI IRIX 6.5 */ 

The sys_errlist[ ] array is an external array of pointers to string constants. Each string 

describes a particular error that corresponds to an errno code. The array and the error codes 

are structured so that the error message can be obtained by using the errno value as the sub¬ 

script into the array. For example 

errno = EIO; /* Simulate an error */ 
printf("The EIO Message is '%s'\n",sys_errlist[errno]); 

Having access to the error message text for each error code provides much more flexibility. 

When the fopen(3) call fails, you can report the reason for the failure, the pathname being 

opened, and whether it is being opened for reading or writing: 

FILE *fp = fopen(pathname,"r"); /* Attempt to open a file */ 

if ( !fp ) { /* Did the open fail? */ 
fprintf(stderr,"%s: Unable to open %s for read.\n", 

sys_errlist[errno], /* The error message text */ 
pathname); /* The file being opened */ 

exit(13); 

} 

This example shows a typical format for error messages from UNIX programs. This typical for¬ 

mat used can be summarized as 

Explanation of error code: Explanation of the operation being attempted 

Notice that this convention contradicts the format used by the perror(3) function. 

Using sys_nerr to Range Check Errors 
The largest error code that is provided for in the sys_errlist [ ] array is given by the external 

integer value of sys_nerr minus one. To be safe, you should technically always test the errno 

value before using it as a subscript: 

int fd; /* File descriptor */ 

fd = open(pathname,0_RD0NLY); /* Attempt to open for read */ 
if ( fd == -i ) { /* Did open(2) fail? */ 

/* The open(2) call failed: */ 
fprintf(stderr,"%s: opening %s for read\n", 

errno < sys_nerr ? sys_errlist[errno] : "?", 

pathname); 
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In the example shown, the C operator ? is used to test errno to make sure that it is less than 

the value of sys_nerr. If it is, the value of sys_errlist [ errno] can be safely supplied to 

fprintf (3). If the errno value fails to be less than the sys_nerr value, the C string "?" is 

supplied instead, to prevent a program abort. 

Evaluating the sys_errlist [ ] Array Method 
While range-checking errno with the sys_nerr value is the correct thing to do, it is consid¬ 

ered tedious and pedantic by many programmers. Therefore, many programmers ignore this 

test completely. Because programmers fail to apply this test, the practice of using the 

sys_errlist [ ] array has fallen out of favor, and another way has been subsequently provided. 

Note 

The man (1) pages provided by SGI for its IRIX 6.5 operating system state "Code using sys_errlist, 

and sys_errlist directly, will not be able to display any errno greater than 152." It is unclear from 

this text whether it is simply stating the SGI value of sys_nerr or whether this is a limitation of using 

the array on that platform. 

The tone of the message suggests that the sys_errlist[ ] array falls short of strerror(3) and 

thus should be avoided in new code. A possible reason for this is that dynamic content could be pro¬ 

vided by the strerror (3) function for errors with codes greater than 152. 

The strerror(3) Function 
This is the last of the error code conversion methods that will be examined. The synopsis of 
the strerror(3) function is as follows: 

#include <string.h> 

char *strerror(int errnum); 

A common mistake is to include the file <errno.h> instead of <string.h>. It is commonly assumed 

that the strerror(3) function is declared in the <errno.h> include file because it reports an error 

message. However, this function is grouped with the string functions, instead. 

The strerror (3) function provides the flexibility afforded by the sys_errlist[ ] array, but it 

also performs the necessary range check on the error code being converted. If the error code is 

outside of the known list of error codes, an unknown error message is returned instead of a 
bad pointer. 

Using the strerror(3) Function 
Listing 3.2 shows a short program that we can use to test the strerror(3) function. 
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LISTING 3.2 strerror.c—Test Program for strerror(3) 

1: #include <stdio.h> 
2: #include <errno.h> 
3: //include <string.h> 
4: 
5: extern int sys_nerr; /* Highest supported error code */ 
6: 
7: int 
8: main(int argc,char **argv) { 
9: int x; 
10: static int ecodes[] = { -1, EIO, 0 }; 
11: 
12: /* Get maximum code and add 4096 */ 
13: ecodes[2] = sys_nerr + 4096; /* A very high code */ 
14: 
15: for ( x=0; x<3; ++x ) { 
16: errno = ecodes[x]; 
17: printf(''%4d = '%s'\n", ecodes[x], strerror (errno)) 1; 
18: } 
19: 
20: return 0; 

21: } 

This test program tries strerror(3) with a -1 value, EIO, and a very high error code, which 

should not exist. 

Testing the Range Check in strerror(3) 

When the program in Listing 3.2 is compiled and run, the following results are obtained under 

FreeBSD (3.4 Release): 

$ make strerror 
cc -c -D_P0SIX_C_S0URCE=199309L -Wall strerror.c 
cc strerror.o -o strerror 
$ ./strerror 

-1 = 'Unknown error: -1' 
5 = 'Input/output error' 

4183 = 'Unknown error: 4183' 
$ 

This shows how well behaved the strerror(3) function is, despite the bad errno values that 

were provided to it. The error code 5 (EIO) correctly translated to the message Input/output 

error. The values -1 and 4183 both provided a meaningful clue to a programming problem 

with a message of the form Unknown error: 4183. Had this program used the sys_errlist[ ] 

array instead, a program abort may have occurred. 

Applying strerror(3) Correctly 
One important thing to note about using the strerror(3) function is that the pointer 

returned by this function is only valid until the next call to the same function is made. The fol¬ 

lowing code is incorrect: 
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chan *eptr1 = strerror(EIO); 
char *eptr2 = strerror(ENOENT); /*** value of eptrl is now invalid ***/ 

printf("Msgl=1%s', msg2='%s'\n",eptrl,eptr2); /*** INCORRECT ***/ 

This code is not acceptable because by the time strerror(3) is called the second time and its 

return value is assigned to eptr2, the pointer value eptrl is rubbish. Even if your experimen¬ 

tation proves this practice to be apparently safe, code should not be written to rely on this 

behavior. There is a possibility that someday (if not already), strerror(3) may return 

dynamic content and cause this to fail. 

Warning 

The value returned by strerror (3) is valid only until the next call to strerror (3). 

Testing for Errors Using stdio(3) 
One area that is often overlooked in various texts that describe the stdio(3) set of routines is 

the proper treatment of errors. You have already seen how to discriminate between an error 

return and a success return with the f open (3) call. Immediately after a f open (3) failure, the 

value of errno contains the reason for the open failure. However, the situation may not be so 

clear in other circumstances, which will be examined next. 

Pitfalls of the f error (3) Function 
By way of review, examine the function synopsis for the f error (3) function: 

#include <stdio.h> 

int ferror(FILE *stream); /* Test stream for an error */ 
void clearerr(FILE ‘stream); /* Clear an error indication */ 

The terror (3) function returns a non-zero value (a logical True) when an error has occurred 

at some point on the FILE stream identified by the argument stream. This indicator remains 

True until the function clearerr(3) is called for the same stream. This in itself is not a 
problem. 

What can be a problem is when terror (3) is called to test for an error on a stream after sev¬ 

eral other stdio(3) calls have been made. If the value of errno is consulted at this later point, 
it may report incorrect results. 

Only the indication of the occurrence of the error is saved within the stream object FILE by 

the stdio(3) set of routines. The errno value itself is valid only immediately after the 

stdio(3) call that failed (up to the point of the next errno modifying function call). 

Consequently, while f error (3) can be useful in telling you that something went wrong on a 

FILE stream at some point in time, it will not provide you with the details of the error. This is 

because the value of errno may have been lost by other intervening calls. 
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Avoiding the fclose(3) Pitfall 
When using stdio(3) function calls, you must check for errors immediately after the call that 

caused the error, when you want to consult err no. Errors can occur in surprising places when 

buffering is being used (see setbuf (3) for how to control this feature). 

Data previously written by a call to fwrite(3) may have returned a successful indication ear¬ 

lier in the program. Later a failure can be reported by the f close (3) function. To see why, 
look at the following example: 

fwrite(buf,strlen(buf),1,fptr); 
if ( ferror(fptr) ) { 

/* Process write error */ 
} 
if ( fclose(fptr) == EOF ) { 

/* errno = ENOSPC */ 
} 

Some programmers are surprised to realize that f close (3) can fail in the example provided. 

This can happen because the data written by fwrite(3) is still contained in a buffer provided 

by the stream f ptr. When f close (3) is finally called, it is first necessary to force the unwrit¬ 

ten data in the buffer out to disk before closing the underlying file descriptor. If the disk is full, 

the fclose(3) call will fail and errno will report the error as code ENOSPC. 

Note that in this scenario, f error (3) cannot be used to test for an error because the FILE 

stream is destroyed by the f close (3) call. Here it is essential to test the return value from 

fclose(3) and then report the reason contained within errno immediately upon detecting the 

failure. 

Note 

ENOSPC means No Space Left On Device. This error code is returned when there is insufficient disk 

space to enlarge a file. It frequently happens when write(2) is called and the size of the file would 

have increased as a result of the call, but no free space remained. 

/* Write out a C string in buf[] */ 
/* Write error occur? */ 
/* Yes, process error.. */ 

/* Did the close succeed? */ 
/* A failure during close occurred */ 

Delaying the Reporting of an Error 
There are times when error reporting must wait until other steps are taken in the program to 

recover. Sometimes those steps can cause the value of errno to be lost. The following example 

illustrates this: 

int z; 
int fd; 

/* status code */ 
/* open file descriptor */ 

z = write(fd,buf,n); /* Write some data */ 
if ( i == -i ) { /* Did this write fail? */ 

unlink(pathname); /* Yes, delete half baked file */ 
fprintf(stderr,"%s: write error on %s\n", 

strerror(errno), 
pathname); 
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In this example, the program insists on calling unlink (2) first to remove the file that the 

write has failed to write to. It then reports the error, after the file has been deleted. 

The problem is that by the time the error is reported byfprintf(3),theerrno value for the 

failed write(2) call could be lost. The errno value may instead contain an error from the 

unlink(2) call (if it fails) that is more recent. 

At the risk of stating the obvious, the value of errno can be saved in another variable and then 

reported later. Here is the modified example: 

int z; 
int fd; 
int e; 

/* status code */ 
/* open file descriptor */ 
/* Saved errno value */ 

z = 
if 

write(fd,buf,n); / 
( z == -1 ) { / 
e = errno; / 
unlink(pathname); / 
fprintf(stderr,"%s: write error 

strerror(e), / 
pathname); 

Write some data */ 
Did this write fail? */ 
Preserve the value of errno */ 
Delete this half baked file */ 

i %s\n", 
Report e here (not errno) */ 

While it is true that you could simply move the fprintf (3) call to execute prior to the 

unlink (2) call, this is not always possible. If you must clean up something prior to opening a 

pop-up error message window, this might not be practical. 

Summary 
In this chapter, the general philosophy behind the UNIX C library method of reporting success 

and failure has been covered. You have studied the global variable errno and learned how to 

declare it and use it. Also very importantly, you learned when the value of errno is valid. 

You have seen the different ways that error codes can be converted into a user-friendly mes¬ 

sage. Some of the pitfalls of error reporting were also examined, such as that of detecting an 

error too late with the function f error (3). 

While this chapter has been a review for seasoned programmers, this material is vitally impor¬ 

tant to those that are just starting out programming for UNIX. With this foundation, you are 

better equipped to tackle the upcoming chapters successfully. 



CHAPTER 4 

UNIX INPUT AND OUTPUT 

Chapter 2, “UNIX File System Objects,” reviewed the open (2) and close (2) system 

calls. Once you have your file open on a file unit, you need some other routines that 

let you manipulate that file. That is largely what this chapter is all about. 

However, before jumping into that topic, another topic related to open (2) should be discussed 

first. This is the UNIX umask(2) bits and how they affect the permissions that are established 

in new file system objects. 

The umask(2) Function and umask Bits 
When new files and directories are created, the designer of the program must decide which 

permissions to use. These are usually specified as quite liberal permissions. Sometimes greater 

security is required when you do not want to give away certain permissions to the group or to 

the world. 

Permission Bits 
Just by way of review, the permission bit scheme will be presented. Not everyone is used to 

working with permissions in the octal form, which is the way umask is discussed for conve¬ 

nience. 

The data type used for permission bits in modern UNIX systems is the mode_t data type. 

Under older versions of UNIX, it was the int data type. The permission bits are laid out in 

three groups: 

rwx rwx rwx 

Each of the three groupings consists of bits rwx, representing 

read permission r 

write permission w 

execute permission X 
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respectively. From left to right, the permission groups are 

owner permissions u 

group permissions g 

all others permissions 0 

The letters u, g, and o are the ones used on the chmod (1) command line when octal notation is 

not used. Since octal notation encodes each digit with three bits, it proves to be a convenient 

way to specify the permissions. For example, the octal value 0740 specifies 

rwx permissions for the owner u 

r permission only for the group g 

no permissions for others 0 

Standards bodies are encouraging programmers not to rely on octal encoding. The C macros in 

Table 4.1 have been defined for use in programs: 

TABLE 4.1 C Macros for Permission Bits 

C Macro Octal Meaning 

S_ISUID 04000 Set user ID on execution. 

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1; enable mandatory 

file/record locking if # is 6, 4, 2, or 0. 

S_ISVTX 01000 Save text image after execution (sticky bit). 

S_IRWXU 00700 Read, write, execute by owner. 

S_IRUSR 00400 Read by owner. 

S_IWUSR 00200 Write by owner. 

S_IXUSR 00100 Execute (search if a directory) by owner. 

S_IRWXG 00070 Read, write, execute by group. 

S_IRGRP 00040 Read by group. 

S_IWGRP 00020 Write by group. 

S_IXGRP 00010 Execute by group. 

S_IRWX0 00007 Read, write, execute (search) by others. 

S_IR0TH 00004 Read by others. 
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C Macro Octal Meaning 

S_IW0TH 00002 Write by others. 

S_IX0TH 00001 Execute by others. 

Based on the values in Table 4.1, the permissions 0740 would be defined in macro form as fol- 
lows: 

S_IRWXU | | S_IRWXU 

Alternatively, it can be spelled out as 

S_IRUSR | S_IWUSR | S_IXUSR I S_IRWXU 

The permission S_ISVTX (sticky bit) is not supported by FreeBSD for executables, but is sup¬ 

ported for directories. 

Understanding the Need for umask 
Consider an example in which you are working in a student environment with a number of 

other students on the same machine. You create a program to hand in as an assignment and 

save it. The vi editor creates the text file with read and write permissions for the owner, the 

group, and the world. Another enterprising student copies your assignment to his home direc¬ 

tory and later hands it in. He can do this because he can read your saved assignment. Because 

he also has write permission on your text file, he overwrites your file with something else so 

that you have nothing to hand in. All of this happened because vi gave the owner, the group, 

and the world permission to read and write the file. 

The manner in which the designers of UNIX have chosen to deal with this problem is to allow 

program designers to specify the most liberal permissions they dare apply for the application 

involved. Then a mask is applied on a process-level basis to exclude permissions the user does 

not want to give away. In the example, the student would have been prudent to exclude group 

and world access to his new files. 

Your UNIX process maintains a umask value to allow you to have control over the permissions 

being handed out. This is a mask value since it is used to mask out certain permission bits that 

you do not want to give away. To prevent the group or the world from being granted any per¬ 

mission on your top secret new files, you could set the umask value to octal 077. This would 

allow the umask value to remove any permission at the group and world (other) levels. 

Understanding the Scope of umask 
The umask value is maintained by the UNIX kernel at the process level. The umask built-in 

command for the Korn shell sets the umask value for that shell process (in other words, its own 

process). However, whenever the shell creates a new process, that new process inherits the 

shell’s umask setting. In this manner, setting the umask value in the shell causes it to be set for 

the entire user session, even in new shell processes. 
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The scope of the umask value is also limited to file system objects. This means that it applies to 

files and directories, but it does not apply to IPC objects such as semaphores, message queues, 

and shared memory. 

Using the umask(2) Function 
The umask value applies to file system objects. Therefore, whenever your current process cre¬ 

ates a new directory or file, the umask value is applied before the final permission bits are 

established. 

In C language terms, the umask value is computed like this: 

actual_permissions = requested_permissions & ( -umask ); 

The value requested_permissions represents the most liberal set of permissions that might 

be given in the open (2) call that was covered earlier. Note the use of the unary - (tilde) opera¬ 

tor to invert the umask bits before using the binary & (and) operator. The resulting 

actual_permissions bits are the ones then that are actually applied when the file or directory 

is created. 

Example Using the umask Value 
If the vi editor was to create a new text file requesting permission bits 0666 (read and write for 

everyone), and the current umask value was 0077 (exclude group and others), the following 

computations would occur (successively simplifying): 

1. actual_permissions = requested_permissions & (-umask) 

2. actual_permissions = 0666 & ( -0077 ) 

3. actual_permissions = 0666 & 0700 

4. actual_permissions = 0600 

The final permission bits would be computed as 0600, which represents read and write for the 
owner of the file but no permission for the group or for others. 

The umask(2) Function 
The umask setting is queried and set by the function umask(2). The function prototype is as 
follows: 

#include <sys/types.h> 
#include <sys/stat.h> 

mode_t umask(mode_t new_umask); 

The value provided in the argument is the new umask value that you want to apply. The value 

returned is the umask value that was in effect before the current call. The umask (2) function 
never returns an error. 
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In the following code, a new umask value of 077 is being established. At the same time, the 

original umask setting is saved in the variable old_mask: 

int old_mask; 

oldjnask = umask(0077); 

Setting umask with umask(2) 

The procedure for setting the umask value is as follows: 

1. Call umask (2) with the new mask value. 

2. Save the old umask value if there is a possibility that you need to restore the present 

umask setting. 

The original umask value is frequently saved because it may need to be restored later. This is 

often done in a library function, where the umask value may need to be temporarily changed. 

Querying umask with umask(2) 

There is no function to inquire about the umask(2) value. For this reason, you must inquire 

using a procedure that sets one umask value and then restores the original. This procedure is 

outlined as follows: 

1. Call umask (2) with a new mask value. Zero will do. 

2. Save the returned value as the present umask value in a variable. 

3. Call umask(2) again, with the original umask value to restore it. 

Listing 4.1 shows an example of a function named query_umask(), which performs this very 

process: 

LISTING 4.1 umask. c—Program Example Querying the umask Value 

1: /* umask.c */ 
2: 
3: #include <stdio.h> 
4: #include <sys/types.h> 
5: #include <sys/stat.h> 

6: 
7: mode_t 
8: query_umask(void) { 
9: mode_t old_umask; 

10: 
11: umask(old_umask = umask(0)); 

12: return old_umask; 

13: } 
14: 
15: int 
16: main(int argc,char **argv) { 

17: 
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continued from previous page 

18: printf("umask = %04o\n",query_umask()); 

19: return 0; 
20: } 

The following session shows the compile and run of the example program: 

$ make umask 
cc -c -D_P0SIX_C_S0URCE=199309L -Wall umask.c 

cc umask.o -o umask 
$ ./umask 
umask = 0022 
$ umask 
0022 

$ 

The program is invoked with the command . /umask, and it reports a mask value of 0022. The 

shell’s built-in umask (1) command is then invoked, and its results agree. 

The creat(2) Function 
A companion function to the open(2) call is the creat (2) function. Its function synopsis is as 

follows: 

//include <fcntl.h> 

int creat(const char *path,mode_t mode); 

This function is equivalent to the following open(2) function call: 

open(path,0_CREAT|0_TRUNC|OJVRONLY,mode); 

This means that creat (2) function will 

• Create the file if necessary 

• Truncate the file to zero bytes of length 

• Open it for writing only 

The umask (2) setting will be applied to mode to arrive at the final permissions on the regular 

file created. 

Reading and Writing 
The UNIX kernel readies a file for I/O by giving you a file descriptor, which is returned by 

open(2) or creat (2). The file descriptor might represent an I/O device, a socket or, most 

often, a regular file. The I/O semantics vary somewhat, depending on what it is that your pro¬ 

gram is interacting with. This will be noted in a few places as you are introduced to the system 

calls for I/O. 
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Introducing read(2) andwrite(2) 
These are perhaps the most basic of all UNIX I/O system calls. Their function synopsis is as 
follows: 

#include <sys/types.h> 
#include <sys/uio.h> 
#include <unistd.h> 

ssize_t read(int fd,void *buf,size_t nbytes); 

ssize_t wnite(int fd,const void *buf,size_t nbytes); 

The read(2) and write(2) calls take the same arguments, with the exception that the 

write (2) function does not modify the buffer it is supplied with. Each must be supplied with 

an open file descriptor, which can be a socket. 

The read(2) Function 
The read (2) function reads into the buffer but [ ] to a maximum of nbytes. The number of 

bytes actually read is the return value. If an error occurs, -1 is returned (with errno). 

A return value of zero indicates that end-of-file has been reached. There is no error code asso¬ 

ciated with end-of-file, since this is not an error. 

In some read contexts, you may receive fewer bytes than requested by the nbytes argument. 

This can happen when reading from regular files, when the end-of-file is reached while trying 

to satisfy the count. Otherwise, when reading from a regular file, you are guaranteed that the 

function will not return until nbytes is returned. 

In all other read contexts, such as when reading from a socket, the count nbytes serves as a 

maximum number. Any number of bytes from one to nbytes may be returned. 

Tip 

For any slow device, it is possible for read(2) to return the error EINTR if a signal handler has han¬ 

dled a signal. Simply retry the read(2) call when this error is received. 

A regular file is not considered a slow device. 

The write(2) Function 
The write (2) function writes from the supplied buffer but exactly nbytes. It returns the 

number of bytes actually written. If an error occurs, the value -1 is returned (with errno). 

For regular files, write (2) should always write the requested number of bytes nbytes. In 

other write contexts, the return value indicates the actual number of bytes written. 
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Tip 

For any slow device, it is possible for write(2) to return the error EINTR if a signal handler has han¬ 

dled a signal. Simply retry the write (2) call when this error is received. 

A regular file is not considered a slow device. 

Applying UNIX I/O 
The program in Listing 4.2 shows a simple I/O example, using the basic system calls. This pro¬ 

gram opens the file /etc/motd by default and copies its contents to the standard output device 

(file unit 1). A different pathname can be supplied by specifying it as the first command-line 

argument. 

LISTING 4.2 unixio. c—A Simple UNIX I/O Example Program 

1: 
o • 

/* unixio.c */ 
A . 
3: #include <stdio.h> 
4: #include <fcntl.h> 
5: #include <unistd.h> 
6: #include <errno.h> 
7: #include <string.h> 
8: #include <sys/types.h> 
9: #include <sys/uio.h> 
10 
11 int 
12 mainfint argc,char **argv) { 
13 int z; /* Return status code */ 
14 int n; /* # of bytes written */ 
15 int fd; /* Read file descriptor */ 
16 char buf[128]; /* I/O Buffer */ 
17 char ‘pathname = "/etc/motd"; /* Default file to open */ 
18 
19 if ( argc > 1 ) 
20 pathname = argvfl]; /* Choose a different file */ 
21 
22 fd = open(pathname,0_RD0NLY); /* Open /etc/motd file */ 
23 
24 if ( fd == -1 ) { 
25 fprintf(stderr,"%s: opening %s for read\n", 
26 strerror(errno).pathname); 
27 return 1; /* Failed */ 
28 } 
29 
30 for (;;) { 
31 z = read(fd,buf,sizeof buf); /* Fill buf with read data */ 
32 if ( !z ) 
33 break; /* End of file */ 
34 if ( z == -1 ) { 
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35: fprintf(stderr,"%s: reading file %s\n", 
36: strerror(errno),pathname); 
37: return 2; /* Failed */ 
38: } 
39: 

40: n = write(1,buf,z); /* Write out buffer contents */ 
41: if ( n == -1 ) { 

42: fprintf(stderr,"%s: writing to stdout\n",strerror(errno)); 
43: return 3; /* Failed */ 
44: } 
45: } 
46: 

47: close(fd); /* Close the file */ 
48: 
49: return 0; 
50: } 

The basic procedure used in Listing 4.2 is this: 

1. The pathname variable defaults to the C string " /etc/motd" (line 17) or uses the com¬ 

mand line argument (lines 19 and 20). 

2. The file is opened with a call to open(2) (line 22). 

3. If the open (2) call fails, the error is reported (lines 24 to 28). 

4. An I/O loop is started in lines 30 to 45. 

5. The read (2) call reads as many bytes as it can to fill the buffer buf [ ]. The maximum 

number of bytes read is indicated by the argument sizeof buf. 

6. If there is no more data to be read, the return value will be zero, and the loop is exited 

(lines 32 and 33) with the break statement. 

7. If a read error occurs, the error is reported (lines 34 to 38). 

8. The data read into array buf [ ] is now written out to standard output (file unit 1 in line 

40). Note that the number of bytes being written is z. This is the value returned from 

step 5. 

9. If a write error occurs, the error is reported (lines 41 to 44). 

10. When the loop is exited, the close (2) function is called (line 47). 

The program in Listing 4.2 is called a simple program because it does not allow for the possi¬ 

bility that the write (2) call may not always write the full amount of data expected if the stan¬ 

dard output is not a regular file. Furthermore, it does not allow for the possibility of the error 

EINTR, which it needs to do if there is any signal catching used in this program. 

In a production quality program, the buffer size would be declared a larger size. Generally, a 

buffer like this should be a minimum of 1024 bytes in length to better match the I/O size that 

is being used by the operating system. 



74 ADVANCED UNIX PROGRAMMING 

Seeking Within a File 
The last example showed a program that sequentially read through the / etc/motd file, copying 

it to standard output. Sometimes it is necessary to access portions of a file randomly. Perhaps 

your file represents a series of a million fixed-length records that must be retrieved at random. 

UNIX provides this functionality in the form of the lseek (2) function. 

Applying lseek(2) 
The lseek(2) function is actually a dual-purpose function. It not only allows the program to 

seek a specified offset within the open file, but the program can also find out what the current 

offset is, within the specified file. The function synopsis for lseek(2) is as follows: 

#include <sys/types.h> 
#include <unistd.h> 

off_t lseek(int tildes, off_t offset, int whence); 

This function requires a file descriptor in the first argument and then a file offset and an inte¬ 

ger value named whence. The combination of arguments offset and whence indicates how the 

seek is to be performed within the file. 

Upon successful completion of the seek operation, the new file offset is returned. If the opera¬ 

tion fails, an (off_t) -1 value is returned, with errno holding the reason for the error. Note 

that this function call does not return the error EINTR. The error code ESPIPE is returned if the 

file descriptor is for a non-seekable device. 

Values for whence are provided in Table 4.2. These values are defined in the include file 

<unistd.h>. 

TABLE 4.2 Values for lseek(2) Argument whence 

C Macro Meaning 

SEEK_SET The file offset is set to offset bytes. 

SEEK_CUR The file offset is set to its current location plus offset bytes. 

SEEK_END The file offset is set to the size of the file plus offset bytes. 

The value SEEK_SET allows you to set an absolute file position, while SF.EK_CUR lets you adjust 

your offset relative to your current offset. The SEEK_END value is usually used to position at the 

end of the file but, by applying a negative offset, you can establish some other position. 
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FIGURE 4.1 

lseek(2) changes to a 

file offset. 

To establish a new file position at the offset of 1024, you would code 

off_t new_off; /* New offset */ 
int fd; /* File descriptor */ 

new_off = lseek(fd,1024,SEEK_SET); 
if ( new_off == (off_t)(-1) ) 

I* Report error */ 

To find out what your current file offset is, you could use the following form of the lseek(2) 

call, which does not change your current position: 

off_t offset; /* File offset */ 
int fd; /* File descriptor */ 

offset = lseek(fd,0,SEEK_CUR); 

In this form of the call, you seek 0 bytes from the current position, which changes nothing. 

However, the lseek(2) function tells you in the return value what the unchanged file offset is. 

Truncating Files 
You have already seen that the open (2) and creat (2) calls are capable of truncating an exist¬ 

ing file. There are times when it is necessary to empty a file of its contents at some later point 

after the file is open. In other situations, perhaps you simply want to shorten the file because 

you have compacted your file. To perform these functions, you can call upon the truncate (2) 

and ftruncate(2) functions. 
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The truncate(2) Function 
The truncate (2) function does not work with an open file. Instead, it allows you to truncate 

a file without actually opening it. The function synopsis is as follows: 

#include <unistd.h> 

int truncate(const char *path, off_t length); 

Quite simply, you supply a pathname and the size in bytes that you want it to be (this is equiv¬ 

alent to specifying the length of the offset at which to truncate). The function returns zero if it 

is successful; otherwise -1 is returned (with errno). 

To force a file to become an empty file (zero bytes), you would call 

int z; 

z = truncate(pathname,0); 
if ( z == -1 ) 

/* Report error */ 

Warning 

On some UNIX platforms, the error eintr can be returned by truncate(2) 

Tip 

On some UNIX platforms, the function truncate (2) 

ill 
: v 

is documented under truncate(3C) instead. 

The ftruncate(2) Function 
The truncate (2) function performs the function of truncation well, but it proves to be incon¬ 

venient at times. If you have written some form of data management library, you may have the 

file descriptor given to your function as an argument. However, you will not have the path¬ 

name necessary for the call to truncate(2). The ftruncate(2) function comes to the rescue, 

since it works with open files: 

#include <unistd.h> 

int ftruncate(int tildes, off_t length); 

The file that is truncated is specified by the file descriptor tildes. Otherwise, the function is 

identical to the truncate (2) function. To force the file open on fd to become an empty file, 
you would code 

int z; 
int fd; 

/* Return status */ 
/* Open file descriptor */ 
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z = ftruncate(fd,0); 
if ( z == -1 ) 

/* Report Error */ 

When files are written, they are enlarged automatically by the UNIX kernel, as needed. The 

truncate system calls are the only way you can shorten the length of a file. 

Sparse Files 
The previous sections have focused on reading, writing, and truncating files. Now turn your 

attention briefly to the physical makeup of UNIX regular files. UNIX regular files have a spe¬ 

cial quality, which is supported by the kernel, that permits them to be sparsely populated. 

A sparse file is a lot like the sparse matrixes that you learned about in school. The following 
represents a sparse matrix: 

0 0 0 0 9 
0 0 0 7 0 
0 0 8 0 0 
0 10 0 0 
3 0 0 0 0 

You can see that this matrix is made up entirely of zeros, except for the one diagonal. Storing 

this matrix requires 5*5 = 25 cells to store all the values. Yet, it would be wasteful to store 

this matrix with 25 cells when only 5 of them are non-zero. One form of sparse matrix might 

be optimized to store only the diagonal values and to supply zeros when requested for any of 

the non-diagonal cells. 

Creating a Sparse File 
Sparse files work the same way. It is possible to create a 1GB file with only a few bytes of real 

data in it. The program in Listing 4.3 illustrates a simple program that does this. 

LISTING 4.3 bigf ile. c—Creating a Sparse File 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 

/* sparse.c */ 

#include <stdio.h> 
#include <fcntl.h> 
#include <unistd,h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/uio.h> 

int 
main(int argc,char **argv) { 

int z; /* Return status code */ 
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off_t o; 
int fd; 

/* 

/* Offset */ 
/* Read file descriptor */ 

* Create/truncate sparse.dat 
*/ 

fd = open("sparse.dat",0_CREAT|0_WR0NLY|0_TRUNC,0640); 
if ( fd == -1 ) { 

fprintf(stderr,"%s: opening sparse.dat for write\n", 
strerror(errno)); 

return 1; /* Failed */ 
} 

/* 

* Seek to almost the 1GB mark : 
*/ 

o = lseek(fd,1023*1024*1024,SEEK_SET); /* Seek to -1GB */ 
if ( o == (off_t)(■1) ) { 

fprintf(stderr,"%s: lseek(2)\n",strerror(errno)); 
return 2; 

} 

/* 

* Write a little message : 
*/ 

z = write(fd,"END-OF-SPARSE-FILE",18); 
if ( z == -1 ) { 

fprintf(stderr,"%s: write(2)\n",strerror(errno)); 
return 2; 

} 

close(fd); 

return 0; 

/* Close the file */ 

} 

A compile-and-test session for this program is shown next: 

$ make sparse 
cc -c -D_P0SIX_C_S0URCE=199309L -Wall sparse.c 
cc sparse.o -o sparse 
$ ./sparse 
$ Is -1 sparse.dat 
-rw-r. 1 me mygrp 1072693266 Apr 17 02:36 sparse.dat 
$ od -cx sparse.dat 
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 

* 
0000 0000 0000 0000 0000 0000 0000 0000 

7774000000 E N D 0 F S P A R S E F 
4e45 2d44 464f 532d 4150 5352 2d45 4946 

7774000020 L E 
454C 

7774000022 
$ 
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After the program is compiled and run, the Is (1) command lists the file sparse. dat that it 

creates. Notice its huge size of 1072693266 bytes. You may not even have that much free space 
left! Yet the file exists. 

Next, the od (1) command is used to dump the contents of this file in both hexadecimal and in 

ASCII where possible (options - cx). This command may run a very long time, since the od (1) 

command will read almost 1GB of zero bytes before reaching the end of the file. 

Looking at the od (1) output, you can see that UNIX has provided zero bytes between the 

beginning of the file and the point where the seek was done, and it finally found the string 

"END-OF-SPARSE-FILE" that was written by the program. At the left of the output, where 

od (1) shows the file offset, you can see that the string was written at a very large file offset. 

Now that sparse. dat exists, there is really only a small amount of disk space allocated to this 

file. There is no need to panic about wasted disk space, because just enough space is allocated 

to hold the C string that was written. Whenever any program reads other parts of this sparse 

file, which is largely one big hole, the UNIX kernel simply returns zero bytes. 

It is probably a good idea to delete the sparse.dat file that was created by the example program. 
Sparse files can provide a real headache for backup programs, because many backup programs sim¬ 
ply copy the file in question to the backup medium. If a backup is performed for your sparse. dat 
file, almost a gigabyte of zeros will be copied to the backup medium. For this reason, smarter 
backup utility programs know about sparse files and copy only the active information within them. 

Sparse files can also be a problem when you copy them. If you attempt to copy your sparse. dat file 
to another location in your current directory, you may run out of disk space. 

Forcing Data to Media 
When the UNIX file system objects were reviewed in Chapter 2, it was documented that file 

systems use block raw devices. This is done so that disk accesses are buffered in the UNIX disk 

cache for performance reasons. However, a disk cache presents certain dangers for your valu¬ 

able data. 

When a file is opened, written to, and closed to update its contents, changes may still be sit¬ 

ting in disk cache in the kernel’s memory for quite some time. If the system suddenly loses 

power or your UNIX kernel panics for some other reason, those changes may never be written 

to your disk media. When you examine the file after such a catastrophe, you’ll discover that 

the file’s content is not what you had thought it was. There must be a way to force critical data 

to be written to the intended media immediately. 
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The sync(2) Function 
A popular command for those writing a lot of source code under UNIX is the sync (8) com¬ 

mand (on many UNIX platforms it is sync (1M)). After making several changes to shell scripts 

or to source code, it is nice to be able to say 

$ sync 

and know that all your changes are being written to the disk media. After the command fin¬ 

ishes, you can rest assured that your work will not be lost if the lights should suddenly go out 

The sync(8) command ends up calling the system call sync(2). The function synopsis is as 

follows: 

#include <unistd.h> 

void sync(void); 

As you can see, this function takes no arguments and returns no values. It couldn’t be simpler 

to use. 

If you should find that the sync (8) command is restricted on the system on which you have 

an account, you can easily write one of your own. Listing 4.4 shows how simple it is to do so. 

LISTING 4.4 sync. c—Building Your Own sync Command 

1: /* sync.c */ 
2: 
3: #include <unistd.h> 
4: 
5: int 
6: main(int argc,char **argv) { 
7: 
8: sync(); 
9: return 0; 
10: } 

The following shows the program being compiled and run: 

$ make sync 

cc -c -D_POSIX_C_SOURCE=199309L -Wall sync.c 
cc sync.o -o sync 
$ ./sync 
$ 

If you were running this program on your own computer, then you might have heard some 

disk activity when the command was invoked. Perhaps you watched the disk activity light 

instead. In any case, this was the result of all unwritten changes being forced out to the disk 
media. 
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The Disadvantages of sync (2) 
The sync(8) command is sometimes restricted in shared UNIX environments to prevent its 

abuse. For example, an abusive user can issue the following command: 

$ while true; do sync; sleep 1; done 

This shell command would be forcing disk writes every second. Of course, this would hurt the 
performance of the disk cache. 

Assume you have an application that updates a custom database, which is stored within a file. 

At certain points in the update process, you will want to make certain that these changes are 

forced out to disk. However, to issue a frequent call to sync (2) would affect other users too 

much. The solution is found in the fsync(2) function. 

Thefsync(2) Function 
This function provides the power of sync(2) but limits the scope to one file. See the function 
synopsis: 

#include <unistd.h> 

int fsync(int fd); 

This function simply accepts the file descriptor as an argument, which indicates the file for 

which all cached changes must be written out. Note that if several processes are modifying the 

same file, all changed data for that file is written out. Changes are not traced back to a particu¬ 

lar file descriptor and kept separate. 

The f sync (2) function returns zero if successful and -1 if an error occurs. One of the more 

interesting possible errors is EIO, which will tell your application that an I/O error has 

occurred, while it was forcing the written data out to disk. 

Tip 

If you need to be certain that all data changes for a file have been successfully written to the disk 

media, call fsync(2) prior to calling close(2). Without a call to fsync(2), the close(2) call may 

succeed, since the changes remain in the disk cache. Later the UNIX kernel may discover that the 

cached changes cannot be written out due to a media error. By this time, your application not only is 

unaware of the problem, it also cannot take corrective action. 

Calling fsync(2) prior to close(2) allows your application to decide what to do about media 

problems. 

Scattered Reading and Writing 
There are times when the read (2) and write (2) calls are not convenient. This happens fre¬ 

quently with socket programming, where data is scattered around in different buffers. To 

address this issue, the UNIX kernel provides scatter read and write functions. 
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The readv(2) andwritev(2) Functions 
neadv(2) and writev(2) are known as the scatter read and write functions. This is because 

they can read and write a number of scattered I/O buffers. The function synopsis is as follows: 

#include <sys/types.h> 
#include <sys/uio.h> 
#include <unistd.h> 

ssizejt readv(int fd, const struct iovec *iov, int iovcnt); 

ssize_t writev(int fd, const struct iovec *iov, int iovcnt); 

struct iovec { 
char *iov_base; /* Base address. */ 
size_t iov_len; /* Length. */ 

}; 

In addition to the file descriptor, these functions accept two other arguments: 

• The I/O vector pointer iov 

• The count of I/O vector items iovcnt 

The argument iov is actually an array of type struct iovec. Each array entry points to one 

buffer (by iov_base) of a specific size (size iov_len). The count iovcnt indicates how many 

array elements the function call should use. 

The return values are otherwise identical to the read (2) and write(2) calls. The number of 

bytes read or written is returned. If an error occurs, -1 is returned (with errno). 

Listing 4.5 shows a simple example of using writev (2). It simply writes from three separate 

buffers to the standard output. 

LISTING 4.5 writev. c—An Example of a writev(2) Call 

1: 
2: 
3: 

/* writev.c */ 

#include <stdio.h> 
4: #include <fcntl.h> 
5: #include <unistd.h> 
6: #include <errno.h> 
7: #include <string.h> 
8: #include <sys/types.h> 
9: #include <sys/uio.h> 
10: 
11: int 
12: main(int argc.char **argv) { 
13: int z; /* Return status code */ 
14: static char buf1[] = "by writev(2)" ;/* Middle buffer */ 
15: static char buf 2[ ] = /* Last buffer */ 
16: static char buf3[ ] = /* First buffer */ 
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static char buf4[] = "\n"; 
struct iovec iov[4]; 

iov[0].iov_base = buf3; 
iov[0].iov_len = strlen(buf3); 
iov[1].iov_base = buf1; 
iov[1],iov_len = strlen(buf1); 
iov[2].iov_base = buf2; 
iov[2].iov_len = strlen(buf2); 
iov[3].iov_base = buf4; 
iov[3].iov_len = strlen(buf4); 

z = writev(1,&iov[0],4); 
if ( z == -1 ) 

abort(); 

return 0; 

/* Newline at end */ 
/* Handles 4 buffers */ 

/* scatter write 4 buffers */ 

/* Failed */ 

The session for compiling and running this program is shown next: 

$ make writev 
cc -c -D_POSIX_C_SOURCE=199309L -Wall writev.c 
cc writev.o -o writev 
$ ./writev 
«<by writev(2)>» 
$ 

When the program . /writev is invoked, the standard output shows the result of four buffers 

being combined, including the trailing ' \n ' character that was written. 

Determining Your tty Name 
If your application must request input from the terminal, you can always open the special 

pathname " /dev/tty". This special pathname causes the UNIX kernel to open the real path¬ 

name necessary to gain access to the controlling terminal. This allows your application to 

request a password from the user, for example. 

There are other times when you need to know if a particular file descriptor is a tty device or 

not. This frequently occurs when dealing with standard input, which is provided by the shell. 

How does the application tell when the standard input is redirected to take data from a file, or 

when the data is coming from a terminal? Perhaps the user prompt is to be suppressed if the 

input is coming from a file. The ttyname(3) and isatty(3) functions solve these thorny 

problems. 

//include <unistd.h> 

char * ttyname(int fd); 

int isatty(int fd); 
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The ttyname(3) function accepts an open file descriptor as its only input argument. It returns 

a string pointer for the tty device if isatty (3) returns true. Otherwise, ttyname(3) will 

return a null pointer. The errno value is not affected. 

Function isatty (3) accepts an open file descriptor as its only input argument. It returns true 

if the file descriptor represents a terminal and false when it is not a tty. 

Listing 4.6 shows a simple program putting these functions to work on standard input, output, 
and error. 

LISTING 4.6 tty.c—A Test Program for ttyname(3) andisatty(3) 

1: 
2: 

/* tty.c */ 

3: //include <stdio.h> 
4: 
C . 

//include <unistd.h> 
0 . 
6: void 
7: tty_info(int fd) { 
8: int b = isatty(fd); /* Test if a tty */ 
9: 
10: printf("fd=%d %s a tty\n " ,fd,b?"is":"isn't"); 
11: if ( b ) 
12: printf("tty name is '%s'\n", ttyname(fd)); 
13: } 
14: 
15: int 
16: main(int argc,char **argv) { 
17: 
18: tty_info(0); /* Query standard input */ 
19: tty_info(1); /* Query standard output */ 
20: tty_info(2); /* Query standard error */ 
21 : return 0; 
22: } 

The program in Listing 4.6 tests the status of each of the shell-provided file descriptors, stan¬ 

dard input, output, and error. The following shows a compile-and-execute session: 

$ make tty 
cc -c -D_P0SIX_C_S0URCE=199309L -Wall tty.c 
cc tty.o -o tty 
$ ./tty 
fd=0 is a tty 
tty name is '/dev/ttyp21 
fd=1 is a tty 
tty name is '/dev/ttyp2' 
fd=2 is a tty 
tty name is '/dev/ttyp2' 
$ ./tty 2>/dev/null </dev/null 
fd=0 isn't a tty 
fd=1 is a tty 
tty name is '/dev/ttyp2' 
fd=2 isn't a tty 
$ 
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The first time . / tty is invoked, all three file descriptors are identified as a tty device. The sec¬ 

ond time the program is invoked, the standard input and standard error are redirected to 

/dev/null. The program correctly identifies that file descriptors 0 (standard input) and 2 
(standard error) are not terminal devices. 

When running this program with standard output redirected, just keep in mind that standard 

output is where the program output is going. 

Summary 
This chapter presented an overview of the UNIX philosophy of working with file I/O. You saw 

how the umask(2) function controls how permissions are given out when new file system 

objects are created. The chapter also covered various aspects of performing reading, writing, 

seeking, truncating, and working with sparse files. UNIX truly does provide the programmer a 

rich environment in which to write applications. 

The next chapter is going to extend this programming knowledge further. Building databases 

and updating files are almost trivial tasks for a system that has only one user. However, on the 

multiuser operating system that UNIX is, you need to be concerned about when and where 

certain update events occur in files being updated by more than one process. File locking is 

the topic of the next chapter. 





CHAPTER 5 

FILE LOCKING 

Jf you were in the business of selling a piano on consignment, then you would only make 

a profit if you could sell the piano for more than the owner required for it. However, if 

the owner kept raising the price of his piano every time you had a buyer for it, then 

you’d soon have to give up selling it or lose money on the sale. 

Working with data records within a file of a multi-processing system can present the same 

challenge. If one process must update records while another process is doing the same, then 

some form of coordination is required to prevent chaos. One UNIX solution to this problem is 

the file locking facility. 

In this chapter, you will learn about 

• Lock files 

• Advisory locking 

• Applying region locks 

• Mandatory locking 

Understanding Lock Types 
There are two basic forms of file locking. They are 

• Lock files 

• Locked regions 

The first form requires that a process create and open a lock file before it writes to the pro¬ 

tected data file. If a process fails to create the lock file, then it sleeps for a while and tries again. 

For example, if the data file database. dat is the data file, then the lock file might be named 

database. lck. The contents of the lock file are not important to the procedure, and it may 

even be empty. When the updating process has finished with its update of database. dat, then 

the lock file database. lck is released. This method works only when all processes cooperate 

and obey this procedure. 

The UNIX kernel also will permit a process to lock regions of a data file. A region consists of 

one or more bytes at a specified starting offset. The offset can extend beyond the end of the 
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current file size. In this way, all processes agree to tell the kernel which regions of the file they 

are about to update. If a requested lock region is in conflict with presently granted locks on 

that file, the requesting process is put to sleep until the conflict is removed. When all processes 

obey this procedure, the integrity of the file is preserved. Figure 5.1 shows four processes that 

want to update one data file concurrently. 

FIGURE 5.1 

Three locked file regions 

and one pending request 
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Process IDs 1000, 1001, and 1002 in Figure 5.1 have their regions locked within the data file. 

The UNIX kernel grants these locks because they do not overlap. This allows these three 

processes to update the same file concurrently. Notice that process ID 1003 has requested a 

lock for a region that conflicts with a presently locked Region 3, owned by process ID 1002. 

Consequently, process 1003 sleeps until Region 3 becomes unlocked. 

File locking under UNIX occurs under one of two lock enforcement models: 

Advisory locking—No enforcement 

Mandatory locking—Enforced locking 

The lock file and lock region methods just discussed require process cooperation to maintain 

the integrity of the data file. Cooperative locking methods are known as advisory locking. The 

UNIX kernel cannot enforce such cooperative methods. Consequently, when advisory locking 

methods are employed, processes that disobey the locking convention can corrupt the data 

file. 

Many UNIX kernels also support mandatory locking of files. When a process attempts to write 

to a region of a file that has enforced locking enabled, all other processes are prevented from 

interfering. Similarly, the writing process is blocked from executing until its conflicts with 
other processes have vanished. 
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The Lock File Technique 
The lock file technique is a coarse-grained locking technique, since it implies that the entire 

file is locked. The technique is simple, however: 

1. Attempt to create and open the lock file. 

2. If step 1 fails, sleep for a while and repeat step 1. 

3. If step 1 succeeds, then you have successfully locked the resource. 

The success of this method depends on the fact that the creation and opening of the lock file 

must be atomic. In other words, they must either succeed completely or fail completely. 

This is easily accomplished with the UNIX open (2) call, when the options 0_CREAT|0_EXCL 

are used together: 

fd = open("file.lck",0_WR0NLY|0_CREAT|0_EXCL,mode); 

The 0_CREAT flag tells open (2) to create the file if it does not exist. However, the flag 0_EXCL 

tells open (2) to return an error if the file already exists when the flag 0_CREAT has also been 

supplied. This causes the open (2) call to succeed only if the file did not already exist and it 

was possible to create the file. 

Listing 5.1 shows how locking can be performed using a lock file. 

LISTING 5.1 lockf ile. c—Using a Lock File to Promote Safe Updates 

1: /* lockfile.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <string.h> 
6: #include <fcntl.h> 
7: #include <errno.h> 
8: 
9: /* 
10: * Lock by creating a lock file : 
11: */ 

12: static void 
13: Lock(void) { 
14: int fd = -1; /* Lock file descriptor */ 
15: 
16: do { 
17: fd = open("file.lck",O_WRONLY|O_CREAT|O_EXCL,0666); 
18: if ( fd == -1 ) { 
19: if ( errno == EEXIST ) { 
20: sleep(1); /* Nap for a bit.. */ 
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} else { 
fprintf(stderr,"%s: Creating lock file.lck\n", 

strerror(errno)); 
abort(); /* Failed */ 

} 
} 

} while ( fd -= -1 ); 

close(fd); /* No longer need file open */ 

} 

/* 

* Unlock by releasing the lock file : 
*/ 

static void 
Unlock(void) { 

unlink("file.lck"); /* Release the lock file */ 

} 

int 
main(int argc,char **argv) { 

FILE *f = NULL; 
int i; 
int ch; 
int lck = 1; 

/* 

* If command line argument 1 is nolock or NOLOCK, 
* this program runs without using the Lock() and 
* Unlock() functions : 
*/ 

if ( argc >= 2 && !strcasecmp(argv[1],"NOLOCK") ) 
lck = 0; /* No locking */ 

printf(“Process ID %ld started with %s\n", 
(long)getpid(), 
lck ? "locking" : "no locking"); 

/* 

* Now create some rows of data in file.dat : 
*/ 

for ( i=0; i<1000; ++i ) { 
if ( lck ) /* Using locks? */ 

Lock(); /* Yes, get lock */ 

/* 

* Here we just update file.dat with new records. If 
* no locking is used while multiple processes do this, 
* some records will usually be lost. However, when 
* locking is used, no records are lost. 
* 

* Here we just open the file if it exists, otherwise 
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74: * the file is opened for write. 
75: */ 
76: f = fopen("file.dat","r+"); /* Open existing file */ 
77: 
78: if ( If && errno == ENOENT ) 
79: f = fopen("file.dat","w"); /* Create file */ 
80: 
81: if ( If ) { 
82: fprintf(stderr,"%s: opening file.dat for r/w\n", 
83: strerror(errno)); 
84: if ( lck ) 
85: Unlock(); /* Unlock */ 
86: return 1; /* Failed */ 
87: } 
88: 
89: /* 
90: * Seek to the end of the file, and add a record : 
91: */ 
92: fseek(f,0,SEEK_END); /* Seek to end of file */ 
93: 
94: fprintf(f,"%051d i=%06d ",(long)getpid(),i); 
95: for ( ch=' ch<=1z'; ++ch ) 
96: fputc(ch,f); /* A bunch of data to waste time */ 
97: fputc('\n1,f); 
98: 
99: fclose(f); 
100: 
101: if ( lck ) /* Using locks? */ 
102: Unlock(); /* Yes, unlock */ 
103: } 
104: 
105: /* 
106: * Announce our completion : 
107: */ 
108: printf("Process ID %ld completed.\n",(long)getpid()); 
109: return 0; 
110: } 

The program in Listing 5.1 loops 1000 times to append records to the file file.dat. The func¬ 

tion Lock () calls on open (2) with the 0_CREAT 10_EXCL flags in order to exclusively open and 

create the file. If the create call fails, the function invokes sleep (3) for one second and then 

tries again. 

Notice that Lock () closes the lock file after it successfully opens and creates it. The opening of 

the file is required only to prove that the file was created successfully by your current process 

and not some other. This is how the Lock() function determines that it has “acquired” the 

lock. 

The procedure for unlocking the lock file is as simple as releasing the lock file (line 38 in func¬ 

tion Unlock()). The unlink(2) function is discussed in Chapter 6, “Managing Files and Their 

Properties.” 
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Compiling the program in Listing 5.1 is as follows: 

$ make lockfile 
cc -c -D_POSIX_C_SOURCE=199309L -Wall lockfile.C 
cc lockfile.o -o lockfile 
$ 

Next, make sure that the file file.dat does not exist: 

$ rm file.dat 
rm: file.dat: No such file or directory 
$ 

This removal of file. dat is especially important if you run the test multiple times. If you pre¬ 

fer, you can do the following instead: 

$ make cleanfiles 
rm -f file.dat file.lck 
$ 

The make cleanfiles command removes both the data file and the lock file if it should exist. 

Next, using the compiled executable lockfile, run a test using three processes with no lock¬ 

ing. This is done by providing the argument NOLOCK on the command line as follows: 

$ ./lockfile NOLOCK & ./lockfile NOLOCK & ./lockfile NOLOCK & 
$ Process ID 83554 started with no locking 
Process ID 83556 started with no locking 
Process ID 83555 started with no locking 
Process ID 83556 completed. 
Process ID 83555 completed. 
Process ID 83554 completed. 

[1] 83554 Exit 0 
[2] 83555 Exit 0 
[3] 83556 Exit 0 
$ 

It is very important that you start these processes as shown (the & character causes each of the 

commands to run in the background). If there is too much time delay between starting each of 

these processes, you will not see the expected problem. If this should still be a problem 

because of the speed of your system, change the number 1000 in line 63 of Listing 5.1 to 
something much larger. 

In the session shown above, the three processes ran without using any locking and finished 

successfully. Now check the file file.dat, which was updated by all three: 

$ wc -1 file.dat 
2999 file.dat 

$ 

The wc (1) command shown counted only 2999 lines, when there should have been 3000 

(three times 1000 for each process). Remove file. dat and repeat the test. You may occasion¬ 

ally find that the count will change. You might get 2998, instead. This shows that you are not 
getting the full count. 

./lockfile N0L0CK 

./lockfile N0L0CK 

./lockfile N0L0CK 
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Now repeat the test, but this time use the locking (which is the default for this program): 

$ rm file.dat 

$ ./lockfile & ./lockfile & ./lockfile & 
$ Process ID 83606 started with locking 
Process ID 83607 started with locking 
Process ID 83608 started with locking 
Process ID 83606 completed. 
Process ID 83608 completed. 
Process ID 83607 completed. 

[1] 83606 Exit 0 
[2] 83607 Exit 0 
[3] 83608 Exit 0 
$ wc -1 file.dat 

3000 file.dat 
$ 

In this test, you can see that the final resulting line count in file. dat is 3000 lines, which is 

correct. The locking file file. lck prevented lost data by ensuring that only one process at a 

time was updating the file file. dat. 

Limitations of the Lock File 
One of the things that you probably noticed about running the program lockfile from Listing 

5.1 was that when locks were enabled, the test took much longer to run. The reason for this 

has to do with the need for the Lock() function in line 20 to call upon sleep(3) when it was 

unsuccessful creating the lock file. While you could omit the sleep(3) function call, this 

would be unwelcome on a multiuser system. 

Other functions could be used to reduce the sleep(3) time to less than one second, but the 

real problem lies in the fact that this is a polling method. 

Another limitation of the lock file method is that it is reliable only on a local file system. If 

your lock file is created on an NFS file system, NFS cannot guarantee that your open (2) flags 

0_CREAT 10_EXCL will be respected (the operation may not be atomic). The operation must be 

atomic to be a reliable lock indicator. 

Additionally, the lock file technique can only operate at a file level. Successful locking with a 

lock file implies that the process has access to update the entire data file. All other processes 

must wait, even if they want to update different parts of the same file. 

Summarized, some lock file disadvantages are 

• There is high latency time between failed attempts when used with sleep (3). 

• It is unreliable when used on NFS file systems. 

• It is a coarse-grained lock (this implies that a process has locked the entire data file). 

These are reasons why you should consider other file locking methods. 

. /lockfile 

. /lockfile 

. /lockfile 
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Using an Advisory Lock on the Entire File 
An improvement over the file locking method was the creation of a UNIX kernel service that 

would allow a process to lock or unlock an entire file. Additionally, it was desirable to indicate 

when a file was being read or written. When a file is locked for reading, other processes can 

safely read the file concurrently. However, while the file remains read-locked, write-lock 

requests are blocked to ensure the safety of the data being read. Once all read locks are 

released, a write lock can be established on the file. 

This kernel service provides the following benefits to the programmer: 

• Higher performance, since sleep(3) is not called 

• Finer lock granularity: read and write locks 

The performance of the application is greatly improved because the kernel is able to resume 

process execution at the earliest opportunity, once the lock can be granted. This is in contrast 

to application calls to the sleep(3) function. 

Granularity is finer because applications can acquire read locks or write locks. Read locks (also 

known as shared locks) allow multiple processes to read the same data regions concurrently. 

Write locks (also known as exclusive locks) are exclusive to any read locks and other write 

locks. This capability is in contrast to one file lock, allowing only one process to access the file 

at once. 

Locking with flock (2) 
The file locking service is provided by the f lock(2) function on a BSD platform. This function 

provides the programmer with the following file locking capabilities: 

Shared locks—for reading 

Exclusive locks—for writing 

Shared locks allow one or more concurrent reading processes to share access to the file. 

However, when an exclusive lock is obtained on the file, there can be no shared locks. Only 

one process is permitted to obtain an exclusive lock on the file. Consequently, exclusive locks 

are used when updates to the file are taking place. 

The function synopsis for the flock(2) function is as follows: 

#include <sys/file.h> 

int flock(int fd, int operation); 

#define L0CK_SH 0x01 /* shared file lock */ 
#define L0CK_EX 0x02 /* exclusive file lock */ 
#define LOCKJMB 0x04 /* don't block when locking */ 
#define LOCKJJN 0x08 /* unlock file */ 
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The function flock (2) requires an open file descriptor fd. This open file descriptor must be 

open for read access to gain shared locks with L0CK_SH. The file descriptor must have write 

access in order to apply exclusive locks with L0CK_EX. 

A shared lock is requested by using the operation L0CK_SH in the call. Other processes can 

request shared locks and succeed with existing shared locks. However, once a process estab¬ 

lishes an exclusive lock (L0CK_EX), no shared lock will succeed. 

When L0CK_NB is not used, a request that cannot be granted immediately causes the process to 

be put to sleep. When a shared lock is attempted when an exclusive lock is established, the 

calling process is put to sleep until the exclusive lock is released. Similarly, if a process has a 

shared lock and attempts to upgrade it to an exclusive lock, the calling process will sleep until 

the conflicting shared locks are released. 

When LOCK_NB is used, the lock request immediately fails by returning -1, if the request can¬ 

not be granted. The value EWOULDBLOCK is returned in errno. This allows a process to attempt 

a lock without its execution being suspended if the request cannot be granted. 

Some platforms will provide a compatibility function. Sun's Solaris 8 flock (3UCB) documentation 

states that the "compatibility version of flock() has been implemented on top of fcntl(2) lock¬ 

ing. It does not provide complete binary compatibility." 

The flock (2) function has a few advantages over the lock file technique. 

• No additional lock file is involved. 

• sleep(3) is not called for retry attempts, providing improved performance. 

• Finer-grained locking allows locks to be shared or exclusive. 

• Allows locks to be held on NFS mounted file systems. 

NFS can be configured to support a lock manager (rpc. lockd(8) under FreeBSD), to allow 

file locking on remote file systems. This overcomes the lock file limitation on remote file sys¬ 

tems, where open and create are not atomic operations. 

According to simple tests performed under FreeBSD by the author, the flock (2) function does not 

appear to return the EINTR error after a signal handler return. However, the FreeBSD documentation 

states that "processes blocked awaiting a lock may be awakened by signals." For this reason, you 

might want to allow for the eintr signal in your code. 
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Warning 

Locks created by flock (2) are managed by file—not by file descriptors. Additional file descriptors 

obtained by dup(2) and dup2(2) manage the same locks. 

The parent process that has fork(2) calls can lose locks on a file if its child process unlocks the file 

when it uses the open file descriptors obtained from the parent. 

Record Locking 
The BSD flock(2) approach provides improved performance over the lock file but still suffers 

from the fact that it locks the entire file. 

Even better performance can be obtained when the regions of the file are locked instead of the 

entire file. System V provided the lockf (2) function to accomplish this. Later, POSIX defined 

yet another application interface using the f cntl(2) function. 

To visualize locked regions, review Figure 5.1, in which three processes successfully obtained 

region locks. The execution of the fourth process was suspended because its request to lock a 

region overlapped with another granted lock. 

Locking with lockf (2) 
The lockf (2) function is not documented under FreeBSD, presumably because it was a 

System V development, which was superceded by the POSIX fcntl(2) interface. For those 

interested in porting existing applications that call it, the lockf (2) function will be presented 
here: 

#include <sys/lockf.h> /* AIX */ 
#include <unistd.h> 

int lockf(int fd,int request,off_t size); 

#define FJJLOCK 0 
#define F_L0CK 1 
#define F_TL0CK 2 
#define F TEST 3 

/* unlock a region */ 
/* lock a region */ 
/* test and lock a region */ 
/* test region for lock */ 

The lockf (2) function uses the current offset in the file open on f d. The request to lock a 

region of the file starts at this implied offset and includes size bytes. If size is negative, the 
region works backward from the current offset. 

Regions are locked when request is F_L0CK and unlocked when request is FJJLOCK. The 

operation F_TEST returns zero if the specified region is not locked. Otherwise, -1 and 
errno=EACCES are returned instead. 
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EACCES—Permission Denied. This error is returned when the permissions on an object prevent the 

access that is requested. In the context of calls like lockf (2), it simply means that the specified 

region is already locked and the request cannot be granted. 

Note that the macro name eacces is frequently misspelled: there is only one S. 

The lockf (2) function requires that the file descriptor fd must be open for write (0_WR0NLY) 

or for read/write (0_RDWR). A file that is open only for reading cannot obtain a locked region 

with lockf (2). 

HP-UX notes in lockf (2) that "If the calling process is a member of a group that has the 

PRIV_L0CKRD0NLY privilege (see getprivgrp(2)), it can also use lockf (2) to lock files opened with 

read-only permission (0_rdonly).'' 

iSalSI 
Warning 

All locks that a process owns for a given file are released when any one of the file descriptors associ¬ 

ated with that file is closed with close (2). This is true even when the process may still have other 

dup(2) file descriptors open for the same file. 

Process termination and calls to execve(2) with the close-on-exec flag set have the same effect. 

When a process provides multiple lock requests for overlapping regions that are already 

locked, the lock regions are merged. Figure 5.2 shows two overlapping regions that merge into 

one larger locked region for the calling process. 

FIGURE 5.2 
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It is possible to arbitrarily unlock regions within a larger locked region. For example, the over¬ 

lapping area shown in Figure 5.2 can be subsequently unlocked if the calling application 

issues the request to do so. 

As noted in the earlier Warning, any call to close (2) by the current process releases all of its 

presently held locks. There are no separately managed lock regions by file descriptor. All lock 

regions are managed strictly on a file basis for each process. This can sometimes present a 

challenge to software design. 

EDEADLK—Resource Deadlock Avoided. This error can be returned by lockf (2) to indicate that the 

operation being attempted would have been blocked indefinitely if an error had not been returned 

instead. This frequently occurs when two processes are locking overlapping sets of resources and 

each is waiting for the other to give way. 

Avoiding Deadlock 
Whenever the error EDEADLK is returned, your application should release all of the locks it has 

acquired so far and try again. Eventually your process or the other process will then acquire all 

of the locks needed. 

The best avoidance of deadlocks is accomplished if all processes attempt to lock records in the 

same sequence. For example, you might have all applications lock lowest offset records first. If 

multiple files are involved, you might also lock the files with the lowest i-node numbers first 

(see Chapter 6). 

Advisory Locking 
Unless you take steps to enable mandatory locking, the lockf (2) function provides advisory 

locking only. Advisory locking works when all processes accessing the same file agree to use 

lockf (2) voluntarily when accessing the file. Any process that chooses to ignore this conven¬ 

tion can still do as it pleases without regard to the locks in place. 

With mandatory locking enabled, the UNIX kernel enforces locking on the file. With locking 

enforced, reads and writes that overlap with a locked region put the calling process to sleep 

until the lock is released. Enabling mandatory locking is discussed in the section “Mandatory 
Locking,” later in this chapter. 

0 
HP-UX documentation states that some system functions like execve(2) are not subject to enforce¬ 

ment of mandatory locks. See lockf (2). 
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POSIX Locking with fcntl(2) 
The POSIX method for locking files uses the fcntl(2) application interface. The function syn¬ 
opsis for fcntl(2) as it applies to file locking is as follows: 

#include <fcntl.h> 

int fcntl(int fd, int cmd, struct flock *lck); 

cmd: 

F_GETLK, F_SETLK, or F_SETLKW 

struct flock 
of f_t 
off_t 
pid_t 
short 
short 

{ 
l_start; 
l_len; 
l_pid; 
l_type; 
l_whence; 

/* starting offset */ 
/* len = 0 means until end of file */ 
/* lock owner (F_GETLK only) */ 
/* F_RDLCK, FJVRLCK or F_UNLCK */ 
/* SEEK_SET, SEEK_CUR or SEEK_END */ 

The fcntl(2) interface permits two different locks to be applied when the cmd argument is 

F SETLK or F SETLKW: 

Shared locks—F RDLCK 

Write locks—F WRLCK 

The argument lck points to the structure flock where the structure member l_type is set to 

F_RDLCK or F_WRLCK. When a region of the file needs to be unlocked, the member l_type is 

set to FJJNLCK instead. 

The cmd values F_SETLK and F_SETLKW differ as follows: 

• When F_SETLK is used, the lock operation is attempted as described by the supplied 

structure flock, which is pointed to by the argument lck. If the operation cannot suc¬ 

ceed because of another process’s locks, an error return value of -1 is returned and 

errno=EAGAIN. 

• The operation for F_SETLKW is the same as F_SETLK, except that the operation will block 

until the operation can succeed. 

Initializing struct flock 

The l_start member of the flock structure indicates the starting file offset of the region 

involved. Member l_len indicates in bytes how long the file region is. A value of zero for 

l_len indicates that the entire file should be locked. 

The structure member l_pid is used only by the fcntl(2) command F_GETLK. This value is 

returned to the caller and will be discussed later. 
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The structure member l_type indicates what type of lock is being applied. The values possible 

here are F_RDLCK for shared locks, F_WRLCK to establish a write (exclusive) lock, or F_UNLCK to 

unlock the specified region. 

The value of l_whence indicates how the offset in l_start should be interpreted. The values 

possible are SEEK_SET, SEEK_CUR, and SEEK_END. This follows the convention used by 

lseek(2). 

Locking a Region 
The following code segment shows how a region of an open file descriptor f d would be 

locked: 

int fd; 
struct flock lck; 

lck.l_start = 0; 
lck.l_len = 0; 
lck.l_type = F_RDLCK; 
lck.l_whence = SEEK_SET; 

if ( fcntl(fd,F_SETLKW,&lck) == 
/* Error handling */ 

/* Open file descriptor */ 
/* Lock structure */ 

/* Start at beginning of file */ 
/* Lock entire file */ 
/* Shared lock */ 
/* Absolute offset */ 

-1 ) { 

This example locks the entire file with a shared (read) lock on the file descriptor f d. Since 

F_SETLKW was used, this function call will block until it is successful. 

Warning 

The fcntl(2) function will return the error eintr when command f_setlkw is used and the 

process has finished handling a signal. 

When fcntl(2) is called with command F_SETLK instead of F_SETLKW, a return value of -1 is 

provided with errno=EAGAIN if the operation cannot immediately succeed. This prevents the 

process from blocking in the function call. 

EAGAIN —Resource Temporarily Unavailable In the context of the fcntl(2) function call 

using f_setlk, it means that some other lock currently conflicts with the request. However, retrying 

the operation later may yield success. 

i 
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Unlocking a Region 
Unlocking a region is almost identical to the lock procedure: 

int fd; /* Open file descriptor */ 
struct flock lck; /* Lock structure */ 

lck.l_start = 0; 
lck.l_len = 0; 
lck.ljtype = F_UNLCK; 
lck.l_whence = SEEK_SET; 

/* Start at beginning of file */ 
/* Lock entire file */ 
/* unlock */ 
/* Absolute offset */ 

if ( fcntl(fd,F_SETLKW,&lck) == -1 ) { 
/* Error handling */ 

The only difference in the code shown is the line: 

lck.l_type = F_UNLCK; /* Shared lock */ 

The example code shown will undo the shared lock established in the previous section. 

Obtaining Lock Information 
The POSIX fcntl(2) lock operations permit the program to query the given file for locks 

using the command F_GETLK. The following shows an example: 

int fd; /* Open file descriptor */ 
struct flock lck; /* Lock structure */ 

lck.l_start = 0; 
lck.l_len = 0; 
lck.l_type = F_RDLCK; 
lck.l_whence = SEEK_SET; 

/* Start at beginning of file */ 
/* Lock entire file */ 
/* Shared lock */ 
/* Absolute offset */ 

if ( fcntl(fd,F_GETLK,&lck) == -1 ) { 
/* Error handling */ 

} else if ( lck.l_type == FJJNLCK ) { 
/* Operation F_RDLCK would have succeeded */ 

} else { 
printf("PID %ld is preventing F_RDLCK\n",(long)lck.l_pid); 

} 

The command F_GETLK indicates that the operation would have been successful by leaving the 

structure lck intact, with the exception that lck. l_type is set to FJJNLCK. However, if the 

request would have failed, the structure member lck. l_pid is set to the process ID of the 

process holding the first conflicting lock (there may be more than one conflict). 

All locks that a process owns for a given file are released when any one of the file descriptors associ¬ 

ated with that file is closed with close (2). This is true even when the process may still have other 

dup (2) file descriptors open for the same file. 

Process termination and calls to execve(2) with the close-on-exec flag set have the same effect. 
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Note that the POSIX implementation of record locking using f cntl(2) suffers from the same 

limitations noted in the discussion of lockf (2). 

Mandatory Locking 
The discussions so far have covered only advisory locking. As long as all processes cooperate 

and use the locking conventions in agreement, the integrity of the file is maintained. However, 

if one or more processes do not obey the locking convention established, then updates to the 

file can result in file corruption and data loss. 

To enable mandatory locking on a file, the setgid bit is established for the file without the 

execution permission being given. More precisely, permission bit S_ISGID must be enabled, 

and S_IXGRP must be reset (on some systems, the macro S_ENFMT can be used). 

Note 

The functions read(2), write(2), readv(2), wnitev(2), open(2), creat(2), mmap(2), 

truncate(2), and ftruncate(2) are among the functions affected by mandatory locking. 

Note that truncate(2) and ftruncate(2) are considered to be write actions for locking purposes. 

All lock requests are still performed with the fcntl(2) function, as they were for advisory 

locks. However, with mandatory locking enabled, all read/write I/O calls will be affected as fol¬ 

lows: 

• Any write call will be blocked if another process has a conflicting region locked with a 

shared or exclusive lock. 

• Any read attempt will be blocked if another process has a conflicting region locked with 

an exclusive lock. 

This form of locking imposes a performance penalty, because every read and write on the file 

must go through lock tests within the UNIX kernel. Additionally, mandatory locking is not 

supported on all UNIX platforms. Mandatory locking was not part of the POSIX. 1 standard, so 

some vendors have chosen not to support it. 

Note 

SGI IRIX 6.5, HPUX 10 and 11, UnixWare 7, Solaris 8, AIX 4.3, and Linux 2.1 .x and later support 

mandatory file locking. 

BSD derivatives, including FreeBSD, do not appear to support mandatory locking. 

To see if your platform supports mandatory locking, look atchmod(2) and stat(2). Most platforms 

that support it will define the macro S_enfmt. Alternatively, look for a discussion of enforced or 

mandatory file locking. 
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Mandatory locking provides the following benefits: 

• All processes are forced to synchronize their access to the file, whether they explicitly 

lock regions or not. 

• The application does not have to issue lock and unlock requests for simple updates. 

Mandatory locking suffers from the following disadvantages: 

• Additional UNIX kernel overhead is required to check locks for every read and write 

system call on the file. 

• A malicious process can hold an exclusive lock on the file indefinitely, preventing any 

reads or writes to the file. 

• A malicious process can hold a shared lock on a mandatory lock to deny any process to 

write to the file. 

• Mandatory locks may not be supported on NFS mounted file systems. 

• Mandatory locks are not supported on all UNIX platforms. 

Lower efficiency and potential lack of portability are the most serious disadvantages that you 

need to consider. 

If the file being opened with open (2) has outstanding read or write mandatory locks, and the flag 
0_trunc or 0_CREAT has been supplied, the call will fail with the error eagain on many UNIX plat¬ 
forms. 

Enabling Mandatory Locking 
The following example shows how you can enable mandatory locking for a file named 

file.dat: 

$ Is -1 file.dat 
-rw-rw- 1 me mygrp 596 Apr 24 16:55 file.dat 
$ chmod g+s,g-x file.dat 
$ Is -1 file.dat 
-rw-rwS--- 1 me mygrp 596 Apr 24 16:55 file.dat 

$ 

Notice the large S in the group permissions shown for file. dat. This indicates that manda¬ 

tory locking is in effect for this file. 

Summary 
This chapter covered the different forms of locking, from the primitive file-based locks to the 

more advanced region locks. The next chapter will look at the basic UNIX functions that allow 

your programs to manage files and to obtain property information about them. 



■ 

' 



CHAPTER 6 

MANAGING FILES AND THEIR 
PROPERTIES 

When you first started using UNIX, the first interaction you had with the system was 

through the shell. With the shell’s help you listed, copied, linked, moved, and even 

removed files. All of these routine jobs were accomplished with the shell. 

The purpose of this chapter is to introduce you to the C library functions that permit you to 

delete, link, and move files. Additionally, the very important stat (2) and fstat(2) functions 

that give you information about file system objects will be covered. With the exception of 

directories, this chapter will enable you to manage files from your C program without any help 

from the shell. 

Removing Files 
You delete files under UNIX using the unlink(2) system call. The function synopsis for it is as 

follows: 

#include <unistd.h> 

int unlink(const char *pathname); 

A UNIX file can have more than one name linked to a copy of the file. When the last link is 

removed, the file itself is deleted and the disk space is returned to the file system for re-use. 

The function returns -1 if it fails and leaves the error code in errno. Upon a successful return, 

the value 0 is returned. 

The following example code shows how the pathname /tmp/12345. tmp is deleted from a C 

program: 

if ( unlink("/tmp/12345.tmp") == -1 ) { 
fprintf(stderr,"%s: removing /tmp/12345.tmp\n",strerror(errno)); 
abort(); 

} 

All links to the same file must be released this way before the disk space is returned to the file 

system. 
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Warning 

The unlink(2) call can take a long time to delete a large file. Time is required to update many inter¬ 

nal file system blocks and pointers. Consequently, on some UNIX platforms the unlink(2) call can 

return the error EINTR (SGI IRIX 6.5 for example). 

Note that if any links remain for the file, the file's stat(2) value st_ctime (create time) is updated. 

The stat (2) values st_ctime and stjntime (time last modified) are updated for the directory con¬ 

taining the link that was removed. 

In addition to the unlink(2) function, the programmer has the remove (3) function, which 

was formalized by the ISO 9899: 1990 (“ISO C”) standard. Its function synopsis is as follows: 

#include <stdio.h> 

int remove(const char *path); 

The remove(3) function differs from unlink(2) in that it is able to remove a file or an empty 

directory. remove(3) calls upon unlink(2) or rmdir(2) as appropriate. When argument path 

is a directory, the function rmdir(2) is called. Otherwise, unlink(2) is called. rmdir(2) is 

described in Chapter 7, “Directory Management.” 

When remove(3) is successful, the value 0 is returned. Otherwise -1 is returned and the error 

code is left in global variable errno. For a list of error codes possible, consult the functions 

unlink(2) and rmdir(2). 

Note 

While remove(3) is able to remove a directory, it does require that it be empty. This restriction is due 

to limitation of rmdir(2). 

Linking Files 
This is accomplished by the link(2) system call: 

#include <unistd.h> 

int link(const char *oldpath, const char *newpath); 

The function returns -1 if it fails and leaves the error code in errno. Upon a successful return, 
the value 0 is returned. 
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The following example shows how the function can be used to link the filename a. out to 
my_app: 

if ( link("a.out","my_app") == -1 ) { 
fprintf(stderr,"%s: link(2)\n",strerror(errno)); 
abort(); 

} 

Warning 

Some UNIX platforms allow link(2) to return the error EINTR (SGI IRIX 6.5 for example). 

Ill Note 
, - '> ><*•'- • ' 

The st_ctime (create time) value of the file is updated upon successful completion of a link(2) 

call. The values st_ctime and st_mtime (time of last modification) of the directory containing the 

new link are updated. See the section "The stat(2) Function," later in this chapter. 

Moving Files 
The mv(1) command uses the link(2) and unlink(2) calls in order to move a file. However, 

if the file is moved to another file system, the mv (1) command must copy it. Assuming that the 

file is being moved within the same file system, an example command looks like this: 

$ mv ./a.out ./bin/my_app 

In C terms, this is accomplished as follows: 

if ( link("./a.out","./bin/my_app") == -1 ) { 
fprintf(stderr,"%s: link(2)\n",strerror(errno)); 
abort(); 

} 
if ( unlink("./a.out") == -1 ) { 

fprintf(stderr,"%s: unlink(2)\n",strerror(errno)); 
abort(); 

} 

The idea behind moving a file is to create a new link and then remove the old link. This gives 

the illusion of moving the file from one path to another. However, if the source and destination 

pathnames are on different file systems, you will get the error EXDEV. 

Note 

EXDEV —Cross-device link. When link(2) returns this error, it indicates that the operation failed 

because both pathnames were not on the same file system. 
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While pathnames can be moved using individual calls to link(2) and unlink (2), the opera¬ 

tion occurs frequently enough that the rename (2) function has been provided for conve¬ 

nience. This simplifies your coding effort, since you have to test only one source of error 

instead of two. The synopsis for this function is as follows: 

#include <stdio.h> 

int rename(const char *from, const char *to); 

The rename (2) function returns 0 if it succeeds. Otherwise the value -1 is returned and an 

error code is provided in errno. 

It is also worth noting that if the final component of the pathname from is a symbolic link, the 

symbolic link is renamed—not the file or directory that the symbolic link points to. 

Warning 

The rename(2) function will unlink(2) the to pathname if it already exists. 

Additionally, SGI IRIX 6.5 documents this function as being capable of returning eintr if a signal is 

caught. 

Obtaining File System Information 
The UNIX kernel maintains considerable detail about every file system object. This is true 

whether the object is a file, a directory, a special device node, or a named pipe. Whatever the 

file system object is, several properties are tracked and maintained for it. 

The stat (2) and fstat (2) functions return information about file system objects in a struc¬ 

ture named stat. The synopsis for the stat structure is as follows: 

struct stat { 
dev_t st_dev; 
ino_t st_ino; 
mode_t stjnode; 
nlink_t st_nlink; 
uid_t st_uid; 
gid_t st_gid; 
dev_t st_rdev; 

#ifndef _P0SIX_S0URCE 
struct timespec st_atimespec 
struct timespec st_mtimespec 
struct timespec st_ctimespec 

#else 
time_t st_atime; 
long st_atimensec; 
time_t st_mtime; 
long stjntimensec; 
time_t st_ctime; 
long st_ctimensec; 

/* device */ 
/* inode */ 
/* protection */ 
/* number of hard links */ 
/* user ID of owner */ 
/* group ID of owner */ 
/* device type (if inode dev) */ 

/* time of last access */ 
/* time of last data modification */ 
/* time of last file status change */ 

/* time of last access */ 
/* nsec of last access */ 
/* time of last data modification */ 
/* nsec of last data modification */ 
/* time of last file status change */ 
/* nsec of last file status change */ 
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#endif 
off_t st_size; 
int64_t st_blocks; 
u_int32_t st_blksize; 
u_int32_t st_flags; 
u_int32_t st_gen; 

}; 

#ifndef _P0SIX_S0URCE 
#define st_atime st_atimespec.tv_sec 
#define st_mtime st_mtimespec.tv_sec 
#define st_ctime st_ctimespec.tv_sec 
#endif 

struct timespec { 
time_t tv_sec; 
long tv_nsec; 

}; 

The definition shown is the one documented by FreeBSD Release 3.4. This definition shows 

the difference that exists, depending on whether or not POSIX standards are being used. When 

POSIX standards are not in use, the members st_atimespec, st_mtimespec, and 

st_ctimespec are defined in terms of the structure timespec. Then macros are used to equate, 

for example, the name st_atime to st_atimespec. 

When POSIX standards are used, the st_atime member is defined in terms of the C type 

time_t, as has been the traditional type for this member. If finer-grained time information is 

required, the member st_atimensec can be consulted when compiling to POSIX standards. 

SGI's IRIX 6.5 describes the access, modified, and create date/time structure members in terms of 

the C data type timespecjt. Many other UNIX systems such as HPUX 10 and 11, Solaris 8, and 

UnixWare 7 describe the stat members in simple terms of the C data type time_t. 

/* seconds */ 
/* and nanoseconds */ 

/* file size, in bytes */ 
/* blocks allocated for file */ 
/* optimal blocksize for I/O */ 
/* user defined flags for file */ 
/* file generation number */ 

The stat (2) Function 
The stat (2) function allows the programmer to supply the pathname of the file system object 

and retrieve file system properties. The function synopsis for stat (2) is as follows: 

//include <sys/types.h> 
//include <sys/stat.h> 
//include <unistd.h> 

int stat(const char *file_name, struct stat *buf); 

The stat (2) function returns 0 when it is successful. When the call fails, -1 is returned with 

an error code placed in the global variable errno. 
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You can use the following code to obtain information about the executable file bin/a.out: 

struct stat sbuf; 

if ( stat("bin/a.out",&sbuf) == -1 ) { 
fprintf(stderr,"%s: stat(2)\n",strerror(errno)); 
abort(); 

} 

The code shows how the properties are returned to the structure sbuf for the file a.out. The 

programmer can then access the members of variable sbuf to work with the file properties. 

Table 6.1 reviews the stat structure members in detail, complete with units. 

TABLE 6.1 The stat Structure 

Data Type Member Name Description 

dev_t st_dev The device number for this file system. 

ino_t st_ino The i-node number for this file system entry. 

mode_t st_mode File system object permission bits. 

nlink_t st_nlink The number of hard links to this file. 

uid_t st_uid The uid number of the owning user for this file system object. 

gid_t st_gid The gid number of the group for this file system object. 

dev_t st_rdev The device type, if the device is an i-node device. 

time_t st_atime The time this file system object was last accessed. 

long st_atimensec The last access time in nanoseconds. 

time_t st_mtime The time this file system object was last modified. 

long st_mtimensec The time of last modification in nanoseconds. 

time_t st_ctime The time of creation for this file system object. 

long st_ctimensec The time of creation in nanoseconds. 

of f_t st_size The total size in bytes of this file system object. 

int64_t st_blocks The number of blocks allocated to this file system object. 

u_int32_t st_blksize The block size for file system I/O. 

Warning 

stat (2) and f stat (2) under SGI IRIX 6.5 are capable of returning EINTR if a signal is caught. 
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Data Type Member Name Description 

u_int32_t st_flags User-defined flags for file. This appears to be a FreeBSD extension. 

u_int32_t st_gen File generation number. This appears to be a FreeBSD extension. 

The HPUX operating system also includes another useful piece of information: 

struct stat { 

uint 

}; 

When set, the flag bit member st_acl indicates that access control list (ACL) entries exist for 

that file. Only certain types of file systems, including HP’s HFS file system, support access con¬ 

trol list entries. 

The fstat (2) Function 
There are situations where it is necessary to obtain properties of the file system object that is 

open on a file descriptor. In this situation, you may not have the pathname for the object. The 

f stat (2) function solves this problem by allowing you to retrieve properties for the object 

open on the file descriptor. 

#include <sys/types.h> 
#include <sys/stat.h> 
#include <unistd.h> 

int fstat(int fd, struct stat *sb); 

For a file that is open on file descriptor fd, the following example shows how f stat (2) is 

used: 

int fd; /* Open file descriptor */ 
struct stat sbuf; 

if ( fstat(fd,&sbuf) == -1 ) { 
fprintf(stderr,"%s: fstat(2)\n",strerror(errno)); 
abort(); 

} 

In this example, the structure sbuf receives all of the file properties for the object open on file 

unit fd. 

Working with File Properties 
In order to put the stat (2) and f stat (2) functions through their paces, a simple C++ object 

will be created to allow a few simple tests to be performed. The system call functions will be 

encapsulated in the object and then tested by calling upon the object methods. Listing 6.1 

shows the C++ program. 

st_acl:1; /* Set if the file has optional */ 
/* access control list entries */ 
/* HFS File Systems only */ 
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LISTING 6.1 stat. cc—The Stat Class and Test Program 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

// stat.cc 

#include <iostream.h> 
#include <string.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <sys/stat.h> 

//////////////////////////////////////////////////////////// 
// Simple Stat object : 
//////////////////////////////////////////////////////////// 

class Stat : public stat { 

private: 
char *path; 
int fd; 

// Pathname 
// File descriptor 

public: 
Stat() { path = 0; fd = -1; } 
-Stat(); 

Stat & examine(const char *pathname); 
Stat & examine(int fd); 
int operator==(Stat &o); 

friend ostream & operator«(ostream &out,Stat &o); 
}; 

//////////////////////////////////////////////////////////// 
// Destructor : 
//////////////////////////////////////////////////////////// 

Stat::-Stat() { 
if ( path ) // Path allocated? 

delete path; // Yes, release string 
} 

//////////////////////////////////////////////////////////// 
// stat(2) on pathname : 
//////////////////////////////////////////////////////////// 

Stat & 
Stat::examine(const char *pathname) { 

if ( path ) 
delete path; 

// Is there a prior path? 
// Yes, release string 

path = strdup(pathname); // Create a new string 
fd = -1; // Not using fd here 
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53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101 : 
102: 
103: 
104: 
105: 

// Obtain stat info : 
if ( ::stat(path,this) == -1 ) 

throw errno; // Oops- error 

return *this; // Successful 
} 

//////////////////////////////////////////////////////////// 
// Perform fstat(2) on fd : 
//////////////////////////////////////////////////////////// 

Stat & 
Stat:: examine(int fd) { 

if ( path ) { II Is there a path? 
delete path; II Yes, release string 

} 
path = 0; 1/ Mark as gone 

this->fd = fd; II Save fd 

II Obtain stat info : 
if ( : :fstat(fd,this) == •1 ) 

throw errno; II Oops- error 

return *this; II Successful 

//////////////////////////////////////////////////////////// 
// This friend function can be called to dump the 
// contents of the stat structure : 
//////////////////////////////////////////////////////////// 

ostream & 
operator«(ostream &out,Stat &o) { 

// If there is no information, say so : 
if ( o.fd == -1 && lo.path ) { 

out « "No current information."; 
return out; 

} 

// Otherwise, show what sort of stat() info it is: 
if ( o.path ) 

cout « "stat(" « o.path « ") {\n"; 
else 

cout « "fstat(" <<: o.fd « ") {\n"; 

// Dump all other structure members : 

cout« "\tst_dev =\t" « o.st_dev « ";\n" 
« "\tst_ino =\t" « o.st_ino « ";\n"; 
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continued from previous page 

106 
107 
108 
109 
110 cout« "\tst 
111 « " \tst 
112 « " \tst 
113 << " \ tst 
114 « " \tst 
115 « "\tst 
116 « " \tst 
117 « " \tst 
118 « " \tst 
119 << " \tst 
120 « " \tst 
121 « " \tst 
122 « " \ n }; 
123 
124 return out; 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 

cout.setf(ios::oct,ios::basefield); 
cout« "\tst_mode =\t" « '0' « o.stjnode « ";\n"; 

cout.setf(ios::dec,ios::basefield); 
_nlink =\t" « o.st_nlink 
uid =\t" « o.st uid « 

« ";\n" 
; \ n" 

_gid =\t" « o.st_gid « ";\n" 
rdev =\t" « o.st_rdev « ";\n" 
atime =\t" « o.st_atime « ";\n" 

_mtime =\t" « o.stjntime « ";\n" 
ctime =\t“ « o.st_ctime « ";\n" 
size =\t" « o.st_size « ";\n" 
blocks =\t" « o.st_blocks « ";\n" 
blksize =\t" « o.st_blksize « ";\n" 

_flags =\t" « o.st_flags « ";\n" 
_gen = \t" « o.st_gen « ";\n" 

} 

//////////////////////////////////////////////////////////// 
// This method tests to see if two file system objects 
// are the same one : 
//////////////////////////////////////////////////////////// 

int 
Stat::operator==(Stat &o) { 

// Does either object lack information? 

if ( fd == -1 && !path ) 
throw EINVAL; 

if ( o.fd == -1 && !path 
throw EINVAL; 

// No information here 

// No information there 

// Now test to see if these are the same objects: 

if ( o.st_dev != 
o.st_ino != 

return 0; 

st 
st 

dev 
ino 

// Devices match? 
// Inodes match? 
// Devices or inodes don't match 

return 1 
} 

// Return TRUE, they are the same 

//////////////////////////////////////////////////////////// 
// Test Main Program : 
//////////////////////////////////////////////////////////// 

int 
main(int argc.char **argv) { 

int x; 
Stat t; 

// 
II 

work index 
state. /stat' 
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159 Stat s; // work stat object 
160 
161 t.examinee . /stat"); // Do stat(2j 
162 
163 // Now try all command line arguments : 
164 
165 for ( x=1; x<argc; ++x ) { 
166 
167 try { 
168 s.examine(argv[x]); // Stat this pathname 
169 } catch ( int e ) { 
170 // e is errno value : 
171 cerr « strerror(e) « stat(2) of ii 

172 « argv[x] « 1\n'; 
173 continue; 
174 } 
175 
176 cout « s « ' \n'; // Dump stat info 
177 
178 // Test if s is same as t : 
179 
180 cout « . « argv[x] « " ' is " 
181 « ( s == t ? "same" : "not the same' ) 
182 « " file as ./stat\n"; 
183 } 
184 
185 return 0; 
186 } 
187 
188 // End stat.ee 

The program in Listing 6.1 defines the class Stat, beginning at line 14. This class inherits from 

the stat structure and leaves the stat members exposed for simplicity (note the public key¬ 

word in line 14). Two additional private members, path and fd, are declared in lines 17 and 

18 for tracking purposes. 

Two examine C++ methods are declared in lines 24 and 25 to allow the object to inquire by 

pathname or by file descriptor. This eventually translates to a call to stat (2) or f stat (2), 

respectively. 

Lines 45-58 declare the implementation of the inquiry by pathname. Line 54 shows the call to 

stat (2). Note that this method is coded to throw the errno value if an error is returned by 

stat (2). Lines 64-79 likewise define the implementation of the inquiry by open file descrip¬ 

tor. The f stat (2) call appears in line 75, and again, errno is thrown if an error is returned. 

Lines 86-125 define a friend function (see line 28) that allows the class Stat to be sent to 

cout with the « operator. This provides a simple dump of the stat structure members. 

The loop in the main () program in lines 165-183 performs the task of examining every path¬ 

name provided on the command line (line 168). Any error is caught in line 169 and reported 

in lines 171-173. Ifs.examine(argv[x]) executes successfully, control passes to line 176, 

where the contents of the object are formatted for output. 
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The following session shows the program in Listing 6.1 being compiled and tested using the 

file Makefile: 

$ make stat 
cc -c -D_POSIX_C_SOURCE=199309L -Wall -fhandle-exceptions stat.cc 
cc stat.o -o stat -lstdc++ 
$ ./stat Makefile 
stat(Makefile) { 

st_dev = 196613; 
st_ino = 125953; 
stjnode = 0100644; 
st_nlink = i; 
st_uid = 1001; 
st_gid = 1001; 
st_rdev = 525400; 
st_atime = 956797796; 
stjntime = 956723168; 
st_ctime = 956723168; 
st_size = 378; 
st_blocks = 2; 
st_blksize = 8192; 
st_flags = 0; 
st_gen = 0; 

}; 
'Makefile' is not the same file as ./stat 
$ 

Notice that, if we verify a few attributes of the file Makefile, they will agree with the output 

shown: 

$ Is -li Makefile 
125953 -rw-r--r-- 1 me mygrp 378 Apr 26 00:26 Makefile 
$ 

The file size of 378 bytes matches the value shown for st_size, and the permissions 

-rw-r - - r- - match the lower 3 octal digits of st_mode for permission bits. The -i option of 

the Is (1) command causes the i-node number to be displayed. It is shown as 125953 and 

agrees with the st_ino value shown. 

Testing Links for the Same File 
When the device number in st_dev and the i-node in st_ino match for two different path¬ 

names, this indicates that these are links to the same file. The method int operator==(Stat 

&o) is defined in the class Stat of Listing 6.1 to allow the user of Stat objects to perform such 

a comparison test. The method is implemented in lines 132-149. 

This class method is tested in the main () program by initially obtaining the stat (2) informa¬ 

tion on the executable file . / stat in line 161. Then the command-line argument is compared 

against this in line 181 (note the s == t expression before the ? operator). 

In the earlier test run, the message 

'Makefile' is not the same file as ./stat 
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was shown. However, if this program is tested again with new_link as the argument that is 
linked to . /stat, then the following results are obtained: 

$ In ./stat new_link 
$ ./stat new link 
stat(new_link) { 

st_dev = 196613; 
st_ino = 125955; 
st_mode = 0100755; 
st_nlink = 2; 
st_uid = 1001; 
st_gid = 1001; 
st_rdev = 525312; 
st_atime = 956797797 
st_mtime = 956797797 
st_ctime = 956798301 
st_size = 12080; 
st_blocks = 24; 
st_blksize = 8192; 
st_flags = 0; 
st_gen = 0; 

}; 
'new_link' is same file as ./stat 
$ Is -li new_link stat 
125955 -rwxr-xr-x 2 me mygrp 12080 Apr 26 21:09 new_link 
125955 -rwxr-xr-x 2 me mygrp 12080 Apr 26 21:09 stat 
$ 

After creating a link new_link to . / stat, the program correctly states that the pathname 

new_link is the same file as . /stat. This is reported from lines 180-182 of the main () pro¬ 

gram. 

Testing for File Type 
The st_mode member also holds information about the type of file system object. To determine 

the object type, use one of the following macros, where m is the stjnode value to be tested. 

The following tests and macros can be used: 

symbolic link S_ISLNK(m) 

regular file S_ISREG(m) 

directory S_ISDIR(m) 

character special device S_ISCHR(m) 

block special device S_ISBLK(m) 

named pipe (FIFO) S_ISFIF0(m) 

socket S_ISS0CK(m) 

These macros test the high order bits in the stat structure member st_mode 
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The following code shows how a function could report the type of the file system object path 

that is provided as an argument: 

static void 
report_type(const char *path) { 

struct stat sbuf; 
char *cp = ; 

if ( stat(path,&sbuf) == -1 ) { 
/* Report stat(2) error */ 
fprintf(stderr,"%s: stat(%s)\n", 

strerror(errno),path); 
return; 

} 

if ( S_ISDIR(sbuf.st_mode) ) 
cp = "directory"; 

else if ( S_ISREG(sbuf.stjnode) ) 
cp = "regular file"; 

else if ( S_ISCHR(sbuf.stjnode) ) 
cp = "character raw device"; 

else if ( S_ISBLK(sbuf.st_mode) ) 
cp = "block raw device"; 

else if ( S_ISFIFO(sbuf.st_mode) ) 
cp = "named pipe (FIFO)"; 

else if ( S_ISSOCK(sbuf.stjnode) ) 
cp = "UNIX socket"; 

else if ( S_ISLNK(sbuf.st_mode) ) 
cp = "symbolic link"; 

printf("Path %s is a %s\n“,path,cp); 

} 

This example shows how the stat structure member st_mode is used in each of the test macro 

calls. 

Modification, Access, and Creation Times 
The time values st_atime, st_mtime, and st_ctime are sometimes valuable assets to the pro¬ 

grammer. Most of the time, the value st_mtime is examined, which represents the last modifi¬ 

cation for the object. However, the time of last access, st_atime, can be extremely useful if 

you need to see if the object has been recently accessed. The creation time, st_ctime, indicates 

when the object was created. The data type time_t is discussed in Chapter 11, “UNIX Date 

and Time Facilities.” 

Calling stat (2) or fstat (2) to query a file system object's properties does not alter its date and 

time accessed. 
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Testing Access to a File 
Sometimes it is necessary to test the access of a file system object prior to its actual use. For 

example, if your application must provide the pathname of an executable to another applica¬ 

tion, you might want to make sure that you possess execute rights on that file. Testing access 

ahead of time may be simpler for corrective action. This is accomplished with the UNIX func- 
tion access (2): 

#include <unistd.h> 

int access(const char 

mode: 

*path, int mode); 

F_0K, R_OK, W_0K and/or X_0K 

The pathname of the object to be tested for access is provided in the first argument. The mode 

argument contains the bit-wise OR of the following values: 

File exists F_0K 

Read access R_0K 

Write access W_0K 

Execute access X_0K 

The real user ID and group ID are used for testing the access to the file (not the effective user 

ID and group ID). If the access is not successful, -1 is returned and an appropriate error in 

errno is returned (EACCES if the problem is a lack of access rights). If the function succeeds, 

the value 0 is returned instead. 

The following example shows how a program could test to see if the shell script my_script is 

executable: 

if ( access("./my_script",R_0K|X_0K) == -1 ) 
/* Report error */ 

else 
/* ./my_xeq has execute access */ 

Note 

Script files must be readable and executable. Executable files require only execute access. 
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The value F_0K simply tests for the existence of the pathname. SGI’s IRIX 6.5 and UnixWare 7 

allow the additional flag bits to be supplied: 

Regular executable file EX_0K 

Test using effective IDs EFF_0NLY_0K 

However, these tests are not universally available. 

Warning 

SGI's IRIX 6.5 and Solaris 8 document the access(2) function returning the error eintr. 

Symbolic Links 
Symbolic links solve the thorny problem of providing a link to a file on another file system. 

They represent a file system “re-director” of sorts. In order to allow programs to work with 

symbolic links, the UNIX kernel provides a few system calls specific to symbolic links. 

The symlink(2) Function 
The symlink(2) function permits the caller to create a symbolic link, as opposed to a hard 

link that is created by link(2). The synopsis for symlink (2) is as follows: 

#include <unistd.h> 

int symlink(const char *path, const char *symlnk); 

The symbolic link named by the argument symlnk is created to point to the pathname pro¬ 

vided by the argument path. The function returns 0 if successful; otherwise -1 and a value for 

errno are returned. The pathname in path does not need to exist already. 

The following example shows how a symbolic link named my_hosts can be created to point to 
the file /etc/hosts: 

if ( symlink(“/etc/hosts"/my_hosts") == -1 ) 
/* Report error */ 

else 
/* Success */ 

FreeBSD has an extensive man (1) page describing how symbolic links work, in section seven, 
symlink(7). 

The lstat(2) Function 
There are times when your program may need status information about the symbolic link, 
rather than the file it points to. The 1st at (2) function fills this need: 
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#include <sys/types.h> 
#include <sys/stat.h> 

int lstat(const char *path, struct stat *sb); 

The structure sb is filled with the same type of information that is provided for stat (2) and 

f stat (2). The difference, of course, is that the information is returned for the symbolic link 

itself. The function returns 0 when successful; otherwise -1 and a value for errno are returned 
instead. 

lstat (2) under SGI IRIX 6.5 is capable of returning eintr if a signal is caught. 

Reading the Contents of the Symbolic Link with 
readlink(2) 

In order to determine what an existing symbolic link points to, you call upon the function 

readlink(2): 

//include <unistd.h> 

int readlink(const char *path, char *buf, int bufsiz); 

The symbolic link of interest is provided in the argument path. The buffer pointer but indi¬ 

cates where the symbolic link information should be returned. The argument bufsiz indicates 

the maximum number of bytes that can be returned by readlink(2). 

The value returned by readlink (2) is the number of characters that were placed into the 

buffer buf. There is no null byte returned by readlink (2). If an error occurred, -1 is returned 

and errno holds the error code. The following example shows how to report the link informa¬ 

tion for symbolic link my_symlink: 

int z; 
char buf[1024]; 

z = readlink("my_symlink",buf,sizeof buf-1); 
if ( z == -1 ) 

/* Report error */ 
else { 

/* Success */ 
buf[z] = 0; /* Null terminate */ 
printf("symlink is 1%s'\n",buf); 

} 

Notice how the null byte has to be added by the caller, since readlink(2) does not 

provide one. 
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File Permissions and Ownership 
The stat (2) family of functions allows you to inquire about a file system object’s permissions 

and ownership. Permissions are described by the stat structure member stjnode. To alter this 

permission setting, you change its mode. This is covered next, using the functions chmod(2), 

fchmod(2),and lchmod(2). 

Each user on a UNIX system owns files that he has created. He is the owner of his files and, as 

the owner, possesses the right to change its permissions (mode). Likewise, the user is a mem¬ 

ber of a group. Consequently, there exists group ownership on file system objects. The owner 

of a file (with exceptions) can give his ownership away to another user or group on the system. 

This is known as changing the owner or group of the file. 

Changing Permissions 
The chmod (2) function permits the program to alter the permission bits of a file system object. 

The functions chmod(2), fchmod(2), and lchmod(2) have the following synopsis: 

#include <sys/stat.h> 

int chmod(const char *path, mode_t mode); 

int fchmod(int fd, mode_t mode); 

int lchmod(const char *path, mode_t mode); 

The chmod(2) function follows symbolic links to arrive at the file that will have its permissions 

altered. The lchmod (2) function, which is not available on all UNIX platforms, allows the 

caller to alter the permissions on the symbolic link itself. 

FreeBSD and HPUX 10 support the lchmod(2) function. 

Documentation for HPUX 11 does not show support for lchmod (2). No documented support for 

lchmod(2) exists in IBM AIX4.3, Solaris 8, UnixWare 7, SGI IRIX 6.5, or Linux. 

The functions chmod (2) and lchmod (2) require the pathname of the file system object. 

Function fchmod(2) changes the permissions on the object open on the file descriptor fd. 

The permission bits in argument mode replace the existing permissions on the file system 

object. These functions return 0 when successful or -1 with an error code in errno if they fail. 

The following example shows how a C program could make the shell script my_script exe¬ 
cutable for the owner and group: 

if ( chmod(11./my_script" ,0550) == -1 ) 
/* Report error */ 

else 
/* Successful */ 
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Alternatively, using macro constants, this example could have been written as follows: 

if ( chmod("./my_script",S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP) == -1 ) 
/* Report error */ 

else 
/* Successful */ 

Calling these functions will not affect the access of objects that have already been opened. 

Warning 

chmod(2) and fchmod(2) under SGI IRIX 6.5, UnixWare 7, and Solaris 8 are capable of returning 

eintr if a signal is caught. 

Changing Ownership 
In order to change the ownership of a file, the function chown (2) must be called. The synopsis 

for this family of functions is as follows: 

#include <sys/types.h> 
#include <unistd.h> 

int chown(const char *path, uid_t owner, gid_t group); 

int fchown(int fd, uid_t owner, gid_t group); 

int lchown(const char *path, uid_t owner, gid_t group); 

Function chown (2) follows the symbolic links starting with path to arrive at the file that will 

be changed. The function fchown(2) affects the file that is open on file descriptor fd. The 

lchown (2) function affects the ownership of the symbolic link itself, rather than the file it 

points to. 

The arguments owner and group set the ownership user ID and group ID, respectively. 

Argument owner or group may be given the value -1 (with one exception) to leave the user ID 

or group ID unchanged. This is useful when changing only one of the two values of a file sys¬ 

tem object. See Chapter 12, “User ID, Password, and Group Management,” for more about 

how to obtain user and group ID numbers. 

HPUX 10 and 11 documents that you should use the macro value uid_no_CHANGE to leave the 

owner as is. Additionally, macro gid_no_CHANGE is used to leave the group ownership as is. 

AIX 4.3, Solaris 8, SGI IRIX 6.5, UnixWare 7, FreeBSD, and Linux document the use of -1 for leaving 

the owner or group as is. 
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Most UNIX platforms clear the set-user-ID and set-group-ID bits when these functions are 

called. This helps to prevent accidental or mischievous security holes in file system permis¬ 

sions. However, when the caller is root, the set-user-ID and set-group-ID bits are not reset. 

The following example sets the ownership of the file /etc/hosts to root (value 0), while leav¬ 

ing the group ID unchanged: 

if ( chown(''/etc/hosts'',0,-1) == -1 ) 
/* Report error */ 

else 
/* Successful */ 

Some systems may restrict these calls, since they can represent a security risk under the right 

conditions. 

Tip 

Whether chown(2) is restricted or not can be tested using pathconf(2) or fpathconf (2) and the 
test _PC_CHOWN_RESTRlCTED. This is covered later in this chapter. 

Named Pipes (FIFOs) 
Command lines are formed regularly under UNIX to pipe information from one process to 

another. These pipes are anonymous. When unrelated processes want to pipe information, 

they usually require the help of a named pipe. Because pipes process information on a first-in, 

first-out basis, they are also known as FIFOs. 

A FIFO can be created from a C/C++ program using the mkf if o (2) function. The function 

synopsis is as follows: 

#include <sys/types.h> 
#include <sys/stat.h> 

int mkfifo(const char *path, modejt mode); 

The FIFO is created with the pathname path with permissions specified by the argument 

mode. The permission bits in mode are subject to the current umask (2) value in effect. 

The function mkfifo(2) returns 0 when successful or -1 with an error code in errno when it 

fails. The following shows how a named pipe, /tmp/my_pipe, can be created with read and 

write access for everyone (subject to the umask(2) setting): 

if ( mkfifo("/tmp/my_pipe",0666) == -1 ) 
/* Report errors */ 

else 
/* Successful */ 
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Note 

On some platforms, the mkfifo(2) call may be implemented in terms of another function. For 

example, SGI's IRIX 6.5 and Solaris 8 implement mkfifo(2) by calling 

mknod(path,(mode|S_IFIF0),0). 

Obtaining Size and Configuration Information 
If you are writing applications for several UNIX platforms, it is wisest if your application can 

determine the size of certain platform-specific values. One frequently needed piece of informa¬ 

tion is the maximum length of a pathname. This is needed so that pathname buffers can be 
safely allocated. 

The pathconf (2) and f pathconf (2) functions can answer your query about the size of a 

pathname buffer required. The function synopsis is as follows: 

#include <unistd.h> 

long pathconf(const char *path, int name); 

long fpathconf(int fd, int name); 

A number of configured values can be returned to the program with these functions. The tests 

that can be performed are summarized in Table 6.2. 

Warning 

When the pathconf (2) or fpathconf (2) function fails, the value 

tains reason for the error. 

pi 
IIP 

-1L is returned, and errno con- 

If the parameter queried is not supported or does not have a limit in the system, the value -1L is also 

returned, and the value of errno is left unchanged. To detect this, you should clear the value of 

errno before making the call. 

TABLE 6.2 pathconf (2) and fpathconf (2) Tests 

Test Description 

_PC_LINK_MAX The maximum file link count. 

PC_MAX_CANON The maximum number of bytes in terminal canonical input line. Input 

must represent a terminal. 

_PC_MAX_INPUT The number of bytes for which space is available in a terminal input 

queue. Input must represent a terminal. 
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continued from previous page 

Test Description 

_PC_NAME_MAX The maximum number of bytes in a filename (excludes null bytes). The 

input must represent a directory. 

_PC_PATH_MAX The maximum number of bytes in a pathname (excludes null bytes). The 

input must represent a directory. 

_PC_PIPE_BUF The maximum number of bytes that will be written atomically to a pipe. 

Input must represent a pipe, FIFO, or directory. 

_PC_CHOWN_RESTRICTED Returns 1 if appropriate privileges are required for the chown(2) system 

call, 0 otherwise. Input must represent a file or directory. 

_PC_NO_TRUNC Return 1 if pathnames longer than _PC_NAME_MAX are truncated. 

Otherwise, long pathnames cause an error to be returned. Input must be 

a directory. 

_PC_VDISABLE Returns the terminal character disabling value. 

Most of the time, programmers will be interested in the value _PC_PATH_MAX. However, a num¬ 

ber of other useful values are provided as well, including the test _PC_CHOWN_RESTRICTED. A 

feature test program is presented in Listing 6.2. 

LISTING 6.2 pathconf.c—A pathconf (2) and f pathconf (2) Test Program 

1: /* pathconf.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <string.h> 
6: #include <errno.h> 
7: 
8: int 
9: main(int argc,char **argv) { 
10: int x; 
11: struct { 
12: int test; 
13: char *desc; 
14: } tests[] = { 
15: { _PC_LINK_MAX, "The maximum file link count." }, 
16: { _PC_MAX_CANON, "The maximum number of bytes \n" 
17: "\tin terminal canonical input line." }, 
18: { _PC_MAX_INPUT, "The minimum maximum numberin'1 
19: "\tof bytes for which space is available\n" 
20: "\tin a terminal input queue." }, 
21: { _PC_I\IAME_MAX, "The maximum number of bytes in\n" 
22: "\ta file name." }, 
23: { _PC_PATH_MAX, "The maximum number of bytes\n" 
24: "\tin a pathname." }, 
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25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

{ _PC_PIPE_BUF, "The maximum number of bytes\n" 
"\twhich will be written atomically to a pipe." }, 

{ _PC_CH0WN_RESTRICTED, "Return 1 if appropriated" 
"Uprivileges are required for the chown(2)\n" 
"\tsystem call, otherwise 0." }, 

{ _PC_NO_TRUNC, "Return 1 if file names longer\n" 
"\tthan K E R N_NAME_MAX are truncated." }, 

{ _PC_VDISABLE, "Returns the terminal character\n" 
"\tdisabling value." }, 

}; 
long lv; 

for ( x=0; x<sizeof tests/sizeof tests[0]; ++x ) { 
errno = 0; /* Clear */ 
lv = pathconf(".",tests[x].test); /* Use dir . */ 
if ( lv == -1L && errno == EINVAL ) 

lv = fpathconf(0,tests[x].test);/* Use fd=0 */ 

if ( lv == -1L ) { /* Test if error */ 
if ( errno ) 

printf("%s: %s\n",strerror(errno),tests[x].desc); 
else 

printf("The value test[%d] is not supported.\n",x); 
continue; 

} 

printf("%ld:\t%s\n",lv,tests[x].desc); 
} 

return 0; 

The program in Listing 6.2 takes the very simple approach of calling pathconf (2) (line 39) 

using the current directory "." and the test macro found in array tests [ ] (lines 11-34). If the 

call should fail with the value EINVAL, then the function fpathconf (2) is called in line 41, 

using standard input instead (file unit zero). Unless the input has been redirected, this gives 

the program the input it needs to query certain terminal settings. 

Notice that line 38 clears errno to zero. This allows line 44 to test if the returned value was an 

error or an unsupported value. Line 45 reports errors, and line 47 reports unsupported para¬ 

meters. 

A compile and run under FreeBSD Release 3.4 is shown: 

$ make pathconf 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall pathconf.c 
cc pathconf.o -o pathconf 
$ ./pathconf 
32767: The maximum file link count. 
255: The maximum number of bytes 

in terminal canonical input line. 
255: The minimum maximum number 

of bytes for which space is available 
in a terminal input queue. 
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255: The maximum number of bytes in 
a file name. 

1024: The maximum number of bytes 
in a pathname. 

512: The maximum number of bytes 
which will be written atomically to a pipe 

1: Return 1 if appropriate 
privileges are required for the chown 
system call, otherwise 0. 

(2) 

1: Return 1 if file names longer 
than KERN_NAME_MAX are truncated. 

255: Returns the terminal character 
disabling value. 

$ 

The session output shows you the various values that are obtained from pathconf (2) and 

fpathconf(2). Notice in this example that the maximum filename length is 255 bytes and the 

maximum pathname length is 1024 bytes. 

Note that the maximum filename length and pathname length can vary according to the file system 
in question. For example, a pathconf (2) query on a mounted DOS floppy will return 12 for 
_pc_name_MAX (an 8-character filename, a dot, and a 3-character extension). Additionally, 1 is 
returned for _pc_link_MAX, since DOS file systems do not support links. 

Summary 
This chapter has covered the essential UNIX functions that manipulate and provide informa¬ 

tion about file system objects. While directories are also file system objects, they are given their 

own special treatment by UNIX. Consequently, the next chapter will introduce you to the 

essential directory-related functions. 



CHAPTER 7 

DIRECTORY MANAGEMENT 

The previous chapter dealt with system calls that work primarily with files. This chap¬ 

ter will focus on operations that are specific to directories. In this chapter you will 
learn how to 

• Change, save, and restore a current directory 

• Create and remove directories 

• Open, search, and close directories 

• Change the root directory 

Obtaining the Working Directory 
As an application writer, you will sometimes want to know what the current directory is from 

within your C/C++ program. The function getcwd(3) returns this information, and its synop¬ 

sis is presented as follows: 

#include <unistd.h> 

char *getcwd(char *buf, size_t size); 

char *getwd(char *buf); /* FreeBSD: For compatibility only */ 

The function getwd (3) is provided by FreeBSD for compatibility and should not be used in 

new programs. The getwd (3) function assumes the buffer is of size MAXPATHLEN. If the sup¬ 

plied buffer is shorter than this, then a security breach is possible due to the buffer overrun. 

A better function is the getcwd(3) function, which is supported by all modern UNIX systems. 

The argument buf of length size is filled with the name of the current working directory 

pathname. The size value must include the size of the returned pathname, including the null 

byte. 

Both getcwd (3) and getwd (3) return the pointer to buf if the call is successful. A null pointer 

is returned when the call has failed, and the error code is left in the global variable err no. 
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ERANGE —Result Too Large This error is returned by getcwd(3) and getwd(3) when the path¬ 

name to be returned will not fit in the buffer provided. The buffer must allow enough space for the 

pathname and the terminating null byte. 

Specifying a Null Buffer Argument 
The buf argument can be specified as null for some UNIX platforms. FreeBSD states that the 

“ability to specify a NULL pointer and have getcwd () allocate memory as necessary is an 

extension.” 

When the buf argument is a null pointer, a buffer of size bytes is allocated and its pointer is 

returned with the pathname in it. The argument size must be specified greater than zero and 

one byte greater than the largest expected pathname being returned. See the following Note for 

the Linux extension that applies when size is negative. 

Under Linux, specifying argument size as -1 when the argument buf is null will cause the correct 

size to be allocated for the returned pathname. When size is greater than zero, size bytes are allo¬ 

cated for the pathname instead. 

Warning 

The null buf argument is an extension to the standard for getcwd(3). It should not be used for code 

that must be used on all UNIX platforms. 

FreeBSD, Linux, SGI IRIX 6.5, UnixWare 7, HPUX-10, HPUX-11, and Solaris-8 appear to support a null 

buf argument when size is greater than zero. HP warns that its support of a null buf argument may 

be withdrawn in the future. 

Linux is the only one that documents support for a null buf argument and size less than zero. With 

this combination, the buffer is allocated as large as required. 

The pointer that is returned when buf is null must later be released with a call to free (3) 

when you no longer require the pathname string. 

Given all the variation in the levels of support for the null buf argument, the best advice that 

can be given is to keep control in your own hands. Allocate your own buffer and provide its 
correct size in the size argument when calling getcwd(3). 

Changing the Current Directory 
In order to change the current directory for the program, the function chdir (2) can be used. 
The synopsis for this function is as follows: 
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#include <unistd.h> 

int chdir(const char *path); 

This function simply accepts the pathname of the directory that is to become the current direc¬ 

tory. To be successful, the current process must have execute access to the directory name 

given. When successful, the value 0 is returned. Otherwise, -1 is returned, and errno contains 
the error code. 

The following shows how a program can change to the games home directory: 

if ( chdir("/home/games") == -1 ) { 
fprintf(stderr,"%s: chdir(2)\n",strerror(errno)); 
exit(13); 

} 

If the chdir (2) call fails, this program reports the error and exits with status code 13. 

Otherwise, the program continues with the current directory set to /home/games. 

Saving a Working Directory 
Traditionally, programmers have written code to get the current directory in order to restore it 

later. This allows the program to change to some other directory for a time and return to the 

original later. A disadvantage of this approach is that the directory name saved may be 

renamed by some other process. This would make it impossible for the program to restore the 

original current directory. 

Another approach is possible using the fchdir (2) function in combination with the open(2) 

function. The function synopsis for f chdir (2) is as follows: 

#include <unistd.h> 

int fchdir(int fd); 

The input argument f d is the directory that is open on that file descriptor. In order for 

f chdir (2) to succeed, it must be able to search the directory. The function returns 0 when 

successful and -1 with an error code in errno when it fails. 

The following example shows how the directory /etc can be opened and given to fchdir (2) 

to set it as the current directory. 

int fd; 

fd = open(''/etc'1,0_RD0NLY); /* Open the directory */ 

if ( fd == -1 ) 
/* Report open error */ 

if ( fchdir(fd) == -1 ) /* Change to directory ref'd by fd */ 
/* Report error */ 

else 
/* Current directory is now /etc */ 
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A Limitation of fchdir(2) 
The one limitation of the approach just presented using fchdir(2) is that open (2) will not be 

able to open a directory that provides execute-only permission. For example 

$ Is -dl /tmp/x_only 
d--x--x--x 2 me mygrp 512 Apr 29 14:38 /tmp/x_only 

$ 

Here the directory /tmp/x_only can be visited with chdir (2) but not opened by open (2). 

You can test chdir(2) using the shell 

$ cd /tmp/x_only 

$ 

You can see that the shell cd command, which calls chdir (2), succeeds without complaint. 

However, open(2) must have read access on the directory in order to open it. 

This situation does not occur often in practice, since a directory normally grants both read and 

execute permissions together. However, you should be aware of this limitation, since this 

could come back to bite you in highly secure application environments. 

Making a New Directory 
A C/C++ program may create a directory by calling upon the UNIX mkdir (2) system call. Its 

synopsis is as follows: 

#include <sys/types.h> 
#include <sys/stat.h> 

int mkdir(const char *path, mode_t mode); 

The argument path is the pathname of the new directory that is to be created. All intermediate 

directory names in the pathname must already exist. Only the last component of the pathname 

is actually created. The argument mode specifies the permission bits that are to be given to the 

new directory being created. In most cases, the S_ISGID, S_ISUID, and S_ISVTX bits are 

silently deleted from the value given in mode. The final permission bits assigned to the new 

directory are affected by applying the current umask(2) setting. 

The function returns 0 when successful or -1 with a code in errno if it fails. A number of pos¬ 

sible errors can be returned, but EROFS and EDQUOT are introduced in the following Note. 

Note 

EROFS —Read Only File System An attempt was made to create a directory when the file sys¬ 
tem has been mounted in read-only mode. 

EDQUOT The directory create failed because the user's quota of disk blocks on the containing file 
system has been exhausted. Alternatively, the user's quota of i-nodes has been exhausted on the file 
system. 
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The following example shows how a directory /tmp/my_dir could be created from a C pro¬ 
gram: 

int z; 

z = mkdir("/tmp/my_dir",S_IRWXU|S_IRWXG|S_IROTH|S_IXOTH); /* 0775 */ 
if ( z == -1 ) 

/* report error */ 

The example gives all access to the user and the group, and all others receive only read and 

execute. The final permissions given to the directory will be determined by the umask(2) that 
is in effect at the time. 

Removing a Directory 
The opposite of creating a directory with mkdir(2) is the removal of a directory with 

rmdir(2). Its function synopsis is as follows: 

#include <unistd.h> 

int rmdir(const char *path); 

The function returns 0 if it succeeds and -1 with the error code in errno when it fails. The 

directory name given by path must be empty in order to succeed. If the directory is not empty, 

the error ENOTEMPTY is returned. 

Note 

ENOTEMPTY —Directory not empty This error indicates that the directory pathname given to 

rmdir(2) contains one or more files or subdirectories (or any other file system object). Files must all 

be released with the unlink (2) function prior to releasing the directory containing them. 

Warning 

HPUX documents that rmdir(2) will not remove the root directory. While it is hard to imagine a situ¬ 

ation where this functionality would be desirable, it may be an important consideration in a special¬ 

ized application. 

Some platforms may not permit you to remove the current working directory for the current process 

(for example, HPUX and SGI IRIX prevent this). See the Note about EINVAL, later in this section. 

However, most UNIX platforms will permit the current directory to be deleted by a different process 

(HPUX, for example). 
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The rmdir(2) function is capable of returning a number of different errors. Two that will be 

introduced here are EBUSY and EINVAL. 

ISP Note 

EBUSY —Device busy In the context of rmdir(2), this error code indicates that the directory is a 

mount point and cannot be deleted until the file system is unmounted. 

EINVAL — Invalid argument This error return from rmdir(2) indicates that the directory to be 

removed is the current directory. 

The following shows how the empty directory /tmp/my_dir is deleted: 

int z; 

z = rmdir("/tmp/my_dir"); 
if ( z == -1 ) 

/* Report error */ 

Opening a Directory for Searching 
It is often necessary to search a directory to determine what entries the directory contains. For 

example, a backup utility would need to visit all files and subdirectories as it is backing them 

up. A family of functions, starting with opendir(3), is provided for that purpose: 

#include <sys/types.h> 
#include <dirent.h> 

DIR *opendir(const char ‘pathname); 

int dirfd(DIR *dirp); 

In the synopsis, note the return value provided by the function opendir (3). This is similar to 

the f open (3) call in the way that it returns a pointer to a structure. Here, the opendir(3) 

function returns a pointer to the data type DIR. The argument pathname is the name of the 

directory to be opened for searching. 

The function opendir (3) returns a pointer when successful and a null pointer when it fails. 

The error code is placed in errno when the function call fails. 

The pointer to DIR cannot be used in other functions such as fchdir(2), for example, so a 

function dirtd (3) is provided (this may be implemented as a macro). The following example 

shows how opendir(3) and dirfd(3) might be used together: 

DIR *dirp; /* Ptr to open directory */ 
int fd; /* fd of open directory */ 

dirp = opendir("/etc"); 
if ( ! dirp ) { 

/* report error */ 
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} else { 
/* Do some stuff here */ 

fd = dirfd(dirp); /* Get fd of open directory */ 
if ( fchdir(fd) == -1 ) { 

/* Report failed fchdir(2) */ 
} 

Note 

The dirfd (3) function is not available on many UNIX platforms. FreeBSD and SGI IRIX 6.5 support 

this function. 

IRIX 6.5 supports the dirfd (3) function if you include the 4.3BSD file <sys/dir .h> instead of the 

System V include file <dirent. h>. 

The example shows how opendir(3) opens the directory /etc. Later, with the help of the 

function dirfd (3), the file descriptor is fetched out of the structure pointed to by dirp and 

assigned to variable fd. Once fd is established, the function fchdir (2) can be called to make 

the open directory the current directory. 

Closing a Directory 
An open directory needs to be closed when the program is finished with it. The synopsis for 

closedir(3) is as follows: 

#include <sys/types.h> 
#include <dirent.h> 

int closedir(DIR *dirp); 

This function is simply called with a pointer to an open DIR structure. The value returned is -1 

if the close operation fails, and the error is posted to errno. Otherwise, closedir (3) returns 

0 upon success. An example is as follows: 

DIR *dirp; /* Ptr to open directory */ 

dirp = opendirf"/etc"); 
if ( !dirp ) { 

/* report error */ 
} else { 

/* Close the directory now */ 
if ( closedir(dirp) == -1 ) { 

/* Report closedir(3) error */ 

} 
} 

The example simply opens the directory /etc and then closes it again. 
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Searching a Directory 
Opening and closing directories might be fun, but it doesn’t accomplish too much without any 

additional functions. The function readdir(3) allows an open directory to be searched for one 

directory member at a time. The function synopsis for readdir(3) is as follows: 

#include <sys/types.h> 
#include <dirent.h> 

struct dirent *readdir(DIR *dirp); 

struct dirent { 
/* etc. */ /* 
char d_name[256]; /* 

}; 

The input to readdir(3) is simply a pointer to an open DIR structure provided by 

opendir(3). The value returned is a pointer to the structure dirent, or a null pointer if it fails 

or reaches the end of the directory. FreeBSD does not document any error codes being 

returned in errno, while Linux documents one error (EBADF). SGI’s IRIX 6.5 documents sev¬ 

eral possible errors, although EINTR is not among them. 

Other members are implementation specific */ 
Max POSIX name is 255 bytes */ 

Note 

The structure dirent is very implementation specific. According to the POSIX standard, you can 

depend upon only the member d_name[ ] for the directory entry name. Some implementations 

include a member d_ino to describe the i-node of the entry. Not all UNIX implementations provide 

for this, however. 

In order to distinguish the difference between the end of the directory and an error, it is neces¬ 

sary for the caller to clear errno before calling readdir(3). The example program in Listing 

7.1 demonstrates this. 

LISTING 7.1 readdir. c—A Program That Lists a Directory 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11 : 
12: 
13: 

/* readdir.c */ 

#include <stdio.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <dirent.h> 

int 
mainfint argc,char **argv) 

DIR dirp = 0; 
struct dirent *dp; 

if ( argc < 2 ) { 

/* Open directory */ 
/* Directory entry pointer */ 
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14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

fputs("A pathname argument is required.\n",stderr); 
return 1; 

dirp = opendir(argv[1]); /* Open directory */ 
if ( !dirp ) { /* errors? */ 

perror("opendir(3)"); 
return 2; 

errno = 0; /* Clear errno for readdir(3) */ 

while ( (dp = readdir(dirp)) != NULL ) { 
printf("%s\n",dp->d_name); 
errno = 0; 

if ( errno != 0 ) /* EOF or error? */ 
perror("readdir(3)"); /* Error occurred in readdir(3) */ 

if ( closedir(dirp) == -1 ) /* Close the directory */ 
perror("closedir(3)"); /* Close error- report it */ 

return 0; 

The essential points of the program in Listing 7.1 are 

• errno is cleared to zero in line 24 before the while loop in lines 26-29 begins. 

• readdir(2) is called in the while clause on line 26. If a null pointer is returned, control 

exits the loop. 

• errno is cleared to zero in line 28, to prepare for the next call to readdir(3) in the 

while clause on line 26. 

The while loop exits when readdir(3) returns a null pointer. The errno test in line 31 tests 

to see if an error was encountered. If so, it is reported in line 32. If errno remained the zero 

value that was established in line 24 or 28, then it is known that the end of the directory was 

reached without encountering any errors. 

Line 27 reports the directory member name using the printf (3) function. The following 

shows the compile and run of the program in Listing 7.1: 

$ make readdir 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall readdir.c 
cc readdir.o -o readdir 
$ ./readdir /etc/ppp 

ppp.deny 
ppp.shells.sample 
ppp.conf 
$ 
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The program requires a directory name to be provided as a command-line argument. The 

example shows the listing of directory /etc/ppp on a FreeBSD system. 

Rewinding to the Start of a Directory 
To permit a directory to be searched more than once, the open directory must be rewound. 

This is what the rewinddir (3) function achieves. 

#include <sys/types.h> 
#include <dirent.h> 

void rewinddir(DIR *dirp); 

When the directory is initially opened with opendir(3),itis implicitly positioned at the start 

of the directory. When rewinddir (3) is called, the open directory is repositioned at the start. 

The input argument dirp is simply the pointer to the open DIR structure that was returned by 

opendir(3). There is no return value for rewinddir (3), and there are no documented errors 

for this call. 

The following shows how the function can be called: 

DIR *dirp; /* Open DIR pointer */ 

rewinddir(dirp); 

Saving Position Within a Directory 
It is possible to use the function telldir(3) to save a position within a directory. The function 

synopsis is as follows: 

#include <sys/types.h> 
#include <dirent.h> 

long telldir(const DIR *dirp); 

Given the input pointer dirp, which points to an open DIR structure returned by opendir (3), 

this function returns an offset into the directory for later use byseekdir(3). The offset 

returned is greater than or equal to zero if it is successful. A -1L value is returned if it fails, and 
the error code is found in errno. 

Note 

Some UNIX platforms may have a slightly different type definition for telldir(3). For example, 

SGI's IRIX 6.5 defines its telldir (3) as follows: 

off_t telldir (DIR *dirp); 

Note that the returned offset is type off_t, and that the input argument lacks the keyword const. 
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Restoring Position Within a Directory 
In order to position the directory randomly according to information saved from a prior call to 

telldir(3), the function seekdir(3) must be used to restore the directory position. The 

function synopsis is as follows: 

#include <sys/types.h> 
#include <dirent.h> 

void seekdir(DIR *dirp, long loc); 

The seekdir (3) function simply accepts the pointer to an open DIR structure and an offset 

loc to restore as a directory position. No success or error indication is returned for this call. 

The following example shows how telldir (3) and seekdir (3) can be used together: 

DIR *dirp; 
long dirpos; 

dirpos = telldir(dirp); 

seekdir(dirpos); 

/* Open DIR pointer */ 
/* Directory offset */ 

/* Get offset in directory */ 

/* Restore directory position */ 

, i 4 ■ T 

' 

mKSBlm 
: 

Note 

Note that some UNIX platforms such as SGI's IRIX 6.5 may use a slightly different definition 

seekdir(3): 

of 

void seekdir(DIR *dirp, off_t loc); 

This definition uses the data type of f_t for the directory offset. 

Scanning a Directory 
While the family of routines (see directory (3)) starting with opendir (3) performs the func¬ 

tions that a programmer might need, they are somewhat tedious to code if you need them fre¬ 

quently enough. The scandir(3) and alphasort(3) routines assist in reducing the 

programmer effort required: 

#include <sys/types.h> 
#include <dirent.h> 

int scandirf 
const char *dirname, 
struct dirent ‘“namelist, 
int (‘select)(struct dirent *), 
int (*compar)(const void *, const void *)); 

int alphasort(const void *d1, const void *d2); 
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Function scandir(3) might look somewhat intimidating. However, once you spend a moment 

examining it, you will see that it is easy to use. The argument dirname is given the pathname 

of the directory that you want to scan. The argument namelist points to a (struct dirent 

**) pointer, so that a list of directory entries can be returned. The argument select can be left 

null, if you want to select all directory names. When the argument compar is given a null 

pointer, the directory entries returned are unsorted. 

Upon a successful return, scandir(3) returns the number of entries that are returned in the 

namelist array (this may include the value 0). The value -1 is returned when there is an error 

(no errno values appear to be formally documented). 

The function alphasort (3) is a function that can be supplied in the argument compar if you 

require that namelist be sorted alphabetically. 

Note 

The namelist array is dynamically allocated and must be freed when your program no longer 

requires it. You must first call free (3) for each entry in the array and then free the array itself by 

calling free(3). 

Declaring Your Own select Function for scandir(3) 
The function pointer supplied for the select argument is called with one pointer to a dirent 

structure. Based on this, the function must return non-zero (true) if the entry is to be included 

(selected) in the final list of entries. If zero (false) is returned by this function, the entry is to be 

excluded. The following shows an example function that selects only the entries starting 

with h. 

/* 

* Select only those directory entries that start with 'h' 
*/ 

int 
my_select(struct dirent *dp) { 

if ( dp->d_name[0] != 1h1 ) 
return 0; 

return 1; 
} 

The function my_select () will be called for each directory entry found by scandir (3). When 

my_select () returns zero, the directory entry is excluded from the final list. 

Declaring Your Own compar Function for scandir (3) 
The function supplied for compar is called with two void pointer arguments. The IBM AIX and 

FreeBSD platforms define their arguments this way. See the next section for platforms that 
declare these arguments differently. 

/* Don't include this */ 
/* else include this one */ 
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The man (1) page provided by FreeBSD is not abundantly clear how you should interpret these 

void pointer arguments. The void pointers are actually pointers to a pointer to a dirent struc¬ 

ture. The following example illustrates in code how they should be cast and used: 

int 
my_compar(const void *d1,const void *d2) { 

struct dirent *dir1 = ‘(struct dirent **)d1; 
struct dirent *dir2 = ‘(struct dirent “)d2; 

return strcmp(dir1->d_name,dir2->d_name); 

} 

The code shown implements what the function alphasort(3) provides. The two void point¬ 

ers are cast to a (struct dirent “) and then dereferenced once to point to the struct 

dirent entry itself. Once this is done, then strcmp(3) can be called upon to provide a com¬ 

parison result to be returned. 

SysV Variations 
You will find that some systems will declare the compar and alphasort(3) functions differ¬ 

ently. These systems use the following synopsis: 

#include <sys/types.h> 
#include <dirent.h> 

/* SysV Definiton : */ 

int scandir(const char ‘dirname, 
struct dirent “namelist! ], 
int (‘select)(struct dirent *), 
int (‘compar) (struct dirent struct dirent “)); 

int alphasort(struct dirent “dl, struct dirent **d2); 

The notable difference here is that the compar function pointer is defined in terms of a func¬ 

tion that receives pointers to (struct dirent “) instead of (void *). In this case, you 

would define the function my_compar() in the following manner: 

int 
my_compar(struct dirent “dl,struct dirent **d2) { 

struct dirent ‘dirl = ‘dl; 
struct dirent *dir2 = *d2; 

return strcmp(dir1->d_name,dir2->d_name); 

} 

Platforms that use this definition include SGI’s IRIX 6.5, UnixWare-7, Sun’s Solaris 8, and 

HPUX 11. 

A scandir(3) Example 
An example program making use of the scandir (3) function is provided in Listing 7.2. 
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LISTING 7.2 scandir.c—A Demonstration Program Using scandir (3) 

1: #include <stdio.h> 
2: #include <stdlib.h> 
3: #include <unistd.h> 
4: #include <errno.h> 
5: #include <sys/types.h> 
6: #include <dirent.h> 
7: 
8: extern int scandir(const char *dirname, struct dirent ***namelist, 
9: int (‘select)(struct dirent *), 
10: int (*compar)(const void *, const void *)); 
11: 
12: extern int alphasort(const void *d1, const void *d2); 
13: 
14: /* 
15: * Select only those directory entries that start with 
16: * 'h' to demonstrate the selection ability : 
17: */ 
18: static int 
19: my_select(struct dirent *dp) { 
20: 
21: if ( dp->d_name[0] != 1h' ) 
22: return 0; /* Don't include this */ 
23: return 1; /* else include this one */ 
24: } 
25: 
26: /* 
27: * Sort entries in reverse order for demonstration 
28: * purposes : 
29: */ 
30: static int 
31: my_compar(const void *d1,const void *d2) { 
32: struct dirent *dir1 = ‘(struct dirent “)d1; 
33: struct dirent *dir2 = ‘(struct dirent “)d2; 
34: 
35: /* 
36: * Reverse the comparison by reversing 
37: * dir2 with dirl in the strcmp(3) call: 
38: */ 
39: return strcmp(dir2->d_name,dir1->d_name); 
40: } 
41 : 
42: /* 
43: * A good test is the directory /etc 
44: */ 
45: int 
46: main(int argc,char “argv) { 
47: int x; 
48: int n; 
49: struct dirent “namelist; 
50: 
51: if ( argc < 2 ) { 

52: fputs("A pathname argument is required.\n" 

/* Work index */ 
/* namelist[n] */ 
/* List of names */ 
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53: "Try /etc for the directory.\n",stderr); 
54: return 1; 
55: } 
56: 
57: /* 

58: * Scan the directory given : 
59: */ 

60: n = scandir(argv[1],&namelist,my_select,my_compar); 
61: 
62: /* 
63: * Report the directory entries : 
64: */ 

65: printf("%d entries for %s:\n",n,argv[1]); 
66: for ( x=0; x<n; ++x ) 
67: printf("%3d: %s\n",x,namelist[x]->d_name); 
68: 
69: if ( n > 0 ) { 
70: for ( x=0; x<n; ++x ) 
71: free(namelist[x]); 
72: free(namelist); 
73: } 
74: return 0; 
75: } 

The main program shown in Listing 7.2 is straightforward. The scandir(3) function is called 

on line 60, using argv[ 1 ] as the directory that is to be scanned. The list of directory entries 

will be returned to the pointer namelist, which is declared in line 49. The number of entries 

returned byscandir(3) is stored to variable n, which is declared in line 48. 

You have seen the function my_select () before, for example on page 140. The function 

my_compar() was altered slightly from the example shown on page 141 to sort the entries in 

reverse order (lines 30-40). 

Finally, notice how the allocated storage is released in lines 69-73 of the main () program. First 

all of the array elements are released (line 71), and then the array itself (line 72). 

Compiling and running the program yields the following results: 

$ make scandir 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall scandir.c 
cc scandir.o -o scandir 
$ ./scandir /etc 
5 entries for /etc: 

0: hosts.lpd 
1: hosts.equiv 
2: hosts.allow 
3: hosts 
4: host.conf 

$ 

Using the directory /etc, you can see that, indeed, only the filenames starting with h were 

selected. Thanks to the custom sort function my_compar(), the entries were sorted in reverse 

alphabetical order as well. 

/* Release entry */ 
/* Release the array */ 
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Walking a Directory Structure 
Some UNIX platforms provide the function ftw(3C) and the newer function nftw(3C) to 

make it simpler to perform a tree walk of a file system. These functions do not appear on the 

FreeBSD system, so only a cursory description of them will be provided here. The HPUX-11 

f tw(3C) page provides this function synopsis: 

#include <ftw.h> 

int ftw (const char *path, 
int (*fn)(const char *obj_path, 

const struct stat *obj_stat, 
int obj_flags), 

int depth); 

int nftw (const char *path, 
int (*fn)(const char *obj_path, 

const struct stat *obj_stat, 
int obj_flags, 
struct FTW obj_FTW), 

int depth, 
int flags); 

These functions start by examining the directory provided by the argument path. From this 

point on, the directory is recursively searched for subdirectories until all file system objects 

under path have been processed. 

Both of these functions also require a pointer to a function f n that will be called for each file 

system object being considered. 

The depth argument determines how many levels deep the tree will be traversed. HP’s docu¬ 

mentation indicates that this will also be limited by “the number of file descriptors currently 

available for use.” A negative or zero value for the depth argument is equivalent to specifying 

depth=1. 

The nftw(3C) function accepts an additional flags argument. This argument accepts values 

like FTW_DEPTH to cause a depth-first tree walk to be performed. Flag FTW_PHYS is useful 

because it prevents the tree walk from following symlinks. This prevents the tree walk from 

visiting files more than once. See Table 7.1 for a complete list of these flags. 

TABLE 7.1 Macro Names of nftw(3C) Flags 

Macro Name Description 

FTW_PHYS Causes nftw(3C) to perform a physical walk. No symbolic links are followed. 

Hard links are followed unless the path crosses itself. When FTW PHYS is not 

given, nftw(3C) follows symbolic and hard links but does not walk a path that 

crosses itself. 

FTW_M0UNT The tree walk will not cross a mount point. Only files on the same mounted 

device as the starting path are considered. 
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Macro Name Description 

FTW_DEPTH A depth-first walk is performed, causing a directory's entries to be visited before 

the directory itself. 

FTW_CHDIR A call to chdir(2) is performed prior to reading the directory being visited. 

FTW_SERR The tree walk normally exits with a return value of -1 if lstat(2) fails (error 

code in errno). When FTW_SERR is specified, a failure of lstat (2) causes the 

function f n to be called, and the tree walk is allowed to continue. 

The ftw(3C) and nftw(3C) functions call a user-supplied function fn. The function fn that is 
called by ftw(3C) looks like this: 

int fn(const char *obj_path, /* Pathname of object */ 
const struct stat *obj_stat, /* struct stat info */ 
int obj_flags); /* flag bits */ 

The obj_path argument contains the pathname of the object being considered, and obj_stat 

is a pointer to a stat structure describing the object. The additional flags in argument 

obj_flags are provided and contain the values shown in Table 7.2. 

TABLE 7.2 Table of ftw(3C) and nftw(3C) obj_flags 

Macro Description 

FTW_F Object is a file. 

FTW_D Object is a directory. 

FTW_SL Object is a symbolic link (nftw(3C) only). 

FTW_DNR Object is a directory without read permission. Function f n will not be called for 

any of its descendants. 

FTW_NS lstat (2) failed to obtain information about the object, leaving the stat struc¬ 

ture contents undefined. For ftw(3C), if the failure is because the directory 

containing the object could not be searched, f n is called and the walk contin¬ 

ues. For nftw(3C), the value for errno is set, and nftw(3C) returns -1 after 

calling f n, instead. Other lstat (2) failures cause f n not to be called, and the 

value -1 is returned, with errno set. This behavior is modified by the nftw(3C) 

flag FTW_SERR. 

The function nftw(3C) calls a slightly different user-supplied function fn. Its definition 

includes an additional argument named obj_FTW: 

int fn(const char *obj_path, /* pathname of object */ 
const struct stat *obj_stat, /* struct stat info */ 
int obj_flags, /* flag bits */ 
struct FTW *obj_FTW); /* additional info */ 
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The structure FTW contains the following members: 

struct FTW { 
int base; /* Offset into pathname to the start of the basename */ 
int level; /* Relative depth level (root is level 0) */ 
/* private members.. */ 

>; 

The only members of struct FTW that should be used are the base and level members. Other 

members of the structure, if present, are not portable to all platforms. If function f n is called 

with the arguments obj_path and the argument obj_FTW as shown earlier, then the basename 

of the object can be displayed as follows: 

printf("Basename = '%s'\n“,obj_path+obj_FTW->base); 

If your application must be portable to the widest possible range of UNIX platforms, then you 

would be wise to avoid the ftw(3C) and nftw(3C) functions. These will be found on most 

SysV-derived UNIX platforms but may not exist on a BSD-derived UNIX. 

Changing Your Root Directory 
The UNIX file system has one root directory, on which all other file systems are mounted. It is 

often desirable to limit the exposure of the entire file system to a smaller portion when dealing 

with potentially hostile users. This approach is commonly used by ftp( 1) servers. 

An anonymous ftp (1) server could be established with all of its files and subdirectories in the 

directory /home/ftp. Additionally, the directory /home/ftp/pub might contain public files for 

downloading. At startup, the ftp (1) server would change its root directory to the directory 

/home/ftp. From that point forward, the public directory would be known to the server as 

/pub instead of /home/ftp/pub. This prevents the client user from accessing anything outside 

of the ftp (1) server’s root directory, which in actual fact is /home/ftp on the host system. 

The system call chroot (2) allows a new root directory to be established for the current session 

and all subsequent child processes. The function synopsis is given as follows: 

#include <unistd.h> 

int chroot(const char *dirname); 

The chroot (2) function simply accepts the pathname that will become the new effective root 

for the current process. The function returns 0 if it is successful and -1 if it fails (errno holds 
the error code). 

Warning 

When chroot (2) returns 0 indicating success, the current directory for the current process remains 

unaffected. When writing programs that must be secure, make certain that you change the current 

directory to the new root level or to a subdirectory of the new root. 

Additionally, large software projects may have other directories open on other file descriptors, which 

may be exploitable by fchdir(2). One way to avoid exploitable directories is to close all file descrip¬ 
tors prior to calling chroot (2). 
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The chroot (2) call is restricted to the root account for security reasons. The reason for this is 

simply that the ability to set a new root directory also permits a new password file to be in 
force, among other security problems. 

Once you have established a new root directory, it becomes impossible for the process to return to 

the original root directory. 

Setting a new root directory also brings with it a number of other complications, including the 

need to set up hard links to support files, including shared libraries. Symbolic links cannot be 

used in a chroot (2)-ed file system to refer back to a normal non-chroot (2) pathname. 

Consequently, files in the new root file system must be copies of the original support files or 

hard links to them. However, hard links are not always possible when the files are on different 

file systems. 

The program provided in Listing 7.3 shows the chroot (2) function in action. It calls 

chroot (2) to set directory /tmp as the new root file system. It then lists the current directory 

to demonstrate the fact that the current directory is unaffected. It follows with a listing of the 

new root directory (which is really the /tmp directory). 

LISTING 7.3 chroot. c—A Demonstration Program for chroot (2) 

1: /* readdir.c */ 
2: 
3: #include <stdio.h> 
4: #include <errno.h> 

5: #include <sys/types.h> 

6: #include <dirent.h> 

7: 
8: extern int chroot(const char *dirname); 

y. 
10 static int 
ii ls(const char *pathname) { 

12 DIR dirp = 0; /* Open directory */ 

13 struct dirent *dp; /* Directory entry pointer */ 

14 int count = 0; /* Count of files */ 

15 
16 printf("DIRECTORY LISTING OF %s : \n",pathname); 

17 
18 dirp = opendir(pathname); /* Open directory */ 

19 if ( !dirp ) { /* errors? */ 

20 perror("opendir(3)"); 

21 return -1; 

22 } 
23 
24 errno = 0; /* Clear errno for readdir(3) 

25 
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continued from previous page 

26 while ( (dp = readdir(d irp)) ! 
27 printf( '%s\n",dp->d _name); 

28 ++count 
29 errno = 0; 
30 } 
31 
32 if ( errno != 0 ) { /* 
33 perror( Teaddir(3)" ); /* 
34 return -i; 
35 } 
36 
37 if ( closedir(dirp) == -1 ) /* 
38 perror( “closedir(3) "); /* 
39 
40 printf("%6d entries\n\n ",count 

41 
42 return 0; 
43 } 
44 
45 int 
46 main(int argc,char **argv) { 
47 int z; 
48 
49 z = chroot( ''/tmp"); 

50 if ( z == - 1 ) { 
51 perror( "chroot(2)") i 

52 return i; 
53 } 
54 
55 Is ( li n \ ■ 

• ) J 

56 ls( ■/"); 
57 
58 return 0; 
59 } 

Error occurred in readdir(3) */ 

Notice that the functions opendir(3), readdir(3), and closedir(3) were used to list the 

directories (function Is () in lines 10-43). This was necessary because a call to system (3) to 

invoke the Is (1) command will not work. The system (3) call would fail because the Is (1) 

command does not exist in the new root file system (/tmp), nor do any of the necessary sup¬ 

port files such as the shared libraries. 

The chroot(2) function requires root access to be successful. Consequently, the compile and 

run session that follows shows the user changing to the superuser account: 

$ make chroot 
CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall chroot.c 
cc chroot.o -o chroot 
$ ./chroot 
chroot(2): Operation not permitted 
$ su root 
Password: 
# ./chroot 
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DIRECTORY LISTING OF . : 

Makefile 
chroot.c 
chroot.0 

readdir.c 
chroot 
scandir.c 

8 entries 

DIRECTORY LISTING OF / : 

.s.PGSQL.5432 
psql.edit.1001.13867 
t.t 

5 entries 

# 

In the session shown, the executable . /chroot was attempted without root access. This caused 

the error chroot (2): Operation not permitted to be reported. However, once the user 

switched to the root account, the program was able to list both the current directory and the 

new root directory (which was /tmp). This demonstration shows why special care needs to be 

exercised with the current directory. Directories currently open also present a risk, since a sim¬ 

ple call to fchdir(2) on an open directory will allow it to become the current directory. 

Summary 
This chapter focused on directory functions. The next chapter will complete this coverage of 

files and directories by looking at functions that are specific to temporary files and their 

cleanup. 
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CHAPTER 8 

TEMPORARY FILES AND PROCESS 
CLEANUP 

A program occasionally requires temporary storage to contain unknown quantities of 

data. When the quantity of data is potentially large, it is stored in a temporary file. 

The temporary file is then released later, when the processing is complete. 

In this chapter, you will learn how to 

• Create temporary files 

• Automatically cleanup temporary files that have been created 

Creating Temporary Files 
This chapter will examine a number of ways that a temporary file can be created under UNIX. 

Each of these has its advantages and disadvantages. The tmpnam(3) function is discouraged 

and is covered only because you will encounter it in existing code. The remaining functions 

can be used in new software. 

Using the tmpnam(3) Function 
The tmpnam(3) function generates a pathname for a new temporary file but does not create the 

temporary file itself. Its function synopsis is as follows: 

#include <stdio.h> 

char *tmpnam(char *buf); /* Discouraged */ 

This function generates a temporary pathname in the directory given by the macro name 

P_tmpdir (defined in <stdio. h>). The argument but must be null or point to a character 

buffer of a minimum length of L_tmpnam bytes. When the argument buf is null, the function 

tmpnam(3) returns a pointer to an internal static buffer containing the name of the temporary 

file. When buf is not null, the buffer buf is populated with the pathname of the temporary 

file. 

When it is successful, the function returns a valid pointer to buf or to an internal buffer. A 

null pointer is returned when the function fails, and errno contains the reason for the error. 
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Note 

The function tmpnam(3) should not be used in new code. The disadvantages of this function include 

the fact that the temporary directory is hard-wired to the directory P_tmpdir and that filename gen¬ 

eration is subject to race conditions on some UNIX platforms. 

Using tmpnam(3) with a Null Argument 
The argument to tmpnam(3) is a buffer pointer, which must be a minimum of L_tmpnam bytes 

in length. However, the argument can be specified as a null pointer, as is illustrated in the 

example program in Listing 8.1. Note, however, that when this is done, the pointer returned is 

valid only until the next call to tmpnam(3) is performed. 

LISTING 8.1 tmpnam.c—A Program Using tmpnam(3) with a Null Argument 

1: /* tmpnam.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <string.h> 
7: #include <errno.h> 
8: 
9: int 
10: mainfint argc,char *argv[]) { 
11: chan *tmp_pathname; /* Temp. File Pathname */ 
12: FILE *tmpf = 0; /* Opened temp, file */ 
13: char cmd[256]; 
14: 
15: if ( !(tmp_pathname = tmpnam(NULL)) ) { 
16: fprintf(stderr,"%s: tmpnam(3)\n",strerror(errno)); 
17: abort(); 
18: } 
19: 
20: printff"Using temp file: %s\n",tmp_pathname); 
21 : 

22: if ( !(tmpf = fopen(tmp_pathname,"w")) ) { 
23: fprintf(stderr,"%s: creating temp %s\n", 
24: strerror(errno),tmp_pathname); 
25: abort(); 
26: } 
27: 
28: sprintf(cmd,"Is -1 %s",tmp_pathname); 
29: system(cmd); 
30: 

31: fclose(tmpf); /* Close the temp file */ 
32: unlink(tmp_pathname); /* Release the temp file */ 
33: 
34: 
35: } 

return 0; 
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This program generates a temporary pathname in lines 15-18. Then the temporary file is cre¬ 

ated by calling fopen(3) in line 22. In lines 28-29, the temporary file is listed by a system(3) 

command, which invokes the Is (1) command. Finally, the temporary file is released in line 32 
before the program exits. 

Compiling and invoking the program yields the following results on a FreeBSD system: 

$ make tmpnam 

cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall tmpnam.c 
cc tmpnam.o -o tmpnam 
$ ./tmpnam 
Using temp file: /var/tmp/tmp.0.H49596 
-rw-r--r-- 1 me mygrp 0 May 1 21:22 /var/tmp/tmp.0.H49596 
$ ./tmpnam 
Using temp file: /var/tmp/tmp.0.U49599 
-rw-r--r-- 1 me mygrp 0 May 1 21:22 /var/tmp/tmp.0.U49599 
$ 

The program . / tmpnam was invoked twice to demonstrate the differences in the generated 

temporary filename. Note that the pathname generated for your temporary filename will differ 

for different UNIX platforms. 

Using tmpnam() with a Buffer 

An improved way to use the tmpnam(3) function is to supply a buffer to the function, so that 

the generated pathname can be stored there indefinitely. When the argument to tmpnam(3) is 

null, the returned pathname string is only valid until the next call to the function. Listing 8.2 

shows an example program that supplies its own buffer. 

LISTING 8.2 tmpnam2.c—A Program Using tmpnam(3) with a Supplied Buffer 

1: /* tmpnam2.c */ 
2: 
3: //include <stdio.h> 
4: #include <stdlib.h> 
5: //include <unistd.h> 
6: //include <string.h> 
7: //include <errno.h> 
8: 
9: int 
10: main(int angc,char *argv[]) { 
11: char tmp_pathname[L_tmpnam]; /* Temp, pathname */ 
12: FILE *tmpf = 0; /* Opened temp, file */ 
13: char cmd[256]; 
14: 
15: if ( !tmpnam(tmp_pathname) ) { 
16: fprintf(stderr,"%s: tmpnam(3)\n",strerror(errno)); 
17: abort(); 
18: } 
19: 
20: printf("Using temp file: %s\n",tmp_pathname); 
21: 
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22: if ( !(tmpf = fopen(tmp_pathname,"w")) ) { 
23: fprintf(stderr,"%s: creating temp %s\n", 
24: strerror(errno),tmp_pathname); 
25: abort(); 
26: } 
27: 
28: sprintf(cmd,"Is -1 %s",tmp_pathname); 
29: system(cmd); 
30: 
31: fclose(tmpf); /* Close the temp file */ 
32: unlink(tmp_pathname); /* Release the temp file */ 
33: 
34: return 0; 
35: } 

The program shown in Listing 8.2 is almost identical to the program shown in Listing 8.1. 

However, this time the buffer is declared in line 11 as an array with a length of L_tmpnam bytes 

and provided as an argument to the tmpnam(3) function in line 15. 

Compiling and running the program yields the same result as before: 

$ make tmpnam2 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall tmpnam2.c 
cc tmpnam2.o -o tmpnam2 
$ ./tmpnam2 
Using temp file: /var/tmp/tmp.0.E49652 
-rw-p-.p.. i wwg wheel 0 May 1 21:37 /var/tmp/tmp.0.E49652 

$ 

Using the mktemp(3) Function 
Another function that is available for generating temporary filenames is the mktemp(3) func¬ 

tion. Its synopsis is as follows: 

#include <unistd.h> /* <== Use for FreeBSD */ 
#include <stdlib.h> /* <== Use for Solaris, AIX, Linux, HPUX, UnixWare 7 */ 
#include <stdio.h> /* <== Use for SGI IRIX 6.5 */ 

char *mktemp(char *template); 

The mktemp(3) function accepts as input a C string that acts as a pathname template. The last 

characters are specified as the character X and are replaced to generate a unique pathname. For 

this reason, never pass a C string constant as an argument to the function. For example, the 

argument template may contain the string " /tmp/temp.XXXX", allowing the last four X charac¬ 

ters to be replaced to generate a unique filename. 

The following example code shows how a temporary filename can be generated and displayed: 

char template[256]; /* Holding buffer for the template */ 

strcpy(template,"/var/tmp/tmp.XXXX"); 
printf("A temp file is '%s'\n",mktemp(template)); 



Chapter 8 • TEMPORARY FILES AND PROCESS CLEANUP 155 

The pointer value returned is the same pointer template that was passed as an argument if the 
call is successful. Otherwise, a null pointer is returned and errno is set. 

The X characters must be at the end of the string. Placing them in other positions will not work. For 
example, the string "/tmp/xxxx.tmp" will not work. 

Using the mkstemp(3) Function 
The mkstemp(3) function goes one step further than mktemp(3). It not only generates a tem¬ 

porary filename from the template given, but it creates and opens the temporary file. The func¬ 
tion synopsis is as follows: 

#include <unistd.h> /* <== Use for FreeBSD */ 
#include <stdlib.h> /* <== Use for Solaris, AIX, Linux, HPUX, UnixWare 7 */ 
#include <stdio.h> /* <== Use for SGI IRIX 6.5 */ 

int mkstemp(char ‘template); 

The rules for the template string are the same as the function mktemp(3). The function returns 

an open file descriptor when it is successful or -1 and an error code in errno if it fails. 

The temporary file is created with read (S_IRUSR) and write (S_IWUSR) permissions for the 

owner only. The final permissions assigned are determined by the umask (2) value currently in 

effect, however. The following code shows how a temporary filename can be generated, cre¬ 

ated, and opened: 

char template[256]; /* Holding buffer for the template */ 
int tmpf; /* Open temp, file descriptor */ 

strcpy (template,11 /var/tmp/tmp.XXXX"); 
tmpf = mkstemp(template); /* Create and open the temp, file */ 

Listing 8.3 demonstrates how the mkstemp(3) function can be used with the standard I/O 

functions. 

LISTING 8.3 mkstemp.c—A Program Using mkstemp(3) to Create a Temporary File 

1: /* mkstemp.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <string.h> 
7: #include <errno.h> 

8: 
9: extern int mkstemp(char ‘template); 

10: 
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11: int 
12: main(int argc,char *argv[]) { 
13: char tf_path[64]; /* Temp. File Pathname */ 
14: int tfd = -1; /* File Descriptor */ 
15: FILE *tmpf = 0; /* Opened temp FILE */ 
16: 
17: /* 
18: * Initialize the temp, file template : 
19: */ 
20: strcpy(tf_path,"/var/tmp/tmp.XXXXXX"); 
21: 
22: /* 
23: * Generate temp file pathname, create and open 
24: * the temporary file on file unit tfd : 
25: */ 
26: if ( (tfd = mkstemp(tf_path)) < 0 ) { 
27: fprintf (stderr, "%s: generating a temp file name.\n'', 
28: strerror(errno)); 
29: abort(); 
30: } 
31: 
32: printf("Using temp file: %s\n",tf_path); 
33: 
34: /* 
35: * Use standard I/O on temp, file : 
36: */ 
37: tmpf = fdopen(tfd,"w+"); 
38: fprintf(tmpf,"Written by PID=%ld\n",(long)getpid()); 
39: fclose(tmpf); 
40: 
41: unlink(tf_path); /* Release the temp, file */ 
42: 
43: return 0; 
44: } 

The program shown in Listing 8.3 initializes the template in line 20 and then creates and 

opens the temporary file in line 26, where mkstemp(3) is called. To allow the standard I/O 

routines to be used, the function fdopen(3) is called in line 37 with the open file descriptor 

tfd. Then a write to the temporary file is performed in line 38 using fprintf (3). 

Compiling and running the program under FreeBSD yields the following result: 

$ make mkstemp 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall mkstemp.c 
cc mkstemp.o -o mkstemp 
$ ./mkstemp 
Using temp file: /var/tmp/tmp.m49798 
$ 

The temporary file generated and used for this run was the file /var/tmp/tmp.m49798, which 
agrees with the template used in line 20 of the program. 

The program in Listing 8.3 used a temporary filename template, as shown below: 

strcpy(tf_path,“/var/tmp/tmp.XXXXXX"); 
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The characters preceding the Xs may be modified to allow more than one temporary file in 

your program. For example, the first and second temporary files might use the following tem¬ 
plates instead: 

strcpy(templateOI,"/var/tmp/01-XXXXXX"); 
strcpy(template02, '7var/tmp/02-XXXXXX''); 

This technique is not absolutely necessary for using multiple temporary files, but it can be 

helpful when debugging your program. When you see temporary files named in this fashion in 

the /var/tmp directory, you will know that the temporary file starting with 01 - is the first tem¬ 

porary file that the application created and that 02- indicates the second. 

Using the mkstemps(3) Function 
FreeBSD supports the mkstemps (3) function, which permits a suffix to be appended to the 

temporary filename. In all other ways, it is similar to mkstemp(3). The synopsis lor it is as fol¬ 

lows: 

#include <unistd.h> 

int mkstemps(char ‘template, int suffixlen); 

The template argument is the same as the template argument for mkstemp(3), except that 

the X characters no longer need to be at the end of the string. The argument suffixlen indi¬ 

cates how many characters at the end of the string represent the suffix. The following code 

illustrates: 

char template[256]; /* Holding buffer for the template */ 
int tmpf; /* Open temp, file descriptor */ 

strcpy(template,"/var/tmp/XXXX.tmp"); 
tmpf = mkstemps(template,4); /* Create and open the temp, file */ 

In this example, the last four characters form the suffix. The X characters can now be at the 

start or middle of the temporary file’s basename. 

Warning 

The function mkstemps(3) is not universally available. For this reason, it is not recommended for 

portable code. 

Using the tmpfile(3) Function 
The tmpf ile (3) function creates and opens a temporary file, returning a FILE stream pointer 

instead of a file descriptor. The following is its synopsis: 

#include <stdio.h> 

FILE *tmpfile(void); 
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Listing 8.4 shows a short program that creates a temporary file, writes one line to it, and then 

reads back one line from it. 

LISTING 8.4 tmpfile.c—A Program Using the tmpfile(3) Function 

1: /* tmpfile.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <string.h> 
6: //include <errno.h> 
7: 
8: int 
9: main(int argc,char *argv[]) { 
10: FILE *tmpf = 0; /* Opened temp, file */ 
11: char buf[128]; /* Input buffer */ 
12: 
13: if ( !(tmpf = tmpfile()) ) { 
14: fprintf(stderr,"%s: generating a temp file name.\n", 
15: strerror(errno)); 
16: abort(); 
17: } 
18: 
19: fprintf(tmpf,"PID %ld was here.\n",(long)getpid()); 
20: fflush(tmpf); 
21 : 
22: rewind(tmpf); 
23: fgets(buf,sizeof buf,tmpf); 
24: 
25: printf("Read back: %s\n“,buf); 
26: 
27: fclose(tmpf); 
28: 
29: return 0; 
30: } 

The program does not show a pathname for the temporary file, nor does it call unlink (2) to 

remove it later. This is because the file has already been deleted. Even so, it remains available 

to you as long as the file remains open. The disk space is automatically reclaimed by the UNIX 

kernel when the file is closed. This saves you from having to make sure that it is deleted later. 

Compiling and running this program under FreeBSD looks like this: 

$ make tmpfile 
CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall tmpfile.c 
cc tmpfile.o -o tmpfile 
$ ./tmpfile 
Read back: PID 10058 was here. 

$ 

Notice the extra line feed displayed following the line starting with Read back:. This is due 

to the line feed written in line 19 and then included in the buffer from the f gets (3) call in 
line 23. 
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Using the tempnam(3) Function 
The last temporary file function that will be covered in this chapter is the tempnam(3) func¬ 
tion. Its function synopsis is as follows: 

#include <stdio.h> 

char *tempnam(const char *dir, const char *prefix); 

This function accepts two arguments. The second argument, prefix, is optional and may be 

supplied with a null pointer. However, when it is not null, it points to a C string that specifies 

up to five characters that can be used as a prefix to the temporary filename generated. 

The first argument, dir, is more complicated. It can be specified as a null pointer, or it may 

point to a string specifying a directory that the programmer has chosen. Whether dir is null or 

not, the following procedure determines the final directory chosen for the temporary filename: 

1. Attempt to obtain exported environment variable TMPDIR. If this variable is defined and 

it specifies a directory that is writable to the current process, then this directory will be 

used. In effect, the TMPDIR variable overrides the program’s choice of directory. 

2. When step 1 fails, the dir argument of the tempnam(3) call is examined. If this argu¬ 

ment is not a null pointer, then this directory will be used if the specified directory 

exists. 

3. When step 2 is not satisfied, the directory specified by the stdio. h macro P_tmpdir is 

tried. 

4. As a last resort, the directory /tmp will be used. 

Normally, step 1 or 2 specifies the directory. Steps 3 and 4 represent fallback directory names. 

The returned pointer is to a dynamically allocated pathname string, or a null pointer if it fails. 

Be certain to free this returned pointer later, when your program is finished using this path¬ 

name. Note that no file is created; only the temporary pathname is created by tempnam(3). 

Listing 8.5 shows a short program that uses the tempnam(3) function. 

LISTING 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

8.5 tempnam.c—A Program Using the tempnam(3) Function 

/* tempnam.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <string.h> 
#include <errno.h> 

extern char *tempnam(const char *tmpdir, const char *prefix); 

10: 
11: int 
12: main(int argc,char *argv[]) { 
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13: char *tf_path = NULL; /* Temp. File Pathname */ 
14: FILE *tmpf = 0; /* Temp. File stream */ 
15: 
16: if ( !(tf_path = tempnam(11./my_tmp", "tmp-")) ) { 
17: fprintf(stderr,“%s: generating a temp file name.\n", 
18: strerror(errno)); 
19: abort(); 
20: } 
21 : 
22: printf("Temp, file name is %s\n",tf_path); 
23: 
24: if ( !(tmpf = fopen(tf_path,"w+")) ) { 
25: fprintf(stderr,"%s: opening %s for I/0\n", 
26: strerror(errno),tf_path); 
27: abort(); 
28: } 
29: 
30: fprintf(tmpf,"PID %ld was here.\n",(long)getpid()); 
31: fclose(tmpf); 
32: 
33: unlink(tf_path); /* Release the temp file */ 
34: free(tf_path); /* Free allocated string */ 
35: 
36: return 0; 
37: } 

In line 16 this program uses tempnam(3) to generate a pathname to be used for a temporary 

file. The temporary file is created and opened in line 24. Notice that the pathname string must 

be freed, since it is dynamically allocated (see line 34). 

To test the TMPDIR environment variable, the program can be run and tested as follows: 

$ make tempnam 

cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall tempnam.c 
cc tempnam.o -o tempnam 
$ TMPDIR=/tmp ./tempnam 

Temp, file name is /tmp/tmp-g50054 
$ 

Note that the pathname generated uses the directory /tmp as was given in the TMPDIR environ¬ 

ment variable. If you look at line 16, the program would normally create the temporary file in 

subdirectory . /my_tmp. However, the TMPDIR environment variable successfully overrode that 

choice. 

Now run the same program without TMPDIR defined: 

$ unset TMPDIR 

$ ./tempnam 

Temp, file name is ./my_tmp/tmp-D50059 
No such file or directory: opening ./my_tmp/tmp-D50059 for I/O 
Abort trap - core dumped 
$ 
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In this case, the fopen (3) call failed because the subdirectory . /my_tmp does not exist yet. If 

you create it now and repeat the test, you will obtain the following result: 

$ mkdir ./my_tmp 
$ ./tempnam 

Temp, file name is ./my_tmp/tmp-a5006l 
$ 

This time, the program . / tempnam is successful at creating a temporary file in the subdirectory 

. /my_tmp. This comes from the specification in line 16 of Listing 8.5. 

If you remove the permissions on your . /my_tmp directory, you can test the fallback plans for 
tempnam(3): 

$ chmod 0 my_tmp 
$ ./tempnam 
Temp, file name is /var/tmp/tmp-w50063 
$ Is -1 my_tmp 
Is: my_tmp: Permission denied 
$ 

The chmod (1) command takes all permissions away from the subdirectory my_tmp. When the 

program is run, the directory /var/tmp is used instead for the temporary filename. This agrees 

with FreeBSD’s P_tmpdir macro value. 

Making Files Temporary 
Once a temporary file is created, a program must release it when finished with it. Otherwise, 

the temporary file directory will fill with many abandoned files over time. Calling unlink (2) 

is trivial, but making sure it is done when the program prematurely exits is more of a chal¬ 

lenge. 

Using unlink(2) to Make Files Temporary 
One way to make sure that the temporary file is released is to release it immediately after it is 

created and opened. This looks illogical to those who are new to UNIX, but a UNIX file can 

exist after it has been unlinked, as long as the file remains open. When the last open file 

descriptor for the file is closed, the disk space is reclaimed by the UNIX kernel. 

Recall function tmpf ile (3), which creates temporary files with no pathname. It uses this gen¬ 

eral procedure: 

1. Generate a unique temporary filename. 

2. Create and open the file. 

3. Call unlink (2) on the temporary filename. This effectively makes the file nameless, but 

the file itself exists as long as it remains open. 

4. Call fdopen(3) to open a FILE stream, using the open file descriptor from step 2. 

5. Return the FILE stream pointer to the caller. 
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This temporary but nameless file has two advantages: 

• The file has already been released. No temporary file cleanup is required. 

• No other process can subsequently open and tamper with the temporary file. This also 

provides a measure of privacy. 

The second point is still subject to a window of opportunity, since the file must be created and 
then passed to unlink(2). However, the main advantage presented here is that no matter how 
your program exits or aborts, the temporary file will not be left in a directory, since it has 
already been unlinked. 

Performing Exit Cleanup 
There are situations in which the unlink(2) approach is not convenient. If the file must be 
closed and then reopened, then you have no choice but to keep a name associated with the 
temporary file. For this reason, the C programmer must rely on other methods, such as the 
atexit(3) function. 

Using the atexit(3) Function 
The C library function atexit (3) allows the programmer to register a function that can be 
used for all types of cleanup tasks. Of primary interest here is the removal of temporary files. 
The function synopsis for atexit (3) is as follows: 

#include <stdlib.h> 

int atexit(void (*func)(void)); 

The argument provided to atexit (3) is simply the function pointer to a function, declared as 
follows: 

void func(void) { 
/* My cleanup code... */ 

} 

The function atexit (3) returns 0 when it registers the function successfully and returns non¬ 
zero when it fails. FreeBSD returns -1 and an error code in errno when atexit(3) fails, but 

be sure to read the Warning in this section about this. For maximum portability, it is best to 
test for zero to see if atexit (3) succeeded. 

The functions registered by atexit (3) are called in the reverse order from which they are reg¬ 
istered. 

Note 

FreeBSD and UnixWare 7 document that a minimum of 32 functions may be registered. Additional 

entries are limited only by available memory. Linux appears to support as many registrations as 
remaining memory permits. 

HPUX 11 and IBM's AIX 4.3 state that the atexit(3) function is limited to a maximum of 

atexit_max registered functions. For HPUX, this is defined by the include file <limits. h>; for AIX, it 
is <sys/limits.h>. 

The limit for Solaris 8 is defined by sysconf (3C) using the parameter _SC_atexit max. 
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Warning 

FreeBSD documents that atexit(3) sets errno when -1 is returned (ENOMEM is one documented 

error returned). Linux (Red Hat 6.0) documentation states that atexit(3) returns -i if it fails, and 

errno is not set. 

SGI's IRIX 6.5, UnixWare 7, and HPUX 11 document that they return "non-zero when [they] fail." No 

error codes for errno are documented. 

For these reasons, always test for a successful return (a 0 return) of atexit(3) for maximum porta¬ 

bility. Additionally, the errno code should be ignored unless the specific platform is taken into 

account. 

The program in Listing 8.6 shows an example that calls on the atexit (3) function. This 

causes a cleanup function to be called upon program termination. 

LISTING 8.6 atexit. c—A Program Using atexit (3) to Register a Cleanup Function 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

/* atexit.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <string.h> 
^include <errno.h> 

extern char *tempnam(const char *tmpdir,const char *prefix); 

static char *tf_path = NULL; /* Temp. File Pathname */ 

/* 

* Cleanup function : 

*/ 

static void 
mr_clean(void) { 

puts("mr_clean() started:"); 

/* 
* Here we assume, that if tf_path is not NULL, that 
* the main program has not released the temporary 

* file on its own. 

*/ 

if ( tf_path != NULL ) { 
printf("unlinking temp, file %s\n",tf_path); 

/* 
* Unlink the temporary file, and release the 

* pathname string : 

*/ 
if ( unlink(tf_path) == -1 ) 

fprintf(stderr,"%s: unlink(2)\n",strerror(errno)); 
free(tf_path); /* Free the pathname string */ 



164 ADVANCED UNIX PROGRAMMING 

continued from previous page 

36: tf_path = NULL; /* Indicate that this is released */ 

37: } 
38: 
39: puts("mr_clean() ended."); 
40: } 
41: 
42: /* 
43: * Main program : 
44: */ 
45: int 
46: main(int argc,char *argv[]) { 
47: FILE *tmpf = 0; /* Temp. File stream */ 

48: 
49: atexit(mr_clean); /* Register our cleanup func */ 

50: 
51: /* 
52: * Create a temp, file pathname : 
53: */ 
54: if ( !(tf_path = tempnam( "/tmp", "tmp-'')) ) { 
55: fprintf(stderr,"%s: creating temp file.\n",strerror(errno)); 
56: abort(); 
57: } 
58: printf("Temp, file is %s\n“,tf_path); 
59: 
60: /* 
61: * Create, open and write to the temp, file : 
62: */ 
63: if ( !(tmpf = fopen(tf_path,"w+")) ) { 
64: fprintf(stderr,"%s: opening %s\n",strerror(errno),tf_path); 
65: abort(); 
66: } 
67: fprintf(tmpf,"PID %ld was here.\n",(long)getpid()); 
68: 
69: /* 
70: * Normal program exit, without unlinking the temp file: 
71: */ 
72: fclose(tmpf); /* Notice no unlink(2) here.. */ 
73: return 0; /* Normal program exit */ 
74: } 

An examination of the program shows that first the mr_clean () function is registered with 

atexit (3), in line 49. Lines 54-72 create a temporary file, write to it, and then close it. The 

program takes a normal exit in line 73. 

Exiting causes the registered function mr_clean () to be called to release the temporary file 

that was created. This is demonstrated by the compile and run session shown, as follows: 

$ make atexit 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall atexit.c 
cc atexit.o -o atexit 
$ ./atexit 
Temp, file is /tmp/tmp-D52582 
mr_clean() started: 
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unlinking temp, file /tmp/tmp-D52582 
mr_clean() ended. 

$ 

The program announces (line 58 of Listing 8.6) that it has created the temporary file 

/tmp/tmp-D52582 and then silently returns from the main() program (line 73). This causes 

the registered cleanup function mr_clean () to be called, which then produces the last three 

lines of output, indicating that it has called unlink (2) to remove the temporary file. 

One of the major portability concerns that you should bear in mind is that some platforms will 

limit the number of registered functions to a maximum of 32. This is especially critical if you 

are designing a C library, where you have no direct control over how the user is using 

at ex it (3). If the caller of your library has already used up all 32 possible registrations, then 

your library will be out of luck. 

One way that this problem can be circumvented is by registering one special function, which 

can then invoke as many additional cleanup functions as you choose. 

Using C++ Destructors 
The C++ programmer has the capability to rely on destructors for cleanup operations. Listing 

8.7 shows a very simple example of a class named Temp that makes use of a temporary file. 

LISTING 8.7 destruct. cc—A C++ Program Using a Destructor for Temporary File Cleanup 

1: // destruct.cc 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <string.h> 
7: #include <stdarg.h> 
8: #include <errno.h> 

9: 
10: extern "C" { 
11: extern char *tempnam(const char *tmpdir,const char ‘prefix); 

12: } 
13: 
14: //////////////////////////////////////////////////////////// 
15: //A demonstration class, showing how a temp file can 
16: // be used within a C++ class, with automatic 

17: // destruction. 
18: //////////////////////////////////////////////////////////// 

19: 
20: class Temp { 
21: char *tf_path; 
22: FILE *tf; 

23: public: 
24: Temp(); 
25: -Temp(); 

// Temp. File Pathname 
// Open temp, file 

// Constructor 
// Destructor 
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26 
27 
28 
29 
30 
31 
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74 
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76 
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79 

Temp &printf(const char *format,...); 
Temp &rewind(); // Rewind 
Temp &gets(char *buf,int bufsiz); 

//////////////////////////////////////////////////////////// 
// Constructor : 

//////////////////////////////////////////////////////////// 

Temp::Temp() { 

/* 

* Create a temp, file pathname : 

*/ 

if ( !(tf_path = tempnam("/tmp","tmp-")) ) 
throw errno; // Temp, file generation failed 

/* 

* Create, open and write to the temp, file : 

*/ 

if ( !(tf = fopen(tf_path,"w+")) ) 
throw errno; // Open failed 

printf("Created temp file: %s\n",tf_path); 

} 

//////////////////////////////////////////////////////////// 
// Destructor : 

//////////////////////////////////////////////////////////// 

Temp::-Temp() { 
fclose(tf); 
unlink(tf_path); 
delete tf_path; 

// Close the open file 
// Delete the temp file 
// Free pathname string 

} 
write(1,"Temp::~Temp() called.\n",22); 

//////////////////////////////////////////////////////////// 
// The printf() method : 

II 
II Allows the caller to write to the temp, file with the 
// convenience of printf(). 

///////////////////////////////////////t/ / // // // // // // // // // / 

Temp & 
Temp::printf(const char ‘format,...) { 

va_list ap; 

va_start(ap,format); 
vfprintf(tf,format,ap); 
va_end(ap); 
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return *this; 

} 

//////////////////////////////////////////////////////////// 
// Rewind the temp, file : 

//////////////////////////////////////////////////////////// 

Temp & 
Temp::rewind() { 

::rewind(tf); // Rewind the temp file 
return *this; 

} 

//////////////////////////////////////////////////////////// 
// Read back one text line from the temp, file : 

//////////////////////////////////////////////////////////// 

Temp & 
Temp::gets(char *buf,int bufsiz) { 

int e; 

if ( !fgets(buf,bufsiz,tf) 
if ( feof(tf) ) 

throw EOF; 
e = errno; 
clearerr(tf); 
throw e; 

} 

return *this; 

} 

//////////////////////////////////////////////////////////// 
// Main program : 

//////////////////////////////////////////////////////////// 

int 
main(int argc,char *argv[]) { 

Temp tf; // Create a temp file 

char buf[256]; 

(void) argc; 
(void) argv; 

// Announce start of program : 
printf("PID %ld started:\n",(long)getpid()); 

// Now write one text line to the temp file : 
tf.printf("PID %ld was here.\n",(long)getpid()); 

) { 
// EOF ? 
// Indicate EOF 

// Throw the error 

tf.rewind(); // Rewind temp file 
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133: // Now read back the one text line from the temp file 
134: 
135: try { 
136: tf.gets(buf,sizeof buf); 
137: } catch ( int e ) { 
138: fprintf(stderr,"%s: tf.gets()\n",strerror(e)); 
139: exit(1); 
140: } 
141: 
142: printf("Read back: %s\n",buf); 
143: 
144: puts(''Now exiting.."); 
145: return 0; 
146: } 
147: 
148: // End destruct.cc 

The program shown in Listing 8.7 declares a class Temp in lines 20-29. The class method 

Temp:: printf () allows the caller to format a text line to be written to the temporary file. 

Method Temp:: rewind() rewinds the temporary file, and method Temp: :gets() allows the 

caller to retrieve one text line from the temporary file. 

The constructor is implemented in lines 36-51. Note the call to the C function tempnam(3) in 

line 41, and the call to fopen(3) in line 47 to create and open the file. The pathname is stored 

in private member tf_path, and the open FILE is saved in private member tf (declared in 

lines 21 and 22). 

When the Temp object is destroyed, the destructor, which is implemented in lines 57-63, is 

called upon. The destructor closes the temporary file, deletes the pathname of the file, and 

then frees the pathname string (lines 58-60). 

The main() program constructs one instance of the Temp class in line 119 (the object is named 

tf). The object is destroyed when the main () program exits in line 145 (the return state¬ 

ment). 

Lines 129-142 simply exercise some of the methods of the object tf. One text line is written 

to the temporary file, the file is rewound, and the one text line is read back. 

Compiling and running this program should yield results similar to the following: 

$ make destruct 
cc -C -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall 

-fhandle-exceptions destruct.cc 
cc destruct.o -o destruct -lstdc++ 
$ ./destruct 
PID 52982 started: 
Read back: Created temp file: /tmp/tmp-Q52982 

Now exiting.. 
Temp::-Temp() called. 

$ 
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The line starting with Read back: shows how the temporary file was being exercised. The line 

Temp::-Temp() called, shows the output from the write (2) call in line 62 of the destructor, 

proving that the destructor was called. In fact, if the pathname is checked, it will be nonexis¬ 
tent: 

$ Is -1 /tmp/tmp-Q52982 
Is: /tmp/tmp-Q52982: No such file or directory 
$ 

This proves that the destructor did its job. 

While this technique seems to address the cleanup issue, you should be aware that pitfalls still 

exist. For example, if you change the statement in line 145 that now reads return 0; to read 

exit (0);, you will discover that the destructor for the object tf is not called. If your applica¬ 

tion has calls to exit (3) sprinkled throughout, you may still wish to use the services of the 

atexit(3) function. 

Avoiding Cleanup with exit (2) 
Sometimes it is necessary for a program to exit without invoking any cleanup at all. This is 

highly desirable when something has gone wrong and you want your program to leave things 

as they are. This allows you to keep all temporary files around so that they can be inspected 

for troubleshooting purposes. This can be done with the _exit (2) function: 

#include <unistd.h> 

void _exit(int status); 

The function is called in the same manner as exit (3), except that no atexit (3) processing is 

invoked when _exit (2) is called. 

Summary 
This completes this chapter’s tour of the temporary file functions. You should now have a well- 

rounded knowledge of file, directory, and temporary file operations under UNIX. The 

atexit (3) and C++ techniques shown in this chapter should have provided you with some 

tips for managing the cleanup of temporary files. Finally, the _exit (2) function provides a 

way to skip cleanup, if required for program debugging. 

The next chapter examines the very important getopt (3) function. This function makes it 

possible for you to easily parse command-line options in your applications. Furthermore, the 

getopt (3) function will make your command-line processing consistent with the many exist¬ 

ing UNIX utilities on your system. 
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CHAPTER 9 

UNIX COMMAND-LINE PROCESSING 

Anyone who has been using UNIX at the shell prompt for a time has unwittingly 

become acquainted with how UNIX commands work. Some of the most frequently 

used commands—Is (1), mv (1), cp (1), rm (1), and In (1), for example—use the 
same general command-line conventions. 

This level of consistency is a result of a convention being adopted by UNIX developers and a 

library mechanism to make it easy to adhere to. In this chapter, you will look at 

• UNIX command-line conventions 

• Parsing command lines with g e t o p t (3) 

• Parsing suboptions with getsubopt(3) 

• Parsing command lines with the GNU’s getopt_long (3) 

Command-Line Conventions 
The general conventions used for most UNIX commands are as follows: 

$ command_name [-options] [argl [arg2 [argn]]] 

The square brackets indicate optional item zones on the command line. Options immediately 

follow the command name and begin with a hyphen. Each option consists of a single 

character—usually a letter but possibly a number or another character. When used, arguments 

follow the options. The number of valid arguments is determined by the command being 

invoked. An example of a typical UNIX command is as follows: 

$ rm -f core 

The option shown is specified by the hyphen and the letter f. The option -f is then followed 

by one argument, the filename core in this case. 

Using Multiple Options 
There can be several options used on a command line. An example using multiple options is 

$ Is -1 -u b* 

The example uses the options -1 and -u. In this case, the command argument is a wildcard 

filename. 
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Combining Multiple Options 
Options can be grouped together behind a hyphen. The previous command is functionally 

equivalent to the following: 

$ Is -lu b* 

This Is (1) command demonstrates that option characters can be grouped following the initial 

hyphen character. 

Using Options with Arguments 
Some options accept arguments other than the command-line arguments already shown. 

Examine the following tar(1) command: 

$ tar -cvf project.tar project 

In this FreeBSD example, the options are grouped together as -cvf. However, the tar(1) -f 

option must be followed by a filename, which is given as project .tar. At the end of the com¬ 

mand line is a command-line argument project, which is the directory name to be archived. 

The command could also have been written this way: 

$ tar -cv -fproject.tar project 

In this example, the argument immediately follows the option name. Options that take an 

argument can have the argument value immediately follow the option letter or specified next 

on the command line as in a regular argument. 

Identifying Options or Arguments 
You might wonder how to know if what follows the option letter is an option argument or 

more options. This can’t be determined by the appearance of the command line. This behavior 

is defined by the option itself, which is declared within the program. 

Arguments That Look Like Options 
You may have encountered a situation in which you wanted to specify an argument that started 

with a hyphen, and your command complained about the improper options that were being 

used. For example, if grep (1) were used to search a source program for the string —help, you 
might experience the following under FreeBSD: 

$ grep --help tempnam.c 
grep: illegal option -- - 

usage: grep [-[AB] <num>] [-CEFGLVXHPRSZabchilnqsvwxy] 
[-e <expr>] [-f file] [files ...] 

$ 

The problem with this grep(1) command is that the command was confused about how to 

treat the text -help. The following technique shows how to avoid this little problem: 

$ grep -- -help tempnam.c 

$ 
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The example shows that grep (1) understood the — (double hyphen) on the command line to 

indicate that there were no further options. This permitted grep(1) to understand that --help 

was the text being searched for in the file tempnam. c. 

Thegetopt(3) Function 
What helps to make UNIX commands consistent in their syntax is that most commands use 
the library function getopt (3). Its synopsis is as follows: 

#include <unistd.h> 

extern char *optarg; 
extern int optind; 
extern int optopt; 
extern int opterr; 
extern int optreset; 

/* initialized to 1 */ 

/* initialized to 1 */ 
/* extension to IEEE Std1003.2 "P0SIX.2'1 */ 

int getopt(int argc, char * const *argv, const char *optstring); 

extern void getoptreset(void); /* SGI IRIX 6.5 only */ 

The getopt (3) function returns the option letter that is parsed. Alternatively, -1 is returned 

when the end of the options has been reached. The value ? is returned when an unrecognized 

option character has been encountered. If the argument optstring begins with a : character, 

then : is returned when an option expecting an argument does not have one given. 

Thegetopt(3) External Values 
Before you can use getopt (3), you need to be aware of how the external values are used by it. 

The two most important of these variables are the optarg and optind variables. 

The opt a rg External Variable 
The optarg external pointer variable is set to point at the argument supplied for the option 

being processed. However, this is only done for those options that take arguments (this will be 

expanded upon later). If getopt (3) were processing the option -f project, tar or 

-f project .tar, then the variable optarg would point to the C string containing 

project.tar when getopt(3) is returned. 

The optind External Variable 
The external variable optind is initially set to the value 1. It is used by getopt (3) to point to 

the next argv[ ] value to be processed. This initial value causes getopt(3) to start processing 

options in argv[ 1 ]. When the end of the options is reached on the command line, the value of 

optind indicates where on the command line the first argument is located. For example, if the 

following command were to be processed by getopt (3) 

$ rm -f core 

then the optind value after all options are processed would be 2. This indicates that argv[2] 

has the first command-line argument following the options that were just processed. 
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The opt err External Variable 
The external value opt err is initialized to the value of 1 (indicating true) and is used as input 

to the getopt (3) function. When it is true and an unrecognized option character is encoun¬ 

tered, getopt(3) prints an error message to stderr indicating the unrecognized option. This 

behavior is suppressed when opterr is set to 0 (false). This is usually necessary when your 

program will be doing the error reporting itself or when the error message must go somewhere 

other than stderr. 

The opt reset External Variable 
The FreeBSD platform exposes the external variable opt reset. This is an extension to the 

IEEE Stdl003.2 POSIX.2 standard and is not supported by other UNIX platforms. Setting this 

variable to 1 allows a new scan of options to be processed. This is normally accompanied by 

resetting the variable optind to 1. 

To cause getopt (3) to rescan the command line a second time, the following procedure is 

used under FreeBSD: 

optreset =1; /* Restart scan in getopt(3) */ 
optind =1; /* Restart scan with argv[1] */ 

This pair of assignments readies getopt (3) to start over. SGI’s IRIX 6.5, for example, provides 
a getopt reset (3) function instead: 

optind =1; /* Restart scan with argv[1] */ 
getoptreset(); /* Reset getopt(3) to start over */ 

Although the IRIX 6.5 documentation states that getoptreset (3) “can be used to reset all the 

internal state of getopt so that it may be used again on a different set of arguments,” it might 
be wise to set optind=1 prior to making the call. 

The UNIX systems UnixWare 7, HPUX-11, Solaris 8, and AIX 4.3 do not document a formal way to 

reset the scanning of a command line. 

The getopt (3) Function Call 
The getopt (3) function returns an integer value that fits into one of the following categories: 

• The option character just parsed. 

• The character ?, indicating that an unrecognized option character was encountered. 

• The character :, indicating that an option is missing its argument (this is supported only 

when the argument optstring begins with a colon character). 

• The value -1, indicating that no more options exist (see the Note about EOF). 
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Note 

Prior to the IEEE Stdl 003.2-1992 (POSIX.2) standard, the macro EOF was documented as the return 

value from getopt(3) when no more options remain to be processed. Now the standard documents 

that the value -1 is returned, and the use of the macro EOF in this context is discouraged. 

The first argument argc for getopt (3) states how many argument values we have in the sec¬ 

ond array argv[ ]. This second argument is an array of C string pointers that point to each 

command-line argument. The values argc and argv[ ] are normally taken directly from the 
main () function interface. 

The last argument to getopt (3) is the C string that drives the processing. It tells getopt (3) 

which options are supported and which options take arguments. This single string determines 

the whole personality of the command line. 

Defining the opt string Argument 
To support a few options such as the tar(1) example earlier, the optstring argument would 

be defined as follows: 

int main(int argc,char **argv) { 
static char optstring!] = "cvf:"; 

Note how a colon (:) character follows the f character in the string optstring. The colon 

indicates that the option -f requires an argument. Option order is not significant in the 

optstring. The following would be equally acceptable: 

int main(int argc,char **argv) { 
static char optstring!] = 11 vf: c"; 

Whenever getopt (3) processes an option, it searches the optstring argument. If the option 

character is not present in optstring, then it is not a supported option character, and it is 

treated as an error (a ? is returned). When the option character is found within optstring, the 

getopt (3) function checks the next immediate character in the optstring. If it finds a colon, 

then it knows that it must extract an argument to go with this option. 

optstring can be begun with a colon character, as shown: 

int main(int argc,char **argv) { 
static char optstring!] = ":cvf:"; 

When the optstring is specified with a leading colon, getopt (3) will return a : character 

when a valid option was parsed but no argument was found following it. This allows your pro¬ 

gram to assume some other default for the option argument. 

Defining an Option-Processing Loop 
Listing 9.1 shows a typical option-processing loop using getopt (3). The options supported in 

this program are the -c, -v, and -f options that were demonstrated by the earlier example 

using tar(1). 
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LISTING 9.1 getopt.c—-A Typical Option-Processing Loop Using getopt(3) 

1: /* getopt.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: 
6: int 
7: main(int argc,char **argv) { 
8: int rc; 
9: int optch; 
10: static char optstring[] = "cvf:"; 
11: 
12: while ( (optch = getopt(argc,argv,optstring)) != -1 ) 
13: switch ( optch ) { 
14: case ’c1 : 
15: puts("-c processed.")! 
16: break; 
17: case 'v' : 
18: puts("-v processed."); 
19: break; 
20: case 1f1 : 
21: printf("-f '%s‘ processed.\n",optarg); 
22: break; 
23: default : /* '?' */ 
24: rc = 1; /* Usage error has occurred */ 
25: } 
26: 
27: for ( ; optind < argc; ++optind ) 
28: printf("argv[%d] = '%s'\n",optind,argv[optind]); 
29: 
30: return rc; 
31: } 

When the program is compiled and run, the output should appear as follows: 

$ make getopt 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall getopt.c 
cc getopt.o -o getopt 
$ ./getopt -cvf project.tar project_dir 
-c processed. 
-v processed. 
-f 'project.tar' processed. 
argv[3] = 'project_dir‘ 
$ 

The session output shows how the various case statements in the program were exercised by 

the options -c, -v, and -f. Notice the use of the external variable optarg for the -f option 

case (lines 20-22). After all the options were processed, the for loop in lines 27-28 reported 

the remaining command-line arguments. This was shown to be the single argument 
project_dir. 
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The getsubopt(3) Function 
Many UNIX platforms support suboptions. Suboptions are useful when your application has 

many possible parameter values and suboptions, which are best specified by name. SGI’s IRIX 

6.5 documents an example of suboptions using its mount (1) command: 

# mount -o rw,hard,bg,wsize=1024 speed:/usr /usr 

In this example, the -o represents the option, which is then followed by an argument consist¬ 

ing of suboptions. The argument rw,hard,bg,wsize=1024 has several suboptions, which are 

separated by commas. As the example illustrates, some suboptions take arguments and others 

do not. 

To make it easier for the application writer to parse suboptions, the function getsubopt (3) is 

provided. Its synopsis is as follows: 

#include <stdlib.h> 

extern char *suboptarg 

int getsubopt(char **subopts_str, char *const *tokens, char **valuep); 

The first argument subopts_str is a pointer to the string that is to be parsed. This pointer is 

updated with each call to the function. 

The argument tokens is an array of token string pointers that represent valid suboption val¬ 

ues. The last element of the array should be a null pointer, to mark the end of the array. Using 

the SGI mount (1) example shown earlier, the array could be declared and initialized as fol¬ 

lows: 

static char *tokens[] = { 
"rw", /* [0] */ 
“hard", /* [1] */ 
"bg", /* [2] */ 
"wsize", /* [3] */ 
NULL 

}; 

The last argument, valuep, is a pointer to a character pointer. After the getsubopt (3) call 

returns the pointer to which it points, it will be null if there was no value for the parameter, or 

it will point to the value string. The following shows how the third argument is used: 

char *valuep = NULL; 

x = getsubopt(&optarg,&tokens[0],&valuep) ; 

printf("The value = '%s'\n",valuep != NULL ? valuep : "<NULL>"); 

The return value from getsubopt(3) is the index into the tokens! ] array if the value is a rec¬ 

ognized suboption. The returned pointer for the valuep argument will contain a pointer to the 

value part of the subopt=value in the suboption or null if no value was provided. The index 

value -1 is returned when the suboption is not recognized as an option in the tokens [ ] array. 
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Determining the End of Suboption Processing 
The suboption parsing ends when the pointer being passed into the first argument of 

getsubopt (3) points to a null byte. An example will illustrate this best. 

Assume that you must parse the option argument string found in the getopt (3) external vari¬ 

able optarg. Assume further that the tokens[ ] array was declared as shown earlier. The gen¬ 

eral loop used for getsubopt (3) then is as follows: 

extern char *optarg; /* getopt(3) */ 

char *valuep; 
int x; 

while ( *optarg != 0 ) 
switch ( (x = getsubopt(&optarg,tokens,&valuep)) ) { 
case 3 : /* wsize=arg */ 

printf(" %s = '%s'\n",tokens[x],valuep ? valuep : "<NULL>"); 

When the suboption wsize=1024 is parsed, the value for x that is returned by getsubopt (3) 

will be 3 (due to the tokens! ] array). The pointer optarg is updated by getsubopt (3) to 

point to the next suboption. When no suboptions remain, the pointer optarg in this example 

will point to a null byte in the string. 

Platforms that support getsubopt (3) include FreeBSD, Solaris 8, AIX 4.3, HPUX-11, and SGI IRIX 

6.5. Linux (Red Hat 6.0) shows no support for this option. 

A Full getsubopt (3) Example 
The program shown in Listing 9.2 processes command-line arguments using both getopt (3) 

and getsubopt (3) in order to demonstrate how they work together. It implements a few 

options that might be used in a hypothetical tape transport control command xmt, similar to 

the mt (1) that is available on most UNIX platforms. The synopsis for this hypothetical com¬ 
mand is as follows: 

xmt [-f /dev/tape_device] [-c suboptions] 

where -f /dev/tape_device specifies the tape device to use and -c suboptions specifies 
various tape commands: 

rewind Rewind the tape drive 

we of=n Write file mark(s) 

f sf=n Forward space file(s) 

bsf=n Backspace file(s) 



Chapter 9 • UNIX COMMAND-LINE PROCESSING 181 

The program presented in Listing 9.2 simply parses these options and suboptions and then 
lists the remaining command-line arguments. 

LISTING 9.2 xmt.c—An Example Using getsubopt(3) andgetopt(3) 

/* xmt.c */ 1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 

extern char *suboptarg; 
int getsubopt(char **optionp, char * const *tokens, char **valuep); 

int 
main(int argc,char **argv) { 

int rc = 0; /* Return code */ 
int x; /* Arg index */ 
int n; /* Int value */ 
char *valuep; /* Ptr to subopt value */ 
int optch; /* Option character */ 
static char optstring[] = "f:c:"; 

/* Suboptions Table of Tokens : */ 
static char *tokens[] = { 

21: #define SO WEOF 0 

22: "weof", /* Write n EOF marks 

23: #define SO FSF 1 

24: "fsf", /* Forward space file 

25: #define SO BSF 2 

26: "bsf", /* Back space file */ 

27: #define _S0_REWIND 3 

28: "rewind", /* Rewind tape */ 

NULL 

}; 

r 
* Process all command line options : 

*/ 
while ( (optch = getopt(argc,argv,optstring)) != -1 ) 

switch ( optch ) { 

case 'f' : /* -f device */ 
printf (" -f 1 %s ' (tape device).\n\optarg); 

break; 

/* -c commands */ 
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continued from previous page 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

* Process all suboptions for -c : 

*/ 

while ( *optarg != 0 ) 
switch ( (x = getsubopt(&optarg,tokens,&valuep)) ) { 

case _S0_WE0F : 
n = Ivaluep ? 1 : atoi(valuep); 
printf("Write %d EOF marks (%s=%s)\n", 

n,suboptarg,valuep); 
break; 

case _S0_FSF : 
n = Ivaluep ? 1 : atoi(valuep); 
printf("Forward space %d file(s) (%s=%s)\n", 

n,suboptarg,valuep); 
break; 

case _S0_BSF : 
n = Ivaluep ? 1 : atoi(valuep); 
printf("Backspace %d file(s) (%s=%s)\n", 

n,suboptarg,valuep); 
break; 

case _S0_REWIND : 
if ( valuep ) { 

printf("Suboption %s does not take a arg\n", 
suboptarg); 

re = 1; /* Flag usage error */ 
} else 

printf("Rewind tape (%s)\n",suboptarg); 
break; 

case -1 : 
printf("Illegal suboption %s%s%s\n", 

suboptarg, 
valuep ? "=" : 
valuep ? valuep : ""); 

break; 

default : 
abort(); /* Should never get here */ 

} 
break; 

default : /* '?' */ 
re = 1; /* Usage error has occurred */ 

} 

/* 

* Report all arguments : 

*/ 

for ( ; optind < arge; ++optind ) 
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96: printf("argv[%d] = ‘%s'\n",optind,argv[optind]); 
97: 

98: return rc; 
99: } 

Compiling and running this xmt command produces the following session output: 

$ make xmt 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -g xmt.c 
cc xmt.o -o xmt 
$ ./xmt -f /dev/tape -crewind,fsf=3,weof=2 
-f '/dev/tape1 (tape device). 
Rewind tape (rewind) 
Forward space 3 file(s) (fsf=3) 
Write 2 EOF marks (weof=2) 
$ 

From the example, you can see that the rewind suboption was processed first, followed by 

f sf=3 and then weof=2 to write two end-of-file marks on the tape. 

GNU Long Options Extension 
A number of GNU commands like the gcc (1) compiler for example have a large number of 

options to support. Besides the fact that you can exhaust all possible characters for those 

options, a user just cannot remember them all. The GNU solution to this problem is the con¬ 

vention of long options. 

FreeBSD 3.4 Release includes gcc (1), allowing the following demonstration of a long option: 

$ gcc - -version 
2.7.2,3 

$ 

Long options begin with two hyphens and must be followed by one or more characters. In 

order to process long options, the GNU function getopt_long(3) must be used. 

The GNU getopt_long(3) Function 
The getopt_long(3) function will process both the traditional short options and the newer 

GNU long options. The synopsis for getopt_long(3) is as follows: 

//include <getopt.h> 

int getopt_long(int argc, char * const argv[], 
const char *optstring, 
const struct option *longopts, 
int *longindex); 

The function prototype is almost identical to getopt (3), except for the two new arguments 

longopts and longindex. The argument longindex points to an integer, where an index value 

is returned. 
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Understanding the option Structure 
The longopts structure pointer points to the array of option structure entries. The option 

structure is composed of four members: 

• name points to a C string containing the name of the long option, without the leading 

hyphens. 

• has_arg is defined as an integer but used as a Boolean value. It must be zero (false) if 

there is no argument or non-zero (true) if there is an argument for this option. 

• flag either points to an integer or is null. 

• val is used in different ways, depending upon how flag is initialized. 

Setting Up the option Structure 
The last array entry in the option structure array must be initialized with a null pointer for its 

name member, zero for the has_arg member, a null pointer for the flag member, and zero for 

the val member. This entry indicates to getopt_long (3) that there are no more entries in that 

array. Here is an example of two long options defined in the static option structure 

long_opts[]. 

static struct option long_opts[] = { 
{ "help", 0, 0, 'h' }, /* name, has_arg, flag, val */ 
{ "version", 0, 0, 'v1 }, /* name, has_arg, flag, val */ 
{ 0, 0, 0, 0 } 

}; 

Using a Null option.flag Pointer 
The members flag and val of the option structure work together as a team. The easiest way 
to use these is through the following procedure: 

1. Set flag to null. 

2. Set the int member val to the value that you want getopt_long (3) to return. Often 

this is the ASCII character code for the equivalent short option letter. 

Making a Long Option Look Short 
A common practice is to set val to the short option letter equivalent of the long option. For 

example, if a command supports both -help and -h, then option member flag would be set 

to a null pointer, and val would be set to the ASCII value 1 h'. The structure would be initial¬ 
ized as follows: 

static struct option long_opts[] = { 
{ "help", 0, 0, 1h1 }, /* name, has_arg, flag, val */ 
{ 0, 0, 0, 0 } 

}; 
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Processing when the option.flag Pointer Is Null 
When processing the long option —help, the getopt_long(3) function performs the following 
basic steps: 

1. The getopt_long(3) scans the long_opts[ ] array, using an index that we will call x. It 
will start with x=0. 

2. A strcmp(3) is done to see if our option string "help" matches the entry in 

long_opts[x] .name (x is currently the value zero). Note that the hyphens are already 

stripped off the option string. 

3. The strcmp (3) function returns zero because the strings match. 

4. Now getopt_long (3) knows the correct index value x. This is returned to the caller by 

using the integer pointer provided in the fifth argument (longindex). 

5. The pointer in long_opts [ x ]. flag is tested for a null pointer. If it is null, then pro¬ 

cessing proceeds to the next step. 

6. The value of long_opts[x]. val is used as the return value for getopt_long(3). 

A C code fragment illustrates the last three steps: 

*longindex = x; /* 4. Return array index */ 
if ( !long_opts[x].flag ) /* 5. if flag is null then */ 

return long_opts[x].val; /* 6. return 1h' */ 

Your options loop within your program is now tricked into thinking the - h option was 

processed instead, because the value ' h' was returned. This is the easiest way to use long 

options. 

Using a Non-Null option.flag Pointer 
When the structure option member flag is a non-null pointer, something different happens. 

First, examine Listing 9.3. 

LISTING 9.3 A Non-Null option. flag Member 

1: static int cmdopt_v = 0; /* Initialized to false */ 
2: static struct option long_opts[] = { 
3: { "help", 0, 0, ’h' }, /* name, has_arg, flag, val */ 

4: { "version", 0, &cmdopt_v, 1 }, 

5: { 0, 0, 0, 0 } 

6: }; 

Listing 9.3 shows how the variables and the long_opts [ ] array are declared. The following 

points explain the reasoning behind this code: 

1. Line 1 declares our -v option flag variable cmdopt_v. It is initialized to false (zero). 

2. Array element long_opts [ 1 ] is initialized to accept the long option -version (line 4). 
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3. Member long_opts [ 1 ]. flag (line 4) is initialized with a pointer to our variable 

cmdopt_v (in line 1). 

4. Member long_opts [ 1 ]. val (line 4) is initialized with the int value of 1. 

5. Array element long_opts[2] has all members initialized to null or zero. This marks the 

end of the long options array. 

With the declarations arranged as they are in Listing 9.3, the actions of getopt_long(3) when 

it processes the —version option can be explained. 

1. Internally to getopt_long (3) an array index is initialized to zero. We will call this vari¬ 

able x. 

2. A strcmp(3) is done to see if the option string version matches the entry in 

long_opts[x] .name (x is currently the value zero). 

3. The strcmp(3) function returns non-zero, because the strings do not match 

(long_opts[0]. name points to C string "help"). 

4. The getopt_long(3) function increments x to the value 1. 

5. A strcmp (3) is done to see if our option string version matches the entry in 

long_opts[x].name (x=l). 

6. The strcmp (3) function returns zero, because the option string version matches 

long_opts[x] .name, which also points to a string "version". 

7. Now getopt_long (3) knows the correct index value x. This is returned to the caller by 

using the integer pointer provided in argument five (longindex) (x=l). 

8. The pointer value long_opts [ 1 ] .flag is tested to see if it is null. It is not null, so the 

processing moves on to the next step. 

9. The integer value from long_opts [ 1 ]. val is fetched and then stored at the location 

pointed to by long_opts[ 1 ] .flag. 

10. The getopt_long (3) function returns the value zero to indicate that this special long 

option has been processed. 

Steps 9 and 10 are carried out when the flag member is not null. Step 6 in the list from the 

“Processing when option .flag Pointer Is Null” section is used when the flag member is null. 
Note again how getopt_long (3) returns zero in step 10. 

The following code fragment summarizes steps 7 through 10 of the procedure: 

*longindex = x; /* 7. Return array index */ 
if ( !long_opts[x].flag ) /* 8. if flag is null */ 

return long_opts[x].val; /* return val */ 
/* Return val via flag ptr */ 

*(long_opts[x].flag) = long_opts[x].val; /* 9. Use ptr */ 
return 0; /* 10. Indicate flag use */ 
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FreeBSD does not document or include development libraries for getopt_long(3) when Linux 

extensions are not installed. 

Summary 
This chapter has covered the operation of the getopt (3) and getsubopt (3) functions. 

Additionally, the getopt_long (3) function was included to cover the GNU/Linux method of 

parsing command lines. All of these functions help keep your applications smaller, simpler, 

and more reliable. 

The next chapter covers the very important topic of performing numeric conversions. 
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CHAPTER 10 

CONVERSION FUNCTIONS 

The need for data conversions is always present within an application program. 

Arithmetic is performed using int, float, and double types because it is efficient 

and convenient. The same data must then be converted into ASCII strings in order 

for it to be displayed on a terminal. Data input also must undergo conversions. 

In this chapter, you will examine 

• The atoi(3), atol(3), and atof (3) family 

• The sscant(3) function 

• Thestrtol(3) and strtoul(3) functions 

• The strtod(3) function 

All of these functions concern themselves with conversion from ASCII to a numeric C data 

type. 

Simple Conversion Functions 
These are the simplest functions for a C programmer to use, because they require no prepara¬ 

tion or subsequent tests for conversion errors. With the exception of atof (3) on some UNIX 

platforms, the entire issue of conversion errors is ignored. For this reason, they are frequently 

not the best choice of conversion functions available. 

Before the alternatives are explored, let’s examine these traditional functions more closely. 

Scrutinizing the Functions atoi(3) and atol(3) 
The functions atoi(3) and atol(3) have the following synopsis: 

#include <stdlib.h> 

int atoi(const char *nptr); 
long atol(const char *nptr); 
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These functions simply take the starting address of a C string and return the result as an int or 

a long data type value. Any leading whitespace characters, as defined by the C library function 

isspace(3), are skipped before the conversion is begun. If the conversion fails, the functions 

atoi(3) and atol(3) simply give up and return zero. 

Using the atoi(3) Function 
The following is a simple example of using the atoi(3) function: 

char buf[32]; 
int i; 

strcpy(buf,"23"); 
i = atoi(buf); 

In this example, the string " 23" is converted to an integer value 23 and assigned to the variable 

i. However, had the input string contained bad input, the value of i would not contain a 

meaningful result (zero). 

Understanding the Conversion Error Problem 
As an example, consider the problem where the function atoi(3) is used. Assume that there is 

a debug command-line option of the form -x n, where n is the debug level between 0 and 9. 

Within the getopt (3) processing loop, the optarg value for -x must be converted to an inte¬ 

ger value. 

switch( optch ) { 
case 'x' : 

cmdopt_x = atoi(optarg); /* Get debug level */ 
break; 

Assume that the user supplied the option as -x high on the command line because he didn’t 

know any better. The atoi(3) function will glibly return the value 0 in this case because it 

cannot convert high to an integer numeric value. The program will be unaware that there 

should be a debug level set because the conversion value was 0 (due to the conversion error). 

Consequently, the program will run without any debug level at all. This results in a program 

action that is not user friendly 

Converting Garbled Data 

A similar problem develops when the user supplies the debug option as -x 5oops because he 

is all thumbs on the keyboard. The program will glibly accept the value 5 that atoi(3) was 

able to convert successfully. The remaining part of the string oops is ignored. 

The functions atoi(3), atol(3), and atof (3) all lack error return information. A better indi¬ 
cation of when the conversion succeeded or failed is required. 

Knowing Where the Conversion Ended 

An additional limitation of the atoi (3) family of functions is that the caller is not given infor¬ 

mation about where the conversion ends in the input string. If it is necessary to write a 
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function to extract the month, day, and year from a date string, you would have a challenge 

using the atoi(3) function. Consider the following variations in date strings that might be 
provided as input from a terminal: 

• 01/01/2000 

• 1/2/2000 

• 12/1/2000 

• 1/ 9/2000 

• 1/31 / 2000 

• 6-31-2001 

The atoi(3) function can help only with the month extraction (assuming month/day/year 

format). After extracting the month, you are left with these questions: How many blanks were 

skipped over? How many digits were there? Were any trailing blanks present? Because no scan 

information is returned by atoi(3), your code doesn’t know where to start the extraction for 

the following day or year field. 

The atof (3) Function 
The atof (3) function is very similar to the atoi(3) function, except that it converts string 

values into floating point values. The synopsis for atof (3) is as follows: 

#include <stdlib.h> 

double atof(const char *nptr); 

Its use is equally simple. The following is an example: 

char buf[32]; 
double f; 

strcpy(buf," -467.01E+02"); 
f = atof(buf); 

The example shows some leading whitespace, a sign character, a decimal number, and a signed 

exponent. The atof (3) function skips over the leading whitespace and converts the remaining 

characters into a double C type value, which is assigned to variable f. 

Again, the simplicity of this call woos many a C programmer into using this form of conver¬ 

sion. However, the problems that exist for atoi(3) and atol(3) also apply to the atof (3) 

function. 

Most UNIX platforms implement the atof (3) function as a call to the function strtod (3): 

strtod(nptr, (char * *)NULL); 

The function strtod(3) does return the special values +HUGE_VAU -HUGE_VAL, and 0 (zero), in 

conjunction with the external variable errno (see the section “Testing for Math Errors,” later in 

this chapter). Since the implementation of atof (3) might not always be in terms of the 

strtod(3) function, you should use strtod(3) to test for errors. 
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Using sscanf (3) for Conversion and Validation 
The function sscanf (3) is like a Swiss Army Knife for C input and conversion. While this 

mechanism is not a perfect solution for all conversions, it still enjoys simplicity of use and pro¬ 

vides some measure of error detection. 

Applying sscanf (3) to Numeric Conversion 
Listing 10.1 shows a simple program that extracts the month, day, and year from a string. The 

input data has been deliberately made as messy as possible (lines 15-18) with lots of white- 
space. 

LISTING 10.1 sscanf. c—Extracting Date Fields Using sscanf (3) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

/* sscanf.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

int 
main(int argc,char *argv[] 

int x; 
char *datestr; /* 
int nf; /* 
int n; /* 
int mm, dd, yyyy; /* 

{ 

Date string to parse */ 
Number of fields converted 
# of characters scanned */ 
Month, day and year */ 

*/ 

static char *sdate[] = { 
11 1 / 2 / 2000 ", 
" 03 - 9-2001,etc." 

}; 

for ( x=0; x<2; ++x ) { 
datestr = sdatefx]; /* Parse this date */ 
printf("Extracting from '%s'\n",datestr); 

nf = sscanf(datestr,"%d %*[/-]%d %*[/-]%d%n",&mm,&dd,&yyyy,&n); 

printf("%02d/%02d/%04d nf=%d, n=%d\n",mm,dd,yyyy,nf,n); 

if ( nf >= 3 ) 
printf("Remainder = '%s'\n",&datestr[n]); 

} 

return 0; 

} 

The variables used in this program are as follows: 

• Variable nf receives the number of the conversions that sscanf (3) successfully accom¬ 
plishes (line 11). 
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• Variable n receives the number of characters scanned so far (line 12). 

• Variables mm, dd, and yyyy are the month, day, and year extracted values, respectively 
(line 13). 

• The character pointer array sdate[ ] contains the two strings that are going to be used 
for extraction of the date components (lines 15-18). 

Testing Numeric Conversions Using sscanf (3) 
Compiling and running this program yields the following results under FreeBSD: 

$ make sscanf 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall sscanf.c 
cc sscanf.o -o sscanf 
$ ./sscanf 
Extracting from 1 1 / 2 / 2000 1 
01/02/2000 nf=3, n=18 
Remainder = ' 
Extracting from ' 03 - 9-2001,etc.' 
03/09/2001 nf=3, n=12 
Remainder = ',etc.' 

$ 

The first example shows how the date 01 /02/2000 is successfully parsed. The second result 

03/09/2001 is parsed out of the date string using hyphens instead. This is possible because the 

sscanf (3) %[ ] format feature was used to accept either a slash or a hyphen (line 24). The full 

format specifier used was %*[/-]. The asterisk indicates that the extracted value is not 

assigned to a variable (nor is it counted for the purposes of %n). 

Notice that a space character precedes the %*[/-] format specification. This causes sscanf (3) 

to skip over preceding spaces prior to the slash or hyphen, if spaces are present. 

The extracted results are reported in line 26, along with the values nf and n. Line 28 tests the 

value of nf before reporting the remainder string in line 29. This is necessary because the 

value of n is undefined if the sscanf (3) function did not work its way to the point of the %n 

specification (at the end of line 24). 

The remainder strings show the points where the date extractions ended in both data exam¬ 

ples. The last example shows the parse ending at the point , etc.. 

Note that there are only three conversions present in the sscanf (3) call of line 24. This is 

because the %n specification does not count as a conversion. 

Improving the sscanf (3) Conversion 
One irritation that remains in our example in Listing 10.1 is that it does not skip over the trail¬ 

ing whitespace. This makes it difficult to test whether the entire input string was consumed 

when the date was extracted. Leftover data usually indicates that not all of it was valid. 

This problem is remedied by altering the sscanf (3) statement on line 24 to read 
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nf = sscanf(datestr,"%d %*[/-]%d %*[/-]%d %n“,&mm,&dd,&yyyy,&n); 

If you look carefully at the format string, you will notice that one space was inserted before the 

%n specifier. This coaxes sscanf (3) into skipping over more whitespace before reporting how 

many characters were scanned. With the whitespace skipped, the test for leftovers is simple: 

if ( datestr[n] != 0 ) { 
printf C'EEK! Leftovers = 1 %s' \n11,&datestr[n]); 

If the expression datestr[n] points to a null byte after the conversion, then it is known that 

all the input string was valid for the conversion. 

The Limitations ofsscanf(3) 
The sscanf (3) return count indicates whether or not the conversion(s) was successful. When 

the %n specifier is processed, the caller can also determine where the scanning ended. 

However, sscanf (3) still suffers from the limitation that it does not indicate to the caller 

where in the string the point of failure is when the conversion fails. 

The strtol(3) and strtoul(3) Functions 
The function sscanf (3) calls upon the functions strtol(3) and strtoul(3) to carry out its 

dirty work. You can go right to the source by calling them. The synopses for strtol(3) and 

strtoul(3) are as follows: 

#include <stdlib.h> 
#include <limits.h> 

long strtol(const char *nptr, char **endptr, int base); 

unsigned long strtoul(const char *nptr, char **endptr, int base); 

Macros from <limits.h> : 
LONGJ/IAX 
L0NG_MIN 
UL0NG_MAX 
L0NGL0NG_MAX 
L0NGL0NG_MIN 
UL0NGL0NG_MAX 

The function strtol(3) converts a possibly signed integer within a character string to a long 

integer data type value. The function strtoul(3) is functionally identical, except that no sign 

is permitted, and the returned conversion value is an unsigned long integer. 

Within this section, only the strtol(3) function will be examined in detail, with the under¬ 

standing that the same principles can be applied to the strtoul(3) function. 
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Using the strtol(3) Function 
Listing 10.2 shows a short program that attempts to convert the first signed value in a charac¬ 

ter array named snum[ ]. Not only will it extract the integer value, but it will also indicate 
where the conversion ended. 

LISTING 10.2 strtol.c—A Conversion Program Using strtol(3) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

/* strtol.c */ 

#include <stdio.h> 
#include <stdlib.h> 

int 
main(int argc,char *argv[]) { 

long lval; 
char *ep; 
static char snum[] = " -2567,45,39"; 

lval = strtol(snum,&ep,10); 

printf("lval = %ld, ep = '%s'\n",lval,ep?ep:"<NULL>"); 

return 0; 

} 

When the program is compiled and run, the following results are observed: 

$ make strtol 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall strtol.c 
cc strtol.0 -0 strtol 
$ ./strtol 
lval = -2567, ep = 1,45,39' 

$ 

From the output, you can see that the value lval was assigned the converted value. The char¬ 

acter pointer ep pointed to the part of the string where the conversion stopped, namely 

, 45,39. Another parse could be continued after the comma is skipped, if the program were 

required to do this. 

Testing for Errors 
The strtol(3) and strtoul(3) functions return zero if the conversion fails completely. 

However, zero is a valid conversion value, and it should not be used as the only basis for con¬ 

cluding that an error took place. 

If the returned pointer (variable ep in Listing 10.2) points to the starting point in the string, 

this indicates that a conversion error took place. This shows that no progress whatsoever was 

made in the conversion process. In Listing 10.2, you would test for the error in this manner: 



196 ADVANCED UNIX PROGRAMMING 

if ( ep == snum ) { 
printf("Cannot convert value '%s'\n",snum); 

This tests to see if the end pointer ep matches the starting point snum. If they are equal, then 

no progress was made in the conversion. 

Testing the Conversion Pointer 
It has already been demonstrated in Listing 10.2 that the return pointer ep shows where the 

conversion ended. This permits the caller to see if all of the input string was used to participate 

in the conversion. This can be tested as follows: 

if ( *ep != 0 ) { 
printf("Conversion of '%s' failed near '%s'\n",snum,ep); 

This not only tests that the conversion consumed all of the input, but it shows the point of 

failure if one occurs. 

Performing Multiple Conversions 
In Listing 10.2, three values separated by commas were used as input. A test for a successful 

field parse can be performed by testing for the delimiting comma: 

if ( *ep 1= V ) 
printf("Failed near '%s'\n",ep); 

else { 
++ep; /* Skip comma */ 
/* Parse next field */ 

In this example, it is known that the next character should be a comma. If it is not a comma, 

then an error has been encountered. Otherwise, the expected comma is skipped and the con¬ 

version proceeds with the next numeric value, using strtol(3). 

Using the base Argument for Radix Conversions 
The base argument of the strtol(3) and strtoul(3) functions specifies the radix value of the 

number system. For the decimal number system, the radix value is 10. 

The program shown in Listing 10.3 will allow you to run some tests with strtol(3) using dif¬ 

ferent radix values. 

LISTING 10.3 radix, c—Testing the base Argument of strtol(3) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

/* radix.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 

int 
main(int argc,char *argv[]) { 
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9: ir|t i; /* Iterator variable */ 
10: char *ep; /* End scan pointer */ 
11: long base; /* Conversion base */ 
12: long lval; /* Converted long value */ 
13: 
14: /* 

15: * Test for arguments : 
16: */ 
17: if ( argc < 2 ) { 

18: printf("Usage: %s base 'string' [base 'string]...\n",argv[0]); 
19: return 1; 
20: } 
21: 
22: /* 

23: * Process arguments : 
24: */ 
25: for ( i=1; i<argc; ++i ) { 
26: /* 
27: * Get conversion base : 
28: */ 
29: base = strtol(argv[i],&ep,10); 
30: if ( *ep != 0 ) { 
31: printf("Base error in '%s' near '%s'\n",argv[i],ep); 
32: return 1; 
33: } else if ( base > 36 || base < 0 ) { 
34: printf("Invalid base: %ld\n",base); 
35: return 1; 
36: } 
37: /* 
38: * Get conversion string : 
39: */ 
40: if ( ++i >= argc ) { 
41: printf("Missing conversion string! Arg # %d\n",i); 
42: return 1; 
43: } 
44: 
45: errno = 0; /* Clear prior errors, if any */ 

46: 
47: lval = strtol(argv[i],&ep,(int)base); 

48: 
49: printf("strtol('%s',&ep,%ld) => %ld; ep='%s', errno=%d\n", 
50: argv[i], base, lval, ep, errno); 

51: } 
52: 
53: return 0; 
54: } 

This program is invoked with the radix (base) value as the first argument of a pair. The second 

argument of the pair is the input string that you want to convert. The following shows a 

compile-and-test run: 

$ make radix 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall radix.c 

cc radix.0 -0 radix 
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$ ./radix 10 ' +2345' 10 -456 10 '123 ' 
strtol(' +2345',&ep,l0) => 2345; ep=’1, errno=0 
strtol(’-456’,&ep,10) => -456; ep=l1, errno=0 
strtol('123 1,&ep,10) => 123; ep=' errno=0 
$ 

Three decimal conversions are attempted in the session shown. The first shows that the white- 

space was skipped successfully. The second shows that it was successful at converting a nega¬ 

tive value. The third conversion shows how the variable ep points to the trailing whitespace. 

Running Hexadecimal Tests 
Setting the base to 16 will allow some hexadecimal conversions to be attempted: 

$ ./radix 16 012 16 0x12 16 FFx 
strtol('012',&ep,16) => 18; ep='', errno=0 
strtol('0x12',&ep,16) => 18; ep='’, errno=0 
strtol('FFx',&ep,16) => 255; ep=1x', errno=0 
$ 

The first conversion converts the string 012 to 18 decimal, clearly a hexadecimal conversion. 

The second conversion demonstrates that the strtol(3) function will skip over the leading 0x 

characters when the base is 16. The third shows how FFx was properly converted, leaving a 

trailing unprocessed x. 

Testing a Radix of Zero 
When the radix is set to 0, the function strtol (3) will adapt to different number bases. 

Numbers are considered decimal unless they are prefixed by a leading zero (such as 017) or a 

leading zero and the letter x (such as 0XDEADBEEF or 0XDEADBEEF). The 0x notation introduces 

a hexadecimal number, for radix 16. If the leading zero is present without the letter x, then the 
conversion radix is set to 8, for octal. 

The following demonstrates these types of conversions: 

$ ./radix 0 '012' 0 '0x12' 0 '12' 
strtol('0121,&ep,0) => 10; ep=1', errno=0 
strtol('0x121,&ep,0) => 18; ep=‘', errno=0 
strtol('12',&ep,0) => 12; ep='', errno=0 
$ 

The session shown tests octal, hexadecimal, and decimal conversions, in that order. 

Testing Binary Conversions 

Even binary conversions are possible. The following session output shows some examples in 
which the radix is 2. 

$ ./radix 2 '00001010' 2 '00010110' 
strtol('00001010',&ep,2) => 10; ep=1', errno=0 
strtol('00010110',&ep,2) => 22; ep='', errno=0 
$ 
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Testing Radixes Above 16 

Numbers can be represented in radixes above 16. These are not used very often, but they are 
available if you have the need: 

$ ./radix 36 'BSD1 36 'FREEBSD' 36 'LINUX!1 36 'UNIX!' 36 'HPUX' 36 'SUN' 
strtol(1 BSD1,&ep,36) => 15277; ep=1’, errno=0 
strtol( 'FREEBSD' ,&ep,36) => 2147483647; ep=", errno=34 
strtol('LINUX!',&ep,36) =>36142665; ep='!', errno=0 
strtol('UNIX!',&ep,36) => 1430169; ep='!', errno=0 
strtol( 'HPUX' ,&ep,36) => 826665; ep=", errno=0 
strtol('SUN',&ep,36) =>37391; ep='', errno=0 
$ 

Above base 10, the conversion routines consider the letter A to be the digit 10, B to be the digit 

11, and so on. Lowercase letters are treated the same as their uppercase counterparts. Radix 36 

is the highest base supported and uses the letter Z defined as the value 35. 

The radix 36 value of the string UNIX is 1430169. Others, including the value for the string 

FREEBSD, were reported. Could these be magic numbers in some contexts? 

Testing for Overflows and Underflows 
If an attempt is made to convert a very large value, the test program fails: 

$ ./radix 10 '99999999999999999999' 
strtol('99999999999999999999',&ep,10) =>2147483647; ep=", errno=34 

$ 

Notice how the result 2147483647 was obtained instead of the correct decimal value of 

99999999999999999999. Yet, the ep variable shows that the scan made it to the end of the 

string. The display of errno=34 provides a clue to the problem. 

Interpreting long_max and erange 

Overflows are handled by a special return value L0NG_MAX for strtol(3). When strtol(3) 

returns the value LONGJVIAX, the value of errno must be tested as well. If it has the value 

ERANGE posted to it, then it can be concluded that an overflow has indeed occurred. 

The overflow example tried in the previous section reported a return value of 2147483647. 

This is the value L0NG_MAX (FreeBSD). Additionally, the value of errno=34 was reported. 

Under FreeBSD, this is the value ERANGE. Clearly, these two indications together conclude that 

an overflow has occurred. 

The Overflow Test Procedure 
Having strtol(3) return 2147483647 (L0NG_MAX) whenever an overflow occurs would seem 

to preclude the function from ever being able to return this value normally. However, the over¬ 

flow is further indicated by setting errno to ERANGE. This leads to the following procedure for 

testing for overflows and underflows: 
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1. Clear variable errno to zero. This is necessary because strtol(3) will not zero it. 

2. Call strtol(3) to perform the conversion. 

3. If the value returned is not L0NG_MAX (and not LONGJVIIN), then no overflow has 

occurred, and you are finished. Otherwise, proceed to step 4. 

4. Test the value of errno. If it is still cleared to zero from step 1, then there was no over¬ 

flow during the conversion, and the value returned truly represents the converted input 

value. 

5. If the errno value is ERANGE, then an overflow during the conversion has occurred and 

the returned value L0NG_MAX is not representative of the input value. 

The same logic can be applied to testing for underflows when the value L0NG_MIN is returned 

in step 3. 

Proving the Overflow Test Procedure 
You can prove this procedure with the test program from Listing 10.3: 

$ ./radix 10 '99999999999999999999' 10 2147483647 
Strtol('999999999999999999991,&ep,10) =>2147483647; ep=' *, errno=34 
strtol('2147483647',&ep,10) => 2147483647; ep=", errno=0 
$ 

The first conversion fails and returns L0NG_MAX (value 2147483647) and shows an errno value 
of 34, which is known to be the value ERANGE (under FreeBSD). 

Notice that the second decimal conversion uses as input the maximum long value of 

2147483647, and it converts successfully and returns L0NG_MAX. This time, however, errno is 

not the value of ERANGE but remains as zero instead. This is due to line 45 in Listing 10.3, 
which reads 

errno = 0; /* Clear prior errors, if any */ 

Recall that the errno value is never cleared by a successful operation. It is only used to post 

errors. To allow differentiation between a successful conversion and an overflow, the value 

errno must be cleared before calling strtol(3). Otherwise, you will be testing a leftover error 
code if the conversion is successful. 

Coding an Overflow/Underflow Test 
If lval is assigned the strtol(3) return value, the overflow/underflow test should be written 
like this: 

if ( lval == L0NG_MAX || lval == LONGJVIIN ) { 
/* Test for over / under flow */ 
if ( errno == ERANGE ) { 

puts("Over/Under-flow occurred!"); 

This test only works if you clear errno to zero before calling the conversion function. 
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Testing for strtoul(3) Overflows 
Function strtoul(3) does unsigned integer conversions. The maximum unsigned value is not 

the same as the maximum signed value. Consequently, the maximum value returned is 

UL0NG_MAX. Otherwise, the general test procedure for overflow is quite similar to the one just 
covered. 

1. Clear variable err no to zero. 

2. Call strtoul(3) to perform the conversion. 

3. If the value returned is not UL0NG_MAX, then no overflow has occurred and you are fin¬ 

ished. Otherwise, proceed to step 4. 

4. Test the value of errno. If it is still cleared to zero from step 1, then there was no over¬ 

flow during the conversion, and the value returned truly represents the input value. 

5. If the errno value is ERANGE instead, then an overflow during conversion has occurred 

and the returned value ULONGJVIAX is not truly representative of the input value. 

Because strtoul (3) is an unsigned conversion, you have no minimum value to test like the 

L0NG_MIN value for strtol(3). 

Large Integer Conversions 
With the migration of UNIX systems to 64-bit CPUs, the C language now supports 64-bit inte¬ 

gers. These data types are 

• long long int 

• unsigned long long int 

or simply 

• long long 

• unsigned long long 

With the appearance of these C data types comes the need to make conversions from strings to 

these 64-bit types. 

Some UNIX platforms now support the strtoll(3) and strtoull(3) functions. Their synop¬ 

sis is as follows: 

#include <stdlib.h> 

long long strtoll(const chan *str, char **endptr, int base); 

unsigned long long strtoull (const char *str, char **endptr, int base); 

These functions work the same as their strtol(3) and strtoul(3) counterparts. The only 

difference is that you must use the macro L0NGL0NG_MAX or L0NGL0NGJ/IIN when testing for 

overflow/underflows for strtoll(3). Use the macro UL0NGL0NG_MAX for strtoull(3). 
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Note 

Many UNIX systems of today define the C data type long to be the same size as the type int. As 

UNIX operating systems move to 64-bit CPU platforms, and as the application software migrates 

with it, the long data type will become 64 bits in length. When that happens, the strtol(3) and 

strtoul(3) functions will perform 64-bit conversions instead of the present 32-bit. 

Consequently, some implementations such as HPUX-11 do not provide a strtoll(3) function. 

Instead, a 32- or 64-bit data model is chosen, and the correct implementation of strtol(3) and 

strtoul(3) is linked in to match the data model. 

BSD strtoq(3) and strtouq(3) Functions 
BSD is a little different in its large integer conversions. FreeBSD supports its strtoq (3) and 

strtouq(3) functional equivalents of the strtoll(3) and strtoull(3) functions. The 64-bit 

C data types that FreeBSD uses are 

Signed 64-bit quad_t 

Unsigned 64-bit u_quad_t 

The function synopsis of the conversion routines for these data types is as follows: 

#include <sys/types.h> 
#include <stdlib.h> 
#include <limits.h> 

quad_t strtoqfconst chan *nptr, char **endptr, int base); 

u_quad_t strtouq(const char *nptr, char **endptr, int base); 

The C macros that you should use with strtoq(3) are QUADJVIAX and QUADJVIIN, when testing 

for overflow and underflow, respectively. For strtouq (3), you must use the C macro 

UQUAD_MAX instead. Neither of these appears in the man (1) pages for these routines, but they 
can be found in the include file <machine/ limits. h>. 

Note 

It seems likely that FreeBSD will change its C data type long to be 64-bit in the future. This will result 

in the strtol(3) and strtoul(3) functions performing 64-bit conversion when that happens. 

The strtod(3) Function 
The strtod (3) function is used to perform string-to-floating point conversions. This function 

is quite similar in operation to the integer conversion functions just covered, but it has a few 
new wrinkles. The synopsis for strtod (3) is as follows: 
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#include <stdlib.h> 
#include <math.h> 

double strtod(const char *nptr, char **endptr); 

Note that there is no base argument. No radix conversions are available for floating-point con¬ 
versions other than base 10. 

The input string nptr and the second argument endptr are used in precisely the same way 
they are used in the strtol(3) function. 

Using the strtod(3) Function 
The following shows how the strtod (3) function can be used to convert a floating-point 
value in a string buffer to the C double type: 

static char buff] = "-32000.009E+01"; 
char *ep; /* Returned pointer */ 
double dval; /* Converted value */ 

dval = strtodfbuf,&ep); /* Convert but to double */ 

The input string is converted and the floating-point result is returned and assigned to the vari¬ 

able dval. The point where the conversion ends is passed back to the caller by storing the 

pointer in pointer variable ep. In this example, ep should end up pointing to the null byte at 

the end of the buff] array. 

Testing for Math Errors 
This function adds a new twist to overflow and underflow detection. In order to test for over¬ 

flows and underflows, you must include the file <math. h>: 

#include <math.h> 

This include file defines the macro HUGE_VAL, which will be needed in the tests. Three return 

values from strtod(3) require further investigation by the program: 

• +HUGE_VAL 

• 0.0 

• -HUGE_VAL 

The test procedure will rely on the fact that the errno value is cleared before calling 

strtod(3). 

Testing for Overflow 
When the value +HUGE_VAL is returned, you must check errno to see if the value ERANGE was 

posted there. If errno is set to ERANGE, then the conversion process had an overflow. If errno 

remains cleared to zero, then the value returned is a valid number. 
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Testing for Underflow 
When the value -HUGE_VAL is returned, you must also check errno to see if the error ERANGE 

was posted there. If errno remains cleared to zero, then the returned value is a valid number. 

Testing for Exponent Underflow 
The function strtod(3) returns 0.0 when the converted value is extremely small in value 

fractionally—so small that the underlying data type cannot represent it. When zero is returned 

and ERANGE is posted to the errno variable, then it is known that the conversion failed because 

the input value was too small a fraction to represent. Another way to state this is that the expo¬ 

nent value underflowed. 

Handling Exponent Underflow 
In many cases, you might be happy just to round that small fractional value to zero and move 

on. However, this may not be suitable for all applications, especially scientific ones. 

A scientific model may depend on the precision of that variable to represent a very small value. 

If precision is maintained, then that value might be later multiplied by a large value to com¬ 

pute a reasonable result. 

However, if you simply allow the value to round to zero, then the multiplied result will be zero 

also—leading to an incorrect answer. Thus, it is better to abort the computation and point out 

that the value could not be contained with the necessary precision. 

A significant loss of precision is likely when operating in this extreme exponent range. 

Flowchart of Math Error Tests 
The entire procedure for math error testing for strtod(3) is shown in Figure 10.1 as a flow¬ 

chart. This should help summarize the overflow and underflow detection logic that should be 
used. 
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FIGURE 10.1 

Testing for overflow and 

underflow after calling 

strtod(3). 

Summary 
In this chapter, you learned about the limitations of the simple atoi(3) family of functions. 

The sscanf (3) function was discussed as a better replacement, and it was noted that some 

limitations remain with that approach. The remainder of the chapter covered the details of the 

strtol(3), strtoul(3), and strtod(3) functions. 

The next chapter covers the UNIX library calls for working with dates and times. There you 

will learn how each user can manage his own concept of a time zone, and the system manages 

time for everyone. Conversions from strings to dates and dates to strings 
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CHAPTER 11 

UNIX DATE AND 
TIME FACILITIES 

Date and time facilities are important to nearly everything you do in UNIX. When a 

process starts, the time is recorded in a kernel table. When you create a new file, the 

creation date and time are recorded. Modification times are recorded when you edit a 

file. Even when you just view a file, its access time is updated. 

In this chapter, you will learn about date and time management functions that are available for 

your use in applications. This chapter covers 

• UNIX Epoch Time 

• Local, GMT, and UTC time zones 

• The localtime(3) and gmtime(3) functions 

• The asctime(3) function 

• The tzset (3) function 

• The mktime(3) function 

• the strftime(3) function 

UNIX Epoch Time 

When reading the man(1) pages regarding time functions for UNIX, you will frequently encounter 

the term Epoch Time. This is the beginning of time for UNIX: January 1, 1970, at 00:00:00 GMT 

(Greenwich Mean Time). This coincides with the value of zero for the data type time_t. 

Time Zones 
Since the UNIX kernel bases its Epoch Time on the Greenwich Mean Time (GMT) time stan¬ 

dard, it is instructive to do a review of time standards in general. Then, local time zones will 

be covered to provide a clear understanding of how they are related to the UNIX kernel clock. 



208 ADVANCED UNIX PROGRAMMING 

Introducing World Time Standards 
Originally, the GMT time standard was the world standard. Since then, a new world standard 

has emerged to coordinate the precise synchronization needed for distributed computer sys¬ 

tems. 

UNIX had its beginnings when GMT was the still the world standard. Consequently, much of 

the UNIX literature is steeped in the references to GMT today. 

The GMT Time Standard 
Greenwich Mean Time is based on the prime meridian of the Earth, which in 1884 was estab¬ 

lished as passing through Great Britain’s Greenwich Observatory. Since then, the observatory 

has moved and been renamed the Royal Greenwich Observatory. However, its original location 

is still used to define the prime meridian. 

The precise GMT time is determined by observations of the Sun. Due to variations in the 

Earths rotation and its orbit around the Sun, small corrections are computed regularly and 

applied to arrive at the precise time. 

The UTC Time Standard 
UTC is the abbreviation for the time standard named Universelle Tempes Coordinate in 

French, or Coordinated Universal Time in English. This standard is based on atomic clock 

measurements instead of solar observations, but it still uses the prime meridian. This standard 

replaced the GMT in 1986. 

Choosing a World Time Standard 
For many people, a fraction of a second is insignificant. They can set their UNIX system clocks 

according to the GMT time standard or the UTC time standard. The standards are so similar 

that they are sometimes used interchangeably. 

The correct designation to use for the world time standard today is UTC. Consequently, new 
software should be written to display UTC instead of GMT. 

Understanding Local Time Zones 
UNIX allows for those people who do not live in the UTC time zone. This is done by taking 

your local time zone and adding an offset to arrive at UTC. In the Eastern time zone in North 

America, for example, UTC time is local time plus five hours. For much of Europe, it is the 
local time minus one hour. 

Customizing Local Time Zones 
Since UNIX is a multiuser operating system, it is designed to permit a user to define his own 

concept of local time. The tzset(3) function is used internally by a number of date and time 

functions to determine the local time zone. This function will be examined in more detail later 

in this chapter. The important thing to note is that it looks for an exported environment vari¬ 

able TZ to define your preference for local time. Your TZ value may be different from what 
other users on your system are using. 



Chapter 11 • UNIX DATE AND TIME FACILITIES 209 

Setting the tz Variable 

When the environment variable TZ is found and has a properly defined value, the tzset (3) 

function will configure your local time zone. This will be used by the rest of the date and time 

functions where necessary. If the value TZ is not defined or is incorrectly set, the tzset (3) 
function falls back on the following zone information file (for FreeBSD): 

/etc/localtime 

Failing variable TZ and the zone information file, UTC time is assumed. 

To configure your session for Eastern Standard Time and no daylight saving time, you can use 

$ TZ=EST05 
$ export TZ 

This sets the time zone name to EST. Since it is west of the prime meridian, the offset is a posi¬ 

tive 05 hours (think of this as local time + 5 hours = UTC). Eastern Daylight Saving Time can 
be configured as follows: 

$ TZ=EST05EDT 
$ export TZ 

If you need more information on time zone configuration, a good place to start is the man (1) 

page for tzset(3). More advanced information is found in the tzfile(5) man pages. 

Defining the Date and Time Data Type 
Originally, the UNIX time and date value was stored in the C data type long. As time passed, 

and as standardization efforts got underway, it was recognized that this was not good for long- 

range planning. The capacity of the long integer was going to run out someday (January 19, 

2038, at 03:14:07 UTC, to be precise). The next second after that will cause the 31-bit positive 

number to roll over to a 32-bit value, making it a negative number. 

Since the long integer data type was going to overflow in the near future, it was decided that 

date and time deserved its own special data type: time_t. This permits the underlying data 

type to be changed at a future date, requiring that applications only be recompiled. 

To obtain the current system date and time from the UNIX kernel, you call upon the time (3) 

library function. Its synopsis is as follows: 

#include <time.h> 

time_t time(time_t *tloc); 

The single argument provided to the time(3) function is optional (it must be null when not 

provided). When provided, it must point to a time_t variable that is to receive the current 

date and time. This will be the same value returned by the function. For example 

time_t cur_time; 

time(&cur_time); 
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If the pointer argument cur_time is invalid, the value (time_t) -1 is returned and errno is set 

to the value EFAULT. 

While the time since Epoch Time is useful to the UNIX kernel, it must be converted into vari¬ 

ous other forms to be displayed or to work with its components. The next section examines 

the library functions that are available for this. 

Time Conversion Functions 
All date and time functions in this section require the include file <time. h>. In the remainder 

of this chapter, the following conversions will be examined: 

• time_t values to ASCII date/time strings 

• time_t values to date/time components (second, minute, hour, day, month, year, and 

so on) 

• Date/time components to ASCII strings 

• Date/time components to time_t values 

In addition to looking at the various conversion functions, a simple C++ class DTime will be 

built and illustrated. This object has been left as simple as possible to prevent obscuring the 

underlying functions being discussed. For this reason, the DTime class in its present form is not 

entirely suitable for use in production-mode programs. The include file and the class definition 

for DT ime are shown in Listing 11.1. 

LISTING 11.1 dtinie. h—The Declaration of Class DTime 

1: // dtime.cc 
2: 
3: #include <iostream.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <string.h> 
7: #include <errno.h> 
8: #include <time.h> 
9: 
10: extern "C" { 
11: extern char *ctime_r(const time_t *clock, char *buf); 
12: extern struct tm *localtime_r(const time_t *clock, struct tm *result); 
13: extern struct tm *gmtime_r(const time_t *clock, struct tm ‘result); 
14: extern char *asctime_r(const struct tm *tm, char *buf); 
15: } 
16: 
17: //////////////////////////////////////////////////////////// 
18: // Experimental DTime Class : 
19: //////////////////////////////////////////////////////////// 
20: 
21: class DTime : public tm { 
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22: private: 
23: time_t dt; // Date/time in epoch time 
24: char but[ 128]; // ctime(3)/strftime(3) buffer 
25: public: 
26: DTime(); 
27: DTime &operator+=(long secs); // Add time 
28: DTime &operator-=(long secs); // Subtract time 
29: inline time_t time() { return dt; } 
30: time_t getTime(); // time(3) 
31: timejt putTime(time_t dt); // Put a time value into this->dt 
32: char *ctime(); // ctime(3) 
33: struct tm *localtime(); // localtime(3) 
34: struct tm *gmtime(); // gmtime(3) 
35: char *asctime(); // asctime(3) 
36: time_t mktime(); // mktime(3) 
37: char *strftime(const char *format); // strftime(3) 
38: }; 
39: 
40: extern ostream &operator«(ostream &ostr,DTime &obj); 
41: 
42: // End dtime.h 

The class DTime inherits structure members from the public tm (line 21), which will be dis¬ 

cussed later. Private member dt is the time_t data type that is required for several of the func¬ 

tions being discussed (line 23). A number of other functions require the use of a buffer. These 

use buf [ ] in line 24. 

Listing 11.2 shows the constructor, the operators += and -=, and the getTime() and 

putTime() methods. 

LISTING 11.2 gettime.cc—The Constructor and getTime() Methods of DTime 

1: // gettime.cc 
2: 
3: #include "dtime.h" 
4: 
5: //////////////////////////////////////////////////////////// 
6: // Constructor: 
7: //////////////////////////////////////////////////////////// 
8: 
9: DTime::DTime() { 
10: dt = (time_t)(-1); // No current time 
11: } 
12: 
13: //////////////////////////////////////////////////////////// 
14: // Add seconds to the current time in this->dt : 
15: //////////////////////////////////////////////////////////// 
16: 
17: DTime & 
18: DTime::operator+=(long secs) { 
19: dt += (time_t) secs; 
20: return *this; 
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} 

//////////////////////////////////////////////////////////// 
// Subtract seconds to the current time in this->dt : 
//////////////////////////////////////////////////////////// 

DTime & 
DTime::operator-=(long secs) { 

dt -= (time_t) secs; 
return *this; 

} 

//////////////////////////////////////////////////////////// 
// Return current time : 
//////////////////////////////////////////////////////////// 

time_t 
DTime::getTime() { 

return ::time(&dt); 

} 

//////////////////////////////////////////////////////////// 
// Allow the caller to plug-in a time value : 
//////////////////////////////////////////////////////////// 

time_t 
DTime::putTime(time_t dt) { 

return this->dt = dt; 
} 

// End gettime.cc 

The constructor initializes the member dt to the value (time_t) (-1) (lines 9-11). This is the 

error value that is returned by mktime (3), which is used here to indicate that no time is set. 

The operators += and - = are overloaded for this class to allow the user to add or subtract time 

from the object (lines 17-31). This will be demonstrated later in the chapter. 

The member getTime() retrieves the current time into member dt using the function time (3) 

that was discussed earlier (lines 37-40). The same value is returned. 

The putTime () method is provided so that the user can supply a time_t value of his own 

choosing (lines 46-49). 

Converting Time to String Form Using ctime(3) 
This is perhaps the easiest of the date and time conversion functions to use. This function 

takes the time_t value as input and converts it to an ASCII string that can be displayed. The 

synopsis for ctime(3) is as follows: 
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#include <time.h> 

char * ctime(const time_t *timep); 

The ctime(3) function requires a pointer to the time variable that contains the time and date 

to be converted. The following example shows how to obtain the current system date and pass 

it to ctime (3). The string returned is then displayed: 

time_t td; /* Time and Date */ 

time(&td); /* Get current date */ 
printf("Today is %s", ctime(&td) ); 

The 26-byte string returned by ctime (3) is a date and time string of the form 

Mon Jan 18 22:14:07 2038 

The function returns a pointer to an internal static buffer, which is valid only until the next 

call. One annoying aspect of this returned date string is that a newline character is placed at 

the end. 

The ctime_r(3) Function 
The ctime (3) function returns a pointer to its internal static buffer. This makes it unsafe for 

threaded programs. A thread-safe version of this routine is available as ctime_r (3): 

#include <time.h> 

char *ctime_r(const time_t *clock, char *buf); 

The buffer supplied for argument but must be at least 26 characters long. The pointer value 

returned is the same pointer supplied for but. 

The DTime:: ctime () method is shown in Listing 11.3. 

LISTING 11.3 ctime. cc—The Implementation of the DTime:: ctime () Method 

1: // ctime.cc 
2: 
3: #include "dtime.h" 
4: 
5: //////////////////////////////////////////////////////////// 
6: // Returns the ctime(3) string for the current time_t 
7: // value that is stored in this->dt. This routine assumes 
8: // that this->getTime() has been previously called: 
9: //////////////////////////////////////////////////////////// 
10: 
11: char * 
12: DTime::ctime() { 
13: char *cp; 
14: 
15: ::ctime_r(&dt,buf); // Put ctime(3) string into buf[] 
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16: if ( (cp = strchr(buf, 1 \n' )) ! = NULL ) 

17: *cp = 0; // Eliminate pesky newline character 

18: return buf; // Return ptr to buffer 

19: } 
20: 
21 : II End ctime.cc 

The DTime: :ctime() method calls on the function ctime_r(3). The function ctime_r(3) 

takes the time that is in the member dt and converts it to ASCII form in the private buffer 

buf [ ] (line 15). The annoying newline character is eliminated in lines 15 and 16. Line 18 

returns the pointer to the private buffer containing the string. 

The localtime(3) and gmtime(3) Functions 
The programmer often needs direct access to the date and time components. The time_t data 

type may be convenient for math, but it is not always convenient for all forms of date arith¬ 

metic. To extract the date components from a time_t value, the function localtime(3) or 

gmtime(3) can be used: 

#include <time.h> 

struct tm *localtime(const time_t *timep); 

struct tm *gmtime(const time_t *timep); 

struct tm *localtime_r(const time_t *clock, struct tm *result); 

struct tm *gmtime_r(const time_t *clock, struct tm *result); 

The localtime(3) function returns time and date components according to the local time. To 

obtain time components according to the UTC time zone, use the gmtime(3) function. These 

functions both accept a pointer to a time_t value that is to be converted. The result from these 

functions is only valid until the next call. 

The functions localtime_r (3) and gmtime_r(3) are thread-safe versions of the older 

localtime(3) and gmtime(3) functions, respectively. They have the additional pointer 

argument result, into which the results are written. This is different from returning the 

results in an internal static buffer as the older localtime (3) and gmtime (3) functions do. 

The returned result is a pointer to a struct tm, which provides access to date and time com¬ 

ponents such as the day of the month and the year. The following example obtains the current 

date using time(3) and then calls on localtime(3). The returned results are copied to the 
structure variable dc in this example: 

time_t dt; /* Current date */ 
struct tm dc; /* Date components */ 

time(&td); /* Get current date */ 
dc = *localtime(&dt); /* convert dt -> dc */ 
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A better way to place the results into the dc structure is to use the new re-entrant counterpart 

oflocaltime(3): 

time_t dt; /* Current date */ 
struct tm dc; /* Date components */ 

time(&td); /* Get current date */ 
localtime_r(&dt,&dc); /* convert dt -> dc */ 

In this manner, the results are placed into dc straightaway, rather than copying the results from 

one structure to another. 

Listing 11.4 shows the implementation of DTime: :localtime() and DTime: :gmtime() meth¬ 

ods using localtime_r(3) and gmtime_r(3), respectively. 

LISTING 11.4 localtime, cc—The Implementation of DTime:: localtime () and 

DTime::gmtime() 

1: // localtime.cc 
2: 
3: #include "dtime.h" 
4: 
5: //////////////////////////////////////////////////////////// 
6: // Return the local time components, based upon the 
7: // current value of this->dt; assumes that a prior 
8: // call to getTime() has been made: 
9: //////////////////////////////////////////////////////////// 
10: 
11: struct tm * 
12: DTime::localtime() { 
13: ::localtime_r(&dt,this); 
14: return this; 
15: } 
16: 
17: //////////////////////////////////////////////////////////// 
18: // Return the UTC (GMT) time components, based upon the 
19: // current value of this->dt; assumes that a prior 
20: // call to getTime() has been made: 
21: //////////////////////////////////////////////////////////// 
22: 
23: struct tm * 
24: DTime::gmtime() { 
25: ::gmtime_r(&dt,this); 
26: return this; 
27: } 
28: 
29: // End localtime.cc 

In both of these methods, the DTime class itself is used in the second argument because it 

inherits from struct tm. The pointer to the class is returned. 
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The Members of the struct tm 
This is the structure that is used by several of the date/time functions, including 

local-time(3), gmtime(3), and mktime(3). The structure is defined as follows: 

struct tm { 
int tm_sec; /* seconds */ 
int tm_min; /* minutes */ 
int tm_hour; /* hours (0-23) */ 
int tm_mday; /* day of the month (1-31) */ 
int tm_mon; /* month (0-11) */ 
int tm_year; /* year 2000=100 */ 
int tm_wday; /* day of the week (0-6) */ 
int tm_yday; /* day in the year (0-365) */ 
int tm_isdst; /* daylight saving time */ 

}; 

This C structure is defined in the file <time. h>. The individual members of this structure are 

documented in Table 11.1. 

Warning 

Note that member tm_mon starts at zero. To produce a month number 1-12, you must add 1 to this 

value. 

Note also that you must add 1900 to member tm_year to arrive at the century. 

0 Note 

TABLE 11.1 

The member tm_isdst has three possible states: 

When it is positive, daylight saving time is in effect. 

When it is zero, daylight saving time is not in effect. 

When it is negative, daylight saving time information is not known or is not available. 

The struct tm Structure Members 

Member Description 

tm_sec The number of seconds after the minute. Normally the range is 0 to 59, but this value can 

be as high as 61 to allow for leap seconds. 

tmjnin The number of minutes after each hour; it ranges in value from 0 to 59. 

tm_hour The hour past midnight, from 0 to 23. 

tmjnday The day of the month, from 1 to 31. 

tm_mon The month of the year, from 0 to 11. 
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Member Description 

tm_year The year, expressed as years since 1900. For example, the year 2010 is represented as 110. 

tm_wday The day of the week, in the range 0 to 6. Day 0 is Sunday, 1 is Monday, and so on. 

tm_yday The day of the year, in the range 0 to 365. 

tm_isdst This is a flag with three possible states. See the Note immediately prior to this table. 

The class DTime that is developed in this chapter inherits from the struct tm. Consequently, 

the members are available to the programmer directly. (Its access is public; see line 21 of 

Listing 11.1.) 

Conversion of Date/Time Components to Strings Using 
the asctime(3) Function 

The asctime(3) function accepts the date and time components from the struct tm and com¬ 

poses an ASCII-formatted date string. Its synopsis is as follows: 

#include <time.h> 

char *asctime(const struct tm *tm_ptr); 

char *asctime_r(const struct tm *tm, char *buf); 

The single argument is a pointer to an input struct tm, which will be used to format a date 

string. The returned pointer from asctime(3) is to a static buffer that is valid only until the 

next call. Function asctime_r(3) is the re-entrant counterpart, which requires a destination 

buffer buf [ ] that is at least 26 bytes in size. 

LISTING 11.5 asctime. cc—The Implementation of DTime: :asctime() 

1: // asctime.cc 
2: 
3: #include "dtime.h" 
4: 
5: //////////////////////////////////////////////////////////// 
6: // This function returns the asctime(3) string, for the 
7: // present members of this class (struct tm). This method 
8- // assumes that the present struct tm members are valid. 
9: lltlllllllllllltllllllllllllllllllllllllllllllllllllllllllll 
10: 
11: char * 
12: DTime::asctime() { 
13: return ::asctime_r(this,buf); 
14: } 
15: 
16: // End asctime.cc 
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In the implementation of this DTime method, the function asctime_r (3) is used, passing the 

pointer this as input in the first argument. This works because the class inherits from the 

struct tm. The second argument is set as buf in line 13 to receive the ASCII result, which is 

then returned. 

Thetzset(3) Function 
Previously, it was indicated that the tzset (3) function is responsible for establishing your def¬ 

inition of local time. This function looks for the exported TZ environment variable and falls 

back to the system-configured zone information file if it is not defined. The synopsis for 

tzset (3) is as follows: 

#include <time.h> 

extern long int timezone; /* Not BSD */ 
extern char *tzname[2]; 
extern int daylight; /* Not BSD */ 

void tzset(void); 

The tzset (3) function is called on by any of the library date functions that need to know 

about the configured local time for this session. For example, after the function localtime(3) 

returns, it is known that the function tzset (3) has been called, because it must know about 

local time. 

Once the function tzset (3) has been called, it does not need to be called again. However, if 

you aren’t certain that it has been called, there is no harm in calling it again. 

Thetzset(3) External Variables 
The side effect of calling function tzset (3) is that certain external variables are assigned val¬ 

ues. These indicate to the date library routines what the local time zone is. These variables are 

extern long int timezone; /* Not BSD */ 
extern char *tzname[2]; 
extern int daylight; /* Not BSD */ 

Understanding the timezone External Variable 
The value timezone is the number of seconds you must add to your local time to arrive at 

UTC time. If you are in the Eastern Standard Time zone, then you need to add five hours to 

the local time to arrive at UTC time. To configure the external variable timezone, this value 
should be +18000 (seconds). 

FreeBSD, OpenBSD, and NetBSD do not appear to support the external variable timezone. 
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Understanding the daylight External Variable 
The value of the daylight external variable indicates the following: 

• When daylight is true (non-zero), daylight saving time is in effect. 

• When daylight is false (zero), daylight saving time is not in effect. 

' ■ ; ~ ' y * . ■ . ' 4 .„,, . 

Note 

FreeBSD, OpenBSD, and NetBSD do not appear to support the external variable daylight. 

Understanding the tzname[ ] External Array 
The tzname [ ] array of two-character strings provides the name strings of two time zones. The 

normal time zone string is provided in tzname[0], and the daylight saving time zone is pro¬ 

vided in tznamef 1 ]. Examples might be EST and EDT for Eastern Standard Time and Eastern 

Daylight Saving Time, respectively. 

When daylight saving time is not in effect, array elements tzname[0] and tzname[1 ] will 

point to the same C string. 

Using the tzname [ ] External Array 
To display the time zone currently in effect, use the following code on a non-BSD system: 

tzset(); /* Make sure externs are set */ 
printf("Zone is ’%s'\n", tznamefdaylight ? 1 : 0]); 

Warning 

Do not rely on the daylight external variable to be exactly one or zero. The documentation simply 

states that this value will be non-zero if daylight saving time is in effect. 

Determining the Time Zone Under BSD 
If you find that there is no support for the external variables timezone and daylight, the time 

zone can be determined by a more tedious procedure: 

Date/time components */ 
Current time/date */ 
tmvals.is_dst */ 

Get current time */ 
Populate tmvals */ 

x = tmvals.tm_isdst < 0 ? 0 : tmvals.tm_isdst;/* Assume not DST if unknown */ 
printf("Zone is '%s1\n",tzname[x ? 1 : 0]); /* Print time zone */ 

It must be noted that the assignment to x in the example was done because the value in 

tmvals. tm_isdst is a three-state flag. It can be negative, indicating that the time zone is not 

known. In the example, the code assumed that daylight saving time was not in effect, if it was 

not known. 

struct tm tmvals; /* 
time_t td; /* 
int x; /* 

time(&td); /* 
localtime_r(&td,&tmvals); /* 
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Creating Epoch Time Values with the mktime(3) 
Function 

If you want to construct a time_t value based on a specific date, you need the mktime (3) 

function. Its synopsis is as follows: 

#include <time.h> 

time_t mktime(struct tm *tm_ptr); 

The mktime(3) function requires a pointer to a struct tm. This input/output structure con¬ 

tributes date and time components that are used to compute a time_t value, which is 

returned. Some values are also returned in this structure. 

Testing for inktime(3) Errors 
If the values in the struct tm are such that a date cannot be computed, the value (time_t) 

(-1) is returned. This happens when tm_year is set to a year before 1970 or when non¬ 

existent dates are supplied, such as February 30 or June 35. 

Setting Input Members of struct tm for mktime(3) 

Not all of the struct tm members are used for input when passed to the mktime (3) function. 

The following members are mandatory for input and are not altered by mktime (3): 

• tm_sec (seconds: 0 to 61) 

• tm_min (minutes: 0 to 59) 

• tm_hour (hours: 0 to 23) 

• tm_mday (days of month: 1 to 31) 

• tm_mon (months: 0 to 11) 

• tm_year (years: year 2000 is value 100) 

• tm_isdst (positive for daylight saving time, zero if no daylight saving time in effect) 

Be sure to make the tm_mon member a zero-based month value (0 to 11). 

Members of struct tm Altered by mktime(3) 

The following members are ignored as input but are recomputed and altered before the 
mktime(3) function returns: 

• tm_wday is ignored as input and is recomputed for output. 

• tm_yday is ignored as input and is recomputed for output. 

The fact that these two values are recomputed allows you to plug in a date and time and call 

mktime (3). The returned values in the structure will tell you what the weekday and day of the 
year are. 
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Do not forget to set tm_isdst before calling mktime(3). This input value determines whether day¬ 

light saving time is in effect for the local date and time specified in the other members. 

Failure to set this value correctly can allow the computed UTC time_t value to be incorrect by the 

amount of the daylight saving time difference. 

Warning 

Since the tm_wday and tm_yday values are replaced by recomputed values, never pass a constant or 

read-only structure to mktime(3). 

Implementing the DTime: :mktime() Method 
Listing 11.6 shows how the DTime:: mktime () method was implemented. This method calls 

upon the C function mktime(3) to convert the current struct tm members that this class 

inherits into time_t values, which are returned. This method will be tested later in the 

chapter. 

LISTING 11.6 mktime. cc—The Implementation of the DT ime:: mktime () Method 

1: // mktime.cc 
2: 
3: #include "dtime.h" 
4: 
5: //////////////////////////////////////////////////////////// 
6: // This method assumes that the struct tm members of this 
7: // class already contain valid values (tm_wday and tm_yday 
8: // are ignored in this case): 
9: //////////////////////////////////////////////////////////// 
10: 
11: time_t 
12: DTime::mktime() { 
13: return dt = ::mktime(this); 
14: } 
15: 
16: // End mktime.cc 

Customizing Date and Time Formats with 
strftime(3) 

The string format of the date and time can vary considerably with the preference of each user. 

The strftime(3) function makes it easier for the C programmer to implement custom date 

and time formats. Its synopsis is as follows: 
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#include <time.h> 

size_t strftime(char *buf, size_t maxsize, 
const char *format, const struct tm *timeptr); 

The arguments but and maxsize specify the receiving buffer and its maximum size, respec¬ 

tively. The argument format specifies a printf (3)-like format string. The last argument, 

timeptr, points to a struct tm structure that will supply all of the input date and time values. 

The final output string size is returned, excluding the null byte. 

If the output buffer is not large enough, the value maxsize is returned, indicating that maxsize 

characters were placed into the buffer. However, since there is no room for the null byte when 

this happens, do not expect one to be there. 

The strftime(3) Format Specifiers 
The format specifiers are quite different from the sprintf(3) variety. Table 11.2 lists the for¬ 

mat specifiers that are supported. Notice that each specifier starts with the percent character 

(%) and is followed by a letter. All other text in the format string is copied verbatim, in the 

same way that sprintf(3) does. To include a percent character, use two successive percent 

characters. 

TABLE 11.2 Format Specifiers for strftime(3) 

Specifier Description 

%a The abbreviated weekday name is substituted according to the locale. 

%A The full weekday name is substituted according to the locale. 

%b The abbreviated month name is substituted according to the locale. 

%B The full month name is substituted according to the locale. 

%c The preferred date and time representation for the current locale. 

%d The day of the month in decimal. 

%H The hour of the day in 24-hour form (00 to 23). 

%I The hour in 12-hour form (01 to 12). 

The day of the year as a decimal number (001 to 365). 

%m The month as a decimal number (01 to 12). 

%M The minute as a decimal number. 

%p The string AM or PM according to the time. 

%S The second as a decimal value. 
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Specifier Description 

%U The week number of the current year, expressed as a decimal number. The first 

Sunday is considered the first day of the first week. 

%w The week number of the current year, expressed as a decimal number. The first 

Monday is considered the first day of the first week. 

%w The day of the week as a decimal number (0 to 6). 

%x The preferred date representation without time, for the current locale. 

%X The preferred time representation without date, for the current locale. 

The year without a century (00 to 99). 

%Y The year with the century. 

%Z The time zone or zone abbreviation. 

0,0. 
'O'O A single percent character (%). 

Implementing the DTime: :strftime() Method 
To enable you to try out the strftime(3) C function, it has been included in the class DTime 

as the method DTime::strftime().Thisis shown in Listing 11.7. 

LISTING 11.7 strftime.cc—The Implementation of the DTime:: strf time () Method 

1: // strftime.cc 
2: 
3: #include "dtime.h" 
4: 
5: //////////////////////////////////////////////////////////// 
6: // Call strftime(3) to format a string, based upon the 
7: // current struct tm members. This method assumes that the 
8: // struct tm members contain valid values. 
9: //////////////////////////////////////////////////////////// 
10: 
11: char * 
12: DTime::strftime(const char *format) { 
13: size_t n = ::strftime(buf,sizeof buf-1,format,this); 
14: buf[n] = 0; // Enforce a null byte 
15: return buf; // Return formatted string 
16: } 
17: 
18: //////////////////////////////////////////////////////////// 
19: // Output operator for the DTime object : 
20: //////////////////////////////////////////////////////////// 
21 : 
22: ostream & 
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23: operator«(ostream &ostr,DTime &obj) { 
24: 
25: if ( obj.time() == (time_t)(-1) ) 
26: ostr « "[No current time]"; 
27: else 
28: ostr « obj.ctime(); 
29: return ostr; 
30: } 
31: 
32: // End strftime.cc 

A C++ function operator«() was implemented in Listing 11.7 to make it possible to display 

this DTime class using the overloaded C++ « operator. Line 25 checks to see if there is a cur¬ 

rent time for the object and, if so, the DTime:: ctime () method is called to format a date/time 

string (line 28). This string is then sent to the output stream. 

Testing Class DTime 
Listing 11.8 shows a main program that will instantiate a DTime class and then invoke some 

operations on it. 

LISTING 11.8 main.cc—Themain() Program for Demonstrating the DTime Class 

1: // main.cc 
2: 
3: #include "dtime.h" 
4: 
5: int 
6: main(int argc,char **argv) { 
7: DTime obj; 
8: 
9: (void) argc; 
10: (void) argv; 
11: 
12: // Set and display epoch time in the local time zone : 
13: obj.putTime(0); // Establish epoch time 
14: cout « "Local UNIX Epoch time is 1" « obj « "'\n\n"; 
15: 
16: // Get and display the current time and date : 
17: obj.getTime(); // Get current date/time 
18: cout « "Current time is « obj « "'\n\n"; 
19: 
20: // Compute a date 30 days from today : 
21 : obj += 30 * 24 * 60 * 60; 
22: cout « "30 days from now is « obj « "1 \n"; 
23: 
24: // Get UTC values : 
25: obj.gmtimeO; // Set struct tm values from timejt 
26: cout « "That date is " « obj.tmjnon + 1 « "/" « obj.tm_mday 
27: « "/" « obj.tm_year + 1900 « " 11 



Chapter 11 • UNIX DATE AND TIME FACILITIES 225 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

cout « "which is the same as " 
« obj.strftime("%A %B %d, %Y at %I:%M %p") « "\n"; 

obj.mktime() ; 
cout « "The 1st is 

obj.tm_hour = obj.tm_min = obj.tm_sec = 0; 

return 0; 

// Reset to local time 
obj.getTime(); 
obj.localtime(); 
obj.tmjnday = 1; 

« obj .tm_hour « « obj.tm_min « ":11 « obj.tm_sec 
« 11 UTC\n\n"; 

// Now set the time_t value 
« obj « in this month\n"; 

and set to 1st of the month : 
// Get current time 
// In local time components 
// Set to 1st of the month 

43: } 

Compiling and running this program yields output similar to the following: 

$ make 

cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall gettime.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall ctime.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall asctime.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall localtime.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall mktime.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall strftime.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall main.cc 
cc -0 dtime gettime.o ctime.o asctime.o localtime.0 mktime.o strftime.o main.o - 
lstdc++ 
$ ./dtime 
Local UNIX Epoch time is 'Wed Dec 31 19:00:00 1969' 

Current time is 'Sun May 7 22:05:54 2000' 

30 days from now is 'Tue Jun 6 22:05:54 2000' 
That date is 6/7/2000 2:5:54 UTC 

The 1st is 'Mon May 1 00:00:00 2000' in this month 
which is the same as Monday May 01, 2000 at 12:00 AM 

$ 

The first line of program output states your local time for UNIX Epoch Time. The example 

output was produced in the EST zone. Yours will differ if you are in a different time zone. This 

is accomplished in lines 13 and 14 of main.cc, shown in Listing 11.8. Line 13 sets the UNIX 

Epoch Time, which is the value (time_t) (0). 

The next line of output beginning with Current time is is produced by lines 17 and 18. Line 

17 sets the current date and time by calling obj. get Time (). 

Line 21 adds 30 days to the current time in obj using the overloaded += operator. Then the 

object is directed to cout in line 22 to display the date. 
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Line 25 establishes UTC values in the struct tm members that DTime inherits. Lines 26-29 

access the structure members to send a manually formatted UTC time to cout. 

Line 32 obtains the current time again for object ob j. Lines 33-35 establish the first of the cur¬ 

rent month at midnight. Method DTime: :mktime() is invoked at line 36, and then the object 

is sent to cout in line 37, displaying what the first of the current month is. 

The last test in lines 39 and 40 tests the strftime (3) function by calling on the method 

DTime::strftime(). 

Understanding the Effects of Locale 
Some of the format specifiers that strftime (3) supports format according to a locale. An 

example of this is the %A specifier (the full weekday name). 

In the UNIX context, the locale represents the language and cultural rules that are used on a 

particular host system. It defines the language used for certain messages and the lexicographic 

conventions for date and time. Locale also establishes the character set that is to be used. 

The locale setting will determine whether, for example, your system uses the English names for 

the days of the week or French names. The names of the months are also affected by locale. 

Lexicographical conventions such as the %X specifier dictate whether the time should be shown 

in 12- or 24-hour format, for example. 

For more information about locale, view the man (1) page for mklocale (1) under FreeBSD. 

Summary 
This chapter covered the UNIX time management and conversion functions. The 

next chapter covers the subject of converting user ID and group ID names into 

usernames and group names, and vice versa. These are useful functions when 

working with stat (2) and f stat (2), for example. In addition, the password data¬ 

base routines will be covered. 



CHAPTER 12 

USER ID, PASSWORD, AND 
GROUP MANAGEMENT 

When you log into your UNIX system, you provide a username and a password at the 

login prompt. The login (1) program looks up that username in a database and 

obtains your registered password. It encrypts the password you supply at login and 

compares it to the one that is registered. If they are equal, the login (1) program lets you pass 

in peace. 

Once you are logged in, however, you become just a number to the UNIX kernel. This user ID 

number simplifies user and security management for the kernel. In addition to logging in with 

a user ID, you log in with a group ID. 

In this chapter, you will learn about the following: 

• User ID functions getuid(2) and geteuid(2) 

• Group ID functions getgid(2) and getegid(2) 

• How to change your effective user ID and group ID 

• The /etc/password file and its support functions 

• The /etc/group file and its support functions 

• Supplementary groups and their functions 

Introduction to UNIX User Management 
To find out what user ID number you are, the id (1) command can be used: 

$ id 
uid=1001(me) gid=2010(mygrp) groups=2010(mygrp), 2011(dev) 

$ 

The id (1) command indicates that the user me is user ID number 1001 and is a member of 

group number 2010. The user and group names are shown in brackets. These were obtained 

by looking up the user ID and group ID numbers in the password and group file databases, 

respectively. 
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Understanding Username and User ID Numbers 
The id (1) command previously reported that username me was user ID 1001. Another term 

for the user ID number is the uid number. This is derived from the fact that UNIX systems 

today keep the user ID number in the C data type uid_t. The following summarizes these 

ideas: 

Username me 

User ID (uid) number 1001 

The uid number is how the UNIX kernel knows you. Files and IPC resources that you create 

will have the owner set to this number. 

Understanding Username root 
The uid number 0 is special under UNIX. It is known as the root user ID, though it need not 

be named root. Another term used for this user account is super user. The 0 (zero) uid num¬ 

ber enjoys unrestricted access to the UNIX system as a whole. This is naturally the reason that 

this account is very strictly guarded. 

If you administer a UNIX system (possibly your own), you can be root when you want to be. 

While this might be fun or convenient, you should do most of your chores in a non-root 

account where possible. This allows the kernel to protect itself from harm when accidents 

occur (and they will). 

The Group Name and Group ID Numbers 
In the same way that the uid number refers to a username, the group ID number is used by 

UNIX to refer to a group name. The C data type gid_t is used for group numbers. 

Consequently, the group ID number is frequently referred to as the gid number. 

The group file permits one user to be a member of multiple groups. This permits more flexibil¬ 

ity in giving out access, since users can frequently be members of several functional groups. 

Understanding gid Zero 
Like the uid value of zero, the gid value of zero grants unrestricted access to resources at the 

group level. While this is not the same as being the super user, it still grants dangerous access. 

Consequently, this group is usually granted only to the root account, or a special administra¬ 
tion account. 

The getuid(2) and geteuid(2) Functions 
When the id (1) command runs, it needs to find out what user and group it is running under. 

This is accomplished by the getuid(2) and geteuid(2) functions. The function synopsis is as 
follows: 
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#include <unistd.h> 
#include <sys/types.h> 

uid_t getuid(void); 

uid_t geteuid(void); 

The getuid(2) function returns the real uid number it is operating under, while geteuid(2) 

returns the effective uid. There are no errors returned; these functions always succeed. 

The geteuid (2) function returns the effective uid that is currently in force. UNIX processes 

can arrange to become other uid values temporarily through functions such as setuid(2). For 

security reasons, setuid (2) functionality is severely restricted. The differences between a real 
user ID and an effective user ID will be discussed shortly 

Thegetgid(2) and getegid(2) Functions 
The id (1) command must determine the gid it is operating under. The getgid (2) and 

getegid(2) functions are shown in the synopsis for this purpose: 

#include <sys/types.h> 
#include <unistd.h> 

gid_t getgid(void); 

gid_t getegid(void); 

The getgid(2) function returns the real group ID number, and the getegid(2) function 

returns the effective group ID. There are no errors to check; these functions always succeed. 

Real, Effective, and Saved User ID 
The preceding functions dealt with real and effective user IDs and group IDs. There is a third 

level of identification known as the saved user ID and group ID. Three levels of user ID and 

group ID can be very confusing. The explanations provided for user ID in the following sec¬ 

tions apply equally to group ID. 

The Effective User ID 
Although the setuid (2) call has not been covered yet, recall that it can change the effective 

user ID for a process. The effective user ID determines what level of access the current process 

has. When the effective user ID is zero (root), then the process has unrestricted access, for 

example. 

The Real User ID 
The real user ID is what it sounds like. It identifies who you really are. For example, even 

when you have the effective user ID of root, the real user ID identifies who really is perform¬ 

ing functions under UNIX. 
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The real user ID is normally set only by the login (1) program and remains unchanged for the 

remainder of the session. The exception to this rule is that root can change its real user ID. 

This is how login (1) is able to establish your real ID. 

The Saved User ID 
The saved user ID value is established by root calling setuid (2) or when a new program is 

started by execve(2) (see Chapter 19, “Forked Processes”). When a new executable file is 

started, the effective user ID that is in force at the time is copied to the saved user ID. 

This is helpful when the current process is running an effective user ID that is different from 

the real user ID. When the current process needs to call execve (2) to start a new executable, 

its effective user ID might be changed if the new executable has the set - user - ID bit on. By 

saving the effective user ID, the process is permitted to call setuid(2) to switch back to the 

saved user ID. 

The Identification Role Summary 
The following list summarizes the purpose of the various identifications that are made within 

the UNIX kernel and the controlling ID involved: 

Real user ID Identifies the real user 

Real group ID Identifies the real group 

Effective user ID Determines access 

Effective group ID Determines access 

Supplementary groups Determine access 

Saved user ID Saves the effective user ID 

Saved group ID Saves the effective group ID 

Notice in this list that the effective user ID, effective group ID, and supplementary groups 

determine the access that the process has to restricted objects such as files. The discussion of 

supplementary groups will be deferred until the end of this chapter. 

Setting User ID 
The real and effective user IDs can be changed under the correct conditions. These UNIX func¬ 

tions are strictly controlled because they change the accountability and the access of the calling 
process involved. 

The setuid(2) function permits the real user ID to be changed. seteuid(2) allows the effec¬ 

tive user ID to be altered. The function synopsis for both is as follows: 
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#include <sys/types.h> 
#include <unistd.h> 

int setuid(uid_t uid); 

int seteuid(uid_t euid); 

These functions return 0 when successful and -1 if they fail. The value of errno will be set 
when the call fails (errors EPERM or EINVAL can be returned). 

EPERM—Operation Not Permitted 
that is not permitted. 

Note 

This error states that the function requested an operation 

Table 12.1 summarizes how the setuid(2) function affects the various user ID values that the 

kernel maintains for the process. Note that a non-root process can change the effective user 
ID only for the current process. 

TABLE 12.1 User ID Changes Made by setuid(2) 

User ID As root As non-root 

Real Set Unchanged 

Effective Set Set 

Saved Set Unchanged 

Table 12.2 summarizes the ways that executing a new program affects the user ID values. 

Notice that the real user ID is never changed by executing a new program. The effective user 

ID is changed by execve (2) only when executables have the set - uid bit enabled. The saved 

user ID value is always the effective user ID that was in effect. 

TABLE 12.2 User ID Changes Made by execve (2) 

User ID Noset-uidBit With set-uid Bit 

Real Unchanged Unchanged 

Effective Unchanged Owner of executable file 

Saved Effective Effective 
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Note 

Group ID values function in the same manner as the user ID values shown in Tables 12.1 and 12.2. 

The exception is that when execve(2) starts an executable with the set -gid bit on, the effective 

group ID comes from the group owner of the file. 

Setting Group ID 
Group ID values can be altered according to the same rules as user ID values. For complete¬ 

ness, these functions are shown in the following sections. 

The functions setgid(2) and setegid(2) establish the new real and effective group ID values, 

respectively. The function synopsis is as follows: 

#include <sys/types.h> 
#include <unistd.h> 

int setgid(gid_t gid); 

int setegid(gid_t egid); 

These functions return 0 when successful. Otherwise, -1 is returned, and an error code is 

available in errno. 

The FreeBSD Function issetugid(2) 
Since FreeBSD release 3.0, the function issetugid(2) has been supported. Its synopsis is as 

follows: 

#include <unistd.h> 

int issetugid(void); 

The issetugid(2) function returns the value 1 if the process is considered tainted and 0 oth¬ 

erwise. A tainted process is one in which the execve(2) call established new effective user ID 

and/or group ID values because of the set - uid/gid bits on the executable file. A process can 

also become tainted if any of the real, effective, or saved user ID/group ID values has changed 

since the executable file started its execution. 

Processes inherit the tainted status when fork(2) is called. The tainted status can be cleared 

by restoring the effective user ID and group ID values to the real user ID and group ID values. 

Then call execve(2) to execute a new program that has not had the set -uid/set - gid bits set 

(or the ID values matched the real ones). 

The purpose of this function is to give the library functions a reliable way to determine if the 

present user ID and group ID values can be trusted to identify the user. 
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Warning 

The issetugid (2) function is not portable to non-BSD platforms. 

The /etc/passwd File 
The information database for the username is stored in a simple text file named /etc/passwd. 

This file is formatted as a number of different colon-separated fields. A small example is 
shown: 

root:bbCsSRB7BZfM.:0:0:root:/root:/bin/sh 
bin:*:1:1:bin:/bin: 
daemon:*:2:2:daemon:/sbin: 
adm:*:3:4:adm:/var/adm: 
lp:*:4:7:lp:/var/spool/lpd: 
mail:*:8:12:mail:/var/spool/mail: 
news:*:9:13:news:/var/lib/news: 
uucp:*:10:14:uucp:/var/spool/uucppublic: 
man:*:13:15:man:/usr/man: 
postmaster:*:14:12:postmaster:/var/spool/mail:/bin/sh 
www:*:99:103:web server:/etc/httpd:/bin/sh 
nobody:*:-1:100:nobody:/dev/null: 
ftp:*:404:1::/home/ftp:/bin/sh 
jan:/WzbqfJwMa/pA:503:100:Jan Hassebroek:/home/j hassebr:/bin/ksh 
postgres :gXQrO/hl\lwy5IQ: 506:102:Postgres SQL:/usr/local/postgres:/bin/sh 
student 1:6YI\IV6cIZxiM2E :507:104:Student 01: / home/student 1: / bin/ksh 
$ 

Table 12.3 describes the fields, using user jhassebrasan example. 

TABLE 12.3 The /etc/passwd Fields 

Field Number Value Shown Description 

1 jan Username 

2 /WzbqfJwMa/pA Encrypted password, if present 

3 503 The user ID number for this user 

4 100 The group ID number for this user 

5 Jan Hassebroek The name of the user; also known as the GECOS field 

6 /home/jhassebr The home directory 

7 /bin/ksh The shell program for this user 
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Notice that field 5 contains the user’s full name. 

Note 

UNIX systems today also implement shadow password files. These are readable and writable only to 

the super user. This improves system security by keeping the encrypted passwords hidden. 

If a shadow password file is being used, a single asterisk (*) or x replaces the password in the tradi¬ 

tional /etc/passwd file. 

The Comment Field 
The Comment field is also known as the GECOS field, presumably due to influence from the 

Honeywell GECOS operating system in times past. This field can be subdivided into comma- 

delimited subfields, as described in Table 12.4. 

TABLE 12.4 The Subfields of the Comment/GECOS Field 

Field Example Description 

1 Jan Hassebroek User's full name 

2 3rd Floor Office location 

3 X5823 Office telephone or extension number 

4 905-555-1212 Home telephone number 

In the /etc/passwd file, this would appear as 

...:Jan Hassebroek,3nd Floor,x5823,905-555-1212:... 

These extra subfields are optional. Comment subfields supply extra information to facilities 
like the finger(1) command does. 

Using the & Feature of the Comment Field 
The Comment field also supports the use of the ampersand (&) as a substitution character. 

When this appears, the username from field 1 is substituted and the first letter is capitalized. 

The Comment field could take advantage of this feature as follows: 

...:& Hassebroek,3rd Floor,x5823,905-555-1212:... 

Here, the username j an is substituted for the ampersand character, and the j is capitalized. 

After the substitution is complete, the first subfield would indicate the name is Jan 
Hassebroek. 
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The Password Database Routines 
To ease the burden of searching the /etc/passwd file, the getpwent (3) function can be used: 

#include <sys/types.h> 
#include <pwd.h> 

struct passwd *getpwent(void); 

void setpwent(void); 

void endpwent(void); 

The getpwent (3) function will automatically open the /etc/passwd file, if it hasn’t already 

been opened. Then a database entry with the fields already parsed and converted is returned 

in the structure passwd. The returned pointer is valid only until the next call to getpwent (3) 

is made. 

If the first entry did not contain the information you wanted, you can continue to call 

getpwent (3) for more entries until it returns a null pointer. The null pointer indicates that it 

has reached the end of the file (or an error has occurred). 

When you cease processing password file entries, the endpwent (3) function is called to close 

the implicitly opened password file. Alternatively, if you need to scan the database again, you 

call setpwent (3) to rewind to the start. Calling setpwent (3) is more efficient than calling 

endpwent (3), because endpwent (3) requires the file to be reopened the next time 

getpwent (3) is called. 

The passwd Structure 
The getpwent (3) function returns a pointer to a static structure, which looks like this: 

struct passwd { 
char *pw_name; /* username */ 
char *pw_passwd; /* user password */ 
uid_t pw_uid; /* user id */ 
gid_t pw_gid; /* group id */ 
char *pw_gecos; /* comment field */ 
char *pw_dir; /* home directory */ 
char *pw_shell; /* shell program */ 

}; 

Reviewing the layout of the /etc/passwd fields, you’ll see a one-to-one correspondence 

between them and the passwd structure. The getpwent (3) function performs all of the grunt 

work of converting / etc/passwd numeric fields and separating the other fields into C strings. 

Error Handling for getpwent (3) 
When the getpwent (3) function returns a null pointer, this can indicate that the end of the 

password database was reached or that an error occurred. You must check the errno value to 

distinguish between them. To do this, you must zero errno prior to calling getpwent (3). 
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struct passwd *pwp; 

errno = 0; /* IMPORTANT: Clear error code */ 
pwp = getpwent(); /* Get passwd entry */ 
if ( !pwp ) { 

if ( errno != 0 ) { 
perror("getpwent() failed!"); 
abort(); 

} 
/* Else end of password database */ 

} 

It is very important to remember that you must zero the errno value before calling 

getpwent(3). 

The fgetpwent(3) Function 
Sometimes it is desirable to maintain a password file separately from the system password file 

A private password file might be used to protect access to certain server resources. The 

fgetpwent (3) function on some UNIX systems is available for this purpose: 

#include <stdio.h> 
#include <pwd.h> 
#include <sys/types.h> 

struct passwd *fgetpwent(FILE *f); 

Notice that this function requires that you provide a FILE pointer. This implies that you have 

opened the stream, and the pointer represents a valid open file. 

The fgetpwent (3) file otherwise performs precisely the same as the getpwent (3) function. 

Each successive password entry is returned by a pointer to a passwd structure. 

BSD and AIX 4.3 do not support the fgetpwent (3) function. However, SGI IRIX 6.5, UnixWare 7, 

HPUX-11, and Linux do support fgetpwent (3). 

The putpwent(3) Function 
The naming of this function is not quite consistent with the fgetpwent () function, but the 

putpwent (3) function is indeed its counterpart. The fgetpwent (3) function lets you scan a 

password database of your choice, and the putpwent (3) function allows you to write a pass¬ 
word database of your choice. 

#include <stdio.h> 
#include <pwd.h> 
#include <sys/types.h> 

int putpwent (const struct passwd *p, FILE *f); 
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The input argument p consists of a passwd structure to be written out. The second argument f 
must be an open FILE that is capable of writing. 

The function returns the integer value 0 if the function succeeds. Otherwise, -1 is returned 
and an error code can be found in errno. 

FreeBSD does not support the putpwent(3) function. SGI's IRIX 6.5, UnixWare 7, Solaris 8, AIX4.3, 

HPUX-11, and Linux do support the putpwent (3) function, however. 

The getpwuid(3) Function 
Sequentially calling the getpwent (3) function to look up one user ID is not convenient to the 

programmer. The function getpwuid(3) is an improvement: 

#include <sys/types.h> 
#include <pwd.h> 

struct passwd *getpwuid(uid_t uid); 

To obtain the password entry for the current real uid, you could write 

struct passwd *pwp; 

if ( !(pwp = getpwuid(getgid())) ) 
puts("No password entry found!")! 

else 
printf("real username %s\n",pwp->pw_name); 

It can happen that there is no password entry for a user ID being looked up, so errors should 

be tested. Even when your current process is running under its real ID, it is possible that the 

database entry being sought was deleted. Always test for errors. 

When you must distinguish between “not found” and an error, it is recommended that you 

clear errno prior to calling getpwuid(3). Otherwise, it is impossible to make the distinction. 

When a null pointer is returned and errno remains zero, then it is likely that the entry being 

sought does not exist. 

The Is (1) command is an example of a UNIX command that must map the numeric user ID 

from the information returned by stat (2) to a username that can be displayed. The 

getpwuid (3) function is used for this purpose. 

The getpwnam(3) Function 
Sometimes you need to look up the password entry by username, such as in the login (1) 

program, for example. The function synopsis for getpwname(3) is as follows: 
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#include <sys/types.h> 
#include <pwd.h> 

struct passwd *getpwnam(const char *name); 

The getpwnam(3) function simply takes the C string that contains the username and performs 

the lookup for you. If a match in the password database is found, the pointer to the passwd 

structure is returned. Otherwise, a null pointer is returned (not found, or an error occurred). 

To display the home directory of the mail user account, you might code 

struct passwd *pwp; 

if ( (pwp = getpwnam("mail")) != 0 ) 
printf("mail H0ME=%s\n",pwp->pw_dir); 

Since a null pointer returned may indicate an error, you should clear errno before calling 

getpwnam(3) to make the distinction. If errno is not zero when a null pointer is returned, an 

error has occurred. 

The Group Database 
The previous section covered library functions that work with the password database. 

Functions that search the group database will be covered in this section. 

The /etc/group File 
The group database has traditionally been a simple text file /etc/group. Its format is similar to 

the password database, and a small example is as follows: 

root::0:root 
bin::1:root,bin,daemon 
daemon::2:root,bin,daemon 
sys::3:root,bin,adm 
adm::4:root,adm,daemon,wwg 
lp::7:lp 
mem::8: 
kmem::9: 
mail::12:mail 
news::13:news 
uucp::14:uucp 
man::15:man 
users::100:student 1,jan 
postgres::102:wwg 
nogroup::-1: 
nobody::-1: 

The format of the group database is illustrated in Table 12.5. 
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TABLE 12.5 The Group Database Fields 

Field Example Description 

1 users Group name 

2 Group password (if any—none shown here) 

3 100 The group ID number 

4 studentl,jan The list of usernames that belong to this group 

Each text line in the /etc/group database is composed of colon-separated fields. The fourth 

field is a list of usernames that belong to this group, separated by commas. 

Functions getgrent(3), setgrent(3), and endgrent(3) 
Like the password database, the group database has its own set of functions for lookups. The 

function synopsis for getgrent (3), setgrent (3), and endgrent (3) is as follows: 

#include <sys/types.h> 
#include <grp.h> 

struct group *getgrent(void); 

int setgrent(void); 

void endgrent(void); 

The function getgrent (3) automatically opens the group database when necessary. The 

getgrent (3) function can be used to scan the group database by calling it until a null pointer 

is returned. The database is rewound by calling setgrent (3), or you can close the database by 

calling endgrent (3). 

When getgrent (3) returns a null pointer, this can indicate that an error occurred. To distin¬ 

guish between end of file and an error, you must test errno. This requires that errno be 

zeroed before making the call. 

Understanding the group Structure 
The routines just presented return the group structure. This structure is shown in the follow¬ 

ing synopsis: 

struct group { 
char *gr_name; 
char *gr_passwd; 
gid_t gr_gid; 
char **gr_mem; 

/* group name */ 
/* group password */ 
/* group id */ 
/* group members */ 
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Again, there is a correspondence between the group structure members and the group file 

fields. The gr_name entry points to a C string that contains the group name. The gr_passwd 

entry will point to a C string containing the group’s password, if one exists. If no password is 

configured, this will be a pointer to an empty string (it will not be a null pointer). The gr_gid 

member holds the group ID value. 

The last structure member, gr_mem, points to a list of C strings. The last pointer in this list is a 

null pointer to mark the end of the list. Each string in this list is a username that is a member 

of the group. 

The following example shows how the entire group database can be scanned, with the group 

and member usernames listed as shown: 

struct group *gp; 
int x; 

while ( (gp = getgrent()) != 0 ) { 
printf("gr_name='%s', gr_passwd='%s'\n", 

gp->gr_name, 
gp->gr_passwd); 

for ( x=0; gp->gr_mem[x] != 0; ++x ) 
printf(" member='%s'\n",gp->gr_mem[x]); 

} 

endgrent(); /* Close the database */ 

Notice how the for loop tests for the null pointer in gp->gr_mem[x]. 

The fgetgrent(3) Function 
To allow the programmer to process private copies of a group-formatted database, the 

fgetgrent (3) function is available on some platforms. Its synopsis is as follows: 

#include <stdio.h> 
#include <grp.h> 
#include <sys/types.h> 

struct group ‘fgetgrent(FILE ‘stream); 

The input argument requires an open FILE. The function fgetgrent (3) returns null if no 

more entries exist on the stream or an error occurs. To test for an error, clear the err no value 
prior to making the call. 

Note that there is no putgrent (3) function or equivalent available. If you need to write group 
database records, you will have to write the code yourself. 

Note 

There is no support for fgetgrent(3) from BSD or AIX 4.3. However, IRIX 6.5, UnixWare 7, Solaris 

8, HPUX-11, and Linux do support fgetgrent (3). 
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The getgrgid(3) Function 
The getgrgid (3) function is provided for programmer convenience to allow lookup of group 

ID values. Its synopsis is as follows: 

#include <sys/types.h> 
#include <grp.h> 

struct group *getgrgid(gid_t gid); 

The input argument is the group ID number. The function returns a pointer to a group struc¬ 

ture, or a null pointer. This pointer is valid only until the next call to getgrgid (3). If the 

returned pointer is null, then no matching group entry was found, or an error occurred. To 

determine if an error occurred, the caller must clear errno before calling getgrgid(3). 

The getgrnam(3) Function 
The getgrnam(3) convenience function allows the caller to look up a group database record 

by group name. 

#include <grp.h> 
#include <sys/types.h> 

struct group *getgrnam(const char *name); 

The input argument to getgrnam(3) is a C string holding the group name to look up. The 

returned pointer points to a structure; the pointer is valid only until the next call. If a match to 

the name could not be made or an error occurs, a null pointer is returned. In order to distin¬ 

guish between a failed lookup and an error, you must clear the errno value before calling the 

function. 

Related Re-entrant Functions 
A number of functions covered in this chapter so far have re-entrant counterparts on some 

platforms. For example, the function synopsis for getgrnam_r (3C) under IRIX 6.5 is as fol¬ 

lows: 

#include <stdio.h> 
#include <grp.h> 
#include <sys/types.h> 

int getgrnam_r(const char *name, 
struct group *grent, 
char *buffer, 
int bufsize, 
struct group **grp); 

/* Group name to search */ 
/* Used for storage */ 
/* Used for storage */ 
/* Size of buffer in bytes */ 
/* Pointer to return pointer */ 

To be re-entrant, the caller must supply the function with all of its needs. In the case of 

getgrnam_r(3C) shown, argument grent and buffer are two storage areas that are provided 

to the function for its own internal use. The buffer points to an I/O buffer, and it is suggested 
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to be BUFSIZ bytes in size. The last argument, grp, is a pointer to a pointer, which is used to 

return the group structure pointer of interest. 

Most of the re-entrant functions work similarly to this one. These functions are preferred when 

they are available, because they permit multithreaded code to be used. Check the man (1) 

pages by appending the characters _r to the normal function name to see if you have docu¬ 

mentation and support for them. 

Note 

At the time of this writing, FreeBSD and Linux do not support re-entrant functions such as 

getgrnam_r(3) for password and group files. 

Supplementary Groups 
Many people are members of several functional groups. Having access to files based on a single 

group designation is inconvenient. This often requires the user to switch between groups, 

using the newgrp(1) command, simply to gain the correct access permissions. 

Supplementary groups makes it possible for a user to have access to all files at the group level, 

even when the groups differ. An example illustrates this problem: 

• Account erin is a member of group projectx. 

• Account scott is a member of group projectq. 

Erin and Scott are working on similar programs within each of their own projects (projects X 

and Q), and they are in dispute. Laura, their supervisor, wants to compare the files to see how 

much they differ. 

The difficulty is that Erin and Scott each own their files. However, Erin’s file grants read per¬ 

mission to the group projectx, and Scott’s file grants read permission to the group projectq. 

Laura cannot be in the correct group to read both of them at the same time. 

Supplementary groups allow Laura to be a member of both groups at the same time. This 

allows her to be granted read access to both files at once, even when the groups differ. Laura is 

able to perform a dif f (1) command without having to copy one file and then perform a 

newgrp(l) command. 

The getgroups(2) Function 
The id (1) command reports all of the supplementary groups that you are currently in. This is 

accomplished with a call to the getgroups(2) function. Its synopsis is as follows: 

#include <sys/types.h> 
#include <unistd.h> 

int getgroups(int gidsetlen, gid_t *gidset); 
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The getgroups (2) function returns a list of group ID values in the array pointed to by gidset. 

The list can have no more than gidsetlen values, and the number of groups returned in the 

array is the return value. A return value of -1 indicates that an error has occurred (check 

errno). If your platform has the sysconf (2) value for _SC_NGROUPS_MAX defined as zero, then 

zero is returned by getgroups (2). This indicates no supplementary group support. 

When the argument gidsetlen is zero, the return value indicates how many supplementary 

groups there are to be returned. No change is made to the set given by the gidset argument in 

this case. This can be used to determine how large the array should be. 

Note 

For many systems, the maximum possible number of supplementary groups is determined by calling 

sysconf(2) using _SC_NGROUPS_MAX. 

An example of getgroups(2) is found in Listing 12.1. 

LISTING 12.1 getgroups.c—An Example Using getgroups(2) 

1: /* getgroups.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <sys/types.h> 
7: #include <grp.h> 
8: #include <errno.h> 
9: 
10: int 
11: main(int argc.char **argv,char **envp) { 
12: int x; 
13: int n; 
14: struct group *grp; 
15: int setlen = sysconf(_SC_NGROUPS_MAX); 
16: gid_t *gidset = 0; 
17: 
18: printf("setlen = %d\n",setlen); 
19: if ( setlen < 1 ) 
20: exit(1); 
21: 
22: /* 
23: * Allocate the set to maximum size : 
24: */ 
25: gidset = (gid_t *) malloc(setlen * sizeof *gidset); 

26: 
27: /* 
28: * Obtain the list of supplementary groups : 

29: */ 

/* Index */ 
/* groups returned */ 
/* /etc/group entry */ 
/* Max # groups */ 
/* sup. grp array */ 

/* Print max # groups */ 

/* Quit if we have none */ 
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30: n = getgroups(setlen,gidset); 
31: 
32: /* 
33: * Display the supplementary groups found : 
34: */ 
35: for ( x=0; x<n; ++x ) { 
36: grp = getgrgid(gidset[x]); 
37: printf("Supplemental group: %5d %s\n", 
38: gidset[x], 
39: grp ? grp->gr_name : 
40: } 
41 : 
42: return 0; 
43: } 

The program in Listing 12.1 first calls on sysconf (2) to determine what the maximum num¬ 

ber of supplementary groups is for this system (line 15). Once that value is known (variable 

setlen), then the array gidset is allocated, in line 25, by calling malloc(3). An alternative 

would have been to call getgroups (2) with a zero value for the array length. This would have 

indicated how many group ID values to expect. 

After the getgroups(2) function is called in line 30, the entries are displayed in the for loop 

in lines 35-40. Notice the use of getgrgid (3) in line 36 to convert the group ID number into 

a name (displayed in line 39). 

Compiling and running the program on your system should return results similar to this: 

$ make 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall getgroups.c 
cc -o getgroups getgroups.o 
$ ./getgroups 
setlen = 16 
Supplemental group: 1001 me 
Supplemental group: 2010 mygrp 
$ 

On this FreeBSD system, you can see that a maximum of 16 supplementary groups is sup¬ 

ported. Two supplementary groups are returned and reported here. 

Setting Groups with setgroups(2) 
The login (1) program, which determines the groups to which your account belongs, must 

call on a function to establish your list of supplementary groups. This is accomplished with the 
setgroups(2) function: 

//include <sys/param.h> 
//include <unistd.h> 

int setgroups(int ngroups, const gid_t *gidset); 
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The number of groups being established is given in ngroups, and the array of values is given 

by the pointer g id set. This function returns 0 upon success or -1 if an error occurs. Expect to 

get the error EPERM if you call this function without being the super user, because only the 

super user is permitted to set supplementary groups. 

Setting Groups for a Specific Username 
The function initgroups(3) is a convenience function that might be used by login(1) 

instead of building its own array of groups. The FreeBSD and AIX synopsis for initgroups (3) 

is as follows: 

/* FreeBSD and IBM AIX 4.3 */ 

#include <unistd.h> 

int initgroups(const char *name, int basegid); 

There is considerable variation of this on other UNIX platforms. Variation occurs with the 

include files used and the type of the second argument. The synopsis for HPUX-11 is as 

follows: 

/* HPUX-11 */ 

#include <unistd.h> 

int initgroups(char *name, gid_t basegid); 

The next synopsis is valid for UnixWare 7, Solaris 8, and Linux: 

/* UnixWare 7, Solaris 8, and Linux */ 

#include <grp.h> 
#include <sys/types.h> 

int initgroups(char *name, gid_t basegid); 

The last synopsis is for SGI IRIX 6.5. There is no <grp. h> file included. 

/* SGI IRIX 6.5 */ 

#include <sys/types.h> 

int initgroups(char *name, gid_t basegid); 

With this function, a program such as login (1) needs only to supply the user’s name in argu¬ 

ment name and a current group ID basegid. The function initgroups(3) builds an array of 

all groups to which the named user belongs and calls on setgroups (2) to make it so. 

The function returns 0 when successful or -1 when it fails (check errno). Since 

initgroups (3) calls on setgroups (2), only a super user will be successful in making this 

call. 



246 ADVANCED UNIX PROGRAMMING 

Summary 
In this chapter, you learned about usernames, user ID numbers, group names, and group ID 

numbers. The password and group database access routines were covered in detail. You now 

should have a clear understanding of the role of real, effective, and saved user ID and group ID 

identifiers. The chapter concluded with supplementary groups and how to control them. 

The next chapter digs into the topic of library functions. You’ll start with static libraries and 

then leap into the exciting functionality of shared and dynamically loaded libraries. 



CHAPTER 13 

STATIC AND SHARED LIBRARIES 

Jn the early days of computer programming, a program was written completely from 

scratch, because there was no code to reuse. Each program was new and unique. 

Since then, programmers have recognized the value of subroutines and collected 
them into libraries of one form or another. 

UNIX C libraries come in two basic forms: static and shared. Each of these formats has its own 
advantages. In this chapter you will learn how to 

• Create and maintain static libraries 

• Create and maintain shared libraries 

• Define shared library search paths 

• Load and execute shared libraries on demand 

The Static Library 
A static library is a collection of object modules that are placed together in an archive file. 

Think of it as a repository of code, which is linked with your object code at link time, rather 

than at runtime. In this section, you will examine how to create, use, and maintain a static 

library. 

Examining the Process Memory Image 
Figure 13.1 shows how a small program memory image is allocated in FreeBSD and Linux. 

Other UNIX platforms will use similar arrangements, but their addresses will be different. 

The addresses indicated in Figure 13.1 are only approximate. In the uppermost region of 

memory are the environment variables. Below them is the top of the stack, which grows 

downward for most UNIX platforms. At the bottom of the stack is a slack area of unallocated 

memory. 

At the left side of the figure is a series of boxes that represent static library modules and pro¬ 

gram object modules that are used as input to the linking process. The arrows show how the 

linker brings them together to form a memory image, which begins at 0x80000000 and works 

its way up to 0x80049F18. This collection of regions forms what is stored in the executable 

file. 
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FIGURE 13.1 
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The region below 0x80000000 is reserved for any dynamic (shared) libraries that may need to 

be brought into memory when the program begins its execution. This area is also used for 

attaching to shared data regions of memory. 

The library code, which is linked to the executable image and resides beneath the main pro¬ 

gram in Figure 13.1, is called static library code. It is static because once it is linked to the pro¬ 

gram, it never changes. This is in contrast to shared library modules, which are loaded at 

execution time beneath the address 0x80000000. If you change the shared libraries, it is the 

changed libraries that are loaded and executed with your program. The participating static 

library code never changes once the executable file has been written. 

Implementing a Static Library 
To demonstrate the use of a static library, a small project that implements a Passwd class is 

used. This project reinforces the concepts that were covered in Chapter 12, “User ID, 

Password, and Group Management.” Listing 13.1 shows the class definition. 
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LISTING 13.1 passwd. h—The Include File for the Passwd Class Example 

1: 
2: 

// passwd.h 

3: #include <sys/types.h> 
4: 
c • 

#include <pwd.h> 
3 • 
6: class Passwd : public passwd { 
7: enum { 
8: undefined, // object has no content 
9: defined // object has content 
10: } state; // This object's state 
11: int e; // Last errno 
12: protected: 
13: void _dispose(); // Dispose of current content 
14: void _import(struct passwd *p); // Import new contents 
15: public: 
16: Passwd() // Constructor 
17: { state = undefined; e = 0; } 
18: -Passwd() // Destructor 
19: { _dispose(); } 
20: inline int isValid() 
21: { return state == defined ? 1 0; } 
22: inline int getError() II Get errno value 
23: { return e; } 
24: char *getuid(uid_t uid); II Lookup uid, return name 
25: int getnam(const char *name); II Lookup name, return Boolean 
26: }; 
27: 
28: // End passwd.h 

The code in Listing 13.2 implements the methods for Passwd_getuid () and 

Passwd::getnam(). 

LISTING 13.2 getuid.cc—The Implementation of Passwd:getuid() and Passwd: :getnam() 

Methods 

1: // getuid.cc 
2: 
3: #include <errno.h> 
4: #include "passwd.h" 
5: 
6: //////////////////////////////////////////////////////////// 
7: // LOOKUP UID VALUE: 
8: // Returns ptr to this->pw_name 
9: // Throws errno if call fails 
10: //////////////////////////////////////////////////////////// 
11: 
12: char * 
13: Passwd::getuid(uid_t uid) { 
14: passwd *p = 0; 
15: 
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16 if ( state == defined ) 
17 _dispose(); II Dispose of content 
18 
19 e = errno = 0; II Clear errno 
20 p = ::getpwuid(uid); II Look up uid 
21 
22 if ( !p ) { 
23 if ( !errno ) 
24 e = ENOENT; II Use ENOENT for "not found" 
25 else 
26 e = errno; II Capture errno 
27 throw e; II throw the error 
28 } 
29 
30 _import(p); 1/ Copy to this object 
31 return this->pw_name; II Return login name 
32 } 
33 
34 ///////////////////////////////////////////////.///////////// 
35 II LOOKUP LOGIN NAME : 
36 II Returns uid_t value 
37 II Throws errno if call fails 
38 ///////////////////IIIIII/////////////////////////////////// 
39 
40 int 
41 Passwd::getnam(const char *name) { 
42 passwd *p = 0; 
43 
44 if ( state == defined ) 
45 _dispose(); // Dispose of content 
46 
47 e = errno = 0; II Clear errno 
48 p = ::getpwnam(name); 1/ Look up uid 
49 
50 if ( !p ) { 
51 if ( !errno ) 
52 e = ENOENT; II Use ENOENT for "not found" 
53 else 
54 e = errno; II Else capture errno 
55 throw e; II Throw the error 
56 } 
57 
58 _import(p); II Copy to this object 
59 return p->pw_uid; II Return uid # 
60 } 
61 
62 II End getuid.cc 

Listing 13.3 shows code that implements the protected methods Passwd: :_import () and 

Passwd: :_dispose (). These methods manage dynamic string memory allocation and 

destruction. 
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LISTING 13.3 import, cc—The Implementation of the Protected Passwd: :_import () and 
Passwd: :_dispose() Methods 

1: // import.cc 
2: 
3: #include "passwd.h" 
4: #include <string.h> 
5: 
6: extern "C" char *strdup(const char *str); 
7: 

8: //////////////////////////////////////////////////////////// 
9: // DISPOSE OF OBJECT'S CONTENTS (IF ANY): 
10: // 1. Check state (if defined) 
11: // 2. Delete all allocated strings 
12: // 3. Set state to "undefined" 
13: //////////////////////////////////////////////////////////// 
14: 
15: void 
16: Passwd::_dispose() { 
17: if ( state == defined 
18: delete pw_name; 
19: delete pw_passwd; 
20: delete pw_gecos; 
21: delete pw_dir; 
22: delete pw_shell; 
23: } 
24: state = undefined; 
25: } 
26: 
27: //////////////////////////////////////////////////////////// 
28: // IMPORT A STRUCT PW INTO THIS OBJECT : 
29: // 1. Dispose of current contents 
30: // 2. Copy and strdup(3) member components 
31: // 3. Set state to "defined" 
32: //////////////////////////////////////////////////////////// 
33: 
34: void 
35: Passwd::_import(passwd *pw) { 

36: 
37: if ( state == defined ) 
38: _dispose(); // Dispose of present content 

39: 
40: pw_name = strdup(pw->pw_name); 
41: pw_passwd = strdup(pw->pw_passwd); 

42: pw_uid = pw->pw_uid; 
43: pw_gid = pw->pw_gid; 
44: pw_gecos = strdup(pw->pw_gecos); 
45: pw_dir = strdup(pw->pw_dir); 
46: pw_shell = strdup(pw->pw_shell); 

47: 
48: state = defined; // Set into defined state 

49: } 
50: 
51: // End import.cc 

) { 

pw_name = 0; 
pw_passwd = 0; 
pw_gecos = 0; 
pw_dir = 0; 
pw_shell = 0; 
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In order to test the Passwd class that is implemented in Listings 13.1 to 13.3,amain() pro¬ 

gram is provided in Listing 13.4. 

LISTING 13.4 main. cc—The main () Test Program for the Passwd Class 

1: // main.cc 
2: 
3: #include <iostream.h> 
4: #include <string.h> 
5: ^include "passwd.h" 
6: 
7: int 
8: main(int argc,char **argv) { 
9: unsigned ux; 
10: Passwd pw; 
11: const char *accts[] = { "uucp", "xyzzy", "games" }; 

12: 
13: (void) argc; 
14: (void) argv; 
15: 
16: // Report root's home directory : 
17: 
18: try { 
19: pw.getuid(O); // Lookup root 
20: cout « "Root's home dir is " « pw.pw_dir « ".\n"; 

21: } catch ( int e ) { 
22: cerr « strerror(e) « 11: looking up uid(0)\n"; 

23: } 
24: 
25: // Try a few accounts : 

26: 
27: for ( ux=0; ux<sizeof accts/sizeof accts[0]; ++ux ) 

28: try { 
29: pw.getnam(accts[ux]); // Lookup account 
30: cout « "Account " « accts[ux] 
31: « " uses the shell " « pw.pw_shell << ".\n"; 
32: } catch ( int e ) { 
33: cerr « strerror(e) « ": looking up account " 
34: « accts[ux] « ". \ n"; 

35: } 
36: 
37: return 0; 
38: } 

The main() program instantiates the Passwd class in line 10 of Listing 13.4. The first test (lines 

18-23) simply looks up root’s home directory and reports it (line 20). 

The second group of tests are performed in the for loop of lines 27-35. This loop looks up 

the account names uucp, xyxxy, and games. The shell program for each is listed if the account 

exists. Account xyzzy is not expected to exist on most systems and is provided as a test of the 

error exception raised by the object pw. 
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The result of compiling and running this test should be something like this: 

$ make getuid 
CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -fPIC 
**-fhandle-exceptions -g import.cc 
CC -C -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fPIC 
*-fhandle-exceptions -g getuid.cc 
ar -r libpasswd.a import.o getuid.o 
cc -C -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fPIC 
^■-fhandle-exceptions -g main.cc 
cc -o getuid main.o -L/home/wwg/book3-code/13 -lpasswd -lstdc++ 
$ ./getuid 
Root's home dir is /root. 
Account uucp uses the shell /usr/libexec/uucp/uucico. 
No such file or directory: looking up account xyzzy. 
Account games uses the shell /sbin/nologin. 
$ 

To aid you with following the upcoming text, please remove the archive file, which the make 
file above has produced: 

$ rm libpasswd.a 

The project, when compiled, consists of the following object files, which form input to the 
linker: 

The main program main.o 

Some protected methods import.o 

Methods getuid and getnam getuid.o 

The object module main. o is not a reusable piece of code, but the import. o and getuid. o 

modules implement a class that can be used by other projects. These two object modules will 

be placed into a static library for general use. 

Using the ar (1) Command to Create an Archive 
The ar (1) command is used to create and maintain archive files. Since a static library is a spe¬ 

cial form of an archive, then the ar (1) command can be used to create a static library. 

If you have the object modules import. o and getuid. o, the static library libpasswd. a can be 

created as follows: 

$ ar r libpasswd.a import.o getuid.o 

The ar (1) command is one of those UNIX commands that break from the traditional 

getopt (3) processing standard. However, most UNIX platforms today now support a leading 

hyphen character for this command, allowing it to be given as follows: 

$ ar -r libpasswd.a import.o getuid.o 
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The - r (or simply r) that follows the command name is an option letter that causes the archive 

libpasswd. a to be created if necessary and replaces the listed object modules if they already 

exist. If they do not exist in the archive, the listed object modules are added to it. 

The normal convention for a library is that it begins with the three letters lib. Archives use the 

suffix . a. Following these conventions, you end up with a static library named libpasswd. a. 

Archives can be updated after their initial creation. If you discover that the getuid. o module 

has bugs in it, you can replace it with the fixed and recompiled version of the object module, 

as follows: 

$ ar -r libpasswd.a getuid.o 

This type of update is generally performed only for large libraries. Smaller archives are usually 

re-created from scratch by the make file. The following example shows how a make file creates 

the static library libpasswd. a: 

$ make libpasswd.a 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fhandle-exceptions 
‘♦import.cc 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall -fhandle-exceptions 
‘♦getuid.cc 
ar -r libpasswd.a import.o getuid.o 
$ 

At the completion of this session, the static library libpasswd. a is ready to be used by other 
projects. 

Listing the Contents of an Archive 
You can list the contents of an existing archive by performing the following: 

$ ar -t libpasswd.a 
import.0 
getuid.o 
$ 

The option -t (or simply t) causes ar (1) to list the table of contents for the archive named. 

Obtaining a Verbose Listing of an Archive 
More information can be displayed by adding the option letter v for a verbose table of con¬ 
tents: 

$ ar -tv libpasswd.a 

rw-r. 1001/2010 2536 May 11 12:18 2000 import.o 
rw-r. 1001/2010 2948 May 11 12:18 2000 getuid.o 
$ 

The leftmost column shows the permission bits that were present when the module was added 

to the archive. These are displayed in the same form as the Is (1) command. The numbers 

1001 and 2010 in the example represent the user ID and group ID numbers, respectively. The 
date and time are also shown, just left of the module filenames. 



Chapter 13 • STATIC AND SHARED LIBRARIES 255 

Linking with Static Libraries 
The link step for shared libraries is easy to accomplish. The filename of the static library can 

be placed on the link command line like any object module. Alternatively you can place the 

library in a certain directory and link with it using the -1 option. The following example 

shows the former method of specifying the filename: 

$ cc -o getuid main.o libpasswd.a -lstdc++ 

In the command shown, the file libpasswd. a is simply specified on the command line, where 

any *. o object file could have been given. In larger projects, it’s often desirable to place the 

shared library in a central directory, /usr/local/lib, for example. When this is done, you 

need to tell the linker where this special directory is, using the -L option. One or more library 

can then be specified using the -1 option. The following is a simple example: 

$ make getuid 
cc -c -D_P0SIX_C_S0URCE=199309L -D_POSIX_SOURCE -Wall -fhandle-exceptions 
*-main. cc 
cc -o getuid main.o -L/home/me/myproject -lpasswd -lstdc++ 
$ 

In this example, the link step specified -L/home/me/myproject to indicate that libraries will 

be found there. The option - lpasswd caused the linker to look for the library libpasswd. a, in 

the indicated directory (in addition to system standard directories). 

The highlights of the linking process are shown in Figure 13.2. 

FIGURE 13.2 
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The steps used in the linking process can be summarized as follows: 

1. The linking process begins with the loading of the main. o module (in this example). 

2. Then, the linker notes that there are undefined references to symbols Passwd: getuid () 

and Passwd:: getnam () referenced by the main () function. 

3. Since a library has been provided (libpasswd. a), this archive file is searched for an 

object module that defines the symbol Passwd:: getuid. The linker locates a function 

named Passwd: getnam () in the object module getuid. o, which is contained within the 

archive file. The linker then extracts module getuid. o from the archive file and loads it. 

In the process of doing this, the symbol Passwd:: getnam () is resolved as well, since it is 

also contained in the same object module. 

4. The linker reviews its list of unresolved symbols. The symbol Passwd: :_import () is 

now unresolved. This new reference is from the object module getuid. o that the linker 

just loaded. 

5. Working from the top of the list, the linker searches the archive libpasswd. a again and 

determines that it must extract and load module import. o. This satisfies the symbol 

Passwd::_import(). 

This is an oversimplification of the linking process, since references to the C library functions 

such as free(3) were ignored (for the delete C++ keyword). However, this illustrates what 

happens when a static library is involved in the linking process. 

From this process, it has been demonstrated that object modules are brought in by the linker 

only as required. This bodes well for those who wish to use only a few functions in a large col¬ 

lection of functions. After all, you do not want to link with every object module if you need 

only a small part of the library. 

The Shared Library 
In this section, you’ll learn how to create and use shared libraries. You’ve already seen hints 

about the shared library, in Figure 13.1. 

Limitations of Static Libraries 
Figure 13.2 shows how the linker automatically extracts object modules from an archive and 

loads them as required. Although linking only what you need with your program provides a 

certain amount of economy, there is still duplication when looking at the system-wide picture. 

Imagine a huge hypothetical static library that contains 90% of the functions used by the 

Netscape Web browser. Netscape is then linked with this library, producing perhaps a 5MB 

executable file. Approximately 90% of this executable file will be a copy of what was contained 
in the static library. 

Assume that you want to build a Web-enabled program that creates a Netscape X Window 

from within your application. Your 200KB object module links with this Netscape static 
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library, and the resulting executable program is written out with a size of 4.5MB. Now you 

have a 5MB Netscape executable and a 4.5MB program, but 90% of both programs is the same 
code. 

Consider further that five users running Netscape and three users running your custom appli¬ 

cation consume a large amount of memory within the system. Add more users, and the UNIX 
kernel will start doing some serious swapping. 

Shared libraries provide a mechanism that allows a single copy of code to be shared by several 
instances of programs in the system. 

Creating a Shared Library 
In times past, shared library creation and maintenance required some real hand waving by 

UNIX system administration wizards. To create a shared library for your own use under 

FreeBSD or Linux, you can simply use the - shared option of the gcc (1) command. Using the 

earlier example, the shared library for the class Passwd is created as follows: 

$ cc -o libshared.so import.o getuid.o -shared 

The gcc(1) command is executed with the -shared option, causing the output file to be writ¬ 

ten as a shared library rather than an executable file. In this case, file libshared. so is the 

library created. The suffix . so is used to indicate shared library files under FreeBSD and 

Linux. 

Linking with a Shared Library 
Using the shared library is straightforward, but there can be some complications. First, exam¬ 

ine how the link step is performed: 

$ gcc main.o -o getuid -L. -lshared -lstdc++ 

Note the use of the -L and -1 options. The -L option specifies an additional directory to 

search for a shared library. The -lshared option tells it the name of the library to search (the 

prefix lib and the suffix . so are added for shared libraries, resulting in libshared. so being 

searched). Because the linker knows that methods Passwd:getuid() and Passwd: :getnam() 

are in the shared library, the linker simply “makes a note” about this in the final executable file 

that is written. These notes allow the shared library to be loaded when the program is exe¬ 

cuted. 

Choosing Static or Dynamic Libraries 
When both shared and static libraries are available, gcc (1) normally will choose the shared 

library. However, if you specify the option -static on the gcc(1) command line, the link 

phase will use static libraries instead where possible. 
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Listing Shared Library References 
Under FreeBSD and Linux, you can check the new executable file getuid, to see if it is refer¬ 

encing the new shared library that was created earlier: 

$ ldd ./getuid 
. /getuid: 

libshared.so => not found (0x0) 
libstdc++.so.2 => /usr/lib/libstdc++.so.2 (0x28063000) 
libc.so.3 => /usr/lib/libc.so.3 (0x2809a000) 
libm.so.2 => /usr/lib/libm.so.2 (0x2811b000) 

$ 

From the output shown, it can be seen that . /getuid is indeed referencing a shared library 

named libshared. so. The not found message indicates that ldd (1) cannot locate the library. 

Running the program under these conditions would confirm this: 

$ ./getuid 
/usr/libexec/ld-elf.so.1: Shared object "libshared.so" not found 

$ 

Why didn’t the dynamic loader find the shared library? To find out why, you need to under¬ 

stand more about the dynamic loader. 

The Dynamic Loader 
Shared libraries require more attention than do static libraries. This is because shared libraries 

must be found and loaded on demand. 

When ldd (1) was used earlier, the dynamic loader was used to test each referenced library 

found in the executable. This dynamic loader is used to perform the loading and dynamic 

linking of other shared libraries. 

Searching for Shared Libraries 
In order for the shared library to be loaded at runtime, the dynamic loader must know where 

to locate it at runtime. Just as the shell must have a search path for commands, the dynamic 

loader needs a search mechanism for its libraries. 

FreeBSD and Linux both share a cache file that indicates where libraries can be found. The fol¬ 

lowing lists where the cache files are located: 

FreeBSD a.out cache /var/run/ld.so.hints 

FreeBSD ELF cache /var/run/Id-elf.so.hints 

Linux cache /etc/ld.so.cache 

These cache files are updated by the ldconf ig(8) command under FreeBSD and Linux. 

Other UNIX platforms use environment variables to select custom library directories. FreeBSD 

and Linux also support these environment variables. Among the different UNIX platforms, 
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there are three search path variables in use. Table 13.1 lists these variables and the platforms 
that use them. 

TABLE 13.1 Shared Library Search Path Variables 

Environment Variable UNIX Platforms 

LD_LIBRARY_PATH Solaris, UnixWare, IRIX, Alpha OSF, FreeBSD, and Linux 

LIBPATH AIX 

SHLIB_PATH HPUX 

All of these environment variables work in the same fashion as the PATH variable. A colon- 

separated list of directories to be searched is provided. 

Using the ld_library_path Variable 
Since FreeBSD inspects the LD_LIBRARY_PATH variable, the examples given will use it. Recall 

the example that was shown earlier: 

$ ldd ./getuid 
./getuid: 

libshared.so => not found (0x0) 
libstdc++.so.2 => /usr/lib/libstdc++.so.2 (0x28063000) 
libc.so.3 => /usr/lib/libc.so.3 (0x2809a000) 
libm.so.2 => /usr/lib/libm.so.2 (0x2811b000) 

$ 

To fix the search difficulty with your newly created shared library, the LD_LIBRARY_PATH vari¬ 

able can be modified to include your current directory (using the shell variable $PWD): 

$ LD_LIBRARY_PATH=$PWD 
$ export LD_LIBRARY_PATH 
$ ldd ./getuid 
./getuid: 

libshared.so => /home/me/myproject/libshared.so (0x28063000) 
libstdc++.so.2 => /usr/lib/libstdc++.so.2 (0x28065000) 
libc.so.3 => /usr/lib/libc.so.3 (0x2809c000) 
libm.so.2 => /usr/lib/libm.so.2 (0x28l1d000) 

$ 

Notice that, with the LD_LIBRARY_PATH modified to include your current directory, the 

dynamic loader is able to locate your shared library file libshared. so. If you have other direc¬ 

tories already included in the present LD_LIBRARY_PATH variable, this is a better approach: 

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD 

This simply appends your current directory to the values you already have in effect. 
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Testing the ld library path Variable 
With the LD_LIBRARY_PATH variable properly set, you can now run the test program, as 

follows: 

$ ./getuid 
Root's home dir is /root. 
Account uucp uses the shell /usr/libexec/uucp/uucico. 
No such file or directory: looking up account xyzzy. 
Account games uses the shell /sbin/nologin. 

$ 

If you download the source code for this project, you will see that the output reflects a suc¬ 

cessful run for this test program. The No such file or directory: error message was sup¬ 

posed to occur as part of this test. 

Position-Independent Code 
There is one small matter that has been overlooked, which is important to shared libraries. For 

a shared library to be effective at sharing its code with several programs, it should be compiled 

in position-independent code form. 

When a program is compiled in position-independent code form, it can be executed from any 

memory location without regard to its starting address. This makes it possible for the same 

physical memory segments to be shared virtually at different relative positions in each process 

that references it. 

Figure 13.3 shows Program_A and Program_B, two programs that call upon the same shared 

library. The shaded areas in the memory images show where in the address space the shared 

code appears. Notice that the shared library code in Program_A is lower than it is in 

ProgramJB. Only one physical copy of this code exists in the system’s physical memory, which 

is managed by the UNIX kernel. The shaded areas represent virtual memory mappings of the 

same shared code in both processes. 

For shared library code to execute in the way Figure 13.3 shows, the code must be compiled 

as position-independent code. If this is not done, the dynamic loader must create multiple 

copies of the same library in memory, with different starting addresses. 

To compile a module as position-independent code, the gcc (1) compile option -f PIC can be 
used under FreeBSD and Linux: 

$ CC -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -fPIC 
^►-fhandle-exceptions import.cc 
$ cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall -fPIC 
^■-fhandle-exceptions getuid.cc 

These commands compile the given modules into position-independent code that can be 
made into a shared library. 
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FIGURE 13.3 
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Controlling What Is Shared 
When you make a UNIX shared library, you must control what is externally visible to the user 

of your library. By default, whatever remains external in the normal sense of executables will 

also be visible externally to the user of your shared library. If you have functions internal to 

your library, it is a good idea to define them as static functions wherever possible. This keeps 

them private. 

Likewise, it is a good practice to have no unnecessary global variables or common storage. 

They will be visible from your shared library, also. Sloppiness in this area can cause programs 

to invoke functions or global variables in your shared library that you did not intend to release 

to the general public. 

Comparing Static and Shared Libraries 
Now is a good time to review what you have learned, and compare the pros and cons of each 

type of library. 
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The Benefits of Static Libraries 
Static libraries cannot eliminate duplicated code in the system. However, there are other bene¬ 

fits to using static libraries. Some of these benefits are as follows: 

• Static libraries are simple to use. 

• The executable does not depend on related external components (shared libraries). The 

executable contains everything it needs. 

• There are no environmental or administrative issues for static libraries. 

• The static library code does not need to be position-independent code. 

Enjoying the Ease of Static Linking 
Ease of use is often the reason for choices in the early stages of project development. Later, 

when the project is reviewed, the developer might make the switch to shared libraries if this 

approach makes sense. 

The Independence of Static Linking 
This is probably the strongest point in favor of static libraries. Once an executable is linked 

statically, the program has everything it needs in its own executable file. This is important 

when you want to install a program on another system, where the versions of shared libraries 

that you need may or may not be present. This is also desirable if the shared libraries are 

always being updated. 

Examples of this principle at work can be found in your FreeBSD /sbin directory. The follow¬ 

ing illustrates: 

$ ldd /sbin/mount 
ldd: /sbin/mount: not a dynamic executable 
$ 

If the mount (1) command requires a shared library in /usr/lib, but /usr has not been 

mounted yet, then the mount (1) command would fail. 

Installing Made Simpler 

Statically linked programs do not require any environment variables like LD_LIBRARY_PATH to 

be set up (nor would you have to choose LIBPATH or SHLIB_PATH when the code was ported 

to any UNIX platform). This makes things easier for unsophisticated administrators and users 
to install. 

Linking when Shared Libraries Are Not Supported 

Statically linking a program is important if you are running UNIX on a platform that does not 

support shared libraries. This may happen on platforms in which Linux or FreeBSD is ported 

to a new platform. You will also want to revert to static linking, in which the code is not com¬ 
piled as position-independent code. 
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Avoiding Licensing Restrictions 

Sometimes static libraries are used only to avoid licensing issues. For example, a suite of pro¬ 

grams that is statically linked to a MOTIF library can be legally released. However, it cannot be 

released using the shared library mechanism, because each site installing this software would 

have to buy a MOTIF library license. The original developer licensed and paid for the use of 

the library product, but he is not permitted to redistribute it. 

The Benefits of Shared Libraries 
Shared libraries have their own advantages: 

• Code sharing saves system resources. 

• Several programs that depend on a common shared library can be fixed all at once by 

replacing the common shared library. 

• The environment can be modified to use a substitute shared library. 

• Programs can be written to load dynamic libraries without any prior arrangement at link 

time. For example, Netscape can be told about a plug-in, which it is immediately able to 

load and execute without any recompiling or linking. 

Enjoying the Savings with Shared Memory 
Code sharing is the shared library’s main claim to fame. A properly implemented shared 

library means that you’ll have only a small amount of real memory assigned in the system to 

the library code being used. The programs using the shared library require little or no addi¬ 

tional memory from the system. The benefit is greatest for large libraries, such as those dealing 

with the X Window system. 

Centralizing Code in a Shared Library 
Centralizing code in a shared library is both an advantage and a disadvantage. Only you can 

decide which it is for your application. 

Favoring Centralized Code 
If you are running production-level code in several executables, and you discover a bug in the 

common shared library that they use, fixing that library will instantly fix all programs that use 

it. None of the executables that use that common shared library require recompiling or re¬ 

linking. 

Discouraging Centralized Code 
At the same time, a working set of production-level executable programs can be busted by a 

single change in the common shared library. Be especially critical of changes to include files 

that change the structure and class definitions and macros. Existing programs calling on 

shared libraries may need to be recompiled to reference the correct member offsets within 

structures and classes. 
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Redirecting Shared Libraries 
The use of shared libraries allows you to control which library is used by a program by chang¬ 

ing the LD_LIBRARY_PATH variable. This allows you to substitute libraries without recompiling 

and linking the executable. For example, you might try different versions of a shared library 

for quality assurance testing. This type of substitution would require relinking the executables 

if you were using static libraries. 

Linking Dynamically at Runtime 
This is something you simply cannot do with a static library. Your program can indicate a 

shared library filename and function entry-point name, and the dynamic loader will take care 

of loading the shared library module and pass control to it. This allows your program to call 

on library modules without any prior arrangement. 

Dynamic Library Loading 
Most shared libraries are loaded dynamically when the program is started (on some platforms 

this behavior can be customized). However, when Netscape starts up, it does not know, for 

example, that it is going to need the Adobe Acrobat plug-in. The user does not want to wait 

while Netscape loads every possible plug-in at program startup. Consequently, only when 

Netscape has determined that it needs Adobe Acrobat support does it call on the dynamic 

library loader. 

Opening the Shared Library 
Opening a shared library causes a search for the library file to be performed. Then it is loaded 

into shared memory and made available for use. The function that accomplishes all of this is 

thedlopen(3) function: 

#include <dlfcn.h> 

void *dlopen(const char *path, int mode); 

When calling diopen (3), argument mode must be specified as RTLD_LAZY or RTLD_NOW. This 

determines how references are resolved within the shared library itself. 

The pointer returned by dlopen (3) is a handle to the open shared library. The path argument 
specifies the name of the shared library. 

Mode RTLD_LAZY 

When a shared library is loaded into memory, it may have shared library dependencies of its 

own. For example, a shared library may need to call on printf (3), which is in another shared 
library. 

When the mode argument is given as RTLD_LAZY, these references are resolved as the execution 

encounters them. For example, when printf (3) is called from within the shared library, the 
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call will automatically reference the shared library that contains that code (it may or may not 

already be loaded). 

Mode RTLD_N0W 

This mode causes all outstanding references to the shared library to be resolved immediately 

upon being loaded. For example, if the shared library calls printf (3), this reference will be 

resolved before the execution of the shared library begins. 

This is useful when you don’t want the execution to proceed if any of the other shared libraries 

cannot be found and loaded. This method can lead to faster execution, because the dynamic 

symbols are resolved all at once. Otherwise, RTLD_LAZY is preferred for its efficiency. 

Reporting Errors 
The dlopen (3) call returns a null pointer when it fails. To provide a meaningful error message 

to the user, you call on the dlerror(3) function: 

#include <dlfcn.h> 

const char *dlerror(void); 

The dlerror(3) function returns a string pointer describing the last error that occurred. It is 

only valid until the next call to any of the dynamic library functions is made. 

Obtaining a Shared Reference Pointer 
Once the shared library is open, you can obtain a pointer to a function or a data structure by 

calling on dlsym(3): 

#include <dlfcn.h> 

void *dlsym(void *handle, const char *symbol); 

The first argument handle is the (void *) pointer returned from the function dlopen(3). The 

argument symbol is the C string containing the name of the function or external data structure 

that you are interested in. If dlh contains a valid handle, you can call printf (3) dynamically 

as follows: 

void *dlh; /* handle from dlopen(3) */ 
int (*f)(const char ‘format, ...); /* Function pointer */ 

f = (int(*) (const char *,...) )dlsym(dlh, "printf11); /* Get reference */ 

f("The dlsym(3) call worked!\n"); /* Call printf(3) now */ 

Since the function dlsym(3) returns a (void *) pointer, be very careful to code the correct 

cast operator when assigning the returned pointer (f in the example). If the symbol could not 

be located in the shared library, a null pointer is returned. 

265 
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Closing a Shared Library 
When your application knows that it no longer requires the services of the shared library, it 

may call upon diclose(3): 

#include <dlfcn.h> 

int dlclose(void *handle); 

The diclose (3) function simply accepts a handle that was returned by dlopen (3) in a previ¬ 

ous call. Reference counts are maintained by dlopen (3) and diclose(3). When the reference 

count drops to zero, the shared library is unloaded and the resources are freed. 

Initialization and Destruction 
When a shared library is loaded for the first time by dlopen (3), the symbol _init () is called, 

if it exists. When the shared library is being unloaded, the symbol _f ini() is called, if it 

exists. The function prototypes for these functions are as follows: 

void _init(void); /* Called by dlopen(3) */ 
void _fini(void); /* Called by dlclose(3) */ 

This mechanism allows a shared library to initialize itself and clean up. 

Applying Dynamic Loading 
To apply your knowledge of dynamically loaded libraries, a dynamic library and a main pro¬ 

gram will be used. The program presented in Listing 13.5 is a simple subroutine that will be 

dynamically loaded and exercised. 

LISTING 13.5 dyn001. c—A Dynamically Loaded Shared Library 

1: /* dyn001.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <stdarg.h> 
6: 
7: int 
8: sum_ints(int n,...) { 
9: va_list ap; 
10: int x; 
11 : int sum = 0; 
12: 
13: va_start(ap,n); 
14: 
15: for ( ; n>0; --n ) { 

16: x = va_arg(ap,int); 
17: sum += x; 
18: } 
19: 
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20: va_end(ap); 
21: 
22: return sum; 
23: } 
24: 
25: /* End dyn001.c */ 

The program in Listing 13.5 is a simple test function that sums a variable number of argu¬ 

ments. The program in Listing 13.6 is the main () program, which will invoke it. 

LISTING 13.6 dlmain. c—An Example Program That Dynamically Loads and Calls a Function 

1: /* dlmain.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <string.h> 
6: #include <dlfcn.h> 
7: 
8: extern int strcasecmp(const char *s1, const char *s2); 
9: 
10: int 
11: main(int argc,char **argv) { 
12: int isum = 0; // Sum variable 
13: void *dlh = 0; // Dynamic library handle 
14: int (*sum_ints)(int n,...); // Dynamic function pointer 

15: 
16: if ( argc <= 1 || strcasecmp(argv[1],"D0NT_L0AD") != 0 ) { 
17: dlh = dlopenj"libdyn001.so",RTLD_LAZY); 
18: if ( !dlh ) { 
19: fprintf(stderr,"%s: loading ./Iibdyn001.so\n",dlerror()); 

20: return 1; 
21: } 
22: } 
23: 
24: sum_ints = (int (*)(int,...)) dlsym(dlh,"sum_ints"); 

25: if ( !sum_ints ) { 
26: fprintf(stderr,"%s: finding symbol sum_ints()\n",dlerror()); 

27: return 1; 

28: } 
29: 
30: /* 
31: * Call the dynamically loaded function : 

32: */ 
33: isum = sum_ints(5,1,2,3,4,5); 
34: printf("isum = %d\n",isum); 

35: 
36: if ( dlh ) 
37: dlclose(dlh); 

38: 
39: return 0; 
40: } 
41: 
42: /* End dlmain.c */ 
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An examination of Listing 13.6 reveals that the main () program uses the following basic steps: 

1. A test is made in line 16 to see if any arguments were supplied on the command line. If 

not, or if the argument was not DON' T_L0AD, then the function dlopen (3) is called to 

open the shared library libdyn001. so, using RTLD_LAZY. 

2. The symbol sum_ints is looked up in line 24. It is expected to be a pointer to a function 

int (*)(int,.. .). 

3. The pointer from step 2 is tested. If null, it means that the function was not known to 

the shared library, and an error message is reported (line 26). 

4. The dynamically loaded function sum_ints () is called in line 33. 

5. The shared library is closed and unloaded in lines 36 and 37. 

Compiling the program is accomplished as follows: 

$ make dlmain 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall dlmain.c 
CC -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall dyn001.c 
cc -o libdyn001.so -shared dyn001.o 
cc -o dlmain dlmain.o 
$ 

Create a new login session, or log out and log in again. This will bring LD_LIBRARY_PATH to 

your system default value again. Now invoke . / dlmain: 

$ ./dlmain 
Shared object "libdyn001.so" not found: loading ./Iibdyn001.so 
$ 

Note that the error message is the one produced by the code in line 19 of Listing 13.6. This 

tells you that library libdyn001. so does not exist in the system standard library directories or 

in any directories listed in the current LD_LIBRARY_PATH variable. Now add one entry to your 
variable as follows: 

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD 
$ export LD_LIBRARY_PATH 
$ 

Now run the program again with the LD_LIBRARY_PATH modified: 

$ ./dlmain 
isum = 15 

$ 

This session demonstrates that the library was loaded, and the function executed successfully. 

To prove that your dlopen (3) call is doing the work, run the program one more time as fol¬ 
lows: 

$ ./dlmain dont_load 

Undefined symbol "sum_ints": finding symbol sum_ints() 
$ 

If you look at line 16 of Listing 13.6, you’ll see that the argument dont_load causes the pro¬ 

gram to skip the dlopen (3) call. This is the reason the error message is reported instead. 
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HPUX 10.2 Dynamic Library Loading 
Some UNIX platforms provide similar dynamic library functionality in a different API. As an 

example, the HPUX 10.2 API will be briefly presented. Only the important functions will be 
discussed from the function synopsis: 

#include <dl.h> 

shl_t shl_load(const char ‘path, int flags, long address); 

int shl_findsym( 
shl_t *handle, 
const char *sym, 
short type, 
void *value 

); 

int shl_definesym( 
const char *sym, 
short type, 
long value, 
int flags 

int shl_getsymbols( 
shl_t handle, 
short type, 
int flags, 
void *(‘memory) (), 
struct shl_symbol “symbols, 

); 

int shl_unload(shl_t handle); 

int shl_get(int index, struct shl_descriptor “desc); 

int shl_gethandle(shl_t handle, struct shl_descriptor “desc); 

int shl_get_r(int index, struct shl_descriptor *desc); 

int shl_gethandle_r(shl_t handle, struct shl_descriptor *desc); 

A functional equivalence table showing the HPUX 10.2 functions with the dlopen(3) follows: 

shl_load(3X) dlopen(3) 

shl_findsym(3X) dlsym(3) 

shl_unload(3X) dlclose(3) 
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The HP shl_load(3X) function requires the path of the shared library. The flags argument 

accepts one of these values: 

BIND_IMMEDIATE Resolve the symbol references when the library is loaded. This is 

equivalent to RTLD_N0W. 

BINDJDEFERRED Resolve when the symbol is referenced. This is similar to RTLD_LAZY. 

In addition to the above flags, a number of additional flags can be ORed with the above. These 

include 

• BIND_FIRST 

• BIND_N0NFATAL 

• BIND_N0START 

• BIND_VERB0SE 

• BIND_RESTRICTED 

• DYNAMIC_PATH 

• BIND_T0GETHER 

The address argument of shl_load(3X) allows the value 0L to be used. This recommended 

practice directs the function to choose an appropriate address at which to load the library. 

Otherwise, the caller must have an intimate knowledge of the memory address space and sup¬ 
ply a suitable address. 

The function shl_load (3X) returns a handle to the library loaded, or NULL is returned when it 

fails. The shl_load (3X) function sets the value of errno when it fails. Errors can be reported 

with strerror (3), as usual. This is in contrast to the dlerror (3) routine discussed earlier. 

The shl_f indsym(3X) function is similar to the dlsym(3) function call. The handle and sym 

arguments specify the shared library handle and the symbol to look up, respectively. The 

handle argument can be null, which causes all currently loaded libraries to be searched for the 

symbol. The return pointer value is passed via argument pointer value, and NULL is returned if 
the symbol search is unsuccessful. 

Argument type in the shl_f indsym(3X) call must be one of these: 

• TYPE_PROCEDURE 

• TYPE_DATA 

• TYPE_ST0RAGE 

• TYPE TSTORAGE 

• TYPE UNDEFINED 
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The value TYPE_UNDEFINED is useful when you don’t want type-checking rules to be applied. 

In fact, HP’s own documentation further states that the “first four constants may not be sup¬ 
ported in future 64-bit HP-UX releases.” 

The function shl_f indsym(3X) returns an integer result of 0 if it is successful. Otherwise -1 is 

returned, and errno is set. However, note that errno is set to 0 if the symbol could not be 

found. If the symbol was found but other symbol references on which it depends could not be 
satisfied, the errno value will be ENOSYM. 

Finally, shl_unload(3X) performs a function equivalent to dlclose(3). The handle provided 

by shl_load(3X) is used in the call to shl_unload (3X) to close and unload the shared library. 

The following is a simple example that uses the HPUX 10.2 shared library functions: 

shl_t h; /* HP handle to shared library */ 
int (*f)(int argl/* Function pointer for sum_int() */ 
int sum ; /* Sum variable */ 

if ( (h = shl_load("libdyn001.si",BIND_DEFERRED,0L)) == NULL ) 
{ perror("shl_load()"); abort(); } 

if ( shl_findsym(h,"sum_ints",TYPE_UNDEFINED,&f) == -1 ) 
{ perror("shl_findsym()"); abort(); } 

sum = f(5,1,2,3,4,5); /* Sum 5 arguments */ 

shl_close(h); /* Close shared library */ 

This was a brief look at the HPUX 10.2 shared library functions. You are encouraged to view 

the shl_load(3X) manual pages on the HP system to learn more about them. This brief cover¬ 

age allows you to plan your porting to HPUX 10.2, if you need to support it. HPUX 11 sup¬ 

ports the dlopen (3) functions, which you’ll find on most other UNIX platforms today. 

Summary 
In this chapter, you learned about the differences between static and shared libraries, how to 

create and maintain them, and how shared libraries can be loaded and called dynamically. The 

dynamic library support for HPUX 10.2 was also discussed to expand your knowledge for 

porting purposes. 

The next chapter will discuss the NDBM database routines, which are available on most UNIX 

systems today. These routines allow you to manage large collections of application data within 

a compact and efficient database. 
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CHAPTER 14 

DATABASE LIBRARY ROUTINES 

Applications often manage large collections of data. The larger the data set, the more 

difficult it is to retrieve information quickly. Applications today can use relational 

database management systems (RDBMS), but for small applications, this may not be 

the most practical choice. For this reason, this chapter will explore a set of functions designed 

to provide lightweight database services. 

Ken Thompson produced the original Data Base Management (DBM) library at Bell Labs. A 

description of the original DBM routines is found in the UNIX Seventh Edition documentation 

at http://plan9.bell-labs.com/7thEdMan/index.html. 

Visit the link voll /man3. bun - libraries and search for “DBM”. The original implementa¬ 

tion consisted of the following API set: 

int dbminit(char *file) 

int dbmclose(void) 

datum fetch(datum key) 

int store(datum key,datum content) 

int delete(datum key) 

datum firstkey(void) 

datum nextkey(datum key) 

The severest limitation of this API set was that there could be only one database open at one 

time. To overcome this and other limitations, a newer implementation, known as NDBM (New 

DBM), was developed by the University of California, Berkeley. This API is available on most 

UNIX platforms. 

The Free Software Foundation (FSF) has since improved upon the NDBM routines with the 

GDBM (GNU DBM) set of routines. Software for GDBM can be downloaded and compiled on 

most UNIX platforms without a hitch. 

In this chapter, you will focus on the NDBM routine that is most common. This will help you 

understand how existing code uses it and will allow you to use the software you have. Only a 

small effort is required to graduate to GDBM, once the NDBM routines have been mastered. 
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In this chapter, you will learn about 

• Concurrency limitations of the NDBM database. 

• How to create, open, and close an NDBM database. 

• How to insert, replace, and delete records. 

• How to retrieve records. 

• How to process all record keys. 

The NDBM Database 
Before you design your application program around a NDBM database, you need to answer the 

following questions: 

• Will readers and writer(s) need access at the same time? 

• How many writers will there be at one time? 

Having multiple readers is not a problem when there is no write activity occurring. However, 

the NDBM routines do not provide any protection against readers and writers in conflict. For 

example, one process might delete a key that conflicts with another process that is visiting all 

the keys in the database. Additionally, these routines do not permit multiple writers to the 

database at one time. Despite these limitations, the NDBM routines still find many uses in 

standalone and single-user solutions. 

Error Handling 
With the exception of dbm_close (3), all NDBM functions return an indication of success or 

failure. Some functions return zero for success. A negative value is returned for failure. Other 

cases are unique. These will be detailed as you review them in the upcoming sections. 

You can test for errors using the call to dbm_error (3). This function returns a non-zero value 

when an error has occurred. However, this function continues to return an error indication 

until dbm_clearerr (3) is called. A function synopsis is provided as follows: 

#include <ndbm.h> 

int dbm_error(DBM *db); 

int dbm_clearerr(DBM *db); 

The NDBM routines will influence the errno value, but there are no standardized errors docu¬ 

mented for them. For portability reasons, you should rely on only the dbm_error(3) and 
dbm_clearerr (3) routines and avoid interpreting errno. 
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Most UNIX systems will provide man(1) pages for NDBM routines under ndbm(3) or ndbm(3X). 

FreeBSD does not provide any documentation for these routines. This is perhaps because dbopen(3) 

is being promoted as its replacement. 

Documentation for ndbm(3) can be found on the Internet, however, at the URL 

http://www,opengroup.org/public/pubs/online/7908799/xsh/dbm_open.html 

While FreeBSD lacks documentation on routines such as dbm_open(), this book will use section 

three, as in dbm_open(3). Sun Solaris places its documentation for these routines in section 3, while 

others place it in section 3X or 3C. 

Opening an NDBM Database 
The dbm_open (3) function is used to create or open a database for use. Its synopsis is as fol¬ 

lows: 

//include <ndbm.h> 

DBM *dbm_open(const char *file, int open_flags, int filejnode); 

The first argument, file, specifies the pathname of the database. Note that some implementa¬ 

tions append a suffix to this name (FreeBSD adds .db). Other implementations may create two 

files with different suffixes appended. The string supplied in the argument file remains 

unchanged. 

The argument open_f lags specifies flag bits that would be supplied to the open (2) call. These 

include 

• 0_RD0NLY 

• 0_RDWR 

• 0_CREAT 

• 0_EXCL 

The behavior for some flags, such as the 0_APPEND flag, will not be defined for this function 

call. 

The third argument, mode, forms the permission bits to apply to the creation of the new file(s). 

These are passed onto the open(2) call and are subject to the current umask(2) setting. 

The return value is a pointer to a DBM object if the call is successful or the value (DBM *) 0 if it 

fails. The following example shows how a database might be created: 

DBM *db; 

db = dbm_open("mydatabase",O_RDWR|O_CREAT,0666); 

Under FreeBSD, this creates a database file named mydatabase. db and opens it for reading 

and writing. 
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Closing an NDBM Database 
An open database should always be closed before the program exits. This is accomplished with 

the dbm_close(3) function: 

#include <ndbm.h> 

void dbm_close(DBM *db); 

There is no error return from this function. The input argument db must point to an open 

database or a fault may occur. 

Storing Information 
To insert a new record or to update an existing record, the dbm_store(3) function is used. Its 

function synopsis is as follows: 

#include <ndbm.h> 

typedef struct { 
char *dptr; /* Pointer to data */ 
int dsize; /* Byte length of data */ 

} datum; 

int dbm_store(DBM *db, datum key, datum content, int store_mode); 

The first argument, db, specifies the open database into which to store the record. The argu¬ 

ments key and content are described by the C data type datum. The key argument defines the 

start of the key and its length. The content argument defines the record content and its 

length. 

The final argument store_mode must contain one of the following values: 

• DBM_INSERT 

• DBM_REPLACE 

When store_mode is equal to DBM_INSERT, the new record is inserted into the database, even if 

a record already exists with a matching key value. When store_mode is equal to DBM_REPLACE, 

an existing record with a matching key is replaced with the content being supplied. Otherwise, 
a new record is simply inserted. 

The return value from the dbm_store(3) call is 0 or 1 when successful. A negative value repre¬ 

sents a failure. The dbm_store(3) function returns a 1 when store mode equals DBM_INSERT 

and the function finds an existing record with a matching key value. 

The following example shows how a phone number acting as a key and an address acting as 

the data record are supplied to the dbm_store(3) function: 

DBM *db; 
int z; 

// Open database 
// Status return code 
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char phone_no[20]; 
datum key; 
char address[64]; 
datum content; 

// Phone # 
// Key datum 
// Record data (address information) 
// Content datum 

key.dptr = phone_no; // Point to key value 
key.dsize = strlen(phone_no); // Set key length 
content.dptr = address; // Point to record content 
content.dsize = strlen(address); // Set record length 

z = dbm_store(db,key,content,DBM_REPLACE); // Replace if exists 
if ( z < 0 ) { 

// Handle error 
dbm_clearerr(db); 

The example shown will replace the record if a match is made on the telephone number in the 

database. Duplicate keys can be inserted by changing the DBM_REPLACE macro to DBM_INSERT. 

Fetching Information 
Once information is stored, it is necessary to retrieve it quickly. The function dbm_f etch (3) 

performs this function: 

#include <ndbm.h> 

datum dbm_fetch(DBM *db, datum key); 

The dbm_fetch (3) function accepts a db argument, which specifies the database to search. The 

key argument specifies the key value to look up. 

The return value from dbm_f etch (3) is a datum type. A successful search is indicated by 

returning a datum, which contains a non-null member, dptr. The following example illus¬ 

trates: 

DBM *db; II Open database 
char phone_no[20]; 1/ Phone # 

datum key; II Key datum 
char address[64]; II Record data (address information 
datum content; 1/ Content datum 

key.dptr = phone_no; II Point to key value 
key.dsize = strlen(phone_no); II Set key length 

content = dbm_fetch(db,key); II Lookup phone # 
if ( Icontent.dptr ) { 

// Key was not found in database 

} else { 
// Content was returned: 
strncpy(address,content.dptr, 

min(sizeof address-1,content.dsize)); 
address[sizeof address-1] = 0; // Null terminate 

} 
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The example shows how the telephone address is extracted from the returned datum content. 

Deleting Information 
Data that has been created must sometimes be destroyed later. This includes when the key 

changes: The record must be deleted and inserted again with the new key. The synopsis of the 

dbm_delete(3) function is as follows: 

#include <ndbm.h> 

int dbm_delete(DBM *db, datum key); 

The function call setup is identical to the dbm_fetch(3) function. The database is chosen by 

argument db, and the key value is given by the key argument. The return value is zero if the 

call is successful and is negative if the call fails. 

The following example deletes a telephone entry from a telephone database of addresses: 

DBM *db; II Open database 
char phone_no[20]; // Phone # 
datum key; // Key datum 

key.dptr = phone_no; II Point to key value 
key.dsize = strlen(phone_no); II Set key length 

if ( dbm_delete(db,key) < 0 ) II Delete phone # 
// Key was not found in database 

} else { 
// Record was deleted 

} 

Visiting All Keys 
All records managed by a NDBM database are stored and managed by key values. Effective 

hashing algorithms are applied to keys to make accessing specific records very efficient. 

However, it often happens that you need to examine all or most records in the database. In 
these situations, you may not know all the key values in advance. 

The functions dbm_f irstkey (3) and dbm_nextkey (3) allow you to iterate through the keys 

stored within your database. The key values will be presented in an unsorted sequence, how¬ 

ever. This is because hashing algorithms are used for the index. Hashed indexes cannot offer 

sorted keys like the B-tree indexing algorithm, for example. If you need a sorted list, you must 
first visit all the keys and then sort them in a temporary file. 

The dbm_firstkey (3) and dbm_nextkey (3) synopsis is as follows: 

#include <ndbm.h> 

datum dbm_firstkey(DBM *db); 
datum dbm_nextkey(DBM *db); 
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The functions both require one argument db as input. The function dbm_f irstkey (3), as its 

name implies, returns the first database key. Once that function has been invoked successfully, 

successive calls should be made to dbm_nextkey (3) to retrieve the remaining keys. 

To visit all keys within a database, the general loop construct is as follows: 

DBM *db; // Open database 
datum key; // Key datum 

for ( key=dbm_firstkey(db); key.dptr != NULL; key=dbm_nextkey(db) ) { 
// Process key 

} 

The functions dbm_f irstkey (3) and dbm_nextkey (3) can both indicate the end of the keys, 

by returning a datum, which has a null dptr pointer. When dbm_f irstkey (3) returns null in 

the datum member dptr, this indicates that there are no keys in the database. 

Deleting Keys with dbm_nextkey (3) 
Special attention should be paid to modifications to the database during key visits. If you have 

a loop constructed as in the previous example and you use the key value to delete entries in 

the database, you will encounter trouble. The following shows what not to do: 

DBM *db; // Open database 
datum key; // Key datum 

// DO NOT DO THIS: 
for ( key=dbm_firstkey(db); 

dbm_delete(db,key); 
if ( dbm_error(db) ) 

abort(); 

} 

key.dptr != NULL; key=dbm_nextkey(db) 
// Delete this key 

// Something failed 

) { 

The example runs into trouble because the routines dbm_f irstkey (3) and dbm_nextkey (3) 

assume that no changes to keys will occur while the loop runs. When keys are deleted, the 

hash index blocks are modified, which may affect the way the next key is retrieved (these are 

implementation-specific problems.) 

If you need to perform the function just shown, another approach works: 

DBM *db; // Open database 
datum key; // Key datum 

for ( key=dbm_firstkey(db); key.dptr != NULL; key=dbm_firstkey(db) ) { 
dbm_delete(db,key); // Delete this key 
if ( dbm_error(db) ) 

abort(); // Something failed 

} 

The change is subtle, but important. The next key is fetched by calling upon 

dbm_firstkey(3) instead. This works because the loop always deletes the first key. By calling 

dbm_f irstkey (3) again, you get the next “first” key. 
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An NDBM Database Example 
An example of a small application employing a NDBM database is presented in the upcoming 

listings. The purpose of the application is to tree walk one or more directory names, calling 

1st at (2) on each file system object. Then the 1st at (2) information is stored in the snapshot 

database and indexed by the device number and i-node number. The application has been 

named Snapshot. 

Once a snapshot has been taken, it is possible to invoke the application again with different 

command-line options. With the -c option provided, the Snapshot program will then walk 

the named directories, comparing each file system’s lstat (2) information to what is stored in 

the database. Any differences are then reported. This provides similar functionality to the 

Tripwire[r] file integrity software. 

Directory Software 
In order to perform the directory tree walk, a C++ class named Dir was created. Listing 14.1 

shows the Dir. h include file, which declares the class. 

LISTING 14.1 Dir.h—The Dir Class Definition Source File 

1: // dir.h 
2: 
3: #ifndef _dir_h_ 
4: #define _dir_h_ 
5: 
6: #include <sys/types.h> 
7: #include <dirent.h> 
8: 

9: //////////////////////////////////////////////////////////// 
10: //A Directory class object : 
11: //////////////////////////////////////////////////////////// 
12: 
13: class Dir { 
14: DIR *dir; 
15: char *name; 
16: int error; 
17: public: 
18: Dir(); 
19: -Dir(); 
20: Dir &open(const char *path); 
21: Dir &rewind(); 
22: Dir &close(); 
23: char *read(); 
24: inline int getError() { return error; } 
25: inline char *getEntry() { return name; } 
26: }; 
27: 
28: #endif // _dir_h_ 
29: 
30: // End dir.h 
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The class shown in Listing 14.1 implements methods to open a directory 

(Dir: :open()),rewind it (Dir:: rewind ()), read entries (Dir:: read()), and close it 

(Dir: :close()). Additional inline methods Dir: :getError() and Dir: :getEntry() are pro¬ 

vided. The destructor takes care of automatically closing the directory if necessary. 

Listing 14.2 shows how the class is implemented. 

LISTING 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

14.2 Dir. cc—The Implementation of the Dir Class 

// dir.cc 

#include "Dir.h" 
#include <errno.h> 
#include <string.h> 

extern "C" char *strdup(const char *str); 

//////////////////////////////////////////////////////////// 
// Dir Constructor : 
//////////////////////////////////////////////////////////// 

Dir::Dir() { 
dir = 0; 
name = 0; 

//////////////////////////////////////////////////////////// 
// Dir Destructor : 
//////////////////////////////////////////////////////////// 

Dir::~Dir() { 
if ( dir ) 

closed; 

} 

//////////////////////////////////////////////////////////// 
// Opena directory : 
//////////////////////////////////////////////////////////// 

Dir & 
Dir::open(const char *path) { 

if ( dir ) 
throw error = EINVAL; // Object is already open 

dir = ::opendir(path); // Attempt to open directory 
if ( !dir ) 

throw error = errno; // Open failed 

} 
return *this; 
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43: 
44: 111111111111111111111111111111111111111111111111111111111111 
45: // Close a directory : 
46: 111111111111111111111111111111111111111111111111111111111111 
47: 
48: Dir & 
49: Dir::close() { 
50: int z; 
51: 
52: if ( !dir ) 
53: throw error = EINVAL; // Nothing to close 
54: if ( name ) { 
55: delete name; 
56: name =0; //No name now 
57: } 
58: z = ::closedir(dir); 
59: dir = 0; // No dir now 
60: if ( z == -1 ) 
61: throw error = errno; 
62: return *this; 
63: } 
64: 
65: //////////////////////////////////////////////////////////// 
66: // Read a directory : 
67: //////////////////////////////////////////////////////////// 
68: 
69: char * 
70: Dir::read() { 
71: dirent *p; 
72: 
73: if ( !dir ) 
74: throw error = EINVAL; // Nothing to read 
75: if ( name ) { 
76: delete name; 
77: name = 0; 
78: } 
79: 
80: p = readdir(dir); // Read the next entry 
81: if ( !p ) 
82: return name; // End of directory 
83: 
84: return name = strdup(p->d_name); 
85: } 
86: 
87: //////////////////////////////////////////////////////////// 
88: // Rewind a directory : 
89: //////////////////////////////////////////////////////////// 
90: 
91: Dir & 
92: Dir::rewind/) { 
93: 
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94: if ( !dir ) 
95: throw error = EINVAL; // Nothing to rewind 
96: ::rewinddir(dir); // Rewind directory 
97: return *this; 
98: } 
99: 
100: // End dir.cc 

The methods in the Dir class throw errno values if errors are detected. An example of this is 

in lines 38 and 39 of Listing 14.2. If the opendir(3) call fails, the value in errno is thrown in 

line 39. The error EINVAL is thrown if the directory is not open, and an operation such as 

Dir:: read() is attempted (lines 73 and 74, for example). 

The implementation of this class should be review, since Chapter 7, “Directory Management,” 

covered the directory functions in detail. Only the file system object name is returned by the 

Dir:: read () method (see line 84). 

The Dbm Class 
The Dbm class is declared in the include file Dbm. h, which is shown in Listing 14.3. This class 

wraps the NDBM functions in a C++ object for convenience and simplicity. Additionally, this 

approach allows exceptions and destructors to be used. The object destructor ensures that the 

database is properly closed. 

LISTING 14.3 Dbm.h—The Dbm Class Definition 

1: // Dbm.h 
2: 
3: #ifndef _Dbm_h_ 
4: #define _Dbm_h_ 
5: 
6: #include <sys/types.h> 
7: #include <unistd.h> 
8: #include <ndbm.h> 
9: #include <fcntl.h> 
10: 
11: //////////////////////////////////////////////////////////// 
12: // A Class for the DBM Routines : 
13: //////////////////////////////////////////////////////////// 
14: 
15: class Dbm { 
16: int flags; 
17: char *path; 
18: DBM *db; 
19: protected: 
20: int error; 
21: public: 
22: Dbm(); 
23: -Dbm(); 
24: Dbm &open(const 

// Open flags 
// Pathname of database 
// Open database 

// Last error 

char *path,int flags=0_RDWR,int mode=0666); 
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25: Dbm &close(); 
26: datum fetch(datum key); 
27: Dbm &store(datum key,datum content,int flags); 
28: Dbm &deleteKey(datum key); 
29: datum firstKey(); 
30: datum nextKey(); 
31: inline int getError() { return error; } 
32: inline int getFlags() { return flags; } 
33: inline char *getPath() { return path; } 
34: }; 
35: 
36: #endif // _Dbm_h_ 
37: 
38: // End Dbm.h 

The Dbm object manages private members flags, path, and db. The flags and path members 

can be examined with the inline member functions getFlags () and getPath (). The protected 

member error holds the last err no value thrown and can be examined with the inline func¬ 

tion getError(). 

The member functions open(), close(), fetch(), store(), deleteKey (), firstKey (), and 

nextKey () are simply wrapper methods for the various NDBM routines you have learned about 

in this chapter. The method deleteKey () could not be named delete (), since this conflicts 

with the reserved C++ keyword delete. 

Listing 14.4 shows the implementation of the Dbm class. 

LISTING 14.4 Dbm . cc—The Implementation of the Dbm Class 

1: // Dbm.cc 
2: 
3: #include <string.h> 
4: #include <errno.h> 
5: #include "Dbm.h" 
6: 
7: //////////////////////////////////////////////////////////// 
8: // Constructor : 
9: //////////////////////////////////////////////////////////// 
10: 
11: Dbm::Dbm() { 
12: flags = 0; 
13: path = 0; 
14: db = 0; 
15: error = 0; 
16: } 
17: 
18: //////////////////////////////////////////////////////////// 
19: // Destructor : 
20: //////////////////////////////////////////////////////////// 
21: 
22: Dbm::-Dbm() { 

// No flags 
// No path 
//No database 
// No logged errors 
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if ( db ) 
close(); 

} 
// Close database 

//////////////////////////////////////////////////////////// 
// Open/Create a Database : 
// NOTES: 
// flags 0_RDWR, 0_RD0NLY, 0_CREAT etc. (see open(2)) 
// mode Permission bits 
//////////////////////////////////////////////////////////// 

Dbm & 
Dbm::open(const char *path,int flags,int mode) { 

if ( db ) 
throw error = EPERM; 

db = ::dbm_open(path,this 
if ( !db ) 

throw error = EIO; 

path = strdup(path); 

return *this; 

// Database already open 

>flags = flags,mode); 

// Open failed 

// Save pathname 

} 

//////////////////////////////////////////////////////////// 
// Close the open database : 
//////////////////////////////////////////////////////////// 

Dbm & 
Dbm::close() { 

if ( !db ) 
throw error = EPERM; // Database is not open 

dbm_close(db); // Close Database 
db = 0; 
delete path; // Free pathname 
path = 0; 

return *this; 

} 

//////////////////////////////////////////////////////////// 
// Fetch data by key : 
//////////////////////////////////////////////////////////// 

datum 
Dbm::fetch(datum key) { 

datum content; 

285 

if ( !db ) 
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76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

throw error = EPERM; // No database 

content = ::dbm_fetch(db,key); 
if ( dbm_error(db) ) { 

dbm_clearerr(db); 
throw error = EIO; 

} 
if ( Icontent.dptr ) 

throw error = ENOENT; // Not found 

return content; // Found content 

//////////////////////////////////////////////////////////// 
// Replace or Insert new data by key : 
//////////////////////////////////////////////////////////// 

Dbm & 
Dbm::store(datum key,datum content,int flags) { 

if ( !db ) 
throw error = EPERM; // No database 

if ( ::dbm_store(db,key,content,flags) < 0 ) { 
dbm_clearerr(db); 
throw error = EIO; // Failed 

} 
return *this; 

} 

//////////////////////////////////////////////////////////// 
// Delete data by key : 
//////////////////////////////////////////////////////////// 

Dbm & 
Dbm::deleteKey(datum key) { 

if ( !db ) 
throw error = EPERM; // No database 

if ( ::dbm_delete(db,key) < 0 ) { 
dbm_clearerr(db); 
throw error = EIO; // Failed 

} 
return *this; 

//////////////////////////////////////////////////////////// 
// Retrieve the first data key : 
//////////////////////////////////////////////////////////// 

datum 
Dbm::firstKey() { 
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128: datum d; 
129: 
130: if ( !db ) 
131: throw error = EPERM; // No database 
132: 
133: d = ::dbm_firstkey(db); 
134: 
135: if ( dbm_error(db) ) { 
136: dbm_clearerr(db); 
137: throw error = EIO; // Database error 
138: } 
139: 
140: return d; 
141: } 
142: 
143: //////////////////////////////////////////////////////////// 
144: // Retrieve the next data key : 
145: //////////////////////////////////////////////////////////// 
146: 
147: datum 
148: Dbm::nextKey() { 
149: datum d; 
150: 
151: if ( !db ) 
152: throw error = EPERM; // No database 
153: 
154: d = ::dbm_nextkey(db); 
155: 
156: if ( dbm_error(db) ) { 
157: dbm_clearerr(db); 
158: throw error = EIO; // Database error 
159: } 
160: 
161: return d; 
162: } 
163: 
164: // End Dbm.cc 

The destructor Dbm:: -Dbm () in Listing 14.4 calls upon Dbm:: close () if it finds that private 

member db is not null. This allows the database to be closed automatically, when the Dbm 

object is destroyed. However, the user may call upon Dbm:: close() himself. This allows him 

to re-use the object by calling the Dbm:: open () method to open a different database. 

The methods Dbm: :fetch(), Dbm: :store(), Dbm::deleteKey(), Dbm: :firstKey(), and 

Dbm: : nextKey () all use the datum data type in the same manner as the ndbm(3) routines. The 

InoDb class that inherits from Dbm will tailor the interfaces to the application, as you will see in 

listings later in this chapter. 

Similar to the implementation of the Dir class, the Dbm class throws an error (EPERM) when the 

database is not open and an operation is attempted on it. Unlike the Dir class, the error 

thrown after a failed ndbm(3) call is always EIO. This was done because there are no docu¬ 

mented errors given for ndbm(3) routines. Literature indicates that only dbm_error(3) can be 
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trusted, and it is only an indication of error. The values of errno are not consistently returned 

for different UNIX platforms. The method Dbm:: fetch () shows an example of this in lines 

79-82. 

The remainder of the implementation provides a wrapper around the ndbm(3) routines. 

The InoDb Class 
The Dbm class is a foundation class. The Snapshot database uses a device number and an i- 

node number as a key for each record. Furthermore, each record is simply the struct stat 

data type. A new class, inheriting from the Dbm class, could then provide convenient interfaces 

for the application involved. That is what was done with the InoDb class, which is presented in 

Listing 14.5. 

LISTING 14.5 InoDb.h—The InoDb Class Declaration 

// InoDb.h 1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 

12 

13 
14 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

#ifndef _InoDb_h_ 
#define _InoDb_h_ 

#include <sys/types.h> 
#include <sys/stat.h> 
#include "Dbm.h" 

//////////////////////////////////////////////////////////// 
// Specialized Database Class for an Inode Database : 
//////////////////////////////////////////////////////////// 

class InoDb : public Dbm { 
15 public: 
16 struct Key { 
17 dev_t st_dev; II Device number 
18 ino t st_ino; II Inode number 
19 }; 
20 protected: 
21 Key ikey; II Internal key 
22 public: 

}; 

InoDb &fetchKey(Key &key,struct stat &sbuf); 
InoDb &insertKey(Key &key,struct stat &sbuf); 
InoDb &replaceKey(Key &key,struct stat &sbuf); 
InoDb &deleteKey(Key &key); 
Key *firstKey(); 
Key *nextKey(); 

#endif _InoDb_h_ 

// End InoDb.h 
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Line 14 of Listing 14.5 shows how the class InoDb inherits from the class Dbm. The type defini¬ 

tion InoDb:: Key is made publicly available in lines 15-19. A protected internal key member 

ikey is declared in line 21. 

Lines 23-28 implement new methods that feature an API that is convenient for the applica¬ 

tion. In each case, the key is using the InoDb: : Key type. Where data content is involved, a 

struct stat is referred to. 

The implementation of the InoDb class is shown in Listing 14.6. 

LISTING 14.6 InoDb . cc—The Implementation of the InoDb Class 

1: // InoDb.cc 
2: 
3: #include <errno.h> 
4: #include "InoDb.h" 
5: 
6: //////////////////////////////////////////////////////////// 
7: // Fetch stat info by inode number : 
8: //////////////////////////////////////////////////////////// 
9: 
10: InoDb & 
11: InoDb::fetchKey(Key &key,struct stat &sbuf) { 
12: datum d, f; 
13: 
14: d.dptr = (char *)&key; 
15: d.dsize = sizeof key; 
16: f = fetch; 
17: 
18: if ( f.dsize != sizeof (struct stat) ) 
19: throw error = EINVAL; // Corrupt database 
20: memcpy(&sbuf,f.dptr,sizeof sbuf); 
21: 
22: return *this; 
23: } 
24: 
25: //////////////////////////////////////////////////////////// 
26: // Add new stat info by inode number : 
27: //////////////////////////////////////////////////////////// 
28: 
29: InoDb & 
30: InoDb::insertKey(Key &key,struct stat &sbuf) { 
31: datum k, c; 
32: 
33: k.dptr = (char *)&key; 
34: k.dsize = sizeof key; 
35: c.dptr = (char *)&sbuf; 
36: c.dsize = sizeof sbuf; 
37: store(k,c,DBM_INSERT); 
38: return ‘this; 
39: } 
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continued from previous page 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

//////////////////////////////////////////////////////////// 
// Replace stat info by inode number : 

//////////////////////////////////////////////////////////// 

InoDb & 
InoDb::replaceKey(Key &key,struct stat &sbuf) { 

datum k, c; 

k.dptr = (char *)&key; 
k.dsize = sizeof key; 
c.dptr = (char *)&sbuf; 
c.dsize = sizeof sbuf; 
Store(k,c,DBM_REPLACE); 
return *this; 

} 

//////////////////////////////////////////////////////////// 
// Delete stat info by inode number : 

//////////////////////////////////////////////////////////// 

InoDb & 
InoDb::delete«ey(Key &key) { 

datum k; 

k.dptr = (char *)&key; 
k.dsize = sizeof key; 
Dbm::deleteKey(k); 
return ‘this; 

//////////////////////////////////////////////////////////// 
// Retrieve the first key entry : 

//////////////////////////////////////////////////////////// 

InoDb::Key * 
InoDb::firstKey() { 

datum k; 

k = Dbm::firstKey(); 
if ( !k.dptr ) 

return 0; // Return NULL for EOF 

if ( k.dsize != sizeof ikey ) 
throw error = EINVAL; // Corrupt? 

memcpy(&ikey,k.dptr,sizeof ikey); 
return &ikey; // Return pointer to key 
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88: 

89: 1111111111111111111111111111111111111111111 / /11111/111//1/11 
90: // Retrieve the last key entry : 
91: //////////////////////////////////////////////////////////// 
92: 
93: InoDb::Key * 
94: InoDb::nextKey() { 
95: datum k; 
96: 
97: k = Dbm::nextKey(); 
98: if ( Ik.dptr ) 
99: return 0; // Return NULL for EOF 
100: 
101: 
102: 
103: 
104: 
105: } 
106: 
107: // End InoDb.cc 

if ( k.dsize != sizeof ikey ) 
throw error = EINVAL; // Corrupt? 

memcpy(&ikey,k.dptr,sizeof ikey); 
return &ikey; // Return pointer to key 

Much of the code presented in Listing 14.6 simply makes the application interface conform to 

the Dbm class interface. For example, examine the code for InoDb: :fetchKey() (lines 10-23). 

The datum value d is prepared to point to the key (line 14) and establish the key size (line 15). 

Then the datum value f is set by the call to fetch () (which is actually a call to Dbm::fetch ()). 

Upon return from Dbm: :fetch (), the size of the returned data is checked (line 18), and EIN¬ 

VAL is thrown if is not correct (line 19). Otherwise, the data pointed to by f. dptr is copied to 

the receiving struct stat buffer (line 20) that the application has provided as argument 

sbuf. The argument sbuf is provided by reference, so the value is passed back to the caller in 

this way. 

The method InoDb:: insertKey () is similar (lines 29-39), with the exception that the datum c 

is setup to provide the calling argument sbuf as input to the Dbm:: store () call (line 37). 

Notice that the value DBM_INSERT is used in line 37, causing duplicate keys to be ignored. 

The method InoDb: : replaceKey() is identical to InoDb:: insertKey (), with the exception 

that Dbm: : store () is called using the value DBM_REPLACE in line 53. 

The methods InoDb: :f irstKey() and InoDb:: nextKey() return a null (Key *) value if they 

reach the end of the keys (lines 98 and 99). The returned key is copied to the protected inter¬ 

nal key ikey in line 103. The address of ikey is returned in line 104. 

The Snapshot Application 
Listing 14.7 shows the Snapshot. cc application source listing. This listing shows how the Dir 

and InoDb objects are put to use. 

291 
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LISTING 14.7 Snapshot. cc—The Snapshot Application Program 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

// Snapshot.cc 

#include <stdio.h> 
^include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <pwd.h> 
#include <grp.h> 

#include "Dir.h" 
#include "InoDb.h" 

static int rc = 0; II return code 
static int cmdopt_i = 0; II -i 
static int cmdopt_c = 0; II -c 
static int cmdopt_v = 0; II -V 

static int cmdopt_h = 0; II -h 

//////////////////////////////////////////////////////////// 
// RETURN BASENAME OF A PATHNAME : 
//////////////////////////////////////////////////////////// 

char * 
Basename(char *path) { 

char *bname = strrchr(path,'/'); 

return Ibname ? path : bname + 1; 
} 

//////////////////////////////////////////////////////////// 
// COMPARE CURRENT VS PRIOR STAT(2) INFO : 
//////////////////////////////////////////////////////////// 

char * 
Compare(struct stat is,struct 

static char cmpmsg[512]; 
static char dtbuf[64]; 
struct passwd *pw; 
struct group *gr; 

stat was) { 
// Compare!) message buffer 
// Date time format buffer 
// /etc/password lookup 
// /etc/group lookup 

// DID THE FILE SIZE CHANGE? 
if ( is.st_size != was.st_size ) { 

sprintf(cmpmsg,"Size has changed (was %ld bytes)", 
(long)was.st_size); 

return cmpmsg; 
} 

// DID THE FILE MODIFICATION TIME CHANGE? 
if ( is.st_mtime != was.stjntime ) { 
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53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 

strftime(dtbuf,sizeof dtbuf,"%x %X",localtime(&was.st_mtime)); 
dtbuf[sizeof dtbuf-1] = 0; 
sprintf(cmpmsg,"Modification time has changed (was %s)",dtbuf); 
return cmpmsg; 

} 

// DID THE FILE MODE CHANGE? 
if ( is.st_mode != was.stjnode ) { 

sprintf(cmpmsg,"File mode changed (was 0%03o)",was.st_mode); 
return cmpmsg; 

} 

// DID THE OWNERSHIP OF THE FILE CHANGE? 
if ( is.st_uid != was.st_uid ) { 

if ( !(pw = getpwuid(was.st_uid)) ) 
sprintf(cmpmsg,"File ownership has changed (was uid %d)", 

was.st_uid); 
else 

sprintf(cmpmsg,"File ownership has changed (was %s)", 
pw->pw_name); 

return cmpmsg; 
} 

// DID THE GROUP CHANGE? 
if ( is.st_gid != was.st_gid ) { 

if ( !(gr = getgrgid(was.st_gid)) ) 
sprintf(cmpmsg,"Group ownership changed (was gid %d)", 

was.st_gid); 
else 

sprintf(cmpmsg,"Group ownership changed (was %s)", 
gr->gr_name); 

return cmpmsg; 

} 

// DID THE NUMBER OF LINKS TO THIS FILE CHANGE? 
if ( is.st_nlink != was.st_nlink ) { 

sprintf (cmpmsg,''Number of links changed (was %ld)", 
(long)was.st_nlink); 

return cmpmsg; 

} 

return NULL; 

} 

//////////////////////////////////////////////////////////// 
// UPDATE DATABASE OR CHECK AGAINST DATABASE : 
//////////////////////////////////////////////////////////// 

void 
Process(InoDb &inodb,const char *fullpath,struct stat &sbuf) { 

struct stat pbuf; 
InoDb::Key key; 
char *msg; 
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106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

if ( Istrcmp(fullpath,"/proc") ) 
return; // Ignore pseudo directories 

if ( lstat(fullpath,&sbuf) == -1 ) { 
fprintf(stderr,"%s: stat(%s)\n", 

strerror(errno).fullpath); 
re |= 4; // Error, but non-fatal 
return; 

} 

// READY THE DATABASE KEY: 
key.st_dev = sbuf.st_dev; 
key.st_ino = sbuf.st_ino; 

if ( !cmdopt_c ) { 
// CREATE or UPDATE DB RECORD: 
inodb.replaceKey(key,sbuf); 

} else { 
// LOOKUP LAST SNAPSHOT : 
try { 

inodb.fetchKey(key,pbuf); 
} catch ( int e ) { 

if ( e == ENOENT ) { 
fprintf(stderr,"New %s: %s\n", 

S_ISDIR(sbuf.stjnode) 
? "directory" 
: "object", 

fullpath); 
return; 

} else { 
fprintf(stderr,"%s: fetchKey(%s)\n", 

strerror(e),fullpath); 
abort(); // Fatal DB error 

} 
} 

// COMPARE CURRENT STAT VS STORED STAT INFO : 
msg = Compare(sbuf,pbuf); 
if ( msg ) { 

printf("%s: %s\n",msg,fullpath); 
rc |=8; 

} 
} 

} 

//////////////////////////////////////////////////////////// 
// WALK A DIRECTORY : 
//////////////////////////////////////////////////////////// 

void 
walk(InoDb &inodb,const char *dirname,int inclDir=0) { 
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168 
169 
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178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
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195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
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Dir dir; 
char *ent; 
long pathmax; 
struct stat sbuf; 

// AVOID CERTAIN PSEUDO FILE SYSTEMS : 
if ( !strcmp(dirname,"/proc") ) 

return; 

if ( cmdopt_v ) 
fprintf(stderr,"Examining: %s\n",dirname); 

// OPEN DIRECTORY : 
try { 

dir.open(dirname); 
} catch ( int e ) { 

fprintf(stderr,"%s: opening directory %s\n", 
strerror(e),dirname); 

re |= 2; 
return; // Non-fatal 

} 

// INCLUDE TOP LEVEL DIRECTORIES : 
if ( inclDir ) 

Process(inodb,dirname,sbuf); 

// DETERMINE MAXIMUM PATHNAME LENGTH : 
if ( (pathmax = pathconf(dirname,_PC_PATH_MAX)) == -1L ) { 

fprintf(stderr,"%s: pathconf('%s',_PC_PATH_MAX)\n", 
strerror(errno),dirname); 

abort(); 
} 

char fullpath[pathmax+1]; // Full pathname 
int bx; // Index to basename 

strcpy(fullpath,dirname); 
bx = strlen(fullpath); 
if ( bx > 0 && fullpath[bx-1] != 1/' ) { 

streat(fullpath,; // Append slash 
++bx; // Adjust basename index 

} 

// PROCESS ALL DIRECTORY ENTRIES: 
while ( (ent = dir.read()) ) { 

if ( !strcmp(ent,".") || !strcmp(ent,"..") ) 
continue; // Ignore these 

strcpy(fullpath+bx,ent); 

Process(inodb,fullpath,sbuf); 

// IF OBJECT IS A DIRECTORY, DESCEND INTO IT: 
if ( S_ISDIR(sbuf.st_mode) ) 
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211 
212 
213 
214 
215 
216 
217 
218 
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228 
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237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
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258 
259 
260 
261 
262 

walk(inodb,fullpath); 

} 

// CLOSE DIRECTORY: 
dir.close() ; 

//////////////////////////////////////////////////////////// 
// PROVIDE USAGE INSTRUCTIONS : 
//////////////////////////////////////////////////////////// 

static void 
usage(char *cmd) { 

char *bname = Basename(cmd); 

} 

printf("Usage: 
puts("where:"); 
puts(" -c 
puts(" -i 
puts(" -v 
puts(" -h 

%s [ -c] [-i] [ -v] [-h] [dir...]\n",bname); 

Check snapshot against file system"); 
(Re)Initialize the database"); 
Verbose"); 
Help (this info)"); 

//////////////////////////////////////////////////////////// 
// MAIN PROGRAM : 
//////////////////////////////////////////////////////////// 

int 
main(int argc,char **argv) { 

InoDb inodb; 
int optch; 
const char cmdopts[] = "hicv"; 

// PROCESS COMMAND LINE OPTIONS: 
while ( (optch = getopt(argc,argv,cmdopts)) != -1 ) 

switch ( optch ) { 
case 'i' : 

cmdopt_i =1; // -i (initialize database) 
break; 

case 1c1 : 
cmdopt_c = 1; 
break; 

case 1v' : 
cmdopt_v = 1; 
break; 

case 1h’ : 
cmdopt_h = 1; 
break; 

default : 
rc = 1 ; 

// -c (check snapshot) 

// -v (verbose) 

// -h (give help) 

} 
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263 
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294 
295 
296 
297 
298 
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if ( cmdopt_i && cmdopt_c ) { 
fputs("You cannot use -i and -c together\n'',stderr); 
exit(1); 

if ( cmdopt_h || rc ) { 
usage(argv[0]); 
exit(rc); 

// IF -i THEN DELETE DATABASE, TO RECREATE 
if ( cmdopt_i && unlink("snapshot.db") == -1 ) 

if ( errno != ENOENT ) { 
fprintf(stderr,"%s: unlink(snapshot.db)\n", 

strerror(errno)); 
exit(13); 

} 

// OPEN EXISTING DATABASE (snapshot.db) : 
try { 

inodb.open("snapshot"); 
} catch ( int e ) { 

// IF -c OPTION, DO NOT CREATE DB : 
if ( !cmdopt_c && e == EIO ) { 

// FILE NOT FOUND: CREATE DATABASE 
try { 

inodb.open("snapshot",0_RDWR|0_CREAT); 
} catch ( int e ) { 

fprintf(stderr,"%s: creating snapshot db\n", 
strerror(e)); 

exit(1); 
} 

} else { 
// REPORT DB OPEN ERROR : 
fprintf(stderr,"%s: creating snapshot db\n",strerror(e)); 
exit(1); 

} 
} 

// WALK ALL DIRECTORIES GIVEN ON COMMAND LINE : 
for ( int x=optind; x<argc; ++x ) 

walk(inodb,argv[x],1); 

inodb.close(); 

return rc; 

// End Snapshot.cc 

The main() program begins in line 239 of Listing 14.7. Command-line options are processed 

in lines 245-271. Line 274 checks to see if the option - i was present on the command line. If 

so, it deletes the database snapshot.db by calling unlink(2). 
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The database is opened in line 283. However, if the database does not exist, the error EIO will 

be thrown, and execution continues at line 286. If the -c option is not present on the com¬ 

mand line, the database is created in line 289. 

Once the database is open, the remaining command-line arguments are processed in lines 303 

and 304. After the for loop exits, the database is closed in line 306. 

The Tree Walk 
The function walk() is implemented in lines 156-216. The argument inclDir in line 157 

defaults to zero (false). However, when called from the main() program, the inclDir argu¬ 

ment is true. This causes the directory dirname to be processed in addition to the directory 

members that it contains (lines 181 and 182). 

Certain directories should not be included, and /proc is one of them. Consequently, a test is 

included in lines 164 and 165 to bypass / proc if it should be encountered. 

The -v command-line option causes the directory being processed to be displayed on stderr 

(lines 167 and 168). This is useful when you want to see the progress of a lengthy operation. 

The directory dirname is opened in line 172. Lines 185-191 determine the maximum path¬ 

name length and allocate a buffer named f ullpath [ ]. Variable bx (lines 192 and 195) indi¬ 

cates where the basename of the pathname is in the buffer f ullpath [ ]. 

Lines 202-212 form the directory-processing loop. For each entry encountered, the function 

Process () is invoked. Furthermore, if the object is a directory, walk () is called recursively on 

this new directory (lines 210 and 211). 

Processing for walk () ends in line 215, where the directory is closed. 

The Process () Function 
The interesting database functionality exists in lines 101-150. Line 107 tests to see if the path¬ 

name in argument fullpath matches the directory /proc. If it matches, the return statement 

(line 108) is executed, which causes the /proc directory to be ignored. 

Line 110 performs a lstat(2) call on the object fullpath. The function lstat(2) is used 

because you want to know if symbolic links have changed, not just the files to which they 
point. 

The key is prepared in lines 118 and 119 to indicate the device and i-node entry. If option -c 

is not supplied, then the application is taking a snapshot of the file system, and the lstat (2) 

information is saved (line 123). The method used is InoDb:: replaceKey (), since if this is run 
on an existing database, the record should be updated. 

If the option -c is provided, then a lookup is attempted by device and i-node number in line 

127 instead. If the exception is EN0ENT, then the entry does not exist, and the object is 

reported as being a new object (lines 130-135). If the entry is found, then the present 

lstat (2) information in sbuf is compared to the prior lstat (2) information in pbuf. This is 
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accomplished by calling upon the function Compare () in line 144. If Compare () returns a 

message pointer, then the difference is reported in lines 146 and 147. Otherwise, the function 
Process () exits quietly. 

The Application Function Compare () 

The function Compared is implemented in lines 37-95. The lstat (2) information in vari¬ 

ables is and was is compared in lines 45-92. The following comparison tests are made: 

• The sizes of the object (line 45) 

• The modification times (line 52) 

• The permissions of the object (line 60) 

• The ownership of the object (line 66) 

• The group ownership of the object (line 77) 

• The number of links to the object (line 88) 

If no differences are found in these tests, a null pointer is returned in line 94. 

Running the Snapshot Application 
To compile the program, Snapshot and its companion executable EmptyDb perform the follow¬ 

ing: 

$ make 
cc -c 
cc 
cc 
cc 
cc 
cc 
cc 
$ 

-c 
-c 
-c 

-Wall -fhandle-exceptions Dir.cc 
-Wall -fhandle-exceptions Dbm.cc 
-Wall -fhandle-exceptions InoDb.cc 
-Wall -fhandle-exceptions Snapshot.cc 

-o Snapshot Snapshot.o Dir.o Dbm.o InoDb.o -lstdc++ 
-c -Wall -fhandle-exceptions EmptyDb.cc 
-o EmptyDb EmptyDb.o Dir.o Dbm.o InoDb.o -lstdc++ 

This should create the executables Snapshot and EmptyDb. 

Note 

On many UNIX systems, the NDBM routines are included in a separate library. For this reason, you 

may need to add the linking option -lndbm to link with the NDBM library. 

Under FreeBSD, the NDBM functions are included in the standard C library /usr/lib/libc. so. 

Consequently, under FreeBSD you have no special linking requirements, since libc.so is searched by 

default. 

You should now be able to provoke usage information from the executable Snapshot: 

$ ./Snapshot -h 
Usage: Snapshot [-c] [-i] [-v] [-h] [dir...] 
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where: 
-c Check snapshot against file system 
-i (Re)Initialize the database 
■V Verbose 
-h Help (this info) 

$ 

To create a Snapshot database (snapshot. db in the current directory), do not include the -c 

option. The -i option is used when you want to re-initialize an existing database. Perform this 

simple experiment: 

$ ./Snapshot /tmp 
$ 

If all went well, the program should quickly run through your /tmp directory, making notes in 

the database. To compare the /tmp directory against your database, enter the command 

$ ./Snapshot -c /tmp 
$ 

If you have a relatively quiet system, you’ll not likely see any changes. Now make a change or 

two—perhaps this: 

$ Is -ltr >/tmp/dummy.file 
$ ./Snapshot -c /tmp 
Modification time has changed (was 05/14/00 20:37:35): /tmp 
New object: /tmp/dummy.file 
$ 

Because you created a new file /tmp/dummy.file, it was not in the database. Hence, it is 

reported as a new file. However, note that the /tmp directory’s modification time changed, and 

so it was reported. This tells you that a file was added, renamed, or deleted in that directory. 

Now try something more adventuresome: 

$ ./Snapshot -i /etc /var /tmp 
Permission denied: opening directory /etc/isdn 
Permission denied: opening directory /etc/uucp 
Permission denied: opening directory /var/cron/tabs 
Permission denied: opening directory /var/spool/opielocks 
Permission denied: opening directory /var/games/hackdir 
$ 

Since this was not run from a root account, there were some permission problems. These can 
be ignored for our purposes, as follows: 

$ ./Snapshot -i /etc /var /tmp 2>/dev/null 
$ 

Now keep that database for a while and test it later. After an hour of using a FreeBSD system 
with one user on it, the following changes were observed: 

$ ./Snapshot -c /etc /var /tmp 2>/dev/null 
Modification time has changed (was 05/14/00 16:15:38): /etc/ntp 
Modification time has changed (was 05/14/00 16:15:38): /etc/ntp/drift 
Size has changed (was 94415 bytes): /var/cron/log 
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Modification time has changed (was 05/14/00 02:02:03): /var/log 
Modification time has changed (was 05/14/00 15:28:26): /var/log/lastlog 
Size has changed (was 3784 bytes): /var/log/wtmp 
Size has changed (was 359 bytes): /var/log/maillog.0.gz 
Modification time has changed (was 05/14/00 15:28:35): /var/run/utmp 
Modification time has changed (was 05/14/00 16:32:48): /var/tmp 
$ 

This output shows what files had changed on the system (for the directories tested). The sys¬ 

tem that this ran on had the daemon xntpd(8) running to keep the clock synchronized. 

Consequently, directory /etc/ntp and file /etc/ntp/drift were updated. 

Visiting All Keys and Deletion 
To test the key visitation feature and the delete capability, the program EmptyDb. cc is provided 

in Listing 14.8. 

LISTING 14.8 EmptyDb. cc—Emptying the Database with InoDb:: deleteKey () 

1: // EmptyDb.cc 
2: 
3: //include <stdio.h> 
4: //include <stdlib.h> 
5: //include <unistd.h> 
6: //include <errno.h> 
7: //include <string.h> 
8: //include <sys/types.h> 
9: //include <sys/stat.h> 
10: 
11: //include "InoDb.h" 
12: 
13: //////////////////////////////////////////////////////////// 
14: //MAIN PROGRAM : 
15: // 
16: // If the first command line argument is the word "LIST" 
17: // the keys will be listed only. Otherwise the records 
18: // are deleted. 
19: // 
20: // This test program deletes all entries from the database 
21: // to demonstrate key traversal and delete operations. 
22: //////////////////////////////////////////////////////////// 
23: 
24: int 
25: main(int argc,char **argv) { 
26: InoDb inodb; 
27: InoDb::Key *key; 
28: 
29: (void)argc; 
30: (void)argv; 
31: 
32: // OPEN EXISTING DATABASE (snapshot.db) : 
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33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

try { 
inodb.open("snapshot"); 

} catch ( int e ) { 
fprintf(stderr,"%s: creating snapshot db",strerror(e)); 
exit(l); 

// LIST THE KEYS ONLY : 
if ( argc == 2 && !strcasecmp(argv[1],"LIST") ) { 

for (key=inodb.firstKey(); key != NULL; 
key=inodb.nextKey() ) { 
printf("Key %d:%d from db.\n", 

key->st_dev,key->st_ino); 

} 
return 0; 

// DELETE ALL ENTRIES IN DB : 
while ( (key = inodb.firstKey()) != NULL ) { 

printf(“Delete: Inode %d:%d from db.\n", 
key->st_dev,key->st_ino); 

inodb.deleteKey(*key); // DELETE ENTRY 

} 

// CLOSE DB : 
inodb.close(); 

return 0; 

// End Snapshot.cc 

Listing 14.8 simply opens the database in line 34 of the main () program (it must already 

exist). If the first argument on the command line is LIST, then the for loop in lines 42-46 

exercise the database using InoDb: :firstKey() and InoDb: :nextKey(). The key values are 

reported in lines 44 and 45. 

If no argument LIST is given, the delete loop in lines 51-55 is exercised instead. The 

InoDb: :deleteKey() method is invoked in line 54. 

Running the EmptyDb command in list mode is done as follows (with some output omitted): 

$ ./EmptyDb LIST 

Key 196608:142861 from db. 
Key 196608:166656 from db. 
Key 196608:198403 from db. 
Key 196608:206340 from db. 
Key 196608:63493 from db. 
Key 196608:63509 from db. 
Key 196608:63525 from db. 
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Running EmptyDb again to delete records is done as follows (with some output omitted): 

$ ./EmptyDb 

Delete: Inode 196608:142861 from db. 
Delete: Inode 196608:166656 from db. 
Delete: Inode 196608:198403 from db. 
Delete: Inode 196608:206340 from db. 
Delete: Inode 196608:63493 from db. 
Delete: Inode 196608:63509 from db. 
Delete: Inode 196608:63525 from db. 

$ 

Using LIST on it now should yield no results: 

$ ./EmptyDb LIST 

$ 

Summary 
In this chapter, you learned about the ndbm(3) set of routines. With the working Snapshot 

program and the Dbm and InoDb classes, you saw how the NDBM database routines were applied 

to a real-world application. The NDBM routines are ideal for small applications where multiuser 

contention is not an issue. 

The next chapter covers the topic of UNIX signals. Signals permit you to process asynchronous 

events in your program. 
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CHAPTER 15 

SIGNALS 

The execution of a program normally proceeds synchronously, with each step following 

the previous one. Sometimes actions must be executed immediately by interrupting 

this flow of execution. This may be a request to terminate the program or to process 

some new action. UNIX provides for this capability with signals. 

In this chapter you will learn how to 

• Create and manage signal sets 

• Catch signals 

• Suspend signals 

• Raise signals 

Understanding UNIX Signals 
A signal is an asynchronous software interrupt. The asynchronous nature of the signal prevents 

your program from anticipating when it will arrive. Consequently, a signal action must be reg¬ 

istered before the signal’s arrival. 

A signal will suspend the execution of the program. The signal handling procedure then 

invokes the registered function or action. The function that is called to handle a signal is 

known as a signal handler. 

When you want to interrupt a program that is executing, you interrupt it with the signal 

SIGINT. Another way of expressing this is to say that the signal SIGINT is raised. For many 

people, this is accomplished by entering Ctrl+C, but the character you use may be configured 

differently. To determine what your interrupt character is, the following command gets the 

result shown: 

$ stty -a 
speed 9600 baud; 0 rows; 0 columns; 
Iflags: icanon isig iexten echo echoe -echok echoke -echonl echoctl 

-echoprt -altwerase -noflsh -tostop -flusho pendin -nokerninfo 
-extproc 

iflags: -istrip icrnl -inlcr -igncr ixon -ixoff ixany imaxbel -ignbrk 
brkint -inpck -ignpar -parmrk 

oflags: opost onlcr -oxtabs 
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cflags: cread cs8 -parenb -parodd hupcl -clocal -cstopb -crtscts -dsrflow 
-dtrflow -mdmbuf 

cchars: discard = "0; dsusp = AY; eof = AD; eol = <undef>; 
eol2 = <undef>; erase = AH; intr = AC; kill = AU; lnext = AV; 
min = 1; quit = A\; reprint = AR; start = AQ; status = AT; 
stop = AS; susp = AZ; time = 0; werase = AW; 

$ 

The example shown is the output from the FreeBSD stty (1) command. The output of the 

stty (1) command may vary on your UNIX platform. Look for the clause intr = AC in the 

output. The example shows that the Ctrl+C (AC) character sends the signal SIGINT (intr). 

The interrupt character raises the signal SIGINT in the executing program. Every defined UNIX 

signal has a default action associated with it. By default, the SIGINT signal causes the executing 

process to terminate. This signal is used for demonstration purposes in this chapter. 

Reliable and Unreliable Signals 
The original UNIX signal handling design using signal (3) contained a race condition. When 

a signal was caught by a program, the signal’s registered action reverted to its default. To main¬ 

tain the same registered action, the signal handler was forced to immediately re-register its 

required action. This left a small window of opportunity for the default action to be exercised 

by bad timing. This is why the signal(3) API is considered unreliable. 

A new set of functions, including the function sigaction (2), has been added to the list of sys¬ 

tem calls. These form the reliable signals API. All new program development should use this 

API set. However, when the signal(3) API is discussed next, you will see that there are still a 

few cases where the older API can be used for its simplicity. 

Note 

BSD release 4.3 and later do not implement the System V behavior of changing the registered action 
to SIGJDFL. Consequently, the FreeBSD 3.4 release does not exhibit a race condition. 

Registering the actions SIG_DFL and SIG_IGN can be done safely with the function signal(3). 

However, you should avoid the signal(3) function otherwise. 

The Unreliable signal(3) API 
The signal (3) function forms the basis for the unreliable signals interface. Its function synop¬ 
sis is as follows: 

#include <signal.h> 

void (*signal(int sig, void (*func)(int)))(int) 
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/* Alternatively */ 

typedef void (*sig_t)(int); 

sig_t signal(int sig, sig_t func); 

The first synopsis is rather difficult to decipher. The FreeBSD man(1) page offers a second 

interpretation of the first. The signal (3) function’s first argument sig identifies the signal for 

which the caller wants to register an action. The second argument func identifies the action or 
the function pointer. 

The return value from signal (3) is the previous action that was established at the time of the 

call. Alternatively, the value SIG_ERR indicates that an error has occurred and the variable 

errno should be examined for the cause. 

The argument sig identifies the signal to be prepared. Table 15.1 shows some of the more 

commonly used signals available under UNIX. 

TABLE 15.1 Commonly Used Signals 

Signal Description 

SIGHUP The terminal line has hung up. This refers to when a modem line experiences a hangup 

due to a loss of carrier. However, it also applies to any terminal device when it is closed for 

logout(1). 

SIGINT The terminal line has received the interrupt character. 

SIGQUIT The terminal line has received the quit character. The default action produces a core file. 

SIGUSR1 User-defined signal 1. 

SIGUSR2 User-defined signal 2. 

SIGTERM The process is being terminated (often the result of the kill (1) command). 

SIGCHLD A child process has terminated. 

SIGPIPE A write to a half-closed pipe has occurred. 

SIGALRM The timer for function alarm(3) has expired. 

The argument func allows the caller to register the action that is required for the given signal. 

There are three possible values for the argument func. They are 

SIG_DFL Default signal action 

SIG_IGN Ignore the signal 

function pointer The signal handler 
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The SIG_DFL macro causes the system default action for the named signal to be registered. The 

default action is not the same for all signals. For SIGINT, the default action causes the program 

to terminate. Alternatively, the default action for SIGCHLD is to ignore the signal. 

The SIG_IGN macro allows the programmer to indicate that the signal is to be ignored. Once 

this action is registered, it remains in effect for the indicated signal sig until it is changed. 

Note 

Calling signal(3) with SIG_DFL or SIG_IGN is considered reliable. These actions can be registered 

reliably by signal(3) because they do not change after a signal is raised. 

The programmer may also choose to register a signal handler to be called when a signal is 

received. This is accomplished by providing the functions pointer in the f unc argument. This 

practice is now discouraged, because this part of the signal(3) API is unreliable on non-BSD 

platforms. 

The program shown in Listing 15.1 shows a simple demonstration program using the unreli¬ 

able signal API. 

LISTING 15.1 ursigl. c—A Simple signal(3) Example Program 

1: /* ursigl.c */ 
2: 
3: #include <stdio.h> 
4: #include <signal.h> 
5: #include <unistd.h> 
6: 
7: static int count = 0; 
8: 
9: void 
10: handler(int signo) { 
11: 
12: signal(SIGINT,handler); /* 
13: ++count; /* 
14: write(1,"Got SIGINT\n",11); /* 
15: } 
16: 
17: int 
18: main(int argc,char **argv) { 
19: 
20: signal(SIGINT,handler); /* 
21: 
22: while ( count < 2 ) { 
23: puts("Waiting for SIGINT.."); 
24: sleep(4); /* Snooze */ 
25: } 
26: puts("End."); 
27: return 0; 
28: } 

Re-instate handler */ 
Increment count */ 
Write message */ 

Register function */ 
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Line 12 of Listing 15.1 is necessary for non-BSD systems. Otherwise, only the first SIGINT sig¬ 

nal will be caught by the function handler!), because the signal reverts to its default action. 

Compiling and running this program under FreeBSD yields the following result: 

$ make ursigl 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall ursigl.c 
cc -o ursigl ursigl.o 
$ ./ursigl 
Waiting for SIGINT.. 
ACGot SIGINT 
Waiting for SIGINT.. 
ACGot SIGINT 
End. 
$ 

In the example session shown, the loop in lines 22-24 causes the message Waiting for 

SIGINT.. to appear. Then the user presses Ctrl+C, which is shown as AC in the session output. 

Immediately after Ctrl+C is pressed, the message Got SIGINT is displayed. Later, another 

Ctrl+C is pressed to demonstrate that the signal can be caught more than once. The program 

terminates normally after it notices that SIGINT has been received twice (see line 22). The mes¬ 

sage Got SIGINT comes from line 14 of Listing 15.1, demonstrating that the signal handler 

was executed. 

The Reliable 
To use the reliable signal API, you must work with signal sets. These allow you to work with 

signal collections. Alternatively, signal sets can be used as masks that enable or disable collec¬ 

tions of signals. 

The data type that is used for constructing signal sets is sigset_t. This type is manipulated by 

the following functions: 

#include <signal.h> 

int sigemptyset(sigset_t *set); 
int sigfillset(sigset_t *set); 
int sigaddset(sigset_t *set,int signum); 
int sigdelset(sigset_t *set,int signum); 

int sigismember(const sigset_t *set,int signum); 

The functions sigemptyset (3), sigf illset (3), sigaddset (3), and sigdelset(3) all manip¬ 

ulate the sigset_t data type. The last function, sigismember(3), allows you to test the 

sigset_t data type. 

The first four functions return a value of 0 if the operation was successful. If the call failed, -1 

is returned, and errno will contain the error code. The function sigismember (3) will be 

examined later in this chapter. 
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the set. Any signal set function can be applied after initialization has been performed. 

Emptying a Signal Set 
The function sigemptyset (3) is used to initialize a signal set to the state of “no signal mem¬ 

bers.” Initialization is necessary because a declared variable of type sigset_t has undefined 

content. Consequently sigemptyset (3) is often called before the programmer adds one or 

more signals to the set with sigaddset (3). 

The function sigemptyset (3) accepts a pointer to the set to initialize. The following shows 

how it is used to initialize a new set: 

sigset_t my_sigs; /* Signal set declaration */ 

sigemptyset(&my_signals); /* Clear set */ 

This example initializes the signal set my_sigs to contain no signals. 

Filling a Signal Set 
The function sigf illset (3) is similar to sigemptyset (3), except that it fills a signal set with 

all possible signals. This is often required when a signal mask is being created. After filling the 

set with all possible signals, the programmer will delete one or more signals to be excluded 

from the mask. 

This function is used in the same manner as the sigemptyset (3) function. The following 

example shows how to create a set with all possible signals in it: 

sigset_t all_sigs; 

sigfillset(&all_sigs); 

The signal set all_sigs is initialized to contain every possible signal. 

Adding Signals to a Signal Set 
The function sigaddset (3) is used to add a new signal to a signal set. This function is often 

used to add a new signal after the set has been emptied. The function prototype is as follows: 

#include <signal.h> 

int sigaddset(sigset_t *set,int signum); 

The following example shows how to declare and initialize a signal set to contain two signals: 

sigset_t two_sigs; 

sigemptyset(&two_sigs); /* Initialize as empty */ 
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sigaddset(&two_sigs,SIGINT); /* Add SIGINT to set */ 
sigaddset(&two_sigs,SIGPIPE); /* Add SIGPIPE to set */ 

The function sigemptyset(3) initializes the set two_sigs. The signals SIGINT and SIGPIPE 

are then added by calling the function sigaddset (3). 

Removing Signals from a Signal Set 
Signals are removed from a signal set with the function sigdelset (3). This function is often 

used after using sigf illset (3) to remove one or more signals from the set. Its function pro¬ 
totype is as follows: 

#include <signal.h> 

int sigdelset(sigset_t *set,int signum); 

In the example that follows, the sig_msk set is filled with all possible signals by calling 

sigf illset (3). Function sigdelset (3) is then used to remove SIGINT from this set: 

sigset_t sigjnsk; 

sigfillset(&sig_msk); /* Initialize with all sigs */ 
sigdelset(&sig_msk,SIGINT); /* Del SIGINT from set */ 

The resulting signal set sig_msk includes all signals except SIGINT. 

Testing for Signals in a Set 
The function sigismember (3) is used to test if the signal is a member of the given signal set. 

The function prototype is as follows: 

#include <signal.h> 

int sigismember(const sigset_t *set,int signum); 

The function sigismember(3) returns the value 1 if the signal given in argument signum is a 

member of the given signal set in argument set. Otherwise, 0 is returned to indicate that the 

signal is not a member of the set. The following code illustrates its use: 

sigset_t myset; 

sigemptyset(&myset); /* Clear the set */ 
sigaddset(&myset,SIGINT); /* Add SIGINT to set */ 

if ( sigismember(&myset,SIGINT) ) /* Test for SIGINT */ 
puts ("HAS SIGINT11); 

if ( sigismember(&myset,SIGPIPE) ) /* Test for SIGPIPE */ 
puts("HAS SIGPIPE"); 

In the code shown, the message HAS SIGINT will be displayed, but since the SIGPIPE signal is 

not a member of the set, the message HAS SIGPIPE will not be shown. 
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Setting Signal Actions 
Function sigaction (2) is used to query and set signal actions when using reliable signals. 

This function replaces the older signal (3) function that you have seen before. The function 

synopsis for sigaction(2) is as follows: 

#include <signal.h> 

struct sigaction { 
void (*sa_handler)(); 
sigset_t sajnask; 
int sa_flags; 

}; 

int sigaction(int signum, /* Signal number */ 
const struct sigaction *act, /* New actions */ 
struct sigaction *oldact); /* Old actions */ 

The function sigaction (2) returns 0 when successful and -1 if an error occurs (check 

errno). Function argument signum is the signal number that is to be queried or modified. 

The argument oldact allows the programmer to obtain the original handler state. This is ideal 

for when the new handler is temporary, such as within a library function. Before the library 

function returns, the original signal action can be restored precisely as it was. 

The argument act establishes the action that is to be taken by the UNIX kernel when the spec¬ 

ified signal signum is received by the current process. A detailed description of each member 

of the sigaction structure is given in Table 15.2. 

/* signal handler */ 
/* signal mask to apply */ 
/* see signal options below */ 

TABLE 15.2 The Members of the sigaction Structure 

Structure Member Data Type Description 

sa_handler void (*) (int) The address of the signal handler. This may also be the 

value SIG_DFL to indicate the default action or SIG_IGN 

to indicate that the signal should be ignored. 

sajnask sigsetjt This represents the set of other signals that should be 

blocked while the current signal is being processed. In 

addition, the signal being processed will be blocked 

unless the SA_NODEFER or SA_N0MASK flag is used. 

sajflags int This integer value specifies a set of flags that modify the 

signal handling process. 

The value of sa_handler can also be specified as the value SIG_DFL to specify the system 

default signal handling instead of a user-supplied function address. Another value that can be 

used is SIG_IGN, which indicates that the signal is to be ignored. 
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The sigaction (2) function allows you to query the current signal action without modifying 

the current action for the indicated signal. Simply specify the second argument act as a null 
pointer, as shown: 

struct sigaction sa_old; 

sigaction(SIGINT,0,&sa_old); 

The following code segment shows how you could report what the current setting for 
SIGINT is: 

struct sigaction sa_old; /* Queried signal set */ 

sigaction(SIGINT,0,&sa_old); /* Query SIGINT */ 

if ( sa_old.sa_handler == SIG_DFL ) 
puts("SIG_DFL"); /* System Default */ 

else if ( sa_old.sa_handler == SIG_IGN ) 
puts("SIG_IGN"); /* Ignore signal */ 

else /* Function Pointer */ 
printf("sa_handler = 0x%081X;\n",(long)sa_old.sa_handler); 

The code presented will print the message SIG_DFL, indicating the current state of the signal 
SIGINT. 

Signal Action Flags 
Within the structure sigaction, the sa_flags member allows a number of options to be spec¬ 

ified. Table 15.3 outlines the signal-processing flags that UNIX supports. 

TABLE 15.3 sigaction sa_ flags 

Flag Description 

SA_0NESH0T or SA_RESETHAND These flags cause the signal action to revert to the default (SIG_DFL) 

when a signal is caught. Note that this is equivalent to using unreli¬ 

able signals. The AT&T SVID document uses the macro SA_RESETHAND 

for this flag. 

SA_N0MASK or SA_NODEFER These flags prevent the signal being processed from being blocked 

automatically when it is processed. This allows recursive signals of 

the same type to occur. 

SA_RESTART This flag permits the automatic retry BSD semantic for interrupted 

system calls. The error EINTR is suppressed when this flag is in effect. 

SA_N0CLDST0P This flag is applicable only for the signal SIGCHLD. When used with 

SIGCHLD, no notification occurs when the child process is stopped. 
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continued from previous page 

Flag Description 

SA_NOCLDWAIT This flag is applicable only for the signal SIGCHLD. The UNIX kernel 

will not leave zombie processes when child processes of the calling 

process terminate. If the calling process issues a wait (2) or equiva¬ 

lent call, it sleeps until all child processes have terminated (wait (2) 

will return -1 with an errno value of ECHILD). 

SA_ONSTACK With this flag set, the signal will be delivered to the process using an 

alternate signal stack (see sigaltstack(2)). 

Flags SA_N0MASK or SA_NODEFER are noteworthy because they allow a signal handler to be 

called recursively. When a signal is caught, further signals of the same signal number normally 

are blocked until the present signal finishes processing. 

Flag SA_N0CLDST0P prevents the parent process from being notified every time a child process 

is stopped. SA_NOCLDWAIT prevents zombie processes, if the parent process does not call 

wait (2) or its equivalent (see Chapter 19, “Forked Processes,” for more information about 
zombie processes). 

The flag SA_RESTART permits system calls to not return the error code EINTR when the speci¬ 

fied signal is received. Those system calls are automatically retried, instead. This flag may be 
useful for signal handlers that never post results for the application to test. 

Applying Reliable Signals 
The program shown in Listing 15.2 is a modified version of Listing 15.1, using the 
sigaction(2) function. 

LISTING 15.2 rsigl. c—An Example Using sigaction(2) 

1: /* rsigl.c */ 
2: 

3: #include <stdio.h> 
4: #include <signal.h> 
5: #include <unistd.h> 
6: 

7: static int count = 0; 
8: 
9: void 
10: handler(int signo) { 
11: 
12: signal(SIGII\IT, handler) 
13: ++count; 
14: write(1,"Got SIGINT\n" 
15: } 
16: 
17: int 

; /* Re-instate handler */ 
/* Increment count */ 

,11); /* Write message */ 



Chapter 15 • SIGNALS 317 

continued from previous page 

18: main(int argc,char **argv) { 
19: struct sigaction sa_old; /* Old signal actions */ 
20: struct sigaction sa_new; /* New signal actions */ 
21 : 

22: sa_new.sa_handler = handler; /* Point to our function */ 
23: sigemptyset(&sa_new.sajnask); /* Clear mask */ 
24: sa_new.sa_flags = 0; /* No special flags */ 
25: sigaction(SIGINT,&sa_new,&sa_old); 
26: 
27: while ( count < 2 ) { 
28: puts("Waiting for SIGINT.."); 
29: sleep(4); /* Snooze */ 
30: } 
31: 
32: sigaction(SIGINT,&sa_old,0); /* Restore signal actions */ 
33: 
34: puts("End."); 
35: return 0; 
36: } 

The signal(3) call is replaced by lines 19-25 of Listing 15.2. Line 22 defines the address of 

the function to be invoked when SIGINT is raised. Line 23 clears the signal mask, and line 24 
indicates no special flag bits will be used. 

Compiling and running the program gives the following result: 

$ make rsigl 
cc -c -D_P0SIX_C_S0URCE=199309L -D_P0SIX_S0URCE -Wall rsigl.c 
cc -o rsigl rsigl.o 
$ ./rsigl 
Waiting for SIGINT.. 
ACGot SIGINT 
Waiting for SIGINT.. 
ACGot SIGINT 
End. 
$ 

The program works just as the program in Listing 15.1 did. 

Notice that a call to sigaction (2) was added in line 32. This was not necessary for this pro¬ 

gram, but it demonstrates how a program can restore signal-handling actions. The actions for 

SIGINT were saved when line 25 was executed, by saving the settings in variable sa_old. Line 

32 restores the actions for SIGINT by using variable sa_old. 

Controlling Signals 
The previous sections demonstrate how you can define actions for signals and process them 

within your programs. Sometimes it is necessary to control more closely when a signal is 

allowed to be raised. The following sections will show you how this is accomplished under 

UNIX. 
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Blocking Signals 
When the sigaction (2) function was discussed, it was noted that certain signals could be 

blocked during the call to the signal handler. For example, when SIGINT is handled by the sig¬ 

nal handler, further SIGINT signals are prevented from taking place until the present handler 

returns (unless flag SA_N0MASK or SA_NODEFER is used). 

In a similar fashion, your application can enter a critical piece of code where signals could 

cause it problems. An example of this might be keeping track of child process termination sta¬ 

tus information in a linked list. However, if the program is updating the linked list, you do not 

want the signal handler to be called until the linked list has been completely updated. 

Otherwise, corruption of the list would result. 

Critical sections of code can block certain signals from taking place. Once the critical section is 

completed, then the selected signals can be enabled. This functionality is supported by the 

function sigprocmask(2), which manipulates the current signal mask. Its function synopsis is 

as follows: 

#include <signal.h> 

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 

The function sigprocmask(2) returns 0 when called successfully. Otherwise, -1 is returned, 

and the error code is left in external variable err no. 

The sigprocmask(2) argument how determines how the signal action is to be modified. It can 

be one of the following values: 

SIG_BL0CK The specified set indicates additional signals to be blocked (disabled). 

SIGJJNBLOCK The specified set indicates signals that are to become unblocked 

(enabled). 

SIG_SETMASK The specified set replaces the current mask representing blocked signals. 

The macros SIG_BL0CK and SIGJJNBLOCK modify the current signal mask. Macro SIGJ3ETMASK 

allows the caller to completely replace the current signal mask. 

The argument set is the new set that is to be used in modifying the current process signal 

mask. Argument oldset can be provided so that the caller can receive a copy of the current 
process mask settings. 

The following example shows how to block signals SIGINT and SIGPIPE from being received: 

sigset_t blk; /* Signals to block */ 
sigsetjt sigsv; /* Saved signal mask */ 

sigemptyset(&blk); 
sigaddset(&blk,SIGINT); 
sigaddset(&blk,SIGPIPE); 

/* clear set */ 
/* add SIGINT */ 
/* add SIGPIPE */ 
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sigprocmask(SIG_BLOCK,&blk,&sigsv); /* Block sigs */ 

/* CRITICAL CODE HERE */ 

sigprocmask(SIG_SETMASK,&sigsv,0); /* Restore mask */ 

The first call to sigprocmask (2) adds signals SIGINT and SIGPIPE to the list of signals to be 

blocked (note how the how argument is given as SIG_BLOCK). Once the critical code has fin¬ 

ished, the next call to sigprocmask(2) restores the mask value that was saved in the variable 
sigsv. 

Obtaining Pending Signals 
When signals are blocked by sigprocmask(2), they become pending signals, rather than being 

lost. A program can inquire if a signal is pending by using the function sigpending(2). Its 

function synopsis is as follows: 

#include <signal.h> 

int sigpending(sigset_t *set); 

The function sigpending (2) returns 0 if the call is successful. Otherwise, the value -1 is 

returned, and the error code is found in the variable errno. 

The set of pending signals is copied to the set provided in argument set. The following exam¬ 

ple assumes that signal SIGPIPE is blocked and illustrates how to test if the same signal is 

pending: 

sigset_t pendg; /* Pending signal set */ 

sigpending(&pendg); /* Inquire of pending signals */ 

if ( sigismember(&pendg,SIGPIPE) ) { 
puts("SIGPIPE is pending.")! 

The sigpending (2) function is useful when a program is in a critical code loop and needs to 

test for a pending signal. 

The sigsuspend(2) Function 
After noting that a signal is pending with a call to sigpending (2), you need a reliable way to 

unblock that signal and allow the signal to be raised. The function for this job is 

sigsuspend(2): 

#include <signal.h> 

int sigsuspend(const sigset_t *mask); 

The sigsuspend(2) function temporarily applies the signal mask supplied in argument mask 

and then waits for the signal to be raised. If the mask permits the signal you know to be pend¬ 

ing, the signal action will take place immediately. Otherwise, the program will pause indefi¬ 

nitely until an unblocked signal is received. 
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Once the signal action is carried out, the original signal mask is re-established. This provides a 

safe and reliable method to control when a signal is raised. 

Using the example presented with sigpending(2), you can extend that to raise and handle the 

signal when you know it is pending. This example assumes that SIGPIPE is currently blocked: 

sigset_t pendg; /* Pending signal set */ 
sigset_t notpipe; /* All but SIGPIPE */ 

sigfillset(&notpipe); /* Set to all signals */ 
sigdelset(&notpipe,SIGPIPE); /* Remove SIGPIPE */ 

sigpending(&pendg); /* Query which signals are pending */ 

if ( sigismember(&pendg,SIGPIPE) ) { /* Is SIGPIPE pending? */ 
sigsuspend(&notpipe); /* Yes, allow SIGPIPE to be raised */ 

In the example shown, signal set notpipe is initialized so that all signals are set except for 

SIGPIPE. This is done so that the mask presented to sigsuspend (2) is the set of signals to 

block. In this manner, when the function sigsuspend(&notpipe) is called, the signal SIGPIPE 

is temporarily unblocked and allows the signal to be processed. However, when the signal 

handler returns, the original signal mask is restored. 

The returned value from sigsuspend (2) is always -1, and the errno value is set to the value 

EINTR. This reflects the fact that a signal was handled. 

When sigsuspend (2) is called, your program is suspended indefinitely until a signal is raised. 

Sometimes this is the desired behavior, when the program has no work to perform, and it is 
waiting for a signal to arrive. 

Applying the alarm(3) Function 
The alarm(3) function is related to signals. It is useful as a simple timer and is used for signal 

demonstrations in this chapter. The function synopsis is as follows: 

#include <unistd.h> 

unsigned int alarm(unsigned int seconds); 

The alarm(3) function returns the previous alarm setting in seconds and establishes a new 

timer if the argument seconds is greater than zero. After the call is made and the specified 

time elapses, the signal SIGALRM is raised. This signal indicates the expiration of the timer. If 

alarm(3) is called before SIGALRM is raised, the current timer is canceled and a new timer is 

started. Specifying a value of zero to alarm(3) cancels the timer in progress without starting a 
new one. 

Note 

There is only one alarm(3) timer per process. 
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The program in Listing 15.3 shows how a signal handler processes signals SIGINT and 
SIGALRM. 

LISTING 15.3 intalrm.c—An Example Using alarm(3) and sigsuspend(2) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <signal.h> 

/* 

* Signal Catcher : 
*/ 

static void 
catch_sig(int signo) { 

if ( signo == SIGINT ) { 
alarm(0); /* Cancel the timer */ 
write!1,"CAUGHT SIGINT.\n“,15); 

} else if ( signo == SIGALRM ) 
write(1,"CAUGHT SIGALRM.\n",16); 

int 
main(int argc,char *argv[]) { 

sigset_t sigs; 
struct sigaction sa_old; 
struct sigaction sa_new; 

/* SIGINT + SIGALRM */ 
/* Saved signals */ 
/* New signals */ 

sa_new.sa_handler = catch_sig; 
sigemptyset(&sa_new.sa_mask); 
sigaddset(&sa_new.sa_mask,SIGALRM); 
sigaddset(&sa_new.sajnask,SIGINT); 
sa_new.sa_flags = 0; 

/* Signal handler */ 
/* Empty mask */ 
/* Add SIGALRM */ 
/* Add SIGINT */ 
/* No flags */ 

sigaction(SIGINT,&sa new.&sa old); /* Catch SIGINT */ 
sigaction(SIGALRM,&sa_new,0) 

sigfillset(&sigs); 
sigdelset(&sigs,SIGINT); 
sigdelset(&sigs,SIGALRM); 

puts("You have 3 seconds to 

alarm(3); 
sigsuspend(&sigs); 

; /* Catch SIGALRM */ 

/* All signals */ 
/* Exclude SIGINT */ 
/* Exclude SIGALRM */ 

SIGINT:"); 

/* Timeout in 3 seconds */ 
/* Wait for SIGINT or SIGALRM */ 

puts("Done."); 
return 0; 

The main () program is shown in lines 19-45 of Listing 15.3. The signal handler is established 

as catch_sig () (line 25), the signal mask (lines 26-28) and the signal action flags (line 29). 
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The actions for SIGINT and SIGALRM are registered in lines 31-32. At this point, the signal 

handler is ready. 

Lines 34-36 establish a signal mask consisting of the signals SIGINT and SIGALRM. This is used 

in line 41 in the call to sigsuspend(2). Line 40 starts a three-second timer, which will cause 

SIGALRM to be raised if the timer is allowed to expire. The call to sigsuspend (2) puts the 

process to sleep until one of the signals SIGINT or SIGALRM arrives. 

The signal mask sa_new is carefully established in lines 26-28 to block SIGINT and SIGALRM 

when a signal is being handled. Consequently, if SIGINT is being handled by the function 

catch_sig(), SIGALRM is blocked until the signal handler returns. Alternatively, when SIGALRM 

is being processed by catch_sig (), the signal SIGINT cannot be raised. Furthermore, neither 

signal can interrupt itself. 

Note how, when SIGINT is processed by catch_sig (), it cancels the timer by calling on 

alarm(3) in line 13. However, there is a small possibility of the SIGALRM being raised once the 

signal handler returns. This is because the timer may expire before it is canceled in line 13. 

Compile and run the example program as follows, allowing the timer to expire: 

$ make intalrm 
cc -c -D_POSIX_C_SOURCE=199309L -D_P0SIX_S0URCE -Wall intalrm.c 
cc -o intalrm intalrm.o 
$ ./intalrm 
You have 3 seconds to SIGINT: 
CAUGHT SIGALRM. 
Done. 
$ 

The program successfully catches the SIGALRM signal when the timer expires. Now run the 
program and interrupt it (Ctrl+C) before three seconds is up: 

$ ./intalrm 
You have 3 seconds to SIGINT: 
"CCAUGHT SIGINT. 
Done. 
$ 

In this example, when Ctrl+C is pressed, the signal is caught and the alarm(3) timer is can¬ 
celed. 

Warning 

Note that the function sleep(3) calls on the function alarm(3) internally. Do not mix calls to 
alarm(3) and sleep(3), since there is only one SIGALRM timer. 

Calling Functions from a Signal Handler 
The signal is an asynchronous event. Consequently, a signal such as SIGINT can arrive while 

your program is in the middle of executing a call to malloc (3), sprintf (3), or your own 

code. This creates some program integrity issues that you will need to plan for. 
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If malloc (3) is being executed, linked lists of free memory areas may be only partially 

updated when the signal arrives. Thus, when the signal handler is executing, the memory heap 

is in an unstable state. If the signal handler were itself to call upon malloc (3), it is likely that 

data corruption or a program fault would follow. The function malloc (3) cannot tolerate this 

sequence of events, because it is not designed to be re-entrant code. 

One characteristic of re-entrant code is that it does not save any state information within itself 

in static or global areas. Instead, the caller in an argument list provides all data items. Contrast 

this to the function malloc (3), which relies on a global heap, with global state data. 

The asynchronous nature of signals is such that you must call only re-entrant functions from 

within your signal handler. Otherwise, you may end up spending many hours removing the 

occasional bug that shows up. 

The following are the POSIX. 1 standard re-entrant functions. The entries marked with an 

asterisk are not listed in the POSIX. 1 standard, but were listed as re-entrant by the AT&T SVID 

standard. Check these with your local documentation before they are used in a signal handler. 

_exit fork read tcdrain 

abort* fstat rename tcflow 

access getegid rmdir tcflush 

alarm geteuid setgid tcgetattr 

cfgetispeed getgid setpgid tcgetpgrp 

cfgetospeed getgroups setsid tcsendbreak 

cfsetispeed getpgrp setuid tcsetattr 

cfsetospeed getpid sigaction tcsetpgrp 

chdir getppid segaddset time 

chmod getuid segdelset times 

chown kill sigemptyset umask 

chroot* link sigfillset uname 

close longjmp sigismember unlink 

creat lseek signal* ustat* 

dup mkdir sigpending utime 

dup2 mkfifo sigprocmask wait 

execle open sigsuspend waitpid 

execve pathconf sleep write 

exit* pause stat 

fcntl pipe sysconf 
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Avoiding Re-entrant Code Issues 
The reliable signal interface permits you to control when certain signals are raised. This can be 

used to your advantage when a signal handler must call functions that are not re-entrant. This 

method is applied in the following steps: 

1. Block the signal of interest using sigprocmask(2). 

2. At certain points within your application, test if the signal is pending using 

sigpending(2). 

3. Call sigsuspend(2) at a safe point to allow the signal to be raised. 

By calling sigsuspend(2) at a controlled point in your application, you eliminate the fact that 

functions such as malloc(3) were executing at the time of the signal. This procedure ensures 

that it is safe to call upon functions that are not re-entrant. 

Re-entrancy Issues with errno in a Signal Handler 
Technically, many of the functions listed previously are not purely re-entrant. Many have the 

capability to modify the value of the global external variable errno. Consequently, you must be 

careful to preserve errno within a signal handler. 

Warning 

Many re-entrant functions are capable of modifying the external variable errno. To maintain pure 

re-entrancy, be sure to save and restore errno in the signal handler. 

A failure to observe this rule can lead to some obscure and difficult-to-diagnose bugs. 

The signal-catching function code found in Listing 15.2 is repeated here, as follows: 

void 
handlerfint signo) { 

++count; /* Increment count */ 
write(1,"Got SIGINT\n",11); /* Write message */ 

} 

This function is not purely re-entrant, because the errno value could be disturbed by the call 

to write (2). This is easily corrected by inserting a save and restore statement: 

void 
handlerfint signo) { 

int e = errno; /* Save errno */ 

++count; /* Increment count */ 
write(1,"Got SIGINT\n",11); /* Write message */ 
errno = e; /* Restore errno */ 
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Saving and restoring errno prevents the application from seeing a changed errno value when 

the signal handler returns. This type of problem can be extremely difficult to debug, because it 
will often depend upon timing. 

Applying the EINTR Error Code 
Except when the sigsuspend (2) technique is used, a signal can be caught by a signal handler 

at any time. This restricts the choice of available functions to those that are re-entrant. 

Consequently, when non-re-entrant functions must be called, a different technique must 
be used. 

A signal handler can post a result to a global flag variable, which is later polled by the applica¬ 

tion. Using this technique, no re-entrancy issues arise because the event is synchronous 

(polled) instead of being asynchronous. The following example shows a signal handler that 

posts a true result to the flag variable gotSIGINT: 

static int gotSIGINT = 0; /* True when SIGINT arrives */ 

static void 
catch_SIGINT(int signo) { 

gotSIGINT =1; /* Post the flag */ 
} 

This part of the application is simple, and no re-entrancy issues arise. The difficulty is that, 

when the program is blocked waiting for a system call to complete, it never gets a chance to 

poll for the posted SIGINT event. The following statement illustrates another part of the pro¬ 

gram that will wait indefinitely until data arrives on standard input: 

int z; 
char but[256]; 

z = read(0,buf,sizeof buf); /* Obtain terminal input */ 

When the program is waiting for input, the signal handler can still post its event by assigning 1 

to variable gotSIGINT. However, the application cannot break out of the read (2) function to 

test if the event occurred. Instead, the application will wait indefinitely until all of the data 

arrives or an end-of-file is received. 

To avoid this difficulty, the designers of UNIX offered the following solution: When a signal 

handler returns, certain system calls immediately return the error code EINTR. This allows the 

calling application to regain control from its blocked state and have a chance to poll for any 

events that may have been posted by a signal handler. 

The value of the variable gotSIGINT can be tested in the example given earlier. If no event was 

detected by the calling application, it can simply ignore the error and retry the system call. The 

following illustrates this procedure in code: 

int z; 
char buf[256]; 
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do { 
z = read(0,buf,sizeof buf); /* Obtain terminal input */ 
if ( gotSIGINT ) /* Was SIGINT posted? */ 

process_SIGINT(); /* Yes, Process the SIGINT event */ 
} while ( z == -1 && errno == EINTR ); /* Repeat while EINTR */ 

This loop is typical of many that process the EINTR error code. The system call read(2) is 

attempted, which may block indefinitely (for terminal input). If an error occurs, the code tests 

to see if SIGINT was posted by looking at global variable gotSIGINT. If gotSIGINT is true, then 

function process_SIGINT() will perform the actions that the signal handler was unable to 

perform. The loop repeats at the while clause as long as an error is reported by z and the error 

code in errno is equal to EINTR. 

Note 

eintr —interrupted system call This error is returned by a number of system calls to indicate 

that a signal handler was executed as a result of receiving a signal. This is done to permit the calling 

application to become unblocked by a blocking system call, so that action may be executed for a 

received signal. 

Many people in various UNIX Usenet newsgroups have complained about this behavior over 

the years. However, this behavior is a feature of the operating system and is not a defect. You 

should get into the habit of thinking about blocking system calls when you write applications. 

If a function might block the execution of your program for a long time, then you may have to 

be concerned with EINTR processing loops. The general rule is if the system call may block for 

long or indefinite periods, then EINTR is possible. Note for example that read(2) will not 

return EINTR for file reads, since this type of call is not considered long. However, when 

read(2) is used to read terminal input or a socket, the error EINTR can be returned. 

Always check the man (1) pages of system calls to see if EINTR is possible. If your code must be 

portable, be sure to check the man (1) pages of the other platforms as well. Some platforms, 

particularly SGI’s IRIX 6.5, will return EINTR when the others do not. 

Raising Signals 
A UNIX signal can be raised from your application by the use of the kill(2) system call. Its 
synopsis is as follows: 

#include <sys/types.h> 
#include <signal.h> 

int kill(pid_t pid, int sig); 

This function raises the signal sig in the process pid (by process ID). You must have permis¬ 

sion to raise the signal in the indicated process to succeed. To raise the signal SIGUSR1 in your 
own application, you can code: 

kill(getpid(),SIGUSR1); /* Raise SIGUSR1 in current process */ 
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The value 0 is returned for success and -1 if it fails (check errno). 

The value of sig is permitted to be 0. When it is, kill(2) allows your process to detect if the 
process pid exists. For example 

pid_t PID = 1234; /* Process ID 1234 */ 

if ( kill(PlD,0) == -1 ) { 
if ( errno == ESRCH ) 

puts("Process 1234 is not executing."); 
else 

perror("kill(2)"); 
} else 

puts("Process 1234 is executing."); 

When kill(2) returns success in the example, then the program has determined that process 

ID 1234 existed at the time of the test. The errno code ESRCH indicates that no process match¬ 
ing argument pid exists. 

ESRCH —No such process This error is returned by kill(2) when the process indicated does not 
exist. 

The argument pid can be given as 0. When it is, all processes within your process group are 

signaled with the signal sig. 

When kill(2) argument pid is -1, the signal is sent to all but system processes if the caller 

has super user privileges. When the caller does not have super user privileges, the signal is 

delivered to all processes with a real user ID that matches the caller’s effective user ID. The 

calling process is not signaled, however. 

Note 

There is also a raise(3) function, which can be used to send a signal to the current process. 

#include <signal.h> 

int raise(int sig); 

This function is implemented in terms of calls to getpid(2) and kill(2): 

kill(getpid(),sig); 

Since this is easily written, raise (3) is perhaps unnecessary. 
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Summary 
This chapter has shown the signal handling functions and some of their pitfalls. 

The next chapter will show you how to write code that can efficiently handle input 

and output for many open file descriptors. This is an essential skill for writing 

server programs. 



CHAPTER 16 

EFFICIENT I/O SCHEDULING 

Many applications are written to be interactive with one user. For these, it is a simple 

matter to be responsive to the whims of that one user. However, when you design 

server programs, each user of that server must receive immediate responses, as if 

there were only one user. This becomes impossible if your server is waiting for input from 

another user, within a system call. Consequently, a different design strategy is required when 

performing I/O with multiple clients. 

In this chapter, you will examine how to perform 

• Non-blocking I/O 

• I/O using select (2) 

• I/O using poll(2) 

Non-Blocking I/O 
A process is put to sleep when performing I/O for one or more of the following reasons: 

• A read request must wait for input data to arrive. 

• A write request must wait until previously written data has been written to the media. 

• A device must be opened, such as a modem terminal line waiting for a carrier or a FIFO 

waiting for a reader. 

• Mandatory locking is enabled on files, causing a wait for locking on a read or a write 

system call. 

Conceptually, the simplest solution to this problem is to not put the process to sleep. When 

the I/O cannot be completed, the system call returns an error indicating that it cannot succeed 

at this time. This is non-blocking I/O. 
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Opening Files in Non-Blocking Mode 
One method of specifying to the UNIX kernel that you want to use non-blocking I/O is to 

open with the 0_I\I0NBL0CK flag: 

#include <fcntl.h> 
int open(const char *path, int flags, ...); 

where the flags argument is set to include 0_N0NBL0CK, to open in non-blocking mode. 

The 0_N0NBL0CK flag prevents the open (2) call from suspending the execution of the calling 

process if it must wait for some reason. This can happen, for example, when opening a termi¬ 

nal line that must have a modem carrier. With the 0_N0NBL0CK flag provided, the open call 

returns success immediately. 

Subsequently, after an open(2) has been accomplished with the 0_N0NBL0CK flag, other I/O 

operations are also subject to the non-blocking rule. This is explained further in upcoming 

sections. 

The following shows how a process can open its terminal line in non-blocking I/O mode: 

int fd; // Terminal file descriptor 

fd = open("/dev/tty",0_RDWR|0_N0NBL0CK); 

if ( fd == -1 ) { 
perror("open(2)"); // Report error 
abort(); // Abort run. 

} 
// fd is open in non-blocking I/O mode 

Once the file descriptor is open in this manner, a call to read (2) will no longer suspend the 

program’s execution while waiting for input. 

Setting Non-Blocking Mode 
Another method of choosing non-blocking I/O mode is to call upon the services of fcntl(2) 

after the file or device is already open: 

#include <fcntl.h> 
int fcntl(int fd, int cmd, ...); 

where cmd is one of the following: 

F_GETFL Get flags 

F_SETFL Set flags 

The command F_SETFL allows you to enable the flag 0_N0NBL0CK after the file has been 

opened. However, to do this, you will usually want to use the command F_GETFL to obtain the 

current flags in effect. 
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The following example shows how to enable 0_N0NBL0CK on an open file descriptor fd: 

int fd; /* Open file descriptor */ 
int fl; /* Flags for fd */ 

fl = fcntl(fd,F_GETFL,0); 
if ( fl == -1 ) { 

perror("fcntl(F_GETFL)"); /* Report failure */ 
exit(13); 

} 

if ( fcntl(fd,F_SETFL,f1|0_N0NBL0CK) == -1 ) { 
perror("fcntl(F_SETFL)"); /* Report failure */ 
exit(13); 

} 

Notice how the flag 0_N0NBL0CK was ORed with the flags received in variable f 1 in the call to 

fcntl(2) using the F_SETFL command. 

Performing Non-Blocking I/O 
Once the file descriptor is in non-blocking I/O mode, you can use it with regular calls to 

read (2) and write (2). When no input is ready to be returned by read (2) or no output can 

be written by write (2), the returned error code in errno will be EAGAIN. 

EAGAIN—Resource temporarily unavailable This error is returned when using non-blocking 
I/O to indicate that no input was available for reading or that the output could not be written at this 
time. 

Listing 16.1 presents a program that uses non-blocking I/O on a FIFO. 

LISTING 16.1 nblockio.c—A Program That Reads a FIFO in Non-Blocking I/O Mode 

1: /* nblockio.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <fcntl.h> 
6: #include <errno.h> 
7: 

8: int 
9: main(int argc,char **argv) { 
10: int z; /* # of bytes returned */ 
11: int fd; /* File descriptor */ 
12: char buf[256]; /* I/O buffer */ 

13: 
14: fd = open("./fifo",0_RDWR|0_N0NBL0CK); 

15: if ( fd == -1 ) { 
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continued from previous page 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

perror("open(2)"); 
exit(13); 

} 

while ( (z = read(fd,but,sizeof buf)) == -1 && errno == EAGAIN ) 

if ( z >= 0 ) { 
buf[z] = 0; 

printf("GOT INPUT1 '%s1\n",buf); 
} else 

perror( "read(2)11); 

return 0; 
31: } 

Compiling the program with the make (1) file provided also creates this FIFO: 

$ make nblockio 
mkfifo ./fifo 
cc -c -Wall nblockio.c 
cc -o nblockio nblockio.o 

$ 

The program in Listing 16.1 opens the FIFO in line 14 in non-blocking mode (note the flag 

0_N0NBL0CK). Once the FIFO is open, the program loops in line 20 as long as the error EAGAIN 

is returned from the read (2) call. The error EAGAIN tells the caller that no input is available for 

reading. 

Once input is returned, the loop is exited, and the error or the data is reported in lines 23-28. 

The loop in lines 20-21 is very unfriendly to the system, and it will consume all available CPU 

trying to obtain input. However, in a real product, there would be other program events being 

performed in this loop instead. 

Warning 

The loop in lines 20-21 of Listing 16.1 consumes all available CPU. Do not run this demonstration 
program for long if you are sharing a host with other users! 

Additionally, make certain that you do not accidentally leave it running. 

Run the program in the background, so that you can use another command to put input into 
the FIFO. The following shows a sample session: 

$ ./nblockio & 
$ echo BOO >./fifo 
$ GOT INPUT! 'BOO 

[1] 19449 Exit 0 

$ 
./nblockio 



Chapter 16 • EFFICIENT I/O SCHEDULING 333 

The first command starts the program nblockio and places it in the background. At this point, 

it is chewing up CPU because of its non-blocking I/O loop. 

The echo command is entered to feed the letters BOO and a linefeed character into the FIFO 

. /f ifo, which the program is trying to read. Once that is done, the nblockio program reports 

that it got input, and it exits. You will need to press Return again to cause the job termination 

status to appear. The session output demonstrates that the nblockio program did read the 
input that was written to the FIFO. 

The Problem with Non-Blocking I/O 
The preceding demonstration shows how non-blocking I/O could be applied. However, if you 

were to run the program again and watch the system CPU usage with a resource-monitoring 

tool such as top (1), you would immediately recognize that the nblockio program was not a 

good UNIX citizen. It was using as much CPU as it could obtain from the kernel (this may not 

be as extreme, if you have other program functions to perform within the loop). 

You would be forced to avoid using CPU time by calling a function such as sleep(3). Even if 

you use a more fine-grained timer such as nanosleep(2), you as the server designer will 

always be forced to compromise between latency and CPU overhead. As the sleep time is 

increased, the latency increases. As the sleep time is reduced, the CPU overhead increases. 

An ideal solution for both your server and the rest of the host is to have your process awak¬ 

ened at the right time by the UNIX kernel. The kernel knows when it has data for your process 

to read on one of its open file descriptors. The kernel also knows when it can accommodate a 

write to one of the file descriptors belonging to your process. 

In this fashion, the kernel suspends your server process from executing until there is some¬ 

thing for it to perform. This allows precious CPU time to be used by other processes while 

your server process waits for something to happen. The kernel will awaken your process the 

moment it has pending I/O to perform. This is how efficiency is maintained within the host 

system while keeping server latency to a minimum. 

I/O Scheduling Functions 
In order for the UNIX kernel to know when your process should be awakened for I/O, your 

process must first register the I/O events that it is interested in. This is accomplished with the 

system call select(2) or poll(2). Because these calls are so similar, some UNIX systems 

implement one of the calls in terms of the other. 

The select (2) system call will be presented first in this chapter. However, before you can use 

the select (2) function, you must first get to know file descriptor sets and the timeval struc¬ 

ture that it uses. 



334 ADVANCED UNIX PROGRAMMING 

File Descriptor Sets and Their Macros 
In order to work with the select (2) system call, you must work with file descriptor sets. 

These are collections of file descriptors that make it easier to specify a number of file descrip¬ 

tors at once. The following synopsis shows the macros that are available for working with file 

descriptor sets: 

#include <sys/types.h> 

FD_ZERO(fd_set *set) /* Macro */ 
FD_SET(int fd, fd_set *set) /* Macro */ 
FD_CLR(int fd, fd_set *set) /* Macro */ 
int FD_ISSET(int fd, fd_set *set) /* Macro returning int */ 
FD_SETSIZE /* Defines the maximum value for argument fd */ 

You must initialize a file descriptor set before using it. This is accomplished with the 

FD_ZER0() macro: 

fd_set fdsetl; /* File descriptor set 1 */ 

FD_ZERO(&fdsetl); /* Initialize fdsetl */ 

Initialization of a file descriptor set by FD_ZER0() causes it to contain the “empty set.” That is, 

no file descriptors are contained in the set. 

The highest number file descriptor in the set is the value FD_SETSIZE. The behavior of the 

FD_SET (), FD_CLR (), and FD_ISSET () macros is undefined if the file descriptor number 

exceeds this value or is negative. 

To add a file descriptor to the set, you use the FD_SET () macro. To add file descriptor f d to set 

fdsetl, you would write 

int fd = 1; /* File descriptor: Standard output */ 

FD_ZER0(&fdset1); /* Initialize fdsetl */ 
FD_SET(fd,&fdset1); /* Add file descriptor to fdsetl */ 

A file descriptor can be removed from the set using the FD_CLR () macro. To remove fd from 
the set, you would write 

FD_CLR(fd,&fdset); /* Remove fd from fdsetl */ 

Sometimes it is necessary to test if a particular file descriptor is a member of the set. This is 

performed using the FD_ISSET () macro. The following tests to see if file unit 2 (standard 
error) is a member of fdsetl: 

if ( FD_ISSET(2,&fdset1) ) { 
puts("Standard error (unit 2) is part of fdsetl"); 

} else { 
puts("Standard error (unit 2) is not in fdsetl"); 

} 

The macro call FD_ISSET(2,&fdsetl) will return a non-zero value if the file unit 2 is a mem¬ 
ber of the set fdsetl. 
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The timeval Structure 
Another important element of using the select (2) function is the capability to specify a 

timeout parameter. This is specified with the use of the structure timeval: 

#include <sys/time.h> 

struct timeval { 
long tv_sec; /* seconds */ 
long tv_usec; /* microseconds */ 

}; 

The following example shows how you would define a timeout value of 1.25 seconds: 

struct timeval timeout; /* 1.25 second timeout */ 

timeout.tv_sec =1; /* 1 second */ 
timeout.tv_usec = 250000; /* 250000 microseconds = 0.25 seconds */ 

While the timer values suggest a very precise value for a timeout, the UNIX system that you 

are using might not be quite so accurate. The actual precision used may be as low as .01 sec¬ 

ond. However, as CPU technology gets faster, precision often improves with it. 

The select (2) Function 
The select (2) function is what you have been working up to. Here is its function synopsis: 

#include <sys/types.h> 
#include <sys/time.h> 
#include <unistd.h> 

int select(int nfds, /* # of file descriptors */ 
fd_set *readfds, /* Read descriptor set */ 
fd_set *writefds, /* Write descriptor set */ 
fd_set *exceptfds, /* Exception descriptor set */ 
struct timeval *timeout); /* Timeout value */ 

The argument timeout indicates when the select (2) call should give up and return 0. Zero 

indicates that no interesting events have occurred. If you do not require a timeout, the argu¬ 

ment timeout should be a null pointer. This will cause select (2) to wait forever unless a sig¬ 

nal is caught, in which case the error EINTR is returned. 

If a timeout argument is supplied but the members indicate a total time of zero seconds, then 

select (2) will return immediately without suspending the execution of the program. This 

allows the caller to poll several file descriptors for interesting events without actually suspend¬ 

ing the program. 

The file descriptor set readf ds specifies all the file descriptors that the calling process wants to 

read data from. For example, if your program were expecting input on standard input (file 

descriptor 0) and a FIFO to be open on file unit 3, then readf ds would include the descrip¬ 

tors 0 and 3 in the set. This orders the select (2) function to block the execution of your call¬ 

ing process until input arrives on one or both of these file descriptors. 
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When control returns to your process, you then test the set readf ds to see which file descrip 

tors have input available. For example, the following code tests for file units 0 or 3 for input 

pending: 

if ( FD_ISSET(0,&readfds) ) { 
// Read input data from unit 0 

} 
if ( FD_ISSET(3,&readfds) ) { 

// Read input data from unit 3 

} 

The value returned by select (2) is one of the following: 

• -1 if the call failed (check errno) 

• 0 if a timeout occurred 

• Less than zero, indicating the number of file descriptors that have events registered 

When an error is returned, including the error EINTR, the file descriptor sets will be left 

unmodified. Documentation does not spell out clearly what happens for the timeout argu¬ 

ment when this happens. Consequently, you should assume that it has been modified and that 

it requires re-initialization. 

Note 

The file descriptor sets readfds, writefds, and exceptf ds are modified by the function 

select (2). Be certain to re-establish the file descriptor sets prior to the next call to select (2). 

Note also that the time values in the timeout argument are updated on some UNIX platforms to 

reflect the time remaining. Be sure to reset the time values in this argument prior to the next call to 

select(2). 

When zero is returned, no events are registered in the file descriptor sets. The file descriptor 

sets will be empty. Consequently, you will need to re-establish the file descriptor sets and the 

timeout argument prior to calling select (2) again. 

When a value greater than zero is returned, this indicates the total number of events that have 

been returned in the file descriptor sets. For example, the return value 6 may indicate that you 

have three read events, two write events, and one exception event, registered in the sets 

readfds, writefds, and exceptf ds, respectively. To find the specific file unit numbers, you 

will need to iterate through each of the sets using the FD_ISSET () macro. 

The only input argument to select (2), which is not modified, is the value nf ds. This argu¬ 

ment is copied by value. It specifies the highest number of file descriptors to process in the 

specified sets. For example, if file descriptor 3 is the highest file descriptor present in any of 

the given sets, then nf ds must be specified as 4. The value 1 must be added because file 

descriptors start at zero. The descriptor range of 0 to 3 represents a total of four file 
descriptors. 
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Keep the value of nfds as small as possible in a call to select (2). This helps the UNIX kernel 

process your request more efficiently. 

The arguments readfds, writefds, and exceptf ds represent sets of file descriptors to process 

for read events, write events, and exception events, respectively. If you have no interest in a 

particular set of events, you can supply a null pointer in that argument position. For example, 

if you do not care about write or exception events, the writef ds and exceptf ds arguments 

can be supplied by a null pointer. 

Read Events 
A read event is when a file descriptor in the set readfds has input data available for reading. 

This may include only one byte of data, or it may include a block of bytes. Timing plays a big 

role in arrival of input data. 

A read event can also include a client program connecting to your server on a socket. For 

example, if you have a socket open on file unit 4 and listen (2) has been called on it, then a 

read event will occur when a connection has been established by the client program using 

connect (2). Upon receiving such an event, your server program then should call accept (2) if 

the client connection is to be accepted. 

Finally, a read event can also occur when end-of-file is reached. For example, this occurs when 

connected sockets have been closed at the remote end. 

Warning 

Not all devices are "pollable." Some devices may immediately return a ready status. A subsequent 

read(2) call may return 0 bytes or block the execution of the program. This often happens due to a 

third-party driver for a particular device. 

Write Events 
The execution of a process can be suspended if a write (2) call is made when the data being 

supplied cannot be accepted at the current time. For example, a process writing to a pipe will 

block on many UNIX hosts if more than 5120 (5K) bytes is written before the reading process 

has read the data from the pipe. A write event is an indication that it is safe to write some data 

to the file descriptor without blocking. 

Note 

When select (2) indicates that writing may begin to a file descriptor, there is no implied size guar¬ 

antee. The execution of the process will be suspended if it writes an excessively large block. 

To avoid blocked execution, use non-blocking I/O for writing. The return value from write (2) will 

indicate the number of bytes that were successfully accepted by the UNIX kernel. 
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Exception Events 
Exception events are chosen by a separate file descriptor set. Exception events include 

• Reception of out-of-band data on a socket 

• Certain conditions occurring on a pseudo-terminal 

• Reception of auxiliary error data on a socket 

All of these conditions are outside the scope of this chapter. These special events are not classi¬ 

fied as read or write data events. 

Using the select (2) Function 
The program in Listing 16.2 creates a pipe to two shell processes that will list a directory. The 

output of one process is converted to uppercase and the other is converted to lowercase to 

make them easier to distinguish. Since one or both processes may have output ready for the 

current process, the select (2) function can help. 

LISTING 16.2 select, c—A Program Using select (2) 

1: /* select.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <stdarg.h> 
6: #include <unistd.h> 
7: #include <fcntl.h> 
8: #include <errno.h> 
9: #include <string.h> 
10: #include <sys/types.h> 
11: #include <sys/time.h> 
12: #include <sys/stat.h> 
13: 
14: static void 
15: quit(int rc,const char *fmt,...) { 
16: va_list ap; 
17: 
18: if ( errno != 0 ) /* Report errno */ 
19: fprintf(stderr,"%s: ",strerror(errno)); 
20: 

21: va_start(ap,fmt); /* Format error message */ 
22: vfprintf(stderr,fmt.ap); 
23: va_end(ap); 
24: fputc(1\n‘.stderr); 
25: 
26: exit(rc); /* Exit with return code */ 
27: } 
28: 
29: int 
30: main(int argc.char **argv) { 
31: ini z; /* General status code */ 
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int f1; 
int f2; 
fd_set rxset; 
int nfds; 
struct timeval tv; 
char but[200+1]; 
FILE *p1, *p2; 

/* Open fifo 1 */ 
/* Open fifo 2 */ 
/* Read fd set */ 
/* Number of file descriptors */ 
/* Timeout */ 
/* I/O Buffer */ 
/* Pipes from popen(3) */ 

/* 

* Pipes : 
*/ 

if ( ! (pi = popen("ls -111 r 1 [ a - z ]1 ' [A-Z]'11," r")) ) 
quit(1,"popen(3) failed for pi"); 

if ( !(p2 = popen("ls -l|tr '[A-Z]1 1[a-z]1 && sleep 8","r")) ) 
quit(1,"popen(3) failed for p2"); 

/* 

* Obtain the underlying file descriptors : 
*/ 

f1 = fileno(p1); 
f2 = fileno(p2); 
printf("BEGUN: f1=%d, f2=%d\n",f1,f2); 

/* 

* Enter a select loop : 
*/ 

do { 
FD_ZERO(&rxset); /* Clear set */ 
if ( fl >= 0 ) 

FD_SET(f1,&rxset); /* Check fl */ 
if ( f2 >= 0 ) 

FD_SET(f2,&rxset); /* Check f2 */ 

nfds = (fl > f2 ? fl : f2) + 1; 
tv.tv_sec =3; /* 3 seconds */ 
tv.tv_usec = 500000; /* + 0.5 seconds */ 

do { 
z = select(nfds,&rxset,0,0)&tv); 

} while ( z == -1 && errno == EINTR ); 

if ( z == -1 ) /* Error? */ 
quit(13,"select(2)"); 

if ( z == 0 ) { 
printf("TIMEOUT: f1=%d, f2=%d\n",f1,f2); 
continue; 

/* 
* Control is here if fl or f2 has data 
* available to be read. 
*/ 
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if ( fl >= 0 && FD_ISSET(f1,&rxset) ) { 
z = read(f1,buf,sizeof buf-1); 
if ( z == -1 ) 

quit(6,"read(2) of fl."); 
if ( z > 0 ) { 

buf[z] = 0; 
printf ("*** read %d bytes «<%s»> from f 1; \n",z,buf); 

} else { 
puts("read EOF from fl;"); 
pclose(p1); 
fl = -1; 

} 
} 

if ( f2 >= 0 && FD_ISSET(f2,&rxset) ) { 
z = read(f2,buf,sizeof buf-1); 
if ( z == -1 ) 

quit(6,11 read(2) of f2."); 
if ( z > 0 ) { 

buf[z] = 0; 
printf ("*** read %d bytes <«%s>» from f2;\n",z,buf); 

} else { 
puts("read EOF from f2;"); 
pclose(p2); 
f2 = -1; 

} 
} 

} while ( f1 >= 0 || f2 >= 0 ); 

puts("End select."); 

return 0; 

Lines 43-47 open pipes to processes that will list the current directory. Note how the tr(1) 

command is used to translate the output into uppercase or lowercase for each process. This 

will make separating the process output in the example easier. 

The select (2) function requires the use of file descriptors, and these are extracted from the 

FILE pointers pi and p2 using the fileno(3) macro in lines 52 and 53. 

Lines 59-114 form the select (2) loop. Lines 60-64 initialize the read file descriptor set 

rxset. The if statements in lines 61 and 63 are necessary because f 1 and f 2 are closed once 

the end-of-file is detected (see lines 95, 96, 109, and 110). Once the file descriptor is closed, it 

is not included in the read file descriptor set. 

The value of nf ds is computed at line 66. It must be 1 higher than the highest file descriptor 

considered in the file descriptor sets. Lines 67 and 68 set the timeout to 3.5 seconds. 

The loop in lines 70-72 demonstrates how to code the select (2) call while considering the 

error EINTR. In this program there is no special processing required when EINTR is detected, so 
the select (2) system call is simply retried. 
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Line 74 tests for an error return from select (2). The error is reported by the static function 

quit (), which appears earlier in the listing. 

A timeout is tested for in line 77. When z equals 0, this indicates that the select (2) call 

timed out without anything interesting happening. Notice that in line 46 the sleep (1) com¬ 

mand has been invoked in the piped command to demonstrate the timeout capability of 
select(2). 

Lines 86-98 performs a test for file descriptor f 1 (on behalf of pipe pi). If the file descriptor 

has not been closed (it is not -1) and it appears in the file descriptor set rxset, then a read (2) 

call is performed in line 87. This will not block because the select (2) function promises that 

there will be some data waiting to be read. The returned value z will indicate the number of 

bytes read, or it will be 0, indicating that the end of the file has been reached. If z is greater 

than zero, the buffer buf is dumped to standard output in line 92. 

When end-of-file is reported in line 94, the pipe pi is closed in line 95 (you must close a 

popen (3) pipe with pclose(3)). This closes the underlying file descriptor f 1. Variable f 1 is 

then set to -1 in line 96 to mark it as closed, so that it will not be included in the next call to 

select(2). 

Lines 100-112 repeat the same operations for file descriptor f2. The do { } while loop is 

continued until both f 1 and f2 are marked as closed (line 114). 

Now compile the program: 

$ make select 
cc -c -Wall -g select.c 
cc -o select select.o 
$ 

Your results will vary, depending on the contents of your current directory. To run the example 

program, simply invoke it: 

$ ./select 

An example session output is as follows (line numbers were added at left for ease of reference): 

1: BEGUN: fl =3, f 2=4 
2: *** read 200 bytes «<T0TAL 28 
3: -RW-R- - 1 EAG GRP 481 JUN 6 21 :52 MAKEFILE 

4: -RW-R- - 1 EAG GRP 589 JUN 4 22:09 NBL0CKI0.C 

5: -RWXR-X-- - 1 EAG GRP 12756 JUN 6 22:03 SELECT 

6: -RW-R- - 1 EAG GRP 3063 JUN »> froir l fl; 

7: *** read 116 bytes «<6 22:01 SELECT, ,C 

8: -RW-R- - 1 EAG GRP 10172 JUN 6 22:03 SELECT.0 

9: -RW-R- - 1 EAG GRP 0 JUN 6 22:03 T.T 

10: »> from fi; 
11: read EOF from f1; 
12: *** read 200 bytes «<total 28 

13: -rw-r- - 1 eag grp 481 j un 6 21 :52 makefile 

14: -rw-r- - 1 eag grp 589 j un 4 22:09 nblockio.c 

15: -rwxr-x- - - 1 eag grp 12756 jun 6 22:03 select 

16: -rw-r- - 1 eag grp 3063 jun »> frorr i f 2; 
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17: *** read 116 bytes «<6 22:01 select.c 
18: -rw-r— -- 1 eag grp 10172 jun 6 22 
19: - rw - r — -- 1 eag grp 0 jun 6 22 
20: »> from f 2; 
21: TIMEOUT: f1=-1, f2=4 
22: TIMEOUT: f1=-1, f2=4 
23: read EOF from f2; 
24: End select. 

select.0 

t.t 

Line 1 of the session output shows that the file descriptors that are open to the piped com¬ 

mands are units 3 and 4. Figure 16.1 shows the values present in fd_set rxset for the first 

call to select(2). It also illustrates why nfds is the value 5. 

FIGURE 16.1 

The fd_set rxset for 

Listing 16.2. 

file unit 3 file unit 4 

/ 
0 0 0 1 1 0 0 0 
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nfds = 5 

Lines 2-6 of Listing 16.2 show that 200 bytes was read from the first pipe (note the uppercase 

output). Lines 7-10 show that another 116 bytes was read from the first pipe. This shows that 

the output from the second pipe was not ready at the time that the do {} while loop started. 

Line 11 shows that the end of the file was detected in pipe pi. 

Lines 12-16 show that 200 bytes was read from pipe p2 (note the lowercase). Lines 17-20 
show another 116 bytes that was read from pipe p2. 

Lines 21 and 22 show that two timeouts occurred. The values show that pipe pi is closed, 

because file descriptor f 1 is marked as closed by its value of -1. Pipe p2 is still open on unit 4 
when the timeouts occur. 

The timeouts occur because of the sleep (1) command in line 46. The sleep (1) command 

stalls from closing the pipe. The timeout value used in lines 67 and 68 is 3.5 seconds, and this 

permits two timeouts to occur before the pipe p2 is finally closed. Once both pipes are closed, 

as reflected in f 1 and f2, the while clause ends the loop in line 114. 

I/O Polling 
The function poll(2) represents another way to perform efficient I/O scheduling. It was origi¬ 

nally developed by AT&T to be used for STREAMS file descriptors. However, poll (2) now 

accepts all file descriptors. The function synopsis for poll(2) is as follows: 
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/* 

* UnixWare 7, SGI IRIX 6.5 : 
*/ 

#include <stropts.h> 
#include <poll,h> 

/* 

* HP-UX 11.x, Solaris 8 : 
*/ 

#include <poll.h> 

/* 

* IBM AIX 4.3 : 
*/ 

#include <sys/poll.h> 
#include <sys/select.h> 
#include <sys/types.h> 

/* 

* FreeBSD : 
*/ 

#include <sys/types.h> 
#include <poll.h> 

int poll(struct pollfd *fds, unsigned int nfds, int timeout); 
struct pollfd { 

int fd; /* file descriptor */ 
short events; /* events to look for */ 
short revents; /* returned events */ 

}; 
As you can see, the necessary include files vary considerably depending on the platform on 

which you are compiling. The poll (2) function uses an array of structure pollfd to drive the 

I/O polling operation (argument f ds). Each element of this array specifies a file descriptor (f d) 

and the events (events) that are to be reported. When poll(2) returns with a value greater 

than zero, the member revents will contain bits that represent events that have occurred for 

the file descriptor. The argument nfds indicates how many array elements are participating in 

the call. 

■I; 

. 

Note 

When the fd member of the structure pollfd is negative, the member events is ignored and the 

revents member is set to zero. 

Setting fd to -1 is an effective way to indicate to poll(2) to ignore that entry. 

The value returned by poll (2) is in one of three value categories: 

• Negative (-1), to indicate an error has occurred (check errno). 

• Zero, to indicate that a timeout has occurred with no events being reported. 

• Greater than zero, to indicate how many file descriptors have reported events. 
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The timeout argument specifies in milliseconds the minimum period to wait for an event to 

occur. If the timeout value is specified as the macro INFTIM (or -1), then an infinite timeout is 

assumed. If the timeout argument is 0, then poll (2) will return immediately, even if there are 

no events to report. 

The function poll(2) can return the error eintr after a signal has been processed. 

Poll Events 
The events member of the pollfd array must be initialized to describe the events that are to 

be reported. There are three categories of these event bit macros: 

• Macros that describe event and re vent flags concerning input (see Table 16.1) 

• Macros that describe event and revent flags concerning output (see Table 16.2) 

• Macros that describe only re vent flags for information that is returned (see Table 16.3) 

Table 16.1 describes the input bit masks that can be ORed together to indicate read events to 

be polled. 

TABLE 16.1 Read Event Bit Masks for poll(2) 

Macro Event 

POLLIN Data other than high priority data may be read without blocking. 

POLLRDNORM Normal data may be read without blocking. 

POLLRDBAND Data with a non-zero priority may be read without blocking. 

POLLPRI High priority data may be read without blocking. 

Table 16.2 is additional bit masks that describe write events. 

TABLE 16.2 Write Event Bit Masks for poll(2) 

Macro Event 

POLLOUT Normal data can be written without blocking. 

POLLWRNORM Same as POLLOUT. 

POLLWRBAND Data with a non-zero priority may be written without blocking. 
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Table 16.3 lists macros, which represents bits that are only returned in the revents member of 

the pollf d array member. 

TABLE 16.3 Returned re vent Bit Masks for poll (2) 

Macro Event 

POLLERR An exceptional condition has occurred on the device or socket. 

POLLHUP The device or socket has been disconnected. Note that the POLLHUP and POLLOUT flags 

are mutually exclusive (they will not appear at the same time in revent). 

POLLNVAL The file descriptor is not open. Note that when the file descriptor is negative, this bit is 

not returned. 

Poll Priorities 
The poll(2) documentation presented so far mentions priorities and priority bands. The man¬ 

ual page for poll (2) will also make mention of this. Priority bands are part of the System V 

implementation of STREAMS, which was a generalization for communicating with device 

drivers. 

Unless you are performing STREAMS programming, you can simply ignore the priority bands 

and use the normal macros for input and output. This means that you can use POLL IN or 

POLLRDNORM for input and POLLOUT or POLLWRNORM for output. 

A poll(2) Example 
Listing 16.3 shows the source listing for poll, c, which is a poll(2) adaptation of the 

select. c program in Listing 16.2. 

LISTING 16.3 poll . c—An Exampli 

1: 
o ■ 

/* poll.c : */ 
c. . 

3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <stdarg.h> 
6: #include <unistd.h> 
7: #include <fcntl.h> 
8: #include <errno.h> 
9: #include <string.h> 
10: #include <sys/types.h> 
11 : #include <sys/time.h> 
12: #include <sys/stat.h> 
13: #include <poll.h> 
14: 
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15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

static void 
quit(int rc,const char *fmt,...) { 

va_list ap; 

if ( errno != 0 ) /* Report errno */ 
fprintf(stderr,"%s: ",strerror(errno)); 

va_start(ap,fmt); /* Format error message */ 
vfprintf(stderr,fmt,ap); 
va_end(ap); 
fputc('\n',stderr); 

exit(rc); /* Exit with return code */ 

} 

int 
main(int argc,char **argv) { 

int z; /* General status code */ 
int f1; /* Open fifo 1 */ 
int f2; /* Open fifo 2 */ 
struct pollfd fds[2]; /* Poll events */ 
int nfds; /* Number of file descriptors */ 
char buf[200+1]; /* I/O Buffer */ 
FILE *p1, *p2; /* Pipes from popen(3) */ 

/* 

* Pipes : 
*/ 

if ( !(pi = popen("ls -l|tr 1[a - z]1 1[A-Z]'","r")) ) 
quit(1,"popen(3) failed for pi"); 

if ( !(p2 = popen("Is -l|tr '[A-Z]' ’[a-z]1 && sleep 8","r")) ) 
quit(1,"popen(3) failed for p2"); 

/* 

* Obtain the underlying file descriptors : 
*/ 

f1 = fileno(p1); 
fds[0].fd = f1; / 
fds[0].events = POLLIN; / 

f2 = fileno(p2); 
fds[1].fd = f2; / 
fds[1].events = POLLIN; / 

nfds =2; / 

File descriptor to poll.. */ 
for input events */ 

File descriptor to poll.. */ 
for input events */ 

nfds is fds[2] array size */ 

printf("BEGUN: f1=%d, f2=%d\n",f1,f2); 

/* 

* Enter a poll loop : 
*/ 
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67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

do { 
do { 

z = poll(fds,nfds,3500); /* Timeout is 3.5 seconds */ 
} while ( z == -1 && errno == EINTR ); 

if ( z == -1 ) /* Error? */ 
quit(13,"poll(2)"); 

if ( z == 0 ) { 
printf ("TIMEOUT: f1=%d, f2=%d\n\f 1 ,f2); 
continue; 

/* 

* Control is here if fl or f2 has data 
* available to be read. 
*/ 

if ( fds[0].revents & POLLIN ) { 
z = read(f1,buf,sizeof buf-1); 
if ( z == -1 ) 

quit(6,"read(2) of fl."); 
if ( z > 0 ) { 

buf[z] = 0; 
printf ("*** read %d bytes «<%s»> from fl ;\n" ,z,buf); 

} else { 
puts("read EOF from fl;"); 
pclose(p1); 
fds[0].fd = fl = -1; 

} 
} 

if ( fds[1].revents & POLLIN ) { 
z = read(f2,buf,sizeof buf-1); 
if ( z == -1 ) 

quit(6,"read(2) of f2."); 
if ( z > 0 ) { 

buf[z] = 0; 
printf ("*** read %d bytes «<%s»> from f2;\n" ,z,buf); 

} else { 
puts("read EOF from f2;"); 
pclose(p2); 
fds[1].fd = f2 = -1; 

} 
} 

} while ( fl >= 0 || f2 >= 0 ); 

puts("End poll."); 

return 0; 
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Examination of Listing 16.3 reveals that the code is almost the same as Listing 16.2. However, 

the following differences are worth noting: 

• Lor LreeBSD, the include file <poll. h> was added in line 13. 

• An array of structure pollfd replaced the fd_set definitions in line 35. 

• The array elements of f ds [0] and f ds [ 1 ] were initialized once in lines 53-54 and again 

in 57-58. 

• The variable nfds is set to the size of the array pollfd [ ] in line 60. 

• The function poll(2) is called in place of select (2) in line 69. 

• The events are tested differently in lines 84 and 98. In this program, the flag bit POLLIN 

is tested in array member revents. 

• The pollfd member fd is set to -1 to cause that array member to be ignored when the 

file descriptor is closed (lines 94 and 108). 

One additional difference between Listing 16.3 and 16.2 is that you establish the events that 

you are interested in only once (see lines 52-58). In Listing 16.2 it was necessary to re-estab¬ 

lish the file descriptors in variable rxset prior to each call to select (2). Only the revents 

member of the pollfd structure is updated by the function poll (2). 

Compiling the program gives the following session results: 

$ make poll 
cc -c -Wall -g poll.c 
cc -o poll poll.o 
$ 

Running the program provides these results: 

$ ./poll 
BEGUN: f1=3, f2=4 
*** read 200 bytes «<T0TAL 32 
-RW-R- - - - - 1 EAG GRP 524 JUN 7 21 :47 MAKEFILE 
-R. - - 1 EAG GRP 589 JUN 4 22:09 NBLOCKIO.C 
-RWXR-X- - - 1 EAG GRP 12570 JUN 7 21 :51 POLL 
-RW-R--- - - 1 EAG GRP 3117 JUN 7 »> from fi; 
*** read 115 bytes «<21 :50 POLL.C 
-RW-R--- - - 1 EAG GRP 10028 JUN 7 21:51 POLL.O 
-R. - - 1 EAG GRP 3063 JUN 6 22:01 SELECT.C 
»> from fi; 
read EOF from f 1; 
*** read 200 bytes «<total 32 
-rw-r— -- 1 eag grp 524 jun 7 21 :47 makefile 
-r. -- 1 eag grp 589 jun 4 22:09 nblockio.c 
-rwxr-x- -- 1 eag grp 12570 jun 7 21:51 poll 
. rw - r — - - 1 eag grp 3117 jun 7 »> from f2; 
*** read 115 bytes <<<21 :50 poll.c 
-rw-r— -- 1 eag grp 10028 jun 7 21:51 poll.o 
-r. -- 1 eag grp 3063 jun 6 22:01 select. c 
»> from f2; 
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TIMEOUT: f1 = -1, f2=4 
TIMEOUT: f1 = -1, f2=4 
read EOF from f2; 
End poll. 

The session output is almost identical to the previous example. The differences are due to the 

presence of different filenames. Notice that the poll (2) function also demonstrated its timeout 

capability near the end. 

Summary 
This chapter has provided you with the background necessary to use the UNIX system calls 

select (2) and poll(2). Additionally you will now be able to use non-blocking I/O, particu¬ 

larly for writing to a file descriptor in concert with select (2) or poll(2). 

The next chapter will explore the wonderful world of UNIX timers. 





CHAPTER 17 

TIMERS 

Jn Chapter 15, “Signals,” you were introduced to the alarm(3) function, which 

enables you to create and cancel a timer. This function provides a timer service that 

has its time resolution measured in seconds. 

This chapter will begin with a hypothetical implementation of the sleep (2) function call. This 

will provide additional insight into why there is a conflict between the use of alarm (3) and 

sleep(2). Later you’ll learn that the conflict may extend to other UNIX functions. 

This chapter also will introduce you to 

• Fine-grained timers such as usleep(3) and nanosleep(2) 

• The interval timer functions 

The Sleep Functions 
Chapter 15 stated that the sleep(3) function is often implemented in terms of the alarm(3) 

function. You will look at one such hypothetical implementation of sleep(3) in this section. 

The function synopsis for sleep(3) is as follows: 

#include <unistd.h> 

unsigned int sleep(unsigned int seconds); 

The function accepts a time value in seconds to pause the execution of the calling process. If 

the sleep (3) call is interrupted because a signal was received, the remaining time in seconds 

is returned to the caller. The return value 0 indicates that the full sleep time has elapsed. 

Listing 17.1 shows a simple program that calls on sleep(3). The program simply reports the 

starting time, sleeps for five seconds, and then reports the ending time of the program run. 

LISTING 17.1 sleep.c—A Simple Demonstration of sleep(3) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

/* sleep.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <signal.h> 
#include <time.h> 
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9: int 
10: main(int argc,char **argv) { 
11: time_t dt; 
12: 
13: time(&dt); 
14: printf("%s begun at:\t%s",_FILE_,ctime(&dt)); 
15: 
16: puts("Zzz...(5 seconds)..."); 
17: sleep(5); 
18: 
19: time(&dt); 
20: printf("%s completed at:\t%s",_FILE_,ctime(&dt)); 
21: return 0; 
22: } 

A compile and ran session is as follows: 

$ make sleep 
cc -c -Wall sleep.c 
cc -o sleep sleep.o 
$ ./sleep 
sleep.c begun at: Sat Jun 10 11:22:23 2000 
Zzz...(5 seconds)... 
sleep.c completed at: Sat Jun 10 11:22:28 2000 
$ 

This is very simple indeed. However, the implementation ofsleep(3) is a little more involved. 

The design of the sleep (3) function requires the following basic steps: 

1. Arrange to catch the signal SIGALRM. 

2. Start a timer using alarm(3). 

3. Wait for any signal to occur. 

4. Restore signal handling for SIGALRM. 

5. Return the time remaining, if any. 

The UNIX Implementation of sleep(3) 
Using the basic steps listed previously, you can write your own version of the library sleep (3) 

function. Listing 17.2 shows one possible implementation. 

LISTING 17.2 impsleep.c—An Example of an Implementation of sleep(3) 

1: /* impsleep.c */ 
2: 
3: //include <stdio.h> 
4: //include <stdlib.h> 
5: //include <unistd.h> 
6: //include <signal.h> 
7: //include <time.h> 
8: 
9: /* 
10: * Signal handler for SIGALRM : 
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*/ 

static void 
h_sigalrm(int signo) { 

return; 
} 

/* Just return */ 

/* 

* An emulated sleep(2) function : 
*/ 

static unsigned 
Sleep(unsigned seconds) { 

time_t dt0, dt 1 ; 
unsigned e; 
struct sigaction old_sigalrm; 
struct sigaction new_sigalrm; 
sigset_t nosigs; 

/* Start and end times */ 
/* Elapsed seconds */ 
/* Old signal action */ 
/* New signal action */ 
/* The empty set */ 

sigemptyset(&nosigs); /* The empty set */ 

/* 

* Establish the signal action required for SIGALRM : 
*/ 

new_sigalrm.sa_handler = h_sigalrm; 
sigemptyset(&new_sigalrm.sa_mask); 
new_sigalrm.sa_flags = 0; 

sigaction(SIGALRM,&new_sigalrm,&old_sigalrm); 

/* 

* Get start time, start timer, pause, and get end time : 
*/ 

time(&dt0); /* Get start time in seconds */ 
alarm(seconds); /* (re)start timer */ 
sigsuspend(&nosigs); /* Wait for any signal */ 
alarm(0); /* Cancel timer */ 
time(&dt1); /* Get end time in seconds */ 
e = (unsigned)(dtl - dtl); /* Elapsed time in seconds */ 

/* 

* Restore SIGALRM action, and return time remaining : 
*/ 

sigaction(SIGALRM,&old_sigalrm,NULL); 
if ( e >= seconds ) /* Did we use up the time? */ 

return 0; /* No time remaining.. */ 
return seconds - e; /* Return time remaining */ 

int 
main(int argc,char **argv) { 

time_t dt; 

time(&dt); 
printf("%s begun at:\t%s",_FILE_,ctime(&dt)); 

puts( "Zzz... (5 seconds)...1'); 
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67: Sleep(5); 
68: 
69: time(&dt); 
70: printf("%s completed at\t%s",_FILE_,ctime(&dt)); 
71: return 0; 
72: } 

In Listing 17.2, the sleep(3) function is given the name Sleep(). The following basic steps 

are traced back to the code: 

1. Arrange to catch the signal SIGALRM (lines 31-38). 

2. Start a timer using alarm(3) (line 44). 

3. Wait for any signal to occur (lines 29 and 45). 

4. Restore the signal handling for SIGALRM (line 53). 

5. Return the time remaining, if any (lines 43, 47, 48, and 54-56). 

Compiling and running the program is as follows: 

$ make impsleep 
cc -c -Wall impsleep.c 
cc -o impsleep impsleep.o 
$ ./impsleep 
impsleep.c begun at: Sat Jun 10 11:34:09 2000 
Zzz...(5 seconds)... 
impsleep.c completed at Sat Jun 10 11:34:14 2000 
$ 

The session output confirms that your Sleep() function substituted well for the sleep(3) 

function. Knowing the nature of the implementation for sleep (3) makes it easy to appreciate 

why alarm (3) should not be used in concert with sleep(3). If a program had called on 

alarm(3) prior to calling on sleep(3), it is obvious that the alarm(3) call within sleep(3) 

would cancel the application’s timer. 

However, it must be stressed that this is only one possible implementation for sleep(3). As 

newer releases of UNIX become available, the implementation may vary. Later in this chapter, 

you will read about interval timers. Solaris 8 and UnixWare 7, for example, state that you 

should not mix calls to setitimer (2) (an interval timer) with calls to sleep(3). This suggests 

that the implementation of sleep(3) may use an interval timer instead (especially since they 

also state that setitimer(2) is independent of the alarm(3) system call). 

When you design a UNIX application, it is wise to choose in advance one of the following groups of 
functions: 

• sleep(3), usleep(3), or nanosleep(2) 

• alarm(3), getitimer(2), or setitimer(2) 

If you must use conflicting groups of timing routines, you must take care to invoke them at 
times when they will not conflict with each other. 
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Sleeping in Microsecond Units 
The sleep (3) call permits the process to sleep in terms of seconds. However, as hardware 

speed increases and processes become more sophisticated, this is often inadequate. The 

usleep(3) function helps to overcome the low resolution problem: 

#include <unistd.h> 

int usleep(unsigned int microseconds); 

The input argument to usleep(3) is in microseconds. The return value of usleep(3) differs 

from sleep (3) in that 0 is returned if the call is successful. Otherwise, -1 is returned and an 

error code is found in errno. The errno value of EINTR indicates that a signal was raised. 

There is no indication of whether the entire sleep time elapsed. 

Listing 17.3 shows a program that calls on the usleep(3) function. 

LISTING 17.3 usleep.c—A Demonstration of the usleep(3) Function 

1: /* usleep.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <time.h> 
7: 
8: extern int usleep(unsigned int microseconds); 
9: 
10: static unsigned 
11: test(unsigned usee) { 
12: unsigned Zzz = 5; 
13: long count = 0L; 
14: unsigned avg; 
15: long sb_count = (Zzz * 
16: time_t t0, t1; 
17: 
18: time(&t0); 
19: printf("%s started at:\t%s",_FILE_,ctime(&t0)); 
20: 
21: for ( ; time(&t1) - t0 < Zzz; ++count ) { 
22: usleep(usec); 
23: } 
24: 
25: printf("%s ended at:\t%s",_FILE_,ctime(&t1)); 
26: 
27: printf("Elapsed time is %u seconds\n",(unsigned)(tl-t0)); 
28: printf("Counter reached %ld, should be %ld\n",count,sb_count); 
29: avg = (unsigned) (((long)(tl-t0))*1000000 / (long)count); 
30: printf("The average time was %u usee.\n",avg); 
31: 
32: return avg; 
33: } 
34 
35 

/* Microseconds to sleep */ 
/* Sleep time in seconds */ 
/* Interation Counter */ 
/* Average time interval */ 

1000000) / usee; 

int 
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36: main(int argc,char **argv) { 
37: short x; 
38: unsigned a; 
39: unsigned usee = ~0U; 
40: unsigned usleep_times[] = { 
41: 1000000, 100000, 10000, 1000, 100 
42: }; 
43: 
44: for ( x=0; x<5; ++x ) { 
45: printf("TESTING USLEEP(%u) :\n",usleep_times[x]); 
46: a = test(usleep_times[x]); 
47: putchar('\n‘); 
48: 
49: if ( a < usee ) 
50: usee = a; /* Save shortest avg time */ 
51: } 
52: 
53: printf("Shortest usleep(3) time is %u usee.\n",usee); 
54: 
55: return 0; 
56: } 

Some explanation is required for this program: Five sleep times are tried, and then the 

usleep(3) call is performed as many times as possible within the allotted time (5 seconds). 

Then an average sleep time is computed to see how well the function delivered. 

The test function is composed of lines 10-33. The start time and end time are recorded in 

lines 18 and 25, respectively. The counter count is initially 0 in line 13. The loop in lines 

21-23 continues until Zzz seconds have elapsed (Zzz is initialized to 5 seconds in line 12). 

The results are then computed and returned in lines 25-32. 

Compiling and running the program provides the following session output on a FreeBSD 

machine, using an AMD-K6 CPU (450MHz): 

$ make usleep 
cc -c -Wall usleep.c 
cc -o usleep usleep.o 
$ ./usleep 
TESTING USLEEP(1000000) : 
usleep.c started at: Sat Jun 10 12:13:47 2000 
usleep.c ended at: Sat Jun 10 12:13:52 2000 
Elapsed time is 5 seconds 
Counter reached 5, should be 5 
The average time was 1000000 usee. 

TESTING USLEEP(100000) : 
usleep.c started at: Sat Jun 10 12:13:52 2000 
usleep.c ended at: Sat Jun 10 12:13:57 2000 
Elapsed time is 5 seconds 
Counter reached 43, should be 50 
The average time was 116279 usee. 

TESTING USLEEP(10000) : 
usleep.c started at: Sat Jun 10 12:13:57 2000 
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usleep.c ended at: Sat Jun 10 12:14:02 2000 
Elapsed time is 5 seconds 
Counter reached 250, should be 500 
The average time was 20000 usee. 

TESTING USLEEP(1000) : 
usleep.c started at: Sat Jun 10 12:14:02 2000 
usleep.c ended at: Sat Jun 10 12:14:07 2000 
Elapsed time is 5 seconds 
Counter reached 250, should be 5000 
The average time was 20000 usee. 

TESTING USLEEP(100) : 
usleep.c started at: Sat Jun 10 12:14:07 2000 
usleep.c ended at: Sat Jun 10 12:14:12 2000 
Elapsed time is 5 seconds 
Counter reached 250, should be 50000 
The average time was 20000 usee. 

Shortest usleep(3) time is 20000 usee. 

The first results for 1,000,000 microseconds (1 second) show that the usleep(3) call returned 

five times during the 5-second period. This is as expected. 

The next section shows the results for a test that was performed using the value of 100,000 

microseconds in calls to usleep(3). While the elapsed time was still 5 seconds, note that the 

counter reported that only 43 iterations of the loop in lines 21-23 were executed. Ideally, there 

should have been 50 iterations. 

The third test shows the results for 10,000 microsecond sleeps. The counter reached only 250 

instead of the theoretical 500. The average time was computed as being 20,000 microseconds. 

The increasingly shorter usleep(3) times do not yield corresponding higher loop counts. This 

suggests that the combination of timer resolution and CPU overhead prevents the application 

from getting resolution any finer than 20,000 microseconds (20 milliseconds). 

Although the function usleep(3) accepts sleep time in units of microseconds, the resolution pro¬ 
vided may be much coarser and is specific to the implementation. 

Sleeping in Nanosecond Units 
It was demonstrated in the preceding section that the usleep(3) function delivered a resolu¬ 

tion of approximately 20 milliseconds on the system used. The UNIX operating system can 

exist on nimble hardware. Consequently, resolution greater than one microsecond is often 

required on faster hardware. The nanosleep(2) function, which is currently defined by the 

IEEE POSIX P1003.4 standard, draft 14, makes this possible: 
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#include <time.h> 

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp); 

struct timespec { 
time_t tv_sec; /* seconds */ 
long tv_nsec; /* and nanoseconds */ 

}; 

The function accepts two arguments, both of which point to the structure type timespec: 

• rqtp is a pointer to a timespec structure that defines how long the calling process is to 

sleep. The content of this structure must be defined and is used for input to 

nanosleep(2). 

• rmtp is an optional pointer to a timespec structure. When this pointer argument is not 

null, the structure will receive results from the call to nanosleep(2). 

The result returned via the rmtp argument is the amount of time remaining, if any. 

The nanosleep (2) call returns the value 0 if the time requested has elapsed. The actual time 

elapsed may be longer than requested, but it is never shorter. This is due to the implementa¬ 

tion’s resolution of the timer used. 

The nanosleep (2) function will return -1 when an error occurs or the call is interrupted by a 

signal. The value of errno is EINTR when a signal has been received with the time via the rmtp 

argument, reflecting the amount of time that was remaining. The error code ENOSYS is returned 

when the system does not support the nanosleep(2) call. Note that the error code EINVAL is 

returned when the rqtp member tv_nsec exceeds 1 billion nanoseconds. 

Note 

ENOSYS —Function Not Implemented For the nanosleep(2) call, this indicates that this system 

call is not implemented. The calling program should resort to usleep(3) instead. 

nanosleep(2) is not supported by UnixWare 7 or Linux, but it is supported by SGI IRIX 6.5, HPUX 

11, and Solaris 8. Documentation for IBM's AIX 4.3 mentions nanosleep(2) but does not provide a 

manual page for it. 

Warning 

Processing EINTR for nanosleep(2) requires careful consideration. If it is important to maintain the 

same total elapsed time for the original call with or without interruptions, you must copy the remain¬ 

ing time values to the input of the retried system call. If the total elapsed time is unimportant, you 

may want simply to retry the system call with the original sleep time instead. 

Listing 17.4 shows a demonstration program using nanosleep(2) instead of usleep(3). Note 
the similarity between this program and Listing 17.3. 
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LISTING 17.4 nanosleep.c—A Demonstration of the nanosleep(2) Function 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

/* nanosleep.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <time.h> 

int nanosleep(const struct timespec *rqtp,struct timespec *rmtp); 

static unsigned 
test(unsigned usee) { 

unsigned Zzz = 5; 
long count = 0L; 
unsigned avg; 
long sb_count = (Zzz * 1000000) 
time_t t0, t1; 
struct timespec rqt; 

rqt.tv_sec = usee / 1000000; 
rqt.tv_nsec = ( usee % 1000000 ) 

/* Microseconds to sleep */ 
/* Sleep time in seconds */ 
/* Interation Counter */ 
/* Average time interval */ 

/ usee; 

/* Requested time */ 

/* Seconds */ 
* 1000;/* Nanoseconds */ 

ctime(&t0)); 
time(&t0); 
printf("%s started at:\t%s",_FILE 

for ( ; time(&t1) - t0 < Zzz; ++count ) { 
nanosleep(&rqt,NULL); 

} 

printf("%s ended at:\t%s",_FILE_,ctime(&t1)); 

printf("Elapsed time is %u seconds\n",(unsigned)(tl-t0)); 
printf("Counter reached %ld, should be %ld\n“,count,sb_count); 
avg = (unsigned) (((long)(tl-t0))*1000000 / (long)count); 
printf("The average time was %u usee.\n",avg); 

return avg; 

} 

main(int argc.char **argv) { 
short x; 
unsigned a; 
unsigned usee = ~0U; 
unsigned nanosleep_times[] = { 

1000000, 100000, 10000, 1000, 100 

}; 

for ( x=0; x<5; ++x ) { 
printf("TESTING NANOSLEEP(%u) :\n",nanosleep_times[x]); 
a = test(nanosleep_times[x]); 
putchar('\n1); 



360 ADVANCED UNIX PROGRAMMING 

continued from previous page 

53: if ( a < usee ) 
54: usee = a; /* Save shortest avg time */ 
55: } 
56: 
57: printf("Shortest nanosleep(3) time is %u usee.\n",usee); 
58: 
59: return 0; 
60: } 

The program is essentially the same as the preceding one, except that the requested time is set 

up on a structure in lines 19 and 20. Then nanosleep(2) is substituted for usleep(3) in line 

26. Notice how this program uses a null pointer in argument two of the nanosleep (2) call. 

Compiling and running this program under FreeBSD using an AMD-K6 CPU (450MHz) 
yielded the following: 

$ make nanosleep 
cc -c -Wall nanosleep.c 
cc -o nanosleep nanosleep.o 
$ ./nanosleep 
TESTING NANOSLEEP(1000000) : 
nanosleep.c started at: Sat Jun 10 13:14:33 2000 
nanosleep.c ended at: Sat Jun 10 13:14:38 2000 
Elapsed time is 5 seconds 
Counter reached 5, should be 5 
The average time was 1000000 usee. 

TESTING NANOSLEEP(100000) : 
nanosleep.c started at: Sat Jun 10 13:14:38 2000 
nanosleep.c ended at: Sat Jun 10 13:14:43 2000 
Elapsed time is 5 seconds 
Counter reached 39, should be 50 
The average time was 128205 usee. 

TESTING NANOSLEEP(10000) : 
nanosleep.c started at: Sat Jun 10 13:14:43 2000 
nanosleep.c ended at: Sat Jun 10 13:14:48 2000 
Elapsed time is 5 seconds 
Counter reached 248, should be 500 
The average time was 20161 usee. 

TESTING NANOSLEEP(1000) : 
nanosleep.c started at: Sat Jun 10 13:14:48 2000 
nanosleep.c ended at: Sat Jun 10 13:14:53 2000 
Elapsed time is 5 seconds 
Counter reached 250, should be 5000 
The average time was 20000 usee. 

TESTING NANOSLEEP(100) : 

nanosleep.c started at: Sat Jun 10 13:14:53 2000 
nanosleep.c ended at: Sat Jun 10 13:14:58 2000 
Elapsed time is 5 seconds 
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Counter reached 250, should be 50000 
The average time was 20000 usee. 

Shortest nanosleep(3) time is 20000 usee. 

Notice how the results agreed with the usleep(3) results for this platform, with a resolution of 

approximately 20 milliseconds. 

Interval Timer Functions 
The release of BSD4.2 UNIX introduced interval timers. This new facility provided the pro¬ 

grammer the capability to create 

• A realtime timer 

• A virtual timer 

• A system virtual (profile) timer 

These timers provided three different ways to measure time. The realtime timer measures 

elapsed time in the same way as the alarm(3) function. The virtual timer measures CPU time 

used while the process executes in user mode. 

The system virtual timer, however, measures the time of execution for the current process in 

system and user modes. The system mode time measured is the execution time spent within 

the kernel on behalf of the current process. This timer is intended to assist interpreters in mea¬ 

suring the CPU profile of an interpreted program. 

The new realtime timer provides additional advantages over the older alarm(3) function: 

• It allows microsecond resolution if the platform supports it. 

• It is capable of repeating. 

The Interval Timer API 
The new timer functionality came in the form of two functions: getitimer(2) and 

setitimer (2). These allow the caller to query and configure the timers, respectively. 

#include <sys/time.h> 
#define ITIMER_REAL 0 
#define ITIMER_VIRTUAL 1 
#define ITIMER PROF 2 

I* Realtime timer (SIGALRM) */ 
/* User time timer (SIGVTALRM) */ 
/* System + user time (SIGPROF) */ 

int getitimer(int which, struct itimerval *ovalue); 

int setitimer(int which, 
const struct itimerval *value, 
struct itimerval *ovalue); 

/* timer selection */ 
/* new timer settings */ 
/* old timer settings */ 

/* 

struct timeval { 
long tv_sec; seconds */ 
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long tv_usec; /* and microseconds */ 

}; 

struct itimerval { 
struct timeval it_interval; /* timer interval */ 
struct timeval it_value; /* current value */ 

}; 

The getitimer(2) and setitimer(2) functions require the programmer to choose one of the 

values ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF for the argument which. The ovalue 

argument receives a copy of the settings in the selected timer. In setitimer (2), where the 

timer settings are changed, the ovalue argument receives the former timer values. The new 

timer values are supplied by the value argument. Both functions return 0 when they succeed 

and -1 with an errno code if they fail. 

Each timer generates a signal, as follows: 

ITIMER_REAL SIGALRM 

ITIMER_VIRTUAL SIGVTALRM 

ITIMER PROF SIGPROF 

Note 

Interval timers are not inherited by the child process after a fork (2) call. Interval timers do continue 

after an exec(2) call is made, however. 

The itimerval structure has two members. The member it_value represents the time 

remaining until the next timer expiry. If this value is specified as 0, the timer is canceled. The 

member it_interval specifies the value to be loaded into the timer with the next timer 

expiry. If this value specifies zero time, then the timer is not reactivated. 

The following specifies a timer that will expire once, 5.25 seconds after activation: 

struct itimerval tmr; 

tmr.it_value.tv_sec = 5; 
tmr.it_value.tv_usec = 250000; 
tmr.it_interval.tv_sec = 0; 
tmr.it_interval.tv_usec = 0; 

The next example shows how to define a timer that will expire after 3.75 seconds and repeat 
every 4.25 seconds thereafter: 

struct itimerval tmr; 

tmr.it_value.tv_sec = 3; 
tmr.it_value.tv_usec = 750000; 
tmr.it_interval.tv_sec = 4; 
tmr.it_interval.tv_usec = 250000; 
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Interval Timer Macros 
The manual page for setitimer (2) usually mentions three helpful macros. 

• timerclear(tvp) clears the timer value. 

• timerisset(tvp) indicates if the timer value is non-zero. 

• timercmp(tvp,uvp,cmp) comparestwo timer values. 

The following example shows how timerclear () can be used to clear a time value: 

struct itimerval tmr; 

timerclear(&tmr); /* clear time value tmr */ 

The following tests to see if timer value tmr is zero: 

if ( timerisset(&tmr) ) 
/* tmr is non-zero */ 

The last example tests to see if variables tml and tm2 represent the same timer values: 

struct itimerval tml; 
struct itimerval tm2; 

if ( timercmp(&tm1,&tm2,=) ) 
/* Values are equal */ 

The following tests to see if the variable tml represents less time than tm2: 

struct itimerval tml; 
struct itimerval tm2; 

if ( timercmp(&tm1,&tm2,<) ) 
/* tml < tm2 */ 

Interval Timer Restrictions 
Most UNIX platforms insist that the microsecond component of the interval time specification 

(tv_usec) not exceed one second (1,000,000 microseconds). Otherwise, an error will be 

reported. 

A programmer that is striving for maximum UNIX platform portability should keep a few 

other things in mind when designing programs around interval timers. While setitimer (2) 

may be independent of the alarm(3) function call (UnixWare 7), you may not always be able 

to depend on this. Additionally, the sleep(3) function may be implemented in terms of 

alarm (3), or it may be implemented in terms of the ITIMER_REAL interval timer. HPUX 11 

documents that “interaction between setitimer() and any of alarm(), sleep() or usleep() 

[functions] is unspecified.” 

The granularity of the timer will be very platform specific. While the specification permits the 

programmer to specify units of microseconds, your platform may round the time specifications 

to a less precise value. If your application is time critical, you may need to test your interval 

timer before relying on a particular level of precision. 
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Linux documents that generation and delivery of the timer signal are separate. This means that 

under severe conditions it is possible for realtime timer signals to be lost if they occur too soon 

to be handled. They are not stacked or counted. 

Jfl? Note 

Some UNIX platforms document additional interval timers. For example, Solaris 8 documents the 

timer itimer_realprof, which delivers the same signal sigprof but has different semantics. 

Note also that the ITIMER_PROF is capable of causing interrupted system calls, because the sig¬ 

nal can be raised while executing in system mode. This means that your application must 

properly plan for the EINTR error code from system calls. 

Creating One-Shot Timers 
Listing 17.5 illustrates the use of the interval timer. This program establishes a simple one-shot 

realtime timer that raises the signal SIGALRM and then exits. 

LISTING 17.5 rl shot. c—A Simple One-Shot Realtime Timer Demonstration 

1: /* rlshot.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <signal.h> 
7: #include <errno.h> 
8: #include <sys/time.h> 
9: 
10: static int count = 0; /* Counter */ 
11: 
12: /* 

13: * Signal handler : 
14: */ 
15: static void 
16: handler(int signo) { 
17: int e = errno; /* Save errno */ 
18: 
19: ++count; /* Increment count */ 
20: write(1, "<«SIGALRM>»\n'', 14); 
21: errno = e; /* Restore errno */ 
22: } 
23: 
24: /* 
25: * Main program : 
26: */ 
27: int 
28: main(int argc,char **argv) { 
29: int z; /* Status return code */ 
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struct sigaction new_sigalrm; 
struct itimerval old_timer; 
struct itimerval new_timer; 

/* New signal action */ 
/* Old timer values */ 
/* New timer values */ 

/* 

* Establish the signal action required for SIGALRM : 
*/ 

new_sigalrm.sa_handler = handler; 
sigemptyset(&new_sigalrm.sa_mask); 
new_sigalrm.sa_flags = 0; 
sigaction(SIGALRM,&new_sigalrm,NULL); 

/* 

* Establish a one-shot realtime timer : 
*/ 

new_timer.it_interval.tv_sec = 0; 
new_timer.it_interval.tv_usec = 0; 
new_timer.it_value.tv_sec = 5; 
new_timer.it_value.tv_usec = 250000; /* 5.25 seconds */ 

puts("Starting ITIMER_REAI_"); 

z = setitimer(ITIMER_REAL,&new_timer,&old_timer); 
if ( z ) { 

perror("setitimer(ITIMER_REAL)"); 
return 1; 

/* 

* A loop : 
*/ 

do { 
/* Do Work...*/ ; 

} while ( count < 1 ); 

printf("ITIMER_REAL count is %d.\n",count); 
return 0; 

The program in Listing 17.5 establishes a signal handler for the signal SIGALRM in lines 34-40. 

The function handler() is called when the signal is raised, and it simply increments variable 

count in line 19 and reports a message in line 20. 

The one-shot timer is configured in lines 45-52. Notice that the it_interval member values 

are 0, causing the timer to not restart when the initial value expires. 

Warning 

The program in Listing 17.5 uses a CPU-intensive loop in lines 61-63. Out of courtesy to others, do 

not invoke this program often in a multiuser environment. 
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Compiling and running the program should yield the following: 

$ make rlshot 
cc -c -Wall rlshot.c 
cc -o rlshot rlshot.o 
$ ./rlshot 
Starting ITIMER_REAL... 
<«SIGALRM»> 
ITIMER_REAL count is 1. 
$ 

You will see the message «<SIGALRM»> raised 5.25 seconds after the program starts. Then 

the program reports the final value of count and exits normally. 

Establishing Repeating Timers 
The program shown in Listing 17.6 is more interesting. It starts realtime, virtual, and profile 

timers all at once. 

LISTING 17.6 timers. c—A Program That Uses Realtime, Virtual, and Profile Timers 

1: 
2: 
3: 

4: 

5: 

6: 
7: 

8: 
9: 

10 

11 
12 
13 

14 

15 

16 

17 

18 

19 

20 
21 
22 
23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

/* timers.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <signal.h> 
#include <errno.h> 
#include <sys/time.h> 

static int count = 0; /* Counter */ 

* Signal handler : 
*/ 

static void 
handler(int signo) { 

int e = errno; 
char *signame = "?"; 

/* Save errno */ 
/* Signal name */ 

/* Realtime timer expired */ 
/* Increment counter */ 

switch/ signo ) { 
case SIGALRM : 

++count; 
signame = "«<SIGALRM»>\n"; 
break; 

case SIGVTALRM : /* Virtual timer expired */ 
signame = "«<SIGVTALRM»>\n"; 
break; 

case SIGPROF : /* System virtual timer expired */ 
signame = "<«SIGPROF>»\n"; 
break; 

} 
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write(1,signame,strlen(signame)); 
errno = e; /* Restore errno */ 

* Main program : 
*/ 

int 
main(int argc,char **argv) { 

int z; 
struct sigaction new_sigalrm; 
struct itimerval real_timer; 
struct itimerval virt_timer; 
struct itimerval prof_timer; 
struct itimerval timer_values; 

/* 

/* Status return code */ 
/* New signal action */ 
/* Real timer values */ 
/* User mode timer */ 
/* System+User mode timer */ 
/* Timer values */ 

* Establish the signal action required for SIGALRM 
*/ 

new_sigalrm.sa_handler = handler; 
sigemptyset(&new_sigalrm.sa_mask); 
new_sigalrm.sa_flags = 0; 

sigaction(SIGALRM,&new_sigalrm,NULL); 
sigaction(SIGVTALRM,&new_sigalrm,NULL); 
sigaction(SIGPROF,&new_sigalrm,NULL); 

/* 

* Establish a realtime timer : 
*/ 

real_timer.it_interval.tv_sec = 3; 
real_timer.it_interval.tv_usec = 500000; /* 3.5 seconds */ 
real_timer.it_value.tv_sec = 3; 
real_timer.it_value.tv_usec = 500000; 

virt_timer.it_interval.tv_sec = 0; 
virt_timer.it_interval.tv_usec = 500000; /* 0.5 seconds */ 
virt_timer.it_value.tv_sec = 0; 
virt_timer.it_value.tv_usec = 500000; 

prof_timer.it_interval.tv_sec = 0; 
prof_timer.it_interval.tv_usec = 500000; /* 0.5 seconds */ 
prof_timer.it_value.tv_sec = 0; 
prof_timer.it_value.tv_usec = 500000; 

puts("Starting ITIMER_REAL..."); 
z = setitimer(ITIMER_REAL,&real_timer,NULL); 

if ( z ) { 
perror("setitimer(ITIMER_REAL)"); 
return 1; 

} 

puts("Starting ITIMER_VIRTUAL..."); 
z = setitimer(ITIMER_VIRTUAL,&virt_timer,NULL); 
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continued from previous page 

87: if ( z ) { 
88: perror("setitimer(ITIMER_VIRTUAL)"); 
89: return 1; 
90: } 
91 : 
92: puts("Starting ITIMER_PROF..."); 
93: z = setitimer(ITIMER_PROF,&prof_timer,NULL); 
94: if ( z ) { 
95: perror("setitimer(ITIMER_PROF)"); 
96: return 1; 
97: } 
98: 
99: /* 
100: * A loop : 
101: */ 

102: do { 
103: /* Perform work which involves system time */ 
104: getitimer(ITIMER_PROF,&timer_values); 
105: (void) timer_values; 
106: } while ( count < 2 ); 
107: 
108: printf("ITIMER_REAL count is %d.\n".count); 
109: return 0; 
110: } 

Lines 52-58 establish a single handler function handler () to process signals SIGALRM, 

SIGVTALRM, and SIGPROF. The counter variable count is incremented only when handler () 

receives the signal SIGALRM (see line 22). 

The three timers are configured in lines 63-76. The timers themselves are started in lines 

78-97. 

After the program begins executing, the do { } while loop in lines 102-106 repeatedly calls 

on getitimer(2) to read the current timer values for ITIMER_PR0F. This is performed so that 

much of the CPU time expended in this demonstration will be in system mode. 

The program in Listing 17.6 is very CPU intensive. To be courteous to other users of the same system, 

do not run this program frequently. 

Compiling and running this program on a FreeBSD system yielded the following: 

$ make timers 
cc -c -Wall timers.c 
cc -o timers timers.o 
$ ./timers 
Starting ITIMER_REAL... 
starting ITIMER_VIRTUAL... 
Starting ITIMER_PROF... 
«<SIGPR0F»> 
«<SIGPR0F»> 
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«<SIGPROF»> 
«<SIGVTALRM»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGALRM>» 
«<SIGVTALRM>» 
<«SIGPROF»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGVTALRM»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGPROF»> 
«<SIGALRM»> 
ITIMER_REAL count is 2. 
$ 

You can see the names of the different signals that were raised when the timers expired. Note 

how the timers kept working in this example. 

Note also that the signal SIGPROF occurs more frequently than the signal SIGVTALRM. This 

should tell you that more CPU time was being spent in system mode in the do { } while 
loop than in user mode. 

The SIGALRM signal occurred twice because the while clause exits after the counter count 

reaches 2. Since the realtime timer was configured to expire at 3.5 seconds, the entire output 

represents approximately 7 seconds of time. 

Summary 
This chapter has explored the use of using sleep functions and interval timers. The realtime 

timer provides your application with the capability to act with elapsed time. The virtual and 

profile interval timers allow your application to act when a certain amount of CPU time has 

been consumed by the current process. Frequently these are useful for interpreted languages. 

The next chapter will look at how you can create new processes using pipes and the 

system(3) call. 
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CHAPTER 18 

PIPES AND PROCESSES 

ne of the strengths of UNIX is its ability to reuse different process components. The 

shell demonstrates this by connecting the output of one process to the input of 

another, using pipes in an almost effortless manner. This chapter will focus on how 

programs create pipes to other processes using popen(3) and how to use the system(3) func¬ 

tion to invoke external processes. 

UNIX Pipes 
A pipe between two processes is similar to a tubular piece of plumbing. When a UNIX pipe is 

created, a data pipeline is formed between a writing process and a reading process. The UNIX 

pipe can become plugged if the reading process does not continue to receive the piped data. 

Unlike a physical pipe, however, some versions of UNIX insist that the data must flow in one 

direction: from its source to its destination. 

In Chapter 2, “UNIX File System Objects,” you read about FIFOs, which are also known as 

named pipes. This chapter, however, will be concerned with nameless pipes. Unlike FIFOs, 

nameless pipes are created in the open state and only exist between processes. 

Creating UNIX Pipes 
The system call that is responsible for creating nameless pipes is the function pipe (2). Its 

function synopsis is as follows: 

#include <unistd.h> 

int pipe(int fildes[2]); 

The pipe (2) call returns one pair of file descriptors that represent both ends of the pipe. 

When the function is successful, the array f ildes [ ] is populated with two open file descrip¬ 

tors, and the value 0 is returned. Otherwise -1 is returned, and an error code is left in the 

external variable errno. 

Note 

The close-on-exec flag is not set on the two file descriptors that are returned by pipe(2). 
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Systems that only support unidirectional pipes will provide f ildes[0] as a file descriptor 

capable of reading only. The descriptor tildes [ 1 ] will be capable of writing only. Data written 

to f ildes[ 1 ] can be read at the opposite end of the pipe with file descriptor tildes[0]. 

Systems that support STREAMS-based pipes allow reading and writing to both ends. Data writ¬ 

ten to fildes[0] is read via descriptor tildes[ 1 ]. Data written to tildes[1 ] is read via 

descriptor tildes[0]. In this respect, the STREAMS-based pipe is similar to a connected 

socket (the curious may read about socketpair (2)). 

The following example shows how a pipe is created: 

int z; /* General status code */ 
int fildes[2]; /* Pair ot tile descriptors */ 

if ( (z = pipe(&fildes[0])) 
perror("pipe(2)"); 
exit(13); 

-1 ) { 

/* Report the error */ 

) 
printf("fildes[0] = %d, for reading\n",fildes[0]); 
printf("fildestl] = %d, for writing\n",fildes[1]); 

This example shows how a pipe is created and how its file descriptors are reported (a unidirec¬ 

tional pipe is assumed in this example). 

The value st_size returned by f stat (2) is the number of bytes available for reading. For systems 

that support only unidirectional pipes, the same value st_size is returned for either file descriptor 

fildes[0] orfildes[1]. 

For STREAMS-based pipes, the st_size value returned by f stat (2) is the number of bytes available 

for reading at the specified end of the pipe. Descriptor tildes [ 0 ] or tildes [ 1 ] specifies which end 

of the pipe to query. 

The creation of a pipe within one process may not appear to be useful. However, when you 

couple this functionality with the fork(2) system call, which is covered in Chapter 19, 

“Forked Processes,” this becomes a powerful tool. 

Because fork (2) is covered in the next chapter, this discussion will now turn to the popen (3) 

call. The pipe(2) function was introduced here because the popen(3) function calls upon it 

internally. 

Note 

FreeBSD release 3.4, UnixWare 7, and Solaris 8 support STREAMS-based pipes (bi-directional). 

SGI IRIX 6.5 and HPUX 10.0 and later can be configured to use STREAMS-based (bi-directional) or 

unidirectional pipes. SGI also permits STREAMS-based pipe support to be chosen at program link 

time. 

Only the unidirectional pipe is supported by Linux and IBM's AIX 4.3. 
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Opening Pipes to Other Processes 
The C standard I/O library popen (3) makes it easy for the application programmer to open a 

pipe to an external process. It makes the necessary call to pipe(2) and then calls upon 

fork (2) to start a new process, which is attached to a pipe. The function synopsis for 

popen (3) is as follows: 

#include <stdio.h> 

FILE *popen(const char *command, const char *mode); 

int pclose(FILE *stream); 

The popen (3) function arguments are similar to the fopen(3) function except that the first 

argument is a command rather than a pathname. The argument command must be a command 

that is acceptable to the UNIX shell. 

The second argument mode must be the C string " r" for reading or "w" for writing. No other 

combination, such as "w+", is acceptable. A popen (3) pipe must be opened for reading from a 

process or writing to a process, but never for both. When popen (3) is successful, a valid FILE 

pointer is returned. Otherwise, a null pointer is returned and the error is posted to errno. 

Successfully opened pipes must be later closed by a call to pclose(3). The return value for 

pclose (3) is the termination status of the shell process. 

Warning 

Calling popen (3) from a set-user-ID program is dangerous. The popen(3) function uses fork(2) 

and exec(2) to invoke the new shell, and consequently it is possible for a security leak to occur (the 

current effective user and group ID values are saved by exec(2)). The shell and the commands 

invoked are subject to environment variable settings such as path and SHELL. 

The C string given as argument command to popen (3) must be acceptable to the shell. This is 

because the popen(3) function invokes a shell process first. The entire pipe creation process 

can be described as follows: 

1. The popen (3) function creates a nameless pipe with a call to pipe(2). 

2. The popen(3) function calls functions fork(2) and execve(2) to start the shell. 

3. The shell interprets your command string that was provided in the call to popen (3). 

4. The shell starts your command if it is able to. If not, the shell returns an error to the 

popen(3) call. 

The command process started by popen (3) is referred to as the child process of your current 

process. The current process that has called popen (3) is known as the parent process. This ter¬ 

minology helps to identify the process relationships involved. 

Because the command string is passed to the shell, you have considerable flexibility in the fea¬ 

tures at your disposal. This includes the ability to use command lines that use wildcard file¬ 

names and shell input and output redirection operators. Additionally, you may use the pipe 

symbol to create additional pipes to other processes. 
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Warning 

If you write programs that use the popen(3) function and that must be portable to other UNIX oper¬ 

ating systems, keep in mind the limitations of the shell. Different shell programs are used on some 

UNIX platforms, with varying capabilities. 

The current process environment is important to the shell that is invoked by the popen (3) call 

to start your command. This means that any commands that you expect it to invoke are subject 

to the usual PATH directory searches. 

Reading from Pipes 
The short program in Listing 18.1 shows a simple program that opens a pipe to the ps (1) 

command. After the pipe is opened, the program reads from the pipe until end-of-file is 

reached. All read data is displayed on standard output. 

LISTING 18.1 popen.c—Demonstration of popen(3) and Reading ps(1) Output 

1: /* popen.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: 
6: int 
7: main(int argc,char **argv) { 
8: char buf[256]; /* Input buffer */ 
9: FILE *p; /* Input pipe */ 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

/* 

* Read the output of the pipe: 
*/ 

while ( fgets(buf,sizeof buf,p) != 0 ) 

if ( pclose(p) ) { 
perrorf"pclose(3)"); 
return 13; 

} 

/* 

* Open pipe to ps(1) command for reading : 
*/ 

p = popen("ps -1","r"); 

if ( !P ) { 
perrorf"popen(3)") ; 
return 13; 

} 

fputs(buf,stdout); 

33: } 
return 0; 
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The program begins by opening a read pipe to the command ps -1 in line 14. Once the pipe 

has been opened successfully, the program reads each text line in the loop in lines 24 and 25, 

until end-of-file is reached. Then the pclose (3) function is called to properly close the pipe p 
(line 27). 

The following FreeBSD compile and run session is provided as follows: 

$ make popen 
cc -c -Wall popen.c 
cc -0 popen popen.0 

$ ./popen 
UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND 

1001 7590 1 0 10 0 596 344 wait IS p0 0:00.05 -sh (sh) 
1001 7593 7592 1 10 0 596 344 wait Ss Pi 0:00.22 -sh (sh) 
1001 7813 7593 1 -6 0 780 408 piperd S+ Pi 0:00.01 ./popen 
1001 7814 7813 1 10 0 496 332 wait s+ Pi 0:00.00 sh -c ps -1 
1001 7815 7814 1 28 0 376 244 - R+ Pi 0:00.00 ps -1 

$ 

The last three lines of output show the processes involved (the preceding ones are for the 

xterm (1) session that was being used). Process 7813 is the process used to execute the pro¬ 

gram . / popen. However, note how the popen (3) call has created two new processes: 

• Process 7814 is the shell that has been started to execute the command. 

• Process 7815 is the command process itself (the ps (1) command). 

Although you cannot see the single quotes that were used, you can see how the popen (3) 

process created the command process using the shell process 7814. If you could see the single 

quotes, you would see: 

sh -c 'ps -1' 

This demonstrates the work that the popen (3) function has performed for you by calling upon 

pipe(2), fork(2), and execve(2). The functions fork(2) and execve(2) are discussed in 

Chapter 19. 

Note 

The command-line options for the ps (1) command differ for different UNIX platforms. The exam¬ 

ples presented in this chapter assume FreeBSD release 3.4. 

Writing to Pipes 
When a pipe is being written to by the current process, another process at the other end of the 

pipe is reading that data from its standard input. To illustrate that procedure, look at the exam¬ 

ple program provided in Listing 18.2. 
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LISTING 18.2 pmail. c—A Program That Writes to a popen (3) Pipe 

1: /* pmail.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <pwd.h> 
7: #include <sys/types.h> 
8: 
9: int 
10: main(int argc,char **argv) { 
11: struct passwd *pw = 0; 
12: char cmd[256]; 
13: FILE *p = 0; 
14: 
15: /* 
16: * Lookup our userid: 
17: */ 
18: if ( !(pw= getpwuid(geteuid())) ) { 
19: perror("getpwuid()"); 
20: return 13; 
21: } 
22: 
23: /* 
24: * Format command : 

25: */ 
26: sprintf (cmd,''mail -s 
27: (long)getpid(), 
28: pw->pw_name); 
29: 
30: /* 
31: * Open a pipe to mailx: 
32: */ 
33: if ( !(p = popen(cmd,"w")) ) { 
34: perror("popen(3)"); 
35: return 13; 
36: } 
37: 
38: /* 
39: * Now write our message: 
40: */ 
41: fprintf(p,"This is command %s speaking.\n",argv[0]); 
42: fprintf(p,"I am operating in the account for %s\n",pw->pw_gecos); 
43: 
44: if ( getuid() != 0 ) { 
45: fprintf(p,"I'd like to operate in root instead.\n"); 
46: fprintf(p,"I could do more damage there. :)\n\n“); 
47: } else { 
48: fprintf(p,"I'd like to operate in a non-root ID instead.\n"); 
49: fprintf(p,"I would be safer there.\n"); 
50: } 
51: 

'A message from process ID %ld' %s", 
/* Process ID */ 
/* User name */ 

/* Password info */ 
/* Command buffer */ 
/* mailx pipe */ 
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52: fprintf(p,"Sincerely,\n Process ID %ld\n",(long)getpid()); 
53: 
54: if ( pclose(p) == -1 ) { 
55: perror("pclose(3)"); 
56: return 13; 
57: } 
58: 
59: printf("Message sent to %s\n",pw->pw_name); 
60: return 0; 
61: } 

This program looks up your user ID in lines 18-21. Then it forms a command to start an 

email to your current account in lines 26-28. A write pipe is created by calling popen (3) in 

line 33. The message text lines are written to lines 41-52. The message text is completed by 

sending end-of-file to the mail(1) command by calling pclose(3) in line 54. 

Compiling and running this command under FreeBSD yields the following result: 

$ make pmail 
cc -c -Wall pmail.c 
cc -o pmail pmail.o 
$ ./pmail 
Message sent to ehg 

$ 

Checking the mailbox yields results similar to this: 

$ mail 
Mail version 8.1 6/6/93. Type ? for help. 
"/var/mail/ehg": 1 message 1 new 
>N 1 ehg Mon Jun 19 23:20 20/588 "A message from process ID 7943" 

& 1 
Message 1: 
From ehg Mon Jun 19 23:20:24 2000 
Date: Mon, 19 Jun 2000 23:20:24 -0400 (EDT) 
From: "Earl Grey" <ehg> 
To: ehg 
Subject: A message from process ID 7943 

This is command ./pmail speaking. 
I am operating in the account for Earl Grey 
I'd like to operate in root instead. 
I could do more damage there. :) 

Sincerely, 
Process ID 7943 

& d 1 
& q 

$ 

This demonstrated how your C program could write data to another external process through 

a pipe. 
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Closing a Pipe 
After a pipe is opened for reading or writing, the pipe must be closed by a call to pclose(3). 

This allows a number of important concluding operations to take place: 

• The wait (2) function (or equivalent) must be called to pause the execution of the cur¬ 

rent process until the child process terminates. 

• Obtain success or failure information from wait (2) about the child process that has ter¬ 

minated. 

• Destroy the FILE control block. 

The wait (2) call is necessary to obtain termination status about the child process. This is fully 

discussed in the next chapter. 

Because popen(3) returns a pointer to FILE, there is a strong urge by programmers to close the 

open pipe with a call to f close (3). However, close popen(3) pipes with pclose(3) only. On 

some platforms, using f close (3) on a popen (3) FILE stream will cause the program to abort. 

Warning 

Always use function pclose(3) to close a pipe opened with popen (3). Failure to obey this rule will 

result in undetected process errors, possible memory leaks and, on some UNIX platforms, aborts. 

Furthermore, this practice can result in zombie processes while your program continues to run. For 

more about zombie processes, see Chapter 19. 

Handling a Broken Pipe 
When a program has opened a pipe to another process for writing, and that other process has 

aborted, the read end of the pipe becomes closed. At that point, the pipe is half closed and 

there is no hope for it to be emptied of data—there is no process reading from it. This causes 

the UNIX kernel to raise the signal SIGPIPE in the process that is attempting to write to the 

pipe. This indicates to the writer that the pipe is broken. 

The signal SIGPIPE is not always desirable for this purpose. You can elect to ignore the signal 

SIGPIPE and simply allow the write (2) function to return an error when this condition arises 
(error code EPIPE). 

For example, you could alter Listing 18.2 as follows: 

1: /* pmail.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <pwd.h> 
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7: 
8: 

#include <sys/types.h> 

9: int 
10: main(int argc,char **argv) { 
11 : struct passwd *pw = 0; /* Password info 
12: char cmd[256]; /* Command buffer 
13: FILE *p = 0; /* mailx pipe */ 
14: 
15: signal(SIGPIPE,SIG_IGN); /* Ignore SIGPIPE 

Line 15 adds a call to signal(3) that requests the action SIG_IGN for signal SIGPIPE. The 

default action for signal SIGPIPE is to terminate the process. Consequently, you must be pre¬ 

pared for this signal in programs that work with pipes. 

EPIPE—Broken pipe This error indicates that the calling process is not able to perform a 

write(2) (or equivalent) operation on a file descriptor because it is writing to a pipe with no reading 

processes. 

External Processes Without Pipes 
The previous section demonstrated an easy method to create a pipe to an external process and 

either read its output or feed it input. It often happens, however, that C programs need only to 

invoke another process, without using a pipe. The standard C library provides the system(3) 

function for this purpose. 

#include <stdlib.h> 

int system(const char *command); 

In general, there are two ways to use the system(3) function: with a null argument or with a 

non-null command string argument. 

Almost all systems document the fact that when system(3) is called with a null command 

pointer, the function call checks on the availability of the shell that would normally be used to 

carry out the command (system(3) for HPUX-11 does not mention this feature). The shell is 

considered available if it exists and is executable. If the shell is available, system (3) returns 

non-zero to indicate true. Otherwise, 0 indicates that no shell is available. 

When the argument command is not a null pointer, it is expected to point to a null terminated 

C string containing a shell command to be executed as a child process. The function 

system(3) does not return until the indicated command has completed. The return status for 

this type ofsystem(3) call is somewhat complicated, and is explained in full in Table 18.1 

later in the chapter. 
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The shell program that is checked or invoked by the system(3) call varies somewhat with the 

UNIX platform. The following gives a partial list: 

FreeBSD release 3.4 /bin/sh 

SGI IRIX 6.5 /sbin/sh 

HPUX-11 /usr/bin/sh 

UnixWare 7 $SHELL or /bin/sh 

Solaris 8 (native) /usr/bin/sh 

Solaris 8 (standard) /usr/bin/ksh 

IBM AIX 4.3 /usr/bin/sh 

IBM AIX 4.3 (trusted) /usr/bin/tsh 

Linux /bin/sh 

The actual shell used on some platforms depends upon certain conditions. UnixWare 7 looks 

for the existence of the environment variable SHELL and uses that pathname for the shell. 

Otherwise it falls back to the default of /bin/sh. The choice for Solaris 8 depends upon 

whether it was compiled and linked to a particular standard. IBM’s AIX 4.3 has a Trusted 

Computing Base for certain file system objects. If this feature is installed and enabled, the 

trusted shell /usr/bin/tsh can be invoked under some circumstances. Linux normally has 
/bin/sh linked to the GNU bash(1) shell. 

Note 

On some platforms, the signals SIGINT and SIGQUIT are ignored for the duration of the system(3) 

call. Furthermore, the signal SIGCHLD may be blocked until system(3) returns. IBM AIX 4.3 and 

HPUX-11 document this behavior. 

Warning 

Calling system(3) from a set-user-ID program is dangerous. The system(3) function uses fork(2) 

and exec(2) to invoke the new shell, and consequently it is possible for a security leak to occur (the 

current effective user and group ID values are saved by exec(2)). The shell and the commands 

invoked are subject to environment variable settings such as path and SHELL. 

Review Table 12.2 in Chapter 12, “User ID, Password, and Group Management,” if you are 

unclear how the current effective user and group ID values are affected by the exec (2) family 
of functions. 
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Interpreting system(3) Return Values 
The return value for system(3) is complex when the command string is not null. It requires 

care to arrive at the correct conclusion. Table 18.1 contains a summary of the return values 

from system(3) when the command argument is not null. The errno value must be cleared to 

zero before calling system(3) to use this table. This permits the distinction between a failure 

to start the command and a command returning an exit code of 127. 

TABLE 18.1 The system(3) Function Return Values 

Return Value Check errno Description 

0 No The function call was successful launching the command 

and command exited with a 0 exit status. 

-1 Yes An error has occurred. Check the value of errno to deter¬ 

mine the reason for failure. 

127 Maybe If errno was cleared to 0 prior to calling system(3) and it 

is not 0 after the call, then an error has occurred while 

starting the new process. Check errno for the reason that 

the process could not be started. Otherwise, if errno has 

remained 0, then command executed and has returned exit 

code 127. 

1 -126 No These are return codes from command that has executed. 

128-255 No These are return codes from command that has executed. 

Invoking Commands 
To illustrate the system(3) function and its complex return values, a program has been pro¬ 

vided in Listing 18.3. 

LISTING 18.3 smail. c—Example ' 

1: /* smail, ,c */ 
d. . 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <errno.h> 
7: #include <string.h> 
8: #include <pwd.h> 
9: 
10: 

#include <sys/types.h> 

11: int 
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continued from previous page 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

main(int argc,char **argv) 
struct passwd *pw = 0; 
char cmd[256]; 
int rc; 

/* 

/* 

/* 

Password info */ 
Command buffer */ 
Command return code 

/’ 

7 
if 

Lookup our userid: 

( !(pw = getpwuid(geteuid())) ) { 
fprintf(stderr,"%s: unknown userid\n",strerror(errno)); 
return 13; 

/* 

* Format command 
*/ 

sprintf(cmd, ps -l|mail 
(long) getpid(), 
pw->pw_name); 

-s 
/* 

/* 

* PID %ld' %s", 
Process ID */ 
User name */ 

/* 
★ Run the command 
*/ 

errno 0; 
rc = system(cmd); 

Clear errno 
Execute the 

*/ 
command 7 

if ( rc == 127 && errno != 0 ) { 
/* Command failed to start */ 
fprintf(stderr,"%s: starting system(%s)\n", 

strerror(errno),cmd); 
else if ( rc == -1 ) { 

/* Other errors occurred */ 
fprintf(stderr,"%s: system(%s)\n", 

strerror(errno),cmd); 
else { 

printf("Command '%s1\n returned code %d\n",cmd,rc); 
puts("Check your mail."); 

return 0; 

The smail. c program looks up your effective user ID in lines 20-23. Then a command is for¬ 

matted into character array cmd [ ] to list your current processes and email it to you (lines 

28-30). The actual process list and mailing occurs in lines 35 and 36, where cmd is carried 

out. Lines 38-49 show how to make sense of the return code from system(3). 

When the program in Listing 18.3 is compiled and executed under FreeBSD, the following 

results are obtained: 

$ make smail 
cc -c -Wall smail.c 
cc -o smail smail.o 
$ ./smail 
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Command 'ps -l|mail -s 'PID 10424' ehg' 
returned code 0 

Check your mail. 
$ 

At this point, the program is telling you that mail has been sent. Now check your mail with the 

mail (1) command (the output lines from ps (1) have been shortened for readability): 

$ mail 
Mail version 8.1 6/6/93. Type ? for help. 
"/var/mail/ehg": 1 message 1 new 
>N 1 ehg Wed Jun 21 21:56 20/931 ''PID 10424" 
& 1 
Message 1: 
From ehg Wed Jun 21 21:56:26 2000 
Date: Wed, 21 Jun 2000 21:56:26 -0400 (EDT) 
From: "Earl H. Grey" <ehg> 
To: ehg 
Subject: PID 10424 

UID PID PPID CPU PRI NI TIME COMMAND 
1001 10200 1 0 10 0 0:00.05 -sh (sh) 
1001 10203 10202 0 10 0 0:00.20 -sh (sh) 
1001 10424 10203 1 10 0 0:00.01 ./smail 
1001 10425 10424 2 10 0 0:00.01 sh -c ps -1 |mail -s 'PID 10424 
1001 10426 10425 1 28 0 0:00.00 ps -1 
1001 10427 10425 2 28 0 0:00.00 sh -c ps -1 |mail -s 'PID 10424 

& d 1 
& q 

$ 

Your message content may vary somewhat from the message shown here. The timing is always 

such that it appears that two processes are executing the command sh -c ps -l|mail -s 

' PID 10424'. In fact, what you see here is a snapshot of how things appear after fork (2) has 

created a new process, but before it has been able to perform an exec(2) call. The following 

explains what you see in the message: 

• Process 10424 is the initial . /smail program that was started. 

• Process 10425 is the shell process that has been started because of the system (3) call. 

This shell process must execute the command ps -11 mail - s ehg. 

• Process 10426 is the ps (1) command that has been started by the shell (note its parent 

process ID is 10425). 

• Process 10427 was to be the mail (1) command. However, it shows the command line of 

the shell because the shell had not yet carried out the call to exec (2) before the ps (1) 

command took a snapshot. Had the exec(2) call taken place, you would have seen the 

command mail -s 'PID 10424' ehg instead. 

If you are unfamiliar with f o r k (2) and e x e c (2) this may be difficult to understand. Chapter 

19 will cover fork(2) andexec(2) in detail. 
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Scrutinizing the system(3) Function 
Although the system (3) function is quite easy to use, it has drawbacks. One of them is the 

complex set of return values when the command string is not a null pointer (review Table 18.1). 

The system(3) call is also considered a security risk, especially for programs that are 

setuid(2) or setgid(2). If this applies to your application, you would be wise to shun the 

system(3) call, and carefully craft fork(2) and exec(2) calls directly. 

Summary 
This chapter focused on the creation of other processes with and without pipes. Pipes allow 

your current process to read or write data to another process. The system(3) function also 

permits your process to start other processes without using a pipe. 

The next chapter discusses the system calls that make other processes available. There you will 

learn what you need to master the use of the fork (2) and exec (2) family of functions. 



CHAPTER 19 

FORKED PROCESSES 

Jn the previous chapter, you learned how to create new processes with the help of the 

popen(3) and system(3) function calls. These functions end up calling upon the sys¬ 

tem calls fork(2) and exec (2), however. This chapter will enable you to call 

f ork (2) and exec (2) directly from your programs, giving you complete and total control over 

process creation. 

Overview of the UNIX Fork Process 
Every process under UNIX is created using the fork(2) system call. UNIX pioneered this con¬ 

cept of creating two nearly identical processes from one original process. The original process 

is known as the parent process and the new process is the child process. Figure 19.1 shows 

how three processes are related in this manner. 

FIGURE 19.1 

The parent-child relation¬ 

ship between processes. 

In Figure 19.1, the shell process ID 1294 lost its parent process, because it terminated. All 

orphaned processes are inherited by the in it (8) process, and its process ID is always 1. 

Consequently, the shell’s parent becomes process ID 1. When the ps (1) command is typed in 

at the shell prompt, a fork(2) and aexecve(2) are performed, resulting in the process ID 

1295 being created as a child process of the shell. 

Conceptually, the fork (2) call is like meeting a fork in the road. Initially there is one process 

executing. Upon successful return from the fork(2) function are two nearly identical 
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processes. The difference is that one has the child process ID returned from fork(2), whereas 

the child process has the value 0 returned instead. 

The two processes share the following characteristics: 

• Process group ID 

• Current working directory 

• Root directory 

• umask(2) bits 

• Real and effective user ID values 

• Real and effective group ID values 

• Set-user-ID flag and set-group-ID flag 

• Session ID 

• Controlling terminal, if any 

• Signal mask and registered actions 

• Close-on-exec flag for open file descriptors 

• Environment variables 

• Attached shared memory 

• Resource limits 

The parent and child processes have the following differences, however: 

• The return value from fork(2) is different. The parent has the child process ID returned. 

The child process has zero returned. 

• The process ID values are different. 

• The parent process ID values are different. 

• The execution time charged for system and user CPU time starts at zero for the child 

process (see getrusage(2)). 

• File locks held by the parent are not inherited by the child process. 

• Child processes do not inherit alarms and timers from the parent process (alarm(2) and 

setitimer(2)). Pending alarms are cleared. 

• Pending signals for the child process are set to the empty set. 

The open file descriptors for the child process are duplicated. This is similar to calling dup(2) 

for each open file descriptor and giving the duplicated units to the child process. If the child 

process performs an lseek(2) on an open file unit, it changes the file offset for both the parent 

and child processes for the same file unit. The same interaction occurs from the parent process 

on the child’s file units. 
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The operation of the fork (2) system call can be summarized as follows: 

1. The kernel makes the current process memory space available virtually in the new 

process. Memory pages that are not read-only are marked for “copy-on-write.” Both 

processes initially share the same physical memory, marked as read-only by the kernel. 

When one or the other process attempts to alter that page of memory, the kernel copies 

the page and gives each process its own writable page. 

2. Open file descriptors are duplicated and made available as the same file units in the 

child process. 

3. Other shareable resources such as attached shared memory segments are made available 

to the child process. 

4. Other values for the child process are reset (execution time, pending signal set is cleared, 

and so on). 

5. The fork(2) function establishes the value it is going to return to each process. The par¬ 

ent process will have the child process ID returned. The child process will have zero 

returned. 

At this point, before fork (2) returns, the process that will execute first is not defined. This 

may be determined by the design of the UNIX scheduler or may be influenced by the number 

of processors and load on the system. 

The fork(2) Function 
The synopsis for the fork(2) system call is as follows: 

#include <sys/types.h> 
#include <unistd.h> 

pid_t fork(void); 

There are no arguments to the fork(2) system call. When the call is successful, the parent 

process receives the process ID of the child process that was created. The child process, how¬ 

ever, receives the return value 0 instead. The child process is always able to obtain the parent 

process ID by calling upon getppid(2). 

The caller should always anticipate errors, however. The fork(2) call returns the value 

(pid_t) (-1) if the function fails. The value of errno will hold the reason for the error. 

Possible reasons for failure include EAGAIN when the system-imposed limit for the number of 

processes has been exceeded. ENOMEM is returned if the system cannot supply its memory 

needs. 

Note 

ENOMEM—Insufficient memory When this error is returned by fork (2), it means that the system 

is lacking the virtual memory resources (or swap space) required for starting a new process. 
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Applying fork(2) 
The program in Listing 19.1 illustrates a simple example program that creates one child 

process using the fork(2) system call. 

LISTING 19.1 fork.c—An Example Using fork(2) to Create a New Process 

1: /* fork.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <string.h> 
6: #include <errno.h> 
7: #include <sys/types.h> 
8: 
9: int 
10: main(int argc,char **argv) { 
11: pid_t pid; /* Process ID of the child process */ 
12: 
13: pid = fork(); /* Create a new child process */ 
14: 
15: if ( pid == (pid_t)(-1) ) { 
16: fprintf(stderr,"%s: Failed to fork()\n",strerror(errno)); 
17: exit(13); 
18: 
19: } else if ( pid == 0 ) { 
20: printf("PID %ld: Child started, parent is %ld.\n", 
21: (long)getpid(), /* Current child PID */ 
22: (long)getppid()); /* Parent PID */ 
23: 
24: } else { 
25: printf("PID %ld: Started child PID %ld.\n", 
26: (long)getpid(), /* Current parent PID */ 
27: (long)pid); /* Child's PID */ 
28: } 
29: 
30: sleep(1); /* Wait one second */ 
31: return 0; 
32: } 

The program in Listing 19.1 shows fork(2) being invoked at line 13. Upon return from this 

function, if successful, two processes are executing. The if statement in line 15 tests to see if 

the function call failed. 

Line 19 tests to see if the return value from fork (2) was zero. If so, then lines 20-22 are exe¬ 

cuted by the child process. The else statement in line 24 indicates that the returned process 

ID value pid is non-zero, and not -1 (because of line 15). Lines 25-28 are executed by the 

parent process only. 

The remaining lines of code (lines 30 and 31) are executed by both the parent and child 

processes. The sleep(3) call is included here to allow both the parent and child processes to 
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exist long enough that the other can see them. Otherwise, it is possible for the parent or the 

child process to execute and terminate before the other process gets to execute, following the 
fork(2) call. 

Compiling and running the example program under FreeBSD looks like this: 

$ make fork 
cc -c -Wall fork.c 
cc -o fork fork.o 
$ ./fork 
PID 1294: Started child PID 1295. 
PID 1295: Child started, parent is 1294. 
$ 

Based upon the output shown, it would seem that the parent process returned from fork(2) 

first. While the parent process was in the sleep(3) call, the child process executed and then 

reported the message PID 1295: Child started, parent is 1294. 

Waiting for Process Completion 
The example program of Listing 19.1 simply called upon sleep (3) to pause its execution until 

the other process had time to execute. A better method would be to have the parent process 

wait until the child process completes. 

Other parent programs may continue to execute after starting several different child processes 

over time. Consequently, these processes need to be able to inquire about the child process’s 

termination at some point. 

The UNIX kernel provides the wait (2) family of system calls to allow a process to wait for the 

completion of a child process. Furthermore, these wait (2) system calls permit the parent 

process to answer the following questions: 

• What was the process exit code? 

• Did the process exit normally? 

• Was the process killed (signaled)? 

• Did the process abort? 

• Was a core file written? 

The UNIX kernel also needs the parent process to inquire about its child processes. Until the 

parent process inquires about its child process’s termination status, it must keep the status in 

the process table. Once the parent process obtains this information, the kernel can free the 

process table entry. 

Zombie Processes 
Parent processes are responsible for their children. When a child process terminates for any 

reason, the parent process is expected to inquire about its termination status using one of the 
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wait (2) system calls. If this fails to happen, the child process continues to show in the process 

table as a zombie process. 

The UNIX kernel releases memory and closes all files of a terminated process. The one 

resource that remains is the process table entry for the terminated child process. This table 

entry is identified by process ID and keeps the termination status until the parent process 

fetches it. Once the parent process has obtained this status, the UNIX kernel can make both 

the process ID and the process table entry available for a new process. 

The program in Listing 19.2 shows a parent process that creates a zombie process and reports 

it to standard output with the help of the ps (1) command and the function system(3). 

LISTING 19.2 zombie. c—A Program That Creates a Zombie 

1: /* zombie.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <stdlib.h> 
6: #include <string.h> 
7: #include <errno.h> 
8: #include <sys/types.h> 
9: 
10: int 
11: main(int argc.char **argv) { 
12: pid_t pid; /* Process ID of the child process */ 
13: 
14: pid = fork(); /* Create a new child process */ 
15: 
16: if ( pid == (pid_t)(-1) ) { 
17: fprintf(stderr,"%s: Failed to fork()\n",strerror(errno)); 
18: exit(13); 
19: 

20: } else if ( pid == 0 ) { 
21: printf("PID %ld: Child 
22: (long)getpid(), 
23: (long)getppid(j); 
24: return 0; 
25: 
26: } 
27: 
28: /* 
29: * Parent process : 
30: */ 
31: printf("PID %ld: Started child PID %ld.\n", 
32: (long)getpid(), /* Current parent PID */ 
33: (long)pid); /* Child's PID */ 
34: sleep(l); /* Wait one second */ 
35: 
36: /* 

started, parent is %ld.\n", 
/* Current child PID */ 
/* Parent PID */ 
/* Child process just exits */ 
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37: * By this time, our child process should have terminated 
38: */ 
39: system("ps -1"); /* List the zombie */ 
40: 
41: return 0; 
42: } 

The program in Listing 19.2 differs slightly from the former listing in that the child process 

exits immediately with the return statement in line 24. Only the parent process executes lines 
28-42. 

The parent process waits for one second in line 34 by calling sleep(3). This gives ample time 

for the child process to start and terminate. Because the parent process never calls on wait (2), 

the call to system(3) in line 39 causes the ps (1) command to list the zombie process. 

The following shows a compile and run session under FreeBSD: 

$ make zombie 
cc -c -D_-Wall zombie.c 
cc -o zombie zombie.o 
$ ./zombie 
PID 1367: Started child PID 1368. 
PID 1368: Child started, | oarent is 1367. 

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND 
1001 1231 1 0 10 0 596 344 wait Is p0 0:00.07 -sh (sh) 
1001 1234 1233 0 10 0 596 344 wait Ss Pi 0:00.17 -sh (sh) 
1001 1367 1234 0 10 0 824 404 wait S+ Pi 0:00.01 ./zombie 
1001 1368 1367 1 28 0 0 0 - Z+ Pi 0:00.00 (zombie) 
1001 1369 1367 1 10 0 496 332 wait s+ Pi 0:00.00 sh -c ps 
1001 1370 1369 1 28 0 380 244 - R+ pi 0:00.00 ps -1 

$ 

The output shows the program . / zombie as process ID 1367. The process 1368 is the child 

process that was created from the call to fork(2) in line 14. The output provided by the 

ps(1) command (processes 1369 and 1370) shows that the child process 1368 is a zombie 

(note the “(zombie)” shown at the right). 

The wait (2) Function 
The wait (2) function suspends the calling process until a child process has terminated or a 

signal has been received. The function synopsis is as follows: 

#include <sys/types.h> 
//include <sys/wait.h> 

pid_t wait(int ‘status); 

The argument status must be a pointer to an int status variable, which will receive the child 

termination status. The return value from wait (2) is the process ID that matches the returned 

termination status. Otherwise, the value (pid_t) (-1) is returned and the error is posted to 

the variable errno. Errors include the error code EINTR when a signal has been received. 
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The program in Listing 19.3 shows a modified version of the previous example. In this exam¬ 

ple, the sleep(3) call is replaced by the wait (2) system call. 

LISTING 19.3 wait. c—Example Program Calling wait (2) Without Zombie Processes 

1: /* wait.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <stdlib.h> 
6: #include <string,h> 
7: #include <errno.h> 
8: #include <sys/types.h> 
9: #include <sys/wait.h> 
10: 
11: int 
12: main(int argc,char **argv) 
13: pid_t pid; 
14: pid_t wpid; 
15: int status; 
16: 
17: pid = fork(); /* Create a new child process *7 
18: 
19: if ( pid == (pid_t)(-1) ) { 
20: fprintf(stderr,"%s: Failed to fork()\n",strerror(errno)); 
21: exit(13); 
22: 
23: } else if ( pid == 0 ) { 
24: printf("PID %ld: Child 
25: (long)getpid(), 
26: (long)getppid()); 
27: return 0; 
28: 
29: } 
30: 
31: /* 
32: * Parent process : 
33: */ 
34: printf("PID %ld: Started child PID %ld.\n", 
35: (long)getpid(), /* Current parent PID */ 
36: (long)pid); /* Child's PID */ 
37: 
38: /* 
39: * Wait for the child process to exit, and obtain 
40: * its termination status : 
41: */ 
42: wpid = wait(&status); /* Wait for child process to exit */ 
43: if ( wpid == (pid_t)(-1) ) 

started, parent is %ld.\n", 
/* Current child PID */ 
/* Parent PID */ 
/* Child process just exits */ 

{ 
/* Process ID of the child process */ 
/* Process ID from wait(2) */ 
/* Status code from-wait(2) */ 
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44: perror(“wait(2)"); /* Report wait(2) error */ 
45: 
46: /* 
47: * There should be no trace of the child process in 
48: * this particular display ! 
49: */ 
50: system("ps -1"); /* List the processes */ 
51 : 
52: return 0; 
53: } 

The variables wpid and status are declared in lines 14 and 15. These are used in the call to 

wait (2) in lines 42-44. The wait (2) call causes the parent process to suspend its execution 

until the child process terminates. By the time that the ps (1) command is executed in line 50, 

there should be no trace of the terminated child process. 

The compile and run session under FreeBSD provides the following results: 

$ make wait 
cc -c -Wall wait.c 
cc -o wait wait.o 
$ ./wait 
PID 1463: Started child PID 1464. 
PID 1464: Child started, parent is 1463. 

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND 
1001 1231 1 0 10 0 596 344 wait Is p0 0:00.07 -sh (sh) 
1001 1234 1233 3 10 0 600 348 wait Ss Pi 0:00.24 -sh (sh) 
1001 1463 1234 8 10 0 824 404 wait S+ Pi 0:00.01 ./wait 
1001 1465 1463 8 10 0 496 332 wait s+ Pi 0:00.00 sh -c ps -1 
1001 1466 1465 9 29 0 376 244 - R+ Pi 0:00.00 ps -1 

$ 

In this session, notice that the child process is reported to be 1464 by the parent process 

(l 463). However, looking at the ps (1) output, you will not see any child process 1464 listed. 

This happens because the parent process has received the termination status of its child 

process by calling wait (2). The system call wait (2) causes the process table entry to be freed 

by the UNIX kernel, and so no zombie process remains. 

Interpreting the Exit Status 
The status returned by wait (2) has more in it than a program exit code. It records whether 

the program exited normally, was aborted, was killed (signaled), or stopped. The programmer 

is expected to use macros to test for these differences in status, since this is the only portable 

way to write code using this status information. Table 19.1 identifies macros that can be used 

by the programmer. 
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TABLE 19.1 Table of Status Test Macros 

Macro Description 

WIFEXITED(status) This macro returns true if the status indicates that the process exited nor¬ 

mally. An exit code for this process is available using macro 

WEXITSTATUS(status), which returns an 8-bit exit code. 

WIFSIGNALED(status) This macro returns true if the status indicates that the process received a 

signal that it did not catch, and caused its termination. The macro 

WTERMSIG(status) is available to extract the signal number from status 

that caused the termination. The macro WCOREDUMP(status) is available, 

which indicates true if a core file was created. 

WIFSTOPPED(status) This macro returns true if the status indicates that the process is currently 

stopped. The macro WST0PSIG(status) is available to extract the signal 

number of the signal that caused the child process to stop. 

The following example shows how to test for a normal program exit and display its exit code: 

int status; /* Status from wait(2) */ 

if ( WIFEXITED(status) ) { 
printf("Exited with return code %d;\n", 

(int)WEXITSTATUS(status)); 

} 

The example tests for a normal exit with the WIFEXITED() macro. When this returns true, the 

value returned by WEXITSTATUS() provides the exit code from that process. This is the exit 
code that the shell reports with its built-in variable $?. 

To test if the process aborted, or was signaled, you could use the following tests: 

int status; /* Status from wait(2) */ 

if ( WIFSIGNALED(status) ) { 
printf("Terminated with signal %d;\n", 

(int)WTERMSIG(status)); 
if ( WCOREDUMP(status) ) 

printf("A core file was written.\n“); 

} 

This example tests if the process was signaled with the macro WIFSIGNALED(). If this tests true, 

then the macros WTERMSIG() and WCOREDUMP() have meaning, and WTERMSIG () is used to 

extract the signal number. The WCOREDUMP() indicates that a core file was written when it tests 
true. 
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Other Wait System Calls 
Other members of the wait (2) family provide additional features. These additional members 
are shown in the following synopsis: 

#include <sys/types.h> 
#include <sys/wait.h> 

pid_t waitpid(pid_t wpid, int ‘status, int options); 

#include <sys/time.h> 
#include <sys/resource.h> 

pid_t wait3(int ‘status, int options, struct rusage ‘rusage); 

pid_t wait4(pid_t wpid, int ‘status, int options, struct rusage ‘rusage); 

The function waitpid (2) is the POSIX extension of wait (2) that has the capability to return 

with no data, if there is no data to report. Contrast this to the wait (2) system call that always 

blocks execution of the calling process until there is information to report. The waitpid (2) 

system call can also wait on a specific child process ID. This is sometimes useful when the par¬ 

ent process has more than one child process outstanding. 

Note 

The functions wait (2) and waitpid (2) are supported by all modern UNIX platforms. However, 

Solaris 8 does not support the BSD functions wait3(2) and wait4(2). 

The wait3(2) system call is supported by IBM AIX 4.3, SGI IRIX 6.5, HPUX 11, and UnixWare 7. 

Linux and BSD support the functions wait(2), waitpid(2), wait3(2), and wait4(2). 

The wait3(2) and wait4(2) system calls permit the resource utilization of the child process to 

be returned in addition to the status. The wait3(2) call permits options to be specified like 

the waitpid(2) call. The wait4(2) system call is the most flexible within the family, because it 

includes the ability to wait for a specific child process in addition to the features supported by 

the other calls. 

The options argument supports the following bitwise macros: 

WNOHANG Return immediately if nothing to report 

WUNTRACED Report child processes signaled with SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP 

The WNOHANG option is used with waitpid (2), wait3 (2), or wait4 (2) when execution must 

not be suspended. This permits the parent process to query the status of a child process with¬ 

out giving up control. The option WUNTRACED is used for shell job control, and is beyond the 

scope of this text. 
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The calls waitpid(2) and wait4(2) allow the caller to indicate a specific child process ID in 

the argument wpid. Specifying a value of -1 for wpid causes these system calls to wait for any 

child process, as the wait (2) and wait3(2) calls would have done. 

All system calls in the wait (2) family return the process ID of the return information when 

the call is successful. The value (pid_t) (-1) is returned when an error is reported, with the 

error code posted to errno. When the option argument includes the WNOHANG bit, a return 

value of (pid_t) (0) indicates that no information is available. 

An error return is possible with the error code ECHILD if a wait (2) family system call is made 

and there are no outstanding child processes to be reported upon. This happens, for example, 

if the current process has not started any child processes. This differs from the (pid_t) (0) 

return value (used with the WNOHANG option), which indicates at least one child process is exe¬ 

cuting. 

Hr Note 

ECHILD—No child processes This value is returned from wait(2), waitpid(2), wait3(2), or 
wait4(2) when there are no child processes running for the calling parent process. 

echild is also reported when the argument wpid does not represent a child process of the calling 

process. 

The resource utilization structure varies according to UNIX platform. FreeBSD defines it as 
illustrated in the following synopsis: 

struct rusage { /* FreeBSD 3.4 release */ 
struct timeval ru_utime; /* user time used */ 
struct timeval ru_stime; /* system time used */ 
long rujnaxrss; /* max resident set size */ 
long ru_ixrss; /* integral shared memory size */ 
long ru_idrss; /* integral unshared data " */ 
long ru_isrss; /* integral unshared stack " */ 
long rujninflt; /* page reclaims */ 
long rujnajflt; /* page faults */ 
long ru_nswap; /* swaps */ 
long ru_inblock; /* block input operations */ 
long ru_oublock; /* block output operations */ 
long rujnsgsnd; /* messages sent */ 
long rujnsgrcv; /* messages received */ 
long ru_nsignals; /* signals received */ 
long ru_nvcsw; /* voluntary context switches */ 
long ru_nivcsw; /* involuntary " */ 

}; 

The common resource values supported on UNIX platforms that support wait3(2) or 

wait4(2) are members ru_utime and ru_stime. These represent the user and system CPU 

time, respectively. Other members of this structure are likely to be platform specific. 
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Executing New Programs 
While the fork (2) system call starts a clone of the current process, the programmer is still left 

needing a way to start a new executable program. The exec (2) family of functions fills this 
need. 

When a new program is executed, the following general steps are performed: 

1. The kernel opens the new executable file for reading (and checks that the executable bit 

is set). An error is immediately returned to the caller if this fails. 

2. The same process ID and addressable memory is retained, while the current execution 

becomes suspended. 

3. The new program instructions are loaded from the executable file that has been opened 

by the kernel. 

4. Certain process flags and registers are reset (for example the stack pointer is reset). 

5. The execution of the new process begins. 

The overall effect of an exec (2) call is to replace the currently executing process with a new 

program, within the same process memory. When the exec (2) system call is successful, it 

never returns control to the calling process. 

There are a number of functions that provide the ability to start a new program within the 

exec (2) family, but the execve(2) function will be described first: 

#include <unistd.h> 

int execve(const char ‘pathname, char ‘const argv[], char ‘const envp[]); 

This function takes three arguments: 

• The pathname of the executable program or interpreter script. 

• The argv[ ] array to be passed to the main() program. 

• The envp[ ] array of environment variables to export. 

When the function execve(2) is successful, it does not return (your current program is 

replaced). If the call fails, the returned value is -1 and the value of errno will contain the error 

code. 

The pathname argument must represent an ordinary file that has execute permission bits for 

the current effective user or group. The pathname argument may be an executable file image or 

it may be a file that is read by an interpreter (that is, a script file). Interpreted files may start 

with the following initial content: 

#! interpreter [arg] 

The space between the ! character and the interpreter pathname is optional. The pathname 

interpreter, however, must be the pathname of an existing regular file that can be loaded as 

the interpreter for the script file. The script file must have read permissions for the current 

effective user or group ID. 
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The [arg] represents an optional argument. This argument becomes the command name 

(argv [ 0 ] value) of the interpreter when it runs. When this argument is absent, the argv [ 0 ] 

value is derived from the interpreter pathname instead. 

On some UNIX systems, this initial script line is limited in length. Under Linux, for example, 

the initial line is only inspected for a maximum of 32 characters. Anything beyond this limit is 

ignored. 

The arguments argv[ ] and envpf ] are arrays containing character string pointers. The end of 

each array is marked by an array element containing a null pointer. The argv[ ] array specifies 

the command name in argv[0] and any command-line arguments starting with argv[ 1 ]. Note 

that for scripts (for interpreted files), argv[0] will be ignored since this information comes 

from the initial text line of the executable file. 

The array envp[ ] lists all of the environment variables that you want to export to the new pro¬ 

gram. The strings must all be in the form 

VARIABLE=VALUE 

For example, you might use the following: 

PATH=/bin:/usr/bin 

Programmers often simply pass the current environment to the new process. This can easily be 
done by using the pointer environ: 

extern char **environ; 

When the external variable environ is declared as shown, you can simply pass environ in 
place of the envp[ ] array. 

To illustrate the use of the execve (2) call, Listing 19.4 shows a program that starts the ps (1) 

command without any assistance from the shell. In a limited sense, this program performs the 
same steps that a shell would use. 

LISTING 19.4 exec.c—Example Using exec(2) to Start the ps(1) Command 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11 : 
12: 
13: 
14: 
15: 

/* exec.c */ 

#include <stdio.h> 
#include <unistd.h> 
#include <string.h> 
#include <errno.h> 
//include <sys/types.h> 
#include <sys/wait.h> 

/* 

* If the ps(1) command is not located at /bin/ps on your system, 
* then change the pathname defined for PS_PATH below. 
*/ 

#define PS_PATH "/bin/ps" /* PS(1) */ 
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extern char **environ; /* Our environment */ 

/* 

* EXEC(2) the PS(1) Command : 
*/ 

static void 
exec_ps_cmd(void) { 

static char *argv[] = { "ps", "-1", NULL }; 

/* 

* Exec the ps command: ps f 
*/ 

execve(PS_PATH,argv,environ); 

/* 

* If control reaches here, then the execve(2) 
* call has failed! 

*/ 

fprintf(stderr,"%s: execve(2)\n",strerror(errno)); 

/* 

* Main program : 
*/ 

int 
main(int argc,char 

pid_t pid; 
pid_t wpid; 
int status; 

/* 

* First create a new child process : 
*/ 

pid = fork(); 

if ( pid == -1 ) { 
/* 

* Fork failed to create a process : 
*/ 

fprintf(stderr,"%s: Failed to fork()\n",strerror(errno)); 
exit(13); 

} else if ( pid == 0 ) { 
/* 

* This is the child process running : 
*/ 

exec_ps_cmd(); /* Start the ps command */ 

**argv) { 
/* Process ID of the child process */ 
I* Process ID from wait() */ 
/* Exit status from wait() */ 

/* 
* This is the parent process running : 
*/ 
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continued from previous page 

69: printf("PID %ld: Started child PID %ld.\n", 
70: (long)getpid(), /* Our PID */ 
71: (long)pid); /* Child's PID */ 

72: 
73: /* 
74: * Wait for the child process to terminate : 

75: */ 
76: wpid = wait(&status); /* Child's exit status */ 
77: if ( wpid == -1 ) { 
78: /* 
79: * The wait() call failed : 
80: */ 
81: fprintf(stderr,"%s: wait(2)\n",strerror(errno)); 

82: return 1; 
83: 
84: } else if ( wpid != pid ) { 
85: /* Should never happen in this program: */ 
86: abort(); 
87: } 
88: 
89: /* 
90: * The child process has terminated: 

91: */ 
92: if ( WIFEXITED(status) ) { 
93: /* 
94: * Normal exit -- print status 

95: */ 
96: printf("Exited: $? = %d\n",WEXITSTATUS(status)); 

97: 
98: } else if ( WIFSIGNALED(status) ) { 
99: /* 
100: * Process abort, kill or signal: 
101: */ 

102: printf("Signal: %d%s\n", 
103: WTERMSIG(Status), 
104: WCOREDUMP(status) ? " with core file." : ""); 

105: 
106: } else { 
107: /* 
108: * Stopped child process : 
109: */ 
110: puts("Stopped child process."); 
Ill: } 
112: 
113: return 0; 
114: } 

Listing 19.4 starts by calling upon fork (2) to create a child process. The parent process 

reports the process ID values in lines 69-71 and then calls wait (2) to suspend its execution 

until the child process terminates in line 76. 
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While the parent process is waiting for the child process to terminate, the child process exe¬ 

cutes line 62, which causes the function exec_ps_cmd () to be called. This is declared in lines 

21-35. The argv[ ] array is declared in line 23, where it supplies one command-line argu¬ 

ment, -1. This will cause the command ps -1 to be executed. The function execve(2) is 

called in line 28. If the function call is successful, line 34 is never executed. 

The following shows a compile and run session under FreeBSD for this program: 

$ make exec 
cc -c -Wall exec.c 
cc -o exec exec.o 
$ ./exec 
PID 1744: Started child PID 1745. 

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND 
1001 1231 1 0 10 0 596 344 wait Is p0 0:00.07 -sh (sh) 
1001 1234 1233 0 10 0 600 348 wait Ss Pi 0:00.43 -sh (sh) 
1001 1744 1234 1 10 0 824 396 wait S+ Pi 0:00.01 ./exec 
1001 

Exited 
1745 

: $? = 
1744 
0 

2 28 0 376 244 - R+ Pi 0:00.00 ps -1 

$ 

The parent process starts by reporting its process ID as 1744 and its child process as 1745. 

Then the remaining lines displayed are the result of the ps (1) command being executed suc¬ 

cessfully. This display shows the parent process as . / exec and the ps (1) command as ps -1. 

The last line reported shows that the ps (1) command exited normally with a return code of 0 

Other exec(2) Family Members 
There are a number of other exec (2) family member functions that act as front-end functions 

to the execve(2) function. Their synopsis follows: 

#include <unistd.h> 

int execl(const char *path, const char * arg, . 

int execlp(const char *file. , const char *arg, 

int execle(const char *path. , const char *arg, 

int exect(const char *path, char *const argv[] 

int execv(const char *path, char *const argv[] 

int execvp(const char *file: , char *const argv[ 

); 

• ); 

The functions that accept an argument named path indicate the specific regular file to be exe¬ 

cuted by this argument as a pathname. The functions that define an argument named file 

(execlp(3) and execvp(3)) will search the PATH variable for the file in the same way that the 

shell searches for a command. If there is no environment variable PATH defined, the value 

/bin: /usr/bin is used by default. 
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The functions execl(2), execlp(2), and execle(2) allow the programmer to specify argv[ ] 

values as individual arguments instead of using an array. The last argument in the argument 

list must be a null pointer, however. For example, Listing 19.4 could have used 

execlp("ps","ps"," -1",NULL); 

in place of calling execve(2). Note, however, the argv[0] is specified first, and in this exam¬ 

ple repeats the filename "ps". 

The execle (3) function needs special attention because it requires an array of environment 

variables as the last argument. The following is an example execle (3) function call: 

extern char **environ; 

execle("/bin/ps","ps","-1",NULL,environ); 

Notice that the array of environment variables follows the NULL argument, which marks the 

end of the command line. 

Note also that execle (3) requires an array of environment variables as the very last argument. 

if by',, , 

Warning 

Forgetting to specify the null pointer after the last command argument to execl(3), execlp(3), or 

execle(3) is a common cause of program aborts during program development. 

The exect (2) system call executes a program with program tracing facilities enabled. See 

ptrace(2) for more information about this facility. The functions execv(2) and execvp(2) 

use the current environment settings when starting the new program. 

Figure 19.2 provides a feature grid of the various function calls. 

FIGURE 19.2 
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Summary 
This chapter discussed how the fork (2) function is able to create new UNIX processes. The 

wait (2) family of functions permits you to find out how your child processes terminate. 

Finally, the exec (2) family of functions provides you with the ability to start a new executable 

program or interpreted script. 

In addition to starting new commands, a shell process must usually perform wildcard expan¬ 

sion for filenames on the command line. The next chapter will look at the pattern matching 

facilities that are used by the shell for this purpose. 





CHAPTER 20 

PATTERN MATCHING 

The UNIX shell must usually expand wildcard filenames for user or shell script com¬ 

mands. Under UNIX, this wildcard expansion is always performed before the com¬ 

mand is executed. This simplifies the command, because it sees only the finalized 

arguments. It also helps to make all commands work consistently, because wildcard expansion 
is performed in one place only—the shell process. 

However, the UNIX environment is a rich environment. If you don’t like one shell, you usually 

can choose from other shell programs. Going a step further, you might choose to write your 

own. To assist in making these different shell programs behave in the same way for wildcard 

filenames, two groups of function calls are provided: 

• Functions that match string patterns 

• Functions that search directories with pattern matching applied 

The function f nmatch (3) is provided under UNIX for matching strings in a shell-like manner. 

Shell Patterns 
While most users learn shell pattern matching behavior early in their exposure to UNIX, it is 

useful to review it here before introducing the functions that implement it. 

A shell pattern can consist of normal characters and meta-characters. Normal characters repre¬ 

sent themselves, and meta-characters have a special meaning for pattern matching. The set of 

meta-characters for shell patterns is relatively small. They are 

* Star (asterisk) 

? Question mark 

[ and ] Square brackets 

! Bang (in []) 

- Hypen (in []) 

\ Backslash 

Each meta-character is described in the subsections that follow. 
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The * Meta-Character 
The * character can match zero or more characters. The following shell experiment on a 

FreeBSD system illustrates this meta-character at work: 

$ cd /etc 
$ Is -1 hosts.* 
-rw-r- -r- - 1 root wheel 2278 Dec 20 1999 hosts.allow 

-rw-r- -r- - 1 root wheel 115 Dec 20 1999 hosts.equiv 
- rw - r - -r- - 1 root wheel 103 Dec 20 1999 hosts.lpd 

$ 

The shell matches all files that begin with hosts. and are followed by zero or more characters. 

Consequently, the filenames hosts. allow, hosts. equiv, and hosts. lpd match on this partic¬ 

ular system. The meta-character may be used in any position of the pattern, as the following 

example illustrates: 

$ cd /etc 
$ Is -1 *lpd 
-rw-r--r-- 1 root wheel 103 Dec 20 1999 hosts.lpd 

$ 

This example matches any filename that is prefixed by zero or more characters and ends in the 

string lpd. 

The ? Meta-Character 
Unlike the *, the ? meta-character matches only one character. If there is no character in that 

position, there is no match. The following example shows how the ? meta-character can be 

used multiple times to effect a particular pattern match: 

$ Is -1 /etc/hosts.????? 
-rw-r--r-- 1 root wheel 2278 Dec 20 1999 /etc/hosts.allow 
-rw-r--r-- 1 root wheel 115 Dec 20 1999 /etc/hosts.equiv 

$ 

In this example, only the filenames host.allow and hosts.equiv match. The filename 

hosts. lpd does not match because the last two ?? in the pattern did not have characters to 
match with. 

The [ and ] Meta-Characters 
The [ and ] meta-characters work together to specify a class of characters. The following 

example lists any file that has the letter x, y, or z within it: 

$ Is -d *[xyz]* 
exports newsyslog.conf skeykeys ttys 
gettytab security syslog.conf 

$ 

The * meta-characters to the left and right of [ xyz ] permit zero or more characters to exist to 

the left and right of the middle pattern. However, the middle pattern [xyz] insists that a letter 

x, y, or z exist. In this case, there weren’t any filenames with the letter z in them. 
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You can specify ranges of characters, as is shown in the following example: 

$ Is -d *[x-z]* 

exports newsyslog.conf skeykeys ttys 
gettytab security syslog.conf 
$ 

The pattern [ x - z ] is equivalent to specifying the letters individually as [ xyz ]. Multiple ranges 

can also be specified: [x-za-c] allows any of the characters a, b, c, x, y, and z. 

If you specify an unmatched pair of [ and ] characters, the character is taken literally, as the 

following example demonstrates: 

$ >']' 

$ Is -1 ] 
-rw-r. 1 ehg wheel 0 Jun 26 14:59 ] 
$ 

The first command creates a file named ] by using quotes. Then the file is listed using Is (1). 

This same behavior also exists for the closing square bracket: 

$ >' [' 

$ Is -1 [ 
-rw-r. 1 ehg wheel 0 Jun 26 14:59 [ 
$ 

The next example shows how [ and ] can be used in reverse order to cause them to be inter¬ 

preted as they appear. 

$ Is -1 ] [ 
-rw-r. 1 ehg wheel 0 Jun 26 14:59 [ 
-rw-r. 1 ehg wheel 0 Jun 26 14:59 ] 
$ 

The ! Meta-Character 
The ! meta-character has special meaning only within the [ and ] meta-character pair, and 

only if it occurs as the first character within a range. It is known as the “not” character in this 

context. For example, compare the difference between the first Is (1) command and the 

second: 

$ cd /tmp 
$ Is *[0-9] 
psql.edit.1001.13867 tmp-153052 
tmp-D52798 tmp-M53211 
tmp-G52945 tmp-d52925 
$ Is *[!0-9] 
c.t dummy.file 
$ 

The first Is (1) command lists only files and directories that end in a numeric digit (range 

[0-9]). The second Is(1) command, however, lists only those that do not end in a numeric 

digit (range [! 0 -9]). 

tmp-d53036 tmp-s52935 
tmp-f53114 win98 
tmp-053048 
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In any other position within the range or outside of it, the ! character represents itself and is 

not special. The following example confirms this: 

$ >'!' 

$ Is -1 ! 
-rw-r. 1 ehg wheel 0 Jun 26 15:10 ! 
$ 

Escaping Characters with \ 
There are times where meta-characters get in the way. To disable special treatment of meta¬ 

characters, you can escape them with the backslash character: 

$ >1“‘FILE***' 

$ Is 

***FILE*** tmp-D52798 
c.t tmp-G52945 
dummy.file tmp-153052 
psql.edit.1001.13867 tmp-M53211 
$ Is -1 \*\*\*FILE\*\*\* 
-rw-r. 1 ehg wheel 0 Jun 26 15:14 
$ 

tmp-d52925 
tmp-d53036 
tmp-f53114 
tmp-o53048 

***FILE*** 

tmp-s52935 
win98 

The above example shows how a file with the unusual name of ***file*** was created. Then 

the Is (1) command is invoked to confirm its existence. Then another Is (1) command shows 

how the backslashes can be used to remove the special meaning from the * meta-character. 

String Pattern Functions 
To simplify program development of shells and other related functions that require this pattern 

matching capability, the function fnmatch(3) was developed. The function synopsis for it is as 

follows: 

#include <fnmatch.h> 

int fnmatch(const char ‘pattern, const char ‘string, int flags); 

The argument pattern is the input pattern string, which is compared with the input argument 

string. The argument pattern contains the meta-characters, if any. The argument string is 

the string that you want to test for a match. The argument flags enables and disables certain 

features of the fnmatch(3) function. 

The return value from fnmatch(3) is zero if a match is made. Otherwise, the value 

FNM NOMATCH is returned instead. 

Note 

When the argument pattern is the C string "*11 and the argument string is the null string “11 
function fnmatch(3) considers this to be a match. 



Chapter 20 • PATTERN MATCHING 409 

The flags argument of the f nmatch (3) function accepts the following macros for various bit 

definitions, which may be ORed together: 

FNM_NOESCAPE Treat \ as a normal character (no quoting is performed). 

FNM_PATHNAME Slashes (/) in string must match slashes in pattern. 

FNM_PERIOD Leading periods (.) in string must only be matched by leading periods 

in pattern. This is affected by FNM_PATHNAME. 

FNM_LEADING_DIR Match the leading directory pattern, but ignore all text that follows the 

trailing slash (/) in pattern. 

FNM_CASEFOLD Ignore case distinctions in the pattern and string arguments. 

Each of these option flags will be discussed in detail in the sections that follow. To aid in dis¬ 

cussing and experimenting with these flags, the program in Listing 20.1 will be used. 

LISTING 20.1 fnmatch.c—A Program to Exercise the fnmatch(3) Function 

1: /* fnmatch.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <fnmatch.h> 
6: 
7: /* 
8: * Provide command usage instructions : 
9: */ 
10: static void 
11: usage(void) { 
12: 
13: puts("Usage: fnmatch [options] <pattern> <strings>..."); 
14: puts("\n0ptions:"); 
15: puts("\t-n\tShow non-matches"); 
16: puts("\t-e\tFNM_NOESCAPE"); 
17: puts("\t-p\t FNM_PATHNAME"); 
18: puts("\t-P\tFNM_PERIOD"); 
19: puts("\t-d\tFNM_LEADING_DIR"); 
20: puts("\t-c\tFNM_CASEFOLD"); 
21: } 
22: 
23: /* 
24: * Report the flag bits in use as confirmation : 
25: */ 
26: static void 
27: report_flags(int flags) { 
28: 
29: fputs("Flags:",stdout); 
30: if ( flags & FNMJJOESCAPE ) 
31: fputs(" FNM_NOESCAPE",stdout); 
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if ( flags & FNM_PATHNAME ) 
fputs(" FNM_PATHNAME",Stdout); 

if ( flags & FNM_PERIOD ) 
fputs(" FNM_PERIOD",Stdout); 

if ( flags & FNM_L EADING_DIR ) 
fputs(" FNM_LEADING_DIR",stdout); 

if ( flags & FNM_CASEFOLD ) 
fputs(" FNM_CASEFOLD11, stdout); 

if ( ! flags ) 
puts(" NONE"); 

else 
putchar('\n'); 

/* 

* Main program : 
*/ 

int 
main(int argc,char **argv) 

int x; 
int z; 
int flags = 0; 
int cmdopt_n = 0; 
char ‘pattern; 
const char cmdopts[] = 

{ 
/* Interator variable */ 
/* General status variable */ 
/* fnmatch(3) flags argument */ 
/* When true, report non-matches */ 
/* Pattern string for fnmatch(3) */ 

"epPdchn"; /* Supported command options */ 

/* 

* Process any command options : 
*/ 

while ( (z = getopt(argc,argv,cmdopts)) 
switch ( z ) { 
case 'e' : 

flags |= FNM_NOESCAPE; /* 
break; 

case 'p' : 
flags |= FNM_PATHNAME; /* 
break; 

case 1P1 : 
flags |= FNM_PERIOD; /* 
break; 

case 'd' : 
flags |= FNM_LEADING_DIR; /* 
break; 

case 'c' : 
flags |= FNM_CASEFOLD; /* 
break; 

case 'n' : 
cmdopt_n =1; /* 
break; 

case ‘h1 : 
default : 

usage(); 
return 1; 

-e */ 

-p */ 

-P */ 

-d */ 

-c */ 

-n ; Show non-matches */ 
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85: } 
86: 
87: /* 
88: * We must have a pattern and at least one trial string : 
89: */ 
90: if ( optind + 1 >= argc ) { 
91: usage(); 
92: return 1; 
93: } 
94: 
95: /* 
96: * Pick the pattern string and report the flags that 
97: * are in effect for this run : 
98: */ 
99: pattern = argv[optind++]; 
100: report_flags(flags); 
101: 
102: /* 

103: * Now try pattern against all remaining command 
104: * line arguments : 
105: */ 
106: for ( x=optind; x<argc; ++x ) { 
107: z = fnmatch(pattern,argv[x],flags); 
108: /* 
109: * Report matches, or report all, if -n 
110: * option was used : 
111: */ 

112: if ( !z || cmdopt_n ) 
113: printf("%s: fnmatch('%s','%s1,flags)\n", 
114: !z ? "Matched" : "No match", 
115: pattern, 
116: argv[x]); 
117: } 
118: 
119: return 0; 
120: } 

The first portion of the main program parses the command line for options (lines 58-93) and 

prepares for the test run (lines 99 and 100). The report_flags() function simply reports the 

flag option bits in effect as a confirmation. 

The interesting code is in lines 106-117 where the function fnmatch(3) is called to test each 

command-line argument. By default, only the matches are reported unless the -n option has 

been supplied. 

The following shows how to compile the program and provoke a usage display with the -h 

option: 

$ make fnmatch 
cc -c -Wall fnmatch.c 
cc -o fnmatch fnmatch.o 
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$ ./fnmatch -h 
Usage: fnmatch [options] <pattern> <stnings>... 

Options: 
-n Show non-matches 
-e FNM_NOESCAPE 
-p FNM_PATHNAME 
-P FNM_PERIOD 
-d FNM_LEADING_DIR 
-C FNM CASEFOLD 

From the output you can see that all options except - n apply additional fnmatch (3) flag bits. 

Initially no flags are in effect. 

To make it simpler to perform some of the tests in this chapter, alter your PATH variable as fol¬ 

lows: 

$ PATH=$PWD:$PATH 

Repeating one of the earlier tests, we can use our fnmatch command in place of Is (1): 

$ cd /etc 
$ fnmatch '*[xyz]*' * 
Flags: NONE 
Matched: fnmatch('*[xyz]*' 
Matched: fnmatch(1*[xyz]*' 
Matched: fnmatch]'*[xyz]*' 
Matched: fnmatch]1*[xyz]*1 
Matched: fnmatch]'*[xyz]*' 
Matched: fnmatch]'*[xyz]*' 
Matched: fnmatch]'*[xyz]*' 

,'exports'.flags) 
,1gettytab'.flags) 
,'newsyslog.conf1.flags) 
,'security'.flags) 
,'skeykeys'.flags) 
,'syslog.conf'.flags) 
,'ttys'.flags) 

$ 

Please notice two important things here: 

• The pattern is in single quotes. 

• The remaining arguments are expanded by the shell before our fnmatch command is 

executed. 

If you add the option - n to the command line, you will list all of the entries that did not match 

the output. Only the command is shown here: 

$ fnmatch -n '*[xyz]*' * 

Any command-line options must appear before the pattern. After the options, the pattern must 

be the first command-line argument. All remaining arguments are tested against the pattern. 

The FNM_NOESCAPE Flag 
The FNM_NOESCAPE flag bit disables the fnmatch (3) capability to escape meta-characters. To 

test this, first change to the /tmp directory and create an empty test file named [f ile]: 

$ cd /tmp 
$ >'[file]1 
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Now test the f nmatch command using the escape characters: 

$ fnmatch '\[file\]' * 
Flags: NONE 
Matched: fnmatch('\[file\]','[file]',flags) 
$ 

From all of the files in the /tmp directory, it matched the pattern literally with filename 

[file]. The pattern \ [ file\ ] matches because the escape characters indicate that the follow¬ 

ing meta-characters should be treated as normal characters. Adding the flag FNM_NOESCAPE 

(option -e) changes things: 

$ fnmatch -e 1\[file\]1 * 
Flags: FNM_NOESCAPE 
$ 

In this case, no match is attained. This happens because the leading backslash must now 

match part of the string. The remainder of the pattern is now a range, since the backslashes are 

not acting as escape characters when FNM_NOESCAPE is used. 

The FNM_CASEFOLD Flag 

The FNM_CASEFOLD allows the programmer to specify that fnmatch (3) ignore the case of the 

letters when performing the pattern match. This is confirmed with the help of the test program 

(option -c used): 

$ cd /etc 
$ fnmatch -c 'HOSTS*' * 
Flags: FNM_CASEFOLD 
Matched: fnmatch]'HOSTS*','hosts',flags) 
Matched: fnmatch('HOSTS*','hosts.allow',flags) 
Matched: fnmatch]'HOSTS*','hosts.equiv',flags) 
Matched: fnmatch]'HOSTS*1,1 hosts.lpd',flags) 
$ 

In this example, the pattern HOSTS* matches the file hosts, although the case differs. 

The FNM_CASEFOLD flag appears to be a GNU C library feature and is not available on other UNIX 
platforms. This feature is supported by FreeBSD and Linux, however. 

The FNM_PATHNAME Flag 
The FNM_PATHNAME flag adds some pathname semantics to the fnmatch (3) function. This 

option requires that slashes (/) occurring in patterns must match slashes in the supplied input 

string. This makes it possible to perform directory and file pattern matches more intelligently. 

To perform this test, first create a temporary directory in / tmp as follows: 

$ make one 
mkdir /tmp/one 
mkdir /tmp/one/log 
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mkdir /tmp/one/two 
mkdir /tmp/one/two/log 
date >/tmp/one/log/date1.log 
date >/tmp/one/log/.date3 
date >/tmp/one/two/log/date2.log 
$ 

From this, you can see that a number of subdirectories are created, and two log files were cre¬ 

ated with the date (1) command. Now perform the following: 

$ fnmatch 1/tmp/*/log/*.log' 'find /tmp/one' 
Flags: NONE 
Matched: fnmatch(1/tmp/*/log/*.log1,1/tmp/one/log/datel.log1,flags) 
Matched: fnmatch(1/tmp/*/log/*.log1,1/tmp/one/two/log/date2.1og',flags) 
$ 

If you look at this output carefully, you will see that one match is not intended. The first match 

makes sense because the subdirectory one matches the first *, and the filename datel matches 

the second*. 

In the second case, however, the first * actually matches the string one /two, and the second * 

matches the date2 in date2. log. The spirit of this match suggests that there should have only 

been one directory level between /tmp/ and /log/*.log. 

To accomplish this, the FNM_PATHNAME flag (option -p) must be enabled: 

$ fnmatch -p '/tmp/*/log/*.log' 'find /tmp/one' 
Flags: FNM_PATHNAME 
Matched: fnmatch(’/tmp/*/log/*.log 1,'/tmp/one/log/datel.log',flags) 
$ 

The results now agree with what was expected. 

fnm_file_name is provided on some UNIX platforms as a synonym for fnm_pathname. 

The FNM_PERIOD Flag 
This flag causes strings that have leading periods to match only when the pattern has leading 

periods. Another way to say this is that * and ?, for example, will not match a leading period 

in the string with the flag FNM_PERIOD enabled. This also applies to ranges. 

Usually the FNM_PERIOD flag is used in combination with the FNM_PATHNAME flag. The 

FNM_PATHNAME flag causes a period to be considered a leading period, if it follows a slash (/) 

character. Assuming that you still have the directory /tmp/one from the last experiment, per¬ 

form the following pattern test using only the FNM_PATHNAME (- p) option: 

$ fnmatch -p '/tmp/*/log/*' 'find /tmp/one' 
Flags: FNM_PATHNAME 
Matched: fnmatch(7tmp/*/log/*1,’/tmp/one/log/datel.log'.flags) 



Chapter 20 • PATTERN MATCHING 415 

Matched: fnmatch('/tmp/*/log/* 1,'/tmp/one/log/.date31,flags) 
$ 

Notice that in this experiment the pattern specifies * for the last filename component. Using 

this pattern, two files matched: datel .log and .date3. Adding the FNM_PERIOD flag (option 

-P), causes the following results to be displayed instead: 

$ fnmatch -pP '/tmp/*/log/*' 'find /tmp/one' 
Flags: FNM_PATHNAME FNM_PERIOD 
Matched: fnmatch(1/tmp/*/log/* 1,1/tmp/one/log/datel.log 1,flags) 
$ 

In this output, fnmatch(3) does not permit the leading period in .date3 to match with the * 

pattern character. If your object was the files prefixed with periods, then you would alter the 

match string: 

$ fnmatch -pP 1/tmp/*/log/.*1 'find /tmp/one' 
Flags: FNM_PATHNAME FNM_PERIOD 
Matched: fnmatch(1/tmp/*/log/.* 1,1/tmp/one/log/.date31,flags) 
$ 

In this example, the period (.) was added to the pattern string in order to effect a match to 

. date3. 

The FNM_LEADING_DIR Flag 

This option causes the pattern match to occur on a directory component level. After the pat¬ 

tern match, anything that follows starting with a slash (/) is ignored for pattern matching pur¬ 

poses. 

$ cd /tmp 
$ fnmatch -d 'on*1 'find one' 
Flags: FNM_LEADING_DIR 
Matched: fnmatch('on*1,'one',flags) 
Matched: fnmatch(1 on*1,'one/log 1,flags) 
Matched: fnmatch('on*','one/log/datel.log 1,flags) 
Matched: fnmatch(1 on*','one/log/.date31,flags) 
Matched: fnmatch('on*','one/two'.flags) 
Matched: fnmatch('on*1,'one/two/log',flags) 
Matched: fnmatch(1 on*1,1one/two/log/date2.log 1.flags) 
$ 

The documentation does not suggest that FNM_PATHNAME is required. Experiments suggest that 

FNM_LEADING_DIR works with or without the FNM_PATHNAME flag. 

Warning 

The fnm_leading_dir flag appears to be a GNU C library feature and is not available on other UNIX 

platforms. This feature is supported by FreeBSD and Linux, however. 
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The glob(3) Function 
The glob (3) function represents another way that a process can gather a list of file and direc¬ 

tory name objects. Unlike the f nmatch (3) function, the glob (3) function actually performs 

directory searches. The function synopsis for glob(3) and globf ree(3) is as follows: 

#include <glob.h> 

int glob( 
const char ‘pattern, 
int flags, 
int (*errfunc)(const char *, int), 
glob_t *pglob); 

void globfree(glob_t *pglob); 

typedef struct { 
int gl_pathc; /* 
int gljnatchc; /* 
int gl_offs; /* 
int gljflags; /* 
char **gl_pathv; /* 

} glob_t; 

count of total paths so far */ 
count of paths matching pattern */ 
reserved at beginning of gl_pathv */ 
returned flags */ 
list of paths matching pattern */ 

The first argument pattern for glob(3) is a shell pattern, like the patterns used by 

f nmatch (3). However, the argument flags uses a different set of flags that will be described 

shortly. Argument errf unc is an optional function pointer and must be a null pointer when it 

is not used. The final argument pglob is a pointer to a glob_t structure. 

The function globf ree(3) should be called after a successful call to glob(3) has been made, 

and the information contained in the structure glob_t is no longer required. This function 

releases memory occupied by the array member gl_pathv and perhaps other implementation- 

defined storage. 

The glob_t structure member gl_pathv is a returned array of matching filenames. The mem¬ 

ber gl_pathc is a count of how many string pointers are contained in gl_pathv. When 

gl_pathc is zero, there is no gl_pathv array allocated, and it should not be referenced. When 

the gl_pathv array is allocated, the last member of the array is followed by a null pointer. 

The member gl_flags is used by glob (3) to return flag bits. Flag bit GLOB_MAGCHAR is one 

flag that may be returned in this member to indicate that the pattern argument contained at 

least one meta-character. 

The member gljnatchc contains the current number of matched pathnames for the current 

glob(3) call. Since glob(3) can be called to append to the gl_pathv array, gljnatchc is use¬ 

ful for determining how many paths were appending with the current function call. 

The member gl_offs must be initialized prior to the first call to glob(3) for the given glob_t 

structure used, when the flag GL0B_D00FFS is set. This member indicates how many initial 

gl_pathv array entries to reserve as null pointers. If you do not need to reserve any array 

entries, then initialize this value to zero (not using flag GL0B_D00FFS also will work). 
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The flag GLOBJERR causes glob (3) to stop the directory scan at the first sign of trouble. By 

default, glob(3) ignores directory scan errors and attempts to match as much as possible. 

Using flag GL0B_ERR changes this behavior so that glob (3) will exit with the first error 

encountered. 

Multiple calls to glob(3) are permitted, to gather additional member entries. The GL0B_ERR 

flag applied in an earlier call will influence later calls when the same pglob argument is used. 

This is the result of the GL0B_ERR flag being saved in the gl_f lags member of the glob_t 

structure. 

Return Values for glob(3) 
When glob(3) returns normally, the value zero is returned. However, when an error occurs, 

the value GL0B_N0SPACE or GL0B_ABEND is returned instead. 

When GL0B_N0SPACE is returned, this indicates that glob(3) was unable to allocate or reallo¬ 

cate memory. This might be a sign that you are failing to call globfree(3). 

The return value GL0B_ABEND indicates that the directory scan was stopped. An error may have 

occurred while scanning the directory and flag bit GL0B_ERR was set. Alternatively, the 

errf unc function may have returned non-zero to cause the scan to be stopped. 

Before the individual glob(3) flags are discussed, an example program is presented in Listing 

20.2. This program will permit you to experiment with the various glob(3) flags and patterns. 

LISTING 20.2 glob.c—Exerciser for the glob(3) and globfree(3) Functions 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

/* glob.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <glob.h> 

/* 

* Provide command usage instructions : 
*/ 

static void 
usage(void) { 

puts("Usage: glob [options] pattern..."); 
puts(''0ptions:"); 
puts("\t-a\tGL0B_APPEND"); 
puts("\t-c\tGL0B_N0CHECK"); 
puts("\t-o n\tGL0B_D00FFS"); 
puts("\t-e\tGL0B_ERR"); 
puts("\t-m\tGL0B_MARK"); 
puts("\t-n\tGL0B_N0S0RT"); 
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continued from previous page 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

puts("\t-B\tGLOB_BRACE"); 
p u t s("\t-N\tGL0B_N0MAGIC"); 
puts("\t-Q\tGL0B_QU0TE"); 
puts("\t-T\tGLOB_TILDE"); 

} 

/* 

* Report the flag bits in use as confirmation 
*/ 

static void 
report_flags(int flags) { 

fputs("Flags:",stdout); 
if ( flags & GLOB_APPEND ) 

fputs(" GLOB_APPEND",stdout); 
if ( flags & GL0B_D00FFS ) 

fputs(" GL0B_D00FFS",stdout); 
if ( flags & GL0B_ERR ) 

fputs(" GL0B_ERR",stdout); 
if ( flags & GLOBJVIARK ) 

fputs(" GL0B_MARK11,stdout); 
if ( flags & GL0B_N0S0RT ) 

fputs(" GLOBJJOSORT".stdout); 
if ( flags & GL0B_N0CHECK ) 

fputs(" GL0B_N0CHECK“.stdout); 
if ( flags & GLOB_BRACE ) 

fputs(" GLOB_BRACE".Stdout); 
if ( flags & GLOB_MAGCHAR ) 

fputs(11 GLOB_MAGCHAR11 .stdout); 
if ( flags & GLOBJJOMAGIC ) 

fputs(" GLOB_NOMAGIC".stdout); 
if ( flags & GL0B_QU0TE ) 

fputs(" GL0B_QU0TE",stdout); 
if ( flags & GLOB_TILDE ) 

fputs(" GLOB_TILDE".stdout); 
if ( Iflags ) 

puts (11 NONE'1); 
else 

putchar('\n'); 

/* 

* Error callback function : 
*/ 

static int 
errfunc(const char *path,int e) { 

printf("%s: %s\n".strerror(e).path); 
return 0; 

/* 

* Report the glob_t results : 
*/ 



77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
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static void 
report_glob(glob_t *gp) { 

int x; 
int g_offs = 0; /* glob offset */ 

if ( gp->gl_pathc < 1 ) { 
puts("There are no glob results."); 
return; 

} 
printf("There were %d matches returned:\n",gp->gl_pathc); 

if ( gp->gl_flags & glob_dooffs ) 
g_offs = gp->gl_offs; /* Allow for offset */ 

for ( x=0; x < gp->gl_pathc + g_offs; ++x ) 
printf("%3d: %s\n", 

x, 
gp->gl_pathv[x] ? gp->gl_pathv[x] : "<NULL>"); 

report_flags(gp->gl_flags); 
putchar('\n'); 

/* 

* Main program : 
*/ 

int 
main(int argc,char **argv) 

int z; 
glob_t g; 
int flags = 0; 
int a = 0; 
int offs = 0; 
const char cmdopts[] = 

/* 

* Process any command options : 
*/ 

while ( (z = getopt(argc,argv,cmdopts)) != -1 ) 
switch ( z ) { 
case 'a' : 

a = GLOB_APPEND; 
break; 

case 'o' : 
flags |= GL0B_D00FFS; 
offs = atoi(optarg); 
break; 

case 'e' : 
flags |= GL0B_ERR; 
break; 

case 'm' : 
flags |= GLOBJilARK; 
break; 

/* General status */ 
/* The glob area */ 
/* All other flags */ 
/* GLOB_APPEND flag */ 
/* Offset */ 

aco:emnBNQTh"; 
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130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 

case 'n' : 
flags |= GL0B_N0S0RT; 
break; 

case 'c' : 
flags |= GLOBJJOCHECK; 
break; 

case 1B' : 
flags |= GLOB_BRACE; 
break; 

case 1N1 : 
flags |= GLOBNOMAGIC; 
break; 

case 'Q' : 
flags |= GLOB_QUOTE; 
break; 

case 'T1 : 
flags |= GLOB_TILDE; 
break; 

case 1 h' : 
default : 

usage(); 
return 1; 

* We must have at least one pattern : 
*/ 

if ( optind >= argc ) { 
usage(); 
return 1; 

/* 

* Pick the pattern string and report the flags that 
* are in effect for this run : 
*/ 

report_flags(flags|a); 

/* 

* Now try pattern against all remaining command 
* line arguments : 
*/ 

for ( ; optind < argc; ++optind, flags |= a ) { 
/* 

* Invoke glob(3) to scan directories : 
*/ 

g.gl_offs = offs; /* Offset, if any */ 
z = glob(argv[optind],flags,errfunc,&g); 
if ( z ) { 

if ( z == GLOB_NOSPACE ) 
fputs("glob(3) ran out of memory\n",stderr); 

else if- ( z == GLOB_ABEND ) 
fputs("glob(3): GLOB_ERR/errfunc\n",stderr); 
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183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 

return 1; 
} 

/* 

* Report glob(3) findings, unless GLOB_APPEND : 
*/ 

if ( !a ) { /* If not GLOB_APPEND */ 
report_glob(&g); /* Report matches */ 
globfree(&g); /* Free gl_pathv[] etc. */ 

} else { 
/* 

* GLOB_APPEND requested. Just accumulate 
* glob(3) results, but here we report the 
* number of matches made with each pattern: 
*/ 

printf("Pattern 1%s' got %d matches\n", 
argv[optind], 
g.gl_matchc); 

} 
} 

/* 

* If GLOB_APPEND used, then report everything at 
* the end : 
*/ 

if ( a ) { /* If GLOB_APPEND */ 
report_glob(&g); /* Report appended matches */ 
globfree(&g); /* Free gl_pathv[] etc. */ 

return 0; 

The program in Listing 20.2 is similar in many respects to Listing 20.1. Lines 115-160 have to 

do with parsing the command-line options, which enable various glob(3) flags. Note that 

option -a causes flag bit GLOBAPPEND to be stored into variable a, which is initialized as zero 

in line 108. This flag is kept separate from the other flags, which are stored as variable flags 

because GL0B_APPEND cannot be used the first time that glob(3) is called (line 177). However, 

the for loop causes a to be ORed to flags at the end of each loop, ensuring that GL0B_APPEND 

is used in successive iterations. 

After all options are parsed from the command line, the flags in effect are reported in line 166 

(note the input argument is flags | a so that GL0B_APPEND is included. 

The int variable optind will point to the first non-option command-line argument after the 

getopt(3) loop has completed. These remaining command-line arguments are used as input 

patterns to glob(3) in the for loop of lines 172-202. 

If the offset option -o is used, the variable offs contains this offset. Line 176 assigns this offset 

value to g. gl_off s. This assignment is significant only if the GL0B_D00FFS flag is set in vari¬ 

able flags, when the -o option is processed from the command line. 
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The function glob(3) is called in line 177. The return value z is tested and reported in lines 

178-184. Line 189 tests to see if variable a is zero. When a is zero, this indicates that no 

GLOB_APPEND is being used, and the report of each glob (3) pattern is reported immediately 

after each call (lines 190 and 191). Otherwise, when GLOB_APPEND has been requested, only 

the number of matches made for the current glob (3) call are reported in lines 198-200. The 

GL0B_APPEND results are reported at the end of the for loop in lines 209 and 210 instead. 

Now examine the report_glob() function in lines 77-98. The if statement in line 82 is 

important, because if the glob_t member gl_pathc is zero, then gl_pathv is not allocated 

and should not be referenced. The program executes the return statement in line 84, when 

there are no results to report. 

Note also in line 88 that the if statement tests for flag GL0B_D00FFS. If it is present, you must 

allow for the offset when iterating through the gl_pathv array of pointers. Notice how the for 

loop allows for the offset g_of f s in its test. This allowance is necessary because the loop starts 
at x=0. 

To compile and provoke usage information from the program in Listing 20.2, perform the fol¬ 
lowing: 

$ make glob 
cc -c -Wall glob.c 
cc -o glob glob.o 
$ ./glob -h 
Usage: glob [options] pattern... 
Options: 

-a GL0B_APPEND 
-0 n GL0B_D00FFS 
-e GL0B_ERR 
-m GL0B_MARK 
-n GL0B_N0S0RT 
-B GL0B_BRACE 
-N GL0B_N0MAGIC 
-Q GL0B_QU0TE 
-T GL0BJTLDE 

$ 

Lowercase option letters represent standard flags that are available for glob(3). Uppercase 

options represent extension flags or non-universal ones. Option -o is the only option that 

takes an argument. It represents a numeric offset to be used with GL0B_D00FFS. The -e option 

adds the GL0B_ERR flag, but this is not explored in the examples that follow. It is there for your 
own experimentation. 

Flag GL0B_D00FFS 

This flag indicates that glob_t member gl_off s is being used to reserve a number of null 

pointers at the start of the gl_pathv array (allocated by glob (3)). When flag GL0B_D00FFS is 
used, you must initialize gl_offs prior to calling glob(3). 
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This sounds like a strange thing to do, but it makes a lot of sense when you are about to 

invoke execvp(2) to start a new command. The following prepares to execute the command 
cc -c -g *.c: 

glob_t g; 

g.gl_offs = 3; 
glob(“*.c",GL0B_D00FFS,NULL,&g); 

g.gl_pathv[0] = "cc"; 
g.gl_pathv[1] = "-c"; 
g.gl_pathv[2] = "-g"; 

execvp("cc",g.gl_pathv); 

The variable g is the glob_t structure being used. Three entries are reserved in the 

g. gl_pathv array by assigning the value 3 to g. gl_of f s (flag GL0B_D00FFS is present in the 

flags argument). The call to glob(3) searches the directory for the pattern *.c. 

The focus here is that g. gl_pathv[0] to g .gl_pathv[2] has been reserved for your own use. 

In this example, these reserved elements are used for the C compiler’s first three arguments. 

This makes the result convenient to use with the system call execvp (2). 

Try one experiment without using GL0B_D00FFS so that you can then compare results with the 

next experiment. Make sure to enclose your patterns in single quotes to keep the shell from 

expanding them: 

$ ./glob '*.c' 
Flags: NONE 
There were 2 matches returned: 

0: fnmatch.c 
1: glob.c 

Flags: GL0B_MAGCHAR 

$ 

This example uses no command-line options and provides one pattern 1 *. c'. In this result, 

you see two filenames were returned with the glob_t member gl_f lags containing the flag 

GLOBMAGCHAR. The GLOBJVIAGCHAR flag, when returned, indicates that at least one 

meta-character was found in the pattern. 

Now try the same experiment, but add an offset using the -o option. This experiment uses an 

offset of 3: 

$ ./glob -o3 1 *.c' 
Flags: GL0B_D00FFS 
There were 2 matches returned: 

0: <NULL> 
1: <NULL> 
2: <NULL> 
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3: fnmatch.c 
4: glob.c 

Flags: GL0B_D00FFS GLOB_MAGCHAR 

$ 

Notice how three null pointers were reserved at the start of the gl_pathv array for your own 

use. The gl_f lags member also reports the additional flag GL0B_D00FFS that was supplied as 

input to glob(3). 

The GLOB_APPEND Flag 

The flag GLOB_APPEND indicates that the glob_t structure is to have new matched pathnames 

appended to it instead of initializing it. The following example shows how this is done: 

globjt g; 

g.gl_offs = 3; 
glob("*.C",GL0B_D00FFS,NULL,&g); 
glob(11 * .C",GL0B_D00FFS jGLOB_APPEND, NULL, &g); 

The first call to glob(3) initializes the glob_t variable g and adds pathnames that match the 

pattern *.c. The second call with the flag GLOB_APPEND causes glob(3) to assume that g has 

already been initialized. Matches to * .C are then appended to the existing collection in 

g.gl_pathv. 

Now test this feature as follows: 

$ ./glob -a '*.c' '*.o' 
Flags: GLOB_APPEND 
Pattern 1 *. c' got 2 matches 
Pattern 1 *. o' got 1 matches 
There were 3 matches returned: 

0: fnmatch.c 
1: glob.c 
2: glob.o 

Flags: GLOB_APPEND GLOB_MAGCHAR 

$ 

The output shows how the first pattern 1 * . c' collected two matches, and the pattern ' * . o' 

appended one more match. The result of all matches is reported at the end, and you can see 
that three final pathnames are reported. 

The giob_mark Flag 

The GL0B_MARK flag marks directory entries by appending a slash (/) to them. Files are left as 

they are. The following example illustrates (note the -m option): 

$ ./glob -am '/b*‘ '/etc/hosts1 
Flags: GLOB_APPEND GL0B_MARK 
Pattern '/b*1 got 2 matches 
Pattern '/etc/hosts' got 1 matches 
There were 3 matches returned: 
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0: /bin/ 
1: /boot/ 
2: /etc/hosts 

Flags: GLOB_APPEND GL0B_MARK 

$ 

Directories /bin and /boot were marked with a trailing slash. The filename /etc/hosts was 

not. 

The glob_nosort Flag 
The GL0B_N0S0RT flag disables the sort feature of glob (3). The following example shows the 

default sorted result: 

$ ./glob '/etc/h*' 
Flags: NONE 
There were 5 matches returned: 

0: /etc/host.conf 
1: /etc/hosts 
2: /etc/hosts.allow 
3: /etc/hosts.equiv 
4: /etc/hosts.lpd 

Flags: GLOB_MAGCHAR 

$ 

Adding the GL0B_N0S0RT flag by using the -n option yields unsorted results: 

$ ./glob -n '/etc/h*' 
Flags: GL0B_N0S0RT 
There were 5 matches returned: 

0: /etc/hosts 
1: /etc/hosts.allow 
2: /etc/host.conf 
3: /etc/hosts.equiv 
4: /etc/hosts.lpd 

Flags: GL0B_N0S0RT GLOBJ/IAGCHAR 

$ 

However, note that sorting and not sorting affect only the current glob(3) call when 

GLOB_APPEND is used. Consequently, while the default is to sort, appended results are not 

sorted ahead of earlier results. You can test this for yourself: 

$ ./glob -a '/etc/h*' '/b*' 
Flags: GLOB_APPEND 
Pattern '/etc/h*' got 5 matches 
Pattern '/b*' got 2 matches 
There were 7 matches returned: 

0: /etc/host.conf 
1: /etc/hosts 
2: /etc/hosts.allow 
3: /etc/hosts.equiv 
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4: /etc/hosts.lpd 
5: /bin 
6: /boot 

Flags: GLOB_APPEND GLOB_MAGCHAR 

$ 

Although the default suggests that the gl_pathv array should be sorted, it is sorted only within 

pattern groups. The first pattern matches for ' /etc/h* ' are sorted, but the later matches for 

pattern ' / b* ' are not sorted ahead of the earlier match set. 

The GL0B_QU0TE Flag 

By default, there is no quoting capability in glob(3). Applying the flag GL0B_QU0TE allows 

glob to interpret a backslash (\) as a quote meta-character. The quote character causes the 

character following to be treated literally, even if it is a meta-character. The example illustrates 

this: 

$ date >'*.c' 
$ ./glob 1 *.c1 
Flags: NONE 
There were 3 matches returned: 

0: *.c 
1: fnmatch.c 
2: glob.c 

Flags: GLOBMAGCHAR 

$ 

The example has carefully created a file named *. c that contains the current date and time. 

Without any special options, the . / glob program picks up all files ending in the suffix . c. If 

you need quoting capability, to select only the file * . c you need GL0B_QU0TE (option -Q): 

$ ./glob -Q ' \*.c' 
Flags: GL0B_QU0TE 
There were 1 matches returned: 

0: *.c 
Flags: GL0B_QU0TE 

$ 

Here, glob(3) interprets the asterisk (*) literally, because it is preceded by the quote character 
backslash (\) while the option GL0B_QU0TE is active. 

The GL0B_N0CHECK Flag 

Normally, when a pattern does not match, no results are returned. If you want to have the pat¬ 

tern returned as a result when no matches are found, add the GL0B_N0CHECK flag (option -c 
below): 

$ ./glob '*.xyz' 
Flags: NONE 
There are no glob results. 
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$ ./glob -c '*.xyz' 
Flags: GL0B_N0CHECK 
There were 1 matches returned: 

0: *.xyz 
Flags: GL0B_N0CHECK GLOBMAGCHAR 

$ 

In the first example, notice how no matches were found. Adding option -c causes the pattern 

itself (*. xyz) to be returned instead of no results. 

The GLOB_ALTDIRFUNC Flag 

This flag is documented by FreeBSD as an extension to glob(3) to enable programs such as 

restore (8) to provide globbing from directories stored on other media. The following addi¬ 

tional glob_t members can be initialized with function pointers. When the flag 

GLOB_ALTDIRFUNC is used, these function pointers will be used in place of the glob (3) default 

functions for searching directories: 

void *(*gl_opendir)(const char * name); 
struct dirent *(*gl_readdir)(void *); 
void (*gl_closedir)(void *); 
int (*gl_lstat)(const char *name, struct stat *st); 
int (*gl_stat)(const char *name, struct stat *st); 

The program in Listing 20.2 does not support the GL0B_ALTDIRFUNC flag. 

The GL0B_BRACE Flag 

The GLOB_BRACE flag enables glob(3) to support csh(1) pattern groups that are specified 

between braces. The following example illustrates GL0B_BRACE (option -B): 

$ ./glob -B '{*.c,*.o}' 
Flags: GL0B_BRACE 
There were 4 matches returned: 

0: fnmatch.c 
1: glob.c 
2: fnmatch.o 
3: glob.o 

Flags: GL0B_BRACE GL0B_MAGCHAR 

$ 

By using the GLOB_BRACE flag and the pattern 1 {* . c, * . o} ', the glob (3) function was able to 

combine two patterns into one result. Notice that only the individual pattern results are 

sorted. 

The GLOB_MAGCHAR Flag 

The GL0B_MAGCHAR flag is never used as input to glob(3). However, it is returned in the 

glob_t member gl_f lags when at least one meta-character exists in the pattern. 
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The GLOB_NOMAGIC Flag 
The GLOB_NOMAGIC flag causes no results to be returned if the pattern did not make any 

matches and the pattern had meta-characters present. However, if no meta-characters exist in 

the pattern, then the pattern is returned in the same manner as GL0B_N0CHECK when no results 

are found. The following session shows the difference between GL0B_N0MAGIC (option -N) and 

GLOB_NOCHECK (option -c): 

$ ./glob -N 1 *.z' 
Flags: GL0B_N0MAGIC 
There are no glob results. 
$ ./glob -c '*.z' 
Flags: GL0B_N0CHECK 
There were 1 matches returned: 

0: *.z 
Flags: GL0B_N0CHECK GLOB_MAGCHAR 

$ 

The first command shows GL0B_N0MAGIC and a pattern with meta-characters present. The run 

with GLOB_NOMAGIC did not return any results, while the run with GL0B_N0CHECK returned the 
pattern * . z as a result. Now examine another experiment: 

$ ./glob -N 'z.z' 
Flags: GL0B_N0MAGIC 
There were 1 matches returned: 

0: z.z 
Flags: GLOBJJOMAGIC 

$ 

In this experiment, flag GL0B_N0MAGIC causes pattern z. z to be returned, although this was 

not a match. The flag GLOB_NOCHECK would return the same result in this case. 

The GLOB_TILDE Flag 
This flag is used to enable glob(3) to interpret the Korn shell tilde (~) feature. The following 
illustrates (using option -T): 

$ ./glob -T '-postgres/*‘ 
Flags: GLOBJTLDE 
There were 9 matches returned: 

0: /home/postgres/bin 
1: /home/postgres/data 
2: /home/postgres/errlog 
3: /home/postgres/include 
4: /home/postgres/lib 
5: /home/postgres/odbcinst.ini 
6: /home/postgres/pgsql-support.tar.gz 
7: /home/postgres/postgresql-7.0beta1.tar.gz 
8: /home/postgres/psqlodbc-025.tar.gz 

Flags: GLOB_MAGCHAR GLOB_TILDE 

$ 
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In this example, the glob(3) function looked up the home directory for the postgres account 

and searched that home directory /home/postgres. 

Summary 
The pattern matching functions that were covered in this chapter are shell pattern matching 

functions. They provide the capability to expand wildcard filenames and perform case state¬ 

ment selection. When these are combined with the fork (2) and exec (2) functions of the last 

chapter, you have a good foundation for building a new shell. 

The next chapter will delve into regular expressions. This is a more powerful pattern-matching 

tool that is well equipped to search for text within a file or a text editor’s buffer. 
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CHAPTER 21 

REGULAR EXPRESSIONS 

The patterns supported by the fnmatch(3) and glob(3) functions are useful for file¬ 

name matches because they are simple and easily understood. Text searches, how¬ 

ever, often require something more powerful. This chapter examines regular 

expressions and the support that exists for them. 

Understanding Regular Expressions 
While it is assumed that the reader is familiar with regular expressions, it is useful to review. 

This will ensure that the terminology is understood, and it may encourage you to use features 

that you’ve not been using. 

Like shell patterns, regular expressions match on a character-by-character basis unless a meta¬ 

character is encountered in the pattern. Regular expressions have more meta-characters than 

shell patterns, which makes them more powerful. It also makes them more difficult to master. 

Anchors 
When searching for text within a file, it is often necessary to use anchors. An anchor is a meta¬ 

character that can cause a pattern to be attached to another entity. Regular expressions define 

two anchors: 

The beginning A 

The end $ 

The anchors may be attached to the beginning and end of a line or to the beginning and end 

of a string. The context of the anchor depends on the application. 

The egrep (1) command uses regular expressions and can be used to illustrate. In the follow¬ 

ing example, only those lines that start with the letters ftp are displayed from the file 

/etc/services: 

$ egrep 'tp' /etc/services 
ftp-data 20/tCp #File Transfer [Default Data] 
ftp-data 20/udp #File Transfer [Default Data] 
ftp 21/tcp #File Transfer [Control] 
ftp 21/udp #File Transfer [Control] 
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ftp-agent 574/tcp #FTP Software Agent System 
ftp-agent 574/udp #FTP Software Agent System 
$ 

The egrep (1) pattern 1 Af tp' causes lines starting with ftp to be selected. The regular expres¬ 

sion used here is Aftp. The A anchor indicates that the pattern match can only succeed if ftp 

starts the text line. Without the anchor, other lines would have matched, including, for exam¬ 

ple, lines starting with tf tp. 

The next example matches lines ending with the text system: 

$ egrep 1system$‘ /etc/services 
# 24/tcp any private mail system 
# 24/udp any private mail system 
remotefs 556/tcp rfs rfs_server # Brunhoff remote filesystem 
remotefs 556/udp rfs rfs_server # Brunhoff remote filesystem 
mshnet 1989/tcp #MHSnet system 
mshnet 1989/udp #MHSnet system 
$ 

The $ anchor causes the pattern systems to succeed only when the pattern ends at the end of 

the line. The anchors can also be used together: 

$ egrep /etc/services 
# 

# 

# 

# 

$ 

In this example, the anchors in the pattern A#$ were used to select only those lines in which # 

is the only character on the line. The A and $ anchors lose their special meaning when used in 

places other than the beginning and end of a pattern. For example, the pattern $#A has no 

meta-characters in it. 

Sets 
A set is a collection of characters between the meta-characters [ and ]. Sets work the same as 

they do in shell patterns. The following egrep (1) command shows a set of two characters: 

$ egrep ,A™ftp' /etc/services 
tf tp 69/tcp #Trivial File Transfer 
tftp 69/udp #Trivial File Transfer 
mftp 349/tcp 
mf tp 349/udp 
$ 

The first character on the line matches a t or m from the specified set [tm] in the regular 

expression. 

When the character A occurs as the first character of the set, it becomes a meta-character. It 

reverses the sense of the set. For example the pattern [ Atm] matches any character except t or 

m. If the A character occurs in any other place within the set, it is not special. For example, the 

pattern [tnT] matches the characters t, m, or A. 
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To include the ] character within the set, make it the first character of the set (or immediately 

following the " character). The following example searches for a line that starts with <abc> or 
[abc]. 

$ egrep 'A[[<]abc[]>]' file 

Range 
A range is an extension of the set idea. A range is specified within the meta-characters [ and ] 

and has the hyphen character used between the extremes. For example, the range pattern 

[A-Z] specifies the set of all uppercase letters. 

Ranges can be grouped together. For example, the range [A-Za-z] allows you to select any let¬ 

ter, without regard to case. They may also be combined with sets. The range pattern [A-Z01 ] 

will match any uppercase character or the digits 0 or 1. 

Like sets, the " character reverses the sense of the set if it occurs as the first character. For 

example, the pattern [ "A-Z] matches any character except uppercase alphabetic characters. 

Character Classes 
Regular expressions also include character classes. These use the meta-character pair [: and 

: ]. An example of a character class is [: digit:], which represents any numeric digit. Valid 

class names are as follows and are listed in ctype (3): 

alnum digit punct 

alpha graph space 

blank lower upper 

cntrl print xdigit 

These class names correspond to the ctype (3) macros isalnum(3), isdigit (3), ispunct (3), 

and so on. 

The . Meta-Character 
The . meta-character matches any single character. The following example shows a pattern in 

which any first character is accepted as a match: 

$ egrep ,A.ftp' /etc/services 

tf tp 69/tcp #Trivial File Transfer 
tftp 69/udp #Trivial File Transfer 
sftp 115/tcp #Simple File Transfer Protocol 
sftp 115/udp #Simple File Transfer Protocol 
bftp 152/tcp #Background File Transfer Program 
bftp 152/udp #Background File Transfer Program 
mftp 349/tcp 
mftp 349/udp 
$ 
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Parenthesized Match Subexpression 
A regular expression can be included within the parenthesis characters ( and ), which perform 

a grouping function. The following egrep(1) command illustrates a simple example: 

$ egrep IA™(ftp)' /etc/services 
tftp 69/tcp #Trivial File Transfer 
tftp 69/udp #Trivial File Transfer 
mftp 349/tcp 
mftp 349/udp 
$ 

Parenthesized matches cause substrings to be extracted from a matching operation. This and 

other uses of the parenthesis will become clearer as the chapter progresses. 

Atoms 
An atom is a unit that participates in pattern matching. The following are atoms within regular 

expressions: 

• Any single non-meta-character 

• A single anchor (A or $) 

• A set (such as [ abc ]) 

• A range (such as [ A - Z ]) 

• A character class (such as [: digit: ]) 

• A parenthesized match (such as (abc [de])) 

Atoms are important to understanding how a piece works in regular expressions. 

Piece 
A piece is an atom followed by the meta-character *, +, or ?. These meta-characters influence 

the matching process in the following ways: 

* Matches zero or more atoms 

+ Matches one or more atoms 

? Matches zero or one atom 

The pattern A* will match any of the following: 

ii ii Null string 

A One A 

AA Two As 

AAA Three As 
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The pattern A+ insists that at least one A be matched. Alternatively, the pattern A? matches the 

null string or a single A character. 

The pattern (abc)+ shows a parenthesized expression. This pattern matches any of the 

following: 

abc The + matches one () expression. 

abcabc The + matches two () expressions. 

abcabcabc The + matches any number of () expressions. 

The possibilities are nearly endless when you include sets and ranges within the parentheses. 

Branch 
A branch of a regular expression is a pattern component that is separated by the pipe symbol 

It is used to specify alternative patterns to be matched. The following example shows two 

branches in the pattern: 

$ egrep 'Aftp|Atelnet' /etc/services 
ftp-data 20/tcp #File Transfer [Default Data] 
ftp-data 20/udp #File Transfer [Default Data] 
ftp 21/tcp #File Transfer [Control] 
ftp 21/udp #File Transfer [Control] 
telnet 23/tcp 
telnet 23/udp 
ftp-agent 574/tcp #FTP Software Agent System 
ftp-agent 574/udp #FTP Software Agent System 
telnets 992/tcp 
$ 

The example selects those lines that begin with the text ftp or telnet. Branches can be used 

within parenthesized subexpressions: 

$ egrep '*ftp(-agent)?1 /etc/services 
ftp-data 
ftp-data 
ftp 
ftp 
ftp-agent 
ftp-agent 
$ 

20/tCp 
20/udp 
21/tcp 
21/udp 

574/tcp 
574/udp 

#File Transfer 
#File Transfer 
#File Transfer 
#File Transfer 

[Default Data] 
[Default Data] 
[Control] 
[Control] 

#FTP Software Agent System 
#FTP Software Agent System 

In this example, the line must start with the letters ftp. The subexpression (- agent) indicates 

what the subexpression should match. This is modified, however, by the following ? operator, 

which says that zero or one of these subexpressions must match. Consequently, lines are 

selected that start with ftp, ftp-data, or ftp-agent. 
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Expression Bounds 
You have already seen how the *, +, and the ? meta-characters affect the preceding atom. It is 

also possible to specify a bound instead. A bound consists of an opening brace character ({), an 

unsigned integer, a comma (,), another unsigned integer, and a closing brace (}). The fully 

specified bound {2,5} indicates that at least 2 atoms must match but no more than 5. 

The second component of the bound is optional. For example, a bound of the form {3} indi¬ 

cates that exactly 3 matches must be made. 

A bound may also be specified with a missing second count. For example, the bound {2, } 

specifies that 2 or more matches can be made. 

The valid range for unsigned integers is between 0 and the value RE_DUP_MAX (which is 255 on 

most platforms). The following example demonstrates how to select those lines with a 6 

followed by at least three zeros (the egrep(1) option -E is required to enable the bounds 

feature): 

$ egrep -E 
netviewdml 
netviewdml 
netviewdm2 
netviewdm2 
netviewdm3 
netviewdm3 
#x 11 
#x 11 
$ 

160{3,}1 /etc/services 
729/tcp #IBM NetView 
729/udp 
730/tcp 
730/udp 
731/tcp 
731/udp 
6000-6063/tcp 
6000-6063/udp 

#IBM NetView 
#IBM NetView 
#IBM NetView 
#IBM NetView 
#IBM NetView 

X Window 
X Window 

DM/6000 
DM/6000 
DM/6000 
DM/6000 
DM/6000 
DM/6000 
System 
System 

Server/Client 
Server/Client 
send/tcp 
send/tcp 
receive/tcp 
receive/tcp 

Quoted Characters 
Given the number of meta-characters used in regular expressions, it is often necessary to quote 

meta-characters to remove their special meaning. The quote character used in regular expres¬ 

sions is the backslash (\) character. Any character that follows this backslash is interpreted lit¬ 
erally; it is not treated as a meta character. 

For example, if you want to match a pattern that includes parentheses, you need to quote the 
parenthesis characters. The expression \ (abc\) matches the string (abc). 

The Regular Expression Library 
From the preceding discussion, you can appreciate that implementing regular expression 

searches on your own is less than trivial. Flowever, regular expressions can be part of your pro¬ 
grams with the help of the C library. 
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Compiling Regular Expressions 
For efficiency, a regular expression is first compiled into an opaque data type regex_t. The 

function synopsis for compiling a regular expression is as follows: 

#include <sys/types.h> 
#include <regex.h> 

int regcomp(regex_t *preg, const char *pattern, int cflags); 

typedef struct { 
int rejnagic; 
size_t re_nsub; 
const char *re_endp; 
struct re_guts *re_g; 

} regex_t; 

/* number of parenthesized subexpressions */ 
/* end pointer for REG_PEND */ 
/* opaque */ 

pattern is the string representing the regular expression that is to be compiled. The argument 

preg points to a data type declared as regex_t. This is where the compiled result is placed by 

the call. The argument cflags may have one or more of the following bitmasks ORed 

together: 

REG_EXTENDED Compile an extended regular expression, rather than the obsolete reg¬ 

ular expression that is the default. 

REG_NOSPEC Disable all meta-characters. None of the pattern characters will be 

considered special when performing a match. 

REG_ICASE Ignore case when performing matching operations. 

REG_N0SUB Compile the pattern such that the matched expressions are not 

tracked. When matching is performed, only a success or failure will be 

reported. 

REG_NEWLINE Compile the pattern for newline sensitivity. Normally, when a newline 

appears in the string to be matched, it is not given special treatment. 

REG_PEND Compile the pattern such that the regular expression does not end 

with the first null byte encountered. The regular expression ends 

before the byte pointed to by preg->re_endp. This allows null bytes to 

be included in the regular expression. 

An additional macro is defined as REG_BASIC (FreeBSD), which is declared as the value zero. 

You can use this macro when you have no other flags to specify. 

Note 

FreeBSD 3.4 release and Linux support all of the flag options reg_extended, reg_nospec, 

REG_ICASE, REG_N0SUB, REG_NEWLINE, and REG_PEND. 

SGI IRIX 6.5, IBM AIX 4.3, UnixWare 7, and Solaris 8 do not support REG_NOSPEC and REG_PEND. 

HPUX-11 does not support reg_nospec, reg_nosub, and reg_pend. 
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When successful, the regcomp(3) function returns zero, after filling the preg argument with 

the compiled result. Other return values represent error codes. These can be passed to the 

function regerror(3) to produce an error message. 

When the flag bit REG_N0SUB is not used, you can query the re_nsub member of the regex_t argu¬ 

ment preg to find out how many subexpressions were present in the pattern argument. 

The following demonstrates how to compile a regular expression: 

int z; 
regex_t reg; 

z = regcomp(&reg,pattern,REG_EXTENDED); 
if ( z != 0 ) 

/* Report regcomp(3) error */ 

Once the regcomp(3) routine has returned successfully, the compiled expression in reg is 

ready for regexec(3) to use. 

Reporting Errors 
The function regcomp (3) and regexec(3) return different error codes from the rest of the 

UNIX library and system calls. FreeBSD documents these error codes, but you may find others 

on other UNIX platforms: 

REG_NOMATCH regexec(3) failed to match 

REG_BADPAT invalid regular expression 

REG_ECOLLATE invalid collating element 

REG_ECTYPE invalid character class 

REG_EESCAPE \ applied to unescapable character 

REG_ESUBREG invalid back-reference number 

REG_EBRACK brackets [ ] not balanced 

REG_EPAREN parentheses ( ) not balanced 

REG_EBRACE braces { } not balanced 

REG_BADBR invalid repetition count(s) in { } 

REG_ERANGE invalid character range in [ ] 

REG_ESPACE ran out of memory 

REG_BADRPT ?, *, or + operand invalid 
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REG_EMPTY empty (sub)expression 

REG_ASSERT you found a bug 

REG_INVARG invalid argument 

To turn these error codes into a meaningful error message, call on the regerror(3) function: 

#include <sys/types.h> 
#include <regex.h> 

size_t regerror( 
int errcode, 
const regex_t *preg, 
char *errbuf, 
size_t errbuf_size); 

The regerror(3) function accepts the error code from regcomp(3) or regexec(3) in the 

argument errcode. The message is created in buffer errbuf for a maximum length of 

errbuf_size bytes. The length of the formatted message in bytes is returned. The function 

regerror(3) will return zero if the function is not implemented on some platforms. 

The argument preg of type pointer to regex_t must be supplied. This will be the compiled 

result from a prior regcomp(3) call to provide the regerror (3) function with the necessary 

context it needs to format the message. 

The following example shows how a regcomp(3) error can be reported using regerror(3): 

int z; /* Error code */ 
regexjt reg; /* Compiled regexpr */ 
char ebuf[128]; /* Error message buffer */ 

z = regcomp(&reg,pattern,REG_NOSUB|REG_EXTENDED); 
if ( z != 0 ) { 

/* Report regcomp(3) error */ 
regerror(z,&reg,ebuf,sizeof ebuf); 
printf("%s: regcomp(3)\n",ebuf); 
exit(1); 

} 

Freeing Regular Expressions 
When you no longer require your compiled regular expression, you should use regf ree(3) to 

free the storage it uses. The following shows the synopsis for regf ree (3): 

#include <sys/types.h> 
#include <regex.h> 

void regfree(regex_t *preg); 
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regf ree (3) does not return a result. It accepts the argument preg, which must point to a 

compiled result in a data type regex_t. This will be a result previously established by 

regcomp(3). The last statement in the following example shows how regf ree (3) is invoked: 

int z; 
regex_t reg; 

z = regcomp(&reg,pattern,REG_EXTENDED); 
if ( z != 0 ) 

/* Report regcoinp(3) error */ 

/* do stuff with regexec(3) here... */ 
regfree(&reg); /* Free compiled regexpr */ 

Matching Regular Expressions 
Once you have successfully compiled your regular expression with the function regcomp(3), 

you are ready to perform some pattern matching with regexec (3): 

#include <sys/types.h> 
#include <regex.h> 

int regexec( 
const regex_t *preg, 
const char *string, 
size_t nmatch, 
regmatchjt pmatch[], 
int eflags); 

typedef struct { 
regoff_t rm_so; /* start of match offset */ 
regoffjt rm_eo; /* end of match offset */ 

} regmatch_t; 

The first argument preg is a pointer to the previously compiled regular expression, initialized 

by regcomp(3). The function returns 0 when successful, but it may return error codes such as 

REG_NOMATCH when unsuccessful. On platforms where regexec (3) is not implemented, the 

value REG_ENOSYS is returned (this macro is not always defined, however, for those systems 

that do support regexec(3)). 

The argument string is the string that you want to match. The arguments nmatch and pmatch 

are used to return matched patterns to your calling program. This will be expanded upon later. 

Finally, the eflags argument may contain zero or an ORed combination of the following 

option flags: 

REG_N0TB0L The first character in string is not to be considered the start of the line. 

This prevents the anchorA from matching before the first string charac¬ 

ter. (This does not affect flag REG_NEWLINE; see regcomp(3).) 

REG_N0TE0L The null character that terminates the argument string is not to be con¬ 

sidered the end of the line. This prevents anchor $ from matching at the 

end of string. (This does not affect flag REG_NEWLINE; see regcomp(3).) 
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REG_STARTEND Process the argument string starting at byte offset pmatch[0]. rm_so 

and consider the string ended before offset pmatch[0]. rm_eo. The value 

of argument nmatch is ignored. FreeBSD documents that "this is an 

extension, compatible with but not specified POSIX 1003.2, and should 

be used with caution in software intended to be portable to other 

systems." 

When the flag REG NOSUB is not used in the call to regcomp(3), the arguments nmatch and 

pmatch allow the caller to receive information about where the pattern matches occurred. 

There is a performance penalty associated with this, however and, if the pattern strings are not 

required, the REG_N0SUB flag is recommended for efficiency. 

The pmatch argument points to an array of type regmatch_t. This defines an array of starting 

and ending offsets into the original string argument for each matched pattern. The argument 

nmatch specifies to regexec(2) how many array elements to fill in array pmatch. 

Array element pmatch [0] identifies the starting and ending offsets of the pattern that was 

found in string. Offsets in pmatch [ 1 ] identify the starting and ending offsets for the first 

parenthesized subexpression found in the argument string. Element pmatch[2] contains the 

offsets for the second subexpression, and so on. 

The following example shows how to define nmatch and a pmatch array to hold a maximum of 

10 match strings. 

const size_t nmatch = 10; /* The size of array pm[] */ 
regmatch_t pm[10]; /* Pattern matches 0-9 */ 

Upon successful return from the regexec (3) function, the first character of the match is found 

at byte string+pmatch[0]. rm_so. The last character of the match is found before the byte 

string+pmatch[0]. rm_eo. The first byte of the first subexpression is found at 

string+pmatch[ 1 ]. rm_so and ends before the byte string+pmatch[ 1 ]. rm_eo. 

Applying Regular Expressions 
To give you some experience with the regular expression routines, the program in Listing 21.1 

is provided: 

LISTING 21.1 regexpr.c—A Progr 

1: /* regexpr.c */ 
2: 
3: #include <stdio.h> 
4: #include <stdlib.h> 
5: #include <unistd.h> 
6: #include <string.h> 
7: ^include <sys/types.h> 
8: #include <regex.h> 
9: 



442 ADVANCED UNIX PROGRAMMING 

continued from previous page 

10 /* 
11 ★ Provide usage instructions : 
12 */ 
13 static void 
14 usage(void) { 
15 
16 puts(“Usage:\tregexpr [options] pattern <file”); 
17 puts(“Options:"); 
18 puts("\t-e\tREG_EXTENDED"); 
19 puts("\t-b\tREG BASIC"); 
20 puts("\t-n\tREG NOSPEC"); 
21 puts(“\t-i\tREG_ICASE"); 
22 puts("\t-S\tREG_NOSUB“); 
23 } 
24 
25 /* 
26 ★ Perform a substring operation : 
27 */ 
28 static char * 
29 substr(const char *str,unsigned start,unsigned end) { 
30 unsigned n = end - start; 
31 static char stbuf[256]; /* Local static buffer */ 
32 
33 strncpy(stbuf,str+start,n); /* Copy substring */ 
34 stbuf[n] = 0; /* Null terminate */ 
35 return stbuf; /* Return static buffer */ 
36 } 
37 
38 /* 
39 ★ Main program : 
40 */ 
41 int 
42 main(int argc,char **argv) { 
43 int z; /* General status code */ 
44 int x; /* Loop iterator */ 
45 int lno = 0; /* Line number */ 
46 int cmdopt_h = 0; /* -h ; usage option */ 
47 int cflags = 0; /* Compile flags */ 
48 regex_t reg; /* Compiled regular expression 
49 char ‘pattern; /* Regular expression */ 
50 const size_t nmatch = 10; /* The size of array pm[] */ 
51 regmatch_t pm[10]; /* Pattern matches 0-9 */ 
52 char ebuf[128]; /* Error message buffer */ 
53 char lbuf[256]; /* Line buffer */ 
54 const char cmdopts[] = "hebnis . 

3 

55 
56 while ( (z = getopt(argc,argv,cmdopts)) != -1 ) 
57 switch ( z ) { 
58 case 'b1 : 
59 cflags |= REG_BASIC 
60 break; 
61 case 'e' : 
62 Cflags |= REG_EXTENDED 
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63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 

break; 
case 'n' : 

cflags 
break; 

case 1i' : 

|= REGJJOSPEC 

cflags 
break; 

case 's' : 

|= REG_ICASE; 

cflags 
break; 

case 'h' : 
default : 

|= REG_N0SUB; 

cmdopt_h = 1; 
} 

if ( optind + 1 != argc || cmdopt_h ) { 
usage() ; 
return 1; 

} 

/* 

* Compile the regular expression : 
*/ 

pattern = argv[optind]; 

z = regcomp(&reg,pattern,cflags); 

if ( z != 0 ) { 
regerror(z,&reg,ebuf,sizeof ebuf); 
fprintf(stderr,"%s: pattern '%s'\n",ebuf,pattern); 
return 1; 

} 

/* 
* Report the number of subexpressions : 
*/ 

if ( !(oflags & REGJJOSUB) ) 
printf("There were %d subexpressions.\n",reg.re_nsub); 

/* 
* Now process each line for matches : 
*/ 

while ( fgets(lbuf,sizeof lbuf,stdin) ) { 
++lno; /* Increment the line number */ 
if ( (z = strlen(lbuf)) > 0 && lbuf[z-1] == '\n' ) 

lbuf[z-1] = 0; /* Eliminate newline character */ 

/* 
* Now apply regular expression matching to this line : 
*/ 

z = regexec(&reg,lbuf,nmatch,pm,0); 

if ( z == REGJJOMATCH ) 
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continued from previous page 

116: continue; 
117: else if ( z != 0 ) { 
118: negerror(z,&reg,ebuf,sizeof ebuf); 
119: fprintf(stderr,"%s: regcomp('%s')\n",ebuf,lbuf); 
120: return 2; 
121: } 
122: 
123: for ( x=0; x<nmatch && pm[x].rm_so != -1; ++x ) { 
124: if ( !x ) /* Print the matching line number */ 
125: printf("%04d: %s\n",lno,lbuf); 
126: printf(" $%d='%s'\n\ 
127: x, /* Report substring $x */ 
128: substr(lbuf,pm[x].rm_so,pm[x].rm_eo)); 
129: } 
130: } 
131: 
132: regfree(&reg); /* Free compiled regexpr */ 
133: return 0; 
134: } 

This program is designed to accept command-line arguments to establish certain regcomp(3) 

option flags. After options, if any, the regular expression pattern string is taken from the com¬ 

mand line. The pattern is then applied to data that is supplied to the program on 

standard input. 

Compiling and invoking the usage information from the program are performed as follows: 

$ make 
cc -c -Wall regexpr.c 
cc -o regexpr regexpr.o 
$ ./regexpr -h 
Usage: regexpr [options] pattern <file 
Options: 

-e REG_EXTENDED 
-b REG_BASIC 
-n REGJJOSPEC 
-i REG_ICASE 
-S REGJJOSUB 

$ 

In lines 56-76 the program applies the various flags as the command-line options are parsed. 

The pattern string is established in line 86. 

The pattern is compiled in line 88. If an error occurs, it is reported in lines 90-94. If the flag 

REG_N0SUB was not used, the value of reg. re_nsub is reported in line 100. 

Standard input is read in the while loop at line 105. The newline character is removed in line 

108 for convenience. The recexec(3) function is called in line 113. If no match is reported, 

the continue statement skips the remaining processing of the loop (line 116). Errors are 
reported in lines 117-121. 
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The for loop in lines 123-129 reports the matches returned from regexec(3). Line 125 

reports the text line that brought about the match (when x=0 only). The match results are 

displayed as values $0 through $9 in lines 126-128. The $0 value is the match string, and $1 

to $9 represent matched subexpressions, if any. However, if the starting offset is the value -1, 

the for loop exits (see line 123). 

The following example uses the -e option for REG_EXTENDED and the -i option for REG_ICASE 

flags. Applying this to the source file regexpr.c, the following result was obtained: 

$ ./regexpr -ei '([a-z]+)( *)\I= *REG_([a-z]+);1 
There were 3 subexpressions. 
0059: 

$0= 

$1 = 

$2= 

$3= 
0062: 

$0= 

$1 = 

$2= 

$3= 
0065: 

$0= 

$1 = 

$2= 

$3= 
0068: 

$0= 

$1 = 

$2= 

$3= 
0071 : 

$0= 

$1 = 

$2= 

$3= 
$ 

cflags 1= REG_BASIC; 
cflags |= REG_BASIC;' 
cflags 1 

l 

BASIC' 
Cflags |= REG_EXTENDED; 

cflags |= REG_EXTENDED;1 
cflags1 

EXTENDED' 

cflags 
cflags' 

NOSPEC' 

cflags 
cflags1 

i 

ICASE' 

cflags 
cflags1 

i 

NOSUB' 

cflags |= REG_NOSPEC; 
REG_NOSPEC;' 

cflags |= REG_ICASE; 
REG ICASE:' 

cflags |= REGJJOSUB; 
REG_N0SUB;' 

<regexpr.c 

The subexpression was designed to capture the C variable and the flag name without the REG_ 

prefix, for the | = assignments. The $0 display for each line shows the extent of the entire 

match. The $1 match string shows the extracted C variable name cflags. The $2 subexpres¬ 

sion was thrown in for good measure, to demonstrate the space characters that were matched 

by the subexpression ( *). The $3 match string shows the extractions without the REG_ prefix. 

The next example shows how a bound expression extracted a string constant with two or more 

leading spaces in it: 

$ ./regexpr -e '" {2,}' cregexpr.c 
There were 0 subexpressions. 
0126: printf(" $%d='%s'\n", 

$0=1" ' 

$ 
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You are encouraged to apply other options and regular expressions to the ,/regexpr test pro¬ 

gram. Using this program as a testing tool, you can use regular expression routines in your 

application confidently. 

Summary 
This chapter has looked at regular expressions in depth. The regexp (3) set of routines truly 

enhances programs that need the flexible pattern matching that regular expressions provide. 

The next chapter introduces interprocess communications. This will lead you into the topics of 

message queues, semaphores, and shared memory. 



CHAPTER 22 

INTERPROCESS COMMUNICATIONS 

Large programming efforts often use separate processes to manage complexity and 

risks. Sometimes, separate processes provide enhanced performance on multiproces¬ 

sor systems. Client/server processes are separate by their very nature. However, once 

applications become separate processes, there exists a gulf between them when they need to 

share data. This chapter discusses interprocess communications (1PC) concepts as they exist 

on UNIX platforms. 

Types ofIPC 
You have already seen some forms of interprocess communication used in this book, including 

• Regular files with locking 

• FIFOs (named pipes) 

• Anonymous pipes 

• Sockets 

• Signals 

Regular files, when used with the appropriate lock techniques, can be used to communicate 

between processes. FIFOs and anonymous pipes can also be used to form pipelines between 

separate processes. Sockets allow communication with local or remote processes. Finally, 

processes can notify each other by using signals. 

This chapter discusses three other forms of IPC, which is expanded upon in the following 

three chapters. These additional forms are the following: 

• Message queues 

• Shared memory 

• Semaphores 

These forms of IPC establish a new group of facilities because you create and control them in a 

different manner than the preceding forms. Except for signals, all preceding forms used file 

descriptors to access and to control them. Message queues, shared memory, and semaphores 

use different handles. 
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The Message Queue 
The UNIX message queue implements a priority-based queue of messages. The message is sim¬ 

ply a short block of memory holding an application-defined message. When a message is 

queued, it is stored within kernel memory so that it can be later retrieved by another process. 

Figure 22.1 illustrates how messages are queued, stored, and retrieved. 

FIGURE 22.1 

The Message Queue Store 

within the kernel. 

Process Process Process Process 

1 ^ IMf 
k. 

Message Queue Store 

UNIX Kernel 

The figure shows three processes queuing messages and one process receiving messages. 

Message queues in general, however, can by queued by many processes and received by many 

processes. 

Every queued message has a message priority. UNIX documentation calls this a message type 

(see msgsnd(3)). This message type, however, determines the priority of the message when it 

is queued. Figure 22.2 shows a series of messages from A to J being queued. The number pre¬ 

ceding each message letter indicates the priority of the message. For example, 3C indicates 

message C was queued at priority 3. 

FIGURE 22.2 

Priority messages placed 

in a message queue. 
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0. 
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Messages 
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The UNIX kernel queues each message into a sub-queue that corresponds to the message pri¬ 

ority. If no process is removing messages from the queue, Figure 22.2 shows how the nine 

messages would be sorted according to their message priority. The lowest numbers indicate the 
highest priority in message queues. 

When the receiving process retrieves a message, it has several choices. These are 

• Receive a message of priority x, or receive no messages if no messages exist with 
priority x. 

• Receive the lowest numbered (highest priority) message that is less than or equal to 
priority x. 

• Receive the first message on the queue in a first-in, first-out manner, without regard to 

priority. 

While Figure 22.2 shows that all messages are queued by priority, the UNIX kernel also main¬ 

tains another linked list that allows it to fetch messages on a FIFO basis. In this manner, a 

process may choose to ignore the priority of messages and simply fetch the earliest message 

that was queued. 

Since messages can be retrieved for a specific message priority, it is possible to use the message 

priority (message type) to address a message to one of several receiving processes. The message 

priority is a 31-bit value (the sign-bit cannot be used). Consequently, some applications have 

used the message type for the process ID. Each receiving process simply fetches messages that 

correspond to its process ID. Figure 22.3 shows an illustration of this. 

FIGURE 22.3 

Processes reading mes¬ 

sages by process ID. 
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1J 7H 7G 3F 7E ID 3C IB 7 A 

Queue 

Process ID 1 <- 1 - IB ID 1J K 
Process ID 3 <- 3 - 3C 3F K 
Process ID 7 <- 7 — 7 A 7E 7G 7H 

Each process selects its own messages in Figure 22.3 by using its process ID as the message 

priority. Readers should be cautioned, however, that as UNIX moves toward 64-bit platforms, 

process ID values might expand in size. This will allow the kernel to accommodate higher 

numbers of processes. 
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Shared Memory 
When multiple processes cooperate, they often need to share tables of data. UNIX provides for 

this in the form of the shared memory facility. Figure 22.4 shows how one shared memory 

region can be shared by three processes. 

FIGURE 22.4 

A memory region shared 

with three processes. 

Although the concept of sharing memory is a simple one, a number of complications can 

occur. For example, in Figure 22.4, the shared region may be attached to each process’ mem¬ 

ory space at a different memory address. This means that if memory addresses are used within 

the shared table, they will not be usable in all processes. Memory offsets must be used instead. 

This is the reason that shared libraries must be compiled to use position-independent code. 

Another complication is the problem of synchronization between the three processes. If multi¬ 

ple processes are changing areas of the shared memory region, how can a given process know 

that a particular component of data is complete? Even the process of replacing an integer value 

is not atomic on many CPU platforms. 

Although message queues could be used for synchronization, most application designers turn 

to the semaphore for this purpose. 

Semaphores 
A UNIX semaphore keeps track of a count and notifies the interested processes when the 

count changes. The simplest semaphore is the binary semaphore, which can only hold the 

count of 0 or 1. A mutex is a simple form of a binary semaphore, which is used when pro¬ 
gramming with threads. 
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Other semaphores allow you to track n instances of a particular resource. For example, if you 

have three transaction servers available to serve client processes, you would initialize the sema¬ 

phore to the count of 3. As clients attach to and reserve a transaction server, you would decre¬ 

ment this count. When the count reaches zero, the semaphore indicates that no remaining 

resources exist at this time. Later, when a client finishes with a transaction server, it increments 

the semaphore count. When all clients complete, the count increments to the initial count of 

3. In this manner, the semaphore tracks the number of available resources. 

The act of decrementing a semaphore count is known as waiting on the semaphore. This makes 

sense when you consider that when the count reaches zero, the requestor must wait for the 

resource to become available. 

The act of incrementing a semaphore count is known as notifying the semaphore. The increment 

of the count causes processes that are waiting for a free resource to be notified that it is now 

available. 

Individual semaphores work well for controlling individual resources. However, obtaining sev¬ 

eral resources at once is often required. Imagine a small bowling alley that has 50 pairs of 

bowling shoes, 30 bowling balls, and 6 bowling alleys available. To bowl, a patron needs one 

pair of shoes, a bowling ball, and an alley. However, a patron cannot bowl if any of the 

resources—shoes, balls, or alley—are unavailable. A semaphore set permits the caller to 

request all of the resources at once. In this way, there is no potential for deadlocks, since the 

request either completely succeeds or it fails (waits). 

Figure 22.5 illustrates a semaphore set, which tracks 30 bowling balls, 50 pairs of bowling 

shoes, and 12 bowling alleys. 

FIGURE 22.5 

A semaphore set. 

Semaphore Count 

The figure illustrates one semaphore set. Within the set, semaphore 0 controls the resource 

“bowling balls,” semaphore 1 controls the resource “bowling shoes,” and semaphore 2 controls 

“bowling alleys.” It is not necessary to request all of the resources in a semaphore set. A patron 

may choose to bring his own shoes or bowling ball. A group of patrons usually shares a bowl¬ 

ing alley, and so the total number shoes, bowling balls, and one bowling alley would be 

requested. 
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The benefit of grouping these resources into one set is that the caller can obtain all resources 

needed in one system call, without worrying about deadlock situations. If any of 

the requested resources are not available, the caller simply waits until all resources become 

available. 

Referencing IPC Resources 
The UNIX kernel provides IPC ID values for processes to refer to specific instances of message 

queues, shared memory, and semaphore sets. The IPC ID is an integer value that is determined 

by the kernel, and is not known by the calling process until it has been returned in a create 

call. The IPC ID can be zero or positive, but it is never negative. The IPC ID is similar to a file 

descriptor for a specific IPC resource. 

Although the IPC ID value is a convenient handle for resources once they are created, they are 

not well suited for a prearranged rendezvous. If three different processes must attach to a 

shared memory region, how do the two processes that did not create the shared region find 

out what the IPC ID of that resource is? To solve this difficulty, the UNIX kernel also provides 

facilities for working with IPC key values. 

The IPC Key Value 
The IPC key value is defined by the C data type key_t. This permits a system-wide 32-bit key 

value to be specified. Although files use a hierarchical file system, IPC key values are not hier¬ 

archical. The 32-bit key applies to the host system on a system-wide basis. The IPC key is like 

a filename, whereas the IPC ID is like an open file descriptor. 

If your software and another software package choose the same IPC key value, they will be in 

conflict. To choose a key that is not in use, you can use the ipcs (1) command to list the keys 

that are in use (older versions of Linux do not show the key values). 

Once you have chosen an IPC key value, it is possible for a process to gain access to a message 

queue, shared memory region, or semaphore set by specifying it. As long as all of your 

processes agree on this key in advance, they will locate the common IPC resource. Once the 

access is granted, the kernel returns the IPC ID value that is used for that resource. The IPC 

key is only required for the initial rendezvous. 

Creating an IPC Resource 
You create IPC resources with system calls named after the type of the resource. The function 

msgget(3) creates a message queue, while shmget(2) and semget(2) create shared memory 

regions and semaphores, respectively. The msgget (3) function is the simplest of these, and so 
its synopsis is shown as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgget(key_t key, int flags); 
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The msgget (3) function accepts an IPC key value key and some flags in flags. All IPC create 

functions have a key argument and a flags argument. 

To create an IPC resource, the flags argument must have the bit IPC_CREAT provided, in addi¬ 

tion to the permission bits required. Otherwise, the function will attempt to gain access to the 

existing resource, if any. The key argument can have one of two possible values: 

• IPC_PRIVATE 

• A non-zero IPC key value 

The IPC key must be non-zero because most UNIX systems implement IPC_PRIVATE as the 

value (key_t) (0). Olten, the IPC key value is specified in hexadecimal. The following exam¬ 

ple shows how a message queue with IPC key 0XFEEDBEEF is created: 

int mqid; /* Message Queue IPC ID */ 

mqid = msgget(0XFEEDBEEF,IPC_CREAT|0600); 

From this point forward, the IPC ID mqid is used to reference the created message queue. 

Private message IPC resources can also be created by using the IPC key IPC_PRIVATE. The fol¬ 

lowing shows how a private message queue is created: 

int mqid; /* Message Queue IPC ID */ 

mqid = msgget(IPC_PRIVATE,IPC_CREAT|0600); 

The IPC_PRIVATE key does not imply privacy, however. What it does imply is that there is no 

IPC key associated with this created resource. This is similar to a file that is open on a file unit, 

but has no name because unlink(2) has been called on it. As long as the process knows the 

IPC ID (mqid in the example) of the resource, there is no need for an IPC key. 

IPC_PRIVATE is useful when you want to avoid key clashes with other software on your sys¬ 

tem. A large software package, such as a relational database, could arrange to use one IPC key 

to allow access to a shared memory table. Within that table, the IPC ID values for all other IPC 

resources created using key IPC_PRIVATE could be stored there. Using this method, all exter¬ 

nal processes need only to gain access to the initial shared memory table with the one IPC key. 

All other resources can be referenced directly by the IPC ID values found within the table. 

Accessing by IPC Key 
Processes that do not create the shared resource must look it up to discover the IPC ID. This 

can be performed using the same system call that is used for creation. The following looks up 

the message queue that was created earlier: 

int mqid; /* Message Queue IPC ID */ 

mqid = msgget(0xFEEDBEEF,0); 

Observe that the IPC_CREAT flag bit is absent from the flags argument. The permission bits 

are also absent, since they are not required when the resource has already been created. 
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Once the IPC ID value in mqid is known, the IPC key is no longer required for access to the 

resource. 

Accessing by IPC ID 
When the IPC ID for a resource is known, the resource can be accessed directly. Unlike files, 

which must be opened, IPC resources can be accessed immediately when the IPC ID is known. 

The one exception to this rule is that shared memory must be attached to your process mem¬ 

ory space before it can be referenced (see shmat (2)). 

Destroying IPC Resources 
IPC resources can outlive your process. When a process terminates for any reason, all files are 

closed and its shared memory is detached, but its IPC resources will continue to exist. If IPC 

resources are no longer required, they must be explicitly destroyed. 

There are system calls to perform this function: 

• msgctl(3) for message queues 

• semctl(2) for semaphores 

• shmctl(2) for shared memory 

The following chapters cover the specifics of these operations. There are, however, some sys¬ 

tem-wide implications of destroying IPC resources that should be noted here. 

When a message queue or a semaphore set is destroyed, they are destroyed immediately Since 

IPC resources are not opened like files, they do not stay open until closed. When a message 

queue or semaphore set is destroyed, the UNIX kernel immediately discards them. If a mes¬ 

sage queue or semaphore operation is subsequently attempted on the destroyed IPC ID, the 

error EIDRM is returned. 

ll? Note 

EIDRM—Identifier removed This error is returned when an IPC ID is used in an IPC operation 

after the resource has been destroyed. 

Shared memory is handled differently. When shared memory is used, it must be attached to 

the current process at a specific address. When the shared region is no longer required, or 

when the process terminates, the shared region is detached from the current process. Due to 

this behavior, when a process destroys shared memory, the shared memory7 region exists until 
the last process detaches it. 
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The following general points can now be summarized: 

• IPC resources exist until destroyed. 

• Message queues and semaphores are immediately destroyed. 

• When shared memory is destroyed, its destruction occurs when the last process detaches 
from it. 

Note 

Under many operating systems, the IPC resources discussed in this chapter are optional. They are 

available only if they are configured or compiled into the kernel. 

Additionally, note that IPC resources normally have system-configured limits for the number of mes¬ 

sages queued, the maximum size of a message, the maximum number of semaphores in a set, the 

maximum amount of shared memory available, and so on. 

Check your system documentation to find out how to configure these values to suit your application 

needs. 

When you are debugging programs that fail to destroy IPC resources when they should, use the 

ipcs (1) command to display the resources and the ipcrm (1) command to remove them. 

Summary 
This chapter has been an overview of the IPC facilities as they exist under UNIX. The next 

three chapters will explore these IPC resources in detail. 



. 



CHAPTER 23 

MESSAGE QUEUES 

Message queues provide the IPC facility that permits unrelated processes to pass mes¬ 

sages between them. This chapter will look at the message facility in detail. A C++ 

object is developed around the message queue facility and used in a demonstration. 

Controlling a Message Queue 
The initial examination of the message queue will concern control functions such as message 

queue creation, modification, and destruction. Message sending and receiving is covered later. 

Creating Message Queues 
The last chapter provided a sneak peek at the message queue creation process. The function 

synopsis is repeated here for your convenience: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgget(key_t key, int flags); 

The argument key must have the value IPC_PRIVATE or a valid IPC key value. 

The flags argument must contain the permission bits for the new queue and IPC_CREAT if the 

queue is being created. The flag IPC_EXCL can be added to cause msgget (3) to return an error 

if the message queue already exists. Otherwise, IPC_CREAT attempts to create the queue but 

will use the existing one that matches key, if it already exists. 

The function returns the IPC ID of the message queue when it is successful, which is a zero or 

positive value. The value -1 is returned when an error occurs, and the variable errno contains 

the error code. 

Accessing a Message Queue 
To locate an existing message queue, do not specify the IPC_CREAT flag. An error is returned in 

this case if the queue does not already exist. You may specify zero for the flags argument 

when a queue is not being created, since the permission bits are ignored. 
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Destroying a Message Queue 
To perform control operations on a message queue, including its destruction, you must invoke 

the msgctl(3) function: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgctl(int msqid, int cmd, struct msqid_ds *buf); 

The first argument, msqid, is the message queue 1PC ID. The argument cmd is a command con¬ 

stant, and the last argument, buf, is a pointer to a structure. 

The function msgctl(3) returns 0 when it is successful. When -1 is returned, errno holds the 

error code. 

The operation commands accepted by this function include 

IPC_RMID Destroy the message queue. 

IPC_STAT Query the message queue for information. 

IPC_SET Change certain message queue attributes. 

The command IPC_RMID is the one that you are interested in for queue destruction. The argu¬ 

ment buf is not used for this command, and is permitted to be a null pointer. The following 

example shows how a queue can be destroyed: 

int z; 

z = msgctl(msqid,IPC_RMID,0); 
if ( z == -1 ) 

perror( "msgctl(3)11) 

Obtaining Message Queue Information 
The stat (2) call is available to obtain information about files. The msgctl(3) command 

IPC_STAT performs a similar function for message queues. In this case, the third argument 

must point to a struct msqid_ds to receive the results. The structure definition is shown in 
the synopsis: 

struct msqid_ds { 
struct ipc_perm msg_perm; 
struct msg *msg_first; 
struct msg *msg_last; 
u_long msg_cbytes; 
u_long msg_qnum; 
u_long msg_qbytes; 
pid_t msg_lspid; 
pid_t msg_lrpid; 
time_t msg_stime; 

/* msg queue permission bits */ 
/* first message in the queue */ 
/* last message in the queue */ 
/* number of bytes in use on the queue */ 
/* number of msgs in the queue */ 
/* max # of bytes on the queue */ 
/* pid of last msgsnd() */ 
/* pid of last msgrcv() */ 
/* time of last msgsndi) */ 
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time_t msg_rtime; /* time of last msgrcv() */ 
time_t msg_ctime; /* time of last msgctl() */ 

}; 

There are a number of informational members in this structure, including the number of mes¬ 

sages in the queue (msg_qnum) and time stamps. 

Structure member msg_perm is important for controlling access to your message queue. Its 

structure is described in the following synopsis: 

struct ipc_perm { 
ushort cuid; /* creator user id */ 
ushort cgid; /* creator group id */ 
ushort uid; /* user id */ 
ushort gid; /* group id */ 
ushort mode; /* r/w permission */ 
ushort seq; /* sequence # (to generate unique msg/sem/shm id 
key_t key; /* user specified msg/sem/shm key */ 

}; 

The members cuid and cgid are the user and group IDs of the creator of the queue. The mem¬ 

bers uid and gid are the current owner user and group ID values for the message queue. The 

member mode specifies the permission bits for this queue. 

The only members that can be altered after a queue has been created are the members uid, 

gid, mode, and the msqid_ds member msg_qbytes. You must be the creator of the message 

queue, have an effective user ID that matches the current uid value, or be superuser to be per¬ 

mitted to make changes. 

The following example shows how the IPC_STAT command is used: 

int z; 
struct msqid_ds stbuf; 

z = msgctl(msqid,IPC_STAT,&stbuf); 
if ( z == -1 ) 

perror("msgct1(3)"); 

Altering a Message Queue 
You may occasionally need to change the ownership of your message queue, or otherwise 

modify the permission on it. The msgctl(3) command IPC_SET enables you to do this. 

The following example queries the current message queue to fill in the structure stbuf. Then 

it looks up the uid_t value for the login postgres. Finally, the owner user ID is changed in 

stbuf, and msgctl(3) is called with IPC_SET to establish the new owner of this message 

queue: 

int z; 
struct msqid_ds stbuf; 
struct passwd *pw; 
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// Obtain status info : 
z = msgctl(msqid,IPC_STAT,&stbuf); 
if ( z == -1 ) 

abort(); 

// lookup postgres uid_t value : 
pw = getpwnam(“postgres"); 
if ( !pw ) 

abort(); 

// Change owner to postgres 
stbuf.msg_perm.uid = (ushort)pw->pw_uid; 

z = msgctl(msqid,IPC_SET,&stbuf); 
if ( z == -1 ) 

perror(“msgctl(IPC_SET)"); 

Note that although the owner of the message queue is changed here, the creator user and 

group ID values do not change. 

Sending and Receiving Messages 
Once you have a message queue to operate with, and the permissions are properly established, 

you can read and write messages to them. This section describes the msgsnd(3) and 

msgrcv(3) functions. 

Sending Messages 
Messages are sent using the msgsnd (3) function. Its function synopsis is given as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgsnd(int msqid, void *msgp, size_t msgsz, int msgflg); 

The first argument msqid is the IPC ID of the message queue to send the message on. The 

argument msgp points to a message structure to be sent. The size of the message msgsz is the 

message size, not including the message type value. The msgflg argument is specified as 0 

unless the flag IPC_N0WAIT is used. 

The IPC_NOWAIT allows the msgsnd (3) function to return immediately with the error EAGAIN if 

the operation would block. Sending a message can block if the message queue has reached its 

maximum limit for messages or memory use. Sending can also block when the kernel’s mes¬ 

sage resources are limited. 

The msgsnd (3) function returns 0 when successful. When -1 is returned, the error is found in 
the variable errno. 
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The format of the message structure is shown in the next synopsis: 

struct msgbuf { /* Message Structure */ 
long mtype; /* message type */ 
char mtext[1]; /* body of message */ 

}; 

The first member of the message structure must be a long member to hold the message type 

(message priority). The actual message itself is shown starting with member mtext [ 0]. 

Computing the msgsz argument requires some care. This size argument does not include the 

mtype member of the structure passed in argument msgp. 

The following example shows a message being sent, which contains a simple pathname mem¬ 

ber path[256]: 

int z; 
struct { 

long mtype; 
char path[256]; 

} msg; 
int msz; 

msz = sizeof msg - sizeof msg.mtype; 
z = msgsnd(msqid,&msg,msz,0); 
if ( z == -1 ) 

perror("msgsnd(3)"); 

Notice that the variable msz receives the size of the message without counting the size of the 

message type mtype. 

Warning 

The function msgsnd(3) returns the error EINTR when signals are received. 

Receiving Messages 
Messages are received with the function msgrcv(3). The synopsis for it is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg); 

The argument msqid is the IPC ID of the message queue to receive the message from. The 

pointer argument msgp must point to a receiving buffer large enough to hold the received mes¬ 

sage. The argument msgsz indicates the maximum size of the received message, not including 

the size of the mtype member. The msgtyp and msgflg members hold the message type (prior¬ 

ity) and option flags for this call, respectively. 
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The msgf lg argument can be composed of the following flags: 

• The flag IPC_NOWAIT indicates that the function msgrcv(3) will return the error code 

ENOMSG if there are no messages to receive. Normally, the program is suspended until a 

message arrives. 

• The flag MSG_EXCEPT, when used with the msgtyp argument greater than zero, causes the 

first message that differs from msgtyp to be received. 

• The flag MSG_NOERROR indicates that the message should be truncated if necessary to fit 

the receiving buffer. The error E2BIG is returned when this option is used and the mes¬ 

sage cannot fit into the buffer. 

Warning 

The function msgrcv(3) returns the error EINTR when signals are received. 

Table 23.1 lists the variations that are possible for the msgtyp argument. 

TABLE 23.1 The msgrcv(3) Message Type Variations 

msgtyp msgflg Explanation 

>0 0 The msgrcv(3) function will return a message only where the 

msgtyp argument matches the message type value of the message. 

>0 MSG_EXCEPT The msgrcv{3) function will return a message only where the 

msgtyp argument does not match the message type of the message. 

0 ignored The msgrcv(3) function will return the first message that has been 

queued. 

<0 ignored The msgrcv(3) function will return the message with the lowest 

message type that is <= abs(msgtyp). 

When msgrcv (3) is successful, it returns the number of bytes received (excluding the size of 

the message type member). Otherwise, -1 is returned and the error code is found in 

variable err no. 

The following example shows how to receive a message. 

int z; 
struct { 

long mtype; 
char path[256]; 

} msg; 
int msz; 
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msz = sizeof msg - sizeof msg.mtype; 

z = msgrcv(msqid,&msg,msz,0,0); 
if ( z == -1 ) 

perror("msgrcv(3)"); 

This example chooses to receive the first available message without regard to priority (argu¬ 

ment msgtyp is equal to 0). The value of msz is computed to include the maximum size of the 

receiving structure, but not to include the size for msg.mtype. 

Applying Message Queues 
A client and server program that uses message queues is presented here. The client issues the 

request, and the server receives the message and responds. The server simply performs a 

stat (2) or lstat (2) call, and returns the results to the client by a message. 

The client and server programs both use a C++ object that has been created to make using 

message queues a little friendlier. The C++ object and its implementation will be 

presented first. 

Listing 23.1 shows the file msq. h, which defines the C++ class Msq. 

LISTING 23.1 

1: II 
2: II 
3: II 

msq. h—The Msq Class Definition File 

4: 
5: 
6: 
7: 
8: 

24 
25 
26 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

9: struct Msg { 
10 long msgtyp; // Message tyf 
11 }; 
12 
13 class Msq { 
14 enum state { ready notReady }; 
15 key_t key; // IPC Key 
16 int msqid; // IPC ID 
17 int error; II Last errno 
18 
19 protected: 
20 void verify(state s); 
21 
22 public: 
23 Msq(); 

Msq &create(key_t key,int flags); 
Msq &access(key_t key); 
Msq &dispose(); 
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27: Msq &destroy(); 
28: msqid_ds &stat(msqid_ds &stbuf); 
29: Msq &change(msqid_ds &stbuf); 
30: int send(Msg &msg,size_t size,int flags=0); 
31: int recv(Msg &msg,size_t &size,size_t maxsz,long msgtyp.int flags=0); 
32: inline int getError() { return error; } 
33: inline key_t getKey() { return key; } 
34: }; 
35: 
36: // End msq.h 

Lines 9-11 define the basic message structure that can be used with C++ inheritance for build¬ 

ing application messages from. The Msq class is declared starting in line 13. The Msq object 

maintains copies of the IPC key, the IPC ID, and the last error code encountered. The IPC key 

and the last error are accessed through the inline methods Msq: :getError() and 

Msq:: getKey () if required. 

The private Msq: :_verif y () member checks the state of the Msq object. It raises the error 

EINVAL if the object is in the wrong state for the operation being attempted. The methods 

Msq:: create () and Msq:: access () require the object to be in a “not ready” state. Other 

methods such as Msq:: send () and Msq:: recv () expect the object to be in the “ready” state. 

With the exception of the Msq:: send () and Msq:: recv () methods when the flag IPC_NOWAIT 

is used, all methods throw errno values when an error condition is encountered. As noted ear¬ 

lier, if the object is in the wrong state for a method call, the error EINVAL is raised. 

The default constructor creates the Msq object in the “not ready” state. The Msq object is 

designed so that it can be re-used for a different message queue by calling its Msq:: dispose () 

or Msq::destroy () methods, and then calling Msq::create() or Msq::access(). 

Object method Msq:: create () creates a new message queue. Method Msq:: access (), on the 

other hand, tries to access an existing message queue. 

The method Msq:: dispose () reinitializes the object to its initial “not ready” state. In other 

words, it disposes of its current context. The Msq:: destroy () method destroys the underlying 

message queue and then calls Msq:: dispose () to initialize the object to its initial 
“not ready” state. 

The method Msq:: stat () allows the caller to receive information about the message queue. 

The Msq:: change () method allows message queue parameters to be changed using the 
IPC_SET command. 

The methods Msq: :send() and Msq:: recv() are wrapper functions around the msgsnd(3) 

and msgrcv(3) functions. They provide the extra functionality of handling the EINTR error 
when signals are received. 

Now look at Listing 23.2. 
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LISTING 23.2 msqveri . cc—The Implementation of Msq: :_verif y (), Msq:: dispose (), and the 
Constructor Msq:: Msq () 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

// msqveri.cc : 

#include <stdlib.h> 
#include <errno.h> 
#include "msq.h" 

//////////////////////////////////////////////////////////// 
// (private) Msq::_verify : 
// 
// Checks to see that the object is in a ready or 
// not ready state. If the state is not correct 
// the error EINVAL is thrown. 
//////////////////////////////////////////////////////////// 

void 
Msq::_verify(state s) { 

if ( s == ready && msqid < 0 ) 
throw error = EINVAL; // Object is not open 

if ( s != ready && msqid >= 0 ) 
throw error = EINVAL; // Object is open! 

} 

//////////////////////////////////////////////////////////// 
// Msq::dispose : 
II 
II Disposes of the current message queue reference, if 
// any. The object is re-initialized to the not-ready 
// state. 
//////////////////////////////////////////////////////////// 

Msq & 
Msq::dispose() { 

key = IPC_PRIVATE; 
msqid = -1; 
return *this; 

} 

//////////////////////////////////////////////////////////// 
// Msq::Msq : 
II 
II Constructor. This constructor calls upon the 
// method Msq::dispose() to initialize the object. 
//////////////////////////////////////////////////////////// 

Msq::Msq() { 
Msq::dispose(); // Initialize this object 

} 

// End msqveri.cc 
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The method Msq: :_verify () uses the enumerated data type state for its argument s. When 

s is equal to ready, the private member msqid must be less than zero to indicate that the 

object is in a not ready state. If this test fails, the error EINVAL is thrown in line 18. All thrown 

errors are preserved in the private member error for later retrieval. 

When s is not equal to ready, then EINVAL is thrown if the test shows that the object currently 

holds a valid IPC ID in the member msqid (lines 19 and 20). 

The Msq:: dispose () function simply initializes the object into a not ready state (lines 34 and 

35). The default constructor Msq:: Msq () simply calls upon Msq:: dispose () to initialize the 
object. 

Listing 23.3 shows the implementation of the Msq:: create () method. 

LISTING 23.3 msqcr. cc—The Implementation of the Msq:: create ( Method 

1: II msqcr.cc : 
A • 
3: #include <stdlib.h> 
4: #include <errno.h> 
5: 
a • 

#include "msq.h" 

7: //////////////////////////////////////////////////////////// 
8: II Msq::create : 
9: II 
10 II ARGUMENTS: 
11 1/ key IPC Key of the message queue or IPC PRIVATE 
12 II flags The permission bits, and possibly IPC EXCL 
13 II 
14 II This method creates a message queue. Object must be 
15 II in a not-ready state. 
16 //////////////////////////////////////////////////////////// 
17 
18 Msq & 
19 Msc ::create(key_t key,int flags) { 
20 
21 _verify(notReady); // Object must not be open 
22 
23 flags |= IPC_CREAT; // Force a create symantic 
24 
25 /* 
26 * Attempt to create the message queue : 
27 */ 
28 msqid = msgget(this->key = key,flags); 
29 if ( msqid == -1 ) 
30 throw error = errno; 
31 
32 return *this; 
33 } 
34 
35 II End msqcr.cc 
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Like many methods within the Msq class, the state of the object is tested first (line 21). Since 

this method call implies creation of the message queue, the flag IPC_CREAT is or-ed in with the 

flags argument in line 23. Line 28 invokes the msgget (3) call to create the queue. Unless the 

flags argument included IPC_EXCL, the Msq:: create () method will return an existing mes¬ 

sage queue if it already exists. If an error is encountered, it is thrown in line 30. 

Listing 23.4 shows the implementation of the Msq:: access () method. 

LISTING 23.4 msqac . cc—The Implementation of the Msq:: access () Method 

1: // msqac.cc : 
2: 
3: #include <stdlib.h> 
4: #include <errno.h> 
5: #include “msq.h" 
6: 
7: //////////////////////////////////////////////////////////// 
8: // Msq: .-access : 
9: // 
10: // ARGUMENTS: 
11: // key IPC Key of the message queue or IPC_PRIVATE 
12: // 
13: // This method accesses a message queue. Object must be 
14: // in a not-ready state. 
15: //////////////////////////////////////////////////////////// 
16: 
17: Msq & 
18: Msq::access(key_t key) { 
19: 
20: _verify(notReady); // Object must not be open 

21 : 
22: /* 

23: * Attempt to create the message queue : 

24: */ 
25: msqid = msgget(this->key = key,0); 
26: if ( msqid == -1 ) 
27: throw error = errno; 

28: 
29: return *this; 

30: } 
31: 
32: // End msqac.cc 

The Msq: : access () is very similar to the Msq:: create () method. Note, however, that the 

flags argument in the msgget (3) function call (line 25) is the value zero, indicating that the 

message queue must already exist. 

Listing 23.5 shows the implementation of the Msq:: destroy () method. 
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LISTING 23.5 msqdest. cc—The Implementation of the Msq: : destroy () Method 

1: // msqdest.cc 
2: 
3: #include <stdlib.h> 
4: ^include <errno.h> 
5: #include "msq.h" 
6: 
7: //////////////////////////////////////////////////////////// 
8: // Msq::destroy : 

9: // 
10: // Destroys the message queue. The object must be in a 
11: // ready state. The object is placed into a not-ready 
12: // state upon successful completion. 
13: //////////////////////////////////////////////////////////// 
14: 
15: Msq & 
16: Msq::destroy() { 
17: 
18: _verify(ready); // Object must be open 
19: 
20: if ( msgctl(msqid,IPC_RMID,0) == -1 ) 
21: throw error = errno; 
22: 
23: Msq::dispose(); // Re-initialize this object 
24: return *this; // Return in not-ready state 
25: } 
26: 
27: // End msqdest.cc 

The Msq: :destroy() method calls upon msgctl(3) with the command IPC_RMIDin line 20. If 

this call succeeds, the Msq:: dispose () method is called to initialize the object back to its not 

ready state in line 23. 

Listing 23.6 illustrates the Msq:: stat () method, which obtains the message queue status 

information from the kernel. 

LISTING 23.6 msqstat . cc—The Implementation of the Msq:: stat () Method 

1: // msqstat.cc 
2: 
3: #include <stdlib.h> 
4: #include <errno.h> 
5: #include ''msq.h1' 
6: 

7: //////////////////////////////////////////////////////////// 
8: // Msq::stat : 
9: // 
10: // ARGUMENTS : 

11: // stbuff The struct msqid_ds structure to populate 
12: // with message queue information. 
13: // 

14: // This method fills the supplied buffer with status 
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15: // information about the current queue. The object must 
16: // be in the ready state. 
17: //////////////////////////////////////////////////////////// 
18: 
19: msqid_ds & 
20: Msq::stat(msqid_ds &stbuf) { 
21: 
22: _verify(ready); // Object must be open 
23: 
24: if ( msgctl(msqid,IPC_STAT,&stbuf) == -1 ) 
25: throw error = errno; 
26: 
27: return stbuf; 
28: } 
29: 
30: // End msqstat.cc 

In the Msq: :stat() method, the function msgctl(3) is called with the command IPC_STAT in 

line 24. The argument stbuf is passed by reference in this method, so the results are passed 

back by this argument as well. If no error is encountered, the reference to the argument stbuf 

is the returned result. 

Listing 23.7 shows the implementation of the Msq:: change () method. Using this method, it is 

possible to change the owner, group, and permission bits. 

LISTING 23.7 msqchg. c—The Implementation of the Msq:: change () Method 

1: // msqchg.cc 
2: 
3: #include <stdlib.h> 
4: #include <errno.h> 
5: #include "msq.h" 
6: 
7: //////////////////////////////////////////////////////////// 
8: // Msq::change : 

9: // 
10: // ARGUMENTS : 
11: // stbuff The struct msqid_ds structure containing 
12: // the changes to be made. 

13: // 
14: // Only the values msg_perm.uid, msg_perm.gid, msg_perm.mode 
15: // and msg_qbytes values can be changed. The value 
16: // msg_qybytes can only be increased by the superuser. 
17: // Object must be in the ready state. 

18: //////////////////////////////////////////////////////////// 
19: 
20: Msq & 
21: Msq::change(msqid_ds &stbuf) { 

22: 
23: verify(ready); // Object must be open 

24: 
25: if ( msgctl(msqid,IPC_SET,&stbuf) == -1 ) 
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26: throw error = errno; 
27: 
28: return *this; 
29: } 
30: 
31: // End msqchg.cc 

The function msgctl(3) is called from line 25 with the command IPC_SET. Again, the argu¬ 

ment stbuf is passed by reference in Msq:: change (). 

The Msq:: send () implementation is shown in Listing 23.8. 

LISTING 23.8 msgsend. cc—The Implementation of the Msq:: send () Method 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

// msqsend.cc : 

#include <stdlib.h> 
#include <errno.h> 
#include "msq.h" 

//////////////////////////////////////////////////////////// 
// Msq::send : 
II 
II ARGUMENTS : 
// msg 
// size 
// flags 
II 
II RETURNS: 

// 0 
// 1 
II 
II Sends a message of size bytes to the message queue. 
// The size must include the total size of the message, 
// including the message type. The object must be in a 
// ready state. 

//////////////////////////////////////////////////////////// 

The message to be sent 
The total size of the message 
zero or IPC_NOWAIT (optional) 

No message sent (with IPC_NOWAIT) 
Message was sent 

int 

Msq::send(Msg &msg,size_t size,int flags) { 
int z; 

size_t msgsz = size - sizeof msg.msgtyp; 

_verify(ready); 

do { 

z = msgsnd(msqid,&msg,msgsz,flags); 
} while ( z == -1 && errno == EINTR ); 

if ( z ) { 

if ( flags & IPC_NOWAIT && errno == EAGAIN ) 
return 0; // Not sent 

// Other fatal error: 
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41: throw error = errno; 
42: } 
43: 
44: return 1; // Succeeded 
45: } 
46: 
47: // End msqsend.cc 

The Msq:: send () method has the message msg passed by reference (line 26). The size of the 

entire message is passed into argument size. The real size is computed internally on line 28 

and placed in the variable msgsz. 

The loop in lines 32-34 takes care of handling the error EINTR. This would be unsatisfactory, 

however, if you needed to do something after a signal within this loop (some code modifica¬ 

tion would be required). 

If flags include IPC_NOWAIT and the error EAGAIN is returned, then the value 0 is returned 

instead of raising an exception (lines 37 and 38). When IPC_NOWAIT is used, this exit condi¬ 

tion is likely to occur frequently and so the costly exception mechanism is avoided. The value 

1 is returned when the send operation is successful (line 44). 

Msq:: recv () is illustrated in Listing 23.9. 

LISTING 23.9 msqrecv. cc—The Implementation of the Msq:: recv () Method 

1: // msqrecv.c : 
2: 
3: #include <stdlib.h> 
4: #include <errno.h> 
5: #include "msq.h" 
6: 
7: //////////////////////////////////////////////////////////// 
8: // Msq::recv : 
9: // 
10: // ARGUMENTS : 

11: // msg 
12: // size 
13: // maxsz 
14: // msgtyp 
15: // flags 
16: // 
17: // 
18: // RETURNS : 
19: // 0 
20: // 1 
21: // 
22: // This method receives a message from the message queue. 
23: // Object must be in a ready state. 

24: //////////////////////////////////////////////////////////// 

25: 
26: int 
27: Msq::recv(Msg &msg,size_t &size,size_t maxsz,long msgtyp,int flags) { 

28: int z; 

The receiving buffer for the message 
The returned size of the message 
The maximum size of the returned message 
The message type to use (priority) 
Flags IPC_NOWAIT, IPC_EXCEPT and 
IPC_N0ERR0R (optional) 

No message returned (with IPC_N0WAIT) 
Message was returned 
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29 size t msgsz = maxsz - sizeof msg. msgtyp; 

30 
31 _verify(ready); 
32 
33 do { 
34 z = msgrcv(msqid,&msg,msgsz,msgtyp,flags); 

35 } while ( z == -1 && errno == EINTR ); 

36 
37 if ( z == -1 ) { 
38 if ( flags & IPC_N0WAIT && errno == EAGAIN ) 

39 return 0; // No message read 

40 throw error = errno; II Error occurred 

41 } 
42 
43 size = z + sizeof msg.msgtyp; II Return size 

44 return 1; II Successful 

45 } 
46 
47 II End msqrecv.cc 

Like Msq:: send (), the Msq:: recv () method computes the correct message size internally, at 

line 29. The msgrcv(3) function is called in the loop to handle EINTR (lines 33-35). The mes¬ 

sage is returned via the argument msg, which is passed by reference. The size argument, 

which is also passed by reference, is updated in line 43 and adjusted to include the size of the 

message type. The argument msgtyp is used in the call to msgrcv(3) to select the type of mes¬ 

sage to be received. 

Again, when flag bit IPC_NOWAIT is used, the value 0 is returned when there is no message 

instead of throwing an exception. Any unusual error is thrown, however. The value 1 is 

returned if a message was received. 

Now you can turn your attention to the client and server programs. First, examine Listing 

23.10, which shows the declaration of the message structure StatMsg. 

LISTING 23.10 statmsg.h—The Declaration of the StatMsg Message Structure 

1: 
? • 

II statmsg.h 
c. % 

3: struct StatMsg : Msg { 
4: enum { 
5: stat, II stat a pathname 
6: lstat, II lstat a pathname 
7: stop II stop the server 
8: } request; II Request type 
9: int error; II zero if successful 
10: pid_t PID; II Requesting Process ID 
11: union { 
12: char path[256]; II Pathname to stat 
13: struct stat stbuf; II stat(2) or lstat(2) info 
14: } u; II union 
15: }; 
16: 
17: // End statmsg. ,h 
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The structure StatMsg uses C++ inheritance to inherit from the structure Msg that was shown 

in Listing 23.1. The Msg structure adds the message type member msgtyp. 

The enumerated member request allows the client to request a stat (2), lstat (2), or server 

stop operation. The error member is used by the server to return an error code, or zero if the 

request succeeded. 

Member PID is filled with the client’s process ID. This allows the server to direct the reply back 

to the client process. All server requests go to message type 1. The replies go back to the 

client’s by using the process ID as the message type. This allows many clients to use the server 

concurrently. 

The remainder of the message is declared by a union in lines 11-14. The request passes a 

pathname in member u. path [ ], while responses return information in u. stbuf. 

Listing 23.11 shows the source listing for the statsrv server. 

LISTING 23.11 statsrv.cc—The statsrv Server Listing 

1: // statsrv.cc : 

3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <stdlib.h> 
6: #include <errno.h> 
7: #include <string.h> 
8: #include <sys/types.h> 
9: #include <sys/stat.h> 
10 
11 #include "msq.h11 
12 #include "statmsg.h" 
13 
14 int 
15 main(int argc,char **argv) { 
16 int quit = 0; II True when stop received 

17 Msq q; II Message queue object 

18 StatMsg m; II Message buffer 

19 size_t msz; II Message size 

20 char pathname[256+1]; II Local copy of pathname 

21 msqid_ds mstat; II Message queue info 

22 
23 (void) argc; 
24 (void) argv; 
25 
26 
27 
28 
29 
30 
31 
32 

/* 
* Create the server message queue 

*/ 
try { 

q.create(0xFEEDF00D,0600); 
} catch ( int e ) { 

errno = e; 
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33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

74 
75 
76 
77 
78 

79 
80 
81 
82 
83 
84 

perror("Creating a queue"); 

} 

/* 

* Obtain queue information : 
*/ 

try { 
q.stat(mstat); 

} catch ( int e ) { 
errno = e; 
perror(“q.stat()"); 

printf("Queue permissions were: %04o\n",mstat.msg_perm.mode); 

/* 
* For demonstration purposes, 
* make the queue read & writable to all : 
*/ 

mstat.msg_perm.mode = 0666; 

try { 
q.change(mstat); 

} catch ( int e ) { 
errno = e; 
perror("q.change()"); 

printf(“Queue permissions now : %04o\n",mstat.msg_perm.mode); 

/* 
* Server message loop : 
*/ 

do { 
/* 

* Receive a message of type 1 : 
*/ 

try { 
q.recv(m,msz,sizeof m,1,0); 

} catch ( int e ) { 
errno = e; 
perror("Receiving from queue"); 
return 1; 

} 

/* 

* Process message : 
*/ 

switch ( (int) m.request ) { 
case StatMsg::stat : // stat(2) request : 

strncpy(pathname,m.u.path,sizeof pathname); 
pathname[sizeof pathname-1] = 0; 
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85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 

m.error = stat(pathname,&m.u.stbuf) ? errno : 0; 
break; 

case StatMsg::lstat : // lstat(2) request : 
strncpy(pathname,m.u.path,sizeof pathname); 
pathname[sizeof pathname-1] = 0; 
m.error = lstat(pathname,&m.u.stbuf) ? errno : 0; 
break; 

case StatMsg::stop : 
quit = 1; 
m.error = 0; 
break; 

default : 
m.error = EINVAL; 

} 

/* 

* Reply to client : 
*/ 

m.msgtyp = m.PID; 

try { 

q.send(m,sizeof m); 
} catch ( int e ) { 

errno = e; 
perror("q.send()"); 
return 1; 

} 
} while ( !quit ); 

// stop server : 
// Stop the server 
// Ack request 

// Unknown request : 

// Reply to this process 

/* 

* Destroy the message queue : 
*/ 

q.destroy(); 
return 0; 

// End statsrv.cc 

The message queue object q is declared in line 17. The message queue is created in lines 

29-34. To demonstrate the Msq:: stat () and Msq:: change () methods, the code in lines 

36-59 changes the message queue to allow every user to read or write from this queue (per¬ 

mission 0666 in line 52). 

The server loop itself occurs in lines 66-115, until the integer variable quit is set true. 

Messages are received in lines 70-76. The message is interpreted and processed in lines 

81-101. Line 85 calls stat (2), while line 91 calls lstat (2) instead. If a stop request is 

received, the quit variable is made true in line 95. Bogus messages simply get the m. error 
value returned as EINVAL in line 100. 
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The message is returned to the client by setting the message type to the client’s process ID in 

line 106. The message is sent to the message queue in lines 108-114. 

When the server is told to stop by a client, the execution falls out of the do { } while loop 

and q. destroy () before the server program exits. This destroys the message queue. 

Listing 23.12 lists the source code for the client program statcln. 

LISTING 23.12 statcln . cc—The Source Listing for the statcln Client Program 

1: // statcln.cc : 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <stdlib.h> 
6: #include <errno.h> 
7: #include <string.h> 
8: #include <sys/types.h> 
9: #include <sys/stat.h> 
10: 
11: #include "msq.h" 
12: #include "statmsg.h" 
13: 
14: int 
15: main(int argc,char **argv) { 
16: int x; 
17: Msq q; 
18: StatMsg m; 
19: size_t msz; 
20: char ‘pathname; 
21: 
22: (void) argc; 
23: (void) argv; 
24: 
25: /* 
26: * Access the queue : 
27: */ 
28: try { 
29: q.access(0xFEEDF00D); 
30: } catch ( int e ) { 
31: errno = e; 
32: perror("Accessing statsrv queue"); 
33: } 
34: 
35: /* 
36: * Issue server requests for each command line 
37: * argument. If the argument starts with then 
38: * request a lstat(2) instead of stat(2) : 
39: */ 
40: for ( x=1; x<argc; ++x ) { 
41: /* 
42: * Form the server request : 
43: */ 

// Message queue object 
// Message buffer 
// Message size 
// Pathname to query 



Chapter 23 • MESSAGE QUEUES 477 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96: 

if ( !strcasecmp(argv[x],"STOP") ) 
// STOP SERVER REQUEST : 
m.request = StatMsg::stop; 

else { 
// STAT(2) or LSTAT(2) REQUEST : 
if ( argv[x][0] == '$' ) { 

m.request = StatMsg::lstat; 
pathname = argv[x] +1; // Skip 1 $1 

} else { 
m.request = StatMsg::stat; 
pathname = argv[x]; // Pathname 

} 
strncpy(m.u.path,pathname,sizeof m.u.path); 

/* 

* Initialize other message components : 

*/ 
m.error = 0; // Clear 
m.PID = getpid(); // Our process ID 
m.msgtyp =1; // Send to the server 

/* 
* Send the request to the server : 

*/ 

try { 
q.send(m,sizeof m); // Send the message 

} catch ( int e ) { 
errno = e; 
perror("s.send()"); 
return 1; // Bail out 

/* 

* If the request is to stop, then exit loop : 
*/ 

if ( m.request == StatMsg::stop ) 
break; // There will be no reply 

/* 

* Wait for the response : 
*/ 

try { 
q.recv(m,msz,sizeof m,getpid(),0); 

} catch ( int e ) { 
errno = e; 
perror("Receiving from queue"); 
return 1; 

} 

/* 

* Report response : 
*/ 
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97: printf("RESPONSE %14s : 11,pathname); 
C

D
 

0
0

 
C

D
 

C
D

 

if ( m.error != 0 ) 
100: printf(" ERROR: %s\n ",strerror(m.error)); 
101 : else 
102: printf(" SIZE: %ld bytes\n",(long)m.u.stbuf.st_size) 

103: } 
104: 
105: /* 
106: * Exit client program : 
107: */ 
108: q.dispose(); // Reset object 
109: return 0; 
110: } 
111: 
112: // End statdn.ee 

The st ate In program accesses the existing message queue that the server created in the 

Msq:: access () call in lines 28-33. Then the client program iterates through all of its 

command-line arguments in lines 40-103. 

The command-line argument is tested for the caseless string STOP in line 44. If the string 

matches STOP, then a simple request to stop the server is created in line 46. Otherwise, the 

first character of the command-line argument is tested for a $ character. If the argument starts 

with $, a lstat(2) server request is made (lines 50 and 51) instead of the usual stat(2) 

request (lines 53 and 54). The pathname of the request is copied in line 56. 

The process ID of the client must be passed to the server so that it can reply. This is done in 

line 63. The message type is set to 1 to send this message to the server. Lines 69-75 send the 

message. 

If the request is to stop the server, the loop is exited in line 81 at the break statement. This is 
done because the server will not reply. 

Lines 86—92 wait for a server reply on the message queue. The response is reported in lines 

97-102. If the request succeeded, the stat (2) or lstat (2) information reported is the mem¬ 

ber st_size. This displays the file size and confirms that the operation succeeded. 

Prior to the client program’s exit, it calls q. dispose () to forget its knowledge of the message 

queue it used. However, this does not remove the queue—that is left for the server to do when 
it shuts down. 

The following shows how to make the server and client programs: 

$ i 
cc 

make 
-c -Wall 

cc -c -Wall 
cc -c -Wall 
cc -c -Wall 
cc -c -Wall 
cc -c -Wall 
cc -c -Wall 
cc -c -Wall 

-fhandle-exceptions 
-fhandle-exceptions 
-fhandle-exceptions 
-fhandle-exceptions 
-fhandle-exceptions 
-fhandle-exceptions 
-fhandle-exceptions 
-fhandle-exceptions 

msqveri.ee 
msqcr.cc 
msqac.cc 
msqdest.ee 
msqstat.ee 
msqchg.cc 
msqsend.cc 
msqrecv.cc 
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ar r libmsq.a msqveri.o msqcr.o msqac.o msqdest.o msqstat.o msqchg.o 
msqsend.o msqrecv.o 

cc -c -Wall -fhandle-exceptions statsrv.cc 
cc -o statsrv statsrv.o -L. -lmsq -lstdc++ 
cc -c -Wall -fhandle-exceptions statcln.cc 
cc -o statcln statcln.o -L. -lmsq -lstdc++ 
$ 

Once the executables are prepared, you can start up the server program as follows: 

$ ./statsrv & 
$ Queue permissions were: 0600 
Queue permissions now : 0666 

The misplaced $ character is due to the shell issuing a prompt to the user before the server 

program wrote its output to the terminal. The server displays before (0600) and after (0666) 

sets of permission bits. 

With the server ready for requests, you can now issue requests on the . / statcln 

command line: 

$ ./statcln /etc/hosts STOP 
RESPONSE /etc/hosts : SIZE: 118 bytes 
[1] 12935 Exit 0 ./statsrv 
$ Is -1 /etc/hosts 
-rw-r--r-- 1 root wheel 118 May 23 21:10 /etc/hosts 
$ 

In this example, the first argument /etc/hosts requested a stat(2) of the hosts file from the 

server. The response from the server shows that the file’s size was 118 bytes. This was verified 

by the Is (1) command. The STOP argument caused the program . / statcln to request the 

server to shut down, which it did. 

Summary 
You have examined the message queue operations in this chapter. Message queue creation, 

destruction, modification, queries, and sending and receiving of messages was tested. The next 

chapter explores the semaphore IPC resource. 





CHAPTER 24 

SEMAPHORES 

When you have multiple processes running concurrently, there is a frequent need for 

synchronization. This is particularly true for using shared memory when it is being 

updated. Whereas Chapter 22, “Interprocess Communication,” covered the concepts 

behind semaphores, this chapter will focus on the system calls available under UNIX for using 

semaphores. 

Semaphore Utility Program 
A semaphore utility program is presented in this chapter to facilitate the discussion of sema¬ 

phore operations. The source code will be presented in modules as each subject area is intro¬ 

duced. This utility will allow you to manipulate all aspects of a semaphore set, including its 

creation and destruction. 

The program will be compiled and tested before the source modules are introduced to allow 

you to experiment with the topics as the chapter progresses. The remaining additional source 

for the program will be illustrated at the end of the chapter. 

The program is compiled as follows: 

$ make 
cc -c -Wall -DHAVE_ _SEMUN ctlget.c 
cc -c -Wall -DHAVE_ "SEMUN semop.c 
cc -c -Wall -dhave] "SEMUN semchmod.c 
cc -c -Wall -dhave] SEMUN semget.c 
cc -c -Wall -DHAVE ]SEMUN semgetall.c 
cc -c -Wall -DHAVE_ SEMUN semgetval.c 
cc -c -Wall -DHAVE_ ]SEMUN semrmid.c 
cc -c -Wall - DHAVE_ SEMUN semsetall.c 
cc -c -Wall -dhave’ SEMUN semsetval.c 
cc -c -Wall -DHAVE_ SEMUN semstat .c 
cc -c -Wall -DHAVE_ SEMUN usage.c 
cc ■c -Wall -dhave" ]SEMUN convrt.c 
cc ■c -Wall -DHAVE_ SEMUN report .c 
cc -c -Wall -dhave] SEMUN semchown.c 
cc -c -Wall -DHAVE SEMUN main.c 
cc -o semop ctlget.o semop.o semchmod.o semget.o semgetall.o semgetval.o 
* semrmid.o semsetall.o semsetval.o semstat.o usage.o convrt.o 
** report.o semchown.o main.o 
$ 
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If you have trouble compiling this utility on your platform because the union semun is not 

defined, then modify the Makefile to remove the option -DHAVE_SEMUN from the compile 

command line. This will be explained when the include file semop.h is presented. 

Now invoke the usage display of the program for help: 

$ ./semop -h 
Usage: semop [options] 
Options: 

-k 
-a 
-c 
-i 
-o 

-s 
-m 
-x 
-y 
-d 
-9 
-G 
-v 
-V 
-P 
-P 
-n 
-z 
-u 
-U 
-R 

key IPC Key for -a or -c option. 
Access existing set based on -k key 

n Create set of n semaphores using -k key 
ID Access existing set by IPC ID 
<sops> semop(n) for wait/zero/notify 

semctl(IPC_STAT) 
mode semctl(IPC_SET) with new permissions 
userid semctl(IPC_SET) with new userid 
group semctl(IPC_SET) with new group 

semctl(IPC_RMID) 
n semctl(GETVAL) for semaphore n 

semctl(GETALL) 
n=x semctl(SETVAL) set semaphore n to x 
m,n,o semctl(SETALL) 
n semctl(GETPID) for semaphore n 

Report semctl(GETPID) for all semaphores 
x semctl(GETNCNT) for semaphore x 
x semctl(GETZCNT) for semaphore x 

No SEMJJNDO (default) 
Use SEMJJNDO 
Report SEMJJNDO flags 

<sops> 

where: 

$ 

<semaphore#>=<semop>[{u|U}],... 

<semaphore#> Is the semaphore # (starting from zero) 
<semop> Semaphore operation: -n, 0 or +n 

Negative waits, Postive notifies 
while zero waits for zero, 

u Do not use SEMJJNDO 
U Apply SEMJJNDO 
Example: -o 0=-4U,2=+1u,1=2 

This utility program has several command-line options. Each option will be explained as you 
progress through the chapter. 

Note 

All semop utility numeric values provided on the command line can be specified in any radix. Octal 
values are preceded by zero, hexadecimal by 0x, and all other values are interpreted as decimal. 
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Creating and Accessing Semaphore Sets 
A semaphore set is created or accessed by using the semget (2) system call. Its function synop¬ 
sis is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semget(key_t key, int nsems, int flags); 

The semget (2) function requires an IPC key value in the argument key, and permissions and 

flags in the argument flag. The argument nsems indicates how many semaphores you want to 

create in this set. 

Like msgget (3), the key argument may be an IPC key or the value IPC_PRIVATE for a set of 

semaphores without a key value. 

The flags argument should contain the permission bits to assign to the created set and the 

flag bit IPC_CREAT. The flag IPC_EXCL will force an error to be returned if the set 

already exists. 

When accessing an existing set, you can specify zero for the flag argument. The permission 

bits are ignored when you are not creating semaphore sets. 

The function semget (2) returns an IPC ID if the call is successful. Otherwise, -1 is returned 

with an error code left in errno. 

Note 

Note that semget (2) does not apply the process umask(2) value when creating a new set. The per¬ 

mission value specified in the flag argument is the final mode for the set. 

Warning 

Applications should always initialize the semaphore values immediately after creating the semaphore 

sets for maximum portability. The default values for semaphores vary according to UNIX platform. 

Listing 24.1 shows the source code used by the utility program to create or access a 

semaphore set. 

LISTING 24.1 semget.c —Source Module That Creates and Accesses a Semaphore Set 

1: /* semget.c */ 
2: 
3: 
4: 

#include "semop.h 
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continued from previous page 

5: 
6: 
7: 
8: 
9: 
10 

11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

void 
get_set(int optch,key_t key,int createflg) { 

int z; 
mode_t um; 
mode_t mode; /* Create permissions */ 
int flags; /* semget(2) flags */ 

if ( createflg ) 
flags = IPC_CREAT|IPC 

else 
flags = 0; 

um = umask(077); 
umask(um); 
mode = 0666 & -um; 

EXCL; /* Create set */ 

/* Access existing set */ 

/* Query umask */ 
/* Restore umask */ 
/* Create permissions */ 

/* 

* Create a set of n_sem semaphores : 
*/ 

z = semget(key,n_sem,flags|mode); 
if ( z == -1 ) { 

fprintf(stderr,"%s: -%c\n",strerror(errno),optch); 
exit(1); 

} 

semid = z; /* Semaphore IPC ID */ 

printf(" -%c 0x%X => IPC ID %d\n",optch,(int)key,semid); 
if ( key == IPC_PRIVATE ) 

printf(" WARNING: IPC_PRIVATE used.\n"); 
fflush(stdout); 

The function get_set () sets the variable flags to IPC_CREAT | IPC_EXCL when the set is to be 

created (line 13). Otherwise, flags is set to zero (line 15). 

Since the function semget(2) does not use the umask (2) value, the current mask is looked up 

and applied to the default permissions 0666 line in lines 17-19. 

Line 24 calls semget (2) to access or create the set, depending upon the value of its flags vari¬ 

able. The number of semaphores to create (when flags contains IPC_CREAT) is determined by 

a global variable n_sem. If the function call succeeds, the global variable semid is assigned the 

IPC ID in line 30. 

Warning 

Note that the key value used for some of the examples in this chapter uses hexadecimal values. The 

key value FEEDF00D uses zeros. Do not type the letter o when typing this key value. 
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The following example shows how to create a simple semaphore set of three, using the utility 
program ./semop: 

$ ./semop -k0xFEEDF00D -c3 
-C 0XFEEDF00D => IPC ID 131072 
-c 3 : Created semaphore set -k 0xFEEDF00D 

$ 

The - k0xFEEDF00D option specifies the key, which is followed by the create option -c3. The 

value 3 indicates that three semaphores are to be created in the set. To confirm that the set was 

created, invoke the ipcs(1) command. Under FreeBSD, the display appears as follows: 

$ ipcs 
Message Queues: 
T ID KEY MODE OWNER GROUP 

Shared Memory: 
T ID KEY MODE OWNER GROUP 

Semaphores: 
T ID KEY MODE OWNER GROUP 
S 131072 -17960947 --rw-r. ehg ehg 

$ 

The FreeBSD ipcs (1) command displays the key value as a signed decimal value. Hence, 

0xFEEDF00D becomes the decimal value -17960947 in the display. Notice that the IPC ID value 

is shown as 131072 in this display (your IPC ID may differ). 

The created set can be accessed by the utility by IPC key or IPC ID. The following shows how 

the set is accessed by the key value: 

$ ./semop -k0xFEEDF00D -a 
-a 0XFEEDF00D => IPC ID 131072 
There are 3 semaphores in this set. 

$ 

The - a option directs the utility program to access the semaphore set by the last - k key value 

provided. The same set can also be accessed more directly by use of the IPC ID: 

$ ./semop -i131072 -R 
-i 131072 : There are 3 semaphores in this set. 
-R : key 0XFEEDF00D 
-R : IPC ID 131072 
-R : 0 has no SEMJJNDO 
-R : 1 has no SEMJJNDO 
-R : 2 has no SEMJJNDO 

$ 

The option -i131072 identifies the IPC ID of the set, and is enough on its own. The -R option 

was added so that the IPC key value would be reported along with some other information. 
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Destroying Semaphore Sets 
When a semaphore set is no longer required, it must be explicitly destroyed. This is necessary 

because semaphores are not destroyed when a process exits. This is accomplished with the 

semctl(2) function: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semctl(int semid, int semnum, int cmd, . ..)> 

The argument semid contains the IPC ID of the semaphore set that was created or accessed by 

semget (2). The argument semnum identifies which semaphore in the set to operate upon when 

only one semaphore is being accessed. The argument cmd must contain a valid command 

macro constant that specifies the operation to be performed on the semaphore or semaphore 

set. The fourth argument is required for some semctl(2) command operations. In the man(1) 

pages, it is often referred to as the argument arg. 

For commands that operate upon the entire set of semaphores, the argument semnum is 

ignored. For these occasions, semnum can be specified as 0. 

The following is a list of valid semctl(2) commands: 

IPC_STAT Obtains status information about the semaphore set. 

IPC_SET Changes certain attributes of the semaphore set. The semjserm.uid, 

sem_perm.gid, and sem_perm.mode values are the only values that may be 

altered. 

IPC_RMID Removes the semaphore set. 

GETVAL Returns the value of one semaphore in the set. 

SETVAL Changes one semaphore's value in the set. The value is supplied by the 
semun member val. 

GETPID Returns the process ID of the last process to perform an operation on a 

specific semaphore within the set. If no operations have been performed, 
zero is returned. 

GETNCNT Returns the number of processes waiting for a notify on a specific sema¬ 
phore within the set. 

GETZCNT Returns the number of processes waiting for a zero condition on a spe¬ 
cific semaphore within the set. 
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GETALL Fetches all semaphore values from the set. The values are returned to an 

array pointed to by the semun member array. The receiving array must be 

greater than or equal to the number of semaphores in the set. 

SETALL Sets all semaphore values in the set to new values given by the semun 

member array. The array is expected to contain enough values to initial¬ 

ize all semaphores contained within the set. 

When the command is GETVAL, GETNCNT, or GETZCNT, the function semctl(2) returns the cor¬ 

responding value when it is successful. Otherwise, -1 is returned with errno holding the 

error code. 

For all other command values, semctl(2) returns 0 for success. Otherwise, -1 is returned 

with errno holding the error code. 

Listing 24.2 shows a source module that uses the semctl(2) system call to destroy a sema¬ 

phore set. 

LISTING 24.2 semrmid. c—Source Module That Removes a Semaphore Set 

/* semrmid.c */ 

#include "semop.h" 

void 
ctl_rmid(int optch) { 

int z; 

z = semctl(semid,0,IPC_RMID); 
10: if ( z == -1 ) { 
11: fprintf(stde 
12: strerror 
13: exit(1); 
14: } 
15: 
16: semid = -1; 
17: 
18: printf (" -%c\n" 
19: fflush(stdout); 
20: } 

/* This resource is gone now */ 

In Listing 24.2 the IPC_RMID command is executed in line 9. Notice no fourth argument is 

required, and the semnum argument is specified as zero since it is ignored. 

The semaphore set from the preceding section can be removed by IPC key or by IPC ID. The 

following shows how it can be done for IPC ID: 

$ ./semop -i131072 -d 
-i 131072 : There are 3 semaphores in this set. 
-d 

$ 
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The -d option causes the code in Listing 24.2 to be invoked to remove the previously identi¬ 

fied set. Use the ipcs (1) command to verify that the set is gone: 

$ ipcs 
Message Queues: 
T ID KEY MODE OWNER GROUP 

Shared Memory: 
T ID KEY MODE OWNER GROUP 

Semaphores: 
T ID KEY MODE OWNER GROUP 

$ 

Controlling Semaphores 
The previous sections showed how semaphore sets could be created and accessed. This section 

will show you how you can query the set that you have and make changes to it. 

Querying Semaphore Sets 
The semctl(2) function provides the IPC_STAT command to allow you to retrieve information 

about the semaphore set. Of particular interest is the value that indicates how many sema¬ 

phores are in the set and the permission information. Information for IPC_STAT is returned in 

the structure semid_ds, which is shown in the following synopsis: 

struct semid_ds { 
struct ipc_perm sem_perm; 
struct sem *sem_base; 
u_short sem_nsems; 
time_t sem_otime; 
time_t sem_ctime; 

}; 

/* operation permission struct */ 
/* pointer to first semaphore in set */ 
/* number of sems in set */ 
/* last operation time */ 
/* last change time */ 

The structure definition for ipc_perm is repeated for your convenience, as follows: 

struct ipc_perm { 
ushort cuid; /* creator user id */ 
ushort cgid; /* creator group id */ 
ushort uid; /* user id */ 
ushort gid; /* group id */ 
ushort mode; /* r/w permission */ 
ushort seq; /* sequence # (to generate unique msg/sem/shm id) 
key_t key; /* user specified msg/sem/shm key */ 

*/ 

In order to receive this information, you must make use of the fourth argument, of type semun. 

The POSIX standard states that you must define the union semun in your own code. Many 

releases of UNIX define it for you in the include files. The union is defined in the include file 
semop. h for the utility, which is shown in Listing 24.3. 
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LISTING 24.3 semop. h—The Include File That Is Used by the semop Utility Program 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

/* semop.h */ 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<unistd.h> 
<string. h> 
<errno.h> 
<sys/types.h> 
<pwd.h> 
<grp.h> 
<sys/stat.h> 
<sys/ipc.h> 
<sys/sem.h> 

#ifndef HAVE_SEMUN 

union semun { 
int val; 
struct semid_ds *buf; 
u_short *array; 

}; 

#endif 

#define MAX_NSET 16 

extern int semid; 
extern int n_sem; 
extern struct semid_ds sembuf; 

/* Does sys/sem.h define this? */ 

/* Value */ 
/* IPC_STAT info */ 
/* Array of values */ 

/* Max value for n_sem */ 

/* Semaphore IPC ID */ 
/* # of semaphores to a set */ 
/* The last IPC_STAT info */ 

extern void get_set(int optch,key_t key,int createflg); 
extern void ctl_semop(int optch,const char *optarg, 

int sems[],int array[],int flags[],int n); 
extern void ctl_stat(int optch,int rptflag); 
extern void ctl_chmod(int optch,mode_t mode); 
extern void ctl_chown(int optch,const char *user_id); 
extern void ctl_chgrp(int optch,const char *group); 
extern void ctl_rmid(int optch); 
extern void ctl_getval(int optch,int semx); 
extern void ctl_getall(int optch); 
extern void ctl_setval(int optch,int semx,int value); 
extern void ctl_setall(int optch,int array!]); 
extern void ctl_get(int optch,int cmd,int semx); 

extern void usage(void); 
extern int cvt2ulong(const char *str,unsigned long *ulp); 
extern int cvt2array(const char *str,int array!],const char *delim); 
extern int cvt2semops(const char *str,int sems[],int array!],int flags!]); 
extern void report(int optch,key_t key,int flags!]); 

/* End semop.h */ 
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The union is only compiled if the C macro HAVE_SEMUN is not defined. This is defined in the 

Makefile as the compiler command-line argument -DHAVE_SEMUN. Remove this option if you 

need the union defined. 

Listing 24.4 shows the how the semctl(2) function is called for the IPC_STAT command. 

LISTING 24.4 semstat .c—-Source Module That Uses the IPC_STAT Command of semctl(2) 

1: /* semstat.c */ 
2: 
3: #include "semop.h" 
4: 
5: struct semid_ds sembuf; /* Used for IPC_STAT/IPC_SET */ 
6: 
7: /* 
8: * Return user ID string : 
9: * / 

10: static char * 
11: user_id(uid_t uid) { 
12: struct passwd *pw = getpwuid(uid); 
13: 
14: return !pw ? "?" : pw->pw_name; 
15: } 
16: 
17: /* 
18: * Return group ID string : 
19: */ 
20: static char * 
21: group_id(gid_t gid) { 
22: struct group *gr = getgrgid(gid); 
23: 
24: return !gr ? "?" : gr->gr_name; 
25: } 
26: 
27: /* 
28: * Get status on semaphore set : 
29: */ 
30: void 
31: ctl_stat(int optch,int reportflg) { 
32: int z; 
33: union semun un; 
34: 
35: un.buf = &sembuf; 
36: 
37: z = semctl(semid,0,IPC_STAT,un); 
38: if ( z == -1 ) { 

39: fprintf(stderr,"%s: semctl(semid=%d,IPC_STAT)\n", 
40: strerror(errno),semid); 
41: exit(1); 
42: } 
43: 
44: if ( reportflg == 1 ) { 
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45 
46 
47 
48 
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50 
51 
52 
53 
54 
55 
56 
57 
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59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

printf(" -%c {\n" 
11 sem_nsems = %d\n" 
11 sem_perm {\ n" 
" cuid = %d (%s)\n" 
" cgid = %d (%s)\n", 
optch, 
(int)sembuf.sem_nsems, 
(int)sembuf.sem_perm.cuid, 
user_id(sembuf.sem_perm.cuid), 
(int)sembuf.sem_perm.cgid, 
group_id(sembuf.sem_perm.cgid)); 

printf( 
" uid = %d (%s)\n" 
" gid = %d (%s)\n" 
" mode = 0%03o\n" 
" key = 0x%081X\n" 

} 5 \ n" 
" } 5 \ n", 
(int)sembuf.sem_perm.uid, 
user_id(sembuf.sem_perm.uid), 
(int)sembuf.sem_perm.gid, 
group_id(sembuf.sem_penm.gid), 
(int)sembuf.sem_perm.mode & 0777, 
(long)sembuf.sem_perm.key); 

fflush(stdout); 
} 

/* 

* Check that our idea of set size agrees with actual : 
*/ 

if ( reportflg == -1 ) /* -a option call? */ 
n_sem = sembuf.sem_nsems; /* Yes, adjust for actual count */ 

else if ( n_sem != sembuf.sem_nsems ) { 
fflush(stdout); 
fprintf(stderr," WARNING: # semaphores in set is %d\n", 

sembuf.sem_nsems); 
fflush(stderr); 
n_sem = sembuf.sem_nsems; /* Adjust for actual count */ 

The section of code that is important to the discussion is found in lines 31-42. The union 

named un is declared in line 33. The address of the external buffer of type struct semid_ds is 

pointed to in the union in line 35. The union un is passed as the fourth argument to the 

semctl(2) function in line 37. 

The struct semid_ds sembuf is declared externally in this module in line 5. The values placed 

here are also used by other modules that perform the IPC_SET operation. 

The following example uses the utility program . /semop to create a new semaphore set, and 

invokes I PC STAT on it. 
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$ ./semop -k0xFEEDF00D -c3 -s 
-C 0XFEEDF00D => IPC ID 196608 
-c 3 : Created semaphore set -k 0XFEEDF00D 
•s { 

sem_nsems = 3 
sem_perm { 

cuid = 1001 (ehg) 
cgid = 1001 (ehg) 
uid = 1001 (ehg) 
gid = 1001 (ehg) 
mode = 0640 
key = 0XFEEDF00D 

}; 
}; 

$ 

The options -k and -c create the set. Option -s requests the IPC_STAT command, and the 

most important values are reported to standard output. The mode value was affected by the 

current umask(2) in effect, due to the umask(2) calls that were made in lines 17-19 of Listing 

24.1. The mask that was in effect was 

$ umask 
0027 
$ 

Keep this semaphore set around for the subsequent sections. 

Changing Semaphore Access 
After the semaphore set is created, it may be necessary to modify the ownership of the sema¬ 

phore or change its permission bits. The IPC_SET command of the semctl(2) function allows 

you to make these changes. Listing 24.5 shows how IPC_SET is used. 

LISTING 24.5 semchmod.c—Source Module That Uses the IPC_SET Command of semctl(2) 

1: /* semchmod.c */ 
2: 
3: #include "semop.h" 
4: 
5: void 
6: ctl_chmod(int optch,mode_t mode) { 
7: int z; 
8: union semun un; 
9: 
10: un.buf = &sembuf; /* Pointer to buffer */ 
11: sembuf.sem_perm.mode = mode; /* Change the mode */ 
12: 

13: z = semctl(semid,0,IPC_SET,un); /* Change mode value */ 
14: if ( z == -1 ) { 
15: fprintf(stderr,"%s: semctl(semid=%d,IPC_SET)\n", 
16: strerror(errno),semid); 
17: exit(1); 
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18: } 
19: 
20: printf(" -%c 0%03o\n",optch,mode); 
21: fflush(stdout); 
22: } 

The function ctl_chmod () is called upon to change the permission bits (mode) of the sema¬ 

phore set within the utility. Again, the union is declared in line 8, and the buffer pointer is 

established in line 10. The permission bits in the external variable sembuf are altered in line 

11. Line 13 invokes the semctl(2) function to cause the permission bit changes to occur. 

The following example accesses the previous semaphore set and changes the permissions using 

the -m option. Note the careful use of the leading zero in 0600 to specify the value in octal 

notation. The - s option follows to display the new values for this set: 

$ ./semop -k0xFEEDF00D -a -m 0600 -s 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-m 0600 
-s { 

sem_nsems = 3 
sem_perm { 

cuid = 1001 (ehg) 
cgid = 1001 (ehg) 
uid = 1001 (ehg) 
gid = 1001 (ehg) 
mode = 0600 
key = 0XFEEDF00D 

}; 
}; 

$ 

Indeed the output shows that the new mode value is 0600. Additional source code for the util¬ 

ity that allows the owner and group to be altered is shown in Listing 24.6. 

LISTING 24.6 semchown. c—Source Code That Changes Owner and Group of a Semaphore Set 

1: /* semchown.c */ 
2: 
3: #include "semop.h" 
4: 
5: static uid_t 
6: srch_uid(const char *user_id) { 
7: struct passwd *pw = getpwnam(user_id); 
8: 
9: if ( !pw ) 
10: return (uid_t)(-1); 
11: return pw->pw_uid; 
12: } 
13: 
14: void 
15: ctl_chown(int optch,const char *user_id) { 
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16 
17 
18 
19 
20 
21 

22 
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33 
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41 
42 
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51 

uid_t uid = srch_uid(user_id); 

if ( uid == (uid_t)(-1) ) { 
fprintf(stderr,"Unknown userid: -%c %s\n",optch,user_id); 
exit(1); 

} 

sembuf.sem_perm.uid = uid; /* Change userid */ 

/* Cheat: change uid by using ctl_chmod() */ 
ctl_chmod(optch,sembuf.sem_perm.mode); 

static gid_t 
srch_gid(const char *group_id) { 

struct group *gr = getgrnam(group_id); 

if ( !gr ) 
return (gid_t)(-1); 

return gr->gr_gid; 

void 
ctl_chgrp(int optch,const char *group) { 

gid_t gid = srch_gid(group); 

if ( gid == (gid_t)(-1) ) { 
fprintf(stderr,"Unknown group: -%c %s\n",optch,group); 
exit(1); 

} 

sembuf.sem_perm.gid = gid; /* Change group */ 

/* Cheat: change gid by using ctl_chmod() */ 
ctl_chmod(optch,sembuf.sem_perm.mode); 

The functions ctl_chown () and ctl_chgrp () are called for the utility options -x and -y, 

respectively. The actual changes are made in lines 23 and 47. The function calls in lines 26 and 

50 cheat by pretending to change the mode value, but pass the existing mode value instead. 

This causes the changes in variable sembuf to be written to the semaphore set using IPC_SET. 

Querying the Value of a Semaphore 
The semctl(2) command GETVAL allows a program to query the current value of a specific 

semaphore within a set. Listing 24.7 shows a source module that performs this function for 

the semop utility program. 
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LISTING 24.7 semgetval.c—Source Module That Uses GETVAL with semctl(2) 

1: /* semgetval.c */ 
2: 
3: #include "semop.h" 
4: 
5: void 
6: ctl_getval(int optch,int semx) { 
7: int z; 
8: union semun un; 
9: 
10: z = semctl(semid,semx,GETVAL,un); 
11: if ( z == -1 ) { 
12: fprintf(stderr,"%s: -%c %d\n",strerror(errno),optch,semx); 
13: exit(1); 
14: } 
15: 
16: printf(" -%c %d => %d\n",optch,semx,z); 
17: fflush(stdout); 
18: } 

The ctl_getval() function is called by the -g n option of the utility. The value n represents 

the zero-based semaphore number within the set, which is passed to ctl_getval() in the 

argument semx in Listing 24.7. The semctl(2) call is made in line 10. Since the semaphore 

value cannot be negative, the value -1 represents an error return value, which is tested for in 

line 11. Otherwise, the semaphore number and its value are reported in line 16. 

The following example reports the values of semaphore 0 and semaphore 2: 

$ ./semop -k0xFEEDF00D -a -g0 -g2 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-g 0 => 0 
-g 2 => 0 

$ 

Query the Entire Semaphore Set of Values 
Querying any semaphore is a snapshot view of the values, since these values could be chang¬ 

ing. If you need a snapshot of all of the semaphores, the GETALL control function provides a 

consistent result. Listing 24.8 shows how the GETALL command is used. 

LISTING 24.8 semgetall.c—Source Module That Uses the GETALL Command with semctl(2) 

1: /* semgetall.c */ 
2: 
3: #include "semop.h” 
4: 
5: void 
6: ctl_getall(int optch) { 
7: int z; 
8: int x; 
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9: u_short array[MAX_NSET]; 
10: union semun un; 
11: 
12: un.array = &array[0]; 
13: z = semctl(semid,0,GETALL,un); 
14: if ( z == -1 ) { 
15: fprintf(stderr,"%s: -%c\n",strerror(errno),optch); 
16: exit(1); 
17: } 
18: 
19: for ( x=0; x<n_sem; ++x ) 
20: printf(" -%c : semaphore # %d = %u\n",optch,x,array[x]); 
21: 
22: fflush(stdout); 
23: } 

The function ctl_getall() is called when the . /semop option -G is encountered. An array is 

declared in line 9 to receive all of the semaphore values. The semun union is pointed to this 

array in line 12. The GETALL command is invoked in line 13. If the call succeeds, the results 

are reported in lines 19 and 20. 

The following shows GETALL in action: 

$ ./semop -k0xFEEDF00D -a -G 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-G : semaphore #0=0 
-G : semaphore #1=0 
-G : semaphore #2=0 

$ 

Since you have not yet initialized this set of semaphores with values, you know that these are 

the default values for new semaphores under FreeBSD. Some UNIX platforms use different 

defaults, however. 

Change the Value of a Semaphore 
Sometimes it is necessary to adjust a specific semaphore to a specific value. This can be accom¬ 

plished with the semctl(2) SETVAL command, as you can see in Listing 24.9. 

LISTING 24.9 semsetval.c—Source Module That Invokes the semctl(2) SETVAL Command 

1: /* semsetval.c */ 
2: 
3: #include "semop.h" 
4: 
5: void 
6: ctl_setval(int optch,int semx,int value) { 
7: int z; 
8: union semun un; 
9: 
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10: un.val = value; 
11: z = semctl(semid,semx,SETVAL,un); 
12: if ( z == -1 ) { 
13: fprintf(stderr,"%s: -%c%d=%d\n", 
14: strerror(errno),optch,semx,value); 
15: exit(1); 
16: } 
17: 
18: printf(" -%c %d=%d\n" ,optch,senix, value); 
19: ftlush(stdout); 
20: } 

The ctl_setval() function is invoked when the -v n=x option is encountered. The sema¬ 

phore number n is passed as the argument semx, while the value x is passed as the argument 

value. The union has the value assigned to its val member, which is then passed in the call in 

line 11. An example of the SETVAL being used is shown as follows: 

$ ./semop -k0xFEEDF00D -a -v2=13 -G 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-v 2=13 
-G : semaphore #0=0 
-G : semaphore #1=0 
-G : semaphore # 2 = 13 

$ 

Using the -v option, semaphore 2 in the set was assigned the new value of 13. This was 

reported by the -G option, which followed on the command line. 

Change the Entire Semaphore Set of Values 
The semctl(2) function allows the application writer to establish the values of all semaphores 

in one atomic operation, using the SETALL command. This command is used in Listing 24.10. 

LISTING 24.10 semsetall.c—Source Module That Uses the semctl(2) SETALL Command 

1: /* semsetall.c */ 
2: 
3: #include "semop.h" 
4: 
5: void 
6: ctl_setall(int optch.int array!]) { 
7: int z; 
8: int x; 
9: u_short ua[MAX_NSET]; 
10: union semun un; 
11: 
12: for ( x=0; x<n_sem; ++x ) 
13: ua[x] = (u_short)array[x]; 
14: 
15: un.array = &ua[0]; 
16: z = semctl(semid,0,SETALL,un); 
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17: if ( z == -1 ) { 
18: fprintf(stderr,"%s: -%c %d,%d,%d\n", 
19: strerror(errno),optch,array[0],array[1],array[2]); 
20: exit(1); 
21: } 
22: 
23: printf(" -%c %d,%d,%d\n",optch,array[0],array[1],array[2]); 
24: fflush(stdout); 
25: } 

The . /semop utility calls ctl_setall() when the option -V is encountered. This option is fol¬ 

lowed by a comma-separated list of initial values for the entire semaphore set. The number of 

values must exactly match the set. The array of values is passed in the argument array in 

line 6. A conversion from int type to u_short type is made in lines 12 and 13 for the purpose 

of the semctl(2) call in line 16. The address of the array is established in the union member 

array (line 15). 

The following example changes all three semaphores in the existing set that you have 
been using: 

$ ./semop -k0xFEEDF00D -a -V9,8,7 -G 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-V 9,8,7 
-G : semaphore #0=9 
-G : semaphore #1=8 
-G : semaphore #2=7 

$ 

The option -V9,8,7 sets the values for semaphores 0, 1, and 2 in the set of three. 

Querying the Process ID for a Semaphore 
When you are debugging a complex set of applications that modify a set of semaphores, it is 

sometimes useful to be able to determine which process was the last one to modify a sema¬ 

phore. The GETPID command of the semctl(2) system call performs this function. The source 

code in Listing 24.11 combines code that uses GETPID and some other information return 
commands. 

LISTING 24.11 ctlget.c—Source That Uses the GETPID Command of semctl(2) 

1: /* ctlget.c */ 
2: 
3: #include "semop.h" 
4: 
5: void 
6: ctl_get(int optch,int cmd,int semx) { 
7: int z; 
8: union semun un; 
9: 
10: z = semctl(semid,semx,cmd,un); 
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11: if 
12: 
13: 
14: 
15: 
16: 
17: } 
18: 
19: printfC -%c %d => %d\n",optch,semx,z); 
20: fflush(stdout); 
21: } 

The command GETPID is passed in the argument cmd of function ctl_get () in line 6 when the 

-p or -P options are used on the command line. The specific semaphore number is specified in 

the argument semx, which is later used in the call to semctl(2) in line 10. Since the value 

being returned for all acceptable commands cannot be negative, the value -1 still identifies an 

error return in line 11. The returned value is reported in line 19, when the semctl(2) call is 

successful. 

The following example shows how to report the process ID for semaphore number 2 and 0 

using the - p option: 

$ ./semop -k0xFEEDF00D -a -p2 -p0 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-p 2 => 2347 
-p 0 => 2346 

$ 

If you are following along and doing these commands on your system, you may see zeros 

reported instead. Zero values indicate that no process has done a wait, zero, or notify opera¬ 

tion on your semaphore (you will do this later in the chapter). This example was preceded by 

a few semaphore operations to provide non-zero process ID results. 

The following example uses the -P convenience option to invoke GETPID on each semaphore 

in the set: 

$ ./semop -k0xFEEDF00D -a -P 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-p 0 => 2346 
-p 1 => 2348 
-p 2 => 2347 

$ 

Query the Number of Processes Waiting for Notifies 
The GETNCNT command allows your process to query how many processes are waiting on a 

particular semaphore. Some applications may be able to make use of this information in order 

to gauge the workload being processed. 

( z == -1 ) { 
fprintf(stderr,"%s: -%c%d\n", 

strerror(errno), 
optch, 
semx); 

exit(1); 
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The GETNCNT requests are invoked with the -n option. The module shown in Listing 24.11 

handles this information request. The following command lists how many processes are wait¬ 

ing on the third semaphore (semaphore number 2): 

$ ./semop -k0xFEEDF00D -a -n2 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-n => 0 

$ 

The returned value of zero indicates that no processes are currently waiting on this semaphore. 

Query the Number of Processes Waiting for Zero 
In addition to waiting and notifying semaphores, a process can also perform a wait for zero 

operation. This might be used to report that a particular resource is exhausted, for example. 

The GETZCNT command allows the caller to determine how many processes are waiting for zero 

on a particular semaphore. The GETZCNT operation is also handled by the code shown in 

Listing 24.11. The following example shows how the -z option is used to report the number 

of processes waiting for zero on semaphore 0: 

$ ./semop -k0xFEEDF00D -a -z0 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-z => 0 

$ 

In this example, there are no processes waiting for a zero on semaphore 0 of this set. 

Using Semaphores 
The previous section focused on affecting changes in the semaphore and set attributes, and on 

obtaining information. This section will cover the aspects of using semaphores to perform the 
following: 

• Wait operations 

• Notify operations 

• Wait for zero operations 

These operations work on the entire set of semaphores or on a subset. You can also operate on 

individual semaphores in the set according to your application needs. 

Semaphore operations are performed by the semop(2) system call. Its function synopsis is as 
follows: 

//include <sys/types.h> 
//include <sys/ipc.h> 
//include <sys/sem.h> 

int semop(int semid, struct sembuf array[], unsigned nops); 
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The argument semid contains the IPC ID of the semaphore set, which is returned by the 

semget (2) function. The array [ ] argument contains the set of semaphore operations that are 

to be performed, while nops indicates how many elements exist in the array [ ]. 

The semop(2) function returns 0 when successful. The value -1 is returned when an error 
code is returned in errno. 

Semaphore operations are described in the structure sembuf, which is shown in the following 
synopsis: 

struct sembuf { 
u_short sem_num; 
short sem_op; 
short sem_flg; 

}; 

The member sem_num selects the semaphore number within the set. There is no requirement 

that semaphores be accessed in any particular order. The member sem_op determines the sem¬ 

aphore operation to be performed. This signed number affects the semaphore as follows: 

sem_op < 0 Wait on the semaphore 

sem_op = 0 Wait for zero to occur 

sem_op > 0 Notify the semaphore 

/* semaphore number */ 
/* semaphore operation */ 
/* operation flags */ 

For example, if one semaphore represents bowling balls, you would use the value -1 to obtain 

one. If you want to obtain four at one time, then you would use -4 as the sem_op value. In this 

manner, if there were only three available, you would wait until at least four bowling balls 

became available. 

Conversely, to return four bowling balls, your sem_op value would be the value +4. If you were 

returning only one ball, then +1 would be the sem_op value. This operation may notify other 

processes that their wait request has now been satisfied. 

A process may choose to wait for the zero count to be reached. If you have written an applica¬ 

tion that monitors the number of free bowling balls available, then a sem_op value of zero 

would cause the semop (2) call to return only when the count has reached zero. This would 

then allow your application to warn you that there are now no free bowling balls available. 

The sem_f lg member allows you to specify additional option flags for each semaphore opera¬ 

tion. These include 

0 No flags. 

IPCJJOWAIT Does not suspend execution of the calling program if this semaphore 

operation cannot be satisfied. Error EAGAIN is returned if the operation 

was unsuccessful. 

SEMJJNDO Adjusts the undo structure for this semaphore when the operation suc¬ 

ceeds. 
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The IPC_NOWAIT flag allows your application to attempt the operation, but not have its execu¬ 

tion suspended if it must wait. While the flag applies to individual semaphores, the returned 

error EAGAIN indicates that no semaphore operations succeeded, although only one semaphore 

may have used the IPC_NOWAIT flag. 

The SEM_UND0 flag allows you to plan for semaphore recovery, and will be discussed later in 

the chapter. 

Waiting on Semaphores 
A wait operation decrements the count of the semaphore counter. If the count reaches zero, 

then the request suspends the execution of the process (unless the flag SEM_NOWAIT is used for 

the semaphore(s) in question). 

The source module in Listing 24.12 performs all semaphore operations for the . /semop utility 

program for the - o option. 

LISTING 24.12 semop. c—Source Module That Performs semop(2) Operations 

1: /* ctlsem.c */ 
2: 
3: #include "semop.h" 
4: 
5: void 
6: ctl_semop( 
7: int optch, 
8: const char *optarg, 
9: int sems[], 
10: int array!], 
11: int flagsf1, 
12: int n) { 
13: int z; 
14: int x; 
15: int semx; 
16: struct sembuf ops[MAX_NSET]; 
17: 
18: for ( x=0; x<n; ++x ) { 
19: ops[x].sem_num = semx = sems[x]; 
20: ops[x].sem_op = array[x]; 
21: if ( semx >= 0 && semx < n_sem ) 
22: ops[x].sem_flg = semx < n_sem 
23: ? flagsfsemx] 
24: : 0; 
25: } 
26: 
27: z = semop(semid,ops,n); 
28: if ( z == -1 ) { 

29: fprintf(stderr,"%s: -%c %s\n",strerror(errno),optch,optarg); 
30: exit(1); 
31: } 
32: 

/* Semaphore # */ 
/* Semaphore operation */ 

/* In range ? */ 
/* Semaphore flags */ 
/* else use zero */ 

/* Iterator */ 
/* Semaphore number */ 
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33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: fflush(stdout); 

for ( x=0; x<n; ++x ) 

printf(" -%c %s =>",optch,optarg); 

putchar('\n1); 

printf(" {%d,%+d,%s}", 
ops[x].sem_num, 
ops[x].sem_op, 
ops[x].sem_flg ? "SEMJJNDO" : "0"); 

43: } 

The ctl_semop() function receives the list of semaphores to act upon in the argument sems[ ] 

(line 9). The array [ ] argument contains the list of semaphore operations to perform. The 

argument flags [ ] (line 11) contains a list of flags in semaphore set order, while the last argu¬ 

ment n indicates how many operations there are to perform. 

The semaphore operations array is declared in line 16, named ops[ ]. The loop in lines 18-25 

populates this structured array. Line 19 assigns the semaphore number within the set. Line 20 

assigns the semaphore operation. Line 21 makes certain that the semaphore number is in 

range, and then retrieves the flags value and assigns it to the serrjf lg member. 

Once the ops[ ] array is ready, it is passed to the semop(2) function in line 27, along with the 

count value n. Lines 33-42 display the operation performed for the benefit of the utility 

program. 

The . /semop utility program uses the following format for specifying semaphore operations, 

after the initial - o option: 

<semaphore_number>=<semaphore_op>[{u|U}] 

To wait for 4 bowling balls, using semaphore 0, with no SEMJJNDO, the following option would 

be given: 

-o 0=-4u 

Or you can rely on the current “flags” value, and specify 

-o 0=-4 

To combine operations, separate them by commas: 

-0 0=-4,2=-1U,1 = -1 

This option specifies to wait with count 4 on semaphore 0 using its current flags value, wait 

with count 1 on semaphore 2 using SEMJJNDO and wait with count 1 on semaphore 1 with its 

current flags value. 

Flags for each semaphore are maintained by the utility and default to 0 (no SEMJJNDO). This 

can be checked using the -R option: 

$ ./semop -k0xFEEDF00D -a -R 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-R : key 0XFEEDF00D 
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-R : IPC ID 196608 
-R : 0 has no SEMJJNDO 
-R : 1 has no SEMJJNDO 
-R : 2 has no SEMJJNDO 

$ 

Once SEMJJNDO has been applied to a semaphore, the utility program remembers this until you 

disable it again by a following - u option or semaphore - o operation using the trailing u. 

For the following examples, initialize your semaphores as shown here: 

$ ./semop -k0xFEEDF00D -a -V10,5,11 -G 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-V 10,5,11 
-G semaphore # 0 = 10 
-G semaphore # 1 = 5 
-G semaphore # 2 = 11 

$ 

The semaphore values should be 10, 5, and 11 for semaphores 0, 1, and 2, respectively. The -G 

option permits you to check the current value of the semaphores. 

The following wait operations will request 3 from semaphore 0, and 2 from semaphore 1, and 

leave semaphore 2 as it is (do not use SEMJJNDO here): 

$ ./semop -k0xFEEDF00D -a -o 0=-3,1=-2 -G 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-o 0=-3,1=-2 => {0,-3,0} {1,-2,0} 
-G : semaphore #0=7 
-G : semaphore #1=3 
-G : semaphore #2=11 

$ 

The -o option requests a semop(2) call, while the final -G option shows us the final results. 

Notice how semaphore 0 was decremented by 3, and semaphore 1 was decremented by 2 as 

requested. The display shows in { } the semaphore operations that were submitted to 

semop(2). 

Open a second terminal session, and try the following semaphore wait: 

$ x/semop -k0xFEEDF00D -a -o 0=-6,1=-4 -G 
-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 

If your semaphore values match what was shown in the previous example, your utility pro¬ 

gram should appear to hang here. This happens because you have requested 4 from sema¬ 

phore 1, but its current count is 3. While that application waits, in another terminal session, 

execute the following: 

$ ./semop -k0xFEEDF00D -a -0 1=+2 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-o 1=+2 => {1,+2,0} 

$ 



Chapter 24 • SEMAPHORES 505 

When this command executes, semaphore 1 is notified with a count of +2 putting the sema¬ 

phore count up to 5 from the current value of 3. The value 5 will satisfy the other request, so 

your waiting process is able to return from semop(2) successfully, as shown below: 

$ ./semop -k0xFEEDF00D -a -0 0=-6,1=-4 -G 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-o 0=-6,1=-4 => {0,-6,0} {1,-4,0} 
-G : semaphore #0=1 
-G : semaphore #1=1 
-G : semaphore #2=11 

$ 

Notifying Semaphores 
Adding a count to the semaphore notifies the semaphore list. The UNIX kernel maintains a list 

of all processes that are waiting for notification. Recall that the semctl(2) operation GETNCNT 

returns the number of processes on this list. When a notify occurs, the entire list of processes 

is re-tested to see if the semaphore operation for that process can succeed. 

Warning 

Applications that have a large number of processes waiting on a given semaphore may suffer system 
performance problems. Each notify operation on a semaphore awakens each process to re-test the 
semaphore. With a high number of processes and swapping, this can create poor system perfor¬ 
mance. 

When possible, design your application so that only a few processes will wait on a given semaphore. 

The preceding section showed a simple notify. You can also notify multiple semaphores at 

once, as shown here: 

$ ./semop -k0xFEEDF00D -a -o 2=1,0=3 -G 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-0 2=1,0=3 => {2,+1,0} {0,+3,0} 
-G semaphore # 0 = 4 
-G semaphore # 1 = 1 
-G semaphore # 2 = 12 

$ 

This example adds +1 to semaphore 2 (the + sign does not have to be entered), and +3 to sem¬ 

aphore 0. The -G option reports the final results. 

Waiting for Zero 
Processes that want to be notified when the semaphore count reaches zero can specify 0 for the 

semaphore operation. Note, however, that this operation is different from other operations 

because it is just a snapshot notification. By the time the execution returns from a zero notifi¬ 

cation, another process may have notified the semaphore again. 
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The . /semop command can wait for a zero count by specifying the 0 for the semaphore opera¬ 

tion: 

$ ./semop -k0xFEEDF00D -a -0 1=0 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 

This process will appear to hang until you perform enough waits to bring the semaphore count 

to 0 for semaphore 1 of this set. 

Semaphore Undo Processing 
Semaphore counts manage a count of a particular resource. To keep this count accurate, each 

wait on a semaphore must eventually be matched by a corresponding notify. For example, if 

you have 30 bowling balls managed by one semaphore, eventually when no bowling balls are 

in use, the count must increase back to 30. Otherwise, your application will lose track of its 

resources. 

When a process runs, however, an unexpected abort or exit can occur. If your bowling ball 

reservation program performed a semaphore wait for 4 balls and then aborted, your sema¬ 

phore count will be left short by 4 balls. You would need to manually tweak the semaphore 

using the . / semop utility to recover from this problem. 

The UNIX kernel maintains SEIVMJNDO structures for each process. This permits a process to 

clean up its semaphore faux pas. The use of SEIVMJNDO must, however, be explicitly requested 

as a flag in sem_f lg of the semaphore operation. When SEM_UND0 is enabled, each semaphore 

wait causes a corresponding SEIVMJNDO count to be incremented. Each notify is tracked by a 

negative SEIVMJNDO count. If the program should exit before restoring the semaphores used 

with SEIVMJNDO, these recovery values are applied to the semaphores upon process termination. 

For example, assume the following initial semaphore states 

$ ./semop -k0xFEEDF00D -a -V30,20,6 -G 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-V 30,20,6 
-G : semaphore # 0 = 30 
-G : semaphore # 1 = 20 
-G : semaphore #2=6 

$ 

There are 30 bowling balls, 20 pairs of bowling shoes, and 6 bowling alleys. Now run a sema¬ 

phore wait operation, requesting 4 bowling balls, 4 pairs of shoes, and 1 bowling alley, with 

the SEIVMJNDO flag enabled (using -U): 

$ ./semop -k0xFEEDF00D -a -U -0 0=-4,1=-4,2=-1 -G 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-U : 0 uses SEMJJNDO 
-U : 1 uses SEIVMJNDO 
-U : 2 uses SEIVMJNDO 

-0 0= -4,1 = -4,2= -1 => {0, -4,SEM_UND0} {1 ,-4,SEIVMJNDO} {2,-1 .SEIVMJNDO} 



Chapter 24 • SEMAPHORES 507 

-G : semaphore # 0 = 26 
-G : semaphore # 1 = 16 
-G : semaphore #2=5 

$ 

The -U option sets SEMJJNDO as the default for all semaphore operations. Notice how the wait 

operation successfully returned, and the -G option reported the final counts of 26, 16, and 5 

for the semaphores. However, now check the semaphores again with the -G option: 

$ ./semop -k0xFEEDF00D -a -G 

-a 0XFEEDF00D => IPC ID 196608 
There are 3 semaphores in this set. 
-G : semaphore # 0 = 30 
-G : semaphore # 1 = 20 
-G : semaphore #2=6 

$ 

The counts have been restored after the prior . / semop process terminated. This was done by 

the UNIX kernel because the SEM_UND0 counts were being maintained. Think of SEMJJNDO 

keeping opposite counts for each semaphore operation. 

If a wait operation of -4 is performed, +4 is added to the SEMJJNDO value. If a notify of +3 is 

performed, the value -3 is added to the SEM_UND0 value (subtracting 3). If these were the last 

operations performed, the final SEMJJNDO value at process termination would be +1, requiring 

the kernel to perform a notify of +1 to restore the semaphore. 

As convenient as the SEM_UND0 feature may be, it is not always wise to use it. When a binary 

semaphore is being used to lock a shared memory table, for example, is it wise to have the 

table unlocked when the lock holding process aborts? The aborting process may have left the 

shared memory table in an unusable state. It may be preferable to have other processes hang 

rather than proceed. In this manner, the administrator can take corrective action and restart 

the application from a known and trusted state. 

The semop Utility Program 
The next few listings complete the source listings for the utility program semop. Listing 24.13 

lists the main program. 

LISTING 24.13 main. c—The Main Program Source Listing for the semop Utility 

1: /* main.c */ 
2: 
3: #include "semop.h" 
4: 
5: int semid = -1; /* No default IPC ID */ 
6: int n_sem = 3; /* Default # semaphores in a set */ 
7: 
8: /* 
9: * semop utility main program : 
10: * 

11: * Use './semop -h' for help. 
12: */ 
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13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

int 
main(int argc,char **argv) { 

int z; 
int x; 
int rc = 0; 
int n; 
key_t key = 0XFEEDF00D; 
int sems[MAX_NSET]; 
int array[MAX_NSET]; 
int flags[MAX_NSET]; 
unsigned long ul; 
const char cmdopts[] = "hk: 

/* Option character/status */ 
/* Iterator */ 
/* Return code */ 
/* # of values in array */ 
/* Default IPC key */ 
/* Array of semaphore numbers */ 
/* Array of integer values */ 
/* Flags for each semaphore */ 
/* unsigned value */ 
c: i: Q: sm: dg: Gv: V: p: Pn: z: uURx: y:11; 

for ( x=0; x<MAX_NSET; ++x ) 
flags[x] = 0; /* Initialize with no SEMJJNDO */ 

while ( Ire && (z = getopt(argc,argv,cmdopts)) != -1 ) 
switch ( z ) { 
case 'h' : /* -h ; usage info */ 

usage(); 
return 0; 

case ‘k' : /* -k IPCkey[,n] ; IPC Key, n_sem */ 
if ( cvt2ulong(optarg,&ul) ) 

goto badevt; 
key = (key_t) ul; 
break; 

case 'a' : /* 
get_set(z,key,0); /* 
ctl_stat(z,-1); /* 
printf(" There are %d 

n_sem); 
break; 

-a ; access set */ 
Locate IPC ID */ 
Just fill sembuf & fix n_sem */ 
semaphores in this set.\n", 

case 'c' : /* -c n ; create set */ 
if ( cvt2ulong(optarg,&ul) ) 

goto badevt; 
n_sem = (int)ul; 
get_set(z,key,1); /* Create set */ 
ctl_stat(z,0); /* Just fill sembuf */ 
printf(" -c %d : Created semaphore set -k 0x%081X\n", 

n_sem,(long)key); 
break; 

case 'i' : /* -i IPCID ; IPC ID */ 
if ( cvt2ulong(optarg,&ul) ) 

goto badevt; 
semid = (int) ul; 
ctl_stat(z,-1); /* Just report failure */ 
printf(" -i %d : There are %d semaphores in this set.\n" 

semid,n_sem); 
break; 
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66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 

case 'o' : /* -o m[,n[,o]] ; semop(2) */ 
if ( (n = cvt2semops(optarg,sems,array,flags)) < 1 ) 

goto badcvt; 
ctl_semop(z,optarg,sems,array,flags,n); 
break; 

case 's' : /* -s ; IPC_STAT */ 
ctl_stat(z,1); 
break; 

case 1m' : /* -m mode ; IPC_SET */ 
if ( cvt2ulong(optarg,&ul) ) 

goto badcvt; 
ctl_chmod(z,(mode_t)ul); 
break; 

case 'x' : /* -x userid ; IPC_SET */ 
ctl_chown(z,optarg); 
break; 

case 'y' : /* -g group ; IPC_SET */ 
ctl_chgrp(z,optarg); 
break; 

case 'd' : /* -d ; IPC_RMID */ 
ctl_rmid(z) ; 
break; 

case 'g' : /* -g n ; IPC_GETVAL */ 
if ( cvt2ulong(optarg,&ul) ) 

goto badcvt; 
ctl_getval(z,(int)ul); 
break; 

case 'G' : /* -G ; IPC_GETALL */ 
ctl_getall(z); 
break; 

case 'V : /* -v n=x ; IPC_SETVAL */ 
if ( (n = cvt2array(optarg,array,"=")) != 2 ) 

goto badcvt; 
ctl_setval(z,array[0],array[1]); 
break; 

case 'V' : /* -V m,n,o ; IPC_SETALL */ 
if ( (n = cvt2array(optarg,&array[0],",")) != n_sem ) 

goto badcvt; 
ctl_setall(z,array); 
break; 

case 'p' : /* -p n 
if ( cvt2ulong(optarg,&ul) ) 

; GETPID */ 
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119 
120 
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168 
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170 
171 

goto badcvt; 
ctl_get(z,GETPID,(int)ul); 
break; 

case 1P' : 
for ( x=0; x<n_sem; ++x ) 

ctl_get(1p',GETPID,x); 
break; 

case 'n' : /* -n 
if ( cvt2ulong(optarg,&ul) ) 

goto badcvt; 
ctl_get(z,GETNCNT,(int)ul); 
break; 

case 'z' : /* -z 
if ( cvt2ulong(optarg,&ul) ) 

goto badcvt; 
ctl_get(ZjGETZCIMT, (int)ul); 
break; 

case 'u' : /* -u 
for ( x=0; x<n_sem; ++x ) 

flags[x] &= ~SEM_UND0; 
report(z,key,flags); 
break; 

case 'Ll' : /* -U 
for ( x=0; x<n_sem; ++x ) 

flags[x] |= SEMJJNDO; 
report(z,key,flags); 
break; 

; GETNCNT */ 

; GETZCNT */ 

; No SEMJJNDO */ 

; SEMJJNDO */ 

case 'R' : 
report(z,key,flags); 
break; 

default : /* Unknown option */ 
rc = 1; 

} 

/* 

* Command line arguments are ignored : 
*/ 

for ( ; optind < argc; ++optind, rc=2 ) 
printf(“Ignored argument '%s'\n",argv[optind]); 

return rc; 

/* 

* Bad numeric conversion : 
*/ 

badcvt: 
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172: fprintf(stderr,"Bad numeric: -%c %s\n",z,optarg); 
173: return 1; 
174: } 

The loop in lines 26 and 27 initializes the flags for the semaphore set to 0. The -U option ORs 

in the flag SEMJJNDO to all members of the flags [ ] array, whereas the -u option removes this 

flag. The -o option individually enables and disables the SEM_UND0 flag, as you find convenient 

to do. With no trailing u or U specified in a semaphore operation, the default is taken from the 

current value in the f lags[ ] array. 

The remainder of the main program is the getopt (3) loop starting in line 29. Each option 

invokes the semaphore operation as it is encountered. Command-line arguments are ignored, 

and warnings of this are issued in lines 163 and 164. It is easy to forget a hyphen. 

Listing 24.14 shows the programming used to perform the various string-to-numeric conver¬ 

sions. These functions support the semaphore option argument parsing operations. 

LISTING 24.14 convrt. c—The Source Listing for Conversions for the semop Utility 

1: /* convrt.c */ 
2: 
3: #include "semop.h" 
4: 
5: /* 
6: * Convert string to unsigned long (any radix) : 

7: */ 
8: int 
9: cvt2ulong(const char *str,unsigned long *ulp) { 
10: char *ep; 
11: unsigned long ul; 
12: 
13: ul = strtoul(str,&ep,0); 
14: if ( *ep != 0 ) 
15: return -1; /* Failed */ 

16: 
17: if ( ulp ) 
18: *ulp = ul; 
19: return 0; /* Success */ 

20: } 
21 : 
22: /* 
23: * Parse and convert up to n_sem values to array : 

24: */ 
25: int 
26: cvt2array(const char *str,int array!],const char *delim) { 
27: char *cp; /* Token pointer */ 
28: int n = 0; /* # of values extracted */ 
29; int m = *delim == '=' ? 2 : n_sem; /* only 2 if using '=' */ 
30: unsigned long ul; /* converted ulong value */ 

31: 
32: for ( cp=(char *)str; n<m && *cp; ++n ) { 
33: ul = strtoul(cp,&cp,0); /* Convert to ulong */ 
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} 

if ( *cp && !strchr(delim,*cp) 
return -1; /* 

array[n] = (int)ul; /* 
if ( *cp ) 

++cp; I* 

) 
Failed conversion */ 
Save ulong value in array 

Skip delimiter */ 

return n; 
} 

/* Return # of values */ 

/* 

* -o 0=-1u,2=-3U,1=1 
★ 

* Translates to: 
* 

* Semaphore 0 does a wait of 1, with no SEMJJNDO 
* Semaphore 2 does a wait of 3, with SEMJJNDO 
* Semaphore 1 does a notify of 1, with current SEMJJNDO flag 
*/ 

int 
cvt2semops(const char *str,int sems[],int array[],int flags[]) { 

int x = 0; 
int semx; /* Semaphore index */ 
char *ep = (char *)str; 
unsigned long ul; 
long lg; 

for ( x=0; *ep && x<n_sem; ++x ) { 
/* 

* Extract the semaphore # : 
*/ 

ul = strtoul(ep,&ep,0); 
if ( *ep != '=' ) 

return -1; /* Bad format */ 
semx = semsfx] = (int) ul; /* Semaphore # */ 
++ep; /* Skip '=' */ 

/* 

* Extract the Semaphore operation : 
*/ 

lg = strtol(ep,&ep,0); 
if ( *ep != 0 && *ep != && *ep != 'u* && *ep != 'U' 

return -1; /* Bad format */ 
array[x] = (int) lg; /* Semaphore operation */ 

/* 

* Process optional trailing 'u'|'U' for flags[] : 
*/ 

if ( *ep == 1u1 ) { 

flags[semx] &= -SEMJJNDO;/* Remove SEMJJNDO */ 
++ep; /* Skip 'u' */ 

} else if ( *ep == 'U' ) { 

*/ 
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86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 

flags[semx] |= SEMJJNDO;/* Add SEMJJNDO */ 
++ep; /* Skip 'U' */ 

/* 

* Check current delimiter : 
*/ 

if ( *ep != 0 ) { 
if ( *ep != ) 

return -1; /* 
++ep; /* 

} 
} 

Bad format */ 
Skip delimiter */ 

return x; 

Listing 24.15 shows the module that performs the reporting when the -R option is used. 

LISTING 24.15 report. c—The -R Reporting Function of the semop Utility 

1: /* report.c */ 
2: 
3: #include 11 semop. h" 
4: 
5: /* 
6: * Report SEM_UND0 status : 
7: */ 
8: void 
9: report(int optch,key_t key,int flags!]) { 
10 int x; 
11 
12 if ( optch == ‘R‘ ) { 
13 /* 
14 * This report only performed for -R option : 
15 */ 
16 printfC -%c : key 0x%081X\n",optch,(long)key) 
17 printfC -%c : IPC ID %d\n",optch semid); 
18 } 
19 
20 for ( x=0; x<n_sem; ++x ) 
21 printfC -%c : %d %s SEM_UND0\n", 
22 optch, 
23 x, 
24 flags!x] & SEMJJNDO ? "uses'1 : "has no"); 

25 fflush(stdout); 
26 fflush(stdout); 
27 } 

Finally, Listing 24.16 shows the usage () function for completeness. 
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LISTING 24.16 usage.c—The usage() Function for the semop Utility Program 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

/* usage.c */ 

#include "semop.h11 

/* 

* Display usage instructions : 
*/ 

void 
usage(void) { 

puts("Usage: semop [options]"); 
puts("Options:"); 
puts("\t-k key\tIPC Key for -a or -c option."); 
puts("\t-a\t\tAccess existing set based on -k key"); 
puts("\t-c n\t\tCreate set of n semaphores using -k key"); 
puts(*'\t-i ID\t\tAccess existing set by IPC ID11); 
puts("\t-o <sops>\tsemop(n) for wait/zero/notify"); 
puts("\t-s\t\tsemctl(IPC_STAT)"); 
puts("\t-m mode\t\tsemctl(IPC_SET) with new permissions"); 
puts("\t-x userid\tsemctl(IPC_SET) with new userid"); 
puts("\t-y group\tsemctl(lPC_SET) with new group"); 
puts("\t-d\t\tsemctl(IPC_RMID)"); 
puts("\t-g n\t\tsemctl(GETVAL) for semaphore n"); 
puts("\t-G\t\tsemctl(GETALL)"); 
puts("\t-v n=x\t\tsemctl(SETVAL) set semaphore n to x"); 
puts("\t-V m,n,o\tsemctl(SETALL)"); 
puts("\t-p n\t\tsemctl(GETPID) for semaphore n"); 
puts(“\t-P\t\tReport semctl(GETPID) for all semaphores"); 
puts("\t-n x\t\tsemctl(GETNCNT) for semaphore x"); 
puts("\t-z x\t\tsemctl(GETZCNT) for semaphore x"); 
puts("\t-u\t\tNo SEM_UND0 (default)"); 
puts("\t-U\t\tUse SEMJJNDO"); 
puts("\t-R\t\tReport SEMJJNDO flags"); 
puts("\n<sops> :"); 
puts("\t<semaphore#>=<semop>[{u | U}],..."); 
puts("where:"); 
puts("\t<semaphore#>\tIs the semaphore # (starting from zero)"); 
puts("\t<semop>\t\tSemaphore operation: -n, 0 or +n"); 
puts("\t\t\tNegative waits, Postive notifies"); 
puts("\t\t\twhile zero waits for zero."); 
puts("\tu\t\tDo not use SEMJJNDO"); 
puts("\tU\t\tApply SEM_UND0"); 
puts("\tExample: -o 0=-4U,2=+1u,1=2"); 

That completes the source code listings for the semop utility program. 

Summary 
This chapter examined every aspect of semaphore operation under UNIX. You will be able to 

apply this knowledge to the next chapter, which explores shared memory. 



CHAPTER 25 

SHARED MEMORY 

Whether the data exists in the form of a table or some other format, separate processes 

can share data using the shared memory resource. This chapter will look at the 

mechanics of how processes share memory—how it is created, established, and 

destroyed. 

A utility program dubbed globvar is presented in module form to illustrate the use of shared 

memory in an actual application. This utility is designed to permit shell programs to share 

global variables using shared memory. This differs from the exported shell environment vari¬ 

ables, which cannot be altered by child processes of the shell. Any process using globvar may 

inquire or alter the value of a global variable. 

The globvar Utility Program 
To permit the use of the utility while you progress through this chapter, compile the globvar 

utility now. The following shows a FreeBSD make (1) session: 

$ make 

CC -c -Wall -DHAVE_SEMUN -g globat.c 
cc -c -Wall -DHAVE_SEMUN -g globcr.c 
cc -c -Wall -DHAVE_SEMUN -g globget.c 
cc -c -Wall -DHAVE_SEMUN -g globlk.c 
cc -c -Wall -DHAVE_SEMUN -g globset.c 
cc -c -Wall -DHAVE_SEMUN -g globvar.c 
cc -c -Wall -DHAVE_SEMUN -g globdest.c 
cc -c -Wall -DHAVE_SEMUN -g globun.c 
cc -o globvar globat.o globcr.o globget.o globlk.o globset.o globvar.o 

globdest.o globun.o 
$ 

The usage information display is available with the -h option: 

$ ./globvar -h 
globvar [-i] [-s size] [-e] [-u] [-r] [-c] var... var=value... 
Options: 

-i initialize new globvar pool 
-s size Size of this pool, in bytes 
-e Dump all values (after changes) 
-u Unset all named variables 
-r Remove this pool of values 
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-c Clear all variables 
-h This info. 

You must use -i or define environment variable GLOBVAR. 
$ 

The remaining subsections will briefly explain how to use the utility and its options. 

Creating Global Variable Pools 
To use the globvar utility program, you must initially create a global memory pool. This is 

done using the - i option (the option - s can be added to change the default memory segment 

size of 4KB): 

$ ./globvar -i 
393216 
$ ipcs 
Message Queues: 
T ID KEY MODE OWNER GROUP 

Shared Memory: 
T ID KEY MODE OWNER GROUP 
m 393216 0 --rw. wwg wwg 

Semaphores: 
T ID KEY MODE OWNER GROUP 
s 393216 0 - -rw. wwg wwg 

$ 

The use of the - i option causes a private shared memory region to be created and displays the 

IPC ID on standard output. The ipcs (1) command confirms that a shared memory region and 

a semaphore set were created (they both have the same IPC ID by coincidence). 

Private shared memory regions eliminate any possibility of IPC key clashes. It will require, 

however, that you pass the IPC ID of your global variable pool to those other shell programs 

that need access to it. Notice also in the ipcs (1) output that the permission is established so 

that only the owner of the shared memory has access to it. This keeps the values of your global 

pool safe from other users. 

Destroying Global Variable Pools 
A global variable pool can be destroyed using the - r option. The GLOBVAR environment vari¬ 

able names the IPC ID of the global memory pool that you are working with: 

$ GL0BVAR=393216 ./globvar -r 

This session destroys the global memory pool for IPC ID 393216. You can check this for your¬ 
self using the ipcs (1) command. 
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The GLOB VAR Environment Variable 
Normally, the initialization of a global memory pool is performed so that the IPC ID is 

recorded in the exported shell environment variable GLOBVAR as follows: 

$ GL0BVAR='./globvar -i' 
$ export GLOBVAR 

$ 

Establishing the IPC ID in the exported shell variable GLOBVAR allows all future globvar com¬ 

mand accesses to contact the correct instance of the global memory pool, which was just cre¬ 

ated. Changes to the GLOBVAR environment variable will permit you to work with different 

collections of global variables if you need to. 

Creating Global Variables 
Once the shell variable GLOBVAR is initialized, global variables can be added to the global mem¬ 

ory pool as follows: 

$ ./globvar VARIABLE=XYZ VAR2=ABC 

$ 

This shows the variables VARIABLE and VAR2 being created. 

Accessing Global Variables 
The values contained in the global memory pool can be individually fetched or dumped in 

bulk with the - e option: 

$ ./globvar VARIABLE 
XYZ 
$ ./globvar VAR2 
ABC 
$ ./globvar -e 
VARIABLE=XYZ 
VAR2=ABC 
$ 

To copy a global variable to a shell variable, you can use the usual shell syntax for this (two 

methods are shown): 

$ COPY_VARIABLE='./globvar VARIABLE' 
$ C0PY_VAR2=$(./globvar VAR2) 

$ echo $COPY_VARIABLE 

XYZ 
$ echo $C0PY_VAR2 

ABC 
$ 

Global variables can naturally be altered by the utility: 

$ ./globvar VAR2="A different value." 

$ ./globvar -e 
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VARIABLE=XYZ 
VAR2=A different value. 
$ 

The new value of VAR2 is displayed by the -e option here. 

Removing Global Variables 
The -u option “unsets” each global variable named, similar to the shell built-in command 

unset. The following command removes the variable named VARIABLE: 

$ ./globvar -u VARIABLE 
$ ./globvar -e 
VAR2=A different value. 
$ 

Notice that global variable VARIABLE is absent from the -e display. 

Clearing Global Variable Pools 
The -c option clears the global memory pool, so that no variables remain (the -e option 

always displays the contents of the global pool after all changes are made): 

$ ./globvar -c -e 

$ 

Shared Memory System Calls 
The sections that follow will explore the shared memory system calls and discuss how they 

were applied to this utility program. The discussion covers the following areas: 

• Creating and Accessing Shared Memory 

• Obtaining Information about Shared Memory 

• Changing Shared Memory Attributes 

• Attaching Shared Memory 

• Detaching Shared Memory 

• Destroying Shared Memory 

Shared memory must be created, or it must be located if another process has already created it. 

The program is given an IPC ID to refer to when it has been created or located. Once you have 

this IPC ID, it is possible to inquire about the shared memory region attributes and change 

some of them, such as the ownership and permissions. 

Before shared memory can be read from or written to, it must be attached to the memory 

space of your current process. This involves the selection of a starting address for your shared 

memory region. 
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When a process is finished with a shared memory region, it is able to detach it from its mem¬ 

ory space. Once all processes have finished with the shared memory region and detached it, 

the region can be destroyed to give the memory back to the kernel. 

Creating and Accessing Shared Memory 
Shared memory is created and accessed if it already exists using the shmget (2) function. Its 
function synopsis is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

int shmget(key_t key, int size, int flag); 

The argument key is the value of the IPC key to use, or the value IPC_PRIVATE. The size 

argument specifies the minimum size of the shared memory region required. The actual size 

created will be rounded up to a platform-specific multiple of a virtual memory page size. The 

flag option must contain the permission bits if shared memory is being created. Additional 

flags that may be used include IPC_CREAT and IPC_EXCL, when shared memory is being 

created. 

The return value is the IPC ID of the shared memory region when the call is successful (this 

includes the value zero). The value -1 is returned if the call fails, with errno set. 

Listing 25.1 shows the source module that calls upon shmget (2) to create or access shared 

memory. This code is executed when the - i option is used to create shared memory. 

LISTING 25.1 globcr.c—The globvar Source Module That Calls shmget(2) to Create Shared 

Memory 

1: 
o ■ 

/* globcr.c */ 
Zl . 
3: #include "globvar.h" 
4: 
5: /* 
6: * Create a new shared memory variable pool : 
7: */ 
8: void 
9: create_vars(int shm_size) { 
10: int z; /* Status code */ 

11: int semid; /* Semaphore IPC ID * 

12: int offset; /* Byte offset */ 

13: union semun un; /* Union of semctl() 

14: struct shmid_ds shminfo; /* Shared memory info 

15: 
16: /* 
17: * Create shared memory region 
18: */ 
19: z = shmget(IPC_PRIVATE,shm _size,IPC_CREAT|0600); 

20: 
21: if ( z == -1 ) { 

*/ 
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22: fprintf(stderr,"%s: shmmget(,%d,IPC_CREAT)\n", 
23: strerror(errno),shm_size); 
24: exit(1); 
25: } 
26: 
27: shmid = z; /* IPC ID */ 
28: 
29: /* 
30: * Create semaphore for this region : 
31: */ 
32: z = semget(IPC_PRIVATE,1,IPC_CREAT|0600); 
33: 
34: if ( z == -1 ) { 
35: fprintf(stderr,"%s: semget(,IPC_CREAT)\n“,strerror(errno)); 
36: exit(1); 
37: } 
38: 
39: semid = z; /* IPC ID */ 
40: 
41 : /* 
42: * Discover the actual size of the region : 
43: */ 
44: z = shmctl(shmid,IPC_STAT,&shminfo); 
45: 
46: if ( z == -1 ) { 
47: fprintf(stderr,"%s: shmctl(%d,IPC_STAT)\n", 
48: strerror(errno),shmid); 
49: exit(1); 
50: } 
51 : 
52: shm_size = shminfo.shm_segsz; /* Actual size of the memory region */ 
53: 
54: /* 
55: * Initialize binary semaphore to value of 1 : 
56: */ 
57: un.val = 1; 
58: 
59: z = semctl(semid,0,SETVAL,un.val); 
60: 
61: if ( z == -1 ) { 
62: fprintf(stderr,"%s: semctl(%d,0,SETVAL)\n", 
63: strerror(errno),semid); 
64: exit(1); 
65: } 
66: 
67: /* 
68: * Attach shared memory, and initialize it : 
69: */ 
70: attach_vars(); /* Attach shared memory */ 
71: globvars->semid = semid; /* Place semaphore ID into shared memory */ 
72: 
73: offset = (int) ( &globvars->vars[0] - (char *)globvars ); 
74: globvars->size = shm_size - offset; 
75: globvars->vars[0] = globvars->vars[1] = 0; 
76: } 
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The shmget (2) call in line 19 creates a private shared memory region by using the 

IPC_PRIVATE. The flag IPC_CREAT causes the shared memory region to be created, while the 

bits 0600 causes the region to be created so that the owner alone can read and write to it. 

Lines 32-39 create a semaphore set (of one), which will be used to lock the shared memory 

region for safe concurrent access to it. Lines 59-65 initialize the semaphore to the value of 1 
(unlocked). 

After the shared memory is attached by the function attach_vars () (to be shown later), the 

semaphore’s IPC ID and the actual size of the shared memory region is stored in it, using the 

shared memory pointer globvars (lines 73 and 74). The variable pool is initialized as empty 
in line 75. 

Obtaining Information About Shared Memory 
Attributes of the shared memory, including its permissions and actual size, are obtained using 

the shmctl(2) system call. Its function synopsis is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

int shmctl(int shmid, int cmd, struct shmid_ds *buf); 

The argument shmid specifies the shared memory IPC ID, which is obtained from shmget (2). 

The cmd is a shmctl(2) command value, while but is an argument used with certain com¬ 

mands. The valid commands for shmctl(2) are 

IPC_STAT Obtains information about the shared memory region. The information is 

copied to the structure pointed by argument buf. 

IPC_SET Changes the values of members shm_perm.uid, shm_perni.gid, and 

shm_perm.niode. The calling process must have an effective user ID that 

matches the shm_perm. cuid (creator) or the current shm_perm. uid value. 

The values are supplied by pointer argument buf. 

IPC_RMID Destroys the shared memory referenced by shmid. The memory will 

undergo destruction when the last process using it detaches it with 

shmdt(2). Argument buf is ignored. 

Note 

Some platforms also support the SHM_LOCK and SHMJJNLOCK commands, which lock and unlock 

shared memory, respectively. This operation can only be performed by the superuser and prevents 

the shared memory from swapping. 

SGI IRIX 6.5, HPUX-11, UnixWare 7, Solaris 8, and Linux support this feature. FreeBSD 3.4 release 

and IBM AIX 4.3 do not support this feature. 
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The function shmctl(2) returns 0 when successful. The value -1 is returned with errno set 

when the call fails. 

The following shows a segment from Listing 25.1, which illustrates how shmctl(2) was used: 

14: struct shmid_ds shminfo; /* Shared memory info */ 

41: /* 
42: * Discover the actual size of the region : 
43: */ 
44: z = shmctl(shmid,IPC_STAT,&shminfo); 
45: 
46: if ( z == -1 ) { 
47: fprintf(stderr,"%s: shmctl(%d,IPC_STAT)\n", 
48: strerror(errno),shmid); 
49: exit(1); 
50: } 

This call to shmctl(2) was made in Listing 25.1 to determine the actual amount of memory 

allocated since the requested size is rounded up to a multiple of the memory page size when 

the region is created. 

The structure declaration for shmid_ds is shown in the following synopsis: 

struct shmid_ds { 
struct ipc_perm 
int 
pid_t 
pid_t 
short 
time_t 
time_t 
time_t 

}; 

The structure definition for ipc_perm is repeated for your convenience, as follows: 

struct ipc_ 
ushort 

perm { 
cuid; /* creator user id */ 

ushort cgid; /* creator group id */ 
ushort uid; /* user id */ 
ushort gid; /* group id */ 
ushort mode; /* r/w permission */ 
ushort seq; /* sequence # (to generate unique msg/sem/shm id) 
key_t key; /* user specified msg/sem/shm key */ 

}; 

Changing Shared Memory Attributes 
Permission aspects of the shared memory region can be changed after it is created. This is 

accomplished using the IPC_SET command in the shmctl(2) call. The following example 

shows how to modify access to allow everyone to read and write your shared memory region: 

shm_perm; /* operation permission structure */ 
shm_segsz; /* size of segment in bytes */ 
shm_lpid; /* process ID of last shared memory op 
shm_cpid; /* process ID of creator */ 
shm_nattch; /* number of current attaches */ 
shm_atime; /* time of last shmat() */ 
shm_dtime; /* time of last shmdt() */ 
shm_ctime; /* time of last change by shmctl() */ 
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int z' 
struct shmid_ds shminfo; /* Shared memory info */ 

shminfo.shm_perm.mode = 0666; /* Make Read/Writable by all */ 

z = shmctl(shmid,IPC_STAT,&shminfo); 

if ( z == -1 ) { 
fprintf(stderr,"%s: shmctl(%d,IPC_SET)\n",strerror(errno),shmid); 
exit(1); 

} 

To make this change, however, your effective user ID must match the user that created the 
memory region, or match the current user ID value in shm_perm. uid. 

Attaching Shared Memory 
Shared memory must be attached to your process memory space before you can use it as 
memory. This is performed by calling upon shmat (2): 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

void * shmat(int shmid, void *addr, int flag); 

The argument shmid specifies the IPC ID of the shared memory that you want to attach to 

your process. The argument addr indicates the address that you want to use for this. A null 

pointer for addr specifies that the UNIX kernel should pick the address instead. The flag 

argument permits the option flag SHM_RND to be specified. Specify 0 for flag if no options 

apply. 

When shmat (2) succeeds, a (void *) address is returned that represents the starting address 

of the shared memory region. If the function fails, the value (void *) (-1) is returned instead. 

The combination of the addr and the flag option SHM_RND allow three possible ways for the 

memory region to be attached: 

addr=0 The kernel decides upon an unused area of memory at 

which to attach the segment. 

addr != 0 flag=0 The shared memory is attached at the specified addr 
value, if it is suitable. 

addr != 0 f lag=SHM_RND The final addr used is rounded down by the nearest 

multiple of SHMLBA. 

The first choice is the most portable way to attach shared memory. However, if you use point¬ 

ers within your shared memory region, then you will likely need to specify a memory address 

using one of the last two methods shown. 
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Tip 

Specifying a null addr value is a good way for your program to arrive at a trial value for attaching 

shared memory at a fixed location for a given platform. 

Listing 25.2 shows the source module used by globvar that attaches shared memory to its 

process memory. 

LISTING 25.2 globat. c—The Source Module That Calls shmat (2) to Attach Shared Memory 

1: /* globat.c */ 
2: 
3: #include "globvar.h" 
4: 
5: /* 
6: * Attach the shared variable pool : 
7: */ 
8: void 
9: attach_vars(void) { 
10: 
11: /* 

12: * Attach shared memory region : 
13: */ 
14: globvars = (GlobVars *)shmat(shmid,0,0); 
15: 
16: if ( (void *)(globvars) == (void *) (-1) ) { 
17: fprintf (stderr, ''%s: shmat(%d,0,0) \ n", strerror(errno) ,shmid); 
18: exit(1); 
19: } 
20: } 

No option flags or attach address is specified in line 14. By specifying a null address, the ker¬ 

nel is permitted to choose a suitable place to attach it for you. Notice how the error is tested 

for in line 16. The returned pointer must be compared with (void *) (-1) and not the null 

pointer. 

Test for failure from shmat(2) by comparing the returned pointer to (void *)(-1). A common 

blunder is to assume that the null pointer is returned for this purpose. 

Warning 

Detaching Shared Memory 
Detaching shared memory is automatically performed when your process terminates. 

However, if you need to detach it before it terminates, you accomplish that with the shmdt (2) 

function: 
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#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

int shmdt(void *addr); 

The shmdt (2) function simply accepts the address of the shared memory, as it was attached by 

shmat(2), in argument addr. The return value is 0 when successful. Otherwise, -1 is returned 

and errno holds the error code. The code in Listing 25.3 demonstrates this function call. 

LISTING 25.3 globdest. c—The Source Module That Calls shmdt (2) and Destroys the Shared 

Memory 

1: /* globdest.c */ 
2: 
3: #include "globvar.h" 
4: 
5: /* 
6: * Destroy the shared 
7: */ 
8: void 
9: destroy_vars(void) { 
10: int z; 
11: int semid; 
12: union semun un; 
13: 
14: /* 
15: * Lock the shared memory region : 
16: */ 
17: glob_lock(); 
18: semid = globvars->semid; /* Semaphore IPC ID */ 
19: 
20: /* 
21: * Destroy locking semaphore : 
22: */ 
23: z = semctl(semid,0,IPC_RMID,un); 
24: 
25: if ( z == -1 ) { 
26: fprintf(stderr,"%s: semctl(%d,0,IPC_RMID)\n“, 
27: strerror(errno),semid); 
28: exit(1); 
29: } 
30: 
31: /* 
32: * Detach shared memory : 
33: */ 
34: z = shmdt(globvars); 
35: 
36: if ( z == -1 ) { 
37: fprintf(stderr,"%s: shmdt(2)\n",strerror(errno)); 

38: exit(1); 
39: } 
40: 

memory variable pool : 

/* Status code */ 
/* Semaphore IPC ID */ 
/* Union of semctl() args */ 
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41 : /* 
42: * Destroy shared memory : 
43: */ 
44: z = shmctl(shmid,IPC_RMID,NULL); 
45: 
46: if ( z == -1 ) { 
47: fprintf(stderr,"%s: shmctl(%d,IPC_RMID)\n", 
48: strerror(errno),shmid); 
49: exit(1); 
50: } 
51: } 

The shmdt (2) call is shown in line 34. 

This module is called when the globvar option - r is used. The semaphore is locked by calling 

glob_lock() in line 17. The semaphore set is then destroyed by lines 20-29. The shared 

memory is detached in line 34, although it was not mandatory to do so. The IPC_RMID com¬ 

mand in lines 44-50 would still succeed, and the actual destruction would occur when the 

process terminated (when the last process detached it). 

Destroying Shared Memory 
Listing 25.3 shows the IPC_RMID command of shmctl(2) being used. The critical lines of code 
are repeated here for your convenience: 

41 : /* 
42: * Destroy shared memory : 
43: */ 
44: z = shmct1(shmid,IPC_RMID,NULL); 
45: 

C
D

 if ( z == -1 ) { 
47: fprintf(stderr,"%s: shmctl(%d,IPC_RMID)\n" 

C
O

 strerror(errno),shmid); 
49: exit(1); 
50: } 

Notice that argument three (but) is not required by the IPC_RMID command for shmctl(2). 
This code is exercised by the - r option of the globvar utility. 

Using Shared Memory 
Once the shared memory is attached, your process can use it like any other region of memory. 

However, since multiple processes can see this same region of memory, care must be exercised 
when changing its content. 

In the globvar utility, one semaphore is used as the locking semaphore. Whenever the shared 

memory is searched or modified, the globvar utility waits on the semaphore first (recall that it 

was initialized to the value of l). This ensures that no more than one process at a time will be 

working with the shared memory. When the task has been completed, the semaphore is noti¬ 
fied to release the lock. 
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It should be noted that some values were accessed in the shared memory without the locking 

semaphore. Examine lines 15-19 in Listing 25.4. These lines declare the structure used for the 
global memory. 

LISTING 25.4 globvar.h—The Global globvar Utility Definitions 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

/* globvar.h */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <string.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 
#include <sys/sem.h> 

#define GLOBVARENV "GLOBVAR" / 

typedef struct { 
int semid; / 
int size; / 
char vars[1]; / 

} GlobVars; 

extern int shmid; / 
extern int shm_size; / 
extern GlobVars *globvars; / 
extern int semid; / 

Environment variable */ 

Semaphore's IPC ID */ 
Size of the vars[] array */ 
Start of variable storage */ 

IPC ID of shared memory region */ 
Size of shared memory region */ 
Shared memory region */ 
IPC ID of the locking semaphore set */ 

extern void create_vars(int shm_size); 
extern void attach_vars(void); 
extern char *get_var(const char *varname); 
extern void set_var(const char *varname,const char *value); 
extern void destroy_vars(void); 
extern void glob_lock(void); 
extern void glob_unlock(void); 
extern void unset_var(const char *varname); 

#ifndef HAVE_SEMUN /* Does sys/sem.h define this? */ 

union semun { 
int val; /* Value */ 
struct semid_ds *buf; /* IPC_STAT info */ 
u_short *array; /* Array of values */ 

}; 

#endif 

/* End globvar.h */ 
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The members semid and size are established when the global pool is initially created. After 

this, these values never change. Because these values never change, they are safe to reference 

without a locking semaphore. Dynamic content begins at the member vars [ ] within the 

GlobVars structure. To access its content safely, you must use the locking semaphore in the 

utility program. 

The source module globlk. c is shown in Listing 25.5, which implements the shared memory 

locking routines. 

LISTING 25.5 globlk. c—The Semaphore Locking Routines 

1: /* globlk.c */ 
2: 
3: #include "globvar.h" 
4: 
5: static struct sembuf wait = { 0, -1, SEMJJNDO }; 
6: static struct sembuf notify = { 0, +1, SEMJJNDO }; 
7: 
8: /* 

9: * Perform a semaphore operation : 
10: */ 

11: static void 
12: do_semop(struct sembuf *op) { 
13: int z; /* status code */ 
14: 
15: do { 
16: z = semop(globvars->semid,op,1); 
17: } while ( z == -1 && errno == EINTR ); 
18: 
19: 
20: 
21 : 
22: 
23: } 
24: 
25: /* 
26: * Wait on semaphore to lock shared memory : 
27: */ 
28: void 
29: glob_lock(void) { 
30: 
31: do_semop(&wait); 
32: } 
33: 
34: /* 
35: * Notify semaphore to unlock shared memory : 
36: */ 
37: void 
38: globjjnlock(void) { 
39: 
40: do_semop(&notify); 
41: } 

if ( z ) { 
fprintf(stderr,"%s: semop(2)\n",strerror(errno)); 
exit(1); 

} 
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Lines 5 and 6 define the semaphore lock (wait) and unlock (notify) operations. The function 

do_semop() performs the actual semaphore operation by calling upon semop(2) in line 16. 

The functions glob_lock() and glob_unlock() are simply wrapper routines for the 
do_semop() function. 

Listing 25.6 shows the module globget. c that fetches the value of a global variable. 

LISTING 25.6 globget. c—The Source Module That Looks Up a Global Variable in Shared 
Memory 

1: /* globget.c */ 
2: 
3: #include "globvar.h" 
4: 
5: /* 
6: * Return the string pointer for a variable's value : 
7: */ 
8: char * 
9: get_var(const char *varname) { 
10: char *cp; /* Scanning pointer */ 
11: int nlen = strlen(varname); /* Length of variable name */ 
12: 
13: for ( cp = &globvars->vars[0]; *cp; cp += strlen(cp) + 1 ) 
14: if ( !strncmp(varname,cp,nlen) && cp[nlen] == '=' ) 
15: return cp + nlen + 1; /* Pointer to it's value */ 
16: 
17: return NULL; /* Variable not found */ 
18: } 

The main() program calls the glob_lock() routine before calling get_var() shown in Listing 

25.6. The function get_var () then searches the shared memory for the variable requested in 

varname. The global variables are stored in shared memory as a list of null terminated strings, 

in the form VARIABLE=VALUE. The end of the variable list is marked by an additional null byte. 

Listing 25.7 shows the main () program that calls get_var (). 

LISTING 25.7 globvar. c—The Main Program for the globvar Utility 

1: /* globvar.c */ 
2: 
3: #include "globvar.h" 
4: 
5: int shmid = -1; /* IPC ID of shared memory */ 
6: GlobVars *globvars = NULL; /* Shared memory region */ 
7: 
8: /* 

9: * Usage instructions : 
10: */ 

11: static void 
12: usage(void) { 
13: 
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14 
15 
16 p u t s ( " Options:11); 
17 puts(" -i Initialize new globvar pool"); 
18 puts(" -s size Size of this pool, in bytes"); 
19 puts( " -e Dump all values (after changes)" 
20 puts( " -u Unset all named variables"); 
21 puts( " -r Remove this pool of values"); 
22 puts (11 -c Clear all variables"); 
23 puts(" -h This info."); 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

puts("globvar [-i] [-s size] 
" var... var=value. 

[-e] [-u] [-r] [ - c] " 

/* 

* Main program : 
*/ 

int 
main(int argc,char **argv) { 

int re = 0; 
int optch; 
int cmdopt_i = 0; 
int cmdopt_c = 0; 
int cmdopt_r = 0; 
int cmdopt_e = 0; 
int cmdopt_u = 0; 
int cmdopt_h = 0; 
int cmdopt_s = 4096; 
char *cp, *ep; 
unsigned long ul; 
const char cmdopts]] = " 

/’ Return code */ 
/* Option character */ 
/* -i to create var pool */ 

-c to clear variables */ 
-r to remove pool */ 
-D to dump the variables */ 
-u to unset named variables */ 
-h usage option */ 
Default for -s */ 
Character pointers */ 
Converted ulong */ 

hirs:ecu"; 

/* 

* Parse command line options 
*/ 

while ( (optch = getopt(argc,argv,cmdopts) 
switch ( optch ) { 

!= -1 ) 

case 1c' : 
cmdopt_c = 1 
break; 

case 1i‘ : 
cmdopt_i = 1 
break; 

case 1 e' : 
cmdopt_e = 1 
break; 

case 1r1 : 
cmdopt_r = 1 
break; 

case 
ul = strtoul(optarg,&ep,0); 

/* -c to clear variables */ 

/* -i initialize a new pool */ 

/* -e to dump all variables like env */ 

/* -r to remove the pool */ 

/* -s size; affects -i */ 
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67 if ( *ep ) { 
68 fprintf(stderr,“Bad size: -s %s\n",optarg); 
69 rc = 1; 
70 } else 
71 cmdopt_s = (int) ul; 
72 break; 
73 
74 case 'u' : /* -u to unset all listed variables 
75 cmdopt_u = 1; 
76 break; 
77 
78 case 'h1 : /* -h to request help */ 
79 cmdopt_h = 1; 
80 break; 
81 
82 default : 
83 rc = 1; 
84 } 
85 
86 /* 
87 * Give usage display if errors or -h : 
88 •k / 
89 if ( cmdopt_h || rc ) { 
90 usage(); 
91 if ( rc ) 
92 return rc; 
93 } 
94 
95 /* 
96 * Create/Access global variable pool : 
97 * / 
98 if ( cmdopt i ) { 
99 /* 
100: * Create a new shared memory variable pool : 
101 : */ 
102: create_vars(cmdopt_s); 
103: printf("%d\n“,shmid); 
104: 
105: } else if ( (cp = getenv(GLOBVARENV)) != NULL ) { 
106: /* 
107: * Extract IPC key from GLOBVAR environment variable : 
108: */ 
109: ul = strtoul(cp,&ep,0); 
110: if ( *ep ) { 
111 ■ fprintf(stderr,"%s has bad IPC key\n",cp); 
112 : return 1; 
113 ; } 
114 : 
115 : shmid = (int)ul; 
116 : attach_vars(); 
117 ! } 
118 : 

119 : /* 
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120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 

* Do we have enough information to find the pool? 
*/ 

if ( Iglobvars ) { 
fprintf(stderr,"You must use -i or define" 

" environment variable %s.\n",GLOBVARENV); 
return 1; 

} 

/* 

* -c clears all variables : 
*/ 

if ( cmdopt_c ) { 
glob_lock(); 
globvars->vars[0] = globvars->vars[1] = 0; 
glob_unlock(); 

} 

/* 

* Now process variable requests : 
*/ 

for ( ; optind < argc; ++optind ) { 
cp = strchr(argv[optind],; 

glob_lock(); 

if ( !cp ) { 
/* 

* Just have a variable name, so return value or unset : 
*/ 

if ( !cmdopt_u ) { 
if ( (cp = get_var(argv[optind])) != NULL ) { 

puts(cp); /* Just emit value of variable */ 
} else { 

fprintf(stderr,"Variable %s not found\n",argv[optind]); 
re = 1; 

} 
} else 

unset_var(argv[optind]); 

} else { 
/* 

* Change the variable's value : 
*/ 

*cp = 0; 
set_var(argv[optind],++cp); 

} 

glob_unlock(); 

Dump all variables (for debugging) 
7 
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173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 

if ( cmdopt_e ) { 
glob_lock(); 

for ( cp=&globvars->vars[0]; *cp; cp+=strlen(cp)+1 ) 
puts(cp); 

glob_unlock(); 

} 

/* 

* If -r option, destroy the global variable pool : 
*/ 

if ( cmdopt_r ) 
destroy_vars(); 

return rc; 

The get_var () function is called when a variable name is listed on the command line by itself 

(lines 150 and 151). Note that the shared memory is locked in line 143 and unlocked in line 

167. Using the locking semaphore permits several processes to update the same global variable 

pool without corruption. 

Listing 25.8 shows the module globset. c that implements the variable assignment functions. 

LISTING 25.8 globset. c—The Implementation of the globvar Variable Assignment Functions 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

/* globset.c */ 

#include "globvar.h" 

/* 

* Change the value of a global variable : 

*/ 

void 
set var(const char *varname,const char *value) { 

int z; 
char *var = get_var(varname); 
char *cp; 
int nlen = strlen(varname); 
int vlen = strlen(value); 
int in_use = 0; 
int avail = globvars->size; 

/* status code */ 
/* Locate variable if it exists */ 
/* utility char pointer */ 
/* Length of variable name */ 
/* Length of variable's value */ 
/* Bytes in use */ 
/* Bytes available */ 

if ( var ) { /* Does variable exist? */ 

in_use = (int)( var - &globvars->vars[0] ) + 1; 
avail -= in_use; /* Bytes available for new value */ 

z = strlen(var + nlen +1); /* Length of current string */ 

if ( vlen > avail + z ) 
goto nospc; /* Insufficient space */ 

/* 
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28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

* Now delete the variable 
*/ 

var = var - nlen - 1; 

for ( cp=var+strlen(var)+1; 
z = strlen(cp) + 1; 
memmove(var,cp,z); 

/* Point to start of entry */ 

*cp; var += z, cp += z ) { 
/* Length of next value */ 
/* Move it up */ 

} else { 
/* 

* Find end of global storage : 
*/ 

for ( var = &globvars->vars[0]; *var; var += strlen(var) + 1 

J 

in_use = (int)( var - &globvars->vars[0] ) + 1; 
avail -= in_use; /* Bytes available for new value 

} 

if ( nlen + 1 + vlen > avail ) 
goto nospc; 

/* 

* Append VARIABLE=VALUE\0 
*/ 

strcpy(var,varname); /* 
var += nlen; /* 
*var++ = ; /* 
strcpy(var,value); /* 
var[vlen+1] = 0; /* 

to end of shared region : 

Variable name */ 
Point past variable name */ 
The equal sign */ 
The variable's value */ 
2 null bytes mark the end */ 

return; /* Successful */ 

/* 

* Insufficient space to store this variable : 
*/ 

nospc: 
fprintf(stderr,"%s: %s='%s' \n",strerror(ENOSPC),varname,value); 
exit(1); 

} 

) 

*/ 

The set_var() routine first looks up the variable in line 11. If the variable exists in the pool, 

the space for the new value is computed in lines 20 and 21. If the new value fits into the space 

remaining, the current variable is deleted by a memory move loop in lines 32-35. After this 

point, the remaining code treats the variable as if it were a new value. 

If the variable does not exist yet, the space calculations are performed in lines 44-48. The new 

variable and value is appended to the shared memory region in lines 54-57. Line 58 puts a 

second null byte at the end to mark the end of the variables list. 

Listing 25.9 shows the module that is responsible for removing a variable by name, invoked by 

the globvar -u option. 
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LISTING 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

25.9 globun. c—The Unset Feature of globvar Is Implemented by globun. c 

/* globun.c */ 

#include "globvar.h" 

/* 

* Unset a variable : 
*/ 

void 
unset_var(const char *varname) { 

int z; 
char *var = get_var(varname); 
char *cp; 
int nlen = strlen(varname); 

/* status code */ 
/* Locate variable if it exists */ 
/* utility char pointer */ 
/* Length of variable name */ 

if ( !var ) 
return; 

/* 

* Now delete the variable 
*/ 

var = var - nlen - 1; 

/* Variable is already unset */ 

/* Point to start of entry */ 

for ( cp=var+strlen(var)+1; *cp; var += z, cp += z ) { 
z = strlen(cp) +1; /* Length of next value */ 
memmove(var,cp,z); /* Move it up */ 

} 

*var = 0; 

return; 

/* two nulls mark the end of vars */ 

/* Successful */ 

The variable name is searched in line 11. If it is not found, the function returns in line 16. 

Otherwise, the for loop of lines 23-26 moves the strings to replace the area formerly occupied 

by the deleted variable. Line 28 adds the second null byte to mark the new end of the 

variable list. 

Summary 
The globvar utility provides a simple means for shell programs running under your account 

to share dynamic information with each other, using shared memory. You saw how a sema¬ 

phore was used to provide concurrency protection. Yet you also observed that certain static 

items like the semaphore IPC ID in the shared memory could be safely accessed without locks. 

As an exercise, you may want to enhance the utility further by adding a - k IPC key option. 

This would eliminate the need to communicate the IPC ID values between unrelated 

processes. 

You have completed the tour of the IPC communication set, which included message queues, 

semaphores, and shared memory. The next chapter examines the ability of the UNIX kernel to 

map memory to files. 
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CHAPTER 26 

MEMORY-MAPPED FILES 

Chapter 25, “Shared Memory,” showed how shared memory could be used to share 

information between processes. A more modern feature of the UNIX kernel permits 

memory to be mapped to a regular file or a character device. This technique allows 

unrelated processes to share information as well, but adds a number of new features 

to the programmer’s repertoire. 

All executable files under modern UNIX kernels are mapped to virtual memory pages. These 

pages of memory are marked as being executable only within the process memory (on many 

platforms, this often implies that they are readable as well). In this manner, only those mem¬ 

ory pages needed are actually paged into memory upon demand. For large programs, this is 

more efficient than loading the entire program into memory at startup. 

Memory mapping simply extends this idea to application data files. Figure 26.1 shows how a 

memory-mapped file might be accessed from within a process’s memory space. 

The figure shows that the mapping may be larger than the actual file itself. This is often true 

because the virtual memory management performed by the UNIX kernel must use a fixed page 

size. Thus, Figure 26.1 shows that there is an extra region above the file’s mapping. These 

extra bytes will be zeroed when the mapping is established. 

When your application examines memory within the mapped region, pages of data are 

retrieved from the file as necessary to make the memory cells available. Likewise, if memory 

cells are modified, the changes are written back out to the file (depending upon options 

selected) at a time determined by the kernel. There are methods to control this behavior and 

its timing. 
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FIGURE 26.1 

A file is mapped to 

process memory. 
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Determining the Page Size 
Memory functions performed by the UNIX kernel are restricted to operating in multiples of the 

virtual memory (VM) page size. You have already seen this behavior when attaching shared 

memory. A portable program needs a way to determine what the system’s VM page size is, 

because it varies on different UNIX platforms. The getpagesize(3) function returns this infor¬ 

mation. The function synopsis for it is as follows: 

#include <unistd.h> 

int getpagesize(void); 

The function getpagesize (3) returns the size in bytes of the system page size used. 

Note 

The page size returned by getpagesize(3) is the size of the system's page size. The page size used 

by the hardware for virtual memory paging may be different in size. 

Listing 26.1 shows a simple program that calls upon getpagesize (3) and reports the value 

returned. 
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LISTING 26.1 pagesize. c—A Program That Determines the System Page Size by Calling 
getpagesize(3) 

1: /* pagesize.c */ 
2: 

3: #include <stdio.h> 
4: #include <unistd.h> 
5: 
6: int 
7: main(int argc,char **argv) { 
8: 

9: printf("Page size is %d bytes\n",getpagesize()); 
10: return 0; 
11: } 

The following shows the program being compiled and run: 

$ make pagesize 
cc -c -Wall -DHAVE_SEMUN pagesize.c 
cc -o pagesize pagesize.o 
$ ./pagesize 
Page size is 4096 bytes 
$ 

From this FreeBSD example, you can see that the kernel is using a page size of 4096 bytes. 

Creating Memory Mappings 
A memory mapping is established with the help of the mmap(2) function call. The function 

synopsis for it is as follows: 

#include <sys/types.h> 
#include <sys/mman.h> 

void *mmap(void *addr,size_t len.int prot,int flags,int fd,off_t offset); 

The argument addr is normally specified as a null pointer unless a specific mapping address 

must be used. When addr is null, the mmap(2) call returns the system-selected memory 

address. 

When addr is not null, the argument flags influences the final result: The MAP_FIXED flag 

indicates that the specified address must be used, or an error indication is to be returned 

instead. When the flag MAP_FIXED is not present and addr is not null, the mmap(2) function 

will attempt to accommodate the requested address. Otherwise, it will substitute another 

address if the requested address cannot be successful. 

Argument len is the size of the mapping in bytes. This usually corresponds to the length of the 

mapped file when files are involved. This length may be larger than the mapped file, but 

accesses beyond the last allocated page will cause a SIGBUS (bus error) signal to occur. 
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The prot argument indicates the type of memory protection required for this memory region. 

With the exception of PR0T_N0NE, which must be specified alone, the prot argument is speci¬ 

fied with the following macros ORed together: 

PR0T_N0NE Region grants no access (this flag is used exclusively of the other flags.) 

PR0T_READ Region grants read access. 

PROTJVRITE Region grants write access. 

PR0T_EXEC Program instructions may be executed in the memory-mapped region. 

Argument flags specifies a number of optional features for the mmap(2) function call. The 

portable flag bits are 

MAP_FIXED Map to the address specified in argument addr or return an error if this 

cannot be satisfied. Normally when addr is not null, a different map¬ 

ping address is substituted if the requested one is not acceptable. 

MAP_PRIVATE Modifications to the mapped file are kept private. Unmodified pages 

are shared by all processes mapping the same file. When one of these 

memory pages is modified, a private page is created as a copy of the 

original, which is referenced only by the current process. 

MAP_SHARED Modifications to the mapped file are eventually written back to the 
file. All processes share the changes. 

Normally, the f d argument must be an open file descriptor (except with flag MAP_AN0N). This 

represents the regular file or character special file to be mapped to memory. Once the mmap (2) 

call has returned, however, you may close the file descriptor, since the kernel maintains its 
own reference to that open file. 

The argument offset is normally specified as 0. When other offsets are used, it must be a 

multiple of the page size returned by the function getpagesize(3). Otherwise, the error 
EINVAL is returned. 

When mmap (2) is successful, the starting address for the mapping of at least len bytes is 

returned. Otherwise, the value MAP_FAILED is returned instead, with the error code deposited 
into errno. 

FreeBSD mmap(2) supports additional features, which are selected by the following flag bits: 

MAP_AN0N Creates mapped memory that is not associated with any file. The 

file descriptor parameter must contain the value -1, and the offset 
argument is ignored. 

MAP_INHERIT Allows a process to retain the memory mapping after an execve(2) 
system call. 
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MAP_HASSEMAPHORE Notifies the UNIX kernel that the memory-mapped region may have 

semaphores present. This allows the kernel to take special precau¬ 
tion for mutexes. 

MAP_STACK Requests a stack region that grows downward to be created that is 

at most len bytes in size. The top of the stack is the returned 

pointer plus len bytes. This flag implies MAP_AN0N and insists that 

the fd argument is -1, and offset must be 0. The prot argument 

must include at least PROT READ and PROT WRITE. 

The flag value MAP_AN0N is not supported directly by all UNIX platforms. Linux and IBM AIX 

4.3 use the macro name MAP ANONYMOUS instead. 

To perform the equivalent of MAP_AN0N for platforms without this mmap (2) feature, memory-map 
device /dev/zero using the MAP_PRIVATE flag. 

The MAP_INHERIT flag allows you to retain a memory mapping after the execve(2) system call 

has successfully completed. This is a slick way to pass data from one executable program to 

another within the same process but suffers from the fact that other UNIX platforms do not 

support this feature. 

The MAP_HASSEMAPHORE flag allows the programmer to hint to the kernel that mutex flags are 

present in the memory mapping. This allows the kernel to change its handling of the mapping, 

affecting the way changes are synchronized and perhaps the swapping status of the pages. This 

is a BSD UNIX feature. 

The MAP_STACK flag bit allows you to create stack regions that have memory pages allocated as 

the stack grows downward. Many platforms, including HPUX 11 and UnixWare 7 do not sup¬ 

port this option. 

Note 

On some hardware platforms, specifying a protection of prot_exec also grants PROT_READ. This is 

due to platform hardware restrictions. 

Table 26.1 shows a cross-referenced list of flag values that are supported by the various UNIX 

platforms. 
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TABLE 26.1 A Cross-Referenced Table of Supported mmap(2) Features 

nmap(2) Flag Platform 

FreeBSD SGI IRIX 6.5 HPUX 11 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux 

MAP_SHARED X X X X X X X 

MAP_PRIVATE X X X X X X X 

MAP_FIXED X X X X X X X 

MAP_AN0N X X 

MAP_At\IONYMOUS X X 

MAP_HASSEMAPHORE X 

MAP_INHERIT X 

MAP_STACK X 

MAP_GR0WSD0WN X 

MAP_AUT0GR0W X 

MAP_NORESERVE X 

MAP_AUTORESRV X 

MAP_LOCKED X 

MAP_ADDR32 X 

MAP_L0CAL X 

MAP_FILE X 

MAP_VARIABLE X 

Listing 26.2 shows a program that uses memory-mapped files to select the language of system 
error messages. 

LISTING 26.2 messages .c—A Program That Uses mmap(2) to Select Messages by Language 

1: /* messages.c */ 
2: 
3: #include <stdio.h> 
4: #include <unistd.h> 
5: #include <stdlib.h> 
6: #include <fcntl.h> 
7: #include <errno.h> 
8: #include <string.h> 
9: #include <sys/types.h> 
10: ^include <sys/stat.h> 
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#include <sys/mman.h> 

#define MAX_MSGS 12 

const char *univ_errlist[MAX_MSGS]; 
const char *univ_maclist[MAX_MSGS]; 

static void *msgs = 0; 
static size_t msgs_len = 0; 

/* Limit of univ_errlist[] */ 

/* Universal sys_errlist[] */ 
/* A list of errno macro names */ 

/* Pointer to the mapping */ 
/* Size of the mapping */ 

/* 

* Parse error messages from the memory mapped file, that 
* begins at address msgs for msgs_len bytes : 
*/ 

static void 
parse_messages() { 

char *mp = (char *)msgs; 
char *macro, *error, *msg; 
int e; 

mp[msgs_len] = 0; 

for ( ;; mp = NULL ) { 

macro = strtok(mp," "); 
if ( !macro ) 

break; 

error = strtok(NULL," "); 
if ( [error ) 

break; 
if ( (e = atoi(error)) < 0 

break; 

msg = strtok(NULL,"\n"); 
if ( !msg ) 

break; 

univ_errlist[e] = msg; 
univ_maclist[e] = macro; 

} 
} 

/* Mapped messages address */ 

/* Store a null byte at the end */ 

/* Extract macro name */ 

/* Extract error # */ 

| e >= MAX_MSGS ) 
/* Bad errno value */ 

/* Extract message */ 

/* Store message */ 
/* Macro name */ 

/* 
* Map the messages file to memory, and establish 
* pointers to them by calling parse_messages() : 

*/ 

static void 
load_messages() { 

int x. /* Iterator */ 
char *lang = getenv("MSG_LANG"); /* Get language */ 
char path[256]; /* name */ 
struct stat sbuf; /* stat(2) info */ 
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64: int fd = -1; /* Open file descriptor */ 
65: 
66: /* 

67: * Load default messages : 
68: */ 

69: for ( x=0; x<MAX_MSGS; ++x ) { 
70: univ_errlist[x] = sys_errlist[x]; 
71: univ_maclist[x] = 
72: } 
73: 
74: /* 
75: * Get message file's size : 
76: */ 
77: sprintf(path,/errors.%s",lang ? lang : "english"); 
78: 
79: if ( stat(path,&sbuf) != 0 ) 
80: return; /* Cannot stat(2) file, so use default msgs */ 
81: msgs_len = sbuf.st_size; 
82: 
83: /* 
84: * Open the message file for reading : 
85: */ 
86: if ( (fd = open(path,0_RDONLY)) == -1 ) 
87: return; /* Cannot open(2) file, so use default msgs */ 
88: 
89: /* 
90: * Map the language file to memory : 
91: */ 
92: msgs = mmap(NULL,msgs_len+1,PROT_READ|PROT_WRITE,MAP_PRIVATE,fd,0); 
93: 
94: if ( msgs == (void *) MAP_FAILED ) { 
95: fprintf(stderr,"%s: mmap('%s')\n",strerror(errno),path); 
96: close(fd); 
97: return; /* Failed, use default */ 
98: } 
99: 
100: close(fd); /* no longer require file to be open */ 
101: 
102: /* 

103: * Now parse the messages : 
104: */ 
105: parse_messages(); 
106: } 
107: 
108: /* 
109: * Main program : 
110: */ 

111: int 
112: main(int argc,char **argv) { 
113: int x; 
114: 
115: /* 
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116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

/* 

* Report messages : 
*/ 

for ( x=1; x<MAX_MSGS; ++x ) 

* Memory map the language file : 
*/ 

load_messages(); 

return 0; 

printf(''errno=%d (%s) : %s\n", 
x,univ_maclist[x],univ_errlist[x]); 

128: } 

The main () program starts by calling upon load_messages () to select and load the error mes¬ 

sages file in line 118. The load_messages () function initially attempts to find environment 

variable MSG_LANG by calling getenv(3) in line 61. This variable influences the language being 

used by the error messages and defaults to English (see line 77). 

Only the first 12 system error messages are used in this demonstration program, and the limit 

is established by the macro value MAX_MSGS in line 13. This macro also defines the pointer 

array length of univ_errlist [ ] and macro name array univ_maclist [ ]. Lines 69-72 initial¬ 

ize defaults for the arrays univ_errlist [ ] and univ_maclist [ ]. These defaults are used if no 

memory mapping succeeds. 

The pathname of the message file to be mapped is formed in line 77. The size of the file is 

determined by a call to stat (2) in lines 79-81. If the file cannot be stat (2), then the func¬ 

tion simply returns, causing the defaults for the error messages to be used (line 80). 

The message file is opened for reading in line 86. The file is mapped by calling mmap(2) in line 

92. Since no address was given, the kernel will select a suitable address, which will be 

assigned to variable msgs. The mapped region was specified to be at least msgs_len+1 bytes in 

length. The extra byte was requested so that the program can plug in a terminating null byte to 

simplify the code. 

The access to the region will allow both reading and writing. The flag MAP_PRIVATE was used 

so that any changes made by the program would be kept separate from both the file and other 

processes mapping this file. The reason for allowing write access will be clear when the func¬ 

tion parse_messages () is explained. 

Line 100 closes the message file, since it no longer needs to be open. The UNIX kernel main¬ 

tains its own reference to the file after a successful mmap(2) call, so your application is free to 

close the file. 

Now examine the function parse_messages () in lines 25-52. Line 27 casts the (void *) 

pointer msgs into the character pointer mp in line 27. This points to the beginning of our 

mapped file. Line 31 places a null byte at the end of the file to simplify the work in this rou¬ 

tine. Note that this extra byte was allowed for in the original mmap (2) call. 
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Before looking at how the code is parsed, look at a sample message file in English first: 

$ cat errors.english 
EPERM 1 Operation not permitted 
ENOENT 2 No such file or directory 
ESRCH 3 No such process 
EINTR 4 Interrupted system call 
EIO 5 Input/output error 
ENXIO 6 Device not configured 
E2BIG 7 Argument list too long 
ENOEXEC 8 Exec format error 
EBADF 9 Bad file descriptor 
ECHILD 10 No child processes 
EDEADLK 11 Resource deadlock avoided 
$ 

Each line of the message file is divided into a macro name field, an errno value, and the text of 

the message itself. Only the first 12 codes are covered in this demonstration. 

The first time strtok (3) is called, in line 35, the argument mp is not null. This starts the entire 

parsing process, but note that successive iterations provide a null pointer here (see the for 

loop in line 33). Lines 35-47 parse the three fields of the input line. Lines 49-50 store pointer 

references to these messages. 

The protection PROTJVRITE was necessary for this application because strtok(3) modifies the 

memory it is parsing. Recall that it places a null byte at the end of the token found. However, 

to prevent these changes from being written back to the messages file, the flag MAP_PRIVATE 

keeps the changes local to the process memory. 

An improvement would be to use one application to create a message image file that does not 

require parsing. Then the second application could simply map the resulting generated mem¬ 

ory image into its memory with read-only access. This will be left for you as an exercise. 

Compiling the program in Listing 26.2 and invoking it without any language setting causes it 
to display its defaults: 

$ make messages 
cc -c -Wall messages.c 
cc -o messages messages.o 
$ ./messages 
errno=1 (EPERM) 
errno=2 (ENOENT) 
errno=3 (ESRCH) 
errno=4 (EINTR) 
errno=5 (EIO) : 
errno=6 (ENXIO) : 
errno=7 (E2BIG) : 
errno=8 (ENOEXEC) 
errno=9 (EBADF) : 
errno=10 (ECHILD) 
errno=11 (EDEADLK) 

: Operation not permitted 
: No such file or directory 

: No such process 
: Interrupted system call 
Input/output error 
: Device not configured 
: Argument list too long 

: Exec format error 
Bad file descriptor 
: No child processes 

: Resource deadlock avoided 
$ 
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The default is to assume the English language, so the message file errors. english is used in 

this example run. If you change the environment variable MSG_LANG to the German language, 
you get different results: 

$ NISG_LANG=german ./messages 
errno=1 (EPERM) : Operation nicht die Erlaubnis gehabt 
errno=2 (ENOENT) : Keine solche Datei Oder Verzeichnis 
errno=3 (ESRCH) : Kein solches ProzeB 
errno=4 (EINTR) : Unterbrochener Systemaufruf 
errno=5 (EIO) : Input/Output Fehler 
errno=6 (ENXIO) : Einheit nicht konfiguriert 
errno=7 (E2BIG) : Argumentliste zu lang 
errno=8 (ENOEXEC) : Formatfehler Exec 
errno=9 (EBADF) : Falscher Dateibeschreiber 
errno=10 (ECHILD) : Keine Kindprozesse 
errno=11 (EDEADLK) : Hilfsmittelsystemblockade vermieden 
$ 

In this example, the input file errors .german was mapped to memory instead. This file has 

the following content: 

$ cat errors.german 
EPERM 1 Operation nicht die Erlaubnis gehabt 
ENOENT 2 Keine solche Datei Oder Verzeichnis 
ESRCH 3 Kein solches ProzeB 
EINTR 4 Unterbrochener Systemaufruf 
EIO 5 Input/Output Fehler 
ENXIO 6 Einheit nicht konfiguriert 
E2BIG 7 Argumentliste zu lang 
ENOEXEC 8 Formatfehler Exec 
EBADF 9 Falscher Dateibeschreiber 
ECHILD 10 Keine Kindprozesse 
EDEADLK 11 Hilfsmittelsystemblockade vermieden 
$ 

With the help of the following, you could create yet another message file, such as for French: 

http://babelfish.altavista.com/raging/translate.dyn 

Another use for memory-mapped files might be to save your application’s workspace. For 

example, with memory-mapped files, the shared global variables in the globvar utility dis¬ 

cussed in Chapter 25 could be saved to a file for future use after a system reboot. Regions for 

just-in-time executable code can be placed into executable memory regions. This would be 

performed without actually using a file (recall that the flag MAP_ANON or the mapping of 

/dev/zero effectively provides this capability). 

If memory-mapped regions are used for interprocess communication, keep in mind that syn¬ 

chronization is still required. You may need the assistance of a semaphore set, for example. 
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Controlling Memory-Mapped Regions 
A memory-mapped region often requires its attributes to be queried or changed in some fash¬ 

ion. This section looks at four system calls designed for this purpose: 

mprotect(2) Change the access of the indicated memory pages. 

madvise(2) Advise the UNIX kernel how you intend to use your memory region. 

mincore(2) Determine if pages of mapped memory are currently in memory. 

msync(2) Where modifications exist, indicate what regions of memory should be 

updated to the mapped files. 

Changing the Access Protection 
A memory-mapped region, entirely or in part, may have its access protections changed by the 
mprotect (2) system call. Its function synopsis is as follows: 

#include <sys/types.h> 
^include <sys/mman.h> 

int mprotectfconst void *addr, size_t len, int prot); 

The function mprotect (2) allows the application to change the region starting at address addr 

for a length of len bytes, so as to use the protection specified by the argument prot. The prot 
flags permitted are 

PR0T_N0NE Region grants no access (this flag excludes use of the other flags). 

PR0T_READ Region grants read access. 

PROT_WRITE Region grants write access. 

PR0T_EXEC Program instructions may be executed in the memory-mapped region. 

The function mprotect(2) returns the value 0 when successful. Otherwise, -1 is returned, and 
the error code is found in errno. 

Warning 

Not all UNIX implementations permit the caller to change memory region protection on a page-by- 
page basis. For maximum portability, the entire memory region should be specified. 

The messages.c program was modified to call mprotect (2) in the file mprotect .c. The 

changes made to the program are shown in the context dif f (1) form in Listing 26.3. 
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LISTING 26.3 mprotect.c—Changes to messages.c to Make Message Text Read-Only 

$ diff -c messages.c mprotect.c 
*** messages.c Sun Jul 9 18:11:00 2000 
--- mprotect.c Sun Jul 9 18:59:19 2000 
*************** 
*** 1^4 **** 
! /* messages.c */ 

#include <stdio.h> 
#include <unistd.h> 

... i,4 ---- 
! /* mprotect.c */ 

#include <stdio.h> 
#include <unistd.h> 

*************** 

*** 103,108 **** 
--- 103,114 - 

* Now parse the messages : 
*/ 

parse_messages(); 
+ 

+ /* 

+ * Make the message text read only now : 
+ */ 

+ if ( mprotect(msgs,msgs_len+l,PR0T_READ) ) 
+ fprintf(stderr,"%s: mprotect(PR0T_READ)\n",strerror(errno)); 

} 

/* 

$ 

The mprotect (2) call follows the parse_messages () function call in Listing 26.3. At this 

point, it is desirable to use a read-only status, since this will prevent buggy code from altering 

the message text. If an attempt is made to change the error message text, a SIGBUS signal will 

be raised instead. 

Advising the Kernel About Memory Use 
To achieve maximum performance, you may find it desirable for your application to inform 

the UNIX kernel about the status of a memory region or about its usage patterns. The system 

call mad vise (2) permits this to be accomplished: 

#include <sys/types.h> 
#include <sys/mman.h> 

int madvise(void *addr, size_t len, int behavior); 

The madvise (2) function returns 0 when successful. The value -1 is returned when the call 

fails, leaving the error code in the variable errno. 

The madvise (2) system call allows you to hint to the kernel about the memory region starting 

at addr for a length of len bytes. The behavior is specified by one of the following values: 
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MADVJJORMAL Normal behavior; no special treatment is required. 

MADV_RAND0M Expect memory pages to be referenced at random. Sequential 

prefetching is to be discouraged. 

MADV_SEQUENTIAL Expect memory pages to be referenced sequentially. This encour¬ 

ages prefetching and decreases the priority of previously fetched 

pages. 

MADVJVILLNEED Indicates a range of memory pages that should temporarily have a 

higher priority, since they will be needed. 

MADV_DONTNEED Indicates a range of memory pages that are no longer required 

(their priority is reduced). It is likely that future references to these 

pages will incur a page fault. 

MADV_FREE Indicates that the modifications in the memory pages indicated do 

not need to be saved. Furthermore, this permits the kernel to 

release the physical memory pages used. The next time the page is 

referenced, it may be zeroed, or it may still contain the original 

data. 

In addition to these, some platforms support the following behavior: 

MADV_SPACEAVAIL Ensures that the necessary resources are reserved. 

Linux and UnixWare 7 do not support the madvise(2) function at all. Table 26.2 provides a 

cross-reference grid of supported behaviors. 

TABLE 26.2 A Cross-Reference Guide to madvise(2) Behavior Support on Different Platforms 

madvise(2) 

Behavior Platform 

FreeBSD SGI IRIX 6.5 HPUX 17 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux 

MADV_NORMAL X X X X 

MADV_RANDOM X X X X 

MADV_SEQUENTIAL X X X X 

MADV_WILLNEED X X X X 

MADV_D0NTNEED X X X X 

MADV_FREE X X 

MADV_SPACEAVAIL X X 
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Listing 26.4 shows a context dif f (1) listing, illustrating the changes between mprotect. c and 

madvise.c. In madvise. c, calls to madvise(2) have been added. 

LISTING 26.4 madvise. c—Changes Made to mprotect. c to Indicate Access Behavior Patterns to 

the Kernel 

*** mprotect.c Sun Jul 9 18:59:19 2000 
--- madvise.c Sun Jul 9 19:40:33 2000 
*************** 
*** 1,4 **** 
! /* mprotect.c */ 

#include <stdio.h> 
#include <unistd.h> 

... 1>4 .... 

! /* madvise.c */ 

#include <stdio.h> 
#include <unistd.h> 

*************** 

*** 100,105 **** 
--- 100,111 - 

close(fd); /* no longer require file to be open */ 

/* 

+ * Advise kernel of sequential behavior : 

+ */ 

+ if ( madvise(msgs,msgs_len+l,MADV_SEQUENTIAL) ) 
+ fprintf(stderr,"%s: madvise(MADV_SEQUENTIAL)\n",strerror(errno)); 
+ 

+ /* 

* Now parse the messages : 

*/ 

parse_messages(); 
*************** 

*** 109,114 **** 
--- 115,126 - 

*/ 
if ( mprotect(msgs,msgs_len+1,PR0T_READ) ) 

fprintf(stderr,"%s: mprotect(PR0T_READ)\n",strerror(errno)); 
+ 

+ /* 
+ * Advise kernel of random behavior : 

+ */ 
+ if ( madvise(msgs,msgs_len+1,MADV_RANDOM) ) 
+ fprintf(stderr,"%s: madvise(MADV_SEQUENTIAL)\n",strerror(errno)); 

} 

/ 
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The first madvise (2) call occurs before the error message file is parsed, to indicate sequential 

access with MADV_SEQUENTIAL. Recall that the parsing of the messages is sequential from the 

start to the end of the mapped message file. 

Once the messages have been parsed, however, the access pattern changes to that of a random 

nature, since any error message may be called upon demand. Hence, the second call to 

madvise(2) selects behavior MADV_RANDOM. 

Querying Pages in Memory 
It is possible to query the kernel to determine which memory pages are currently in memory. 

This is accomplished by the mincore(2) system call, and its synopsis is as follows: 

#include <sys/types.h> 
#include <sys/mman.h> 

int mincore(const void *addr, size_t len, char *vec); 

The mincore (2) function accepts a starting address addr and a length of len bytes. All pages 

within this range are then reported by setting values in the vec character array. The array vec 

is expected to be large enough to contain all the values that must be reported. Each byte 

receives 1 if the page is in memory or 0 if the page is not in memory. The number of bytes 

required depends on the length of the region and the page size returned by the function 

getpagesize(3). 

When successful, the value 0 is returned by mincore (2). Otherwise, -1 is returned, and the 

error is found in the variable errno. 

The following shows a call to mincore(2): 

char vec[32]; /* Reports for up to 32 pages */ 

if ( mincore(addr,len,&vec[0]) == -1 ) 
perror("mincore(2)"); /* Report error */ 

Table 26.3 shows that support for mincore(2) is not available on many platforms. Also, note 

that the argument addr is type caddr_t on non-BSD platforms. 

TABLE 26.3 A Cross-Reference Chart for mincore(2) Support on Different Platforms 

mincore(2) 

Support Platform 

FreeBSD SGI IRIX 6.5 HPUX 11 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux 

mincore(2) X X X X 

const void *addr X 

caddr_t addr X X X 
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Synchronizing Changes 
When changes are made to writable mapped regions of memory, there are various timing 

choices for recording changes into the file. The msync(2) system call provides a degree of con¬ 

trol over this choice. Its function synopsis is as follows: 

#include <sys/types.h> 
#include <sys/mman.h> 

int msync(void *addr, size_t len, int flags); 

The msync(2) call affects the region starting at addr for a length of len bytes. When len is 0, 

all of the pages of the region are affected. Argument flags determines what synchronization 

choice is to take effect: 

MS_ASYNC Request all changes to be written out, but return immediately. (Not imple¬ 

mented for FreeBSD release 3.4.) 

MS_SYNC Perform synchronous writes of all outstanding changes. 

MS_INVALIDATE Immediately invalidate all cached modifications to pages. Future refer¬ 

ences to these pages require the pages to be fetched from the file. 

The MS_SYNC flag is similar to calling fsync(2) on an open file descriptor. It forces all changes 

out to the disk media and returns once this has been accomplished. The MS_INVALIDATE flag 

allows the application to discard all changes that have been made. This saves the kernel from 

synchronizing the memory region with the file. 

The function msync(2) returns 0 when successful. Otherwise, -1 is returned with the error 

code deposited in errno. The following shows an example of a msync(2) call to cause all 

changes to be immediately written to the file: 

if ( msync(addr,0,MS_SYNC) == -1 ) 
perror( ‘'msync(2)"); 

Table 26.4 shows the support available for msync(2) on the different platforms. 

TABLE 26.4 A Cross-Reference Chart of msync(2) Support on Different Platforms 

msync(2) Support Platform 

FreeBSD SGI IRIX 6.5 HPUX 11 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux 

MS ASYNC X X X X X X 

MS_SYNC X X X X X X X 

MS INVALIDATE X X X X X X X 

void *addr X X X X X 
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continued from previous page 

msync(2) Support Platform 

FreeBSD SGI IRIX 6.5 HPUX 17 UnixWare 7 Solaris 8 IBM AIX 4.3 Linux 

const void *addr X 

caddr_t addr X 

Destroying Memory Mappings 
With the exception of the MAP_INHERIT flag for FreeBSD, the memory-mapped regions are 

unmapped automatically by the kernel when execve(2) is called or when the process termi¬ 

nates. It may occur in an application, however, that the memory-mapped file is needed only 

temporarily. The munmap(2) system call is used to unmap it: 

#include <sys/types.h> 
#include <sys/mman.h> 

int munmapfvoid *addr, size_t len); 

The memory region to be unmapped is specified as the region starting at addr for a length of 

len bytes. The function munmap(2) returns 0 when successful. Otherwise, -1 is returned, with 

an error code left in errno. It should be noted that this system call does not cause pending 

changes to be written out to the file. If this is important, you must make appropriate use of the 
msync(2) system call prior to calling on munmap(2). 

Referencing memory after it has been unmapped will cause the signal SIGSEGV or SIGBUS to 

occur. Some UNIX platforms can return either, depending on the nature of the memory access. 

Unfortunately, no platform documents that len can be specified as zero. This forces the application 
programmer to keep track of the memory region size, so that it can be unmapped successfully at a 
later time. 

This restriction is especially painful when MAP_INHERIT is used with execve(2) to execute a new 
program. Unless the size of the region has been stored in the memory region itself (or communi¬ 
cated some other way), the new program will not know the correct length to use in a munmap(2) 
call. 

To unmap a region of memory in the Listing 26.2 program (messages. c), the following func¬ 
tion call could be added prior to the return statement on line 127: 

if ( munmap(msgs,msgs_len+1) == -1 ) 
perror ("munmap(2)11) ; 

In this example, recall that one byte was added to the file’s size when it was mapped. 
Consequently, msgs_len+1 is necessary in the munmap(2) call. 
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Warning 

The munmap(2) system call does not cause pending changes to be written out to the file. If this is 
important, you must make appropriate use of the msync(2) system call prior to calling munmap(2). 

Summary 
This chapter looked at the UNIX facility that is available for memory-mapped files. This facil¬ 

ity provides some interesting new choices to the application programmer. 

However, be aware that memory mapping is often restricted to files and memory regions of 

less than 2GB (FreeBSD release 3.4 restriction). On any given platform, you are restricted to 

the process memory image size. 

If you use memory-mapped files to share information between separate processes, remember 

that semaphores and calls to msync (2) may be required for synchronization. If you use some 

of the more exotic mmap(2) features, your application may not be portable to other UNIX plat¬ 

forms. 

Despite these challenges, memory-mapped files can be an extremely efficient way to work with 

data in memory and keep copies of it in a disk file. 

The next chapter takes a departure into the world of X Window programming. This will pro¬ 

vide an introduction to graphical programming under UNIX and an example of event-driven 

processing. 





CHAPTER 27 

X WINDOW PROGRAMMING 

Non-graphical programs tend to follow the programmer’s choice of events, accepting 

user input only when it is convenient for the program. An update process will chug 

through a database and wait for the user’s input only when it has called fgets(3), for 

example. Once control has returned from fgets (3) with the input, however, any additional 

user input is ignored as the update proceeds. 

Another program that puts up a text-based screen is also program directed. The user must pro¬ 

vide input that is suitable for the field where the cursor is. As the cursor moves to other input 

fields, the input data provided must obey content rules for those fields. These are examples of 

a program telling the user what input to provide and when it must be provided. 

Graphical user interfaces use a different processing paradigm. Event-driven programming has 

a program constantly waiting for user input events. Processing occurs briefly only after these 

user-input events have been received by the program. The user is able to choose where to 

input text with a mouse click or a tab key. Alternatively, the user may use the mouse to draw, 

causing numerous input events to occur. 

This chapter will examine event-driven programming as it applies to X Window graphics. The 

intention of this chapter is to 

• Illustrate event-driven programming 

• Introduce X Window graphics programming 

Event-Driven Programming 
Figure 27.1 shows a program that progresses from time TO to T6 in two states: a processing 

state in which program instructions are executed and an input state in which program execu¬ 

tion is suspended until user input arrives. 

After some program initialization starting at time TO, the program ignores user input until it 

reaches time Tl. At Tl, the execution of the program is suspended until fgets (3) receives 

input (using an underlying read(2) system call). At time Tl the program is attentive to the 

user. 

At time T2, however, the program is busy executing instructions that pertain to database 

queries and other non-input activities. The user cannot direct the flow of the program at this 

point. 
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FIGURE 27.1 

Non-event-driven states 

from time TO to T6. 
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TO T1 T2 T3 T4 T5 T6 

At time T3, the program is willing to listen to the user again, providing the user some measure 

of control. However, after this input is received, at time T4 the program completely ignores the 

user as it chugs away. 

Time T5 allows the user one more opportunity for input before ignoring the user again at time 

T6. Throughout the entire execution of the program, it has only allowed user control over it at 
a few defined points. 

An Event-Driven Model 
Figure 27.2 shows how an event-driven model behaves. 

FIGURE 27.2 
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In this program, there is some initialization starting at time TO. However, from time T1 to T5 

the program is preoccupied with obtaining input events from the user. Only after an input 

event occurs does the program ignore input briefly to process the action required by the event. 

The fact that event-driven models also ignore input briefly highlights one important aspect of 

graphical programming: Event processing must be brief. Otherwise, the user will cease to have 

control. Note that, like character mode programs, graphical events are queued for the event- 

driven program. This allows event programs to process events without losing them as it per¬ 
forms processing for the preceding events. 
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Client/Server Processing 
The X Window graphic software is flexible enough to allow programs to draw graphics on the 

local screen or to a remote computer’s screen instead. The X Window server is the process that 

manages the input devices and the one or more display screens. The client is the program that 

wants to draw on the screen and receive input from the input devices, such as the mouse and 

keyboard. Figure 27.3 shows an X Window server running on host alpha and clients running 
on all three hosts. 

FIGURE 27.3 

Four X Window client 

programs using one X 

Window server. 

The X Window server running on host alpha controls the graphics display screen, the key¬ 

board, and the mouse. On the same host, a client program is making use of these facilities 

through a local socket connection to the server. 

On host beta, one client is accessing the alpha X Window server through the network. Host 

gamma has two client programs accessing the alpha X Window server through the network. 

The user sitting at the display has four different windows open. Each window sends input 

events to the specific client program that created the window. 
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Software Layers 
Graphical programming tends to be complex. To make the software easier to design and man¬ 

age, the X Window software has been designed in layers. Figure 27.4 shows a conceptual view 

of this. 

FIGURE 27.4 

X Window software 

layers. 

Figure 27.4 shows three client program perspectives. These are common configurations 

for X Window clients but not the only ones available. Application program A uses the basic X 

Window library Xlib. This library eliminates the need for the client program to know the X 

Window protocol. The Xlib library allows the programmer to concentrate on the input and the 
drawing events instead. 

Application program B uses an X Toolkit library, which then calls upon the Xlib library. The 

Toolkit library provides a basic framework for X Window widget support and uses Xlib to pro¬ 

vide lower-level support. This simplifies the application’s handling of menus, buttons, and 
other widgets. 
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Application program C uses the MOTIF library, which calls upon the X Toolkit and the Xlib 

libraries. The MOTIF library provides a fully functional set of widgets with a 3D look and 

includes support for other languages. 

Application program C is the simplest program to write if the application involves pushbut¬ 

tons, list boxes, text entry fields, and so on. However, if your application requires only draw¬ 

ing facilities, the Xlib support may be all you need. 

The example program presented in this chapter will be of the application A variety. Using the 

Xlib library is sufficient for demonstrating event-driven programming and requires the least 

amount of explanation. The serious X Window programmer is encouraged to read more about 

the X Toolkit and MOTIF libraries, however. 

An Xlib Client Program 
Listing 27.1 shows the listing of the include file that is used by the source modules xeg. c and 

events.c. 

LISTING 27.1 xeg. h—Common Include File for xeg. c and events. c 

1: /* xeg.h */ 
2: 
3: #include <stdio.h> 
4: #include <strings.h> 

5: #include <X11/Xlib.h> 

6: 
*7 . 

#include <X11/Xutil.h> 

7. 
8: typedef unsigned long Ulong 

y. 
10 #define B1 1 /* Left button */ 

11 #define B2 2 /* Middle button */ 

12 #define B3 4 /* Right button */ 

13 
14 extern Display *disp; /* Display */ 

15 extern int scr; /* Screen */ 

16 
17 extern Ulong bg; /* Background color 

18 extern Ulong fg; /* Foreground color 

19 
20 extern Ulong wht; /* White */ 

21 extern Ulong blk; /* Black */ 

22 
23 extern Ulong red; /* red */ 

24 extern Ulong green; /* green */ 

25 extern Ulong blue; /* blue */ 

26 
27 extern Window xwin; /* Drawing window * 

28 
29 extern void event_loop(void); 

30 
31 /* End xeg.h */ 
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The file includes the usual <stdio. h> and <strings. h> definitions to define the macro NULL 

and strerror(3), respectively. It should be noted that one of the great features of UNIX 

graphics programming is that you can send output to standard output, in addition to graphics 

on the X Window server. This often assists greatly in debugging efforts. 

The include file <X11 /Xlib. h> (line 5) is required to define a number of Xlib functions and 

macros. Include file <X11 /Xutil. h> (line 6) is needed to define the type XSizeHints, which is 

used in this example program. 

The typedef Ulong is declared in line 8 for programming convenience, since the type 

unsigned long is used frequently. Macros B1, B2, and B3 are mouse button bits that define bits 

0, 1, and 2, respectively, where 0 is the least significant bit. These macros are used in the event 
processing loop. 

The remainder of the include file (lines 14-27) defines global values that 
main () program. 

Listing 27.2 shows the source listing for the main () program. 

LISTING 27.2 xeg.c—The main () Function of the Xlib Client Program 

1: /* xeg.c */ 

c. • 
3: 
A • 

#include "xeg.h" 

5: Display *disp; /* Display */ 
6: 
7 ■ 

int scr; /* Screen */ 

8: Ulong bg; /* Background color */ 
9: Ulong fg; /* Foreground color */ 
10: 
11: Ulong wht; /* White */ 
12: Ulong blk; /* Black */ 

13: 
14: Ulong red; /* red */ 

15: Ulong green; /* green */ 

16: Ulong blue; /* blue */ 

17: 
18: Window xwin; /* Drawing window */ 

19: 
20: int 
21 : main(int argc,char **argv) { 

22: Colormap cmap; /* Color map */ 

23: XColor approx; /* Approximate color */ 

24: XColor exact; /* Precise color */ 

25: XSizeHints hint; /* Initial size hints */ 

26: 
27: /* 

28: * Open display (connection to X Server) : 

29: */ 

30: if ( !(disp = XOpenDisplay(NULL)) ) { 

31: fprintf(stderr,"Cannot open display: check DISPLAY 
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exit(1); 
} 

scr - DefaultScreen(disp); /* Obtain default screen */ 
cmap = DefaultColormap(disp,scr); 

/* 

* Obtain color information : 
*/ 

XAllocNamedColor(disp,cmap,"red",&exact,&approx); 
red = approx.pixel; 

XAllocNamedColor(disp,cmap,"green",&exact,&approx); 
green = approx.pixel; 

XAllocNamedColor(disp,cmap,"blue",&exact,&approx); 
blue = approx.pixel; 

/* 

* Get black and white pixel values : 
*/ 

wht = WhitePixel(disp,scr); /* White pixel */ 
blk = BlackPixel(disp,scr); /* Black pixel */ 

/* 

* Choose colors for foreground and background : 
*/ 

fg = wht; /* use white foreground */ 
bg = blk; /* use black background */ 

* Set Hint Information for Window placement 
*/ 

hint.x = 100; 
hint.y = 150; 
hint.width = 550; 
hint.height = 400; 
hint.flags = PPosition 

/* 

/* 

Start x position */ 
Start y position */ 

/* Suggested width */ 
/* Suggested height */ 

PSize; /* pgm specified position, size */ 

/* 

* Create a window to draw in : 
*/ 

xwin = XCreateSimpleWindow( 
disp, /* Display to use */ 
DefaultRootWindow(disp),/* Parent window */ 
hint.x, hint.y, /* Start position */ 
hint.width, hint.height,/* Window Size */ 
7; /* Border width */ 
fg} /* Foreground color */ 
bg); /* Background color */ 

/* 

* Specify the window and icon names : 

*/ 
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continued from previous page 

CD 
CO XSetStandardProperties( 

Is-
 

o
o

 disp, /* X Server connection 

CO 
co

 xwin, /* Window */ 

89: ''xegwin'1, /* Window name */ 

90: "xeg.c1', /* icon name */ 

91 : None, /* pixmap for icon */ 

92: argv.argc, /* argument values */ 

93: &hint); /* sizing hints */ 

CD
 

CD
 

cn
 

/* 

96: * Map the window, and ensure it is the topmost 
97: * window : 

CO 
CT> */ 

99: XMapRaised(disp,xwin); 
100: 
101: /* 
102: * Process the event loop : 
103: */ 
104: event_loop(); 
105: 
106: /* 
107: * Cleanup : 
108: */ 
109: XDestroyWindow(disp,xwin); /* Release and 
110: XCloseDisplay(disp); /* Close conne 
111: 
112: return 0; 
113: } 

window */ 
X Server */ 

The main() program takes care of the initialization and cleanup for the X Window demonstra¬ 

tion. Much of this initialization is common to most X Window programs. The overall steps 

used by the main program are as follows: 

1. Open the display on the X Window server (lines 30-33). This call creates a socket and 

connects to the X Window server, which may be a local or remote hosted server. 

2. Select the default screen (line 35). X Window servers are capable of supporting more 

than one display screen. Here the application simply chooses the default screen. 

3. A color map is obtained (line 36). X Window graphics operations used in this program 

require the use of a color map. A color map is associated with a specific screen and 

server connection (scr and disp, respectively). 

4. The color red is allocated in the color map cmap (line 41). The approximate value for red 

is used in line 42, since the actual color is not critical for this application. 

5. The colors green and blue are allocated in lines 44-48. Again, approximate colors are 
acceptable to this application. 

6. Pixel values for white and black are determined and assigned to the variables wht and 

blk, respectively (lines 53 and 54). These colors will be used to establish default fore¬ 
ground and background colors. 

7. Pixel values for foreground and background are established in variables f g and bg (lines 

59 and 60). 
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8. This program establishes “hint” information about where the window should be created 

(lines 65-69). Line 69 indicates that the program wants to select the position and size of 
the window. 

9. A simple drawing window is created in lines 74-81. Argument disp specifies the con¬ 

nection to the server. Note that it is possible for a program to establish connections to 
multiple X Window servers. 

10. A call to XSetStandardProperties (3X11) (lines 86-93) is made to specify the window’s 

name, its icon name, a pixmap for the icon if any, resource setting arguments (from the 

command line), and sizing hints. 

11. Function XMapRaised (3X11) is called in line 99 to cause the created window to be 

mapped (displayed). Until this point, the X Window server has just kept notes about the 

window specified by xwin. 

Once those steps have been accomplished, it is possible to invoke the function event_loop() 

that is in source module events. c. When the function event_loop() returns, however, this 

indicates that it is time for this client program to terminate. Termination consists of destroying 

the window that was created (xwin) and closing the connection to the X Window server 

(disp). The main() program then terminates at the return statement in line 112. 

A number of important X Window concepts have been glossed over here to get you to the 

most important aspect of this chapter, which is the event-processing loop. However, even with 

a rudimentary understanding, you could clone other X Window graphics program clients from 

this main program. As your understanding grows, you can expand upon the code presented 

here. 

The feature piece of this chapter is the event-processing loop contained within the source 

module events. c. Before examining the code for it, compile and try the program to see what 

it is supposed to do. The following shows a compile session under FreeBSD: 

$ make 
cc -c -Wall -1/usr/XI1R6/include xeg.c 
cc -c -Wall -I/usr/X11R6/include events.c 
cc -o xeg xeg.o events.o -L/usr/X11R6/lib -1X11 
$ 

It is often necessary to indicate where the include files and the X Window libraries are. If you 

compile this program on a different UNIX platform, you may need to adjust the options 

-I/usr/XI1R6/include and -L/usr/X11 R6/lib to point to where your include and library 

files are. 

Normally, you start the program and place it into the background when you are using an 

xterm(1) session. This allows you to continue using the xterm(1) window for other things 

while your client program runs: 

$ ./xeg & 
$ 

Soon after the program starts, you should see a window like that shown in Figure 27.5. 
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A black background window should be created with the white-lettered message xeg. c. Using 

the mouse now, it is possible to draw in different colors. To exit the window, press the lower¬ 

case q key to quit (the window must have the focus for the q key to work). 

Using the left, middle, or right mouse button, you can draw in the window with the colors 

red, green, and blue, respectively. If you have a two-button mouse and middle button emula¬ 

tion enabled, press the right and left buttons simultaneously to get the color green. Figure 27.6 

shows the author’s attempt to write xeg. c on the window using the mouse. 
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One other feature of this program is activated with the Shift+click of the mouse. When the 

Shift key is held down, a different drawing technique causes a starburst effect, as shown in 
Figure 27.7. 

FIGURE 27.7 

A starburst drawn in the 

X Window with 

Shift+click. 

Figure 27.7 shows the mouse starting at the 2 o’clock position and circling around to 8 

o’clock, while holding down the Shift key and mouse button at the same time. The way this is 

accomplished is explained when the code in Listing 27.3 is discussed. 

LISTING 27.3 events. c—The Event-Processing Loop 

1: 
O • 

/* events.c */ 

3: 
A • 

#include "xeg.h" 

5: /* 
6: * The X Window Event Loop 
7: */ 
8: void 
9: event_loop(void) { 
10: int x0, y0; /* Prior position */ 
11: GC gc; /* Graphics context */ 
12: XEvent evt; /* X Event */ 
13: char kbuf[8]; /* Key conv buffer */ 
14: KeySym key; /* Key symbol */ 

15: int kcount; /* Key count */ 
16: int b = 0; /* Buttons Pressed */ 
17: int star = False; /* Draw stars when True */ 

18: Bool quit = False; /* Quit event loop when True 

19: <s> 
C

M
 /* 
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21 

22 
23 
24 
25 
26 
27 
28 
29 
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* Choose the XEvents that we want to process : 
*/ 

XSelectInput(disp,xwin, 
KeyPressMask | ExposureMask | 
ButtonPressMask | ButtonReleaseMask | 
ButtonIMotionMask | Button2MotionMask | Button3MotionMask) 

/* 

* Create a Graphics Context : 
*/ 

gc = XCreateGC(disp,xwin,0,0); 
XSetBackground(disp,gc,bg); /* Set background color of gc */ 
XSetForeground(disp,gc,fg); /* Set foreground color of gc */ 

/* 

* Process X Events : 
*/ 

while ( quit != True ) { 
/* 

* Fetch an X Event : 
*/ 

XNextEvent(disp,&evt); 

/* 

* Process the X Event : 
*/ 

switch ( evt.type ) { 

case Expose : 
/* 

* Window has been exposed : 
*/ 

if ( evt.xexpose.count == 0 ) 
XDrawlmageString(evt.xexpose.display, 

evt.xexpose.window, 
gc, 
105, 65, 
"xeg.c", 5); 

break; 

case ButtonPress : 
/* 

* A button has been pressed: 
* 

* Set the bit corresponding to the mouse button that 
* is pressed : 
*/ 

switch ( evt.xbutton.button ) { 
case Buttonl : 

b |= Bl; 
break; 

case Button2 : 
b |= B2; 
break; 



75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

Chapter 27 • X WINDOW PROGRAMMING 569 

default : 
b |= B3; 

} 

if ( evt.xbutton.state & ShiftMask ) 
star = True; 

else 
star = False; 

/* 

* Save the current position : 
*/ 

x0 = evt.xbutton.x; 
y0 = evt.xbutton.y; 

/* 

* Establish the drawing color based upon the leftmost 
* mouse button that is pressed : 
*/ 

if ( b & B1 ) 
fg = red; 

else if ( b & B2 ) 
fg = green; 

else 
fg = blue; 

XSetForeground(disp,gc,fg); /* Set foreground color of gc */ 
break; 

case ButtonRelease : 
/* 

* A button has been released : 
•k 

* Unset the bit corresponding to the released color : 
*/ 

switch ( evt.xbutton.button ) { 
case Buttonl : 

b &= -B1; 
break; 

case Button2 : 
b &= -B2; 
break; 

default : 
b &= —B3; 

} 

/* 

* Set the color based upon the leftmost mouse button : 
*/ 

if ( b & B1 ) 
fg = red; 

else if ( b & B2 ) 
fg = green; 

else 
fg = blue; 
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continued from previous page 
130: xSetForeground(disp,gc,fg); /* Set foreground color of gc */ 

131: break; 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 

case MotionNotify : 
/* 

* Motion with a button down : 
* 

* Draw a line from the last know position, to the current : 

*/ . 
XDrawLine(disp,xwin,gc,x0,y0,evt.xmotion.x,evt.xmotion.y); 

/* 
* When drawing lines, we must save the last position that 
* we have drawn a line segment to : 

*/ 

if ( star == False ) { 
x0 = evt.xmotion.x; /* Save x for next line segment */ 
y0 = evt.xmotion.y; /* Save y for next line segment */ 

} 
break; 

case MappingNotify : 
XRefreshKeyboardMapping(&evt.xmapping); 
break; 

case KeyPress : 
/* 

* A key was pressed; check for 'q' to quit : 
*/ 

kcount = XLookupString(&evt.xkey,kbuf,sizeof kbuf,&key,0); 
if ( kcount == 1 && kbuf[0] == 'q' ) 

quit = True; 

} 
} 

XFreeGC(disp,gc); /* Release graphics context */ 

Before X Window events are processed in the event loop, a call to XSelectlnput (3X11) is per¬ 

formed to select the events that are of interest (lines 23-26). disp and xwin specify the con¬ 

nection and the window to modify. The events selected are the following: 

KeyPressMask Key press events 

ExposureMask Window expose events 

ButtonPressMask Mouse button press events 

ButtonReleaseMask Mouse button release events 

ButtonIMotionMask Pointer motion events when button 1 is down 

Button2MotionMask Pointer motion events when button 2 is down 

Button3MotionMask Pointer motion events when button 3 is down 
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Since drawing is required, a graphics context is needed to draw with. This specifies the attrib¬ 

utes of the drawing pen, such as the foreground and background colors. Line 31 creates a 

graphics context with a call to XCreateGC (3X11). Line 32 selects the background color of the 

context by calling XSetBackground (3X11). A similar call to XSetForeground (3X11) is made 

in line 33 to set the foreground color of the graphics context. You will recall that the main () 

program established pixel values of white in variable f g and black in bg. 

The event loop itself begins with the while statement in line 38 and ends at line 163. Bool 

variable quit is initialized as False in line 18. Consequently, the while loop continues until 
quit changes to True. 

The function call that drives this event loop is the function XNextEvent (3X11) in line 42. The 
function synopsis for the function is as follows: 

#include <X11/Xlib.h> 

XNextEvent(display, event_return) 
Display ‘display; 
XEvent *event_return; 

Notice that the X Window function is defined in the older C function syntax. This is due to 

the early start that X Window development had. For compatibility with older software, it has 

not made the change to the ANSI C function prototypes. 

The argument display provides the information about the connection to the X Window server 

(specifically the socket). Argument event_return is used to return the event information that 

has been received. 

If there are no events to process, XNextEvent (3X11) forces any buffered server requests to be 

written to the server. Execution is suspended within the function until an interesting event 

arrives (those events that are not masked out). Once an interesting event is received, the event 

information is copied to the area pointed to by the event_return argument, and the function 

returns to the caller. 

The definition of the XEvent data type is a large union of event structures. The following syn¬ 

opsis is a subset of the full XEvent definition: 

typedef union _XEvent { 
int type; /* Event type */ 
XAnyEvent xany; /* Common event members */ 
XKeyEvent xkey ; /* Key events */ 
XButtonEvent xbutton; /* Mouse button events */ 
XMotionEvent xmotion; /* Mouse motion events */ 
XExposeEvent xexpose; /* Window expose events */ 
XMappingEvent xmapping; /* Key/Button mapping change events 

/* etc. */ 
} XEvent; 

The XEvent type definition is a union of the many member types within it. The most basic 

member of all is the member type, which identifies the type of the event that is being 

described. 



572 ADVANCED UNIX PROGRAMMING 

The member xany defines a number of additional members that are common to almost any 

event: 

typedef struct { 
int 
unsigned long 
Bool 
Display 
Window 

} XAnyEvent; 

In the XAnyEvent structure definition, you see that the type of the event is included first in the 

structure. Each X Window request has a serial number assigned to it, and the event indicates 

the event number in the serial member. The member send_event is True when an event is 

artificially sent to a window with a function such as XSendEvent (3X11). When this value is 

False, the event came from the X Window server. The display and window members identify 

the X Window server connection and the participating window. 

The other XEvent union members will be discussed as the code is examined. When an event is 

received, the switch statement on line 47 dispatches the execution of the program to the cor¬ 

rect case statement to process it. 

The X Window server makes no guarantee that it will preserve a window when it is obscured. 

Consequently, when a window is uncovered or made viewable for the first time, one or more 

Expose event is generated. This permits the client program to restore the image in the newly 

exposed areas of the window. 

Expose events often occur as regions of the full window. Clients that can take advantage of the 

efficiency achieved by restoring only small portions of an exposed window can do so with 

these events. For simpler client programs, the entire window must be refreshed instead. 

The illustrated demo program simply draws a string of text xeg. c on the new window (lines 

54-58). This is done in response to the Expose event, starting with the case statement on line 

49. No attempt to restore the current drawing is performed. Consequently, you will find that 

when you obscure the xeg window and re-expose it, you will only find the text xeg. c 
redrawn. All other drawn information will be lost. 

type; 
serial; 
send_event; 
‘display; 
window; 

/* Event type */ 
/* # of last request processed by server */ 
/* true if from a SendEvent request */ 
/* Display the event was read from */ 
/* window event was requested in event mask */ 

The synopsis of the XExposeEvent structure is as follows: 

typedef struct { 
int type; 
unsigned long serial; 
Bool send_event; 
Display ‘display; 
Window window; 
int x; /* Upper left x of region */ 
int y; /* Upper left y of region */ 
int width /* Width of region */ 
int height; /* Height of region */ 
int count; /* # of subsequent Expose events */ 

} XExposeEvent; 
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In addition to the members described by the union member XAnyEvent, the XExposeEvent 

type defines members x, y, width, and height. The x and y members describe the upper-left 

corner of the region of the window. The width and height members describe the width and 

height of the region that has been exposed and needs redrawing. The last member count 

describes how many subsequent Expose events follow. 

If your client program is unable to redraw the exposed areas of the window region by region, 

then all Expose events where count is greater than zero should be ignored. Eventually, the 

count value will be decremented to zero in a subsequent event, indicating that no more 

Expose events remain for this window. Simple programs should therefore redraw the entire 

window only when this count reaches zero. Otherwise, needless repetition of the redraw oper¬ 

ations will be performed. Since the demonstration program has been kept simple, it draws 

xeg. c only when this count reaches zero (line 53). 

The case statement on line 61 handles the ButtonPress events. The type definition for 

XButtonEvent is as follows: 

typedef struct { 
int type; 
unsigned long serial; 
Bool send_event ) 

Display ‘display; 
Window window; 
Window root; I* root window that the event occurred on */ 
Window subwindow; /* child window */ 
Time time; /* milliseconds */ 
int x, y; /* pointer x, y coordinates in event window */ 

int x_root, y_ root: ; /* coordinates relative to root */ 
unsigned int state; /* key or button mask */ 
unsigned int button ; /* detail *1 

Bool same_screen;/* same screen flag */ 
} XButtonEvent; 

Member button is consulted in the switch statement on line 68. Depending upon whether 

Buttonl, Button2, or any other button has been pressed, bits are set in variable b (lines 70, 

73, or 76). Depending on the bits set in b, a color is chosen in lines 94-99 for the foreground. 

The graphics context is modified to use this color in line 101 with XSetForeground (3X11). 

However, member state of this event indicates other important things such as whether the 

Shift key was pressed at the time of the mouse button press. If the Shift key is pressed at the 

time of the button down event (line 79), the variable star is set to True. Otherwise, normal 

drawing is performed when star is set to False in line 82 (more about this later). 

Lines 87 and 88 save the coordinates of the mouse when the button was pressed. These coor¬ 

dinates will be required later to draw a line when the mouse moves with the button held 

down. 

When the mouse button is released, event ButtonRelease is processed by the case statement 

in line 104. The switch statement in lines 110-119 removes the bit that corresponds to the 

mouse button in variable b. Again, the color is modified by changing the f g variable in lines 

124-129. The graphics context gc is then modified in line 130 to reflect this new choice in 

foreground color. 
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As the mouse moves with a button held down, MotionNotify events are delivered (line 133). 

The XMotionEvent type definition is given in the following synopsis: 

typedef struct { 
int type; 
unsigned long serial; 
Bool send_event; 
Display ♦display; 
Window window; 
Window root; /* root window that the event occurred on */ 
Window subwindow; /* child window */ 
Time time; /* milliseconds */ 
int x, y; /* pointer x, y coordinates in event window */ 
int x root, y_root: ; /* coordinates relative to root */ 
unsigned int state; /* key or button mask */ 
char is_hint; /* detail */ 
Bool same_screen: ;/* same screen flag */ 

} XMotionEvent; 

The xeg program simply draws a line from the last saved x0 and y0 positions to the new loca¬ 

tion specified in the XMotionEvent structure members x and y (line 139). This is performed 

using the XDrawLine (3X11) function, using the color attributes assigned to the graphics con¬ 

text gc. 

For normal drawing (no Shift key), the current mouse coordinates are then saved at lines 146 

and 147. The next MotionNotify then causes the next line to be drawn from the previous 

mouse position to the current, effectively drawing a line as a pen would. 

When the Shift key is pressed, the coordinates in lines 146 and 147 are not saved. This causes 

lines to always be drawn from the original button press coordinate to the present mouse coor¬ 

dinate. This gives the starburst effect as the mouse is moved around. 

As a bit of housekeeping, MappingNotif y events are processed by a call to 

XRef reshKeyboardMapping(3X11). The X Window system allows keyboard keys and mouse 

buttons to be remapped differently according to the user’s preference. To support this flexibil¬ 

ity, a client program can pass the XMappingEvent structure directly to 

XRef reshKeyboardMapping (3X11). It will then handle any necessary mapping changes 

for you. 

The case statement in line 155 intercepts the KeyPress event. The XKeyEvent member xkey 

holds an untranslated key symbol reference. The call to XLookupString(3X11) causes this key 

to be translated into ASCII form in the supplied buffer kbuf [ ]. The length of the translated 
key is returned. 

When the key translates to an ASCII q in line 160, the variable quit is set to True to allow the 

program to exit the event-processing loop. Upon exiting the loop, the graphics context that 
was created earlier is freed in line 165 by calling XFreeGC(3X11). 

That concludes the code walk-through for this demonstration program. This simple drawing 

program has demonstrated event-driven programming and has also provided you with a taste 
of how X Window programming is performed. 
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As an exercise, you are encouraged to improve upon this program. Complete the program by 

adding code to keep track of all drawing commands performed within the window. Then, 

when the Expose events occur, it should be possible to re-create the lost artwork. Another 

method is to learn about the XCreatePixmap(3X11) function. The drawn image can be main¬ 

tained in a pixmap, and then the window regions can be refreshed from it when Expose events 
occur. 

Summary 
Software development today remains a costly process. While UNIX has been around for a 

time, it continues to be a popular place to invest those software development resources. It con¬ 

tinues to be a mature platform that is also fun and well understood. Your investment continues 

to be well protected when it runs under UNIX. 
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Symbols 

! meta-character (shell patterns), 407-408 
$ anchor, 431-432 

& feature (/etc/passwd file Comment field), 234 
A anchor, 431-432 

I (pipe symbol), 435 

* meta-character, 406, 434 

+ meta-character, 434 

. meta-character, 433 

() (parenthesis characters), 434 

[ ] meta-characters (shell patterns), 406-407, 433 

[] (square brackets), command-line, 173 

0 (zero) gid number, 228 

0 (zero) uid number, 228 

64-bit C data types, 201-202 

64-bit integers, 201 

? meta-character, 406, 434 

A 

access 

files, testing, 119-120 

semaphores, 492-494 

access protections (memory-mapped regions), changing, 

548-549 

access time (files), 118 

access(2) function, 119-120 

adding signals to signal sets, 312-313 

address argument, shl_load(3X) function, 270 

advisory locking, 88, 94 

lockf(2) function, 98 

AIX 4.3 feature tests, 28-29 

alarm(3) function, 320-322 
alphasort(3)function, scanning directories, 139-141 

ampersand feature (/etc/passwd file Comment field), 234 

anchors, 431-432 

ANSI C compile options, 18 

APIs (application program interfaces) 

interval timer API, 361-362 

reliable signal API, 308, 311-317 

applying reliable signals, 316-317 
setting signal actions, 314-315 

sigaction(2) function, 314-317 

sigaddset(3) function, 312-313 

sigdelset(3) function, 313 

sigemptyset(3) function, 312 

sigfillset(3) function, 312 

sigismember(3) function, 313 

signal action flags, 315-316 

signal sets, 311-313 

signal(3) API, 308-311 

applications. See programs 

applying 

I/O, 72-73 

lseek(2) function, 74-75 

old ermo variable, 55-56 

strerror(3) function, 61 

apropos(l) command, 10 

ar(l) command, 253-254 

archives (static libraries), 253-254 

arguments 

base (radix conversions), 196-197 

buf (current directory null buffers), 130 

bufsiz (readlink(2) function), 121 

command-line, 174 
compar, 140 

dbm_fetch(3) function, 277-278 

dbm_open(3) function, 275 

dbm_store(3) function, 276 

depth (ftw(3C)/nftw(3C) functions), 144 

dir (tempnam(3) function), 159 

dirname (scandir(3) function), 140 

execve(2) function, 397-398 

flags (nftw(3C) function), 144 

fn function, 145 

fnmatch(3) function, 408-409 

glob(3) function, 416 

group (chown(2) function), 123 

identifying, 174 
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iov (readv(2)/writev(2) functions), 82 
iovcnt (readv(2)/writev(2) functions), 82 
kill(2) function, 327 
lck (fcntl(2) function), 99 
look like options, 174 
mmap(2) function, 539-540 
mode 

access(2) function, 119 
mkdir(2) function, 132 

msgget(3) function, 453 
namelist (scandir(3) function), 140 
nanosleep(2) function, 358 
nbytes, 71 
null (tmpnam(3) function), 152-153 
offset (lseek(2) function), 74 
optstring (getopt(3) function), 177 
owner (chown(2) function), 123 
path 

mkdir(2) function, 132 
readlink(2) function, 121 

pathname (opendir(3) function), 134 
prefix (tempnam(3) function), 159 
select (scandir(3) function), 140 
select(2) function, 335-336 
semget(2) function, 486 
shl_findsym(3X) function, 270 
shl_load(3X) function, 270 
sigaction(2) function, 314 
signal(3) function, 309-310 
sigprocmask(2) function, 318-319 
size (null buffers), 130 
subopts_str (getsubopt(3) function), 179 
template 

mkstemps(3) function, 157 
mktemp(3) function, 154 

tokens (getsubopt(3) function), 179 
unused arguments (compiler warning messages), 21 
valuep (getsubopt(3) function), 179 
wait(2) function, 391 
whence (lseek(2) function), 74 

argv[ ] argument (execve(2) function), 398 
arrays 

namelist, 140 
sys_errlist[] 

ermo values, reporting, 58-60 
evaluating, 60 
sys_nerr integer value, 59 

asctime(3) function, 217-218 
assignments, compiler warning messages, 19-21 
asterisk (*) meta-character, 406 
asynchronous software interrupts. See signals 
atexit(3) function 

registering functions, 162, 165 
temporary files cleanup tasks, 162-165 

atof(3) function, 191 
atoi(3) function, 189-191 
atol(3) function, 189 

atoms, 434 
attaching shared memory, 523-524 
attributes (shared memory), changing, 522-523 

B 

backslash (meta-character, 408 
backups (forcing data to media) 

fsync(2) function, 81 
sync(2) function, 80 

bang (!) meta-character, 407-408 
base argument (radix conversions), 196-197 
binary conversions, testing, 198 
bit masks (poll® function), 344-345 
bitwise macros, 395 
block devices, 35-36 
blocking signals, 318-319 
bounds, 436 
branches, 435 
broken pipes, handling, 378-379 
BSD, determining time zone, 219 
buf argument (current directory null buffers), 130 
buf buffer pointer, 121 
buffers 

current directory null buffers, 130 
tmpnam(3) function, 153-154 

bufsiz argument (readlink(2) function), 121 

c 
C, 64-bit data types, 201-202 
-c compile option, 14 
C compilers, 13-18 

compile command, 13-14 
ANSI C compile options, 18 
-c compile option, 14 
-D compile option, 15 
-E compile option, 16 
-g compile option, 15 
-I compile option, 15-16 
-o compile option, 14-17 
warning options, 17 

standards, 25-30 
AIX 4.3 feature tests, 28-29 
FreeBSD 3.4-release feature tests, 27 
HPUX 10.2 feature tests, 28 
SunOS 5.6 feature tests, 29-30 

C libraries 
shared libraries, 256-261 

benefits, 263-264 
closing, 266 
comparing to static libraries, 256-257, 261-264 
controlling what is shared, 261 
creating, 257 
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dynamic library loading. See dynamic library 
loading 

dynamic loader, 258-260 
linking process, 257 

listing shared library references, 258 

opening, 264-265 

position-independent code, 260 
search path variables, 258 

static libraries, 247-256 

benefits, 262-263 

comparing to shared libraries, 256-257, 
261-264 

creating archives with ar(l) command, 253-254 

implementing, 248-253 

linking process, 255-256 

listing contents of archives, 254 

Passwd class example, 248-253 

process memory image, 247-248 

verbose listings of archives, obtaining, 254 

C programs, compiling, 15 

C++ destructors, temporary file cleanup tasks, 165-169 

cache files, 258 

cc command name (compilers), 13 

character classes, 433 

character devices, 36-37 

chdir(2) function, 130-131 

child processes, 373, 385-386 

creating with fork(2) function, 388-389 

waiting for completion, 389 

chmod(2) function, 122-123 

chown(2) function 

file ownership, changing, 123-124 

restrictions, testing, 124 

chroot(2) function 

example program, 147-148 

root directories, changing, 146-149 

classes 
Dbm (Snapshot program), 283-288 

Dir (Snapshot program), 280-283 

DTime, 210-212 

testing, 224-226 

InoDb (Snapshot program), 288-291 

Passwd (static libraries), 248-253 

Stat, 111-116 

cleanup (temporary files), 162 

atexit(3) function, 162-165 

avoiding, 169 

destructors, 165-169 

clearing global variable pools, 518 
client program (applying message queues), 463-479 

Msq class definition file, 463-464 

Msq::access() method, 467 

Msq::change() method, 469-470 

Msq::create() method, 466-467 

Msq::destroy() method, 467-468 

Msq::dispose() method, 464-466 

Msq::Msq() constructor, 464-466 

Msq::recv() method, 471-472 

Msq::send() method, 470-471 

Msq::stat() method, 468-469 

Msq::_verify() method, 464-466 

source code, 476-478 

StatMsg message structure, 472-473 

statsrv server, 473-475 
client/server processing (event-driven programming), 559 

close(2) function, 44 

closed file descriptors, 97 

closedir(3) function, 135 

closing 

directories, 135 

files, 44-45 

automatically, 46 

NDBM database, 276 

shared libraries, 266 

closing pipes, 378 

code listings, 12 

alarm(3) and sigsuspend(2) functions, 321 

assignment warnings, 20 

quieting unused argument warnings, 21 

class DTime, declaration of, 210 

constructor and getTime() methods of DTime, 211 

conversion program using strtol(3), 195 

Dbm class, 283-284 

Dir class, 280-281 

DTime::asctime(), 217 

DTime::ctime() Method, 213 

DTime::localtime() and DTime::gmtime(), 215 

DTime: :mktime() Method, 221 

dynamically loaded shared library, 266 

dynamically loading and calling a function, 267 

event-processing loop, 567 

exec(2) to start the ps(l) command, 398 

fnmatch(3) function, 409 

fork(2) function, 388 

getgroups(2) function, 243 

getpagesize(3) function, 539 

glob(3) and globfree(3) functions, 417 

global variable, looking up in shared memory, 529 

globvar utility, 529 

global definitions, 527 

source module that calls shmget(2) to create 

shared memory, 519 

unset feature, 535 

variable assignment functions, 533 

I/O program, 72 

if Statement, warnings about value assignment, 19 

include file for xeg.c and events.c, 561 

InoDb class, 288-289 

InoDb::deleteKey(), 301 

messages.c, making message text read-only, 549 

mmap(2) function, 542 

mprotect.c, indicating access behavior patterns to the 

kernel, 551 

Msq class definition file, 463 

Msq::_verify(), Msq::dispose(), and the constructor 

Msq::Msq(), 465 
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Msq::access() method, 467 

Msq::change() method, 469 

Msq::create() method, 466 

Msq::destroy() method, 468 

Msq::recv() method, 471 

Msq::send() method, 470 
Msq::stat() method, 468 

nanosleep(2) function, 359 

one-shot realtime timer demonstration, 364 

Passwd class, 252 

include file, 249 

Passwd:getuid() and Passwd::getnam() methods, 249 
perror(3) function test program, 57 

poll(2) function, 345 

popen(3) and reading ps(l) Output, 374 

posix.c - feature macro test program, 26 

querying umask value, 69 

reading a FIFO in non-blocking I/O mode, 331 

realtime, virtual, and profile timers, 366 

regexpr(3) routines, 441 

select(2) function, 338 

semaphore locking routines, 528 

semaphore set 

changing owner and group of, 493 

creating and accessing, 483 

removing, 487 

semctl(2) function 

GETALL command, 495 

GETPID command, 498 

GETVAL command, 495 

IPC_SET command, 492 

IPC_STAT command, 490 

SETALL command, 497 

SETVAL command, 496 

semop utility, 507 

conversions for, 511 

-R reporting function, 513 

semop(2) operations, performing, 502 

shmat(2) function, calling to attach shared memory, 

524 

shmdt(2) function, calling to destroy the shared 

memory, 525 

sigaction(2) function, 316 

signal(3) example program, 310 

sleep(3) function, 351-352 

Snapshot application program, 292 

sparse files, creating, 77 

sscanf(3) function, 192 

statcln client program, 476 

StatMsg message structure, declaration of, 472 

statsrv server listing, 473 

strerror(3) function test program, 60 

strtol(3) function, testing base argument, 196 

sync command, creating, 80 

ttyname(3)/isatty(3) functions program, 84 

unreferenced CVS strings, 24 

unused string constant warning, eliminating, 25 

unused variable declarations, 22 

usleep(3) function, 355 

wait(2) funciton, calling without zombie processes, 

392 

writev(2) function example, 82 

writing to popen(3) pipe, 376 

zombies, creating, 390 

coding overflow/underflow tests, 200 

command-line, 173-174 

commands 

apropos(l), 10 

ar(l), 253-254 

C compile commands, 13-14 

ANSI C compile options, 18 

-c compile option, 14 

-D compile option, 15 

-E compile option, 16 

-g compile option, 15 

-I compile option, 15-16 

-o compile option, 14, 16-17 

warning options, 17 
EmptyDb, 302 

F_SETFL, 330 

gcc(l), 257 

GETALL (semctl(2) function), 495-496 

GETNCNT (semctl(2) function), 499 

GETPID (semctl(2) function), 498-499 

GETVAL (semctl(2) function), 494-495 

GETZCNT (semctl(2) function), 500 

id(l), 227-229 
ident, 24 

ipcrm(l), 455 

ipcs(l), 455 

IPC_RMID, 521, 526 

IPC_SET, 459-460, 492-494, 521-523 

IPC_STAT, 458-459, 488-492, 521 

make(l), errors, 53 

make_cleanfiles, lock files, 92 
man(l), 10 

ps(l), starting with execve(2) function, 398-401 

SETALL (semctl(2) function), 497-498 

SETVAL (semctl(2) function), 496-497 

SHM_LOCK (shmctl(2) function), 521 

SHM_UNLOCK (shmctl(2) function), 521 
sync(8), 80 

Comment field (/etc/passwd file), 234 
compar argument, 140 

compareO function, 299 

compilers 

C compile command, 13-14 

ANSI C compile options, 18 

-c compile option, 14 

-D compile option, 15 

-E compile option, 16 

-g compile option, 15 

-I compile option, 15-16 
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-o compile option, 14-17 
warning options, 17 

warning messages, 18-25 

assignment warnings, 19-21 

unreferenced string warnings, 23-25 

unused argument warnings, 21 

unused variable warnings, 22-23 
compiling 

C programs, 13-18 

standards, 25-30 

warning messages, 18-25 

regular expressions, 437-438 

configuring options structure, 184 

const keyword (C programming language), 23-25 

constructors, Msq::Msq(), 464-466 

conventions (command-line), 173-174 

conversion functions, 189-191 

atof(3), 191 

atoi(3), 189-191 

atol(3), 189 

sscanf(3), 192-194 

strtol(3), 194-195 

base argument, 196-197 

strtoul(3), 194 

conversions 

binary conversions, testing, 198 

large integer conversions, 201 

multiple conversions, 196 

overflows, 199-201 

radix conversions, 196-199 

string-to-floating point conversions, 202-204 

strtod(3) function, 202-204 

testing for errors, 195-196 

time to string form, 212 

time/date to string form, 213, 217-218 

underflows, testing for, 199-200 

copying sparse files, 79 

CPU overhead (non-blocking I/O), 333 

creat(2) function, 70 

creation time (files), 118 

ctime r(3) function, 213-214 

ctime(3) function, 212-213 

current directory 

changing, 130-131 

information, obtaining, 129 

null buffers, 130 

saving, 131-132 

customizing 

current directory, 130-131 
file ownership (chown(2) function), 123-124 

file permissions (chmod(2) function), 122-123 

root directory, 146-149 

complications, 147 

example program, 147-148 

D 

-D compile option, 15 

data, forcing to media 

fsync(2) function, 81 

sync(2) function, 80 

Data Base Management (DBM) library, 273 

data types 

64-bit C data types, 201-202 

sigset_t, 311 

time_t, 209-210 

XEvent (Xlib client program), 571 

databases. See NDBM database 

date and time 

converting to string form, 212-213, 217-218 

customizing formats with strftime(3) function, 

221-226 

DTime class, testing, 224-226 

DTime::strftime() method, 223-224 

format specifiers, 222-223 

locale, 226 

Epoch Time, 207 
epoch time values, creating, 220-221 

time conversion functions. See time conversion 

functions 

time zones, 207 

local time zones, 208-209 

tzset(3) function, 208-209 

world time standards, 208 

time_t data type, 209-210 

daylight external variable (tzset(3) function), 219 

DBM (Data Base Management) library, 273 

Dbm class (Snapshot program), 283-288 

dbm_clearerr(3) function, 274 

dbm_close(3) function, 274-276 

dbm_error(3) function, 274 

dbm_fetch(3) function, 277-278 

dbm_firstkey(3) function, 278-279 

dbm_nextkey(3) function, 278-279 

dbm_open(3) function, 275 

dbm_store(3) function, 276-277 

deadlocks, avoiding, 98 

debug (-g) compile option, 15 

declaring new errno variable, 56 

define (-D) compile option, 15 

delete capability (Snapshot program), testing, 301-303 

deleting 

directories, 106, 133-134 

files, 105-106 

global variables (globvar utility program), 518 

information from NDBM database, 278 

keys (NDBM database), 279 

signals from signal sets, 313 

sparse.dat file, 79 

depth argument (ftw(3C)/nftw(3C) functions), 144 
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destroying 

global variable pools (globvar utility program), 516 

IPC resources, 454-455 

memory mappings, 554 

message queues, 458 

semaphore sets, 486-488 

shared memory, 526 

destructors, temporary files cleanup tasks, 165-169 

detaching shared memory, 524-526 

devices 

block devices, 35-36 

character devices, 36-37 

dir argument (tempnam(3) function), 159 

Dir class (Snapshot program), 280-283 

directories, 34-35 
closing, 135 

creating, 132-133 

current 

changing, 130-131 

information, obtaining, 129 

null buffers, 130 

saving, 131-132 

deleting, 106, 133-134 
opening, 134-135 

permissions, 42-43 

positions 

restoring, 139 

saving, 138 

rewinding to start, 138 

root, changing, 146-149 

scanning, 139-140 

scandir(3) function example, 141-143 

selecting only entries starting with h example, 

140 

System V variations, 141 

void pointers, 140 

searching, 136-138 

structure, walking, 144-146 

dirent structure, 136 

dirfd(3) function, 134 

dirname argument (scandir(3) function), 140 

dlclose(3) function, 266 

dlerror(3) function, 265 

dlopen(3) function, 264-265 

dlsym(3) function, 265 

docs.sun.com Web site, 11 

documents, HPUX, 133 

DTime class, 210-212 

testing, 224-226 

DTime::mktime() method, 221 

DTime::strftime() method, 223-224 

dup(2) function, 47-48 

dup2(2) function, 47 

duplicating file descriptors, 47-48 

dynamic library loading, 264-271 

applying dynamic loading, 266-268 

closing shared libraries, 266 

HPUX 10.2 API, 269-271 

initialization, 266 

opening shared libraries, 264-265 

reference pointers, obtaining, 265 

reporting errors, 265 

dynamic loader, 258-260 

LD_L1BRARY_PATH variable, 259-260 

searching for shared libraries, 258-259 

E 

-E compile option, 16 

EACCES error (locked regions), 97 

EAGA1N (Resource temporarily unavailable) error, 331-332 

EBUSY error, 134 

ECHILD (No child processes) error, 396 

EDEADLK error, 98 

EDQUOT error, 132 

effective user ID, 229 

EIDRM (Identifier removed) error, 454 

EINTR error, 48 

lstat(2) function, 121 

truncate(2) function, 76 

EINTR error, 48, 325-326 

lstat(2) function, 121 

truncate(2) function, 76 
EINTR signal, 95 

EINVAL error, 134 

EmptyDb command, 302 

emptying signal sets, 312 

endgrent(3) function, 239 

ENOENT (No Such File or Director)?) error, 54 

ENOMEM (Insufficient memory) error, 387 

ENOSPC (No Space Left On Device) error, 63 

ENOSYS (Function Not Implemented) error, 358 
ENOTEMPTY error, 133 

environment variables 

GLOBVAR, 517 

TMPDIR (tempnam(3) function), 160 
TZ, 208-209 

envp[ ] argument (execve(2) function), 398 

EPERM (Operation Not Permitted) error, 231 
EPIPE (Broken pipe) error, 379 

Epoch Time, 207 

epoch time values, creating, 220-221 
ERANGE error, 130 

ERANGE return value, 199-200 
EROFS error, 132 

errfunc argument (glob(3) function), 416 
errno variable, 324-325 

failures, 53 

new version, 56-57 

old version, 53-54 

applying, 55 

integer return value failure, testing, 55 
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pointer return value failure, testing, 56 

referencing error codes by name, 54-55 
reporting values, 57 

perror(3) function, 57-58 

strerror(3) function, 60-62 

sys_errlist[] array, 58-60 
ermo.h file, 56 

error handling 

getpwent(3) function, 235-236 

NDBM database, 274-275 
errors 

compiler error messages, 18 

conversion errors 

atoi(3) function, 190 

testing for, 195-196 

delaying reporting, 63-64 

EACCES (locked regions), 97 

EAGAIN (Resource temporarily unavailable), 331-332 

EBUSY, 134 

ECHILD (No child processes), 396 

EDEADLK, 98 

EDQUOT, 132 
EIDRM (Identifier removed), 454 

EINTR, 48, 325-326 

lstat(2) function, 121 

truncate(2) function, 76 

EINVAL, 134 

ENOENT (No Such File or Directory), 54 

ENOMEM (Insufficient memory), 387 

ENOSPC (No Space Left On Device), 63 

ENOSYS (Function Not Implemented), 358 

ENOTEMPTY, 133 

EPERM (Operation Not Permitted), 231 

EPIPE (Broken pipe), 379 

ERANGE, 130 

EROFS, 132 

EXDEY 107 

indications 
exceptions, 51-52 

general rules, 51 

math errors 
math error test flowchart, 204 

testing for (conversions), 203 

mktime(3) errors, 220 

range checking, 59 

referencing by name, 54-55 

regular expressions, 438-439 

reporting (dynamic library loading), 265 

stdio(3) set, 62-64 
delaying reporting, 63-64 

fclose(3) function, 63 

ferror(3) function, 62 

/etc/group file, 238-239 

/etc/passwd file, 233-234 
event bit macros (poll(2) function), 344-345 

event-driven programming, 557-561 

client/server processing, 559 

event-driven models, 558 

software layers, 560-561 

Xlib client program, 561-575 

event-processing loop, 567-570 

include file, 561-562 

main() program, 562-565 

XAnyEvent structure, 572 

XButtonEvent data type, 573 

XEvent data type, 571 

XExposeEvent structure, 572 

XMotionEvent data type, 574 
XNextEvent(3Xl 1) function, 571 

event-processing loop (Xlib client program), 567-570 

XAnyEvent structure, 572 

XButtonEvent data type, 573 

XEvent data type, 571 

XExposeEvent structure, 572 

XMotionEvent data type, 574 

XNextEvent(3X 11), 571 

exceptfds file descriptor set, 336-337 

exception events, 338 

exclusive locks, 94 
EXDEV error, 107 

exec(2) functions, 397, 401-402 

execl(2) function, 402 

execl(3) function, 402 

execle(2) function, 402 

execle(3) function, 402 

execlp(2) function, 402 

execlp(3) function, 402 

exect(2) function, 402 

executable files, 119 

execv(2) function, 402 

execve(2) function, 46, 231, 397-401 

arguments, 397-398 

starting the ps(l) command, 398-401 

execvp(2) function, 402 

exit(2) function, 169 

expand (-E) compile option, 16 

exponent underflow (conversions), 204 

external arrays, 219 

external processes, invoking, 379-384 

external values (getopt(3) function), 175-176 

external variables 

errno, 324-325 

tzset(3) function, 218-219 

F 

fallback plans (tempnam(3) function), 161 

fchdir(2) function, 131-132 

fchmod(2) function, 122 

fchwon(2) function, 123 



584 ADVANCED UNIX PROGRAMMING 

fclose(3) function, 48, 63 
fcntl(2) function, 99-102 

FD_CLR() macro, 334 

FDJSSETO macro, 334 

FD_SET() macro, 334 

FD_ZERO() macro, 334 

feature macros, 25-30 

AIX 4.3 feature tests, 28-29 

FreeBSD 3.4-release feature tests, 27 

HPUX 10.2 feature tests, 28 

SunOS 5.6 feature tests, 29-30 

ferror(3) function, 62 

fetching information (NDBM database), 277-278 

fgetgrent(3) function, 240 

fgetpwent(3) function, 236 

fields 

/etc/group file, 239 

/etc/passwd file, 233-234 

FIFOs (First-In, First-Out), 124-125 

named pipes, 37-38 

file descriptor sets, 334 

exceptfds, 336-337 
exception events, 338 

read events, 337 

readfds, 335-336 

write events, 337 

writefds, 336-337 

file descriptors, 43-44 

closed, 97 

closing, 46 
duplicating, 47-48 

lockf(2) function, 97 

file locking, 87 

advisory locking, 88, 94 

lockf(2) function, 98 

closed file descriptors, 97 

flock(2) function, 94-96 

lock files, 87-93 

creating, 89 

example listing, 89-91 

latency time, 93 

limitations, 93 

local file system reliability, 93 

testing, 92 

unlocking, 91-92 

locked regions, 87-88, 96 

advisory locking, 98 

deadlock avoidance, 98 

EACCES error, 97 

EDEADLK error, 98 

merging, 97 

POSIX fcntl(2) function, 99-102 

System V lockf(2) function, 96-98 

unlocking, 98 

mandatory locking, 88, 102-103 

read locks, 94-95 

remote file systems, 95 

write locks, 94 

file system objects, 33-41 

block devices, 35-36 

character devices, 36-37 

directories, 34-35 
permissions, 42-43 

named pipes (FIFOs), 37-38 

opening, 45 

regular files, 33-34 

permissions, 41-42 

sockets, 38, 47 

special files, 39-41 

opening, 46 

symbolic links, 39 

file systems 

information 

obtaining, 108-109 

obtaining with fstat(2) function, 111 

obtaining with stat(2) function, 109-111 

.test program, 111-116 

remote file systems, file locking, 95 

file unit numbers, 43 

files, 43-48 

/etc/group file, 238-239 

/etc/passwd file, 233-234 

access files, testing, 119-120 

access time, 118 

closing, 44-46 

automatically, 46 

close(2) function, 44 

execve(2) function, 46 

creation time, 118 

deleting, 105-106 
errno.h, 56 

executable, 119 

file descriptors, 43-44 

closing, 46 

duplicating, 47-48 
1/0,49 

include files 

time conversion functions, 210 

Xlib client program, 561-562 
linking, 106-107 

links, testing, 116-117 
lock, 87-93 

creating, 89 

example listing, 89-91 

latency time, 93 

limitations, 93 

local file system reliability, 93 
testing, 92 

unlocking, 91-92 

memory mappings. See memory mappings 
modification time, 118 

moving, 107-108 

open(2) function flag bits, 45-46 
opening, 44-45 

in non-blocking mode, 330 

open(2) flag bits, 45-46 
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open(2) function, 43-46 

special files, 46 
ownership, 122 

changing, 123-124 

permissions, 122 

changing, 122-123 

script, 119 

searching within (lseek(2) function), 74-75 

shadow password files, 234 
sparse, 77 

copying, 79 

creating, 77-79 

sparse.dat, deleting, 79 

special files, 39-41 

opening, 46 

standard input, changing, 48 

string.h, 60 

temporary 

avoiding, 169 

cleanup tasks, 162 

cleanup with atexit(3) function, 162-165 

cleanup with destructors, 165-169 

creating, 151 

creating with mkstemp(3) function, 155-157 

creating with tmpfile(3) function, 157-158 

names, creating, 154-155 

pathnames, creating, 151-154 

prefixes, 159-161 

realeasing, 161-162 

suffix, appending, 157 

truncating 
ftruncate(2) function, 76-77 

truncate(2) function, 76 

types, testing, 117-118 

filling signal sets, 312 

finding. See searching 

First-In, First-Out (FIFO), 124-125 

named pipes, 37-38 

flag argument (fnmatch(3) function), 409 

flag bits 
dbm_open(3) function, 275 

mmap(2) function, 540-542 

open(2) function, 45-46 

flags 

fnmatch(3) function 
FNM_CASEFOLD flag, 413 

FNM_LEADING_DIR flag, 415 

FNM_NOESCAPE flag, 412-413 

FNM_PATHNAME flag, 413-414 

FNM_PERIOD flag, 414-415 

ftw(3C) function, 145 

glob(3) function 
GLOB_ALTDIRFUNC flag, 427 

GLOB_APPEND flag, 424 

GLOB_BRACE flag, 427 

GLOB_DOOFFS flag, 422-424 

GLOB_MAGCHAR flag, 427 

GLOB_MARK flag, 424-425 

GLOB_NOCHECK flag, 426-427 

GLOB_NOMAGIC flag, 428 

GLOB_NOSORT flag, 425-426 

GLOB_QUOTE flag, 426 

GLOB_TILDE flag, 428-429 

nftw(3C) function, 144-145 

open(2) function, 0_N0NBL0CK flag, 330-331 

flags argument 

glob(3) function, 416 

nftw(3C) function, 144 

shl_load(3X) function, 270 
flock(2) function, 94-96 

flock(3UCB) function, 95 

fn function, 145 

fnmatch(3) function, 408-415 

flag argument, 409 

FNM_CASEFOLD flag, 413 

FNM_LEADING_DIR flag, 415 

FNM_NOESCAPE flag, 412-413 

FNM_PATHNAME flag, 413-414 

FNM_PERIOD flag, 414-415 

pattern argument, 408 

string argument, 408 

forcing data to media 

fsync(2) function, 81 

sync(2) function, 80 

fork process, 385-387 
fork(2) function, 385-387 

child processes, creating, 388-389 

format specifiers (strftime(3) function), 222-223 

fpathconf(2) function 

chown(2) function restrictions, testing, 124 

pathnames size, 125-128 

FreeBSD 

64-bit C data types, 202 

cache files, 258 
issetugid(2) function, 232 

mmap(2) function, 540 

resource utilization structure, 396 

strtoq(3) function, 202 

strtouq(3) function, 202 

FreeBSD 3.4-release feature tests, 27 

FreeBSD Hypertext Man Pages Web site, 11 

freeing regular expressions, 439-440 

fstat(2) function, 372 

file system information, obtaining, 108-111 

testing, 111-116 

fsync(2) function, 81 

ftruncate(2) function, 76-77 

ftw(3C) function 

directory structures, walking, 144-146 

obj_flags, 145 

functions 

access(2), 119-120 

alarm(3), 320-322 

alphasort(3), 139-141 
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asctime(3), 217-218 

atexit(3), 162-165 

atof(3), 191 

atoi(3), 189-191 

atol(3), 189 
chdir(2), 130-131 

chmod(2), 122-123 

chown(2), 123-124 

chroot(2), 146-149 

close(2), 44 

closedir(3), 135 

compareO, 299 

conversion functions. See conversion functions 

creat(2), 70 

ctime r(3), 213-214 

ctime(3), 212-213 

dbm_clearerr(3), 274 

dbm_close(3), 274-276 

dbm_error(3), 274 

dbm_fetch(3), 277-278 

dbm_firstkey(3), 278-279 

dbm_nextkey(3), 278-279 

dbm_open(3), 275 

dbm_store(3), 276-277 

dirfd(3), 134 

dlclose(3), 266 

dlerror(3), 265 

dlopen(3), 264-265 

dlsym(3), 265 

dup(2), 47-48 

dup2(2), 47 

endgrent(3), 239 

exec(2), 397, 401-402 

execl(2), 402 

execl(3), 402 

execle(2), 402 

execle(3), 402 

execlp(2), 402 

execlp(3), 402 

exect(2), 402 

execv(2), 402 

execve(2), 46, 231,397-401 

arguments, 397-398 

starting the ps(l) command, 398-401 

execvp(2), 402 

exit(2), 169 

failure of, 52-53 

fchdir(2), 131-132 

fchmod(2), 122 

fchown(2), 123 

fclose(3), 48, 63 

fcntl(2), 99-102 

ferror(3), 62 

fgetgrent(3), 240 

fgetpwent(3), 236 

flock(2), 94-96 

flock(3UCB), 95 

fn, 145 

fnmatch(3), 408-415 
flag argument, 409 

FNM_CASEFOLD flag, 413 

FNM_LEADING_DIR flag, 415 

FNM_NOESCAPE flag, 412-413 

FNM_PATHNAME flag, 413-414 

FNMJPERIOD flag, 414-415 

pattern argument, 408 

string argument, 408 

fork(2), 385-387 

child processes, creating, 388-389 

fpathconf(2) 

chown(2) function restrictions, testing, 124 

pathnames size, 125-128 

pathnames size test program, 126-128 

pathnames size tests, 125-126 

fstat(2), 372 

file system information, obtaining, 108-111 

testing, 111-116 

fsync(2), 81 

ftruncate(2), 76-77 

ftw(3C) 

directory structures, walking, 144-146 

obj_flags, 145 

getcwd(3), 129-130 

getegid(2), 229 

geteuid(2), 228-229 

getgid(2), 229 

getgrent(3), 239 

getgrgid(3), 241 

getgrnam(3), 241 

getgroups(2), 242-244 

getopt(3), 175 

call, 176-177 

example, 181-183 

external values, 175-176 

option-processing loops, 177-178 

optstring argument, 177 

getopt_long(3), 183 

getpagesize(3), 538 

getpwent(3), 235-236 

getpwnam(3), 237-238 
getpwuid(3), 237 

getsubopt(3), 179 

example, 180-183 

subop toin parsing, 180 
getuid(2) function, 228-229 

getwd(3), 129-130 

glob(3), 416-429 

arguments, 416 

return values, 417-422 

GLOB_ALTDlRFUNC flag, 427 

GLOB_APPEND flag, 424 

GLOB_BRACE flag, 427 

GLOB_DOOFFS flag, 422-424 

GLOB_MAGCHAR flag, 427 
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GLOB_MARK flag, 424-425 

GLOB_NOCHECK flag, 426-427 

GLOB_NOMAGIC flag, 428 

GLOB_NOSORT flag, 425-426 

GLOB_QUOTE flag, 426 

GLOB_TILDE flag, 428-429 

globfree(3), 416-417 

gmtime(3), 214-215 

HPUX 10.2 API, 269-271 

initgroups(3), 245 

interval timer functions, 361 

getitimer(2), 361-362 

one-shot realtime timers, creating, 364-366 

repeating timers, establishing, 366-369 

restrictions, 363-364 

setitimer(2), 361-363 

isatty(3), 83-85 

issetugid(2) (FreeBSD), 232 

kill(2), 326-327 

lchmod(2), 122 

lchown(2), 123 

link(2), 106-107 

localtime(3), 214-215 

Lock(), 91 

lockf(2), 96-98 

lseek(2), 74-75 

lstat(2), 120-121 

madvise(2), 549-552 

malloc(3), 322 
mandatory locking affected, 102 

mincore(2), 552 

mkdir(2), 132-133 

mkfifo(2), 124-125 

mkstemp(3), 155-157 

mkstemps(3), 157 

mktemp(3), 154-155 

mktime(3), 220-221 

mmap(2), 539-541 

arguments, 539-540 

flag bits, 540-542 

macros, 540 

portable flag bits, 540 
program to select language of system error 

messages, 542-547 

mprotect(2), 548-549 

msgctl(3), 458 

msgget(3), 457 
key argument, 453 

msgrcv(3), 461-463 

msgsnd(3), 460-461 

msync(2), 553 

munmap(2), 554 

mv(l), 107-108 

nftw(3C), 144-146 

open(2), 43-46 
flag bits, 45-46 

lock files, creating, 89 
CLNONBLOCK flag, 330-331 

opendir(3), 134-135 

pathconf(2), 124-128 

chown(2) function restrictions, testing, 124 

pathnames size, 125-128 

pclose(3), 378 

perror(3), 57-58 

pipe(2), 371-372 

poll(2), 342-349 

event bit macros, 344-345 

example program, 345-349 

priority bands, 345 

popen(3), 373-374 

reading from pipes, 374-375 

writing to pipes, 375-377 

processO, 298 

putpwent(3), 236-237 

-R reporting function (semop utility), 513 

raise(3), 327 

re-entrant functions, 241-242, 322-325 

read(2), 71 

readdir(3), 136-138 

readlink(2), 121 

readv(2), 82-83 

regcomp(3), 438 

regerror(3), 439 

regexec(3), 440-441 

regfree(3), 439-440 

registering, 162, 165 

remove(3), 106 
rename(2), 108 

returns, 52 

rewinddir(3), 138 

rmdir(2), 133-134 

scandir(3), 139-140 
directory scanning example, 141-143 

scatter read and write, 82-83 

seekdir(3), 139 

select(2), 333-342 
directory program, 338-342 

exception events, 338 

file descriptor sets, 334-337 

read events, 337 

timeout argument, 335-336 

timeval structure, 335 

write events, 337 

semctl(2), 486-488 
GETALL command, 495-496 

GETNCNT command, 499 

GETPID command, 498-499 

GETVAL command, 494-495 

GETZCNT command, 500 

IPC_SET command, 492-494 

IPC_STAT command, 488, 490-492 

SETALL command, 497-498 

SETVAL command, 496-497 

semget(2), 483-486 
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semop(2), 500-502 

IPC_NOWAIT flag, 501 

notify operations, 505 

SEMJJNDO flag, 501-507 

wait for zero operations, 505-506 

wait operations, 502-505 
setegid(2), 232 

seteuid(2), 230-231 

setgid(2), 232 

setgrent(3), 239 
setgroups(2), 244-245 

setuid(2), 230-231 

shl_findsym(3X), 270-271 

shl_load(3X), 270 

shl_unload(3X), 271 

shmat(2), 523-524 

shmctl(2), 521-522 

IPC_RM1D command, 521, 526 

IPC_SET command, 521-523 

IPC_STAT command, 521 

SHM_LOCK command, 521 

SHM_UNLOCK command, 521 
shmdt(2), 524-526 

shmget(2), 519-521 

sigaction(2), 314-317 

sigaddset(3), 312-313 

sigdelset(3), 313 

sigemptyset(3), 312 

sigfillset(3), 312 

sigismember(3), 313 

signal(3), 308-311 

sigpending(2), 319 

sigprocmask(2), 318-319 

sigsuspend(2), 319-322 

sleep functions 

nanosleep(2), 357-361 

sleep(3), 322, 351-354 

usleep(3), 355-357 

sscanf(3), 192-194 

stat(2), 458 

file system information, obtaining, 108-111 

testing, 111-116 

stdio(3), 49 

strerror(3), 60-62 

strftime(3), 10, 221-226 

DTime class, testing, 224-226 

DTime::strftime(3) method, 223-224 

format specifiers, 222-223 

locale, 226 

strtod(3), 202-204 

strtol(3), 194-197 

strtoll(3), 201 

strtoq(3), 202 

strtoul(3), 194 

strtoull(3), 201 

strtouq(3), 202 

symlink(2), 120 

sync(2), 80-81 

system(3), 379-384 

limitations, 384 

return values, 381-383 

telldir(3), 138 

tempnam(3), 159-161 
time conversion functions, 210-212 

asctime(3) function, 217-218 

ctime r(3), 213-214 

ctime(3), 212-213 

DTime class example, 210-212 

gmtime(3), 214-215 

include files, 210 

localtime(3), 214-215 

mktime(3), 220-221 

struct tm structure, 216-217, 220 

tznamef] external array, 219 

tzset(3), 218-219 

tmpfile(3), 157-158 

tmpnam(3), 151-154 

truncate(2), 76 

truncate(3C), 76 

ttyname(3), 83-85 

tzset(3), 208-209, 218-219 
umask(2), 68-70 

unlink(2) 

deleting files, 105-106 

temporary files, releasing, 161-162 

usage() (semop utility), 513-514 

variable assignment functions (globvar utility 
program), 533-534 

wait(2), 389-396 

calling without zombie processes, 392-393 
status argument, 391 

status test macros, 393-394 

zombie processes, 389-391 
wait3(2), 395-396 

wait4(2), 395-396 

waitpid(2), 395-396 
walk(), 298 

write(2), 71-72 

writev(2), 82-83 

XNextEvent(3Xll) (Xlib client program), 571 
F_SETFL command, 330 

G 

-g compile option, 15 

garbled data, converting with atoi(3) function, 190 
gcc command name (compilers), 13 
gcc(l) command, 257 

GECOS field (/etc/passwd file), 234 

GETALL command (semctl(2) function), 495-496 
getcwd(3) function, 129-130 
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getegid(2) function, 229 

geteuid(2) function, 228-229 

getgid(2) function, 229 

getgrent(3) function, 239 

getgrgid(3) function, 241 

getgmam(3) function, 241 

getgroups(2) function, 242-244 

getitimer(2) function, 361-362 

GETNCNT command (semctl(2) function), 499 

getopt(3) function, 175 

call, 176-177 

example, 181-183 

external values, 175-176 

option-processing loops, 177-178 

optstring argument, 177 

getopt_long(3) function, 183 

getpagesize(3) function, 538 

GETPID command (semctl(2) function), 498-499 

getpwent(3) function, 235-236 

getpwnam(3) function, 237-238 

getpwuid(3) function, 237 

getsubopt(3) function, 179 

example, 180-183 

suboption parsing, 180 

getuid(2) function, 228-229 

GETVAL command (semctl(2) function), 494-495 

getwd(3) function, 129-130 

GETZCNT command (semctl(2) function), 500 

gid numbers (group ID numbers), 228 

glob(3) function, 416-429 

arguments, 416 

return values, 417-422 

GLOB_ALTDlRFUNC flag, 427 

GLOB_APPEND flag, 424 

GLOB_BRACE flag, 427 

GLOB_DOOFFS flag, 422-424 

GLOB_MAGCHAR flag, 427 

GLOB_MARK flag, 424-425 

GLOB_NOCHECK flag, 426-427 

GLOB_NOMAGIC flag, 428 

GLOB_NOSORT dag, 425-426 

GLOB_QUOTE flag, 426 

GLOB_TILDE flag, 428-429 

global external variables, errno, 324-325 
global variable pools (globvar utility program) 

clearing, 518 

creating, 516 

destroying, 516 
global variables (globvar utility program) 

accessing, 517-518 

creating, 517 

removing, 518 
GLOBE_TILDE flag (glob(3) function), 428-429 

globfree(3) function, 416-417 
globget.c source module (globvar utility program), 529 

globlk.c source module (globvar utility program), 528-529 

globset.c source module (globvar utility program), 533-534 

globun.c source module (globvar utility program), 534-535 
GLOBVAR environment variable, 517 

globvar utility program, 515-518, 526-535 

global definitions, 527-528 

global variable pools, 516-518 

global variables, 517-518 

globget.c source module, 529 

globlk.c source module, 528-529 

globset.c source module, 533-534 

globun.c source module, 534-535 

GLOBVAR environment variable, 517 

main() program, 529-533 

semaphore locking routines, 528-529 

shared memory system calls, 518-526 

accessing shared memory, 519-521 

attaching shared memory, 523-524 

attributes, changing, 522-523 

creating shared memory, 519-521 

destroying shared memory, 526 

detaching shared memory, 524-526 

information about shared memory, obtaining, 

521-522 

Unset feature, 534-535 

variable assignment functions, 533-534 

GLOB_ALTDIRFUNC flag (glob(3) function), 427 

GLOB_APPEND flag (glob(3) function), 424 

GLOB_BRACE flag (glob(3) function), 427 

GLOB_DOOFFS flag (glob(3) function), 422-424 

GLOB_MAGCHAR flag (glob(3) function), 427 

GLOB_MARK flag (glob(3) function), 424-425 

GLOB_NOCHECK flag (glob(3) function), 426-427 

GLOB_NOMAGIC flag (glob(3) function), 428 

GLOB_NOSORT flag (glob(3) function), 425-426 

GLOB_QUOTE flag (glob(3) function), 426 

GMT (Greenwich Mean Time), 208 

gmtime(3) function, 214-215 

GNU compiler, 13 
maximum warning level, 18 

warning messages, 17 

group argument (chown(2) function), 123 

group database routines 
endgrent(3) function, 239 

fgetgrent(3) function, 240 

getgrent(3) function, 239 

getgrgid(3) function, 241 

getgrnam(3) function, 241 

group structure, 239-240 

setgrent(3) function, 239 

group ID, setting, 232 

group ID numbers (gid numbers), 228 

group structure, 239-240 

groups 
permission bits, 65 

supplementary groups, 242-245 

getgroups(2) function, 242-244 

initgroups(3) function, 245 

setgroups(2) function, 244-245 
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H 

handle argument (shl_findsym(3X) function), 270 

hexadecimal tests (radix conversions), 198 

HP Technical Documentation Web site, 11 

HPUX 10.2 API (dynamic library loading), 269-271 

HPUX 10.2 feature tests, 28 

HPUX documents, 133 

l-J 

-I compile option, 15-16 

I/O 
applying, 72-73 

file I/O, 49 
non-blocking I/O, 329-333 

opening files, 330 

performing, 331-333 

problems with latency and CPU overhead, 333 
setting non-blocking mode, 330-331 

poll(2) function, 342-349 

event bit macros, 344-345 

example program, 345-349 

priority bands, 345 

reading, 71 

scattered, reading/writing, 82-83 

select(2) function, 333-342 

directory program, 338-342 

exception events, 338 

file descriptor sets, 334-337 

read events, 337 

timeout argument, 335-336 

timeval structure, 335 

write events, 337 

writing, 71-72 

IBM AIX Web site, 11 

ID values (IPC), 452 

id(l) command, 227-229 

ident command, 24 

identification role summary, 230 

implementing 

DTime::strftime() method, 223 

Passwd::_dispose() method, 251 

Passwd::_importO method, 251 

sleep(3) function, 352-354 

static libraries, 248-253 

include (-1) compile option, 15-16 

include files 

semop utility program, 489 

time conversion functions, 210 

Xlib client program, 561-562 

initgroups(3) function, 245 

initialization (dynamic library loading), 266 

InoDb class (Snapshot program), 288-291 

input, standard input (files), 48 

input members, setting for struct tm structure, 220 

integer conversions, 201 

integer return values 

failure, testing, 55 

successful, 52 
Internet resources, man(l) pages, 11-12 

interprocess communications (IPC). See IPC 

interrupting programs. See signals 

interval timers, 361 
getitimer(2) function, 361-362 

ITIMER_PROF, 364 

one-shot realtime timers, creating, 364-366 

repeating timers, establishing, 366-369 

restrictions, 363-364 
setitimer(2) function, 361-362 

macros, 363 

invoking external processes, 379-384 

iov argument (readv(2)/writev(2) functions), 82 

iovcnt argument (readv(2)/writev(2) functions), 82 

IPC (interprocess communications), 447 

IPC ID values, 452-454 

IPC key values, 452-453 

message queues, 448-449, 463 

accessing, 457 

creating, 457 

destroying, 458 

Msq class definition file, 463-464 

Msq::access() method, 467 

Msq::change() method, 469-470 

Msq::create() method, 466-467 

Msq::destroy() method, 467-468 

Msq::dispose() method, 464-466 

Msq::Msq() constructor, 464-466 

Msq::recv() method, 471-472 

Msq::send() method, 470-471 

Msq::stat() method, 468-469 

Msq::_verify() method, 464, 466 

obtaining information, 458-459 

ownership, changing, 459-460 

receiving messages, 461-463 

sending messages, 460-461 

statcln client program source code, 476-478 

StatMsg message structure, 472-473 
statsrv server, 473-475 

resources 

creating, 453 

destroying, 454-455 

referencing, 452-454 

semaphores, 450-451 

access, changing, 492-494 

accessing, 483-485 

creating, 483-485 

destroying, 486-488 
notifying, 451 

operations, 500-506 

process ID, querying, 498-499 

processes waiting for notifies, querying, 499 
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processes waiting for zero, querying, 500 

querying, 488, 490-492 

semop utility program, 481-482, 507-511, 

513-514 

undo processing, 506-507 

values, changing, 496-498 

values, querying, 494-496 

waiting on, 451 

shared memory, 450 

ipcrm(l) command, 455 

ipcs(l) command, 455 

IPC_NOWAIT flag (semop(2) function), 501 

IPC_PR1VATE value (key argument), 453 

IPC_RMID command, 521, 526 

IPC_SET command, 459-460, 492-494, 521-523 

IPC_STAT command, 458-459, 488-492, 521 

isatty(3) function, 83-85 

issetugid(2) function (FreeBSD), 232 

ITIMER_PROF interval timer, 364 

K 

key argument (msgget(3) function), 453 

key values (IPC), 452-453 

key visitation feature (Snapshot program), testing, 301-303 

keys (NDBM database) 

deleting, 279 

visiting all keys, 278-279 
keywords, const (C programming language), 23-25 

kill(2) function, 326-327 

L 

-L option (gcc(l) command), 257 

large integer conversions, 201 

latency (non-blocking I/O), 333 

latency time, lock files, 93 

lchmod(2) function, 122 

lchwon(2) function, 123 

lck argument, 99 
LD_LIBRARY_PATH variable (shared libraries), 259-260 

libraries 
shared libraries, 256-261 

benefits, 263-264 

closing, 266 
comparing to static libraries, 256-257, 261-264 

controlling what is shared, 261 

creating, 257 
dynamic library loading. See dynamic library 

loading 
dynamic loader, 258-260 

linking process, 257 
listing shared library references, 258 

opening, 264-265 

position-independent code, 260 

search path variables, 258 

static libraries, 247-256 

benefits, 262-263 

comparing to shared libraries, 256-257, 

261-264 

creating archives with ar(l) command, 253-254 

implementing, 248-253 

linking process, 255-256 

listing contents of archives, 254 

Passwd class example, 248-253 

process memory image, 247-248 

verbose listings of archives, obtaining, 254 

link(2) function, 106-107 

linking 

files, 106-107 

testing, 116-117 

shared libraries, 257 

static libraries, 255-256 

symbolic links. See symbolic links 

links, symbolic links, 39 

Linux, cache files, 258 
listing contents of archives (static libraries), 254 

listing shared library references, 258 

listings 
atexit(3) function program, 163 

chroot(2) function program, 147 

directory list program, 136 
getsubopt(3)/getopt(3) program, 181 

lock files, 89 
msktemp(3) program, 155 

non-null flag pointer, 185 
option-processing loop with getopt(3) function, 177 

pathconf(2)/fpathconf(2) test program, 126 

scandir(3) function example, 141 

Stat class/test program, 111 

tempnam(3) function program, 159 

temporary file cleanup with destructors program, 165 

tmpfile(3) function program, 158 

tmpnam(3) function program, 152-153 

loading libraries (dynamic library loading), 264-271 

applying dynamic loading, 266-268 

closing shared libraries, 266 
HPUX 10.2 API, 269-271 

initialization, 266 

opening shared libraries, 264-265 

reference pointers, obtaining, 265 

reporting errors, 265 

local file system, lock file reliability, 93 

local time zones, 208-209 

locale (strftime(3) function), 226 

localtime(3) function, 214-215 

lock files, 87-93 

creating, 89 

example listing, 89-91 

latency time, 93 

limitations, 93 
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local file system reliability, 93 

testing, 92 

unlocking, 91-92 

Lock() function, 91 

locked regions, 87-88, 96 

EACCES error, 97 

merging, 97 
POSIX fcntl(2) function, 99-102 

System V lockf(2) function, 96-98 

unlocking, 98 

lockf(2) function, 96-98 

locking files, 87 
advisory locking, 88, 94 

lockf(2) function, 98 

closed file descriptors, 97 

flock(2) function, 94-96 

lock files, 87-93 
creating, 89 

example listing, 89-91 

latency time, 93 

limitations, 93 

local file system reliability, 93 

testing, 92 

unlocking, 91-92 

locked regions, 87-88, 96 

advisory locking, 98 

deadlock avoidance, 98 

EACCES error, 97 

EDEADLK error, 98 

merging, 97 

POSIX fcntl(2) function, 99-102 

System V lockf(2) function, 96-98 

unlocking, 98 

mandatory locking, 88, 102-103 

read locks, 94-95 

remote file systems, 95 

write locks, 94 

long options, 183 

getopt_long(3) function, 183 

look shorter, 184 

options structure, 184 
configuring, 184 

non-null flag pointer, 185-186 

null flag pointer, 184-185 

processing, 185 

LONG_MAX return value, 199-200 

loops (getopt(3) function), 177-178 

lseek(2) function, 74-75 

-lshared option (gcc(l) command), 257 

lstat(2) function, 120-121 

M 

macros 

bitwise macros, 395 

event bit macros (poll(2) function), 344-345 

feature macro test program, 26-30 
A1X 4.3 feature tests, 28-29 

FreeBSD 3.4-release feature tests, 27 

HPUX 10.2 feature tests, 28 

SunOS 5.6 feature tests, 29-30 

file descriptor sets, 334 

file type testing, 117 

interval timer macros, 363 

MAXSYMLINKS, 39 
mmap(2) function, 540 

nftw(3C) flags, 144-145 

permission bits, 66-67 

REG_BASIC, 437 

SIG_DFL, 310 
SIGJGN, 310 

status test macros, 393-394 

AIX 4.3 feature tests, 29 

FreeBSD 3.4-release feature tests, 27 

HPUX 10.2 feature tests, 28 

_POSIX_C_SOURCE feature macro, 26 

_POSlX_SOURCE feature macro, 25 

SunOS 5.6 feature tests, 29-30 

madvise(2) function, 549-552 

main() program 

globvar utility program, 529-533 

Xlib client program, 562-565 

make(l) command, 53 

make_cleanfiles command, 92 

malloc(3) function, 322 

man(l) command, 10 

mandatory locking, 88, 102-103 

manual pages, 9-12 

man(l) Internet resources, 11-12 

references, 10-11 

searching, 10 

sections, 9-10 

mappings (memory), 537 

creating, 539-547 

program to select language of system error 

messages, 542-547 
destroying, 554 

regions 

access protections, changing, 548-549 

memory use, informing the kernel about, 
549-552 

querying pages in memory, 552 

synchronizing changes, 553 

virtual memory (VM) page size, 538-539 

MAP_ANON flag (mmap(2) function), 540 

MAP_HASSEMAPHORE flag (mmap(2) function), 541 

MAP_INHERIT flag (mmap(2) function), 540-541 

MAP_STACK flag (mmap(2) function), 541 
matching patterns 

anchors, 431-432 

atoms, 434 

character classes, 433 
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fnmatch(3) function, 408-415 

flag argument, 409 

FNM_CASEFOLD flag, 413 

FNM_LEADING_DIR flag, 415 

FNM_NOESCAPE flag, 412-413 

FNM_PATHNAME flag, 413-414 

FNM_PERIOD flag, 414-415 

pattern argument, 408 

string argument, 408 

glob(3) function, 416-429 

arguments, 416 

GL0B_ALTD1RFUNC flag, 427 

GLOB_APPEND flag, 424 

GLOB_BRACE flag, 427 

GLOB_DOOFFS flag, 422-424 

GLOB_MAGCHAR flag, 427 

GLOB_MARK flag, 424-425 

GLOB_NOCHECK flag, 426-427 

GLOB_NOMAGIC flag, 428 

GLOB_NOSORT flag, 425-426 

GLOB_QUOTE flag, 426 

GLOB_TILDE flag, 428-429 

return values, 417-422 

meta-characters, 405-408, 433 

parenthesized match subexpressions, 434 

pieces, 434-435 

ranges, 433 

regexec(3) function, 440-441 

regular expressions, 440-441 

sets, 432-433 

shell patterns, 405-408 

math errors 

math error test flowchart, 204 

testing for (conversions), 203 

maximum warning level (GNU compiler), 18 

MAXSYMLINKS macro, 39 

media, forcing data to, 80-81 

members (struct tm structure), 216-217 

input members, setting, 220 

members altered by mktime(3), 220 

memory. See shared memory 

memory mappings, 537 

creating, 539-547 

mmap(2) function, 539-547 
program to select language of system error 

messages, 542-547 

destroying, 554 

regions 
access protections, changing, 548-549 

memory use, informing the kernel about, 

549-552 
querying pages in memory, 552 

synchronizing changes, 553 

virtual memory (VM) page size, 538-539 

message queues, 448-449 
accessing, 457 

client and server programs, 463-479 

Msq class definition file, 463-464 

Msq::access() method, 467 

Msq::change() method, 469-470 

Msq::create() method, 466-467 

Msq::destroy() method, 467-468 

Msq::dispose() method, 464-466 

Msq::Msq() constructor, 464-466 

Msq::recv() method, 471-472 

Msq::send() method, 470-471 

Msq::stat() method, 468-469 

Msq::_verify() method, 464-466 

statcln source code, 476-478 

StatMsg message structure, 472-473 
statsrv server, 473-475 

creating, 457 

destroying, 458 

obtaining information, 458-459 

ownership, changing, 459-460 

receiving messages, 461-463 

sending messages, 460-461 

message types, 448 

messages structures, StatMsg, 472-473 

messages.c program, 542-545, 549 

meta-characters, 433-434 

anchors, 431-432 

quoted characters, 436 

shell patterns, 405-408 

methods 

DTime::mktime(), 221 

DTime::strftime(), 223-224 

Msq::access(), 467 

Msq::change!), 469-470 

Msq::create(), 466-467 

Msq::destroy!), 467-468 
Msq::dispose(), 464-466 

Msq::recv(), 471-472 

Msq::send(), 470-471 

Msq::stat(), 468-469 

Msq::_verifyO, 464-466 

microseconds (sleep time), 355-357 

mincore(2) function, 552 

mkdir(2) function, 132-133 

mkfifo(2) function, 124-125 

mkstemp(3) function, 155-157 

mkstemps(3) function, 157 

mktemp(3) function, 154-155 

mktime(3) function, 220-221 

mmap(2) function, 539-541 

arguments, 539-540 

flag bits, 540-542 

portable flag bits, 540 

macros, 540 

program to select language of system error messages, 

542-547 
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mode argument 

access(2) function, 119 
mkdir(2) function, 132 

modification time (files), 118 

moving files, 107-108 
mprotect(2) function, 548-549 

msgctl(3) function, 458 

msgget(3) function, 457 

key argument, 453 

msgrcv(3) function, 461-463 

msgsnd(3) function, 460-461 
Msq class definition file (applying message queues), 

463-464 

Msq::access() method, 467 
Msq::change() method, 469-470 

Msq::create() method, 466-467 

Msq::destroy() method, 467-468 

Msq::dispose() method, 464-466 

Msq::Msq() constructor, 464-466 

Msq::recv() method, 471-472 

Msq::send() method, 470-471 

Msq::stat() method, 468-469 

Msq::_verify() method, 464-466 

msync(2) function, 553 

multiple conversions, 196 

multiple options, 173-174 

munmap(2) function, 554 

mv(l) function, 107-108 

N 

delete capability, testing, 301-303 

Dir class, 280-283 

InoDb class, 288-291 
key visitation feature, testing, 301-303 

processO function, 298 

running, 299-301 

source code listing, 291-298 

walk() function, 298 

storing information, 276-277 

new ermo variable, 56-57 

nftw(3C) function, 144-146 

No Space Left On Device (ENOSPC) error, 63 

No Such File or Directory (ENOENT) error, 54 

non-blocking I/O, 329-333 

opening files, 330 

performing, 331-333 
problems with latency and CPU overhead, 333 

setting non-blocking mode, 330-331 

non-null flag pointer (options structure), 185-186 

notify operations (semaphores), 505 

notifying the semaphore, 451 

null arguments (tmpnam(3) function), 152-153 

null buffers (current directory), 130 

null flag pointer (options structure), 184-185 

number system (radix values), 196 

numeric conversion 

sscanf(3) function, 192-193 

testing, 193 

o 
named pipes (FIFOs), 37-38 

nameless pipes, 371 
namelist argument (scandir(3) function), 140 

namelist array, 140 

names 
temporary files 

creating, 154-155 

prefixes, 159-161 

suffix, 157 

tty, determining, 83-85 

nanoseconds (sleep time), 357-361 

nanosleep(2) function, 357-361 

nbytes argument (read(2)/write(2) functions), 71 

NDBM database, 273-303 

closing, 276 
deleting information, 278 

error handling, 274-275 

keys 
deleting, 279 

visiting all keys, 278-279 

opening, 275 
retrieving information, 277-278 

Snapshot program example, 280 

compareO function, 299 

Dbm class, 283-288 

o compile option (add - to front), 14-17 

objects. See file system objects 

obj_flags (ftw(3C)/nftw(3C) functions), 145 

obj_FTW argument (fn function), 145 

obj_path argument (fn function), 145 

obj_stat argument (fn function), 145 

offset argument (lseek(2) function), 74 

old ermo variable, 53-56 

applying, 55 

integer return value failure, testing, 55 

pointer return value failure, testing, 56 

referencing error codes by name, 54-55 

one-shot realtime timers, creating, 364-366 

online manual pages, 9-12 

man(l) Internet resources, 11-12 

references, 10-11 

searching, 10 

sections, 9-10 

open file descriptors (flock(2) function), 95 
open(2) function, 43-46 

flag bits, 45-46 

lock files, creating, 89 

CLNONBLOCK flag, 330-331 
opendir(3) function, 134-135 
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opening 

directories, 134-135 
files, 44-45 

in non-blocking mode, 330 

open(2) flag bits, 45-46 

special files, 46 

NDBM database, 275 

pipes to other processes, 373-374 

shared libraries, 264-265 

operations (semaphores), 500-502 

notify operations, 505 

wait for zero operations, 505-506 

wait operations, 502-505 

optarg external variable, 175 

opterr external variable, 176 

optimize (-0) compile option, 16-17 

optind external variable, 175 

option-processing loops (getopt(3) function), 177-178 
options 

arguments, 174 

identifying, 174 

long, 183 

getopt_long(3) function, 183 

look shorter, 184 

options structure, 184-186 

processing, 185 

multiple, 173-174 

options structure, 184-186 

optreset external variable, 176 

optstring argument (getopt(3) function), 177 

overflows (conversions), testing for, 199-203 

owner argument (chown(2) function), 123 

ownership 

files, 122-124 

message queues, 459-460 

semaphores, 492-494 

0_NONBLOCK flag (open(2) function), 330-331 

P 

parent processes, 373, 385-386 

waiting for child process completion, 389 

zombie processes, creating, 389-391 

parenthesized match subexpressions, 434 

Passwd class (static libraries), 248-253 

passwd structure, 235 

password database routines 

fgetpwent(3) function, 236 

getpwent(3) function, 235-236 

getpwnam(3) function, 237-238 

getpwuid(3) function, 237 

passwd structure, 235 

putpwent(3) function, 236-237 

passwords, shadow password files, 234 

path argument 

mkdir(2) function, 132 

readlink(2) function, 121 

path argument (exec(2) functions), 401 
pathconf(2) function 

chown(2) function restrictions, testing, 124 
pathnames size, 125-128 

pathname argument 

execve(2) function, 397-398 

opendir(3) function, 134 
pathnames 

size, 125-128 

temporary files 

buffers, 153-154 

creating, 151 

null arguments, 152-153 

pattern argument 

fnmatch(3) function, 408 

glob(3) function, 416 

pattern matching, 405-408 

anchors, 431-432 

atoms, 434 

character classes, 433 

fnmatch(3) function, 408-415 

flag argument, 409 

FNM_CASEFOLD flag, 413 

FNM_LEADING_DIR flag, 415 

FNM_NOESCAPE flag, 412-413 

FNM_PATHNAME flag, 413-414 

FNM_PERIOD flag, 414-415 

pattern argument, 408 

string argument, 408 

glob(3) function, 416-429 

arguments, 416 

GLOB_ALTDIRFUNC flag, 427 
GLOB_APPEND flag, 424 

GLOB_BRACE flag, 427 

GLOB_DOOFFS flag, 422-424 

GLOB_MAGCHAR flag, 427 

GLOB_MARK flag, 424-425 

GLOB_NOCHECK flag, 426-427 

GLOB_NOMAGIC flag, 428 

GLOB_NOSORT flag, 425-426 

GLOB_QUOTE flag, 426 

GLOB_TILDE flag, 428-429 

return values, 417-422 

meta-characters, 405-408, 433 

parenthesized match subexpressions, 434 

pieces, 434-435 

ranges, 433 

regexec(3) function, 440-441 

sets, 432-433 

pclose(3) function, 373, 378 

pending signals, 319 

performance, mandatory locking, 102 
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permission bits, 65-67 

groups, 65 

macros, 66-67 

semaphores, 492-494 

permissions, 41-43 

directory access, 42-43 

files, 122-123 

message queues, 459-460 
regular file access, 41-42 

S_1SVTX, 67 

perror(3) function, 57-58 

pglob argument (glob(3) function), 416 
pieces, 434-435 

pipe symbol (|), 435 
pipe(2) function, 371-372 

pipes, 371-379 

broken pipes, handling, 378-379 

closing, 378 

creating, 371-372 

named pipes (FIFOs), 37-38 

nameless pipes, 371 

opening to other processes, 373-374 
reading from, 374-375 

STREAMS-based pipes, 372 

unidirectional pipes, 372 

writing to, 375-377 

pointer return values 

failure, testing, 56 

successful, 52 

pointers 

buf, 121 

conversion pointers, 195-196 

non-null flag (options structure), 185-186 

null flag, 184-185 

void, scanning directories, 140 

poll(2) function, 342-349 

event bit macros, 344-345 

example program, 345-349 

priority bands, 345 

popen(3) function, 373-374 

reading from pipes, 374-375 

writing to pipes, 375-377 

portable flag bits (mmap(2) function), 540 

position-independent code (shared libraries), 260 

positions 

restoring directories, 139 

saving directories, 138 

POSIX 

file locking, 99 

flock structure, 99 

lock information, 101-102 

locking regions, 100 

unlocking regions, 101 

stat structure, 109 

POSIX. 1 standard re-entrant functions, 323 

_POSIX_C_SOURCE feature macro, 26 

A1X 4.3 feature tests, 29 

FreeBSD 3.4-release feature tests, 27 

SunOS 5.6 feature tests, 29-30 

_POSIX_SOURCE feature macro, 25 

AIX 4.3 feature tests, 29 

FreeBSD 3.4-release feature tests, 27 

HPUX 10.2 feature tests, 28 

SunOS 5.6 feature tests, 29-30 

_POSIX_VERS!ON feature macro 

AIX 4.3 feature tests, 29 

FreeBSD 3.4-release feature tests, 27 

HPUX 10.2 feature tests, 28 

SunOS 5.6 feature tests, 29-30 

prefix argument (tempnam(3) function), 159 

priority bands (poll® function), 345 

process IDs, 449 

querying, 498-499 

process memory image (static libraries), 247-248 

processO function, 298 

processes 

child process, 373 

child processes, 385-386 

creating with fork® function, 388-389 

exec® functions, 397, 401-402 

execl® function, 402 

execl(3) function, 402 

execle® function, 402 

execle(3) function, 402 

execlp® function, 402 

execlp(3) function, 402 
exect® function, 402 

execv® function, 402 

execve® function, 397-401 

arguments, 397-398 

starting the ps(l) command, 398-401 
execvp® function, 402 

external processes, invoking, 379-384 
fork process, 385-387 

fork® function, 385-387 

child processes, creating, 388-389 

interprocess communications. See IPC 
parent processes, 373, 385-386 

waiting for child process completion, 389 

zombie processes, creating, 389-391 
pipes, 371-379 

broken pipes, handling, 378-379 
closing, 378 

creating, 371-372 

nameless pipes, 371 

opening to other processes, 373-374 

reading from, 374-375 

writing to, 375-377 

wait® function, 389-396 

calling without zombie processes, 392-393 
status argument, 391 

status test macros, 393-394 
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wait3(2) function, 395-396 

wait4(2) function, 395-396 

waitpid(2) function, 395-396 

zombie processes, 389-391 

programming. See event-driven programming 
programs 

globvar utility program. See globvar utility program 

interrupting. See signals 

messages.c, 542-545, 549 

,/regexpr test program, 441-446 

semop utility program, 481-482 

accessing semaphore sets, 485 

creating semaphore sets, 485 

main program source, 507-511 

-R reporting function, 513 

string-to-numeric conversions, 511-513 
usage() function, 513-514 

Snapshot program. See Snapshot program 

Xlib client program, 561-575 

event-processing loop, 567-570 

include file, 561-562 

main() program, 562-565 

XAnyEvent structure, 572 

XButtonEvent data type, 573 

XEvent data type, 571 

XExposeEvent structure, 572 

XMotionEvent data type, 574 

XNextEvent(3Xll), 571 

ps(l) command, starting with execve(2) function, 398-401 

putpwent(3) function, 236-237 

Q 
querying 

pages in memory (memory-mapped regions), 552 

process IDs (semaphores), 498-499 

processes 
waiting for notifies (semaphores), 499 

waiting for zero (semaphores), 500 

umask value, 69-70 

value of semaphores, 494-496 

semaphore sets, 488-492 

question mark (?) meta-character, 406 

queuing messages (processes), 448-449 

quoted characters (regular expressions), 436 

R 

-R reporting function (semop utility), 513 

radix conversions, 196-199 

radix of zero, testing, 198 

radix values, 196 

radixes above 16, testing, 199 

raise(3) function, 327 

raised signals, 307, 326-327 

range checking errors, 59 

ranges, 433 

re-entrant functions, 241-242, 322-325 

avoiding re-entrant code issues, 324 

ermo external variable, 324-325 

read event bit masks (poll® function), 344 
read events, 337 

read locks, 94-95 

read® function, 71 

readdir® function, 136-138 

readfds file descriptor set, 335-336 

read events, 337 
reading 

I/O, 71 

from pipes, 374-375 

scatter function, 82-83 

symbolic link contents, 121 

readlink® function, 121 

readv® function, 82-83 

real user ID, 229 

realtime timer, 361 

one-shot realtime timers, creating, 364-366 

receiving messages (message queues), 461-463 

reference pointers, obtaining (dynamic library loading), 265 

referencing 

error codes by name, 54-55 

IPC resources, 452-454 

regcomp® function, 438 

regerror® function, 439 

regexec® function, 440-441 

./regexpr test program, 441-446 

regexpr(3) routines, 441-446 

regfree® function, 439-440 

regions 

locked regions, 87-88, 96 

advisory locking, 98 

deadlock avoidance, 98 

EACCES error, 97 

EDEADLK error, 98 

merging, 97 

POSIX fcntl® function, 99-102 

System V lockf® function, 96-98 

unlocking, 98 

memory mappings 

access protections, changing, 548-549 

memory use, informing the kernel about, 

549-552 

querying pages in memory, 552 

synchronizing changes, 553 

registering functions (atexit® function), 162, 165 

regular expressions, 431-436 

. meta-character, 433 

anchors, 431-432 

atoms, 434 

bounds, 436 
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branches, 435 

character classes, 433 
compiling, 437-438 

freeing, 439-440 

matching, 440-441 

parenthesized match subexpressions, 434 

pieces, 434-435 
program example (applying regular expressions), 

441-446 

quoted characters, 436 

ranges, 433 

reporting errors, 438-439 

sets, 432-433 

regular files, 33-34 

permissions, 41-42 

REG_BASIC macro, 437 

reliable signals, 308, 311-317 

applying, 316-317 

setting signal actions, 314-315 
sigaction(2) function, 314-317 

sigaddset(3) function, 312-313 

sigdelset(3) function, 313 

sigemptyset(3) function, 312 

sigfillset(3) function, 312 

sigismember(3) function, 313 
signal action flags, 315-316 

signal sets, 311-313 

remote file systems, file locking, 95 

remove(3) function, 106 

removing 

global variables (globvar utility program), 518 

signals from signal sets, 313 

rename(2) function, 108 

repeating timers, establishing, 366-369 

reporting 

ermo values, 57 

perror(3) function, 57-58 
strerror(3) function, 60-62 

sys_errlist[] array, 58-60 

errors (dynamic library loading), 265 

resource utilization structure, 396 

restoring directory positions, 139 

retrieving information (NDBM database), 277-278 

return pointers (conversions), 195 

testing, 196 

return values 

ERANGE, 199-200 

glob(3) function, 417-422 

GLOB_ALTDIRFUNC flag, 427 

GLOB_APPEND flag, 424 

GLOB_BRACE flag, 427 

GLOB_DOOFFS flag, 422-424 

GLOB_MAGCHAR flag, 427 

GLOB_MARK flag, 424-425 

GLOB_NOCHECK flag, 426-427 

GLOB_NOMAGIC flag, 428 

GLOB_NOSORT flag, 425-426 

GLOB_QUOTE flag, 426 

GLOB_TILDE flag, 428-429 

integer 
failure, testing, 55 

successful, 52 

LONG_MAX, 199-200 

pointer 
failure, testing, 56 

successful, 52 

system(3) function, 381-383 

returns, 52 
revent bit masks (poll(2) function), 345 

rewinddir(3) function, 138 

rewinding directories to start, 138 

rmdir(2) function, 133-134 
rmtp argument (nansleep(2) function), 358 

root directory, changing, 146-149 

root user ID, 228 

routines, regexpr(3) routines, 441-446 

rqtp argument (nanosleep(2) function), 358 

RTLD_LAZY argument mode (dlopen(3) function), 264 

RTLD_NOW argument mode (dlopen(3) function), 265 

running Snapshot program (NDBM database example), 

299-301 

s 
S_ISVTX permission, 67 
saved user ID, 230 

saving 

current directory, 131-132 

directory positions, 138 

scandir(3)function, 139-143 

compar argument, declaring, 140 

example, 141-143 

select argument, declaring, 140 

scanning directories, 139-140 

scandir(3) function example, 141-143 

selecting only entries starting with h example, 140 

System V variations, 141 

void pointers, 140 

scatter read and write functions, 82-83 
scattered I/O, 82-83 

SCO Product Documentation Library Web site, 11 
scope (umask value), 67-68 
script files, 119 

search path variables (shared libraries), 258 
searching 

directories, 136-138 
files, 74-75 

manual pages, 10 

shared libraries (dynamic loader), 258-259 
seekdir(3) function, 139 

SEEK_CUR value (lseek(2) whence argument), 74 

SEEK_END value (lseek(2) whence argument), 74 
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SEEK_SET value (lseek(2) whence argument), 74 

select argument (scandir(3) function), 140 

select(2) function, 333-342 

directory program, 338-342 

exception events, 338 

file descriptor sets, 334 

exceptfds, 336-337 

readfds, 335-336 

writefds, 336-337 

read events, 337 

timeout argument, 335-336 

timeval structure, 335 

write events, 337 

semaphore locking routines (globvar utility program), 

528-529 

semaphores, 450-451 

access, changing, 492-494 

accessing, 483-485 

creating, 483-485 

destroying, 486-488 

notifying, 451 

operations, 500-502 

notify operations, 505 

wait for zero operations, 505-506 

wait operations, 502-505 

process ID, querying, 498-499 

processes 

waiting for notifies, querying, 499 

waiting for zero, querying, 500 

querying, 488-492 

semop utility program, 481-482 

accessing semaphore sets, 485 

creating semaphore sets, 485 

main program source, 507-511 

-R reporting function, 513 

string-to-numeric conversions, 511-513 

usage() function, 513-514 

undo processing, 506-507 

values 

changing, 496-498 

querying, 494-496 

waiting on, 451 

sembuf structure, 501 

semctl(2) function, 486-488 

GETALL command, 495-496 

GETNCNT command, 499 

GETPID command, 498-499 

GETVAL command, 494-495 

GETZCNT command, 500 

IPC_SET command, 492-494 

IPC_STAT command, 488-492 

SETALL command, 497-498 

SETVAL command, 496-497 

semget(2) function, 483-485 

semid argument, 486 

semop utility program, 481-482 

accessing semaphore sets, 485 

creating semaphore sets, 485 

main program source, 507-511 

-R reporting function, 513 

string-to-numeric conversions, 511-513 
usage() function, 513-514 

semop(2) function, 500-502 

IPC_NOWAIT flag, 501 

notify operations, 505 

SEMJJNDO flag, 501-507 

wait for zero operations, 505-506 

wait operations, 502-505 

SEM_UNDO flag (semop(2) function), 501-507 

sending messages (message queues), 460-461 

server program (applying message queues), 463-479 

Msq class definition file, 463-464 

Msq::access() method, 467 

Msq::change() method, 469-470 

Msq::create() method, 466-467 

Msq::destroy() method, 467-468 

Msq::dispose() method, 464-466 
Msq::Msq() constructor, 464-466 

Msq::recv() method, 471-472 

Msq::send() method, 470-471 

Msq::stat() method, 468-469 

Msq::_verify() method, 464-466 

StatMsg structure, 472-473 

statsrv server, 473-475 

SETALL command (semctl(2) function), 497-498 
setegid(2) function, 232 

seteuid(2) function, 230-231 

setgid(2) function, 232 

setgrent(3) function, 239 

setgroups(2) function, 244-245 

setitimer(2) function, 361-362 

macros, 363 

sets, 432-433 

setuid(2) function, 230-231 

SETVAL command (semctl(2) function), 496-497 

SGI IRIX/Linux Web site, 11 

shadow password files, 234 

shared libraries, 256-261 

benefits, 263-264 

closing, 266 

comparing to static libraries, 256-257, 261-264 

controlling what is shared, 261 

creating, 257 

dynamic library loading, 264-271 

applying dynamic loading, 266-268 

closing shared libraries, 266 

HPUX 10.2 API, 269-271 

initialization, 266 

opening shared libraries, 264-265 

reference pointers, obtaining, 265 

reporting errors, 265 

dynamic loader, 258-260 
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linking process, 257 

listing shared library references, 258 

opening, 264-265 

position-independent code, 260 

search path variables, 258 

shared locks, 94-95 

shared memory, 518-526 

accessing, 519-521 

attaching, 523-524 

attributes, changing, 522-523 

creating, 519-521 

destroying, 526 

detaching, 524-526 

globvar utility program, 515-518, 526-535 

accessing global variables, 517-518 

creating global variables, 517 

global definitions, 527-528 

global variable pools, 516-518 

globget.c source module, 529 

globlk.c source module, 528-529 

globset.c source module, 533-534 

globun.c source module, 534-535 

GLOBVAR environment variable, 517 

main() program, 529-533 

removing global variables, 518 

semaphore locking routines, 528-529 

Unset feature, 534-535 

variable assignment functions, 533-534 

information, obtaining, 521-522 

shared memory (processes), 450 

-shared option (gcc(l) command), 257 

shell pattern matching, 405-408 

shl_findsym(3X) function, 270-271 

shl_load(3X) function, 270 

shl_unload(3X) function, 271 

shmat(2) function, 523-524 

shmctl(2) function, 521-523, 526 

shmdt(2) function, 524-526 

shmget(2) function, 519-521 
SHM_LOCK command (shmctl(2) function), 521 

SHM_UNLOCK command (shmctl(2) function), 521 

sigaction(2) function, 314-317 

sigaddset(3) function, 312-313 

SIGALRM signal, 364-366 

sigdelset(3) function, 313 

sigemptyset(3) function, 312 

sigfillset(3) function, 312 

S1GINT signal, 307-308 

sigismember(3) function, 313 

signal handlers 

EINTR error code, 325-326 

re-entrant functions, 322-325 

signal(3) function, 308-311 

signals, 307-308 

adding to signal sets, 312-313 

alarm(3) function, 320-322 

blocking, 318-319 

commonly used signals, 309 

EINTR (flock(2) function), 95 

kill(2) function, 326-327 

pending signals, 319 

raise(3) function, 327 

raised signals, 307, 326-327 

reliable signals, 308-317 

applying, 316-317 

setting signal actions, 314-315 
sigaction(2) function, 314-317 

sigaddset(3) function, 312-313 

sigdelset(3) function, 313 
sigemptyset(3) function, 312 

sigfillset(3) function, 312 

sigismember(3) function, 313 

signal action flags, 315-316 

signal sets, 311-313 

removing from signal sets, 313 

SIGALRM, 364-366 

SIGINT, 307-308 

signal handlers, 307 

signal sets, 311-313 

sigpending(2) function, 319 

SIGPIPE, 378-379 

sigprocmask(2) function, 318-319 

sigsuspend(2) function, 319-322 

testing for (in signal sets), 313 

unblocking, 319-320 

unreliable signals, 308-311 

sigpending(2) function, 319 

SIGPIPE signal, 378-379 

sigprocmask(2) function, 318-319 

sigset_t data type, 311 

sigsuspend(2) function, 319-322 

SIG_DFL macro, 310 

SIG_1GN macro, 310 

size, pathnames, 125-128 

size argument (null buffers), 130 
sleep functions 

nanosleep(2), 357-361 

nansleep(2), 358 

sleep(3), 351-352 

UNIX implementation of, 352-354 
usleep(3), 355-357 

Snapshot program (NDBM database example), 280 

compareO function, 299 

Dbm class, 283-288 

delete capability, testing, 301-303 

Dir class, 280-283 

InoDb class, 288-291 

key visitation feature, testing, 301-303 

processO function, 298 

running, 299-301 

source code listing, 291-298 

walk() function, 298 
sockets, 38, 47 
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software layers (X Window), 560-561 
sparse files, 77 

copying, 79 

creating, 77-79 

sparse matrix, 77 

sparse.dat file, deleting, 79 

special files, 39-41 

opening, 46 

square brackets([]) 

command-line, 173 

meta-characters, 406-407 

sscanf(3) function, 192-194 

standard input (files), changing, 48 

standards (compiling C programs), 25-30 

AIX 4.3 feature tests, 28-29 

FreeBSD 3.4-release feature tests, 27 

HPUX 10.2 feature tests, 28 

SunOS 5.6 feature tests, 29-30 

Stat class, 111-116 

stat structure, 108-111 

stat(2) function, 458 

file system information, obtaining, 108-111 

testing, 111-116 

statcln client program source code, 476-478 

static libraries, 247-256 

archives, 253-254 

benefits, 262-263 

comparing to shared libraries, 256-257, 261-264 

implementing, 248-253 

linking process, 255-256 

Passwd class example, 248-253 

process memory image, 247-248 

static library code, 248 

-static option (gcc(l) command), 257 

StatMsg message structure, 472-473 

statsrv server, 473-475 

status argument (wait(2) function), 391 

status test macros, 393-394 

stdio(3) functions, 49 

stdio(3) set, 62-64 

sticky bit permission, 67 

storing information (NDBM database), 276-277 

STREAMS-based pipes, 372 

strerror(3) function, 60-62 

strftime(3) function, 10, 221-226 

DTime class, testing, 224-226 

DTime::strftime(3) method, 223-224 

format specifiers, 222-223 

locale, 226 
string argument (fnmatch(3) function), 408 

string pattern matching 

fnmatch(3) function, 408-415 

flag argument, 409 
FNM_CASEFOLD flag, 413 

FNM_LEADING_DIR flag, 415 

FNM_NOESCAPE flag, 412-413 

FNM_PATHNAME flag, 413-414 

FNM_PERIOD flag, 414-415 

pattern argument, 408 

string argument, 408 

meta-characters, 405 

string-to-floating point conversions, 202-204 

string.h filestrerror(3)function, 60 
strings 

converting time/date to string form, 212-213, 217-218 

unreferenced strings (compiler warning messages), 
23-25 

strtod(3) function, 202-204 

strtol(3) function, 194-195 

base argument, 196-197 

strtoll(3) function, 201 

strtoq(3) function, 202 

strtoul(3) function, 194 

strtoul(3) overflows, testing for, 201 

strtoull(3) function, 201 

strtouq(3) function, 202 

struct tm structure, 216-217, 220 

st_atime value, 118 

st_ctime value, 118 

st_mtime value, 118 

suboptions (getsubopt(3) function), 179 

example, 180-183 

suboption parsing, 180 

subopts_str argument (getsubopt(3) function), 179 

successful return values, 52 

SunOS 5.6 feature tests, 29-30 

super user, 228 

supplementary groups, 242-245 

sym argument (shl_findsym(3X) function), 270 

symbolic links, 39, 120-121 

symbolic macro references, error codes, 54 

symlink(2) function, 120 

sync(2) function, 80-81 

sync(8) command, 80 

synchronizing changes (memory-mapped regions), 553 

System V directories, scanning, 141 

system virtual timer, 361 

system(3) function, 379-384 

limitations, 384 

return values, 381-383 

sys_errlist[] array 
errno values, reporting, 58-60 

evaluating, 60 

sys_nerr integer value, 59 

T 

telldir(3) function, 138 

template argument 

mkstemps(3) function, 157 

mktemp(3) function, 154 

tempnam(3) function, 159-161 
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temporary files 

cleanup, 162 
atexit(3) function, 162-165 

avoiding, 169 

destructors, 165-169 

creating, 151 

mkstemp(3) function, 155-157 

tmpfile(3) function, 157-158 

names, creating, 154-155 

pathnames 

buffers, 153-154 

creating, 151 

null argument, 152-153 

prefixes, 159-161 

releasing, 161-162 

suffix, appending, 157 

testing 

binary conversions, 198 

chown(2) function restrictions, 124 

conversion pointers, 196 

conversions 
exponent underflow, 204 

math errors, 203-204 

overflows, 199-203 

underflows, 199-200, 204 

delete capability (Snapshot program), 301-303 

DTime class, 224-226 

errors (stdio(3) set), 62-64 

file access, 119-120 

file links, 116-117 

file types, 117-118 
for conversion errors, 195-196 

fstat(2) function, 111-116 

integer return values failure, 55 

key visitation feature (Snapshot program), 301-303 

LD_LIBRARY_PATH variable, 260 

lock files, 92 
numeric conversions with sscanf(3), 193 

pathname size, 125-128 

pointer return values failure, 56 

radix conversions, 198-199 

range check, 61 

signals in signal sets, 313 

stat(2) function, 111-116 

time and date 
converting to string form, 212-213, 217-218 

customizing formats with strftime(3) function, 

221-226 
DTime class, testing, 224-226 

DTime::strftime() method, 223-224 

format specifiers, 222-223 

locale, 226 

Epoch Time, 207 

epoch time values, creating, 220-221 

time zones, 207-209 

time_t data type, 209-210 

time conversion functions, 210-212 

asctime(3) function, 217-218 

ctime r(3), 213-214 

ctime(3), 212-213 
DTime class example, 210-212 

gmtime(3), 214-215 

include files, 210 

localtime(3), 214-215 

mktime(3), 220-221 

struct tm structure, 216-217 

input members, setting, 220 

members altered by mktime(3), 220 

tzname[] external array, 219 

tzset(3), 218-219 

time zones, 207 
determining under BSD, 219 

local time zones, 208-209 

tzset(3) function, 208-209 

world time standards, 208 

timeout argument (select(2) function), 335-336 

timerclearO macro, 363 

timercmpO macro, 363 

timerissetO macro, 363 

timers (interval timers), 361 

getitimer(2) function, 361-362 

one-shot realtime timers, creating, 364-366 

repeating timers, establishing, 366-369 

restrictions, 363-364 

setitimer(2) function, 361-363 

timeval structure (select(2) function), 335 

timezone external variable (tzset(3) function), 218 

time_t data type, 209-210 

TMPD1R environment variable (tempnam(3) function), 160 

tmpfile(3) function, 157-158 

tmpnam(3) function 

disadvantages, 152 

temporary file pathnames, creating, 151 

buffers, 153-154 

null argument, 152-153 

tokens argument (getsubopt(3) function), 179 

truncate(2) function, 76 

truncate(3C) function, 76 

truncating files, 76-77 

tty name, determining, 83-85 

ttyname(3) function, 83-85 

type argument (shl_findsym(3X) function), 270 

TZ environment variable, 208-209 

tzname[] external array, 219 

tzset(3) function, 208-209, 218-219 

external variables, 218-219 

TZ variable, 209 

tzname[] external array, 219 
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u 
uid numbers (user ID numbers),, 227-228 
umask value, 68-70 
umask(2) function, 68-70 
unblocking signals, 319-320 
underflows 

exponent underflow, 204 
testing for, 199-200 

string-to-floating point conversions, 204 
unidirectional pipes, 372 
Universelle Tempes Coordinate (UTC), 208 
UNIX platform differences 

compiling C programs, 13-18 
ANSI C compile options, 18 
-c compile option, 14 
compile command, 13-14 
-D compile option, 15 
-E compile option, 16 
-g compile option, 15 
-I compile option, 15-16 
-o compile option, 14, 16-17 
warning options, 17 

example code, 12 
UNIX Seventh Edition Manual Web site, 273 
unlink(2) function 

deleting files, 105-106 
temporary files, releasing, 161-162 

unlocking 
lock files, 91-92 
locked regions, 98, 101 

unreferenced strings (compiler warning messages), 23-25 
unreliable signals, 308-311 
Unset feature (globvar utility program), 534-535 
unused arguments (compiler warning messages), 21 
unused variables (compiler warning messages), 22-23 
usageO function (semop utility), 513-514 
user ID, 229-231 
user ID numbers (uid numbers), 227-228 
user management 

/etc/group file, 238-239 
/etc/passwd file, 233-234 
getegid(2) function, 229 
geteuid(2) function, 228-229 
getgid(2) function, 229 
getuid(2) function, 228-229 
group database routines, 239-241 
group ID, setting, 232 
group ID number (gid number), 228 
issetugid(2) function (FreeBSD), 232 
password database routines 

fgetpwent(3) function, 236 
getpwent(3) function, 235-236 
getpwnam(3) function, 237-238 
getpwuid(3) function, 237 
passwd structure, 235 
putpwent(3) function, 236-237 

re-entrant functions, 241-242 
supplementary groups, 242-245 

getgroups(2) function, 242-244 
initgroups(3) function, 245 
setgroups(2) function, 244-245 

user ID, 229-231 
user ID numbers (uid numbers), 227-228 

usernames, 228 
groups, setting, 245 

usleep(3) function, 355-357 
UTC (Universelle Tempes Coordinate), 208 

V 

valuep argument (getsubopt(3) function), 179 
values 

errno variable, reporting values, 57-62 
return values. See return values 
SEEK_CUR (lseek(2) whence argument), 74 
SEEK_END (lseek(2) whence argument), 74 
SEEK_SET (lseek(2) whence argument), 74 
st_atime, 118 
st_ctime, 118 
st_mtime, 118 
umask, 67-70 

variable assignment functions (globvar utility program), 
533-534 

variables 
environment variables 

TMPDIR, 160 
TZ,208-209 

errno 
failures, 53 
new version, 56-57 
old version, 53-56 
reporting values, 57-62 

external variables (tzset(3) function), 218-219 
LD_LIBRARY_PATH variable (shared libraries), 

259-260 
optarg, 175 
opterr, 176 
optind, 175 
optreset, 176 
search path variables (shared libraries), 258 
unused variables (compiler warning messages), 22-23 

verbose listings of archives, obtaining (static libraries), 254 
virtual memory (VM) page size, 538-539 
virtual timer, 361 
visiting all keys (NDBM database), 278-279 

testing key visitation feature (Snapshot program), 
301-303 

VM (virtual memory) page size, 538-539 
void pointers, scanning directories, 140 
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w X-Y-Z 

wait for zero operations (semaphores), 505-506 

wait operations (semaphores), 502-505 

wait(2) function, 389-396 

calling without zombie processes, 392-393 

status argument, 391 

status test macros, 393-394 

zombie processes, 389-391 

wait3(2) function, 395-396 

wait4(2) function, 395-396 

waiting on the semaphore, 451 

waitpid(2) function, 395-396 

walk() function, 298 

walking directory structures, 144-146 

-Wall option, 18 

warning messages (compilers), 18-25 

assignment warnings, 19-21 

unreferenced string warnings, 23-25 

unused argument warnings, 21 

unused variable warnings, 22-23 

warning options (compilers), 17 

WCOREDUMP0 macro, 394 

Web sites 

docs.sun.com, 11 

FreeBSD Hypertext Man Pages, 11 

HP Technical Documentation (HPUX 10 & 11), 11 

IBM AIX, 11 
SCO Product Documentation Library, 11 

SGI IRIX/Linux, 11 

UNIX Seventh Edition Manual, 273 

WEXITSTATUSO macro, 394 
whence argument (lseek(2) function), 74 

WIFEXITEDO macro, 394 
W1FSIGNALED0 macro, 394 

WIFSTOPPEDO macro, 394 

WNOHANG bitwise macro, 395-396 

world time standards, 208 

write event bit masks (poll(2) function), 344 

write events, 337 

write locks, 94 

write(2) function, 71-72 

writefds file descriptor set, 336-337 

writev(2) function, 82-83 

writing 

data to media, 80-81 

I/O, 71-72 

to pipes, 375-377 
scatter function, 82-83 

WSTOPSIG0 macro, 394 

WTERMSIGO macro, 394 

WUNTRACED bitwise macro, 395 

X Window 
event-driven programming, 557-561 

client/server processing, 559 

event-driven models, 558 

software layers, 560-561 

Xlib client program, 561-575 

event-processing loop, 567-570 

include file, 561-562 

mainO program, 562-565 

XAnyEvent structure, 572 

XButtonEvent data type, 573 

XEvent data type, 571 

XExposeEvent structure,.572 

XMotionEvent data type, 574 

XNextEvent(3Xl 1), 571 

XAnyEvent structure (Xlib client program), 572 

XButtonEvent data type (Xlib client program), 573 

XEvent data type (Xlib client program), 571 

XExposeEvent structure (Xlib client program), 572 

Xlib client program, 561-575 

event-processing loop, 567-570 

include file, 561-562 

main() program, 562-565 

XAnyEvent structure, 572 

XButtonEvent data type, 573 

XEvent data type, 571 

XExposeEvent structure, 572 

XMotionEvent data type, 574 
XNextEvent(3Xl 1), 571 

XMotionEvent data type (Xlib client program), 574 

XNextEvent(3Xl 1) function (Xlib client program), 571 

zero gid number, 228 

zero uid number, 228 

zombie processes, 389-391 
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